WorldWideScience

Sample records for osteoblast adhesion fluence

  1. Adhesion of osteoblasts to a nanorough titanium implant surface

    Directory of Open Access Journals (Sweden)

    Gongadze E

    2011-08-01

    Full Text Available Ekaterina Gongadze1, Doron Kabaso2, Sebastian Bauer3, Tomaž Slivnik2, Patrik Schmuki3, Ursula van Rienen1, Aleš Iglič21Institute of General Electrical Engineering, University of Rostock, Rostock, Germany; 2Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 3Department of Materials Science, Friedrich-Alexander University of Erlangen-Nurenberg, Erlangen, GermanyAbstract: This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts.Keywords: osteoblasts, nanostructures, adhesion, titanium implants, osteointegration

  2. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Agarwal, Arvind; Benaduce, Ana Paula; Kos, Lidia

    2011-01-01

    This paper explores the nano-scratch technique for measuring the adhesion strength of a single osteoblast cell on a hydroxyapatite (HA) surface reinforced with carbon nanotubes (CNTs). This technique efficiently separates out the contribution of the environment (culture medium and substrate) from the measured adhesion force of the cell, which is a major limitation of the existing techniques. Nano-scratches were performed on plasma sprayed hydroxyapatite (HA) and HA-CNT coatings to quantify the adhesion of the osteoblast. The presence of CNTs in HA coating promotes an increase in the adhesion of osteoblasts. The adhesion force and energy of an osteoblast on a HA-CNT surface are 17 ± 2 μN/cell and 78 ± 14 pJ/cell respectively, as compared to 11 ± 2 μN/cell and 45 ± 10 pJ/cell on a HA surface after 1 day of incubation. The adhesion force and energy of the osteoblasts increase on both the surfaces with culture periods of up to 5 days. This increase is more pronounced for osteoblasts cultured on HA-CNT. Staining of actin filaments revealed a higher spreading and attachment of osteoblasts on a surface containing CNTs. The affinity of CNTs to conjugate with integrin and other proteins is responsible for the enhanced attachment of osteoblasts. Our results suggest that the addition of CNTs to surfaces used in medical applications may be beneficial when stronger adhesion of osteoblasts is desired.

  3. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    Science.gov (United States)

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  4. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion

    Directory of Open Access Journals (Sweden)

    Sabrina Puckett

    2008-06-01

    Full Text Available Sabrina Puckett, Rajesh Pareta, Thomas J WebsterDivision of Engineering, Brown University, Providence, RI, USAAbstract: Previous studies have demonstrated greater functions of osteoblasts (bone-forming cells on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 µm to 22 µm on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion promising for their long term functions, criteria necessary to improve

  5. UV-killed Staphylococcus aureus enhances adhesion and differentiation of osteoblasts on bone-associated biomaterials.

    Science.gov (United States)

    Somayaji, Shankari N; Huet, Yvette M; Gruber, Helen E; Hudson, Michael C

    2010-11-01

    Titanium alloys (Ti) are the preferred material for orthopedic applications. However, very often, these metallic implants loosen over a long period and mandate revision surgery. For implant success, osteoblasts must adhere to the implant surface and deposit a mineralized extracellular matrix (ECM). Here, we utilized UV-killed Staphylococcus aureus as a novel osteoconductive coating for Ti surfaces. S. aureus expresses surface adhesins capable of binding to bone and biomaterials directly. Furthermore, interaction of S. aureus with osteoblasts activates growth factor-related pathways that potentiate osteogenesis. Although UV-killed S. aureus cells retain their bone-adhesive ability, they do not stimulate significant immune modulator expression. All of the abovementioned properties were utilized for a novel implant coating so as to promote osteoblast recruitment and subsequent cell functions on the bone-implant interface. In this study, osteoblast adhesion, proliferation, and mineralized ECM synthesis were measured on Ti surfaces coated with fibronectin with and without UV-killed bacteria. Osteoblast adhesion was enhanced on Ti alloy surfaces coated with bacteria compared to uncoated surfaces, while cell proliferation was sustained comparably on both surfaces. Osteoblast markers such as collagen, osteocalcin, alkaline phosphatase activity, and mineralized nodule formation were increased on Ti alloy coated with bacteria compared to uncoated surfaces.

  6. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides

    Directory of Open Access Journals (Sweden)

    Annj Zamuner

    2017-09-01

    Full Text Available Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP mapped on [351–359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  7. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides.

    Science.gov (United States)

    Zamuner, Annj; Brun, Paola; Scorzeto, Michele; Sica, Giuseppe; Castagliuolo, Ignazio; Dettin, Monica

    2017-09-01

    Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP) mapped on [351-359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  8. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yun [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Eung-Sam [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Jeon, Gumhye [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Choi, Kwan Yong, E-mail: kchoi@postech.ac.kr [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Jin Kon, E-mail: jkkim@postech.ac.kr [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF{sub 4} and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF{sub 4} plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic.

  9. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    International Nuclear Information System (INIS)

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-01-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF 4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF 4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic

  10. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys

    International Nuclear Information System (INIS)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K.M.

    2016-01-01

    TiO 2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO 2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO 2 nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO 2 nanotubes have a positive impact on the osteoblast cell viability.

  11. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yuan, Zhang [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ding, Hongyan [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu Province 223003 (China); Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2017-06-01

    To improve the biological performance of titanium substrates, a bioactive multilayered structure of chitosan/gelatin pair, containing zinc ions, was constructed via a layer-by-layer self-assembly technique. The successful preparation of zinc ions incorporated multilayer films was demonstrated by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements, respectively. The biological behaviors of osteoblasts adhered to modified Ti substrates were investigated in vitro via cytoskeleton observation, cell viability measurement, and alkaline phosphatase activity assay. The cytocompatibility evaluation verified that the present system was capable of promoting the growth of osteoblasts. In addition, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria were used to evaluate antibacterial property of modified Ti substrates. Bacterial adhesion and viability assay confirmed that Zn-loaded multilayer films were able to inhibit the adhesion and growth of bacteria. The approach presented here affords an alternative to reduce bacterial infection and promote osteoblast growth for titanium-based implants. - Highlights: • Polyelectrolyte multilayer films containing Zn ions were fabricated on Ti substrate. • Modified Ti substrate stimulated the biological responses of osteoblast. • Antibacterial property of Ti substrate was significantly improved. • The resulting material thus has potential application in orthopedic field.

  12. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability.

    Science.gov (United States)

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ~11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation.

    Science.gov (United States)

    Hou, Ruixia; Zhang, Guohua; Du, Gaolai; Zhan, Danxia; Cong, Yang; Cheng, Yajun; Fu, Jun

    2013-03-01

    This paper reports on the systematic investigation of novel magnetic nano-hydroxyapatite/PVA composite hydrogels through cyclic freeze-thawing with controllable structure, mechanical properties, and cell adhesion and proliferation properties. The content of the magnetic nano-hydroxyapatite-coated γ-Fe(2)O(3) (m-nHAP) particles exhibited remarkable influence on the porous structures and compressive strength of the nanocomposite hydrogels. The average pore diameter of the nanocomposite hydrogels exhibited a minimum of 1.6 ± 0.3 μm whereas the compressive strength reached a maximum of about 29.6 ± 6.5 MPa with the m-nHAP content of around 10 wt% in the nanocomposite hydrogels. In order to elucidate the influence of the composite m-nHAP on the cell adhesion and proliferation on the composite hydrogels, the PVA, γ-Fe(2)O(3)/PVA, nHAP/PVA and m-nHAP/PVA hydrogels were seeded and cultured with osteoblasts. The results demonstrated that the osteoblasts preferentially adhered to and proliferated on the m-nHAP/PVA hydrogels, in comparison to the PVA and nHAP/PVA hydrogels, whereas the γ-Fe(2)O(3)/PVA hydrogels appeared most favorable to the osteoblasts. Moreover, with the increasing m-nHAP content in the composite hydrogels, the adhesion density and proliferation of the osteoblasts were significantly promoted, especially at the content of around 50 wt%. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Improving the Osteoblast Cell Adhesion on Electron Beam Controlled TiO2 Nanotubes

    Directory of Open Access Journals (Sweden)

    Sung Wook Yoon

    2014-01-01

    Full Text Available Here we investigate the osteogenesis and synostosis processes on the surface-modified TiO2 nanotubes via electron beam irradiation. The TiO2 nanotubes studied were synthesized by anodization process under different anodizing voltage. For the anodization voltage of 15, 20, and 25 V, TiO2 nanotubes with diameters of 59, 82, and 105 nm and length of 115, 276, and 310 nm were obtained, respectively. MC3T3-E1 osteoblast cell line was incubated on the TiO2 nanotubes to monitor the change in the cell adhesion before and after the electron beam irradiation. We observe that the electron beam irradiation affects the number of surviving osteoblast cells as well as the cultivation time. In particular, the high adhesion rate of 155% was obtained when the osteoblast cells were cultivated for 2 hours on the TiO2 nanotube, anodized under 20 V, and irradiated with 5,000 kGy of electron beam.

  15. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    Directory of Open Access Journals (Sweden)

    George E Aninwene II

    2008-06-01

    Full Text Available George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone. To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin and inflammation (dexamethasone using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF. Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.Keywords: anodization, titanium, adhesion, simulated body fluid, nanotubes

  16. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts.

    Science.gov (United States)

    Perinpanayagam, H; Zaharias, R; Stanford, C; Brand, R; Keller, J; Schneider, G

    2001-11-01

    In osteoporosis, the regenerative capacity of bone is compromised, which may involve altered osteoblast (OB) activity. This could be attributed to an inappropriate synthesis and assembly of an extracellular matrix (ECM), altered cell adhesion to the ECM, or be due to inappropriate downstream activation of adhesion-mediated signaling cascades through proteins such as focal adhesion kinase (FAK). The purpose of our study was to compare early adhesion-mediated events using previously described and characterized clinically derived OBs obtained from human patients undergoing major joint arthroplasty for osteoporosis or osteoarthritis. The presence or absence of osteoporosis was established with a radiographic index. Using light microscopy and crystal violet staining, we show that OB cells derived from sites of osteoporosis do not attach and spread as well as non-osteoporotic (OP) OB cells. OP cells initially have a more rounded morphology, and show significantly less (P attachment to serum-coated tissue culture plastic over a 24 h time period. Immunofluorescent labeling after 24 h of attachment showed that OP OB focal adhesions (FAs) and stress fibers were less defined, and that the OP cells were smaller and had a more motile phenotype. When normalized protein lysates were Western blotted for phosphotyrosine (PY) a band corresponding to pp125FAK was identified. FAK tyrosine phosphorylation was evident at 6 h in both the OP and non-OP OBs, but decreased or was absent through 24 h in OP OBs. These results suggest early adhesion-mediated events, such as cell adhesion, attachment, and FAK signaling via PY may be altered in OP OBs.

  17. Bone conditioned media (BCM) improves osteoblast adhesion and differentiation on collagen barrier membranes.

    Science.gov (United States)

    Fujioka-Kobayashi, Masako; Caballé-Serrano, Jordi; Bosshardt, Dieter D; Gruber, Reinhard; Buser, Daniel; Miron, Richard J

    2016-07-04

    The use of autogenous bone chips during guided bone regeneration procedures has remained the gold standard for bone grafting due to its excellent combination of osteoconduction, osteoinduction and osteogenesis. Recent protocols established by our group have characterized specific growth factors and cytokines released from autogenous bone that have the potential to be harvested and isolated into bone conditioned media (BCM). Due to the advantageous osteo-promotive properties of BCM, the aims of the present study was to pre-coat collagen barrier membranes with BCM and investigate its effect on osteoblast adhesion, proliferation and differentiation for possible future clinical use. Scanning electron microscopy (SEM) was first used to qualitative assess BCM protein accumulation on the surface of collagen membranes. Thereafter, undifferentiated mouse ST2 stromal bone marrow cells were seeded onto BioGide porcine derived collagen barrier membranes (control) or barrier membranes pre-coated with BCM (test group). Control and BCM samples were compared for cell adhesion at 8 h, cell proliferation at 1, 3 and 5 days and real-time PCR at 5 days for osteoblast differentiation markers including Runx2, alkaline phosphatase (ALP), osteocalcin (OCN) and bone sialoprotein (BSP). Mineralization was further assessed with alizarin red staining at 14 days post seeding. SEM images demonstrated evidence of accumulated proteins found on the surface of collagen membranes following coating with BCM. Analysis of total cell numbers revealed that the additional pre-coating with BCM markedly increased cell attachment over 4 fold when compared to cells seeded on barrier membranes alone. No significant difference could be observed for cell proliferation at all time points. BCM significantly increased mRNA levels of osteoblast differentiation markers including ALP, OCN and BSP at 5 days post seeding. Furthermore, barrier membranes pre-coated with BCM demonstrated a 5-fold increase in alizarin

  18. Study of the viability and adhesion of osteoblast cells to bone cements mixed with hydroxyapatite at different concentrations to use in vertebral augmentation techniques.

    Science.gov (United States)

    Pino-Mínguez, J; Jorge-Mora, A; Couceiro-Otero, R; García-Santiago, C

    2015-01-01

    The purpose of this study is to compare the biocompatibility and the effect in osteoblasts of polymethyl methacrylate alone, and mixed with hydroxyapatite in different concentrations of 5, 10, 15 and 20%, without exceeding 20%, as it can alter mechanical properties of the composite. Experimental study comparing osteoblast response to Polymethyl methacrylate alone and with hydroxyapatite in different concentrations. Composites at 15 and 20% obtained better osteoblast response, with higher osteoblastic activity markers, and lower apoptosis markers. Electron microscopy images show improved adhesion of osteoblasts. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  19. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  20. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M.; Gil, Francisco J.

    2016-01-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  1. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    Science.gov (United States)

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    Directory of Open Access Journals (Sweden)

    Bernadette Sosa-García

    2010-11-01

    Full Text Available The retinoblastoma protein (pRb is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.

  3. Osteoblast Adhesion on Cathodic Arc Plasma Deposited Nano-Multilayered TiCrAlSiN Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu [University of Ulsan, Ulsan (Korea, Republic of); Pham, Vuong Hung [Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam)

    2014-03-15

    Adhesion of osteoblast cells to TiCrAlSiN thin films was evaluated in vitro. Ti and TiCrAlSiN thin films were deposited on glass substrates by cathodic arc deposition. Surface roughness and chemistry of the TiCrAlSiN thin films was characterized by AFM and EPMA, respectively. Ti and TiCrAlSiN thin films and glass coverslips were cultured with human osteoblast cells (hFOB 1.19). The cell cytoskeleton was analyzed by observing the organization of actin stress fibers and microtubules. Cell proliferation was investigated by MTT assay and visualization. Focal contact adhesion was studied by observing the vinculin density. The results indicated that the TiCrAlSiN coating significantly influenced the actin cytoskeleton and microtubule organization. Human osteoblasts hFOB attached and proliferated better on TiCrAlSiN thin films with more focal contact adhesions than on Ti thin films or glass surfaces. These results suggest that TiCrAlSiN thin films can be an implantable material where the maximum cell adhesion is required.

  4. Osteoblast adhesion, migration, and proliferation variations on chemically patterned nanocrystalline diamond films evaluated by live-cell imaging

    Czech Academy of Sciences Publication Activity Database

    Brož, Antonín; Ukraintsev, Egor; Kromka, Alexander; Rezek, Bohuslav; Kalbáčová, M.H.

    2017-01-01

    Roč. 105, č. 5 (2017), s. 1469-1478 ISSN 1549-3296 R&D Projects: GA ČR(CZ) GA14-04790S; GA MZd(CZ) NV15-32497A Institutional support: RVO:67985823 ; RVO:68378271 Keywords : live-cell imaging * osteoblasts * adhesion * proliferation * migration * patterned surface Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Biomaterials (as related to medical implants, devices, sensors) Impact factor: 3.076, year: 2016

  5. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications.

    Science.gov (United States)

    Ergun, Celaletdin; Liu, Huinan; Webster, Thomas J

    2009-06-01

    Lanthanum phosphate (LaPO(4), LP) was combined with either hydroxyapatite (HA) or tricalcium phosphate (TCP) to form novel composites for orthopedic applications. In this study, these composites were prepared by wet chemistry synthesis and subsequent powder mixing. These HA/LP and TCP/LP composites were characterized in terms of phase stability and microstructure evolution during sintering using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their machinability was evaluated using a direct drilling test. For HA/LP composites, LP reacted with HA during sintering and formed a new phase, Ca(8)La(2)(PO(4))(6)O(2), as a reaction by-product. However, TCP/LP composites showed phase stability and the formation of a weak interface between TCP and LP machinability when sintered at 1100 degrees C, which is crucial for achieving desirable properties. Thus, these novel TCP/LP composites fulfilled the requirements for machinability, a key consideration for manufacturing orthopedic implants. Moreover, the biocompatibility of these novel LP composites was studied, for the first time, in this paper. In vitro cell culture tests demonstrated that the LP and its composites supported osteoblast (bone-forming cell) adhesion similar to natural bioceramics (such as HA and TCP). In conclusion, these novel LP composites should be further studied and developed for more effectively treating bone related diseases or injuries. 2008 Wiley Periodicals, Inc.

  6. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications

    Directory of Open Access Journals (Sweden)

    Phong Tran

    2008-10-01

    Full Text Available Phong Tran1, Thomas J Webster21Physics Department; 2Division of Engineering and Department of Orthopedics, Brown University, Providence, USAAbstract: Metallic bone implants possess numerous problems limiting their long-term efficacy, such as poor prolonged osseointegration, stress shielding, and corrosion under in vivo environments. Such problems are compounded for bone cancer patients since numerous patients receive orthopedic implants after cancerous bone resection. Unfortunately, current orthopedic materials were not originally developed to simultaneously increase healthy bone growth (as in traditional orthopedic implant applications while inhibiting cancerous bone growth. The long-term objective of the present research is to investigate the use of nano-rough selenium to prevent bone cancer from re-occurring while promoting healthy bone growth for this select group of cancer patients. Selenium is a well known anti-cancer chemical. However, what is not known is how healthy bone cells interact with selenium. To determine this, selenium, spherical or semispherical shots, were pressed into cylindrical compacts and these compacts were then etched using 1N NaOH to obtain various surface structures ranging from the micron, submicron to nano scales. Changes in surface chemistry were also analyzed. Through these etching techniques, results of this study showed that biologically inspired surface roughness values were created on selenium compacts to match that of natural bone roughness. Moreover, results showed that healthy bone cell adhesion increased with greater nanometer selenium roughness (more closely matching that of titanium. In this manner, this study suggests that nano-rough selenium should be further tested for orthopedic applications involving bone cancer treatment.Keywords: selenium, nano-rough, osteoblast, cancer, chemopreventive

  7. Porous titanium obtained by a new powder metallurgy technique: Preliminary results of human osteoblast adhesion on surface polished substrates.

    Science.gov (United States)

    Biasotto, M; Ricceri, R; Scuor, N; Schmid, C; Sandrucci, M A; Di Lenarda, R; Matteazzi, P

    2003-01-01

    This study concerns a novel powder metallurgy method for producing porous titanium (pTi) exhibiting high mechanical properties. The preparation procedure consisted of the following stages: first, the preparation of Ti and titanium hydride (TiH2) powder mixtures and their consolidation with a cold isostatic press, followed by a sintering of the green bodies performed with hot isostatic press (HIP) equipment. Thermal decomposition in controlled environment of the TiH2 phase results in the foam structure. The resulting porosity percolates with a volume fraction of approximately 20%. The final material exhibits interesting mechanical properties, comparable to those of full density titanium (between grade 2 and grade 3), with the advantage of a minor density. The samples produced were tested to verify their biological response by studying the effectiveness of osteoblast adhesion and growth. In this preliminary study, osteoblastic cell morphology was investigated and compared to that observed on fully dense commercially pure titanium (Ti-cp) (ASTM, grade 3). The preliminary results were promising regarding cellular adhesion and spreading. (Journal of Applied Biomaterials & Biomechanics 2003; 1: 172-7).

  8. Appearance of cell-adhesion factor in osteoblast proliferation and differentiation of apatite coating titanium by blast coating method.

    Science.gov (United States)

    Umeda, Hirotsugu; Mano, Takamitsu; Harada, Koji; Tarannum, Ferdous; Ueyama, Yoshiya

    2017-08-01

    We have already reported that the apatite coating of titanium by the blast coating (BC) method could show a higher rate of bone contact from the early stages in vivo, when compared to the pure titanium (Ti) and the apatite coating of titanium by the flame spraying (FS) method. However, the detailed mechanism by which BC resulted in satisfactory bone contact is still unknown. In the present study, we investigated the importance of various factors including cell adhesion factor in osteoblast proliferation and differentiation that could affect the osteoconductivity of the BC disks. Cell proliferation assay revealed that Saos-2 could grow fastest on BC disks, and that a spectrophotometric method using a LabAssay TM ALP kit showed that ALP activity was increased in cells on BC disks compared to Ti disks and FS disks. In addition, higher expression of E-cadherin and Fibronectin was observed in cells on BC disks than Ti disks and FS disks by relative qPCR as well as Western blotting. These results suggested that the expression of cell-adhesion factors, proliferation and differentiation of osteoblast might be enhanced on BC disks, which might result higher osteoconductivity.

  9. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Priya Kalia

    Full Text Available Silicon (Si is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0-42 mM Si, at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface's water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and

  10. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings.

    Science.gov (United States)

    Filova, Elena; Vandrovcova, Marta; Jelinek, Miroslav; Zemek, Josef; Houdkova, Jana; Jan Remsa; Kocourek, Tomas; Stankova, Lubica; Bacakova, Lucie

    2017-01-01

    Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0-1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.

  11. Comparative of fibroblast and osteoblast cells adhesion on surface modified nanofibrous substrates based on polycaprolactone

    OpenAIRE

    Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Soleimani, Masoud; Atyabi, Seyed Mohammad

    2016-01-01

    One of the determinant factors for successful bioengineering is to achieve appropriate nano-topography and three-dimensional substrate. In this research, polycaprolactone (PCL) nano-fibrous mat with different roughness modified with O2 plasma was fabricated via electrospinning. The purpose of this study was to evaluate the effect of plasma modification along with surface nano-topography of mats on the quality of human fibroblast (HDFs) and osteoblast cells (OSTs)-substrate interaction. Surfac...

  12. Particles induced surface nanoroughness of titanium surface and its influence on adhesion of osteoblast-like MG-63 cells

    Science.gov (United States)

    Solař, P.; Kylián, O.; Marek, A.; Vandrovcová, M.; Bačáková, L.; Hanuš, J.; Vyskočil, J.; Slavínská, D.; Biederman, H.

    2015-01-01

    Titanium is one of the most common materials employed for production of implants, which is due to its good biocompatibility. However, the colonization of titanium surface by osteoblast cells may be influenced by its roughness and therefore precise control of roughness of titanium surface as well as identification of its optimal value for growth of cells is of high importance. In this study the nanorough titanium surfaces were prepared on polished disks of TiAlV by two step method of deposition. In the first step TiAlV were coated by nanoparticles generated by gas aggregation sources. Such prepared films of nanoparticles were subsequently covered with a titanium overlayer. Different values of surface roughness in the range 1-100 nm were achieved by variation of the size and number of the nanoparticles. Such prepared surfaces were subsequently used for investigation of influence of roughness of titanium surfaces on the adhesion of human osteoblast-like MG-63 cells. It was found out that 7 days after seeding the highest number of adhering cells was observed for samples with root-mean-square roughness of 30 nm.

  13. The effect of globin scaffold on osteoblast adhesion and phenotype expression in vitro.

    Science.gov (United States)

    Hamdan, Ahmad A; Loty, Sabine; Isaac, Juliane; Tayot, Jean-Louis; Bouchard, Philippe; Khraisat, Ameen; Bedral, Ariane; Sautier, Jean-Michel

    2012-01-01

    Different synthetic and natural biomaterials have been used in bone tissue regeneration. However, several limitations are associated with the use of synthetic as well as allogenous or xenogenous natural materials. This study evaluated, in an in vitro model, the behavior of rat osteoblastic cells cultured on a human globin scaffold. Rat osteoblastic cells were isolated from the calvaria of 21-day-old fetal Sprague-Dawley rats. They were then grown in the presence of globin. Real-time polymerase chain reaction (RT-PCR) was performed to study the expression of cyclin D1, integrin Β1, Msx2, Dlx5, Runx2, and osteocalcin on days 1, 5, and 9. Moreover, alkaline phosphatase activity was measured on days 1, 3, 5, and 7. Alizarin red staining was performed on day 9 to observe calcium deposition. Cells were able to adhere, proliferate, and differentiate on globin scaffolds. Moreover, RT-PCR showed that globin may stimulate some key genes of osteoblastic differentiation (Runx2, osteocalcin, Dlx5). Globin had an inhibitory effect on alkaline phosphatase activity. Calcium deposits were seen after 9 days of culture. These results indicate that purified human globin might be a suitable scaffold for bone tissue regeneration.

  14. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    Science.gov (United States)

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  15. Study on cellular adhesion of human osteoblasts on nano-structured diamond films

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Brož, A.; Babchenko, Oleg; Kromka, Alexander

    2009-01-01

    Roč. 246, 11-12 (2009), 2774-2777 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cells adhesion * diamond nanostructures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.150, year: 2009

  16. Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers.

    Science.gov (United States)

    Saldarriaga Fernández, Isabel C; Busscher, Henk J; Metzger, Steve W; Grainger, David W; van der Mei, Henny C

    2011-02-01

    Biomaterial-associated infections (BAI) remain a serious clinical complication, often arising from an inability of host tissue-implant integration to out-compete bacterial adhesion and growth. A commercial polymer coating based on polyethylene glycol (PEG), available in both chemically inert and NHS-activated forms (OptiChem(®)), was compared for simultaneous growth of staphylococci and osteoblasts. In the absence of staphylococci, osteoblasts adhered and proliferated well on glass controls and on the NHS-reactive PEG-based coating over 48 h, but not on the inert PEG coating. Staphylococcal growth was low on both PEG-based coatings. When staphylococci were pre-adhered on surfaces for 1.5 h to mimic peri-operative contamination, osteoblast growth and spreading was reduced on glass but virtually absent on both reactive and inert PEG-based coatings. Thus although NHS-reactive, PEG-based coatings stimulated tissue-cell interactions in the absence of contaminating staphylococci, the presence of adhering staphylococci eliminated osteoblast adhesion advantages on the PEG surface. This study demonstrates the importance of using bacterial and cellular co-cultures compared to monocultures when assessing functionalized biomaterials coatings for infectious potential. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties

    International Nuclear Information System (INIS)

    Sista, Subhash; Wen, Cuie; Hodgson, Peter D.; Pande, Gopal

    2013-01-01

    It is important to understand the cellular and molecular events that take place at the cell–material interface of implants used for bone repair. An understanding of the mechanisms involved in the initial stages of osteoblast interactions with the surface of the implant material is fundamental in deciding the fate of the cells that come in contact with it. In this study, we compared the relative gene expression of markers that are known to be associated with cell adhesion and differentiation in MC3T3 osteoblast cells, at various time points after plating the cells on surfaces of titanium (Ti) and its two alloys, titanium–zirconium (TiZr) and titanium–niobium (TiNb) by using Quantitative Real Time Polymerase Chain Reaction (RT-PCR). Our analysis indicated that expression of adhesion supporting genes was higher on TiZr surface as compared to Ti and TiNb. The behavior of these genes is possibly driven by a higher surface energy of TiZr. However no significant difference in the expression of differentiation related genes could be seen between the two alloys, although on both substrates it was higher as compared to unalloyed Ti. We propose that substrate composition of the alloys can influence the adhesion and differentiation related gene expression and that Ti alloys are better substrates for inducing osteogenesis as compared to unalloyed Ti. - Highlights: ► Methodology for comparing gene expression in osteoblasts plated on Ti, TiZr or TiNb ► Alloys with higher surface energy (TiZr) induce cell adhesion genes more efficiently ► Alloyed Ti is superior to unalloyed Ti to induce osteoblast differentiation genes

  18. Comparative of fibroblast and osteoblast cells adhesion on surface modified nanofibrous substrates based on polycaprolactone.

    Science.gov (United States)

    Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Soleimani, Masoud; Atyabi, Seyed Mohammad

    2016-12-01

    One of the determinant factors for successful bioengineering is to achieve appropriate nano-topography and three-dimensional substrate. In this research, polycaprolactone (PCL) nano-fibrous mat with different roughness modified with O 2 plasma was fabricated via electrospinning. The purpose of this study was to evaluate the effect of plasma modification along with surface nano-topography of mats on the quality of human fibroblast (HDFs) and osteoblast cells (OSTs)-substrate interaction. Surface properties were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, Fourier-transformation infrared spectroscopy. We evaluated mechanical properties of fabricated mats by tensile test. The viability and proliferation of HDFs and OSTs on the substrates were followed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT). Mineralization of the substrate was determined by alizarin red staining method and calcium content of OSTs was determined by calcium content kit. Cells morphology was studied by SEM analysis. The results revealed that the plasma-treated electrospun nano-fibrous substrate with higher roughness was an excellent designed substrate. A bioactive topography for stimulating proliferation of HDFs and OSTs is to accelerate the latter's differentiation time. Therefore, the PCL substrate with high density and major nano-topography were considered as a bio-functional and elegant bio-substrate for tissue regeneration applications.

  19. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion

    International Nuclear Information System (INIS)

    Galli, C; Parisi, L; Smerieri, A; Lumetti, S; Manfredi, E; Macaluso, G M; Elviri, L; Bianchera, A; Bettini, R; Lagonegro, P

    2016-01-01

    The aim of the present study was to investigate whether chitosan-based scaffolds modified with D-(+) raffinose and enriched with thiol-modified gelatin could selectively improve osteoblast adhesion and proliferation. 2, 3 and 4.5% chitosan films were prepared. Chitosan suitability for tissue engineering was confirmed by protein adsorption assay. Scaffolds were incubated with a 2.5 mg ml −1 BSA solution and the decrease of protein content in the supernatants was measured by spectrophotometry. Chitosan films were then enriched with thiol-modified gelatin and their ability to bind BSA was also measured. Then, 2% chitosan discs with or without thiol-modified gelatin were used as culture substrates for MC3T3-E1 cells. After 72 h cells were stained with trypan blue or with calcein AM and propidium iodide for morphology, viability and proliferation assays. Moreover, cell viability was measured at 48, 72, 96 and 168 h to obtain a growth curve. Chitosan films efficiently bound and retained BSA proportionally to the concentration of chitosan discs. The amount of protein retained was higher on chitosan enriched with thiol-modified gelatin. Moreover, chitosan discs allowed the adhesion and the viability of cells, but inhibited their proliferation. The functionalization of chitosan with thiol-modified gelatin enhanced cell spreading and proliferation. Our data confirm that chitosan is a suitable material for tissue engineering. Moreover, our data show that the enrichment of chitosan with thiol-modified gelatin enhances its biological properties. (paper)

  20. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    Science.gov (United States)

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  1. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  2. TiO2 nanoparticles disrupt cell adhesion and the architecture of cytoskeletal networks of human osteoblast-like cells in a size dependent manner.

    Science.gov (United States)

    Ibrahim, Mohamed; Schoelermann, Julia; Mustafa, Kamal; Cimpan, Mihaela R

    2018-04-30

    Human exposure to titanium dioxide nanoparticles (nano-TiO 2 ) is increasing. An internal source of nano-TiO 2 is represented by titanium-based orthopedic and dental implants can release nanoparticles (NPs) upon abrasion. Little is known about how the size of NPs influences their interaction with cytoskeletal protein networks and the functional/homeostatic consequences that might follow at the implant-bone interface with regard to osteoblasts. We investigated the effects of size of anatase nano-TiO 2 on SaOS-2 human osteoblast-like cells exposed to clinically relevant concentrations (0.05, 0.5, 5 mg/L) of 5 and 40 nm spherical nano-TiO 2 . Cell viability and proliferation, adhesion, spread and migration were assessed, as well as the orientation of actin and microtubule cytoskeletal networks. The phosphorylation of focal adhesion kinase (p-FAK Y397 ) and the expression of vinculin in response to nano-TiO 2 were also assessed. Treatment with nano-TiO 2 disrupted the actin and microtubule cytoskeletal networks leading to morphological modifications of SaOS-2 cells. The phosphorylation of p-FAK Y397 and the expression of vinculin were also modified depending on the particle size, which affected cell adhesion. Consequently, the cell migration was significantly impaired in the 5 nm-exposed cells compared to unexposed cells. The present work shows that the orientation of cytoskeletal networks and the focal adhesion proteins and subsequently the adhesion, spread and migration of SaOS-2 cells were affected by the selected nano-TiO 2 in a size dependent manner. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  3. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    Science.gov (United States)

    Terriza, Antonia; Vilches-Pérez, José I.; González-Caballero, Juan L.; de la Orden, Emilio; Yubero, Francisco; Barranco, Angel; Gonzalez-Elipe, Agustín R.; Vilches, José; Salido, Mercedes

    2014-01-01

    New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors. PMID:28788538

  4. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-03-01

    Full Text Available New biomaterials for Guided Bone Regeneration (GBR, both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB® HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide (PLGA membrane foil functionalized by a very thin film (around 15 nm of TiO2 (i.e., TiO2/PLGA membranes, designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors.

  5. Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells.

    Science.gov (United States)

    Giannona, Suna; Firkowska, Izabela; Rojas-Chapana, José; Giersig, Michael

    2007-01-01

    In this study, we describe the spatial organization of CAL-72 osteoblast-like cells on arrays of vertically aligned multi-walled carbon nanotubes (VACNTs). It was observed that, unlike cell growth on non-patterned surfaces, the cell attachment and spreading process on VACNTs was significantly enhanced. Additionally, since carbon nanotubes are known to possess resilient mechanical properties and are chemically stable, the effect of periodic arrays of VACNTs on CAL-72 osteoblast-like cells was also studied. The periodicity and alignment of VACNTs considerably influenced growth, shape and orientation of the cells by steering toward the nanopattern. This situation is of great interest for the potential application of VACNTs in bone bioenginnering. This data provides evidence that CAL-72 osteoblast-like cells can sense physical features at the nanoscale. These results give a fascinating insight into the ways in which cell growth can be influenced by man-made nanostructures and could provide a framework for achieving controlled cell guidance with controlled organization and special physical properties.

  6. Adhesion and Growth of Human Osteoblast-Like Cell in Cultures on Nanocomposite Carbon-Based Materials

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Grausová, Ľubica; Vacík, Jiří; Lavrentiev, Vasyl; Blazewicz, S.; Fraczek, A.; Kromka, Alexander; Haenen, K.

    2011-01-01

    Roč. 3, č. 1 (2011), s. 99-109 ISSN 1941-4900 R&D Projects: GA AV ČR(CZ) IAAX00100902; GA MŠk(CZ) 2B06173; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : nanoscale surface roughness * electrical conductivity * osteoblasts * bone tissue engineering Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.528, year: 2011

  7. Strategies to prepare TiO2 thin films, doped with transition metal ions, that exhibit specific physicochemical properties to support osteoblast cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Dhayal, Marshal; Kapoor, Renu; Sistla, Pavana Goury; Pandey, Ravi Ranjan; Kar, Satabisha; Saini, Krishan Kumar; Pande, Gopal

    2014-01-01

    Metal ion doped titanium oxide (TiO 2 ) thin films, as bioactive coatings on metal or other implantable materials, can be used as surfaces for studying the cell biological properties of osteogenic and other cell types. Bulk crystallite phase distribution and surface carbon–oxygen constitution of thin films, play an important role in determining the biological responses of cells that come in their contact. Here we present a strategy to control the polarity of atomic interactions between the dopant metal and TiO 2 molecules and obtain surfaces with smaller crystallite phases and optimal surface carbon–oxygen composition to support the maximum proliferation and adhesion of osteoblast cells. Our results suggest that surfaces, in which atomic interactions between the dopant metals and TiO 2 were less polar, could support better adhesion, spreading and proliferation of cells. - Highlights: • Electrochemical properties of dopants control the nature of TiO 2 thin films. • A model explains the correlation of dopant properties and behaviour of TiO 2 films. • Dopants with less polar interaction with TiO 2 exhibit better biological activity

  8. Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    Science.gov (United States)

    Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.

    2016-05-01

    Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.

  9. Videography supported adhesion, and proliferation behavior of MG-63 osteoblastic cells on 2.5D titania nanotube matrices.

    Science.gov (United States)

    Manurung, Robeth Viktoria; Fu, Pei-Wen; Chu, Yeh-Shiu; Lo, Chun-Min; Chattopadhyay, Surojit

    2016-04-01

    Human osteosarcoma cells MG-63 were cultured on anodically etched titania nanotubes (TiO2 NT), with diameters ranging from 40-100 nm, to study the correlations between cell proliferation and adhesion on the 2.5 dimensional (2.5D) extracellular matrix (ECM). Unlike other reports, mostly based on mouse stem cells, and 2D cell culture, our studies indicate that the 2.5D NT promote higher proliferation and activity, but less 2D adhesion. Proliferation of the MG-63 cells was significantly higher in the NTs, the best being the 70 nm diameter sample, compared to planar titania (control). This is consistent with previous studies. However, cellular adhesion was stronger on TiO2 NT with increasing diameter, and highest on the control as obtained from shear stress measurement, paxilin imaging, and western blot measurements probing focal adhesion kinase, p130 CAS, and extracellular-regulated kinase, in addition to cell morphology imaging by fluorescence microscopy. We provide direct videography of cell migration, and cell speed data indicating faster filopodial activity on the TiO2 NT surfaces having lower adhesion. This evidence was not available previously. The NT matrices promote cells with smaller surface area, because of less 2D stretching. In contrast, on comparatively planar 2D-like surfaces uniaxial stretching of the cell body with strong anchoring of the filopodia, resulted in larger cell surface area, and demonstrated stronger adhesion. The difference in the results, with those previously published, may be generally attributed to, among others, the use of mouse stem cells (human osteosarcoma used here), and unannealed as-grown TiO2 NTs used previously (annealed ECMs used here). © 2015 Wiley Periodicals, Inc.

  10. Particles induced surface nanoroughness of titanium surface and its influence on adhesion of osteoblast-like MG-63 cells

    Czech Academy of Sciences Publication Activity Database

    Solař, P.; Kylián, O.; Marek, A.; Vandrovcová, Marta; Bačáková, Lucie; Hanuš, J.; Vyskočil, J.; Slavínská, D.; Biederman, H.

    2015-01-01

    Roč. 324, Jan 1 (2015), s. 99-105 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GAP107/12/1025 Grant - others:GA ČR(CZ) GA13-09853S Institutional support: RVO:67985823 Keywords : nanoroughness * titanium * cells adhesion Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.150, year: 2015

  11. Strong influence of hierarchically structured diamond nano-topography on adhesion of human osteoblasts and mesenchymal cells

    Czech Academy of Sciences Publication Activity Database

    Brož, A.; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kalbáčová, M.

    2009-01-01

    Roč. 206, č. 9 (2009), s. 2038-2041 ISSN 1862-6300 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond morphology * cells adhesion * cells behaviour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.228, year: 2009

  12. Adhesion

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  13. Effect of various concentrations of Ti in hydrocarbon plasma polymer films on the adhesion, proliferation and differentiation of human osteoblast-like MG-63 cells

    Science.gov (United States)

    Vandrovcova, Marta; Grinevich, Andrey; Drabik, Martin; Kylian, Ondrej; Hanus, Jan; Stankova, Lubica; Lisa, Vera; Choukourov, Andrei; Slavinska, Danka; Biederman, Hynek; Bacakova, Lucie

    2015-12-01

    Hydrocarbon polymer films (ppCH) enriched with various concentrations of titanium were deposited on microscopic glass slides by magnetron sputtering from a Ti target. The maximum concentration of Ti (about 20 at.%) was achieved in a pure argon atmosphere. The concentration of Ti decreased rapidly after n-hexane vapors were introduced into the plasma discharge, and reached zero values at n-hexane flow of 0.66 sccm. The decrease in Ti concentration was associated with decreasing oxygen and titanium carbide concentration in the films, decreasing wettability (the water drop contact angle increased from 20° to 91°) and decreasing root-mean-square roughness (from 3.3 nm to 1.0 nm). The human osteoblast-like MG-63 cells cultured on pure ppCH films and on films with 20 at.% of Ti showed relatively high concentrations of ICAM-1, a marker of cell immune activation. Lower concentrations of Ti (mainly 5 at.%) improved cell adhesion and osteogenic differentiation, as revealed by higher concentrations of talin, vinculin and osteocalcin. Higher Ti concentrations (15 at.%) supported cell growth, as indicated by the highest final cell population densities on day 7 after seeding. Thus, enrichment of ppCH films with appropriate concentrations of Ti makes these films more suitable for potential coatings of bone implants.

  14. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings

    Czech Academy of Sciences Publication Activity Database

    Filová, Elena; Vandrovcová, Marta; Jelínek, Miroslav; Zemek, Josef; Houdková, Jana; Remsa, Jan; Kocourek, Tomáš; Staňková, Ľubica; Bačáková, Lucie

    2017-01-01

    Roč. 28, č. 1 (2017), č. článku 17. ISSN 0957-4530 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA14-04790S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:68378271 Keywords : osteocalcin * osteogenic differentiation * hexavalent chromium * focal adhesion contact * cell spreading area Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Biomaterials (as related to medical implants, devices, sensors) Impact factor: 2.325, year: 2016

  15. Effect of various concentrations of Ti in hydrocarbon plasma polymer films on the adhesion, proliferation and differentiation of human osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Vandrovcova, Marta, E-mail: marta.vandrovcova@fgu.cas.cz [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic); Grinevich, Andrey; Drabik, Martin; Kylian, Ondrej; Hanus, Jan [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 182 00 Prague 8 (Czech Republic); Stankova, Lubica; Lisa, Vera [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic); Choukourov, Andrei; Slavinska, Danka; Biederman, Hynek [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 182 00 Prague 8 (Czech Republic); Bacakova, Lucie [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic)

    2015-12-01

    Graphical abstract: - Highlights: • Hydrocarbon plasma polymer films with Ti in concentration of 0–20 at.% were prepared. • The Ti concentration was positively correlated with the material surface wettability. • The optimum Ti concentrations for the MG-63 cells behavior were identified. • The Ti concentration also influenced the cell immune activation. - Abstract: Hydrocarbon polymer films (ppCH) enriched with various concentrations of titanium were deposited on microscopic glass slides by magnetron sputtering from a Ti target. The maximum concentration of Ti (about 20 at.%) was achieved in a pure argon atmosphere. The concentration of Ti decreased rapidly after n-hexane vapors were introduced into the plasma discharge, and reached zero values at n-hexane flow of 0.66 sccm. The decrease in Ti concentration was associated with decreasing oxygen and titanium carbide concentration in the films, decreasing wettability (the water drop contact angle increased from 20° to 91°) and decreasing root-mean-square roughness (from 3.3 nm to 1.0 nm). The human osteoblast-like MG-63 cells cultured on pure ppCH films and on films with 20 at.% of Ti showed relatively high concentrations of ICAM-1, a marker of cell immune activation. Lower concentrations of Ti (mainly 5 at.%) improved cell adhesion and osteogenic differentiation, as revealed by higher concentrations of talin, vinculin and osteocalcin. Higher Ti concentrations (15 at.%) supported cell growth, as indicated by the highest final cell population densities on day 7 after seeding. Thus, enrichment of ppCH films with appropriate concentrations of Ti makes these films more suitable for potential coatings of bone implants.

  16. Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Přemysl; Kolská, Z.; Luxbacher, T.; García, J.A.L.; Lehocký, M.; Vandrovcová, Marta; Bačáková, Lucie; Petzelt, Jan

    2016-01-01

    Roč. 49, č. 17 (2016), 1-12, č. článku 175403. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GA15-01558S Institutional support: RVO:68378271 ; RVO:67985823 Keywords : biomaterials * ferroelectric * zeta potential * osteoblast-like cells Subject RIV: BO - Biophysics Impact factor: 2.588, year: 2016

  17. Radiance and particle fluence

    International Nuclear Information System (INIS)

    Papiez, L.; Battista, J.J.

    1994-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined fluence in terms of the number of the radiation particles crossing a small sampling sphere. A second definition has been proposed in which the length of track segments contained within any sampling volume are used to calculate the incident fluence. This approach is often used in Monte Carlo simulations of individual particle tracks, allowing the fluence to be scored in small volumes of any shape. In this paper we stress that the second definition generalizes the classical (ICRU) concept of fluence. We also identify the assumptions inherent in the two definitions of fluence and prove their equivalence for the case of straight-line particle trajectories. (author)

  18. Effect of various concentrations of Ti in hydrocarbon plasma polymer films on the adhesion, proliferation and differentiation of human osteoblast-like MG-63 cells

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Grinevich, A.; Drábik, M.; Kylián, O.; Hanuš, J.; Staňková, Ľubica; Lisá, Věra; Choukourov, A.; Slavínská, D.; Biederman, H.; Bačáková, Lucie

    2015-01-01

    Roč. 357, part A (2015), s. 459-472 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GAP108/12/1168; GA ČR(CZ) GA14-04790S Institutional support: RVO:67985823 Keywords : metal carbon composite films * surface wettability * nanoscale roughness * osteoblasts * bone implants Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.150, year: 2015

  19. Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers

    NARCIS (Netherlands)

    Fernandez, Isabel C. Saldarriaga; Busscher, Henk J.; Metzger, Steve W.; Grainger, David W.; van der Mei, Henny C.

    Biomaterial-associated infections (BAI) remain a serious clinical complication, often arising from an inability of host tissue-implant integration to out-compete bacterial adhesion and growth. A commercial polymer coating based on polyethylene glycol (PEG), available in both chemically inert and

  20. Fluence map segmentation

    International Nuclear Information System (INIS)

    Rosenwald, J.-C.

    2008-01-01

    The lecture addressed the following topics: 'Interpreting' the fluence map; The sequencer; Reasons for difference between desired and actual fluence map; Principle of 'Step and Shoot' segmentation; Large number of solutions for given fluence map; Optimizing 'step and shoot' segmentation; The interdigitation constraint; Main algorithms; Conclusions on segmentation algorithms (static mode); Optimizing intensity levels and monitor units; Sliding window sequencing; Synchronization to avoid the tongue-and-groove effect; Accounting for physical characteristics of MLC; Importance of corrections for leaf transmission and offset; Accounting for MLC mechanical constraints; The 'complexity' factor; Incorporating the sequencing into optimization algorithm; Data transfer to the treatment machine; Interface between R and V and accelerator; and Conclusions on fluence map segmentation (Segmentation is part of the overall inverse planning procedure; 'Step and Shoot' and 'Dynamic' options are available for most TPS (depending on accelerator model; The segmentation phase tends to come into the optimization loop; The physical characteristics of the MLC have a large influence on final dose distribution; The IMRT plans (MU and relative dose distribution) must be carefully validated). (P.A.)

  1. Deferoxamine immobilized poly(D,L-lactide) membrane via polydopamine adhesive coating: The influence on mouse embryo osteoblast precursor cells and human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huihua [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tian, Lingling [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576 (Singapore); Ramakrishna, Seeram [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China)

    2017-01-01

    Osteogenesis and angiogenesis play the prominent role in the bone regeneration. In this study, deferoxamine (DFO), an induced agent for osteogenesis and angiogenesis, was modified onto the surface of poly(D,L-lactide) (PDLLA) membrane via a facile and convenient approach based on the self-polymerization of dopamine (DOPA). The surface composition, morphology, hydrophilicity and surface energy of the original and modified PDLLA membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), atomic force microscopy (AFM) and contact angle measurement. The surface roughness and hydrophilicity of the PDLLA membrane were obviously increased by introducing either the single polydopamine (PDOPA) or the dual layers of PDOPA and DFO. In vitro cells culture experiments indicated that both the PDLLA/PDOPA and PDLLA/PDOPA-DFO composite membranes were more beneficial to the attachment, proliferation and spreading of MC3T3-E1 cells and HUVECs compared to the original PDLLA membrane. The PDLLA/PDOPA-DFO membrane was supportive for the proliferation of both MC3T3-E1 cells and HUVECs, and especially for HUVECs. The results suggested that the as-prepared PDLLA/PDOPA-DFO composite can be expected to be used as a promising bone regenerative material with promoted angiogenesis. - Highlights: • DFO was conveniently immobilized on PDLLA membrane based on PDOPA adhesive layer. • Hydrophilicity of PDLLA membrane was improved by modification with PDOPA and DFO. • Modified membranes were more favorable to the growth of MC3T3-E1 cells and HUVECs. • DFO was supportive for the growth of two kinds of cells, especially for HUVECs.

  2. Neutron fluence measurements

    International Nuclear Information System (INIS)

    1970-01-01

    For research reactor work dealing with such subjects as radiation effects on solids and such disciplines as radiochemistry and radiobiology, the radiation dose or neutron fluence is an essential parameter in evaluating results. Unfortunately it is very difficult to determine. Even when the measurements have been accurate, it is difficult to compare results obtained in different experiments because present methods do not always reflect the dependence of spectra or of different types of radiation on the induced processes. After considering the recommendations of three IAEA Panels, on 'In-pile dosimetry' held in July 1964, on 'Neutron fluence measurements' in October 1965, and on 'In-pile dosimetry' in November 1966, the Agency established a Working Group on Reactor Radiation Measurements. This group consisted of eleven experts from ten different Member States and two staff members of the Agency. In the measurement of energy absorbed by materials from neutrons and gamma rays, there are various reports and reviews scattered throughout the literature. The group, however, considered that the time was ripe for all relevant information to be evaluated and gathered together in the form of a practical guide, with the aim of promoting consistency in the measurement and reporting of reactor radiation. The group arranged for the material to be divided into two manuals, which are expected to be useful both for experienced workers and for beginners

  3. Fluence determination by scattering measurements

    CERN Document Server

    Albergo, S; Potenza, R; Tricomi, A; Pillon, M; Angarano, M M; Creanza, D; De Palma, M

    2000-01-01

    An alternative method to determine particle fluence is proposed, which is particularly suitable for irradiations with low-energy charged-particle beams. The fluence is obtained by measuring the elastic scattering produced by a composite thin target placed upstream of the sample. The absolute calibration is performed by comparison with the measured radioactivation of vanadium and copper samples. The composite thin target, made of aluminium, carbon and gold, allows not only the fluence to be measured, but also a continuous monitoring of the beam space distribution. Experimental results with a 27 MeV proton beam are reported and compared with Monte Carlo simulations. (7 refs).

  4. Osteoblastic response to pectin nanocoating on titanium surfaces

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna; Svava, Rikke; Yihua, Yu

    2014-01-01

    with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell...

  5. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  6. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  7. Osteoblast role in osteoarthritis pathogenesis.

    Science.gov (United States)

    Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P

    2017-11-01

    Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  8. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  9. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  10. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; Maeztu, Miguel Ángel de

    2014-01-01

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm 2 ) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  11. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  12. Neutron fluence measurement in nuclear facilities

    International Nuclear Information System (INIS)

    Camacho L, M.E.

    1997-01-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant 'Laguna Verde'. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the 'Centro de Metrologia de Radiaciones Ionizantes' of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author)

  13. Denture Adhesives

    Science.gov (United States)

    ... Devices Products and Medical Procedures Dental Devices Denture Adhesives Share Tweet Linkedin Pin it More sharing options ... Wearers Reporting Problems to the FDA Background Denture adhesives are pastes, powders or adhesive pads that may ...

  14. Wnt/β-catenin signaling activates nephronectin expression in osteoblasts

    International Nuclear Information System (INIS)

    Ikehata, Mikiko; Yamada, Atsushi; Morimura, Naoko; Itose, Masakatsu; Suzawa, Tetsuo; Shirota, Tatsuo; Chikazu, Daichi; Kamijo, Ryutaro

    2017-01-01

    Nephronectin (Npnt), an extracellular matrix protein, is considered to play critical roles as an adhesion molecule in the development and functions of various organs and tissues, such as the kidneys and bone. In the present study, we found that Wnt3a strongly enhanced Npnt mRNA expression in osteoblast-like MC3T3-E1 cells, while it also induced an increase in Npnt gene expression in both time- and dose-dependent manners via the Wnt/β-catenin signaling pathway. These results suggest novel mechanisms for Wnt3a-induced osteoblast proliferation and cell survival via Npnt gene expression. - Highlights: • Wnt3a enhances nephronectin gene expression. • Nephronectin gene induction by Wnt3a is occurred by time- and dose-dependent manner. • Expression of nephronectin is regulated via β-catenin activation.

  15. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  16. ArF laser surface modification of polyethersulfone film: Effect of laser fluence in improving surface biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H.; Jelvani, S.; Mollabashi, M.; Barzin, J.; Azizabadi Farahani, G.

    2011-01-01

    ArF laser treatment of polyethersulfone (PES) films was performed to improve biocompatibility of surfaces. For this purpose, the threshold fluence for laser ablation of PES was obtained from experimental measurements and then samples were irradiated at 2 separate ranges of fluences, i.e. below and above the ablation threshold. In order to investigate the physico-chemical changes, the modified surfaces were characterized by attenuated total reflectance (ATR) infrared spectroscopy and contact-angle measurements. The biocompatibility of the treated samples in comparison to those untreated was examined in vitro using a platelet adhesion test. The number of adhered platelets was obtained using the lactate dehydrogenase (LDH) method. For surfaces irradiated below the ablation threshold, a high reduction in the number of the adhered platelets was observed; while this number increased in samples treated at the fluence above the ablation threshold. The change in platelet adhesion was attributed to the change in chemistry and roughness of the irradiated surfaces.

  17. Neutron fluence spectrometry using disk activation

    International Nuclear Information System (INIS)

    Loevestam, Goeran; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas; Tagziria, Hamid; Vanhavere, Filip; Wieslander, J.S. Elisabeth

    2009-01-01

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm -2 s -1 , where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm -2 s -1 , again, a good agreement with the assumed spectrum was achieved

  18. Neutron fluence spectrometry using disk activation

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy); Vanhavere, Filip [SCK-CEN, Boeretang, 2400 Mol (Belgium); Wieslander, J.S. Elisabeth [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Department of Physics, P.O. Box 35 (YFL), FIN-40014, University of Jyvaeskylae (Finland)

    2009-01-15

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm{sup -2} s{sup -1}, where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm{sup -2} s{sup -1}, again, a good agreement with the assumed spectrum was achieved.

  19. Osteoblastic cells: differentiation and trans-differentiation

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem; Saeed, Hamid

    2008-01-01

    The osteoblast is the bone forming cell and is derived from mesenchymal stem cells (MSC) present among the bone marrow stroma. MSC are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts and adipocytes. Understanding the mechanisms underlying osteoblast different...

  20. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu, E-mail: skim@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Pham, Vuong-Hung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Chong-Hyun [Department of Food Science, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  1. Integrin expression by human osteoblasts cultured on degradable polymeric materials applicable for tissue engineered bone.

    Science.gov (United States)

    El-Amin, Saadiq F; Attawia, Mohamed; Lu, Helen H; Shah, Asist K; Chang, Richard; Hickok, Noreen J; Tuan, Rocky S; Laurencin, Cato T

    2002-01-01

    The use of biodegradable polymers in the field of orthopaedic surgery has gained increased popularity, as surgical pins and screws, and as potential biological scaffolds for repairing cartilage and bone defects. One such group of polymers that has gained considerable attention are the polyesters, poly(lactide-co-glycolide) (PLAGA) and polylactic acid (PLA), because of their minimal tissue inflammatory response, favorable biocompatibility and degradation characteristics. The objective of this study was to evaluate human osteoblastic cell adherence and growth on PLAGA and PLA scaffolds by examining integrin receptor (alpha2, alpha3, alpha4, alpha5, alpha6 and beta1) expression. Primary human osteoblastic cells isolated from trabecular bone adhered efficiently to both PLAGA and PLA, with the rate of adherence on PLAGA comparable to that of control tissue culture polystyrene (TCPS), and significantly higher than on PLA polymers at 3, 6 and 12 h. Human osteoblastic phenotypic expression, alkaline phosphatase (ALP) activity was positive on both degradable matrices, whereas osteocalcin levels were significantly higher on cells grown on PLAGA than on PLA composites. Interestingly, the integrin subunits, alpha2, alpha3, alpha4, alpha5, alpha6 and beta1 were all expressed at higher levels by osteoblasts cultured on PLAGA than those on PLA as analyzed by westerns blots and by flow cytometry. Among the integrins, alpha2, beta5 and beta1 showed the greatest difference in levels between the two surfaces. Thus, both PLA and PLAGA support osteoblastic adhesion and its accompanying engagement of integrin receptor and expression of osteocalcin and ALP. However PLAGA consistently appeared to be a better substrate for osteoblastic cells based on these parameters. This study is one of the first to investigate the ability of primary human osteoblastic cells isolated from trabecular bone to adhere to the biodegradable polymers PLAGA and PLA, and to examine the expression of their key

  2. Deuterium accumulation in tungsten at high fluences

    Energy Technology Data Exchange (ETDEWEB)

    Zibrov, Mikhail [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Balden, Martin; Matej, Matej [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Bystrov, Kirill; Morgan, Thomas [FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands)

    2016-07-01

    The data on the deuterium (D) retention in tungsten (W) at high fluences (≥ 10{sup 27} D/m{sup 2}) are scarce and the existing results are contradictory. Since retention in W is known to be flux-dependent, the laboratory experiments addressing this issue should be carried out in reactor-relevant conditions (high fluxes of low-energy ions). In this work the samples made of polycrystalline W were exposed to D plasmas in the linear plasma generator Pilot-PSI at temperatures ranging from 360 K to 1140 K to fluences in the range of 0.3-8.7 x 10{sup 27} D/m{sup 2}. It was observed that at exposure temperatures of 360 K and 580 K the D retention was only slightly dependent on the ion fluence. In addition, the presence of blister-like structures was found after the exposures, and their density and size distributions were also only weakly dependent on the fluence. In the case of exposure at 1140 K no surface modifications of the samples after plasma exposure were detected and the concentrations of retained D were very small. At all temperatures used the total amounts of retained D were smaller compared to those obtained by other researchers at lower ion flux densities, which indicates that the incident ion flux may play an important role in the total D retention in W.

  3. A fluence device for precise radiation dosimetry

    International Nuclear Information System (INIS)

    Arnott, R.G.T.; Peak, M.J.

    1979-01-01

    An instrument is described which has been designed to ensure precise positioning of samples and sensing devices in three dimensions at all times during irradiation procedures. The system, which is both robust and sensitive, overcomes difficulties experienced when slight variations in the positioning of a sample under irradiation results in large changes in fluence. (UK)

  4. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  5. Cytokine expression in human osteoblasts after antiseptic treatment: a comparative study between polyhexanide and chlorhexidine.

    Science.gov (United States)

    Röhner, Eric; Hoff, Paula; Gaber, Timo; Lang, Annemarie; Vörös, Pauline; Buttgereit, Frank; Perka, Carsten; Windisch, Christoph; Matziolis, Georg

    2015-02-01

    Chlorhexidine and polyhexanide are frequently used antiseptics in clinical practice and have a broad antimicrobial range. Both antiseptics are helpful medical agents for septic wound treatment with a high potential for defeating joint infections. Their effect on human osteoblasts has, so far, not been sufficiently evaluated. The aim of this study was to investigate the activating potential of polyhexanide and chlorhexidine on inflammatory cytokines/chemokines in human osteoblasts in vitro. Human osteoblasts were isolated and cultivated in vitro and then treated separately with 0.1% and 2% chlorhexidine and 0.04% polyhexanide as commonly applied concentrations in clinical practice. Detection of cell structure and cell morphology was performed by light microscopic inspection. Cytokine and chemokine secretion was determined by using a multiplex suspension array. Cell shrinking, defective cell membrane, and the loss of cell adhesion indicated cell damage of human osteoblasts after treatment with both antiseptics was evaluated by using light microscopy. Polyhexanide, but not chlorhexidine, caused human osteoblasts to secrete various interleukins (1β, 6, and 7), interferon γ, tumor necrosis factor α, vascular endothelial growth factor, eotaxin, fibroblast growth factor basic, and granulocyte macrophage colony-stimulating factor as quantified by multiplex suspension array. Both antiseptics induced morphological cell damage at an optimum exposure between 1 and 10 min. But only polyhexanide mediated a pronounced secretion of inflammatory cytokines and chemokines in human osteoblasts. Therefore, we recommend a preferred usage of chlorhexidine in septic surgery to avoid the induction of an inflammatory reaction.

  6. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    Science.gov (United States)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense

  7. Albumin and fibronectin adsorption and osteoblast adhesion on titanium oxides

    Science.gov (United States)

    Freitas, Susana Maria Ribeiro e. Sousa Mendes de

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  8. Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Michalíková, Lenka; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kmoch, S.

    2008-01-01

    Roč. 245, č. 10 (2008), s. 2124-2127 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cell growth * nanocrystalline diamond * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.166, year: 2008

  9. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  10. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.

    Science.gov (United States)

    Bezerra, Fábio; Ferreira, Marcel R; Fontes, Giselle N; da Costa Fernandes, Célio Jr; Andia, Denise C; Cruz, Nilson C; da Silva, Rodrigo A; Zambuzzi, Willian F

    2017-08-01

    Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation

  11. The fluence research of filter material for fast neutron fluence measurement

    International Nuclear Information System (INIS)

    Tang Xiding

    2010-01-01

    When the fast neutron fluence is measured by radioactivation techniques in the nuclear reactor the fast neutron is also filtered a little by the thermal neutron filter material, and if the filter material thickness increase the filtered fast neutron increases therewith. For fast neutron fluenc measurement, there are only cadmium, boron and gadolinium three elements filtering fluence can be calculated ordinarily. In order to calculate the filtered fast neutron fluence of the all elements in the filter material, the many total cross sections of nuclides had checked out from nuclear cross section data library, converted them into the same energy group structure, then element's total cross section, compound's total cross section and multilayer filters' total cross section had calculated from these total cross sections with same energy group structure, a new cross section data library can be obtained lastly through merging these cross sections into the old cross section data library used for neutron fluence measurement. The calculation analysis indicates that the results of the unit 2 surveillance capsule U of DAYA Bay NPP and the unit 1 surveillance capsule A of the Second Nuclear Power Plant of Qinshan by considering the all elements subtracting iron are smaller about 1.5% and 2.6% respectively than the ones only to consider cadmium, boron. The old measured results accord with the new values under the measurement uncertainty, are reliable. The new results are more accuracy. (authors)

  12. Human osteoblast cells: isolation, characterization, and growth on polymers for musculoskeletal tissue engineering.

    Science.gov (United States)

    El-Amin, Saadiq F; Botchwey, Edward; Tuli, Richard; Kofron, Michelle D; Mesfin, Addisu; Sethuraman, Swaminathan; Tuan, Rocky S; Laurencin, Cato T

    2006-03-01

    We performed a detailed examination of the isolation, characterization, and growth of human osteoblast cells derived from trabecular bone. We further examined the morphology, phenotypic gene expression, mineralization,and growth of these human osteoblasts on polyester polymers used for musculoskeletal tissue engineering. Polylactic-co-glycolic acid [PLAGA (85:15, 50:50, 75:25)], and poly-lactic acid (L-PLA, D,L-PLA) were examined. The osteoblastic expression of key phenotypic markers osteocalcin, alkaline phosphatase, collagen, and bone sialoprotein at 4 and 8 weeks was examined. Reverse transcription-polymerase chain reaction studies revealed that trabecular-derived osteoblasts were positive for all markers evaluated with higher levels expressed over long-term culture. These cells also revealed mineralization and maturation as evidenced by energy dispersive X-ray analysis and scanning electron microscopy. Growth studies on PLAGA at 50:50,75:25, and 85:15 ratios and PLA in the L and DL isoforms revealed that human osteoblasts actively grew, with significantly higher cell numbers attached to scaffolds composed of PLAGA 50:50 in the short term and PLAGA 85:15 in the long term compared with PLA (p < 0.05). We believe human cell adhesion among these polymeric materials may be dependent on differences in cellular integrin expression and extracellular matrix protein elaboration. (c) 2005 Wiley Periodicals, Inc.

  13. IMRT fluence map editing to control hot and cold spots

    International Nuclear Information System (INIS)

    Taylor Cook, J.; Tobler, Matt; Leavitt, Dennis D.; Watson, Gordon

    2005-01-01

    Manually editing intensity-modulated radiation therapy (IMRT) fluence maps effectively controls hot and cold spots that the IMRT optimization cannot control. Many times, re-optimizing does not reduce the hot spots or increase the cold spots. In fact, re-optimizing only places the hot and cold spots in different locations. Fluence-map editing provides manual control of dose delivery and provides the best treatment plan possible. Several IMRT treatments were planned using the Varian Eclipse planning system. We compare the effects on dose distributions between fluence-map editing and re-optimization, discuss techniques for fluence-map editing, and analyze differences between fluence editing on one beam vs. multiple beams. When editing a beam's fluence map, it is essential to choose a beam that least affects dose to the tumor and critical structures. Editing fluence maps gives an advantage in treatment planning and provides controlled delivery of IMRT dose

  14. The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone LesionDevelopment

    Science.gov (United States)

    2016-11-01

    their normal niche . INTEGRINS IN PCa PROGRESSION Integrins are a large family of cell-surface glycoproteins, which form heterodimeric adhesion...might be induc- ing the CXCR4/CXCL12 axis and thus promoting PCa metastasis. PCa cells home toward areas in the bone marrow rich in osteoblasts where the...hematopoietic stem cell (HSC) niche resides. In fact, PCa cells can bind to and displace mouse HSCs from the niche . Furthermore, the cancer cells

  15. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  16. Phototransistor response under a neutron fluence

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Ursulino, Luciano C.; Silva Junior, Eronides F.; Antonio Filho, Joao

    2009-01-01

    The purpose of this communication is to show some effects on a bipolar phototransistor after it has been under a neutron fluence. Unlike a transistor, a phototransistor is designed so that the collector has a large area and consequently it has a higher radiation detection probability. Then, it is possible to have a certain number of interactions so that any changes in the internal structure of the phototransistor can be observed after a neutron irradiation. If a phototransistor is under a certain spectra of neutron fluence the interaction depends on the cross section of the either silicon chip or its encapsulation, and recoil protons could be the charged particle responsible for changes in the semiconductor structure. Furthermore, neutron irradiation could give to the device a state of vanishing in its electrical characteristic which can be performed tracing the current versus voltage curve (I x V). The experimental arrangement basically consists of a photonic device, a neutron-gamma radiation source and a Flip-Flop electrometer second generation (EFF-2G). One of the main parameters of evaluation was the phototransistor dark current. In fact, the first results demonstrate that when the phototransistor is neutron irradiated there is a significant variation in its I x V characteristic curve. (author)

  17. Isotopic dependence of GCR fluence behind shielding

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Hu, Xiaodong; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (±100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (∼170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past; however, less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies

  18. Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings

    Directory of Open Access Journals (Sweden)

    Storey Dan

    2007-01-01

    Full Text Available AbstractBioactive coatings are in high demand to control cellular functions for numerous medical devices. The objective of this in vitro study was to characterize for the first time fibroblast (fibrous scar tissue forming cells adhesion and proliferation on an important polymeric biomaterial (silicone coated with titanium using a novel ionic plasma deposition (IPD process. Fibroblasts are one of the first anchorage-dependent cells to arrive at an implant surface during the wound healing process. Persistent excessive functions of fibroblasts have been linked to detrimental fibrous tissue formation which may cause implant failure. The IPD process creates a surface-engineered nanostructure (with features usually below 100 nm by first using a vacuum to remove all contaminants, then guiding charged metallic ions or plasma to the surface of a medical device at ambient temperature. Results demonstrated that compared to currently used titanium and uncoated silicone, silicone coated with titanium using IPD significantly decreased fibroblast adhesion and proliferation. Results also showed competitively increased osteoblast (bone-forming cells over fibroblast adhesion on silicone coated with titanium; in contrast, osteoblast adhesion was not competitively increased over fibroblast adhesion on uncoated silicone or titanium controls. In this manner, this study strongly suggests that IPD should be further studied for biomaterial applications in which fibrous tissue encapsulation is undesirable (such as for orthopedic implants, cardiovascular components, etc..

  19. Adhesion science

    CERN Document Server

    Comyn, John

    1997-01-01

    The use of adhesives is widespread and growing, and there are few modern artefacts, from the simple cereal packet, to the jumbo jet, that are without this means of joining. Adhesion Science provides an illuminating account of the science underlying the use of adhesives, a branch of chemical technology which is fundamental to the science of coatings and composite materials and to the performance of all types of bonded structures. This book guides the reader through the essential basic polymer science, and the chemistry of adhesives in use at present. It discusses surface preparation for adhesive bonding, and the use of primers and coupling agents. There is a detailed chapter on contact angles and what can be predicted from them. A simple guide on stress distribution joints and how this relates to testing is included. It also examines the interaction of adhesives and the environment, including an analysis of the resistance of joints to water, oxygen and ultra-violet light. Adhesion Science provides a comprehens...

  20. A neutron source of variable fluence

    International Nuclear Information System (INIS)

    Brachet, Guy; Demichel, Pascal; Prigent, Yvon; Riche, J.C.

    1975-01-01

    The invention concerns a variable fluence neutron source, like those that use in the known way a reaction between a radioactive emitter and a target, particularly of type (α,n). The emitter being in powder form lies in a carrier fluid forming the target, inside a closed containment. Facilities are provided to cause the fluidisation of the emitter by the carrier fluid in the containment. The fluidisation of the emitting powder is carried out by a booster with blades, actuated from outside by a magnetic coupling. The powder emitter is a α emitter selected in the group of curium, plutonium, thorium, actinium and americium oxides and the target fluid is formed of compounds of light elements selected from the group of beryllium, boron, fluorine and oxygen 18. The target fluid is a gas used under pressure or H 2 O water highly enriched in oxygen 18 [fr

  1. Deduction of Novel Genes Potentially Involved in Osteoblasts of Rheumatoid Arthritis Using Next-Generation Sequencing and Bioinformatic Approaches

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    2017-11-01

    Full Text Available The role of osteoblasts in peri-articular bone loss and bone erosion in rheumatoid arthritis (RA has gained much attention, and microRNAs are hypothesized to play critical roles in the regulation of osteoblast function in RA. The aim of this study is to explore novel microRNAs differentially expressed in RA osteoblasts and to identify genes potentially involved in the dysregulated bone homeostasis in RA. RNAs were extracted from cultured normal and RA osteoblasts for sequencing. Using the next generation sequencing and bioinformatics approaches, we identified 35 differentially expressed microRNAs and 13 differentially expressed genes with potential microRNA–mRNA interactions in RA osteoblasts. The 13 candidate genes were involved mainly in cell–matrix adhesion, as classified by the Gene Ontology. Two genes of interest identified from RA osteoblasts, A-kinase anchoring protein 12 (AKAP12 and leucin rich repeat containing 15 (LRRC15, were found to express more consistently in the related RA synovial tissue arrays in the Gene Expression Omnibus database, with the predicted interactions with miR-183-5p and miR-146a-5p, respectively. The Ingenuity Pathway Analysis identified AKAP12 as one of the genes involved in protein kinase A signaling and the function of chemotaxis, interconnecting with molecules related to neovascularization. The findings indicate new candidate genes as the potential indicators in evaluating therapies targeting chemotaxis and neovascularization to control joint destruction in RA.

  2. Osteoblast response to zirconia surfaces with different topographies

    Energy Technology Data Exchange (ETDEWEB)

    Herath, H.M.T.U. [Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya (Sri Lanka); Di Silvio, L. [Guy' s, King' s and St Thomas' Medical and Dental Institute, King' s College London, London SE1 9RT (United Kingdom); Evans, J.R.G., E-mail: j.r.g.evans@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-12-01

    Zirconia-3 mol% yttria ceramics were prepared with as-sintered, abraded, polished, and porous surfaces in order to explore the attachment, proliferation and differentiation of osteoblast-like cells. After modification, all surfaces were heated to 600 °C to extinguish traces of organic contamination. All surfaces supported cell attachment, proliferation and differentiation but the surfaces with grain boundary grooves or abraded grooves provided conditions for enhanced initial cell attachment. Nevertheless, overall cell proliferation and total DNA were highest on the polished surface. Zirconia sintered at a lower temperature (1300 °C vs. 1450 °C) had open porosity and presented reduced proliferation as assessed by alamarBlue™ assay, possibly because the openness of the pores prevented cells developing a local microenvironment. All cells retained the typical polygonal morphology of osteoblast-like cells with variations attributable to the underlying surface notably alignment along the grooves of the abraded surface. - Highlights: • Biocompatibility of chemically identical, topologically different ZrO{sub 2} was tested. • ZrO{sub 2} promoted cell adhesion, proliferation, differentiation and nodule formation. • Proliferation was high on polished ZrO{sub 2} but initial recruitment was high on abraded ZrO{sub 2}. • With open porosity, proliferation was low; cells cannot establish a microenvironment.

  3. Studies for improvement of WWER-440 neutron fluence determination

    International Nuclear Information System (INIS)

    Ilieva, Kr.; Belousov, S.; Apostolov, T.

    2001-01-01

    For assessment of radiation embrittlement and prediction of reactor vessel lifetime with reasonable conservatism a 'best estimated' neutron fluence is necessary. New studies purposed to improve the fluence determination are presented: 1) study on the reliability of multigroup presentation of the neutron cross sections, and 2) impact of negative gradient of reactor power in the periphery assemblies on the neutron fluence evaluation. The results of these studies are base for improvement of neutron fluence determination methodology applied by the INRNE, BAS at Kozloduy NPP. (author)

  4. Osteoblast interaction with DLC-coated Si substrates.

    Science.gov (United States)

    Chai, Feng; Mathis, Nicolas; Blanchemain, Nicolas; Meunier, Cathy; Hildebrand, Hartmut F

    2008-09-01

    Diamond-like carbon (DLC) coating is a convenient means of modifying material surfaces that are sensitive to wear, such as titanium and silica substrates. This work aims to evaluate the osteoblast-like cells' response to DLC-coated Si (Si-DLC), which was treated under different conditions. DLC and deuterated DLC films were deposited by plasma-enhanced chemical vapor deposition to obtain a 200-nm-thick layer on all the samples. Three types of precursor gas were applied for deposition: pure methane (CH(4)), pure deuterated methane (CD(4)) and their half/half mixture. All surface treatments were performed under two different self-bias voltages (V(sb)): -400 and -600V. The modified surfaces were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, Rutherford backscattering spectroscopy, elastic recoil detection analysis, X-ray reflectometry and the sessile-drop method. MC3T3-E1 osteoblasts were cultured on the Si-DLC wafers for 3 and 6 days. Biological tests to measure cell proliferation, cell vitality, cell morphology and cell adhesion were performed. All DLC coatings produced a slightly more hydrophobic state than non-treated Si. Certain types of amorphous DLC coating, such as the surface treated under the V(sb) of -600V in pure methane (600CH(4)) or in pure deuterated methane (600CD(4)), offered a significantly higher cell proliferation rate to Si substrate. Scanning electron microscopy observations confirmed that the optimal cell adhesion behavior, among all the treated surfaces, occurred on the surface of the 600CH(4) and 600CD(4) groups, which showed increased amounts of filopodia and microvilli to enhance cell-environment exchange. In conclusion, DLC coating on Si could produce better surface stability and improved cellular responses.

  5. Effect of fibronectin adsorption on osteoblastic cellular responses to hydroxyapatite and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kawashita, Masakazu, E-mail: m-kawa@ecei.tohoku.ac.jp [Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579 (Japan); Hasegawa, Maki [Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579 (Japan); Kudo, Tada-aki; Kanetaka, Hiroyasu [Graduate School of Dentistry, Tohoku University, Sendai 980-8575 (Japan); Miyazaki, Toshiki [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196 (Japan); Hashimoto, Masami [Japan Fine Ceramics Center, Nagoya 456-8587 (Japan)

    2016-12-01

    Initial cellular responses following implantation are important for inducing osteoconduction. We investigated cell adhesion, spreading, proliferation and differentiation of mouse MC3T3-E1 osteoblastic cells on untreated or fibronectin (Fn)-coated discs of hydroxyapatite (HAp) or alpha-type alumina (α-Al{sub 2}O{sub 3}). Fn coating significantly enhanced adhesion and spreading of MC3T3-E1 cells on HAp, but did not affect MC3T3-E1 cell proliferation and differentiation on HAp or α-Al{sub 2}O{sub 3}. Fn-coated HAp likely does not stimulate pre-osteoblast cells to initiate the process of osteoconduction; however, Fn adsorption might affect the response of inflammatory cells to the implanted material or, in conjunction with other serum proteins, stimulate pre-osteoblast cell proliferation and differentiation. Further studies on the effect of serum proteins in cell culture and the efficacy of Fn-coated HAp and α-Al{sub 2}O{sub 3}in vivo are warranted. - Highlights: • We studied osteoblast-like MC3T3-E1 cell responses on fibronectin (Fn)-coated discs (HAp/α-Al{sub 2}O{sub 3}). • Fn adsorption enhanced adhesion and spreading of MC3T3-E1 cells on HAp but not on α-Al{sub 2}O{sub 3}. • Fn adsorption hardly affected proliferation and differentiation of MC3T3-E1 cells on HAp and α-Al{sub 2}O{sub 3}. • Fn adsorption might stimulate osteoconduction on HAp along with other serum proteins.

  6. Effect of fibronectin adsorption on osteoblastic cellular responses to hydroxyapatite and alumina

    International Nuclear Information System (INIS)

    Kawashita, Masakazu; Hasegawa, Maki; Kudo, Tada-aki; Kanetaka, Hiroyasu; Miyazaki, Toshiki; Hashimoto, Masami

    2016-01-01

    Initial cellular responses following implantation are important for inducing osteoconduction. We investigated cell adhesion, spreading, proliferation and differentiation of mouse MC3T3-E1 osteoblastic cells on untreated or fibronectin (Fn)-coated discs of hydroxyapatite (HAp) or alpha-type alumina (α-Al 2 O 3 ). Fn coating significantly enhanced adhesion and spreading of MC3T3-E1 cells on HAp, but did not affect MC3T3-E1 cell proliferation and differentiation on HAp or α-Al 2 O 3 . Fn-coated HAp likely does not stimulate pre-osteoblast cells to initiate the process of osteoconduction; however, Fn adsorption might affect the response of inflammatory cells to the implanted material or, in conjunction with other serum proteins, stimulate pre-osteoblast cell proliferation and differentiation. Further studies on the effect of serum proteins in cell culture and the efficacy of Fn-coated HAp and α-Al 2 O 3 in vivo are warranted. - Highlights: • We studied osteoblast-like MC3T3-E1 cell responses on fibronectin (Fn)-coated discs (HAp/α-Al 2 O 3 ). • Fn adsorption enhanced adhesion and spreading of MC3T3-E1 cells on HAp but not on α-Al 2 O 3 . • Fn adsorption hardly affected proliferation and differentiation of MC3T3-E1 cells on HAp and α-Al 2 O 3 . • Fn adsorption might stimulate osteoconduction on HAp along with other serum proteins.

  7. Influences of magnetized hydroxyapatite on the growth behaviors of osteoblasts and the mechanism from molecular dynamics simulation

    International Nuclear Information System (INIS)

    Yang, Weihu; Xi, Xingfeng; Fang, Jiajia; Liu, Peng; Cai, Kaiyong

    2013-01-01

    To investigate the influence of magnetized hydroxyapatite on the growth and differentiation of osteoblasts, hydroxyapatite (HA) and magnetized hydroxyapatite (mHA) were synthesized and characterized. The cell viability, differentiation, and morphologies of osteoblasts were investigated in vitro, respectively. The results showed that compared to HA, cells cultured with mHA had better cell viability, and both HA and mHA were beneficial to the early differentiation of osteoblasts. Furthermore, the interaction mechanism between mHA and osteoblasts was elucidated using a molecular dynamics simulation. The simulation results indicated that when cultured with osteoblasts, HA adsorbed bovine serum protein onto its surface from the medium immediately, which was beneficial to the adhesion and proliferation of osteoblasts. The main driving force for the adsorption of bovine serum was the electronic properties of HA crystal faces. The (211) crystal face of HA had the highest electron density among its all crystal faces, thus mainly contributing to the protein adsorption of HA. Nevertheless, the (211) crystal face of mHA still had a relatively higher electron density than that of HA, thus possessing better protein adsorption than that of HA, and in turn promoting the biological functions of osteoblasts. - Highlights: • Both HA and magnetized HA were beneficial for the early osteogenesis of osteoblasts. • Magnetized HA had better cell viability than HA. • The HA–protein interaction mechanism was investigated by computation simulation. • The main driving force for protein adsorption came from the electronic properties. • The (211) face of mHA has higher electron density and better biological functions

  8. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  9. In vitro culture and characterization of alveolar bone osteoblasts isolated from type 2 diabetics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dao-Cai [Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi' an (China); Department of Stomatology, The 291st Hospital of P.L.A, Baotou (China); Li, De-Hua [Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi' an (China); Ji, Hui-Cang [Military Sanatorium of Retired Cadres, Baotou (China); Rao, Guo-Zhou [Center of Laboratory, School of Stomatology, Xi' an Jiaotong University, Xi' an (China); Liang, Li-Hua [Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi' an (China); Ma, Ai-Jie [Xi' an Technology University, Xi' an (China); Xie, Chao; Zou, Gui-Ke; Song, Ying-Liang [Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi' an (China)

    2012-04-05

    In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones.

  10. In vitro culture and characterization of alveolar bone osteoblasts isolated from type 2 diabetics

    International Nuclear Information System (INIS)

    Sun, Dao-Cai; Li, De-Hua; Ji, Hui-Cang; Rao, Guo-Zhou; Liang, Li-Hua; Ma, Ai-Jie; Xie, Chao; Zou, Gui-Ke; Song, Ying-Liang

    2012-01-01

    In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones

  11. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  12. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  13. Comparison of sources of exit fluence variation for IMRT

    International Nuclear Information System (INIS)

    Gardner, Joseph K; Gordon, J James; Wang Song; Siebers, Jeffrey V; Clews, Luke; Greer, Peter B

    2009-01-01

    The fluence exiting a patient during beam delivery can be used as treatment delivery quality assurance, either by direct comparison with expected exit fluences or by backprojection to reconstruct the patient dose. Multiple possible sources of measured exit fluence deviations exist, including changes in the beam delivery and changes in the patient anatomy. The purpose of this work is to compare the deviations caused by these sources. Machine delivery-related variability is measured by acquiring multiple dosimetric portal images (DPIs) of several test fields without a patient/phantom in the field over a time period of 2 months. Patient anatomy-related sources of fluence variability are simulated by computing transmission DPIs for a prostate patient using the same incident fluence for 11 different computed tomography (CT) images of the patient anatomy. The standard deviation (SD) and maximum deviation of the exit fluence, averaged over 5 mm x 5 mm square areas, is calculated for each test set. Machine delivery fluence SDs as large as 1% are observed for a sample patient field and as large as 2.5% for a picket-fence dMLC test field. Simulations indicate that day-to-day patient anatomy variations induce exit fluence SDs as large as 3.5%. The largest observed machine delivery deviations are 4% for the sample patient field and 7% for the picket-fence field, while the largest difference for the patient anatomy-related source is 8.5%. Since daily changes in patient anatomy can result in substantial exit fluence deviations, care should be taken when applying fluence back-projection to ensure that such deviations are properly attributed to their source. (note)

  14. Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane

    International Nuclear Information System (INIS)

    Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G.; Enríquez-Jiménez, Juana; Alcántara-Quintana, Luz E.; Fuentes-Mera, Lizeth; Piña-Barba, María C.; Zepeda-Rodríguez, Armando

    2013-01-01

    Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects

  15. Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G. [Depto. Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510 (Mexico); Enríquez-Jiménez, Juana [Depto. Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City 14000 (Mexico); Alcántara-Quintana, Luz E. [Subd. de Investigación, Centro Nacional de la Transfusión Sanguínea, Secretaria de Salud, Mexico City 07370 (Mexico); Fuentes-Mera, Lizeth [Depto. Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, México City 4800 (Mexico); Piña-Barba, María C. [Depto. Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), México City 04510 (Mexico); Zepeda-Rodríguez, Armando [Depto. Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510 (Mexico); and others

    2013-05-10

    Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.

  16. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  17. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  18. Fluence complexity for IMRT field and simplification of IMRT verification

    International Nuclear Information System (INIS)

    Hanushova, Tereza; Vondarchek, Vladimir

    2013-01-01

    Intensity Modulated Radiation Therapy (IMRT) requires dosimetric verification of each patient’s plan, which is time consuming. This work deals with the idea of minimizing the number of fields for control, or even replacing plan verification by machine quality assurance (QA). We propose methods for estimation of fluence complexity in an IMRT field based on dose gradients and investigate the relation between results of gamma analysis and this quantity. If there is a relation, it might be possible to only verify the most complex field of a plan. We determine the average fluence complexity in clinical fields and design a test fluence corresponding to this amount of complexity which might be used in daily QA and potentially replace patient-related verification. Its applicability is assessed in clinical practice. The relation between fluence complexity and results of gamma analysis has been confirmed for plans but not for single fields. There is an agreement between the suggested test fluence and clinical fields in the average gamma parameter. A critical value of average gamma has been specified for the test fluence as a criterion for distinguishing between poorly and well deliverable plans. It will not be possible to only verify the most complex field of a plan but verification of individual plans could be replaced by a morning check of the suggested test fluence, together with a well-established set of QA tests. (Author)

  19. Probability model for worst case solar proton event fluences

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Summers, G.P.; Barth, J.L.; Stassinopoulos, E.G.; Burke, E.A.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary orbits, polar orbits and on interplanetary missions. A predictive model of worst case solar proton event fluences is presented. It allows the expected worst case event fluence to be calculated for a given confidence level and for periods of time corresponding to space missions. The proton energy range is from >1 to >300 MeV, so that the model is useful for a variety of radiation effects applications. For each proton energy threshold, the maximum entropy principle is used to select the initial distribution of solar proton event fluences. This turns out to be a truncated power law, i.e., a power law for smaller event fluences that smoothly approaches zero at a maximum fluence. The strong agreement of the distribution with satellite data for the last three solar cycles indicates this description captures the essential features of a solar proton event fluence distribution. Extreme value theory is then applied to the initial distribution of events to obtain the model of worst case fluences

  20. Constitutive β-catenin activation in osteoblasts impairs terminal osteoblast differentiation and bone quality

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Quanwei; Chen, Sixu; Qin, Hao [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China); Feng, Jianquan [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A& M Health Science Center, Dallas, TX 75246 (United States); Liu, Huayu; Liu, Daocheng; Li, Ang; Shen, Yue; Zhong, Xiaozheng; Li, Junfeng [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China); Zong, Zhaowen, E-mail: zongzhaowen@sina.cn [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China)

    2017-01-01

    Accumulating evidence suggests that Wnt/β-catenin signaling plays a central role in controlling bone mass. We previously reported that constitutive activation of β-catenin (CA-β-catenin) in osteoblasts potentially has side effects on the bone growth and bone remodeling process, although it could increase bone mass. The present study aimed to observe the effects of osteoblastic CA-β-catenin on bone quality and to investigate possible mechanisms of these effects. It was found that CA-β-catenin mice exhibited lower mineralization levels and disorganized collagen in long bones as confirmed by von Kossa staining and sirius red staining, respectively. Also, bone strength decreased significantly in CA-β-catenin mice. Then the effect of CA-β-catenin on biological functions of osteoblasts were investigated and it was found that the expression levels of osteocalcin, a marker for the late differentiation of osteoblasts, decreased in CA-β-catenin mice, while the expression levels of osterix and alkaline phosphatase, two markers for the early differentiation of osteoblasts, increased in CA-β-catenin mice. Furthermore, higher proliferation rate were revealed in osteoblasts that were isolated from CA-β-catenin mice. The Real-time PCR and western blot examination found that the expression level of c-myc and cyclin D1, two G1 progression-related molecules, increased in osteoblasts that were isolated from the CA-β-catenin mice, and the expression levels of CDK14 and cyclin Y, two mitotic-related molecules that can accelerate cells entering into S and G2/M phases, increased in osteoblasts that were isolated from the CA-β-catenin mice. In summary, osteoblastic CA-β-catenin kept osteoblasts in high proliferative state and impaired the terminal osteoblast differentiation, and this led to changed bone structure and decreased bone strength. - Highlights: • Wnt/β-catenin signaling plays a central role in controlling bone mass. • CA-β-catenin has side effects on the bone

  1. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  2. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels.

    Science.gov (United States)

    Raucci, Maria Grazia; Alvarez-Perez, Marco Antonio; Demitri, Christian; Sannino, Alessandro; Ambrosio, Luigi

    2012-01-01

    The aim of this project was to study the proliferation and differentiation of human Mesenchymal Stem Cells (hMSCs) onto a cellulose-based hydrogel for bone tissue engineering. Modified-cellulose hydrogel was prepared via double esterification crosslinking using citric acid. The response of human Mesenchymal Stem Cells (hMSCs) in terms of cell proliferation and differentiation into osteoblastic phenotype was evaluated by using Alamar blue assay and Alkaline phosphatase activity. The results showed that CMCNa and CMCNa_CA have no negative effect on hMSC, adhesion and proliferation. Moreover, the increase of the ALP expression for CMCNa_CA confirms the ability of the hydrogels to support the osteoblastic differentiation. The cellulose-based hydrogels have a potential application as filler in bone tissue regeneration.

  3. Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits.

    Science.gov (United States)

    Kokkinos, Petros A; Koutsoukos, Petros G; Deligianni, Despina D

    2012-06-01

    Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.

  4. Overexpression of α-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    International Nuclear Information System (INIS)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-01-01

    α- and β-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/β-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of α-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding α-catenin (MSCV-α-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium (β-glycerol phosphate and ascorbic acid), cells overexpressing α-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that α-catenin overexpression has significantly increased cell-cell aggregation. However, cellular β-catenin levels (total, cytoplasmic-nuclear ratio) and β-catenin-TCF/LEF transcriptional activity did not change by overexpression of α-catenin. Knock-down of α-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that α-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/β-catenin-signaling.

  5. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering.

    Science.gov (United States)

    El-Amin, S F; Lu, H H; Khan, Y; Burems, J; Mitchell, J; Tuan, R S; Laurencin, C T

    2003-03-01

    The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal

  6. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  7. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.

    Science.gov (United States)

    Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-02-01

    We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    International Nuclear Information System (INIS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Doering, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2 , and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96 deg. to 30-37 deg. and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy

  9. Toxicity of iron oxide nanoparticles against osteoblasts

    International Nuclear Information System (INIS)

    Shi Sifeng; Jia Jingfu; Guo Xiaokui; Zhao Yaping; Liu Boyu; Chen Desheng; Guo Yongyuan; Zhang Xianlong

    2012-01-01

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 μg/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 μg/mL and 25.9 % in 500 μg/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 μg/mL, 23.40 % of apoptosis in a concentration of 300 μg/mL and 28.49 % in a concentration of 500 μg/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  10. Toxicity of iron oxide nanoparticles against osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Sifeng [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China); Jia Jingfu [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Guo Xiaokui [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Zhao Yaping [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Liu Boyu [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Chen Desheng; Guo Yongyuan; Zhang Xianlong, E-mail: zhangxianlong20101@163.com [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China)

    2012-09-15

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 {mu}g/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 {mu}g/mL and 25.9 % in 500 {mu}g/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 {mu}g/mL, 23.40 % of apoptosis in a concentration of 300 {mu}g/mL and 28.49 % in a concentration of 500 {mu}g/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  11. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  12. An in vitro investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK.

    Science.gov (United States)

    Rochford, Edward T J; Subbiahdoss, Guruprakash; Moriarty, T Fintan; Poulsson, Alexandra H C; van der Mei, Henny C; Busscher, Henk J; Richards, R Geoff

    2014-12-01

    Polyetheretherketone (PEEK) films were oxygen plasma treated to increase surface free energy and characterized by X-ray photoelectron microscopy, atomic force microscopy, and water contact angles. A parallel plate flow chamber was used to measure Staphylococcus epidermidis, Staphylococcus aureus, and U-2 OS osteosarcomal cell-line adhesion to the PEEK films in separate monocultures. In addition, bacteria and U-2 OS cells were cocultured to model competition between osteoblasts and contaminating bacteria for the test surfaces. Plasma treatment of the surfaces increased surface oxygen content and decreased the hydrophobicity of the materials, but did not lead to a significant difference in bacterial or U-2 OS cell adhesion in the monocultures. In the S. epidermidis coculture experiments, the U-2 OS cells adhered in greater numbers on the treated surfaces compared to the untreated PEEK and spread to a similar extent. However, in the presence of S. aureus, cell death of the U-2 OS occurred within 10 h on all surfaces. The results of this study suggest that oxygen plasma treatment of PEEK may maintain the ability of osteoblast-like cells to adhere and spread, even in the presence of S. epidermidis contamination, without increasing the risk of preoperative bacterial adhesion. Therefore, oxygen plasma-treated PEEK remains a promising method to improve implant surface free energy for osseointegration. © 2014 Wiley Periodicals, Inc.

  13. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells.

    Science.gov (United States)

    Ismail, F S Magdon; Rohanizadeh, R; Atwa, S; Mason, R S; Ruys, A J; Martin, P J; Bendavid, A

    2007-05-01

    The purpose of the present study was to determine in vitro the effects of different surface topographies and chemistries of commercially pure titanium (cpTi) and diamond-like carbon (DLC) surfaces on osteoblast growth and attachment. Microgrooves (widths of 2, 4, 8 and 10 microm and a depth of 1.5-2 microm) were patterned onto silicon (Si) substrates using microlithography and reactive ion etching. The Si substrates were subsequently vapor coated with either cpTi or DLC coatings. All surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Using the MG63 Osteoblast-Like cell line, we determined cell viability, adhesion, and morphology on different substrates over a 3 day culture period. The results showed cpTi surfaces to be significantly more hydrophilic than DLC for groove sizes larger than 2 microm. Cell contact guidance was observed for all grooved samples in comparison to the unpatterned controls. The cell viability tests indicated a significantly greater cell number for 8 and 10 microm grooves on cpTi surfaces compared to other groove sizes. The cell adhesion study showed that the smaller groove sizes, as well as the unpatterned control groups, displayed better cell adhesion to the substrate.

  14. Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells

    Science.gov (United States)

    Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.

  15. Recoil mixing in high-fluence ion implantation

    International Nuclear Information System (INIS)

    Littmark, U.; Hofer, W.O.

    1979-01-01

    The effect of recoil mixing on the collection and depth distribution of implanted projectiles during high-fluence irradiation of a random solid is investigated by model calculations based on a previously published transport theoretical approach to the general problem of recoil mixing. The most pronounced effects are observed in the maximum implantable amount of projectiles and in the critical fluence for saturation. Both values are significantly increased by recoil mixing. (Auth.)

  16. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  17. Neutron dosimetry intercomparison run for verification of the neutron fluence

    International Nuclear Information System (INIS)

    Penev, I.; Kinova, L.

    2001-01-01

    For the neutron fluence verification the intercomparison runs Balakovo and KORPUS have been carried out. The participation in the international intercomparison runs shows that in order to more precisely verify the calculated values of the neutron fluence more intercomparison exercises are necessary. Due to such exercises the results improved after calibration of Nb performed and are in a very good agreement with RIIAR results in spite of the different approaches in the determination of its activity

  18. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.

    NARCIS (Netherlands)

    Glass, D.A.; Bialek, P.; Ahn, J.D.; Starbuck, M.; Patel, M.S.; Clevers, J.C.; Taketo, M.M.; Long, F.; McMahon, A.P.; Lang, R.A.; Karsenty, G.

    2005-01-01

    Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast

  19. Osteoblastic response to pectin nanocoating on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gurzawska, Katarzyna, E-mail: kagu@sund.ku.dk [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N (Denmark); Svava, Rikke [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Yihua, Yu; Haugshøj, Kenneth Brian [Microtechnology and Surface Analysis, Danish Technological Institute, Gregersensvej 8, 2630 Taastrup (Denmark); Dirscherl, Kai [Dansk Fundamental Metrologi A/S, Matematiktorvet 307, 2800 Lyngby (Denmark); Levery, Steven B. [Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Byg, Inge [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Damager, Iben [Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd (Denmark); Nielsen, Martin W. [Department of Systems Biology, Technical University of Denmark, Matematiktorvet, Building 301, Kgs. Lyngby DK-2800 (Denmark); Jørgensen, Bodil [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jørgensen, Niklas Rye [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); and others

    2014-10-01

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro. - Highlights: • Surface nanocoating with plant-derived Rhamnogalacturonan-I (RG-I) is proposed. • Titanium surface became more hydrophilic after RG-Is nanocoating. • RG-Is with high galactose content resulted in high level of mineralized matrix. • RG-I is a new candidate for improvement of bone healing and osseointegration.

  20. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Eda D; Gueceri, Selcuk; Sun, Wei [Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Besunder, Robyn; Allen, Fred [Drexel University, School of Biomedical Engineering Science and Health System, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pappas, Daphne, E-mail: edy22@drexel.ed [Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2010-03-15

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  1. Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress

    Directory of Open Access Journals (Sweden)

    Barrio Daniel A

    2001-08-01

    Full Text Available Abstract Background The tissue accumulation of protein-bound advanced glycation endproducts (AGE may be involved in the etiology of diabetic chronic complications, including osteopenia. The aim of this study was to investigate the effect of an AGE-modified type I collagen substratum on the adhesion, spreading, proliferation and differentiation of rat osteosarcoma UMR106 and mouse non-transformed MC3T3E1 osteoblastic cells. We also studied the role of reactive oxygen species (ROS and nitric oxide synthase (NOS expression on these AGE-collagen mediated effects. Results AGE-collagen decreased the adhesion of UMR106 cells, but had no effect on the attachment of MC3T3E1 cells. In the UMR106 cell line, AGE-collagen also inhibited cellular proliferation, spreading and alkaline phosphatase (ALP activity. In preosteoblastic MC3T3E1 cells (24-hour culture, proliferation and spreading were significantly increased by AGE-collagen. After one week of culture (differentiated MC3T3E1 osteoblasts AGE-collagen inhibited ALP activity, but had no effect on cell number. In mineralizing MC3T3E1 cells (3-week culture AGE-collagen induced a decrease in the number of surviving cells and of extracellular nodules of mineralization, without modifying their ALP activity. Intracellular ROS production, measured after a 48-hour culture, was decreased by AGE-collagen in MC3T3E1 cells, but was increased by AGE-collagen in UMR106 cells. After a 24-hour culture, AGE-collagen increased the expression of endothelial and inducible NOS, in both osteoblastic cell lines. Conclusions These results suggest that the accumulation of AGE on bone extracellular matrix could regulate the proliferation and differentiation of osteoblastic cells. These effects appear to depend on the stage of osteoblastic development, and possibly involve the modulation of NOS expression and intracellular ROS pathways.

  2. Osteoblast and osteocyte: games without frontiers.

    Science.gov (United States)

    Capulli, Mattia; Paone, Riccardo; Rucci, Nadia

    2014-11-01

    The portrait of osteoblasts and osteocytes has been subjected to a revision, since a large body of evidence is attributing these cells amazing roles both inside and outside the bone. The osteoblast, long confined to its bone building function, is actually a very eclectic cell, actively regulating osteoclast formation and function as well as hematopoietic stem cells homeostasis. It is also an endocrine cell, affecting energy metabolism, male fertility and cognition through the release of osteocalcin, a perfect definition-fitting hormone in its uncarboxylated state. As for the osteocytes, many evidence shows that they do not merely represent the final destination of the osteoblasts, but they are instead very active cells that, besides a mechanosensorial function, actively contribute to the bone remodelling by regulating bone formation and resorption. The regulation is exerted by the production of sclerostin (SOST), which in turn inhibits osteoblast differentiation by blocking Wnt/beta-catenin pathway. At the same time, osteocytes influence bone resorption both indirectly, by producing RANKL, which stimulates osteoclastogenesis, and directly by means of a local osteolysis, which is observed especially under pathological conditions. The great versatility of both these cells reflects the complexity of the bone tissue, which has not only a structural role, but influences and is influenced by different organs, taking part in homeostatic and adaptive responses affecting the whole organism. Copyright © 2014. Published by Elsevier Inc.

  3. Irisin Enhances Osteoblast Differentiation In Vitro

    Directory of Open Access Journals (Sweden)

    Graziana Colaianni

    2014-01-01

    Full Text Available It has been recently demonstrated that exercise activity increases the expression of the myokine Irisin in skeletal muscle, which is able to drive the transition of white to brown adipocytes, likely following a phenomenon of transdifferentiation. This new evidence supports the idea that muscle can be considered an endocrine organ, given its ability to target adipose tissue by promoting energy expenditure. In accordance with these new findings, we hypothesized that Irisin is directly involved in bone metabolism, demonstrating its ability to increase the differentiation of bone marrow stromal cells into mature osteoblasts. Firstly, we confirmed that myoblasts from mice subjected to 3 weeks of free wheel running increased Irisin expression compared to nonexercised state. The conditioned media (CM collected from myoblasts of exercised mice induced osteoblast differentiation in vitro to a greater extent than those of mice housed in resting conditions. Furthermore, the differentiated osteoblasts increased alkaline phosphatase and collagen I expression by an Irisin-dependent mechanism. Our results show, for the first time, that Irisin directly targets osteoblasts, enhancing their differentiation. This finding advances notable perspectives in future studies which could satisfy the ongoing research of exercise-mimetic therapies with anabolic action on the skeleton.

  4. Comprehensive fluence model for absolute portal dose image prediction

    International Nuclear Information System (INIS)

    Chytyk, K.; McCurdy, B. M. C.

    2009-01-01

    Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) continue to be investigated as treatment verification tools, with a particular focus on intensity modulated radiation therapy (IMRT). This verification could be accomplished through a comparison of measured portal images to predicted portal dose images. A general fluence determination tailored to portal dose image prediction would be a great asset in order to model the complex modulation of IMRT. A proposed physics-based parameter fluence model was commissioned by matching predicted EPID images to corresponding measured EPID images of multileaf collimator (MLC) defined fields. The two-source fluence model was composed of a focal Gaussian and an extrafocal Gaussian-like source. Specific aspects of the MLC and secondary collimators were also modeled (e.g., jaw and MLC transmission factors, MLC rounded leaf tips, tongue and groove effect, interleaf leakage, and leaf offsets). Several unique aspects of the model were developed based on the results of detailed Monte Carlo simulations of the linear accelerator including (1) use of a non-Gaussian extrafocal fluence source function, (2) separate energy spectra used for focal and extrafocal fluence, and (3) different off-axis energy spectra softening used for focal and extrafocal fluences. The predicted energy fluence was then convolved with Monte Carlo generated, EPID-specific dose kernels to convert incident fluence to dose delivered to the EPID. Measured EPID data were obtained with an a-Si EPID for various MLC-defined fields (from 1x1 to 20x20 cm 2 ) over a range of source-to-detector distances. These measured profiles were used to determine the fluence model parameters in a process analogous to the commissioning of a treatment planning system. The resulting model was tested on 20 clinical IMRT plans, including ten prostate and ten oropharyngeal cases. The model predicted the open-field profiles within 2%, 2 mm, while a mean of 96.6% of pixels over all

  5. Fluence scan: an unexplored property of a laser beam

    International Nuclear Information System (INIS)

    Chalupsky, Jaromir; Hajkova, Vera; Burian, Tomas; Juha, Libor; Polcar, Tomas; Gaudin, Jerome; Nagasono, Mitsuru; Yabashi, Makina; Sobierajski, Ryszard; Krzywinski, Jacek

    2013-01-01

    We present an extended theoretical background of so-called fluence scan (f-scan or F-scan) method, which is frequently being used for offline characterization of focused short-wavelength (EUV, soft X-ray, and hard X-ray) laser beams [J. Chalupsky et al., Opt. Express 18, 27836 (2010)]. The method exploits ablative imprints in various solids to visualize iso-fluence beam contours at different fluence and/or clip levels. An f-scan curve (clip level as a function of the corresponding iso-fluence contour area) can be generated for a general non-Gaussian beam. As shown in this paper, fluence scan encompasses important information about energy distribution within the beam profile, which may play an essential role in laser-matter interaction research employing intense non-ideal beams. Here we for the first time discuss fundamental properties of the f-scan function and its inverse counterpart (if-scan). Furthermore, we extensively elucidate how it is related to the effective beam area, energy distribution, and to the so called Liu's dependence [J.M. Liu, Opt. Lett. 7, 196 (1982)]. A new method of the effective area evaluation based on weighted inverse f-scan fit is introduced and applied to real data obtained at the SCSS (SPring-8 Compact SASE Source) facility. (authors)

  6. Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Nirmala, R. [Bio-nano System Engineering, College of Engineering, Chonbuk National University, Jeonju, 561 756 (Korea, Republic of); Park, Hye-Min [Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); Navamathavan, R. [School of Advanced Materials Engineering, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); Kang, Hyung-Sub [Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); El-Newehy, Mohamed H. [Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Kim, Hak Yong, E-mail: khy@jbnu.ac.kr [Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Center for Healthcare Technology and Development, Chonbuk National University, Jeonju, 561 756 (Korea, Republic of)

    2011-03-12

    In this study, we focused on the preparation and characterization of lecithin blended polyamide-6 nanofibers via an electrospinning process for human osteoblastic (HOB) cell culture applications. The morphological, structural characterizations and thermal properties of polyamide-6/lecithin nanofibers were determined by using scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TGA). SEM images revealed that the nanofibers were well-oriented with good incorporation of lecithin. FT-IR results indicated the presence of amino groups of lecithin in the blended nanofibers. TGA analysis revealed that the onset degradation temperature decreased with increasing lecithin content in the blended nanofibers. The morphological features of cells attached on polyamide-6/lecithin nanofibers were confirmed by SEM. The adhesion, viability and proliferation properties of osteoblast cells on the polyamide-6/lecithin blended nanofibers were analyzed by in vitro cell compatibility test. This study demonstrated the non-cytotoxic behavior of electrospun polyamide-6/lecithin nanofibers for the osteoblast cell culture.

  7. Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture

    International Nuclear Information System (INIS)

    Nirmala, R.; Park, Hye-Min; Navamathavan, R.; Kang, Hyung-Sub; El-Newehy, Mohamed H.; Kim, Hak Yong

    2011-01-01

    In this study, we focused on the preparation and characterization of lecithin blended polyamide-6 nanofibers via an electrospinning process for human osteoblastic (HOB) cell culture applications. The morphological, structural characterizations and thermal properties of polyamide-6/lecithin nanofibers were determined by using scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TGA). SEM images revealed that the nanofibers were well-oriented with good incorporation of lecithin. FT-IR results indicated the presence of amino groups of lecithin in the blended nanofibers. TGA analysis revealed that the onset degradation temperature decreased with increasing lecithin content in the blended nanofibers. The morphological features of cells attached on polyamide-6/lecithin nanofibers were confirmed by SEM. The adhesion, viability and proliferation properties of osteoblast cells on the polyamide-6/lecithin blended nanofibers were analyzed by in vitro cell compatibility test. This study demonstrated the non-cytotoxic behavior of electrospun polyamide-6/lecithin nanofibers for the osteoblast cell culture.

  8. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    Science.gov (United States)

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning.

    Science.gov (United States)

    Olson, Timothy S; Caselli, Anna; Otsuru, Satoru; Hofmann, Ted J; Williams, Richard; Paolucci, Paolo; Dominici, Massimo; Horwitz, Edwin M

    2013-06-27

    Successful hematopoietic stem cell (HSC) transplantation requires donor HSC engraftment within specialized bone marrow microenvironments known as HSC niches. We have previously reported a profound remodeling of the endosteal osteoblastic HSC niche after total body irradiation (TBI), defined as relocalization of surviving megakaryocytes to the niche site and marked expansion of endosteal osteoblasts. We now demonstrate that host megakaryocytes function critically in expansion of the endosteal niche after preparative radioablation and in the engraftment of donor HSC. We show that TBI-induced migration of megakaryocytes to the endosteal niche depends on thrombopoietin signaling through the c-MPL receptor on megakaryocytes, as well as CD41 integrin-mediated adhesion. Moreover, niche osteoblast proliferation post-TBI required megakaryocyte-secreted platelet-derived growth factor-BB. Furthermore, blockade of c-MPL-dependent megakaryocyte migration and function after TBI resulted in a significant decrease in donor HSC engraftment in primary and competitive secondary transplantation assays. Finally, we administered thrombopoietin to mice beginning 5 days before marrow radioablation and ending 24 hours before transplant to enhance megakaryocyte function post-TBI, and found that this strategy significantly enhanced donor HSC engraftment, providing a rationale for improving hematopoietic recovery and perhaps overall outcome after clinical HSC transplantation.

  10. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts

    International Nuclear Information System (INIS)

    Id Boufker, Hichame; Lagneaux, Laurence; Najar, Mehdi; Piccart, Martine; Ghanem, Ghanem; Body, Jean-Jacques; Journé, Fabrice

    2010-01-01

    The proto-oncogene Src is an important non-receptor protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and differentiation. It negatively regulates osteoblast activity, and, as such, its inhibition is a potential means to prevent bone loss. Dasatinib is a new dual Src/Bcr-Abl tyrosine kinase inhibitor initially developed for the treatment of chronic myeloid leukemia. It has also shown promising results in preclinical studies in various solid tumors. However, its effects on the differentiation of human osteoblasts have never been examined. We evaluated the effects of dasatinib on bone marrow-derived mesenchymal stromal cells (MSC) differentiation into osteoblasts, in the presence or absence of a mixture of dexamethasone, ascorbic acid and β-glycerophosphate (DAG) for up to 21 days. The differentiation kinetics was assessed by evaluating mineralization of the extracellular matrix, alkaline phosphatase (ALP) activity, and expression of osteoblastic markers (receptor activator of nuclear factor kappa B ligand [RANKL], bone sialoprotein [BSP], osteopontin [OPN]). Dasatinib significantly increased the activity of ALP and the level of calcium deposition in MSC cultured with DAG after, respectively, 7 and 14 days; it upregulated the expression of BSP and OPN genes independently of DAG; and it markedly downregulated the expression of RANKL gene and protein (decrease in RANKL/OPG ratio), the key factor that stimulates osteoclast differentiation and activity. Our results suggest a dual role for dasatinib in both (i) stimulating osteoblast differentiation leading to a direct increase in bone formation, and (ii) downregulating RANKL synthesis by osteoblasts leading to an indirect inhibition of osteoclastogenesis. Thus, dasatinib is a potentially interesting candidate drug for the treatment of osteolysis through its dual effect on bone metabolism

  11. Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes

    International Nuclear Information System (INIS)

    Oh, Seunghan; Brammer, Karla S.; Moon, Kyung-Suk; Bae, Ji-Myung; Jin, Sungho

    2011-01-01

    We investigated the adhesion, proliferation and osteogenic functionality of osteoblasts cultured on titanium dioxide (TiO 2 ) nanotubes in response to different sterilization methods (dry autoclaving vs. wet autoclaving). We prepared various sizes (30-100 nm diameter) of TiO 2 nanotubes on titanium substrates by anodization, sterilized nanotubes by different conditions, and seeded osteoblast cells onto the nanotube surfaces with two different cell seeding densities (10,000 vs. 50,000 cells/well in 12-culture well). The result of this study indicates that the adhesion, proliferation and alkaline phosphatase activity of osteoblasts cultured on only the larger 70 and 100 nm TiO 2 nanotube arrays were dramatically changed by the different sterilization conditions at a low cell seeding density. However, with a higher cell seeding density (50,000 cells/well in 12-cell culture well), the results revealed no significant difference among altered nanotube geometry, 30-100 nm diameters, nor sterilization methods. Next, it was revealed that the nanofeatures of proteins adhered on nanotubular TiO 2 morphology are altered by the sterilization method. It was determined that this protein adhesion effect, in combination with the cell density of osteoblasts seeded onto such TiO 2 nanotube surfaces, has profound effects on cell behavior. This study clearly shows that these are some of the important in vitro culture factors that need to be taken into consideration, as well as TiO 2 nanotube diameters which play an important role in the improvement of cell behavior and functionality.

  12. Endothelial cell adhesion to ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Kusakabe, M [SONY Corp., Tokyo (Japan); Lee, J S; Kaibara, M; Iwaki, M; Sasabe, H [RIKEN (Inst. of Physical and Chemical Research), Saitama (Japan)

    1992-03-01

    The biocompatibility of ion implanted polymers has been studied by means of adhesion measurements of bovine aorta endothelial cells in vitro. The specimens used were polystyrene (PS) and segmented polyurethane (SPU). Na{sup +}, N{sub 2}{sup +}, O{sub 2}{sup +} and Kr{sup +} ion implantations were performed at an energy of 150 keV with fluences ranging from 1x10{sup 15} to 3x10{sup 17} ions/cm{sup 2} at room temperature. The chemical and physical structures of ion-implanted polymers have been investigated in order to analyze their tissue compatibility such as improvement of endothelial cell adhesion. The ion implanted SPU have been found to exhibit remarkably higher adhesion and spreading of endothelial cells than unimplanted specimens. By contrast, ion implanted PS demonstrated a little improvement of adhesion of cells in this assay. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH and condensed rings. The results of Raman spectroscopy showed that ion implantation always produced a peak near 1500 cm{sup -1}, which indicated that these ion implanted PS and SPU had the same carbon structure. This structure is considered to bring the dramatic increase in the extent of cell adhesion and spreading to these ion implanted PS and SPU. (orig.).

  13. Investigation of neutron fluence using fluence monitors for irradiation test at WWR-K

    International Nuclear Information System (INIS)

    Romanova, N.K.; Takemoto, N.

    2013-01-01

    Irradiation test of a Si ingot is planned using WWR-K in Institute of Nuclear Physics Republic of Kazakhstan (INP RK) to develop an irradiation technology for Si semiconductor production by Neutron Transmutation Doping (NTD) method in the framework of an international cooperation between INP RK and Japan Atomic Energy Agency (JAEA), Japan. It is possible to irradiate the Si ingot of 6 inch in diameter at the K-23 irradiation channel in the WWR-K. The preliminary irradiation test using 4 Al ingots was performed to evaluate the actual neutronic irradiation field at the K-23 channel in the WWR-K. Each Al ingot has the same dimension as the Si ingot, and 15 fluence monitors are equipped in it. Iron wire and aluminum-cobalt wire are inserted into them, and it is possible to evaluate both fast and thermal neutron fluxes by measurement of these radiation activities after irradiation. This report described the results of the preliminary irradiation test and the neutronic calculations by Monte Carlo method in order to evaluate the neutronic irradiation field in the irradiation position for the silicon ingot at the channel in the WWR-K. (authors)

  14. Fluence dependence of disorder depth profiles in Pb implanted Si

    International Nuclear Information System (INIS)

    Christodoulides, C.E.; Kadhim, N.J.; Carter, G.

    1980-01-01

    The total, depth integrated disorder, induced by Pb implantation into Si at room temperature, initially increases rapidly with implantation fluence and then reaches a quasi saturation level where the increase with fluence is slow. Measurements of the depth distributions of the disorder, using high resolution low angle exit Rutherford Backscattering/Channelling analysis, suggest that the quasi saturation results from overlapping of disordered zones generated deep in the tail of the disorder-depth profiles. The depth of the disordered solid-crystal boundary, xsub(D), increases with ion fluence PHI, according to the relation xsub(D) = x bar + f(PHI).σ, where x bar is the most probable projected depth and σ the projected standard deviation of disorder generation. It is shown that this relationship is consistent with an approximately Gaussian depth distribution of disorder production. (author)

  15. Safety factors for neutron fluences in NPP safety assessment

    International Nuclear Information System (INIS)

    Demekhin, V.L.; Bukanov, V.N.; Il'kovich, V.V.; Pugach, A.M.

    2016-01-01

    In accordance with global practice and a number of existing regulations, the use of conservative approach is required for the calculations related to nuclear safety assessment of NPP. It implies the need to consider the determination of neutron fluence errors that is rather complicated. It is proposed to carry out the consideration by the way of multiplying the neutron fluences obtained with transport calculations by safety factors. The safety factor values are calculated by the developed technique based on the theory of errors, features of the neutron transport calculation code and the results obtained with the code. It is shown that the safety factor value is equal 1.18 with the confidence level of not less than 0.95 for the majority of VVER-1000 reactor places where neutron fluences are determined by MCPV code, and its maximum value is 1.25

  16. Spectral fluence of neutrons generated by radiotherapeutic Linacs

    International Nuclear Information System (INIS)

    Kralik, Miloslav; Solc, Jaroslav; Smoldasova, Jana; Vondracek, Vladimir; Farkasova, Estera; Ticha, Ivana

    2015-01-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac. (authors)

  17. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  18. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  19. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  20. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He+ ion implantation

    International Nuclear Information System (INIS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-01-01

    He + ion implanted collagen-coated tubes with a fluence of 1 x 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 . Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was inhibited with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 x 10 13 ions/cm 2 . On the 1 x 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. >From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface

  1. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    Directory of Open Access Journals (Sweden)

    Klupák Vít

    2016-01-01

    Full Text Available Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  2. RAMA Methodology for the Calculation of Neutron Fluence

    International Nuclear Information System (INIS)

    Villescas, G.; Corchon, F.

    2013-01-01

    he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.

  3. The development report of an intelligent neutron fluence integration monitor

    International Nuclear Information System (INIS)

    Jiang Zongbing; Wei Ying

    1996-10-01

    An intelligent neutron fluence integration monitor is introduced. It is used to measure the received neutron fluence of the monocrystalline silicon in reactor radiation channel. The significance of study and specifications of the instrument are briefly described. The emphasis is on the working principle, structure and characteristics of the instrument is intelligent due to use of monolithic microcomputer. It has many advantages proved in the actual practice, such as powerful function, high accuracy, diversity of application, high level automatization, easy to operate, high reliability, etc. After using this instrument the monocrystalline silicon radiation technology is improved and the efficiency of production is raised. (1 fig.)

  4. Osteoblast-specific transcription factor Osterix increases vitamin D receptor gene expression in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available Osterix (Osx is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.

  5. Osteoblasts with impaired spreading capacity benefit from the positive charges of plasma polymerised allylamine

    Directory of Open Access Journals (Sweden)

    F Kunz

    2015-03-01

    Full Text Available Bone diseases such as osteoporosis, osteoarthritis and rheumatoid arthritis, impinge on the performance of orthopaedic implants by impairing bone regeneration. For this reason, the development of effective surface modifications supporting the ingrowth of implants in morbid bone tissue is essential. Our study is designed to elucidate if cells with restricted cell-function limiting adhesion processes benefit from plasma polymer deposition on titanium. We used the actin filament disrupting agent cytochalasin D (CD as an experimental model for cells with impaired actin cytoskeleton. Indeed, the cell’s capacity to adhere and spread was drastically reduced due to shortened actin filaments and vinculin contacts that were smaller. The coating of titanium with a positively charged nanolayer of plasma polymerised allylamine (PPAAm abrogated these disadvantages in cell adhesion and the CD-treated osteoblasts were able to spread significantly. Interestingly, PPAAm increased spreading by causing enhanced vinculin number and contact length, but without significantly reorganising actin filaments. PPAAm with the monomer allylamine was deposited in a microwave-excited low-pressure plasma-processing reactor. Cell physiology was monitored by flow cytometry and confocal laser scanning microscopy, and the length and number of actin filaments was quantified by mathematical image processing. We showed that biomaterial surface modification with PPAAm could be beneficial even for osteoblasts with impaired cytoskeleton components. These insights into in vitro conditions may be used for the evaluation of future strategies to design implants for morbid bone tissue.

  6. Specific proliferation rates of human osteoblasts on calcium phosphate surfaces with variable concentrations of α-TCP

    International Nuclear Information System (INIS)

    Santos, Euler A. dos; Farina, Marcos; Soares, Gloria A.

    2007-01-01

    Ideally, ceramics used in the repair of bone defects need to be resorbed and replaced by newly formed bone in vivo. Tricalcium phosphate (TCP) has been widely used in association with hydroxyapatite (HA) due to its higher resorption kinetics when compared with HA alone. The aim of our study was to quantitatively investigate the effect of α-tricalcium phosphate (α-TCP) on human osteoblasts' adhesion and proliferation. Ceramic samples with variable concentrations of α-TCP and HA were produced by the calcination of calcium-deficient and stoichiometric HA. Human osteoblasts were cultured on the materials in three distinct experiments with different concentrations of cells. Numerical evaluation of cellular growth along time in culture was performed for each condition. The quantity of cells seeded onto the ceramics seems to influence the osteoblast behavior once proliferation was lower when more cells were seeded onto the samples. However, a smaller content of α-TCP in relation to that of HA did not significantly modify the specific proliferation rates of the osteoblasts. Only after a long time in culture, the increasing of the α-TCP content seems to change the cells' behavior

  7. Focal adhesion interactions with topographical structures: a novel method for immuno-SEM labelling of focal adhesions in S-phase cells.

    Science.gov (United States)

    Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J

    2008-07-01

    Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.

  8. In vitro study of biocompatibility of a graphene composite with gold nanoparticles and hydroxyapatite on human osteoblasts.

    Science.gov (United States)

    Crisan, Liana; Crisan, Bogdan; Soritau, Olga; Baciut, Mihaela; Biris, Alexandru Radu; Baciut, Grigore; Lucaciu, Ondine

    2015-10-01

    The purpose of this study was to evaluate the biocompatibility of some composites consisting of different proportions of graphene in combination with gold nanoparticles (AuNPs) and nanostructured hydroxyapatite (HA) on osteoblast viability, proliferation and differentiation. Au/HA@graphene composites synthesized by the catalytic chemical vapor deposition induction heating method with acetylene as the carbon source and over an Au/HA catalyst, were characterized by transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy and showed that the few-layer graphene was grown over the Au/HA catalyst. The cytocompatibility study was performed using the fluorescein diacetate assay for assessment of the viability and proliferation of osteoblasts cultivated in the presence of HA, Au/HA and Au/HA@graphene composites as colloidal suspensions or as substrates. The most favorable composites for cell adhesion and proliferation were HA, Au/HA and Au/HA composites with 1.6% and 3.15% concentration of graphenes. Immunocytochemical staining performed after 19 days of osteoblasts cultivation on substrates showed that the graphene composites induced low expression of alkaline phosphatase compared to the control group and HA and Au/HA substrates. The presence of graphene in the substrate composition also induced an increased level of intracellular osteopontin and cytoskeleton reorganization (actin-F) depending on graphene concentration, suggesting cell activation, increased cellular adhesion and acquisition of a mechanosensorial osteocyte phenotype. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Partida, Ernesto [Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California (Mexico); Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Benjamín, E-mail: benval@uabc.edu.mx [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Escamilla, Alan; Curiel, Mario [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Ernesto [Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California (Mexico); Nedev, Nicola [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Bastidas, Jose M. [National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-03-01

    Amorphous titanium dioxide (TiO{sub 2}) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO{sub 2} nanotubes.

  10. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    International Nuclear Information System (INIS)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M.

    2016-01-01

    Amorphous titanium dioxide (TiO_2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO_2 nanotubes.

  11. Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer.

    Science.gov (United States)

    Lin, Song-Chang; Lee, Yu-Chen; Yu, Guoyu; Cheng, Chien-Jui; Zhou, Xin; Chu, Khoi; Murshed, Monzur; Le, Nhat-Tu; Baseler, Laura; Abe, Jun-Ichi; Fujiwara, Keigi; deCrombrugghe, Benoit; Logothetis, Christopher J; Gallick, Gary E; Yu-Lee, Li-Yuan; Maity, Sankar N; Lin, Sue-Hwa

    2017-06-05

    Prostate cancer (PCa) bone metastasis is frequently associated with bone-forming lesions, but the source of the osteoblastic lesions remains unclear. We show that the tumor-induced bone derives partly from tumor-associated endothelial cells that have undergone endothelial-to-osteoblast (EC-to-OSB) conversion. The tumor-associated osteoblasts in PCa bone metastasis specimens and patient-derived xenografts (PDXs) were found to co-express endothelial marker Tie-2. BMP4, identified in PDX-conditioned medium, promoted EC-to-OSB conversion of 2H11 endothelial cells. BMP4 overexpression in non-osteogenic C4-2b PCa cells led to ectopic bone formation under subcutaneous implantation. Tumor-induced bone was reduced in trigenic mice (Tie2 cre /Osx f/f /SCID) with endothelial-specific deletion of osteoblast cell-fate determinant OSX compared with bigenic mice (Osx f/f /SCID). Thus, tumor-induced EC-to-OSB conversion is one mechanism that leads to osteoblastic bone metastasis of PCa. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Development and characterization of multi-sensory fluence rate probes

    International Nuclear Information System (INIS)

    Pomerleau-Dalcourt, Natalie; Lilge, Lothar

    2006-01-01

    Multi-sensory fluence rate probes (MSPs) yield several simultaneous measurements of photodynamic therapy (PDT) treatment light fluence from a single interstitial probe. Fluorescent sensors are embedded at desired positions along the axis of the optical fibre. A single fluorescence emission spectrum is obtained and decomposed using a partial least squares (PLS)-based analysis to yield the fluence at each sensor's location. The responsivity, linearity and possible photodegradation of each fluorophore chosen for the MSPs were evaluated using single-sensor probes. The performance of two- and three-sensor MSPs was evaluated experimentally. Individual fluorescence spectra collected from each sensor on the MSP were used to construct the training set necessary for the PLS-based analysis. The MSPs' responsivity, spatial resolution and accuracy were evaluated relative to a single scattering-tip detector. Three-fluorophore MSPs permitted three simultaneous measurements of the fluence rate gradient in a tissue-like phantom, with an average accuracy of 6.7%. No appreciable photodegradation or cross-talk was observed

  13. Nonlocal ultrafast magnetization dynamics in the high fluence limit

    NARCIS (Netherlands)

    Kuiper, K.C.; Malinowski, G.; Dalla Longa, F.; Koopmans, B.

    2011-01-01

    In order to explain a number of recent experimental observations of laser-induced femtosecond demagnetization in the large fluence limit, we discuss the consequences of a recently proposed nonlocal approach. A microscopic description of spin flip scattering is implemented in an effective three

  14. Notch Inhibits Osteoblast Differentiation and Causes Osteopenia

    Science.gov (United States)

    Zanotti, Stefano; Smerdel-Ramoya, Anna; Stadmeyer, Lisa; Durant, Deena; Radtke, Freddy; Canalis, Ernesto

    2008-01-01

    Notch receptors are determinants of cell fate decisions. To define the role of Notch in the adult skeleton, we created transgenic mice overexpressing the Notch intracellular domain (NICD) under the control of the type I collagen promoter. First-generation transgenics were small and osteopenic. Bone histomorphometry revealed that NICD caused a decrease in bone volume, secondary to a reduction in trabecular number; osteoblast and osteoclast number were decreased. Low fertility of founder mice and lethality of young pups did not allow the complete establishment of transgenic lines. To characterize the effect of Notch overexpression in vitro, NICD was induced in osteoblasts and stromal cells from Rosanotch mice, in which a STOP cassette flanked by loxP sites is upstream of NICD, by transduction with an adenoviral vector expressing Cre recombinase (Cre) under the control of the cytomegalovirus (CMV) promoter (Ad-CMV-Cre). NICD impaired osteoblastogenesis and inhibited Wnt/β-catenin signaling. To determine the effects of notch1 deletion in vivo, mice in which notch1 was flanked by loxP sequences (notch1loxP/loxP) were mated with mice expressing Cre recombinase under the control of the osteocalcin promoter. Conditional null notch1 mice had no obvious skeletal phenotype, possibly because of rescue by notch2; however, 1-month-old females exhibited a modest increase in osteoclast surface and eroded surface. Osteoblasts from notch1loxP/loxP mice, transduced with Ad-CMV-Cre and transfected with Notch2 small interfering RNA, displayed increased alkaline phosphatase activity. In conclusion, Notch signaling in osteoblasts causes osteopenia and impairs osteo-blastogenesis by inhibiting the Wnt/β-catenin pathway. PMID:18420737

  15. Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO_3 composites with aligned lamellar porous structure

    International Nuclear Information System (INIS)

    Liu, Beilei; Chen, Liangjian; Shao, Chunsheng; Zhang, Fuqiang; Zhou, Kechao; Cao, Jun; Zhang, Dou

    2016-01-01

    Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO_3 piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO_3 composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p 0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO_3 played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material. - Graphical abstract: Aligned porous structure of HA/BaTiO_3 piezoelectric composites prepared by ice-templating method was similar to the lamellar Haversian system in bone tissue. When co-cultured with human osteosarcoma cells (MG63), porous HA/BaTiO_3 composites exhibited remarkable biological activity in promoting proliferation, differentiation and adhesion of MG63 cells. - Highlights: • The aligned porous structure of HA/BaTiO_3 composite was similar to the lamellar Haversian system in bone tissue. • The piezoelectric d_3_3 coefficient of HA/BaTiO_3 with porosity of 50% was 5.0 pC/N, much higher than that of natural bone. • HA/BaTiO_3 with porosity of 50% promoted proliferation, differentiation and adhesion of MG63 cells remarkably.

  16. Development of a Secondary Neutron Fluence Standard at GELINA

    International Nuclear Information System (INIS)

    Heyse, Jan; Eykens, Roger; Moens, Andre; Plompen, Arjan J.M.; Schillebeeckx, Peter; Wynants, Ruud; Anastasiou, Maria

    2013-06-01

    The MetroFission project, a Joint Research Project within the European Metrology Research Program, aims at addressing a number of metrological problems involved in the design of proposed Generation IV nuclear reactors. One of the objectives of this multidisciplinary project is the improvement of neutron cross section measurement techniques in order to arrive at uncertainties as required for the design and safety assessment of new generation power plants and fuel cycles. This objective is in line with the 'Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations' published by a working party of the OECD Nuclear Energy Agency in 2008. These requests are often very challenging, being at or beyond the state-of-the-art in neutron measurements, which is set by self-normalizing methods and the neutron data standards used at laboratories where the data are measured. A secondary neutron fluence standard has been developed and calibrated at the neutron time-of-flight facility GELINA of the JRC's Institute for Reference Materials and Measurements (IRMM). It consists of a flux monitor, a reference ionization chamber containing a 10 B layer and a 235 U layer, and a parallel plate ionization chamber with 8 well characterized 235 U deposits. These devices are used to determine the neutron fluence, based on the well-known neutron induced fission reaction on 235 U. All deposits have been prepared and characterized at the IRMM target preparation lab. The secondary fluence standard at the GELINA facility can be used for reliable determination of the efficiency of fluence measurement devices used in neutron data measurements at IRMM and elsewhere. It is an essential tool to reliably calibrate fluence normalization devices used in neutron time-of-flight cross section measurements. (authors)

  17. Fluence compensated photoacoustic tomography in small animals (Conference Presentation)

    Science.gov (United States)

    Hussain, Altaf; Pool, Martin; Daoudi, Khalid; de Vries, Liesbeth G.; Steenbergen, Wiendelt

    2017-03-01

    Light fluence inside turbid media can be experimentally mapped by measuring ultrasonically modulated light (Acousto-optics). To demonstrate the feasibility of fluence corrected Photoacoustic (PA) imaging, we have realized a tri-modality (i.e. photoacoustic, acousto-optic and ultrasound) tomographic small animal imaging system. Wherein PA imaging provides high resolution map of absorbed optical energy density, Acousto-optics yields the fluence distribution map in the corresponding PA imaging plane and Ultrasound provides morphological information. Further, normalization of the PA image with the acousto-optically measured fluence map results in an image that directly represents the optical absorption. Human epidermal growth factor receptor 2 (HER2) is commonly found overexpressed in human cancers, among which breast cancers, resulting in a more aggressive tumor phenotype. Identification of HER2-expression is clinically relevant, because cancers overexpressing this marker are amenable to HER2-directed therapies, among which antibodies trastuzumab and pertuzumab. Here, we investigate the feasibility and advantage of acousto-optically assisted fluence compensated PA imaging over PA imaging alone in visualizing and quantifying HER2 expression. For this experiment, nude mice were xenografted with human breast cancer cell lines SKBR3 and BT474 (both HER2 overexpressing), as well as HER2-negative MDA-MB-231. To visualize HER2 expression in these mice, HER2 monoclonal antibody pertuzumab (Perjeta®, Roche), was conjugated to near-infrared dye IRDye 800CW (800CW, LICOR Biosciences) at a ratio of 1∶2 antibody to 800CW. When xenograft tumors measured ≥ 100 mm3, mice received 100 µg 800CW-pertuzumab intravenously. Three days post injection, mice were scanned for fluorescence signal with an IVIS scanner. After fluorescence scans, mice were euthanized and imaged in our PA tomographic imaging system.

  18. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    Science.gov (United States)

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Lactate induces osteoblast differentiation by stabilization of HIF1α.

    Science.gov (United States)

    Wu, Yu; Wang, Miaomiao; Feng, Haihua; Peng, Ying; Sun, Jieyun; Qu, Xiuxia; Li, Chunping

    2017-09-05

    Aerobic glycolysis is involved in osteoblast differentiation induced by Wnt signaling or PTH treatment. However, it is still unclear whether lactate, the end product of aerobic glycolysis, plays any role in osteoblast differentiation. Herein we report that in cultures of osteoblast-lineage cells, lactate promoted alkaline phosphatase-positive cell formation, increased the activity of alkaline phosphatase, and induced the expression of osteocalcin. This osteoblast differentiation-inducing effect of lactate can be inhibited by blocking its entry into cells with MCT1 siRNA or inhibitors, and by interfering with its metabolism by using specific siRNAs for LDHB and PDH. Moreover, lactate stabilized HIF1α expression and inhibited HIF1α activity, with BAY87-2243 lowering the osteoblast differentiation-inducing effect of lactate. Thus, these findings reveal an unrecognized role for aerobic glycolysis in osteoblast differentiation via its end product, lactate. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  1. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Zunich Samantha M

    2012-07-01

    Full Text Available Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA, a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis

  2. Building strong bones: molecular regulation of the osteoblast lineage.

    Science.gov (United States)

    Long, Fanxin

    2011-12-22

    The past 15 years have witnessed tremendous progress in the molecular understanding of osteoblasts, the main bone-forming cells in the vertebrate skeleton. In particular, all of the major developmental signals (including WNT and Notch signalling), along with an increasing number of transcription factors (such as RUNX2 and osterix), have been shown to regulate the differentiation and/or function of osteoblasts. As evidence indicates that osteoblasts may also regulate the behaviour of other cell types, a clear understanding of the molecular identity and regulation of osteoblasts is important beyond the field of bone biology.

  3. Serotonin regulates osteoblast proliferation and function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S.Q.; Yu, L.P. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Shi, X. [Department of Obstetrics and Gynecology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wu, H. [Emergency Department, The First Affiliated Hospital, Soochow University, Suzhou (China); Shao, P.; Yin, G.Y.; Wei, Y.Z. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-08-01

    The monoamine serotonin (5-hydroxytryptamine, 5-HT), a well-known neurotransmitter, also has important functions outside the central nervous system. The objective of this study was to investigate the role of 5-HT in the proliferation, differentiation, and function of osteoblasts in vitro. We treated rat primary calvarial osteoblasts with various concentrations of 5-HT (1 nM to 10 µM) and assessed the rate of osteoblast proliferation, expression levels of osteoblast-specific proteins and genes, and the ability to form mineralized nodules. Next, we detected which 5-HT receptor subtypes were expressed in rat osteoblasts at different stages of osteoblast differentiation. We found that 5-HT could inhibit osteoblast proliferation, differentiation, and mineralization at low concentrations, but this inhibitory effect was mitigated at relatively high concentrations. Six of the 5-HT receptor subtypes (5-HT{sub 1A}, 5-HT{sub 1B}, 5-HT{sub 1D}, 5-HT{sub 2A}, 5-HT{sub 2B}, and 5-HT{sub 2C}) were found to exist in rat osteoblasts. Of these, 5-HT{sub 2A} and 5-HT{sub 1B} receptors had the highest expression levels, at both early and late stages of differentiation. Our results indicated that 5-HT can regulate osteoblast proliferation and function in vitro.

  4. Reflections about Adhesive Systems

    OpenAIRE

    de Freitas Borges, Marciano; Diesel, Pâmela Gutheil; Corrêa, Fernanda Gomez; Bernardi, Eledana; Fernandes Montagner, Anelise; Skupien, Jovito Adiel; Susin, Alexandre Henrique

    2010-01-01

    The adhesive systems are responsible for an efficient union between teeth and resin, resulting in a longevity restoration. They are organic molecules di or multifunctional that contain reactive groups that interact with dentin and with the resin monomer of composite resin. The adhesive systems are characterized by wet adhesion, which is a result of presence of hidrophylics radicals in their compositions, to promote a better bond and the best properties of the adhesion. Adhesive systems may us...

  5. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Hernández, José Manuel [Coordination for Innovation and Application of Science and Technology, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Escobar-García, Diana María [Laboratory of Basic Sciences, Faculty of Dentistry, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Escalante, Alfredo [Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Flores, Hector [Laboratory of Basic Sciences, Faculty of Dentistry, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); González, Francisco Javier [Coordination for Innovation and Application of Science and Technology, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Gatenholm, Paul [Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Biopolymer Technology, SE-412 96 Göteborg (Sweden); Toriz, Guillermo, E-mail: gtoriz@dmcyp.cucei.udg.mx [Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Biopolymer Technology, SE-412 96 Göteborg (Sweden)

    2017-06-01

    In this paper we explore the use of native bacterial cellulose (BC) in combination with functionalized multi-walled carbon nanotubes (MWNTs) as an original biomaterial, suitable three-dimensional (3D) scaffold for osteoblastic cell culture. Functionalized MWNTs were mixed with native BC (secreted by Gluconacetobacter xylinus) with the aim of reinforcing the mechanical properties of BC. The results indicate that BC-MWNTs scaffolds support osteoblast viability, adhesion and proliferation at higher levels as compared to traditional culture substrates. Chemically functionalized MWNTs are also an excellent material to be used as scaffold because these did not affect cell viability and showed an enhanced osteoblast adhesion. These results suggest the potential for this combination of biomaterials, i.e. BC and carbon nanomaterials, as scaffolds for bone regeneration. - Highlights: • Functionalization of multiwalled carbon nanotubes with carboxyl groups for reduces their toxicity against osteoblastic cells. • Use of native bacterial cellulose with functionalized multi-walled carbon nanotubes as scaffolds for tissue engineering. • Bacterial cellulose with multi-walled carbon nanotubes as scaffolds give an excellent option to be used in bone regeneration.

  6. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    Science.gov (United States)

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast or fibroblast. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  7. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration

    International Nuclear Information System (INIS)

    Gutiérrez-Hernández, José Manuel; Escobar-García, Diana María; Escalante, Alfredo; Flores, Hector; González, Francisco Javier; Gatenholm, Paul; Toriz, Guillermo

    2017-01-01

    In this paper we explore the use of native bacterial cellulose (BC) in combination with functionalized multi-walled carbon nanotubes (MWNTs) as an original biomaterial, suitable three-dimensional (3D) scaffold for osteoblastic cell culture. Functionalized MWNTs were mixed with native BC (secreted by Gluconacetobacter xylinus) with the aim of reinforcing the mechanical properties of BC. The results indicate that BC-MWNTs scaffolds support osteoblast viability, adhesion and proliferation at higher levels as compared to traditional culture substrates. Chemically functionalized MWNTs are also an excellent material to be used as scaffold because these did not affect cell viability and showed an enhanced osteoblast adhesion. These results suggest the potential for this combination of biomaterials, i.e. BC and carbon nanomaterials, as scaffolds for bone regeneration. - Highlights: • Functionalization of multiwalled carbon nanotubes with carboxyl groups for reduces their toxicity against osteoblastic cells. • Use of native bacterial cellulose with functionalized multi-walled carbon nanotubes as scaffolds for tissue engineering. • Bacterial cellulose with multi-walled carbon nanotubes as scaffolds give an excellent option to be used in bone regeneration.

  8. Fluence-dependent sputtering yield of micro-architectured materials

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Christopher S.R.; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu; Li, Gary Z.; Matlock, Taylor S.; Goebel, Dan M.; Dodson, Chris A.; Wirz, Richard E.

    2017-06-15

    Highlights: • Sputtering yield is shown to be transient and heavily dependent on surface architecture. • Fabricated nano- and Microstructures cause geometric re-trapping of sputtered material, which leads to a self-healing mechanism. • Initially, the sputtering yield of micro-architectured Mo is approximately 1/2 the value as that of a planar surface. • The study demonstrates that the sputtering yield is a dynamic property, dependent on the surface structure of a material. • A developed phenomenological model mathematically describes the transient behavior of the sputtering yield as a function of plasma fluence. - Abstract: We present an experimental examination of the relationship between the surface morphology of Mo and its instantaneous sputtering rate as function of low-energy plasma ion fluence. We quantify the dynamic evolution of nano/micro features of surfaces with built-in architecture, and the corresponding variation in the sputtering yield. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed, and re-growth of surface layers is confirmed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. A variety of material characterization techniques are used to show that the sputtering yield is not a fundamental property, but that it is quantitatively related to the initial surface architecture and to its subsequent evolution. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is roughly 1/2 of the corresponding value for flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22 ± 5%, converging to 0.4 ± 5% at high fluence. The sputtering yield exhibits a transient behavior as function of the integrated ion fluence, reaching a steady-state value that is independent of initial surface conditions. A phenomenological model is proposed to explain the observed transient sputtering phenomenon, and to

  9. A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    International Nuclear Information System (INIS)

    Zheng, Yanyan; Xiong, Chengdong; Wang, Zhecun; Li, Xiaoyu; Zhang, Lifang

    2015-01-01

    Highlights: • COOH and microgrooves containing micropores or microcraters structure were constructed on PEEK surface by a combination of CO 2 laser and plasma treatment. • The mechanical properties of PEEK are maintained after single or dual surface treatment. • Pre-osteoblast cells (MC3T3-E1) adhesion, spreading and proliferation were improved remarkably on dual treated PEEK surface. • Cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (−COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that −COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which gives

  10. A combination of CO{sub 2} laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Wang, Zhecun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2015-07-30

    Highlights: • COOH and microgrooves containing micropores or microcraters structure were constructed on PEEK surface by a combination of CO{sub 2} laser and plasma treatment. • The mechanical properties of PEEK are maintained after single or dual surface treatment. • Pre-osteoblast cells (MC3T3-E1) adhesion, spreading and proliferation were improved remarkably on dual treated PEEK surface. • Cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (−COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that −COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which

  11. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.

    Science.gov (United States)

    Lee, Sang Jin; Choi, Jin San; Park, Ki Suk; Khang, Gilson; Lee, Young Moo; Lee, Hai Bang

    2004-08-01

    Response of different types of cells on materials is important for the applications of tissue engineering and regenerative medicine. It is recognized that the behavior of the cell adhesion, proliferation, and differentiation on materials depends largely on surface characteristics such as wettability, chemistry, charge, rigidity, and roughness. In this study, we examined the behavior of MG63 osteoblast-like cells cultured on a polycarbonate (PC) membrane surfaces with different micropore sizes (0.2-8.0 microm in diameter). Cell adhesion and proliferation to the PC membrane surfaces were determined by cell counting and MTT assay. The effect of surface micropore on the MG63 cells was evaluated by cell morphology, protein content, and alkaline phosphatase (ALP) specific activity. It seems that the cell adhesion and proliferation were progressively inhibited as the PC membranes had micropores with increasing size, probably due to surface discontinuities produced by track-etched pores. Increasing micropore size of the PC membrane results in improved protein synthesis and ALP specific activity in isolated cells. There was a statistically significant difference (Pmicropore sizes. The MG63 cells also maintained their phenotype under conditions that support a round cell shape. RT-PCR analysis further confirmed the osteogenic phenotype of the MG63 cells onto the PC membranes with different micropore sizes. In results, as micropore size is getting larger, cell number is reduced and cell differentiation and matrix production is increased. This study demonstrated that the surface topography plays an important role for phenotypic expression of the MG63 osteoblast-like cells.

  12. Differences in otosclerotic and normal human stapedial osteoblast properties are normalized by alendronate in vitro.

    Science.gov (United States)

    Gronowicz, Gloria; Richardson, Yvonne L; Flynn, John; Kveton, John; Eisen, Marc; Leonard, Gerald; Aronow, Michael; Rodner, Craig; Parham, Kourosh

    2014-10-01

    Identify and compare phenotypic properties of osteoblasts from patients with otosclerosis (OSO), normal bones (HOB), and normal stapes (NSO) to determine a possible cause for OSO hypermineralization and assess any effects of the bisphosphonate, alendronate. OSO (n = 11), NSO (n = 4), and HOB (n = 13) cultures were assayed for proliferation, adhesion, mineralization, and gene expression with and without 10(-10)M-10(-8)M alendronate. Academic hospital. Cultures were matched for age, sex, and passage number. Cell attachment and proliferation + alendronate were determined by Coulter counting cells and assaying tritiated thymidine uptake, respectively. At 7, 14, and 21 days of culture + alendronate, calcium content and gene expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were determined. OSO had significantly more cells adhere but less proliferation than NSO or HOB. Calcification was significantly increased in OSO compared to HOB and NSO. NSO and HOB had similar cell adhesion and proliferation rates. A dose-dependent effect of alendronate on OSO adhesion, proliferation, and mineralization was found, resulting in levels equal to NSO and HOB. All cultures expressed osteoblast-specific genes such as RUNX2, alkaline phosphatase, type I collagen, and osteocalcin. However, osteopontin was dramatically reduced, 9.4-fold at 14 days, in OSO compared to NSO. Receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG), important in bone resorption, was elevated in OSO with decreased levels of OPG levels. Alendronate had little effect on gene expression in HOB but in OSO increased osteopontin levels and decreased RANKL/OPG. OSO cultures displayed properties of hypermineralization due to decreased osteopontin (OPN) and also had increased RANKL/OPG, which were normalized by alendronate. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  13. Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Van Vrekhem, S., E-mail: stijn.vanvrekhem@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Cools, P. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Declercq, H. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); Van Tongel, A. [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185 13K12, 9000 Ghent (Belgium); Vercruysse, C.; Cornelissen, M. [Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); De Geyter, N.; Morent, R. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium)

    2015-12-01

    Biopolymers are often subjected to surface modification in order to improve their surface characteristics. The goal of this study is to show the use of plasma technology to enhance the adhesion of ultra-high molecular weight polyethylene (UHMWPE) shoulder prostheses. Two different plasma techniques (low pressure plasma activation and atmospheric pressure plasma polymerization) are performed on UHMWPE to increase the adhesion between (1) the polymer and polymethylmethacrylate (PMMA) bone cement and (2) the polymer and osteoblast cells. Both techniques are performed using a dielectric barrier discharge (DBD). A previous paper showed that low pressure plasma activation of UHMWPE results in the incorporation of oxygen-containing functional groups, which leads to an increased surface wettability. Atmospheric pressure plasma polymerization of methylmethacrylate (MMA) on UHMWPE results in a PMMA-like coating, which could be deposited with a high degree of control of chemical composition and layer thickness. The thin film also proved to be relatively stable upon incubation in a phosphate buffer solution (PBS). This paper discusses the next stage of the study, which includes testing the adhesion of the plasma-activated and plasma-polymerized samples to bone cement through pull-out tests and testing the cell adhesion and proliferation on the samples. In order to perform the pull-out tests, all samples were cut to standard dimensions and fixed in bone cement in a reproducible way with a sample holder specially designed for this purpose. The cell adhesion and proliferation were tested by means of an MTS assay and live/dead staining after culturing MC3T3 osteoblast cells on UHMWPE samples. The results show that both plasma activation and plasma polymerization significantly improve the adhesion to bone cement and enhance cell adhesion and proliferation. In conclusion, it can be stated that the use of plasma technology can lead to an implant with improved quality and a subsequent

  14. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1980-01-01

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm 3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  15. Determination of fast neutron fluence at WWER-1000 pressure vessel

    International Nuclear Information System (INIS)

    Valenta, V. et al.

    1989-01-01

    The influence function method is an effective tool making it possible, by means of tabulated values to rapidly perform three-dimensional calculations of fast neutron fluences for various reactor core loadings and for various nuclear power plant units. The procedure for determining the spatial dependence of the fast neutron fluences in a WWER-1000 pressure vessel is described. For this, the reactor core is divided into sufficiently fine volume elements within which the neutron source can be regarded as coordinate-independent. The influence functions point to a substantial role of sources lying at the reactor core periphery. In WWER-1000 reactors, only 1 or 2 rows of peripheral assemblies are important. The influence function method makes possible a rapid and easy determination of preconditions for the assessment of the residual lifetime of the pressure vessel based on the actual reactor core loadings. (Z.M.). 7 figs., 8 refs

  16. Divergence of Cs-137 sources fluence used in brachytherapy

    International Nuclear Information System (INIS)

    Vianello, E.A.; Almeida, C.E. de

    1998-01-01

    In this work the experimental determination of correction factor for fluence divergence (kln) of linear Cs-137 sources CDCS J4, with Farmer ionization chamber model 2571 in a central and perpendicular plan to source axis, for distances range from 1 to 7 cm., has been presented. The experimental results were compared to calculating by Kondo and Randolph (1960) isotropic theory and Bielajew (1990) anisotropic theory. (Author)

  17. Correlating Fast Fluence to dpa in Atypical Locations

    Directory of Open Access Journals (Sweden)

    Drury Thomas H.

    2016-01-01

    Full Text Available Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  18. Correlating Fast Fluence to dpa in Atypical Locations

    Science.gov (United States)

    Drury, Thomas H.

    2016-02-01

    Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa) via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV) neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  19. Zoledronic acid at subtoxic dose extends osteoblastic stage span of primary human osteoblasts.

    Science.gov (United States)

    Zara, Susi; De Colli, Marianna; di Giacomo, Viviana; Zizzari, Vincenzo Luca; Di Nisio, Chiara; Di Tore, Umberto; Salini, Vincenzo; Gallorini, Marialucia; Tetè, Stefano; Cataldi, Amelia

    2015-04-01

    This study aimed to check the effect of zoledronic acid (ZA) at subtoxic dose on human osteoblasts (HOs) in terms of cell viability, apoptosis occurrence, and differentiation induction. ZA belongs to the family of bisphosphonates (BPs), largely used in the clinical practice for the treatment of bone diseases, often associated with jaw osteonecrosis onset. Their pharmacological action consists in the direct block of the osteoclast-mediated bone resorption along with indirect action on osteoblasts. HOs were treated choosing the highest limit concentration (10(-5) M) which does not induce toxic effects. Live/dead staining, flow cytometry, mitochondrial membrane potential assay, osteocalcin western blotting, gp38 RT-PCR, collagen type I, PGE2, and IL-6 ELISA assays were performed. Similar viability level between control and ZA-treated samples is found along with no significant increase of apoptotic and necrotic cells in ZA-treated sample. To establish if an early apoptotic pathway was triggered, Bax expression and mitochondrial membrane potential were evaluated finding a higher protein expression in control sample and a good integrity of mitochondrial membrane in both experimental points. Type I collagen secretion and alkaline phosphatase (ALP) activity appear increased in ZA-treated sample, osteocalcin expression level is reduced in ZA-treated cells, whereas no modifications of gp38 mRNA level are evidenced. No statistical differences are identified in PGE2 secretion level whereas IL-6 secretion is lower in ZA-treated HOs with respect to control ones. These results highlight that ZA, delaying the osteoblastic differentiation process versus the osteocytic lineage, strengthens its pharmacological activity enhancing bone density. The knowledge of ZA effects on osteoblasts at subtoxic dose allows to improve therapeutic protocols in order to strengthen drug pharmacological activity through a combined action on both osteoclastic and osteoblastic cells.

  20. Notch Signaling in Prostate Cancer Cells Promotes Osteoblastic Metastasis

    Science.gov (United States)

    2017-06-01

    information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this...function and number while inducing osteoblast proliferation. Our results suggest that Notch signaling from cancer cells promotes osteoblastic...Participants and other collaborating organizations: I initiated collaboration with Dr. Evan Keller at University of Michigan to interrogate PCa bone

  1. Tridax procumbens flavonoids promote osteoblast differentiation and bone formation

    Directory of Open Access Journals (Sweden)

    Md. Abdullah Al Mamun

    Full Text Available BACKGROUND: Tridaxprocumbens flavonoids (TPFs are well known for their medicinal properties among local natives. Besides traditionally used for dropsy, anemia, arthritis, gout, asthma, ulcer, piles, and urinary problems, it is also used in treating gastric problems, body pain, and rheumatic pains of joints. TPFs have been reported to increase osteogenic functioning in mesenchymal stem cells. Our previous study showed that TPFs were significantly suppressed the RANKL-induced differentiation of osteoclasts and bone resorption. However, the effects of TPFs to promote osteoblasts differentiation and bone formation remain unclear. TPFs were isolated from Tridax procumbens and investigated for their effects on osteoblasts differentiation and bone formation by using primary mouse calvarial osteoblasts RESULTS: TPFs promoted osteoblast differentiation in a dose-dependent manner demonstrated by up-regulation of alkaline phosphatase and osteocalcin. TPFs also upregulated osteoblast differentiation related genes, including osteocalcin, osterix, and Runx2 in primary osteoblasts. TPFs treated primary osteoblast cells showed significant upregulation of bone morphogenetic proteins (BMPs including Bmp-2, Bmp-4, and Bmp-7. Addition of noggin, a BMP specific-antagonist, inhibited TPFs induced upregulation of the osteocalcin, osterix, and Runx2 CONCLUSION: Our findings point towards the induction of osteoblast differentiation by TPFs and suggested that TPFs could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis

  2. Chapter 9:Wood Adhesion and Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  3. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    International Nuclear Information System (INIS)

    Hasegawa, T.; Hirohashi, Setsuo; Shimoda, Tadakazu; Yokoyama, Ryohei; Beppu, Yasuo; Maeda, Shotaro

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.)

  4. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirohashi, Setsuo [Pathology Division, National Cancer Center Research Institute, Tokyo (Japan); Shimoda, Tadakazu [Clinical Laboratory Division, National Cancer Center Hospital, Tokyo (Japan); Yokoyama, Ryohei; Beppu, Yasuo [Orthopedic Division, National Cancer Center Hospital, Tokyo (Japan); Maeda, Shotaro [Department of Pathology, Nippon Medical School Hospital, Tokyo (Japan)

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.) With 8 figs., 25 refs.

  5. Myeloma cells suppress osteoblasts through sclerostin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, S; Brunetti, G; Oranger, A [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Mori, G [Department of Biomedical Science, University of Foggia, Foggia (Italy); Sardone, F [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Specchia, G; Rinaldi, E; Curci, P; Liso, V [Department of Emergency and Organ Transplantation, Hematology Section, Bari University Medical School, Bari (Italy); Passeri, G [Department of Internal Medicine and Biomedical Sciences, Center for Metabolic Bone Diseases, University of Parma, Parma (Italy); Zallone, A [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Rizzi, R [Department of Emergency and Organ Transplantation, Hematology Section, Bari University Medical School, Bari (Italy); Grano, M [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy)

    2011-06-01

    Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM.

  6. Osteoblastic Metastases Mimickers on Contrast Enhanced CT

    Directory of Open Access Journals (Sweden)

    Fahad Al-Lhedan

    2017-01-01

    Full Text Available Secondary osseous involvement in lymphoma is more common compared to primary bone lymphoma. The finding of osseous lesion can be incidentally discovered during the course of the disease. However, osseous metastases are infrequently silent. Detection of osseous metastases is crucial for accurate staging and optimal treatment planning of lymphoma. The aim of imaging is to identify the presence and extent of osseous disease and to assess for possible complications such as pathological fracture of the load-bearing bones and cord compression if the lesion is spinal. We are presenting two patients with treated lymphoma who were in complete remission. On routine follow-up contrast enhanced CT, there were new osteoblastic lesions in the spine worrisome for metastases. Additional studies were performed for further evaluation of both of them which did not demonstrate any corresponding suspicious osseous lesion. The patients have a prior history of chronic venous occlusive thrombosis that resulted in collaterals formation. Contrast enhancement of the vertebral body marrow secondary to collaterals formation and venous flow through the vertebral venous plexus can mimic the appearance of spinal osteoblastic metastases.

  7. Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO{sub 3} composites with aligned lamellar porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beilei [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Chen, Liangjian, E-mail: jian007040@sina.com [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Shao, Chunsheng [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Zhang, Fuqiang; Zhou, Kechao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Cao, Jun [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Zhang, Dou, E-mail: dzhang@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2016-04-01

    Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO{sub 3} piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO{sub 3} composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p < 0.05), so did the alkaline phosphate (ALP) and bone gla protein (BGP) activities. Porosity of 50% group exhibited higher ALP activity and BGP activity than those of the 40% and 60% groups. Scanning electron microscopy (SEM) observations revealed that osteoblasts adhered and stretched better on porous HA/BaTiO{sub 3} than on the dense one, especially HA/BaTiO{sub 3} with porosity of 50% and 60%. However, there was no significant difference in the cell morphology, cell densities, ALP and BGP activities between the polarized group and the non-polarized group (p > 0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO{sub 3} played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material. - Graphical abstract: Aligned porous structure of HA/BaTiO{sub 3} piezoelectric composites prepared by ice-templating method was similar to the lamellar Haversian system in bone tissue. When co-cultured with human osteosarcoma cells (MG63), porous HA/BaTiO{sub 3} composites exhibited remarkable biological activity in promoting proliferation, differentiation and adhesion of MG63 cells. - Highlights: • The aligned porous structure of HA/BaTiO{sub 3} composite was similar to the lamellar Haversian system in bone tissue. • The piezoelectric d{sub 33} coefficient of HA/BaTiO{sub 3} with porosity

  8. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Hye-Min Kim

    2016-12-01

    Full Text Available Bone homeostasis is tightly regulated to balance bone formation and bone resorption. Many anabolic drugs are used as bone-targeted therapeutic agents for the promotion of osteoblast-mediated bone formation or inhibition of osteoclast-mediated bone resorption. Previous studies showed that ginsenoside Re has the effect of the suppression of osteoclast differentiation in mouse bone-marrow derived macrophages and zebrafish. Herein, we investigated whether ginsenoside Re affects osteoblast differentiation and mineralization in in vitro and in vivo models. Mouse osteoblast precursor MC3T3-E1 cells were used to investigate cell viability, alkaline phosphatase (ALP activity, and mineralization. In addition, we examined osteoblastic signaling pathways. Ginsenoside Re affected ALP activity without cytotoxicity, and we also observed the stimulation of osteoblast differentiation through the activation of osteoblast markers including runt-related transcription factor 2, type 1 collagen, ALP, and osteocalcin in MC3T3-E1 cells. Moreover, Alizarin red S staining indicated that ginsenoside Re increased osteoblast mineralization in MC3T3-E1 cells and zebrafish scales compared to controls. These results suggest that ginsenoside Re promotes osteoblast differentiation as well as inhibits osteoclast differentiation, and it could be a potential therapeutic agent for bone diseases.

  9. THz Properties of Adhesives

    Science.gov (United States)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-06-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  10. Cell adhesion of F{sup +} ion implantation of intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.J. E-mail: dejunli@hotmail.com; Cui, F.Z.; Gu, H.Q

    1999-04-01

    The cell adhesion of ion implanted polymethylmethacrylate (PMMA) intraocular lens was studied using cultured cells in vitro. F{sup +} ion implantation was performed at the energies of 40, 60, 80, 100 keV with the fluences ranging from 5x10{sup 13} to 1x10{sup 15} ions/cm{sup 2} at room temperature. The cell adhesion tests gave interesting results that the number of the neutral granulocytes and the macrophages adhering on surface were reduced significantly after ion implantation. The optimal fluence was about 4x10{sup 14} ions/cm{sup 2}. The hydrophobicity imparted to the lens surface was also enhanced. The results of X-ray photoelectron spectroscopy analysis indicated that ion implantation resulted in the cleavage of some pendant groups, the oxidation of the surface, and the formation of some new chemical bonds, which was probably the main reason for the cell adhesion change.

  11. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  12. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  13. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage.

    Science.gov (United States)

    Biggs, Manus J P; Richards, R Geoff; Gadegaard, Nikolaj; McMurray, Rebecca J; Affrossman, Stanley; Wilkinson, Chris D W; Oreffo, Richard O C; Dalby, Mathew J

    2009-10-01

    Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.

  14. Investigating multi-objective fluence and beam orientation IMRT optimization

    Science.gov (United States)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  15. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    Science.gov (United States)

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche.

    Science.gov (United States)

    Zhang, Wenting; Gu, Yexin; Sun, Qiaoling; Siegel, David S; Tolias, Peter; Yang, Zheng; Lee, Woo Y; Zilberberg, Jenny

    2015-01-01

    We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC) using an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1) optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2) replenishing OSB during culture as a practical means of prolonging MMC's viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses.

  17. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche.

    Directory of Open Access Journals (Sweden)

    Wenting Zhang

    Full Text Available We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC using an osteoblast (OSB-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1 optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2 replenishing OSB during culture as a practical means of prolonging MMC's viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses.

  18. Expected Particle Fluences and Performance of the LHCb Trigger Tracker

    CERN Document Server

    Siegler, M; Needham, M; Steinkamp, O

    2004-01-01

    Monte Carlo simulations of the expected 1 MeV-neutron equivalent fluence in the Trigger Tracker (TT) station of the LHCb detector have been used to investigate the effect of radiation damage on the performance of the detector. The build-up of leakage currents and the corresponding increase in electronic noise has been investigated, as well as the effect of bulk damage on the full-depletion voltage of the sensors and the risk of thermal runaway due to the power generated due to the leakage currents.

  19. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  20. Effect of Q-switched Laser Surface Texturing of Titanium on Osteoblast Cell Response

    Science.gov (United States)

    Voisey, K. T.; Scotchford, C. A.; Martin, L.; Gill, H. S.

    Titanium and its alloys are important biomedical materials. It is known that the surface texture of implanted medical devices affects cell response. Control of cell response has the potential to enhance fixation of implants into bone and, in other applications, to prevent undesired cell adhesion. The potential use of a 100W Q-switched YAG laser miller (DMG Lasertec 60 HSC) for texturing titanium is investigated. A series of regular features with dimensions of the order of tens of micrometers are generated in the surface of titanium samples and the cell response to these features is determined. Characterisation of the laser milled features reveals features with a lengthscale of a few microns superposed on the larger scale structures, this is attributed to resolidification of molten droplets generated and propelled over the surface by individual laser pulses. The laser textured samples are exposed to osteoblast cells and it is seen that cells do respond to the features in the laser textured surfaces.

  1. Surface modification of parylene-N films for the culture of osteoblast-like cells (MG-63)

    Energy Technology Data Exchange (ETDEWEB)

    Liaqat, Usman [Graduate Program of Nano Science and Technology, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Suh, Hwal [Graduate Program of Nano Science and Technology, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Department of Medical Engineering, College of Medicine, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Lee, Misu [Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 406-772 (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2016-08-15

    Highlights: • Osteoblast-like cells (MG-63) was cultured on differently modified surfaces of parylene films. • Proliferation of MG-63 was observed to be far increased on UV-treated parylene-N film. • The influences of UV-treatment were found out on cell viability, proliferation rate and cell cycle. • The influence was estimated to be negligible on the protein synthesis, cell differentiation. • The UV-treated parylene-N was demonstrated to be effectively used for the culture of MG-63. - Abstract: The influence of microenvironments on the culture of osteoblast-like cells (MG-63) has been investigated using parylene films with different surfaces, such as parylene-N film, UV-modified parylene-N film, functional parylene film with amine groups (parylene-A), and UV-modified parylene-A film. In this work, parylene-N film was found to induce dramatic changes in cell adhesion and cell viability before and after UV-treatment with respect to the culture of osteoblast-like cells (MG-63). The influences of such a chemical environment on cell culture were investigated in relation to the cell proliferation (viability and proliferation rate) and the cell physiology (cell cycle, protein synthesis, and differentiation) of cells grown on parylene-N film, UV-modified parylene-N film, parylene-A film, and UV-modified parylene-A film in comparison with cells grown on a polystyrene surface.

  2. Effects of Curcumin on the Proliferation and Mineralization of Human Osteoblast-Like Cells: Implications of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Juan D. Pedrera-Zamorano

    2012-11-01

    Full Text Available Curcumin (diferuloylmethane is found in the rhizomes of the turmeric plant (Curcuma longa L. and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO is a gaseous molecule generated from L-arginine during the catalization of nitric oxide synthase (NOS, and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63, we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.

  3. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene Bjørg; Andersen, Thomas Levin; Marcussen, Niels

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling...... is lacking. We addressed this question by quantifying cell densities, cell proliferation, osteoblast differentiation markers, and capillaries in human iliac crest biopsy specimens. We found that recruitment occurs on both reversal and bone-forming surfaces, as shown by the cell density and osterix levels...

  4. Estimates of neutron fluence for the SDC detector

    International Nuclear Information System (INIS)

    Job, P.K.; Price, L.E.; Handler, T.; Gabriel, T.A.

    1994-01-01

    The high energy and high luminosity of SSC cause radiation problems to detectors. Almost all the radiation in the SDC detector comes from the 20 TeV on 20 TeV pp collisions. The design luminosity corresponds to 10 8 collisions per second. This luminosity is maintained for 10 7 seconds (one SSC year). It is important to know the radiation fields experienced by the tracking volume, calorimeter, electronics and the phototubes. The loss of light due to the radiation damage to the scintillators can adversely affect the physics performance of the calorimeter. Studies have been carried out earlier to estimate the radiation dose in the SDC detector. In this note the authors use ISAJET in combination with CALOR89 to make an accurate prediction of neutron fluence at the various locations of the SDC detector. The low energy neutrons are important because they can produce radioactive nuclides in large quantities. In CALOR89 the low energy neutron fluence is accurately estimated by MORSE code

  5. Application of the adjoint function methodology for neutron fluence determination

    International Nuclear Information System (INIS)

    Haghighat, A.; Nanayakkara, B.; Livingston, J.; Mahgerefteh, M.; Luoma, J.

    1991-01-01

    In previous studies, the neutron fluence at a reactor pressure vessel has been estimated based on consolidation of transport theory calculations and experimental data obtained from in-vessel capsules and/or cavity dosimeters. Normally, a forward neutron transport calculation is performed for each fuel cycle and the neutron fluxes are integrated over the reactor operating time to estimate the neutron fluence. Such calculations are performed for a geometrical model which is composed of one-eighth (0 to 45 deg) of the reactor core and its surroundings; i.e., core barrel, thermal shield, downcomer, reactor vessel, cavity region, concrete wall, and instrumentation well. Because the model is large, transport theory calculations generally require a significant amount of computer memory and time; hence, more efficient methodologies such as the adjoint transport approach have been proposed. These studies, however, do not address the necessary sensitivity studies needed for adjoint function calculations. The adjoint methodology has been employed to estimate the activity of a cavity dosimeter and that of an in-vessel capsule. A sensitivity study has been performed on the mesh distribution used in and around the cavity dosimeter and the in-vessel capsule. Further, since a major portion of the detector response is due to the neutrons originated in the peripheral fuel assemblies, a study on the use of a smaller calculational model has been performed

  6. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.

    Science.gov (United States)

    Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R

    2017-07-18

    At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F 10 ), minimum fluence (F min ), and mean fluence (F mean ) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F 10 , F min , and F mean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.

  7. The influence of bisphosphonates on human osteoblast migration and integrin aVb3/tenascin C gene expression in vitro

    Directory of Open Access Journals (Sweden)

    Said Yekta Sareh

    2011-02-01

    Full Text Available Abstract Background Bisphosphonates are therapeutics of bone diseases, such as Paget's disease, multiple myeloma or osteoclastic metastases. As a severe side effect the bisphosphonate induced osteonecrosis of the jaw (BONJ often requires surgical treatment and is accompanied with a disturbed wound healing. Therefore, the influence on adhesion and migration of human osteoblasts (hOB after bisphosphonate therapy has been investigated by morphologic as well as gene expression methods. Methods By a scratch wound experiment, which measures the reduction of defined cell layer gap, the morphology and migration ability of hOB was evaluated. A test group of hOB, which was stimulated by zoledronate 5 × 10-5M, and a control group of unstimulated hOB were applied. Furthermore the gene expression of integrin aVb3 and tenascin C was quantified by Real-Time rtPCR at 5data points over an experimental period of 14 days. The bisphosphonates zoledronate, ibandronate and clodronate have been compared with an unstimulated hOB control. Results After initially identical migration and adhesion characteristics, zoledronate inhibited hOB migration after 50 h of stimulation. The integrinavb3 and tenascin C gene expression was effected by bisphosphonates in a cell line dependent manner with decreased, respectively inconsistent gene expression levels over time. The non-nitrogen containing bisphosphonates clodronate led to decreased gene expression levels. Conclusion Bisphosphonates seem to inhibit hOB adhesion and migration. The integrin aVb3 and tenascin C gene expression seem to be dependent on the cell line. BONJ could be enhanced by an inhibition of osteoblast adhesion and migration. The gene expression results, however, suggest a cell line dependent effect of bisphosphonates, which could explain the interindividual differences of BONJ incidences.

  8. Improved osteoblast response to UV-irradiated PMMA/TiO2 nanocomposites with controllable wettability.

    Science.gov (United States)

    Shayan, Mahdis; Jung, Youngsoo; Huang, Po-Shun; Moradi, Marzyeh; Plakseychuk, Anton Y; Lee, Jung-Kun; Shankar, Ravi; Chun, Youngjae

    2014-12-01

    Osteoblast response was evaluated with polymethylmethacrylate (PMMA)/titanium dioxide (TiO2) nanocomposite thin films that exhibit the controllable wettability with ultraviolet (UV) treatment. In this study, three samples of PMMA/TiO2 were fabricated with three different compositional volume ratios (i.e., 25/75, 50/50, and 75/25) followed by UV treatment for 0, 4, and 8 h. All samples showed the increased hydrophilicity after UV irradiation. The films fabricated with the greater amount of TiO2 and treated with the longer UV irradiation time increased the hydrophilicity more. The partial elimination of PMMA on the surface after UV irradiation created a durable hydrophilic surface by (1) exposing higher amount of TiO2 on the surface, (2) increasing the hydroxyl groups on the TiO2 surface, and (3) producing a mesoporous structure that helps to hold the water molecules on the surface longer. The partial elimination of PMMA on the surface was confirmed by Fourier transform infrared spectroscopy. Surface profiler and atomic force microscopy demonstrated the increased surface roughness after UV irradiation. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy demonstrated that particles containing calcium and phosphate elements appeared on the 8 h UV-treated surface of PMMA/TiO2 25/75 samples after 4 days soaking in Dulbecco's Modified Eagle Medium. UV treatment showed the osteoblast adhesion improved on all the surfaces. While all UV-treated hydrophilic samples demonstrated the improvement of osteoblast cell adhesion, the PMMA/TiO2 25/75 sample after 8 h UV irradiation (n = 5, P value = 0.000) represented the best cellular response as compared to other samples. UV-treated PMMA/TiO2 nanocomposite thin films with controllable surface properties represent a high potential for the biomaterials used in both orthopedic and dental applications.

  9. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    International Nuclear Information System (INIS)

    Caneva Soumetz, Federico; Saenz, Jose F.; Pastorino, Laura; Ruggiero, Carmelina; Nosi, Daniele; Raiteri, Roberto

    2010-01-01

    The transforming growth factor β1 (TGF-β1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-β1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the β1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-β1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the β1 integrin subunit was enhanced by TGF-β1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-β1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  10. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneva Soumetz, Federico [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Saenz, Jose F. [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy); Pastorino, Laura; Ruggiero, Carmelina [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Nosi, Daniele [Department of Anatomy, Histology and Forensic Medicine, Bio-photonic Laboratory, University of Florence, viale Morgagni, 85 Firenze, CAP 50134 Florence (Italy); Raiteri, Roberto, E-mail: rr@unige.it [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy)

    2010-03-15

    The transforming growth factor {beta}1 (TGF-{beta}1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-{beta}1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the {beta}1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-{beta}1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the {beta}1 integrin subunit was enhanced by TGF-{beta}1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-{beta}1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  11. Measurement of oxygen consumption rate of osteoblasts from ...

    African Journals Online (AJOL)

    Jane

    2011-05-10

    May 10, 2011 ... E-mail: kedongsong@dlut.edu.cn. Tel: +86 411 ... the experiments, including inverted phase contrast microscope. (IX70-Olympus ... The pictures showed that the osteoblasts still had very high cellular viability. consumption of ...

  12. Transdifferentiation of adipocytes to osteoblasts: potential for orthopaedic treatment.

    Science.gov (United States)

    Lin, Daphne P L; Dass, Crispin R

    2018-03-01

    As both adipocytes and osteoblasts originate from the same pool of mesenchymal stem cells, increasing clinical evidence has emerged of the plasticity between the two lineages. For instance, the downregulation of osteoblast differentiation and upregulation of adipogenesis are common features of conditions such as multiple myeloma, obesity and drug-induced bone loss in diabetes mellitus. However, despite in-vitro and in-vivo observations of adipocyte transdifferentiation into osteoblasts, little is known of the underlying mechanisms. This review summarises the current knowledge of this particular transdifferentiation process whereby the Wnt/β-catenin signalling pathway and Runx2 overexpression have been postulated to play a critical role. Furthermore, due to the possibility of a novel therapy in the treatment of bone conditions, a number of agents with the potential to induce adipo-to-osteoblast transdifferentiation have been investigated such as all-trans retinoic acid, bone morphogenetic protein-9 and vascular endothelial growth factor. © 2018 Royal Pharmaceutical Society.

  13. Mechanisms regulating osteoblast response to surface microtopography and vitamin D

    Science.gov (United States)

    Bell, Bryan Frederick, Jr.

    A comprehensive understanding of the interactions between orthopaedic and dental implant surfaces with the surrounding host tissue is essential in the design of advanced biomaterials that better promote bone growth and osseointegration of implants. Dental implants with roughened surfaces and high surface energy are well known to promote osteoblast differentiation in vitro and promote increased bone-to-implant contact in vivo. In addition, increased surface roughness increases osteoblasts response to the vitamin D metabolite 1alpha,25(OH)2D3. However, the exact mechanisms mediating cell response to surface properties and 1alpha,25(OH)2D3 are still being elucidated. The central aim of the thesis is to investigate whether integrin signaling in response to rough surface microtopography enhances osteoblast differentiation and responsiveness to 1alpha,25(OH)2D3. The hypothesis is that the integrin alpha5beta1 plays a role in osteoblast response to surface microtopography and that 1alpha,25(OH) 2D3 acts through VDR-independent pathways involving caveolae to synergistically enhance osteoblast response to surface roughness and 1alpha,25(OH) 2D3. To test this hypothesis the objectives of the studies performed in this thesis were: (1) to determine if alpha5beta 1 signaling is required for osteoblast response to surface microstructure; (2) to determine if increased responsiveness to 1alpha,25(OH)2D 3 requires the vitamin D receptor, (3) to determine if rough titanium surfaces functionalized with the peptides targeting integrins (RGD) and transmembrane proteoglycans (KRSR) will enhance both osteoblast proliferation and differentiation, and (4) to determine whether caveolae, which are associated with integrin and 1alpha,25(OH)2D3 signaling, are required for enhance osteogenic response to surface microstructure and 1alpha,25(OH)2D 3. The results demonstrate that integrins, VDR, and caveolae play important roles in mediating osteoblast response to surface properties and 1alpha,25

  14. The impact of doped silicon quantum dots on human osteoblasts

    Czech Academy of Sciences Publication Activity Database

    Ostrovská, L.; Brož, Antonín; Fučíková, A.; Bělinová, T.; Sugimoto, H.; Kanno, T.; Fujii, M.; Valenta, J.; Kalbáčová, M.H.

    2016-01-01

    Roč. 6, č. 68 (2016), s. 63403-63413 ISSN 2046-2069 Institutional support: RVO:67985823 Keywords : silicon quantum dots * osteoblasts * cytotoxicity * photoluminiscence bioimaging Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.108, year: 2016

  15. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Faming; Weidmann, Arne; Nebe, J. Barbara; Burkel, Eberhard

    2012-01-01

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  16. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  17. Radiation-curable adhesives

    International Nuclear Information System (INIS)

    Woods, J.G.

    1992-01-01

    Radiation-curable adhesives may be classified into two broad categories. In the first category, adhesive bonding occurs as a direct result of irradiation. The second category includes pressure-sensitive and hot-melt adhesives, which are composed of linear or lightly cross-linked polymers prepared by a radiation-induced polymerization reaction. This chapter is mainly concerned with radiation-curable adhesives of the first category. The various adhesive types are discussed and adhesive performance is examined, particularly in relation to the chemistry and chemical technology which underlies the individual materials. A description of a limited number of representative applications is included as is an outline of recent developments of curing and dispensing equipment. 268 refs., 14 figs., 13 tabs

  18. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  19. Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rasigade Jean

    2011-12-01

    Full Text Available Abstract Background Staphylococcus aureus is a well-armed pathogen prevalent in severe infections such as endocarditis and osteomyelitis. Fibronectin-binding proteins A and B, encoded by fnbA/B, are major pathogenesis determinants in these infections through their involvement in S. aureus adhesion to and invasion of host cells. Sub-minimum inhibitory concentrations (sub-MICs of antibiotics, frequently occurring in vivo because of impaired drug diffusion at the infection site, can alter S. aureus phenotype. We therefore investigated their impact on S. aureus fibronectin-mediated adhesiveness and invasiveness. Methods After in vitro challenge of S. aureus 8325-4 and clinical isolates with sub-MICs of major anti-staphylococcal agents, we explored fnbA/B transcription levels, bacterial adhesiveness to immobilised human fibronectin and human osteoblasts in culture, and bacterial invasion of human osteoblasts. Results Oxacillin, moxifloxacin and linezolid led to the development of a hyper-adhesive phenotype in the fibronectin adhesion assay that was consistent with an increase in fnbA/B transcription. Conversely, rifampin treatment decreased fibronectin binding in all strains tested without affecting fnbA/B transcription. Gentamicin and vancomycin had no impact on fibronectin binding or fnbA/B transcription levels. Only oxacillin-treated S. aureus displayed a significantly increased adhesion to cultured osteoblasts, but its invasiveness did not differ from that of untreated controls. Conclusion Our findings demonstrate that several antibiotics at sub-MICs modulate fibronectin binding in S. aureus in a drug-specific fashion. However, hyper- and hypo- adhesive phenotypes observed in controlled in vitro conditions were not fully confirmed in whole cell infection assays. The relevance of adhesion modulation during in vivo infections is thus still uncertain and requires further investigations.

  20. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  1. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  2. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate

    International Nuclear Information System (INIS)

    Tasat, D.R.; Orona, N.S.; Mandalunis, P.M.; Cabrini, R.L.; Ubios, A.M.

    2007-01-01

    Exposure to uranium is an occupational hazard to workers who continually handle uranium and an environmental risk to the population at large. Since the cellular and molecular pathways of uranium toxicity in osteoblast cells are still unknown, the aim of the present work was to evaluate the adverse effects of uranyl nitrate (UN) on osteoblasts both in vivo and in vitro. Herein we studied the osteoblastic ultrastructural changes induced by UN in vivo and analyzed cell proliferation, generation of reactive oxygen species (ROS), apoptosis, and alkaline phosphatase (APh) activity in osteoblasts exposed to various UN concentrations (0.1, 1, 10, and 100 μM) in vitro. Cell proliferation was quantified by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, ROS was determined using the nitro blue tetrazolium test, apoptosis was morphologically determined using Hoechst 3332 and APh activity was assayed spectrophotometrically. Electron microscopy revealed that the ultrastructure of active and inactive osteoblasts exposed to uranium presented cytoplasmic and nuclear alterations. In vitro, 1-100 μM UN failed to modify cell proliferation ratio and to induce apoptosis. ROS generation increased in a dose-dependent manner in all tested doses. APh activity was found to decrease in 1-100 μM UN-treated cells vs. controls. Our results show that UN modifies osteoblast cell metabolism by increasing ROS generation and reducing APh activity, suggesting that ROS may play a more complex role in cell physiology than simply causing oxidative damage. (orig.)

  3. The role of osteoblasts in peri-prosthetic osteolysis.

    LENUS (Irish Health Repository)

    O'Neill, S C

    2013-08-01

    Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition.

  4. Mechanisms of palmitate-induced cell death in human osteoblasts

    Science.gov (United States)

    Gunaratnam, Krishanthi; Vidal, Christopher; Boadle, Ross; Thekkedam, Chris; Duque, Gustavo

    2013-01-01

    Summary Lipotoxicity is an overload of lipids in non-adipose tissues that affects function and induces cell death. Lipotoxicity has been demonstrated in bone cells in vitro using osteoblasts and adipocytes in coculture. In this condition, lipotoxicity was induced by high levels of saturated fatty acids (mostly palmitate) secreted by cultured adipocytes acting in a paracrine manner. In the present study, we aimed to identify the underlying mechanisms of lipotoxicity in human osteoblasts. Palmitate induced autophagy in cultured osteoblasts, which was preceded by the activation of autophagosomes that surround palmitate droplets. Palmitate also induced apoptosis though the activation of the Fas/Jun kinase (JNK) apoptotic pathway. In addition, osteoblasts could be protected from lipotoxicity by inhibiting autophagy with the phosphoinositide kinase inhibitor 3-methyladenine or by inhibiting apoptosis with the JNK inhibitor SP600125. In summary, we have identified two major molecular mechanisms of lipotoxicity in osteoblasts and in doing so we have identified a new potential therapeutic approach to prevent osteoblast dysfunction and death, which are common features of age-related bone loss and osteoporosis. PMID:24285710

  5. Time-lapse Raman imaging of osteoblast differentiation

    Science.gov (United States)

    Hashimoto, Aya; Yamaguchi, Yoshinori; Chiu, Liang-Da; Morimoto, Chiaki; Fujita, Katsumasa; Takedachi, Masahide; Kawata, Satoshi; Murakami, Shinya; Tamiya, Eiichi

    2015-07-01

    Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable.

  6. Constant-Fluence Area Scaling for Laser Propulsion

    International Nuclear Information System (INIS)

    Sinko, John E.

    2008-01-01

    A series of experiments was conducted on polyoxymethylene (POM, trade name Delrin registered ) propellants in air at atmospheric pressure. A TEA CO 2 laser with maximum output power up to 20 J was used to deliver 300 ns pulses of 10.6 μm radiation to POM targets. Ablation at a constant fluence and a range of spot areas was achieved by varying combinations of the laser energy and spot size. Relevant empirical scaling laws governing laser propulsion parameters such as the momentum coupling coefficient (C m ) and specific impulse (I sp ) for spot areas within a range of about 0.05-0.25 cm 2 are presented. Experimental measurements of imparted impulse, C m , I sp , and ablated mass per pulse were made using dynamic piezoelectric force sensors and a scientific balance. Finally, Schlieren ICCD imaging of shock waves and vapor plumes was performed and analyzed

  7. Database of episode-integrated solar energetic proton fluences

    Science.gov (United States)

    Robinson, Zachary D.; Adams, James H.; Xapsos, Michael A.; Stauffer, Craig A.

    2018-04-01

    A new database of proton episode-integrated fluences is described. This database contains data from two different instruments on multiple satellites. The data are from instruments on the Interplanetary Monitoring Platform-8 (IMP8) and the Geostationary Operational Environmental Satellites (GOES) series. A method to normalize one set of data to one another is presented to create a seamless database spanning 1973 to 2016. A discussion of some of the characteristics that episodes exhibit is presented, including episode duration and number of peaks. As an example of what can be understood about episodes, the July 4, 2012 episode is examined in detail. The coronal mass ejections and solar flares that caused many of the fluctuations of the proton flux seen at Earth are associated with peaks in the proton flux during this episode. The reasoning for each choice is laid out to provide a reference for how CME and solar flares associations are made.

  8. Effects of high thermal neutron fluences on Type 6061 aluminum

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Farrell, K.

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to ∼4 x 10 23 n/cm 2 at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed

  9. The Meteoroid Fluence at Mars Due to Comet Siding Spring

    Science.gov (United States)

    Moorhead, Althea V.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.

  10. Database of episode-integrated solar energetic proton fluences

    Directory of Open Access Journals (Sweden)

    Robinson Zachary D.

    2018-01-01

    Full Text Available A new database of proton episode-integrated fluences is described. This database contains data from two different instruments on multiple satellites. The data are from instruments on the Interplanetary Monitoring Platform-8 (IMP8 and the Geostationary Operational Environmental Satellites (GOES series. A method to normalize one set of data to one another is presented to create a seamless database spanning 1973 to 2016. A discussion of some of the characteristics that episodes exhibit is presented, including episode duration and number of peaks. As an example of what can be understood about episodes, the July 4, 2012 episode is examined in detail. The coronal mass ejections and solar flares that caused many of the fluctuations of the proton flux seen at Earth are associated with peaks in the proton flux during this episode. The reasoning for each choice is laid out to provide a reference for how CME and solar flares associations are made.

  11. Online measurement of fluence and position for protontherapy beams

    International Nuclear Information System (INIS)

    Benati, C.; Boriano, A.

    2004-01-01

    Tumour therapy with proton beams has been used for several decades in many centers with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The Centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV

  12. Online measurement of fluence and position for protontherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Benati, C.; Boriano, A. [Torino Univ., Torino (Italy). Dipartimento di Fisica Sperimentale; Bourhaleb, F. [TERA Foundation, Novara (Italy)] [and others

    2004-10-01

    Tumour therapy with proton beams has been used for several decades in many centers with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The Centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.

  13. Application of damage functions to CTR component fluence limit predictions

    International Nuclear Information System (INIS)

    Simons, R.L.; Doran, D.G.

    1975-01-01

    Material behavior observed under irradiation conditions in test reactors is not always directly applicable to the design of reactor components such as CTR first wall because of differences in the damage effectiveness of test reactor and service spectra. The interpolation and, under some conditions, extrapolation of material property change data from test conditions to different neutron spectra in service conditions can be accomplished using semi-empirical damage functions. The derivation and application of damage functions to CTR conditions is reviewed. Since limited amounts of data are available for applications to CTR design spectra, considerable attention is placed on the effectiveness of various available and proposed neutron sources in determining a damage function and subsequent fluence limit prediction. Neutron sources included in this study were EBR-II, HIFR, LAMPF (Be and Cu targets), high energy deuterons incident on Be (D-Be), and 14 MeV neutrons (D-T)

  14. High fluence effects on ion implantation stopping and range

    International Nuclear Information System (INIS)

    Selvi, S.; Tek, Z.; Oeztarhan, A.; Akbas, N.; Brown, I.G.

    2005-01-01

    We have developed a code STOPPO which can be used to modify the more-widely used ion implantation codes to more accurately predict the mean nuclear and electronic stopping power, preferential sputtering and range of heavy ions in monatomic target materials. In our simulations an effective atomic number and effective atomic mass are introduced into conveniently available analytical stopping cross-sections and a better fitting function for preferential sputtering yield is carefully evaluated for each ion implantation. The accuracy of the code confirmed experimentally by comparison with measured Rutherford backscattering spectrometry (RBS) concentration profiles for 130 keV Zr ions implanted into Be to fluences of 1 x 10 17 , 2 x 10 17 and 4 x 10 17 ions/cm 2 . We find a steady increase in the mean nuclear and electronic stopping powers of the target; the increase in nuclear stopping power is much greater than the increase in electronic stopping power

  15. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ivana Márcia Alves Diniz

    2015-01-01

    Full Text Available Background. We investigated the influence of laser phototherapy (LPT on the survival of human mesenchymal stem cells (MSCs submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2. After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey’s test (P<0.05. Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.

  16. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  17. Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio

    2010-01-01

    In recent years, carbon nanotubes (CNTs) have been considered potential biomedical materials because of their unique character. The aim of this study was to investigate the response of a human osteoblast-like cell line - Saos-2 - on single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). The surface of a culture dish was coated with CNTs, and Saos-2 cells were cultured for three days. Cell morphology, viability, alkaline phosphatase (ALP) activity, adhesion, and vinculin expression were evaluated. The result showed high cell viability and strong adhesion to MWCNTs. Saos-2 cultured on MWCNTs exhibited vinculin expression throughout the cell body, while the cells attached to SWCNTs and glass were mostly limited to their periphery. Our results suggest that CNT coatings promote cell activity and adhesiveness. These findings indicate that MWCNTs could be used as surface coating materials to promote cell adhesion.

  18. Online measurement of fluence and position for protontherapy beams

    Science.gov (United States)

    Benati, C.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cornelius, I.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Guérin, L.; La Rosa, A.; Luparia, A.; Marchetto, F.; Martin, F.; Meyroneinc, S.; Peroni, C.; Pittà, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2004-09-01

    Tumour therapy with proton beams has been used for several decades in many centres with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.This kind of treatments need high-resolution monitor systems and for this reason we have developed a 256-strip segmented ionisation chamber, each strip being 400 μm wide, with a total sensitive area 13×13 cm2. The Centre de Protontherapie de Orsay (CPO) has been operational since 1991 and features a synchrocyclotron used for eye and head and neck tumours with proton beams up to 200 MeV. The monitor system has to work on a large surface and for this purpose we have designed a pixel-segmented ionisation chamber, each pixel being 5×5 mm2, for a total active area of 16×16 cm2. The results obtained with two prototypes of the pixel and strip chambers demonstrate that the detectors allow the measurement of fluence and centre of gravity as requested by clinical specifications.

  19. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures

  20. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    Directory of Open Access Journals (Sweden)

    Ni S

    2014-07-01

    Full Text Available Siyu Ni,1 Changyan Li,1 Shirong Ni,2 Ting Chen,1 Thomas J Webster3,4 1College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 2Department of Pathophysiology, Wenzhou Medical University, Wenzhou, People’s Republic of China; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The aim of this study was to prepare different sized porous anodic alumina (PAA and examine preosteoblast (MC3T3-E1 attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05. Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry through an anodization process to improve osteoblast density, and, thus, should be

  1. Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R.P. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); Kumar, T. [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123029 (India); Mittal, A.K. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Dwivedi, S., E-mail: suneetdwivedi@gmail.com [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, PO Box 10502, New Delhi 110 067 (India)

    2015-08-30

    Highlights: • Fractal analysis of Si(1 0 0) surface morphology at varying ion fluences. • Autocorrelation function and height–height correlation function as fractal measures. • Surface roughness and lateral correlation length increases with ion fluence. • Ripple pattern of the surfaces is found at higher ion fluences. • Wavelength of the ripple surfaces is computed for each fluence. - Abstract: Si (1 0 0) is bombarded with 200 keV Ar{sup +} ion beam at oblique incidence with fluences ranging from 3 × 10{sup 17} ions/cm{sup 2} to 3 × 10{sup 18} ions/cm{sup 2}. The surface morphology of the irradiated surfaces is captured by the atomic force microscopy (AFM) for each ion fluence. The fractal analysis is performed on the AFM images. The autocorrelation function and height–height correlation function are used as fractal measures. It is found that the average roughness, interface width, lateral correlation length as well as roughness exponent increase with ions fluence. The analysis reveals the ripple pattern of the surfaces at higher fluences. The wavelength of the ripple surfaces is computed for each ion fluence.

  2. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  3. Irradiation embrittlement of some 15Kh2MFA pressure vessel steels under varying neutron fluence rates

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Bars, B [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, A [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    Irradiation sensitivity of two forging materials was measured with Charpy-V and fracture mechanic tests, and with different fluence, fluence rate and irradiation time values. Irradiation sensitivity of the materials was found to be less or equal to the current Russian standard, and appears to be well described by the fluence parameter only. A slight additional effect on embrittlement from a long term low fluence irradiation is noticed, but it stays within the total scatter band of data. 7 refs., 17 figs., 4 tabs.

  4. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  5. Evolution of the osteoblast: skeletogenesis in gar and zebrafish

    Directory of Open Access Journals (Sweden)

    Eames B Frank

    2012-03-01

    Full Text Available Abstract Background Although the vertebrate skeleton arose in the sea 500 million years ago, our understanding of the molecular fingerprints of chondrocytes and osteoblasts may be biased because it is informed mainly by research on land animals. In fact, the molecular fingerprint of teleost osteoblasts differs in key ways from that of tetrapods, but we do not know the origin of these novel gene functions. They either arose as neofunctionalization events after the teleost genome duplication (TGD, or they represent preserved ancestral functions that pre-date the TGD. Here, we provide evolutionary perspective to the molecular fingerprints of skeletal cells and assess the role of genome duplication in generating novel gene functions. We compared the molecular fingerprints of skeletogenic cells in two ray-finned fish: zebrafish (Danio rerio--a teleost--and the spotted gar (Lepisosteus oculatus--a "living fossil" representative of a lineage that diverged from the teleost lineage prior to the TGD (i.e., the teleost sister group. We analyzed developing embryos for expression of the structural collagen genes col1a2, col2a1, col10a1, and col11a2 in well-formed cartilage and bone, and studied expression of skeletal regulators, including the transcription factor genes sox9 and runx2, during mesenchymal condensation. Results Results provided no evidence for the evolution of novel functions among gene duplicates in zebrafish compared to the gar outgroup, but our findings shed light on the evolution of the osteoblast. Zebrafish and gar chondrocytes both expressed col10a1 as they matured, but both species' osteoblasts also expressed col10a1, which tetrapod osteoblasts do not express. This novel finding, along with sox9 and col2a1 expression in developing osteoblasts of both zebrafish and gar, demonstrates that osteoblasts of both a teleost and a basally diverging ray-fin fish express components of the supposed chondrocyte molecular fingerprint. Conclusions Our

  6. Involvement of integrins in the adhesion of osteoblastic cells to a type-I collagen matrix

    OpenAIRE

    Antonio Desmond McCarthy; Toshimasa Uemura; Susana Beatriz Etcheverry; Ana María Cortizo

    2006-01-01

    Se han desarrollado varios biomateriales con potencial aplicaci ón en la reconstrucción de tejidos. En este sentido, existe un creciente interés en el diseño de materiales de implante óseo con máxima biocompatibilidad y adecuada adhesividad celular. El objetivo de este trabajo fue estudiar cuáles receptores integrinas participan en la adhesión de osteoblastos a una matriz de colágeno tipo-I. Se analizaron dos líneas celulares osteoblásticas: UMR106, derivada de osteosarcoma de rata; y MC3T3E1...

  7. OSTEOBLAST ADHESION ON SCAFFOLDS OF PLA-PLG-HYDROXYAPATITE-CHITOSAN-ZINC BY ELECTROACTIVATION

    Directory of Open Access Journals (Sweden)

    HUGO ARMANDO ESTUPIÑAN DURAN

    2012-01-01

    Full Text Available En este trabajo se presentan los resultados del estudio del fenómeno de la electroactivación del sistema de células - ácido poliláctico (PLA - ácido poliglicólico (PLG con adiciones de elementos bioactivos de quitosano (q, biocerámico (bc, y zinc. El objetivo principal es explicar el incremento en la adhesión de células como un resultado del cambio en la hidrofilicidad de la matriz de regeneración celular y la variación en el intercambio iónico intracelular, inducida por la aplicación de sobrepotenciales eléctricos y las adiciones de elementos bioactivos a los polímeros.

  8. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  9. Osteoblast response on co-modified titanium surfaces via anodization and electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Cem [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Beytepe, 06800 (Turkey); Chemistry Department, Aksaray University, Aksaray, 68100 (Turkey); Demirbilek, Murat; Yalçın, Eda [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Beytepe, 06800 (Turkey); Bozkurt, Murat; Doğan, Metin [Orthopaedics and Traumatology Division, Yıldırım Beyazıt University, School of Medicine, Cankaya, 06550 (Turkey); Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Chemistry Department, Hacettepe University, Ankara, Beytepe, 06800 (Turkey)

    2014-01-01

    Topography plays a key role in osseointegration and surface modifications at the subcellular level, increasing initial cell attachment in the early period. In the past decade, nanosized texture on metal like a nanotube layer and also more recently extracellular matrix like surface modifications – such as polymeric nanofibrils – have been proposed for a better osseointegration in the literature. Here, we investigate two types of nanoscaled modifications alone and together for the first time. We characterized different types of surface modifications morphologically and investigated how they affected osteoblast cells in vitro, in terms of cell adhesion, proliferation, alkaline phosphatase activity and calcium content. We anodized titanium samples with a thickness of 0.127 mm to obtain a nanotubular titania layer and the silk fibroin (SF), as a biocompatible polymeric material, was electrospun onto both anodized and unanodized samples to acquire 4 sample groups. We analyzed the resulting samples morphologically by scanning electron microscopy (SEM). Cell adhesion, proliferation, alkaline phosphatase (ALP) activity and calcium content were evaluated at 3, 7 and 14 days. We found that cell proliferation increased by 70% on the groups having two modifications respect to unmodified titanium and after 7 days, ALP activity and calcium content were 110% and 150%, respectively, higher on surfaces having both surface treatments than that of unmodified group. In conclusion, a nanotube layer and SF nanofibers on a titanium surface enhanced cell attachment and proliferation most. Comodification of titanium surfaces by anodization and SF electrospinning may be useful to enhance osseointegration but it requires in vivo confirmation.

  10. Adhesive interactions with wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  11. Adhesive compositions and methods

    Science.gov (United States)

    Allen, Scott D.; Sendijarevic, Vahid; O'Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  12. Soy protein adhesives

    Science.gov (United States)

    Charles R. Frihart

    2010-01-01

    In the quest to manufacture and use building materials that are more environmentally friendly, soy adhesives can be an important component. Trees fix and store carbon dioxide in the atmosphere. After the trees are harvested, machinery converts the wood into strands, which are then bonded together with adhesives to form strandboard, used in constructing long-lasting...

  13. A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, H; Jensen, Ole N; Moiseeva, Elena P

    2003-01-01

    Prostate cancer cells metastasize to bone causing a predominantly osteosclerotic response. It has been shown that cells from the human prostate cancer cell line PC3 secrete factors that influence the behavior of osteoblast-like cells. Some of these factors with mitogenic activity have been found...... to be proteins with molecular weights between 20 and 30 kDa, but the identity of the osteoblastic mitogenic factor or factors produced by prostate cancer cells is still unknown. Therefore, the aim of this study was to characterize the protein profile of conditioned medium (CM) from PC3 cells in the molecular......BMS) cells. Furthermore, we tested whether adhesion of PC3 cells to plastic, laminin, fibronectin, and collagen type I was influenced by lactose, which inhibits galectin-1. Galectin-1 (1000 ng/ml) inhibited the proliferation of hBMS cells up to 70 +/- 12% (treated/control) of control in contrast to PC3 CM...

  14. Cuscuta chinensis extract promotes osteoblast differentiation and mineralization in human osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yang, Hyun Mo; Shin, Hyun-Kyung; Kang, Young-Hee; Kim, Jin-Kyung

    2009-02-01

    The aim of the present study was to investigate whether the aqueous extract of To-Sa-Za (TSZ-AE), the seed of Cuscuta chinensis Lam., which is a traditional medicinal herb commonly used in Korea and other oriental countries, could induce osteogenic activity in human osteoblast-like MG-63 cells. TSZ-AE treatment mildly promoted the proliferation of MG-63 cells at doses of 500 and 1,000 microg/mL in the 24-hour culture period. Dose-dependent increases in alkaline phosphatase (ALP) activity and collagen synthesis were shown at 48 and 72 hours of incubation. The release of bone morphogenetic protein (BMP)-2 but not osteocalcin in the MG-63 cells was induced by TSZ-AE at 72 hours (100-1,000 microg/mL). In addition, TSZ-AE markedly increased mRNA expression of ALP, collagen, and BMP-2 in the MG-63 cells in a dose-dependent manner. Mineralization in the culture of MG-63 cells was significantly induced at 500 and 1,000 microg/mL TSZ-AE treatment. In conclusion, this study shows that TSZ-AE enhanced ALP activity, collagen synthesis, BMP-2 expression, and mineralization in MG-63 cells. These results strongly suggest that C. chinensis can play an important role in osteoblastic bone formation and may possibly lead to the development of bone-forming drugs.

  15. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Directory of Open Access Journals (Sweden)

    Weng L

    2013-05-01

    Full Text Available Lucy Weng, Thomas J Webster School of Engineering and Department of Orthopedics, Brown University, Providence, RI, USA Abstract: Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells. Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. Keywords: nanostructured magnesium, degradation, detrimental effects, osteoblasts

  16. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    Science.gov (United States)

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  17. Stimulatory effect of undecylenic acid on mouse osteoblast differentiation.

    Science.gov (United States)

    Kim, Myung Hee; Shim, Ki Shuk; Lee, Su-Ui; Kim, Young Sup; Min, Yong Ki; Kim, Seong Hwan

    2010-04-01

    Natural compounds with bone-forming (or anabolic) activity have been recently focused on in bone research. The present study investigated the effect of undecylenic acid (UA) on osteoblast differentiation in mouse osteoblastic MC3T3-E1 subclone 4 cells and primary mouse calvarial cells. Low concentrations of UA (up to 5 microM) exhibited no cytotoxicity and significantly increased the expression and activity of alkaline phosphatase (early differentiation marker of osteoblast) and calcium deposition with the induction of expression of the osteocalcin gene in both cells. Interestingly, at low concentration of UA, the induction of NF-kappaB p65 translocation into nucleus and the up-regulation of AP-1 and NFATc1 transcript levels were also observed, suggesting that the stimulatory effect of UA on osteoblast differentiation could be mediated through the activation of transcription factors. Additionally, although the patterns of UA-induced activation of MAP kinases (JNK and p38) were not completely consistent with the increase of both ALP activity and calcium deposition by UA, MAP kinases might be partially involved in the biological function of UA during the early and late stages of osteoblast differentiation. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Physics of adhesion

    International Nuclear Information System (INIS)

    Gerberich, W W; Cordill, M J

    2006-01-01

    Adhesion physics was relegated to the lowest echelons of academic pursuit until the advent of three seemingly disconnected events. The first, atomic force microscopy (AFM), eventually allowed fine-scale measurement of adhesive point contacts. The second, large-scale computational materials science, now permits both hierarchical studies of a few thousand atoms from first principles or of billions of atoms with less precise interatomic potentials. The third is a microelectronics industry push towards the nanoscale which has provided the driving force for requiring a better understanding of adhesion physics. In the present contribution, an attempt is made at conjoining these separate events into an updating of how theoretical and experimental approaches are providing new understanding of adhesion physics. While all material couples are briefly considered, the emphasis is on metal/semiconductor and metal/ceramic interfaces. Here, adhesion energies typically range from 1 to 100 J m -2 where the larger value is considered a practical work of adhesion. Experimental emphasis is on thin-film de-adhesion for 10 to 1000 nm thick films. For comparison, theoretical approaches from first principles quantum mechanics to embedded atom methods used in multi-scale modelling are utilized

  19. Microstructural interpretation of the fluence and temperature dependence of the mechanical properties of irradiated AISI 316

    International Nuclear Information System (INIS)

    Johnson, G.D.; Garner, F.A.; Brager, H.R.; Fish, R.L.

    1980-01-01

    The effects of neutron irradiation on the mechanical properties of annealed and 20% cold-worked AISI 316 irradiated in EBR-II were determined for the temperature regime of 370 to 760 0 C for fluences up to 8.4 x 10 22 n/cm 2 (E > 0.1 MeV). At irradiation temperatures below about 500 0 C, both annealed and cold-worked material exhibit a substantial increase in the flow stress with increasing fluence. Furthermore, both materials eventually exhibit the same flow stress, which is independent of fluence. At temperatures in the range of 538 to 650 0 C, the cold-worked material exhibits a softening with increasing fluence. Annealed AISI 316 in this temperature regime exhibits hardening and at a fluence of 2 to 3 x 10 22 n/cm 2 (E > 0.1 MeV) reaches the same value of flow stress as the cold-worked material

  20. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  1. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  2. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    Science.gov (United States)

    Ali, Dalia; Hamam, Rimi; Alfayez, Musaed; Kassem, Moustapha; Aldahmash, Abdullah

    2016-01-01

    The epigenetic mechanisms promoting lineage-specific commitment of human skeletal (mesenchymal or stromal) stem cells (hMSCs) into adipocytes or osteoblasts are still not fully understood. Herein, we performed an epigenetic library functional screen and identified several novel compounds, including abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved in regulating stem cell proliferation and differentiation that were targeted by abexinostat. Concordantly, ChIP-quantitative polymerase chain reaction revealed marked increase in H3K9Ac epigenetic mark on the promoter region of AdipoQ, FABP4, PPARγ, KLF15, CEBPA, SP7, and ALPL in abexinostat-treated hMSCs. Pharmacological inhibition of focal adhesion kinase (PF-573228) or insulin-like growth factor-1R/insulin receptor (NVP-AEW51) signaling exhibited significant inhibition of abexinostat-mediated adipocytic differentiation, whereas inhibition of WNT (XAV939) or transforming growth factor-β (SB505124) signaling abrogated abexinostat-mediated osteogenic differentiation of hMSCs. Our findings provide insight into the understanding of the relationship between the epigenetic effect of histone deacetylase inhibitors, transcription factors, and differentiation pathways governing adipocyte and osteoblast differentiation. Manipulating such pathways allows a novel use for epigenetic compounds in hMSC-based therapies and tissue engineering. Significance This unbiased epigenetic library functional screen identified several novel compounds, including abexinostat, that promoted adipocytic and osteoblastic differentiation of human skeletal (mesenchymal or stromal) stem cells (hMSCs). These data provide new insight into the understanding of the relationship between the epigenetic effect of histone deacetylase

  3. THE FLUENCE AND DISTANCE DISTRIBUTIONS OF FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Vedantham, H. K.; Ravi, V.; Hallinan, G.; Shannon, R. M.

    2016-01-01

    Fast radio bursts (FRB) are millisecond-duration radio pulses with apparent extragalactic origins. All but two of the FRBs have been discovered using the Parkes dish, which employs multiple beams formed by an array of feed horns on its focal plane. In this paper, we show that (i) the preponderance of multiple-beam detections and (ii) the detection rates for varying dish diameters can be used to infer the index α of the cumulative fluence distribution function (the log N –log F function: α = 1.5 for a non-evolving population in a Euclidean universe). If all detected FRBs arise from a single progenitor population, multiple-beam FRB detection rates from the Parkes telescope yield the constraint 0.52 < α < 1.0 with 90% confidence. Searches at other facilities with different dish sizes refine the constraint to 0.5 < α < 0.9. Our results favor FRB searches with smaller dishes, because for α < 1 the gain in field of view for a smaller dish is more important than the reduction in sensitivity. Further, our results suggest that (i) FRBs are not standard candles, and (ii) the distribution of distances to the detected FRBs is weighted toward larger distances. If FRBs are extragalactic, these results are consistent with a cosmological population, which would make FRBs excellent probes of the baryonic content and geometry of the universe.

  4. Comparison of embrittlement trend curves to high fluence surveillance results

    International Nuclear Information System (INIS)

    Bogaert, A.S.; Gerard, R.; Chaouadi, R.

    2011-01-01

    In the regulatory justification of the integrity of the reactor pressure vessels (RPV) for long term operation, use is made of predictive formulas (also called trend curves) to evaluate the RPV embrittlement (expressed in terms of RTNDT shifts) in function of fluence, chemical composition and in some cases temperature, neutron flux or product form. It has been shown recently that some of the existing or proposed trend curves tend to underpredict high dose embrittlement. Due to the scarcity of representative surveillance data at high dose, some test reactor results were used in these evaluations and raise the issue of representativeness of the accelerated test reactor irradiations (dose rate effects). In Belgium the surveillance capsules withdrawal schedule was modified in the nineties in order to obtain results corresponding to 60 years of operation or more with the initial surveillance program. Some of these results are already available and offer a good opportunity to test the validity of the predictive formulas at high dose. In addition, advanced surveillance methods are used in Belgium like the Master Curve, increased tensile tests, and microstructural investigations. These techniques made it possible to show the conservatism of the regulatory approach and to demonstrate increased margins, especially for the first generation units. In this paper the surveillance results are compared to different predictive formulas, as well as to an engineering hardening model developed at SCK.CEN. Generally accepted property-to-property correlations are critically revisited. Conclusions are made on the reliability and applicability of the embrittlement trend curves. (authors)

  5. Flux and fluence determination using the material scrapings approach

    International Nuclear Information System (INIS)

    Basha, H.S.; Manahan, M.P.

    1992-01-01

    The conventional approach to flux determination is to use high-purity dosimeters to characterize the neutron field. This paper presents an alternative approach called the scraping method. This method consists of taking scraping samples from an in-service component and using this material to measure the specific activity for various reactions. This approach enables the determination of the neutron flux and fluence incident on any component for which small chips of material can be safely obtained. It offers a capability for determining the neutron flux for components such as reactor internals without destructively removing them from service. The scrapings methodology was benchmarked by comparison with the results obtained using conventional dosimetry data from the San Onofre nuclear generation station Unit 2 (SONGS-2). Additionally, since the goal of any reactor physics analysis is to reduce uncertainty to the extent practical, it is important that the best available cross-section library be used. The fast flux calculated-to-experimental (C/E) ratios at the SONGS-297-deg in-vessel surveillance capsule and the REACTOR-X 90-deg ex-vessel dosimetry positions were studied for several cross-section libraries, including BIGLE-80, SAILOR, and ELXSIR. REACTOR-X is a pressurized water reactor power plant currently operating in the US

  6. Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence

    International Nuclear Information System (INIS)

    Bae, I.-T.; Ishimaru, Manabu; Hirotsu, Yoshihiko; Sickafus, Kurt E.

    2004-01-01

    We have investigated the effect of radiation damage and impurity concentration on solid phase epitaxial growth of amorphous silicon carbide (SiC) as well as microstructures of recrystallized layer using transmission electron microscopy. Single crystals of 6H-SiC with (0001) orientation were irradiated with 150 keV Xe ions to fluences of 10 15 and 10 16 /cm 2 , followed by annealing at 890 deg. C. Full epitaxial recrystallization took place in a specimen implanted with 10 15 Xe ions, while retardation of recrystallization was observed in a specimen implanted with 10 16 /cm 2 Xe ions. Atomic pair-distribution function analyses and energy dispersive x-ray spectroscopy results suggested that the retardation of recrystallization of the 10 16 Xe/cm 2 implanted sample is attributed to the difference in amorphous structures between the 10 15 and 10 16 Xe/cm 2 implanted samples, i.e., more chemically disordered atomistic structure and higher Xe impurity concentration in the 10 16 Xe/cm 2 implanted sample

  7. Deuterium trapping in carbon fiber composites under high fluence

    International Nuclear Information System (INIS)

    Airapetov, A.A.; Begrambekov, L.B.; Kuzmin, A.A.; Shigin, P.A.; Zakharov, A.M.

    2010-01-01

    The paper is devoted to investigation of deuterium trapping in CFC, dance graphite MPG-8 and pyrolytic graphite (PG) under plasma ion- and electron irradiation. Number of specific features of deuterium trapping and retention under plasma ion and electron irradiation is presented and discussed. In particular it is shown that 1) deuterium trapping takes place even when energy of impinging ions approaches zero; 2) deuterium is trapped under irradiation by plasma electrons; 3) under irradiation at equal fluences deuterium trapping is higher, when ion flux is smaller. High energy ion penetrating the surfaces are trapped in the traps created at the expense of their kinetic energy. The process may be named 'kinetic trapping'. Under low energy (smaller than 200 eV) electron and/or ion irradiation the energy of inelastic interaction on the surface provides creation of active centers, which initiate dissociation of deuterium sorbed on the surface, penetration of deuterium atoms into graphite and their trapping in specific low energy traps. The term 'potential trapping' is proposed for this type of trapping. Under high energy irradiation such atoms can fill the traps formed through kinetic mechanism. Origination of moveable deuterium atoms from the layer of surface sorption seems to be time dependent process and it is a reason of increase of trapping along with irradiation time. New features of deuterium trapping and retention in graphite evaluated in this study offer new opportunities for analysis and correct estimation of hydrogen isotope trapping and retention in tokamaks having graphite tiles. (authors)

  8. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  9. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  10. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    International Nuclear Information System (INIS)

    Testrich, H.; Rebl, H.; Finke, B.; Hempel, F.; Nebe, B.; Meichsner, J.

    2013-01-01

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion

  11. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance.

    Science.gov (United States)

    Ando, Kazunori; Shibata, Eri; Hans, Stefan; Brand, Michael; Kawakami, Atsushi

    2017-12-04

    Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tailoring of the PS surface with low energy ions: Relevance to growth and adhesion of noble metals

    International Nuclear Information System (INIS)

    Zaporojtchenko, V.; Zekonyte, J.; Wille, S.; Schuermann, U.; Faupel, F.

    2005-01-01

    Ion-polymer interaction induces different phenomena in the near surface layer of polymers, and promotes its adhesion to metals. Using XPS, TEM and AFM, polystyrene surface was examined after 1 keV ion-beam treatments with oxygen, nitrogen and argon ions in the ion fluence range from 10 12 to 10 16 cm -2 to clarify the following points: chemical reaction after treatment in vacuum and after exposure to air, identification of adsorption-relevant species for metal atoms, formation of cross-links in the outermost polymer layer. The early stages of metal-polymer interface formation during metallization play a crucial role in the metal-polymer adhesion. Therefore, the influence of the ion fluence and ion chemistry on the condensation of noble metals, film growth and peel strength were measured. The peel strength showed a maximum at a certain fluence depending on ion chemistry. For example, the surface treatment with very low fluence of oxygen ions improved the adhesion between copper and polystyrene by two orders of magnitude without significantly increasing the surface roughness measured with AFM. The locus of failure changed at the same time from interfacial failure for untreated polymer surfaces to cohesive failure in the polymer for modified surfaces. A multilayer model of the metal-polymer interface after ion treatment is suggested

  13. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  14. Vitamin a is a negative regulator of osteoblast mineralization.

    Directory of Open Access Journals (Sweden)

    Thomas Lind

    Full Text Available An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1 with the active metabolite of vitamin A; retinoic acid (RA, a retinoic acid receptor (RAR antagonist (AGN194310, and a Cyp26 inhibitor (R115866 which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization.

  15. Effects of space-relevant radiation on pre-osteoblasts

    International Nuclear Information System (INIS)

    Hu, Yueyuan

    2014-01-01

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  16. Identification and proteomic analysis of osteoblast-derived exosomes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng, E-mail: cranio@vip.163.com

    2015-11-06

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. - Highlights: • We for the first time identified exosomes from mouse osteoblast. • Osteoblasts-derived exosomes contain osteoblast peculiar proteins. • Proteins from osteoblasts-derived exosomes are intently involved in EIF2 pathway. • EIF2α from the EIF2 pathway plays an important role in osteogenesis.

  17. Effects of space-relevant radiation on pre-osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yueyuan

    2014-02-12

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  18. Optical adhesive property study

    Energy Technology Data Exchange (ETDEWEB)

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  19. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen

    International Nuclear Information System (INIS)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2013-01-01

    A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m 2 g −1 . The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ∼ 53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time. - Graphical abstract: A spherical calcium phosphate-collagen with flower-like blossoms consisting of nanorod building blocks (SFCaPCol) particles was achieved by a combination of sonication and freeze-drying. In vitro drug release profile and the biocompatibility of the VCM-loaded SFCaPCol composite cell adhesion and proliferation in rat osteoblast-like UMR-106 cells were determined for biomaterial applications. Highlights: ► SFCaPCol and VCM-loaded SFCaPCol composite were synthesized by a combination of ultra sonication and freeze-drying. ► VCM drug-loaded SFCaPCol composite was used as substrate for the growth of rat osteoblast-like UMR-106 cells. ► Controlled release of VCM from the composite is critically medium dependent. ► The VCM-loaded SFCaPCol composite is also bioactive by in

  20. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  1. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  2. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  3. Ultra-fast fluence optimization for beam angle selection algorithms

    Science.gov (United States)

    Bangert, M.; Ziegenhein, P.; Oelfke, U.

    2014-03-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  4. Ultra-fast fluence optimization for beam angle selection algorithms

    International Nuclear Information System (INIS)

    Bangert, M; Ziegenhein, P; Oelfke, U

    2014-01-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ∼ 4 s. BAS runs including FOs for 1000 different beam ensembles take ∼ 15–70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  5. Relating Solar Energetic Particle Event Fluences to Peak Intensities

    Science.gov (United States)

    Kahler, Stephen W.; Ling, Alan G.

    2018-02-01

    Recently we (Kahler and Ling, Solar Phys. 292, 59, 2017: KL) have shown that time-intensity profiles [I(t)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [α and β]. We now look for a simple correlation between an event peak energy intensity [Ip] and the time integral of I(t) over the event duration: the fluence [F]. We first ask how the ratio of F/Ip varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both F and Ip were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4 - 13 MeV band to E > 100 MeV. Within each group of SEP events, we find a very robust correlation (CC > 0.90) in log-log plots of F versus Ip over four decades of Ip. The ratio increases from western to eastern longitudes. From the value of Ip for a given event, F can be estimated to within a standard deviation of a factor of {≤} 2. Log-log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of { 10 MeV to {>} 100 MeV. This difference is not explained.

  6. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  7. Biphasic Fluence-Response Curves for Phytochrome-Mediated Kalanchoë Seed Germination 1

    Science.gov (United States)

    Rethy, Roger; Dedonder, Andrée; De Petter, Edwin; Van Wiemeersch, Luc; Fredericq, Henri; De Greef, Jan; Steyaert, Herman; Stevens, Hilde

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA3) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA3 induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA3 concentration. GA3 having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA3 appears to be on the transduction chain of the phytochrome signal. PMID:16665187

  8. Incorporating the effects of lateral spread of the primary fluence, into compensator design

    International Nuclear Information System (INIS)

    Reece, P.J.; Hoban, P.

    2000-01-01

    Full text: In this study we extended ideas developed by Faddegon and Pfalzner on the construction of patient specific compensating filters. Their research was essentially focused on formulating a general method for creating compensators using a 3D planning system. In their work Faddegon and Pfalzner utilized a simple attenuation model to convert transmission arrays into filter thickness arrays. The compensators constructed from these arrays produce the primary fluence required to give a uniform dose distribution at a specified depth. This technique does not account for local geometric variations hi compensator scattering conditions. Therefore we have devised a method to incorporate the effects of lateral spread of the primary fluence passing through the compensating filter. A 2D Gaussian kernel, generated from Monte Carlo measurements, was used to model the spread of the primary fluence in the compensating filter. A 'maximum likelihood' optimisation algorithm was employed to deconvolve the kernel from the desired primary fluence to produce a more realistic incident fluence and compensator thickness array. The CMS FOCUS planning system was used to generate transmission maps corresponding to the desired influence of the compensating filter. Two compensating filters were constructed for each map, one using the standard attenuation method and the other with our method. For each method, an assessment was made using film dosimetry, on the degree of correlation between the desired primary fluence and the primary fluence produced by the compensating filter. Our results indicate that for compensating filters which are relatively uniform in thickness, there is good agreement between desired and delivered fluence maps for both methods. For non-uniform compensating filters the attenuation method deviates more notably from the desired fluence map. As expected, both methods also show significant deviations around the edges of the filter. It is anticipated that the work done here

  9. SU-F-T-261: Reconstruction of Initial Photon Fluence Based On EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, T; Engenhart-Cabillic, R [Philipp University of Marburg, Marburg (Germany); Czarnecki, D; Maeder, U; Zink, K [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen (Germany); Kussaether, R [MedCom GmbH, Darmstadt (Germany); Poppe, B [University Hospital for Medical Radiation Physics, Pius-Hospital, Medical Campus, Carl von Ossietzky University of Oldenburg (Germany)

    2016-06-15

    Purpose: Verifying an algorithm to reconstruct relative initial photon fluence for clinical use. Clinical EPID and CT images were acquired to reconstruct an external photon radiation treatment field. The reconstructed initial photon fluence could be used to verify the treatment or calculate the applied dose to the patient. Methods: The acquired EPID images were corrected for scatter caused by the patient and the EPID with an iterative reconstruction algorithm. The transmitted photon fluence behind the patient was calculated subsequently. Based on the transmitted fluence the initial photon fluence was calculated using a back-projection algorithm which takes the patient geometry and its energy dependent linear attenuation into account. This attenuation was gained from the acquired cone-beam CT or the planning CT by calculating a water-equivalent radiological thickness for each irradiation direction. To verify the algorithm an inhomogeneous phantom consisting of three inhomogeneities was irradiated by a static 6 MV photon field and compared to a reference flood field image. Results: The mean deviation between the reconstructed relative photon fluence for the inhomogeneous phantom and the flood field EPID image was 3% rising up to 7% for off-axis fluence. This was probably caused by the used clinical EPID calibration, which flattens the inhomogeneous fluence profile of the beam. Conclusion: In this clinical experiment the algorithm achieved good results in the center of the field while it showed high deviation of the lateral fluence. This could be reduced by optimizing the EPID calibration, considering the off-axis differential energy response. In further progress this and other aspects of the EPID, eg. field size dependency, CT and dose calibration have to be studied to realize a clinical acceptable accuracy of 2%.

  10. Immobilisation of hydroxyapatite-collagen on polydopamine grafted stainless steel 316L: Coating adhesion and in vitro cells evaluation.

    Science.gov (United States)

    Tapsir, Zafirah; Jamaludin, Farah H; Pingguan-Murphy, Belinda; Saidin, Syafiqah

    2018-02-01

    The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.

  11. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    International Nuclear Information System (INIS)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a open-quotes best estimateclose quotes of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards

  12. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  13. Dependence of laser assisted cleaning of clad surfaces on the laser fluence

    International Nuclear Information System (INIS)

    Nilaya, J.P.; Raote, P.; Sai Prasad, M.B.; Biswas, D.J.; Aniruddha Kumar

    2005-01-01

    The decontamination factor is studied as a function of laser fluence for three kinds of clad surfaces viz., plain zircaloy, autoclaved zircaloy and SS with cesium as the test contamination. It has been found that the decontamination factor exhibits a maximal behaviour with the laser fluence and its maximum value occurs at different laser fluences in the three cases. The maximal behaviour is attributed to reduced coupling of energy from the laser beam to the substrate due to the initiation of surface-assisted optical breakdown. The results obtained in the experiment carried out in helium environment qualitatively support this explanation (author)

  14. Solid State Track Recorder fission rate measurements at high neutron fluence and high temperature

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.

    1985-01-01

    Solid State Track Recorder (SSTR) techniques have been used to measure 239-Pu, 235-U, and 237-Np fission rates for total neutron fluences approaching 5 x 10 17 n/cm 2 at temperatures in the range 680 to 830 0 F. Natural quartz crystal SSTRs were used to withstand the high temperature environment and ultra low-mass fissionable deposits of the three isotopes were required to yield scannable track densities at the high neutron fluences. The results of these high temperature, high neutron fluence measurements are reported

  15. Superconductivity in irradiated A-15 compounds at low fluences. I. Neutron-irradiated V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Pande, C.S.

    1978-01-01

    The behavior of the superconducting transition temperature T/sub c/ of single-crystal and polycrystalline V 3 Si was investigated as a function of low-fluence neutron irradiation. It is found that the initial degradation of T/sub c/ is sample-dependent, some specimens showing no degradation in T/sub c/ up to a fluence of 2 x 10 18 n/cm 2 . This and many other earlier observations on low-fluence behavior are explained in terms of a recently proposed model of radiation damage in A-15 compounds

  16. The determination of fast neutron fluence in radiation stability tests of steel samples

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1979-01-01

    The activation method is described of determining fast neutron fluence. Samples of steel designed for WWER type reactor pressure vessels were irradiated in the CHOUCA-rigs in the core of the WWR-S reactor. The neutron spectrum was measured by the multiple activation foil method and the effective cross sections of fluence monitors were calculated. The fluences obtained from the reactions 54 Fe(n,p) 54 Mn and 63 Cu(n,α) 60 Co are presented and the method is discussed. (author)

  17. Time-resolved angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver...... in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra, as well...

  18. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  19. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  20. Nanostructured magnesium has fewer detrimental effects on osteoblast function.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.

  1. ent-Kaurane diterpenoids from Croton tonkinensis stimulate osteoblast differentiation

    DEFF Research Database (Denmark)

    Dao, Trong-Tuan; Lee, Kwang-Youl; Jeong, Hyung-Min

    2011-01-01

    Four new ent-kaurane diterpenoids (1-4) were isolated from the leaves of Croton tonkinensis by bioactivity-guided fractionation using an in vitro osteoblast differentiation assay. Their structures were identified as ent-11β-acetoxykaur-16-en-18-ol (1), ent-11α-hydroxy-18-acetoxykaur-16-ene (2), e...

  2. Reprogramming of Mouse Calvarial Osteoblasts into Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yinxiang Wang

    2018-01-01

    Full Text Available Previous studies have demonstrated the ability of reprogramming endochondral bone into induced pluripotent stem (iPS cells, but whether similar phenomenon occurs in intramembranous bone remains to be determined. Here we adopted fluorescence-activated cell sorting-based strategy to isolate homogenous population of intramembranous calvarial osteoblasts from newborn transgenic mice carrying both Osx1-GFP::Cre and Oct4-EGFP transgenes. Following retroviral transduction of Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc, enriched population of osteoblasts underwent silencing of Osx1-GFP::Cre expression at early stage of reprogramming followed by late activation of Oct4-EGFP expression in the resulting iPS cells. These osteoblast-derived iPS cells exhibited gene expression profiles akin to embryonic stem cells and were pluripotent as demonstrated by their ability to form teratomas comprising tissues from all germ layers and also contribute to tail tissue in chimera embryos. These data demonstrate that iPS cells can be generated from intramembranous osteoblasts.

  3. Rotary culture enhances pre-osteoblast aggregation and mineralization.

    Science.gov (United States)

    Facer, S R; Zaharias, R S; Andracki, M E; Lafoon, J; Hunter, S K; Schneider, G B

    2005-06-01

    Three-dimensional environments have been shown to enhance cell aggregation and osteoblast differentiation. Thus, we hypothesized that three-dimensional (3D) growth environments would enhance the mineralization rate of human embryonic palatal mesenchymal (HEPM) pre-osteoblasts. The objective of this study was to investigate the potential use of rotary cell culture systems (RCCS) as a means to enhance the osteogenic potential of pre-osteoblast cells. HEPM cells were cultured in a RCCS to create 3D enviroments. Tissue culture plastic (2D) cultures served as our control. 3D environments promoted three-dimensional aggregate formations. Increased calcium and phosphorus deposition was significantly enhanced three- to 18-fold (P < 0.001) in 3D cultures as compared with 2D environments. 3D cultures mineralized in 1 wk as compared with the 2D cultures, which took 4 wks, a decrease in time of nearly 75%. In conclusion, our studies demonstrated that 3D environments enhanced osteoblast cell aggregation and mineralization.

  4. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  5. Measurement of oxygen consumption rate of osteoblasts from ...

    African Journals Online (AJOL)

    The cells were evaluated through live/dead assay, hematoxylin-eosin (HE) and alkaline phosphatase (ALP) staining. Moreover, Von-Kossa staining and Alizarin Red S staining were carried out for mineralized nodule formation. Following this, the oxygen consumption rates of osteoblasts in the earlier mentioned different ...

  6. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 129, May (2015), 95-99 ISSN 0927-7765 R&D Projects: GA ČR GAP108/12/0996 Grant - others:AVČR(CZ) M100101209 Institutional support: RVO:68378271 Keywords : field-effect transistors * nanocrystalline diamond * osteoblastic cells * leakage currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.902, year: 2015

  7. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Yun-Yun Ma

    Full Text Available Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  8. Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh.

    Science.gov (United States)

    Wang, Weiguang; Lian, Na; Ma, Yun; Li, Lingzhen; Gallant, Richard C; Elefteriou, Florent; Yang, Xiangli

    2012-02-01

    Atf4 is a leucine zipper-containing transcription factor that activates osteocalcin (Ocn) in osteoblasts and indian hedgehog (Ihh) in chondrocytes. The relative contribution of Atf4 in chondrocytes and osteoblasts to the regulation of skeletal development and bone formation is poorly understood. Investigations of the Atf4(-/-);Col2a1-Atf4 mouse model, in which Atf4 is selectively overexpressed in chondrocytes in an Atf4-null background, demonstrate that chondrocyte-derived Atf4 regulates osteogenesis during development and bone remodeling postnatally. Atf4 overexpression in chondrocytes of the Atf4(-/-);Col2a1-Atf4 double mutants corrects the reduction in stature and limb in Atf4(-/-) embryos and rectifies the decrease in Ihh expression, Hh signaling, proliferation and accelerated hypertrophy that characterize the Atf4(-/-) developing growth plate cartilages. Unexpectedly, this genetic manipulation also restores the expression of osteoblastic marker genes, namely Ocn and bone sialoprotein, in Atf4(-/-) developing bones. In Atf4(-/-);Col2a1-Atf4 adult mice, all the defective bone parameters found in Atf4(-/-) mice, including bone volume, trabecular number and thickness, and bone formation rate, are rescued. In addition, the conditioned media of ex vivo cultures from wild-type or Atf4(-/-);Col2a1-Atf4, but not Atf4(-/-) cartilage, corrects the differentiation defects of Atf4(-/-) bone marrow stromal cells and Ihh-blocking antibody eliminates this effect. Together, these data indicate that Atf4 in chondrocytes is required for normal Ihh expression and for its paracrine effect on osteoblast differentiation. Therefore, the cell-autonomous role of Atf4 in chondrocytes dominates the role of Atf4 in osteoblasts during development for the control of early osteogenesis and skeletal growth.

  9. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation

    Science.gov (United States)

    Ho, Ming-Hua; Liao, Mei-Hsiu; Lin, Yi-Ling; Lai, Chien-Hao; Lin, Pei-I; Chen, Ruei-Ming

    2014-01-01

    Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell–cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression. PMID:25246786

  10. Effects of calcium-phosphate topography on osteoblast mechanobiology determined using a cytodetacher

    International Nuclear Information System (INIS)

    Yang, Shih-Ping; Yang, Chyun-Yu; Lee, Tzer-Min; Lui, Truan-Sheng

    2012-01-01

    The Human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a calcium-phosphate (Ca-P) micropattern surface were investigated and the mechanobiology was investigated by a cytodetachment test. Ca-P-coated groove patterns with 3.0-μm-deep grooves (C3), 4.5-μm-deep grooves (C4), and 5.5-μm-deep grooves (C5) were produced on silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium (bond coat) and a 200-nm-thick layer of calcium phosphate (top coat) using a sputtering system. Smooth Ca-P-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that cells on the Ca-P micropattern showed spreading and elongation. The MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay indicated that C3 and C4 specimens had a significantly higher number of cells than did the control group after 5- and 15-day cultures. The cyto-compatibility of specimens was quantitatively evaluated using a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 38.4 nN for the smooth specimen, 140.8 nN for C3, 124.2 nN for C4, and 67.1 nN for C5. The results indicate that the cell adhesion force is influenced by cell shape and the Ca-P grooved patterns affect the cell shape and cytoskeletal structure, thus influence cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. - Highlights: ► We fabricate different sizes of bioceramic groove surfaces which control the cell physiology. ► The mechanobiology was investigated by a cytodetachment test. ► The narrow size Ca-P micropatterns have better biocompatibility. ► The cytodetachment test with nanonewton resolution is a sensitive method for studying cell

  11. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Glaser, Daniel [Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm (Sweden); Romeijn, H Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117 (United States); Dempsey, James F, E-mail: aleman@mie.utoronto.c, E-mail: romeijn@umich.ed, E-mail: jfdempsey@viewray.co [ViewRay, Inc. 2 Thermo Fisher Way, Village of Oakwood, OH 44146 (United States)

    2010-09-21

    One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.

  12. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT

    International Nuclear Information System (INIS)

    Aleman, Dionne M; Glaser, Daniel; Romeijn, H Edwin; Dempsey, James F

    2010-01-01

    One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.

  13. Development of neutron fluence measurement and evaluation technology for the test materials in the capsule

    Energy Technology Data Exchange (ETDEWEB)

    Hong, U.; Choi, S. H.; Kang, H. D. [Kyungsan University, Kyungsan (Korea)

    2000-03-01

    The four kinds of the fluence monitor considered by self-shielding are design and fabricated for evaluation of neutron irradiation fluence. They are equipped with dosimeters consisting of Ni, Fe and Ti wires and so forth. The nuclear reaction rate is obtained by measurement on dosimeter using the spectroscopic analysis of induced {gamma}-ray. We established the nuetron fluence evaluating technology that is based on the measurement of the reaction rate considering reactor's irradiation history, burn-out, self-shielding in fluence monitor, and the influence of impurity in dosimeter. The distribution of high energy neutron flux on the vertical axis of the capsule shows fifth order polynomial equation and is good agree with theoretical value in the error range of 30% by MCNP/4A code. 22 refs., 50 figs., 27 tabs. (Author)

  14. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    Yan Ying; Cai Kaiyong; Yang Weihu; Liu Peng

    2013-01-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  15. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  16. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol

    Science.gov (United States)

    Bashir, Shazia; Rafique, Muhammad Shahid; Nathala, Chandra Sekher; Ajami, Ali Asghar; Husinsky, Wolfgang

    2017-05-01

    The effect of femtosecond laser fluence on nanostructuring of Tungsten (W) and Molybdenum (Mo) has been investigated after ablation in ethanol environment. A Ti: Sapphire laser (800 nm, 30 fs) at fluences ranging from 0.6 to 5.7 J cm-2 was employed to ablate targets. The growth of structures on the surface of irradiated targets is investigated by Field Emission Scanning Electron Microscope (FESEM) analysis. The SEM was performed for both central as well as the peripheral ablated regions. It is observed that both the development and shape of nanoscale features is dependent upon deposited energies to the target surface as well as nature of material. Nanostructures grown on Mo are more distinct and well defined as compared to W. At central ablated areas of W, unorganized Laser Induced Periodic Surface Structures (LIPSS) are grown at low fluences, whereas, nonuniform melting along with cracking is observed at higher fluences. In case of Mo, well-defined and organized LIPSS are observed for low fluences. With increasing fluence, LIPSS become unorganized and broken with an appearance of cracks and are completely vanished with the formation of nanoscale cavities and conical structures. In case of peripheral ablated areas broken and bifurcated LIPSS are grown for all fluences for both materials. The, ablated diameter, ablation depth, ablation rate and the dependence of periodicity of LIPSS on the laser fluence are also estimated for both W and Mo. Parametric instabilities of laser-induced plasma along with generation and scattering of surface plasmons is considered as a possible cause for the formation of LIPSS. For ethanol assisted ablation, the role of bubble cavitation, precipitation, confinement and the convective flow is considered to be responsible for inducing increased hydrodynamic instabilities at the liquid-solid interface.

  17. Deduction of solar neutron fluences from large gamma-ray flares

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Watanabe, Hiroyuki; Takahashi, Kazuyoshi.

    1986-01-01

    Solar neutron fluences from large gamma-ray flares are deduced from accelerated proton spectra and numbers derived from the gamma-ray observations. The deduced solar neutron fluences range from 1 to 200 neutrons cm -2 . The present result indicates a possibility that high sensitivity ground-based neutron monitors can detect solar neutron events, just as detected by the Jungfraujoch and Rome neutron monitors. (author)

  18. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Centre for Advanced Studies in Physics, Government College University Lahore (Pakistan); Rafique, Muhammad Shahid [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Engineering and Technology Lahore (Pakistan); Nathala, Chandra Sekher [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Ajami, Ali Asghar [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Faculty of Physics, Semnan University, Semnan (Iran, Islamic Republic of); Husinsky, Wolfgang [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria)

    2017-05-15

    The effect of femtosecond laser fluence on nanostructuring of Tungsten (W) and Molybdenum (Mo) has been investigated after ablation in ethanol environment. A Ti: Sapphire laser (800 nm, 30 fs) at fluences ranging from 0.6 to 5.7 J cm{sup −2} was employed to ablate targets. The growth of structures on the surface of irradiated targets is investigated by Field Emission Scanning Electron Microscope (FESEM) analysis. The SEM was performed for both central as well as the peripheral ablated regions. It is observed that both the development and shape of nanoscale features is dependent upon deposited energies to the target surface as well as nature of material. Nanostructures grown on Mo are more distinct and well defined as compared to W. At central ablated areas of W, unorganized Laser Induced Periodic Surface Structures (LIPSS) are grown at low fluences, whereas, nonuniform melting along with cracking is observed at higher fluences. In case of Mo, well-defined and organized LIPSS are observed for low fluences. With increasing fluence, LIPSS become unorganized and broken with an appearance of cracks and are completely vanished with the formation of nanoscale cavities and conical structures. In case of peripheral ablated areas broken and bifurcated LIPSS are grown for all fluences for both materials. The, ablated diameter, ablation depth, ablation rate and the dependence of periodicity of LIPSS on the laser fluence are also estimated for both W and Mo. Parametric instabilities of laser-induced plasma along with generation and scattering of surface plasmons is considered as a possible cause for the formation of LIPSS. For ethanol assisted ablation, the role of bubble cavitation, precipitation, confinement and the convective flow is considered to be responsible for inducing increased hydrodynamic instabilities at the liquid-solid interface.

  19. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  20. The Effects of Photobiomodulation of 808 nm Diode Laser Therapy at Higher Fluence on the in Vitro Osteogenic Differentiation of Bone Marrow Stromal Cells

    Directory of Open Access Journals (Sweden)

    Andrea Amaroli

    2018-02-01

    Full Text Available The literature has supported the concept of mesenchymal stromal cells (MSCs in bone regeneration as one of the most important applications in oro-maxillofacial reconstructions. However, the fate of the transplanted cells and their effects on the clinical outcome is still uncertain. Photobiomodulation (PBM plays an important role in the acceleration of tissue regeneration and potential repair. The aim of this in vitro study is to evaluate the effectiveness of PBM with 808 nm diode laser therapy, using a flat-top hand-piece delivery system at a higher-fluence (64 J/cm2 irradiation (1 W, continuous-wave on bone marrow stromal cells (BMSCs. The BMSCs of 3 old female Balb-c mice were analyzed. The cells were divided into two groups: irradiated group and control group. In the former the cells were irradiated every 24 h during 0 day (T0, 5 (T1, 10 (T2, and 15 (T3 days, whereas the control group was non-irradiated. The results have shown that the 64 J/cm2 laser irradiation has increased the Runt-related transcription factor 2 (Runx2. Runx2 is the most important early marker of osteoblast differentiation. The higher-fluence suppressed the synthesis of adipogenic transcription factor (PPARγ, the pivotal transcription factor in adipogenic differentiation. Also, the osteogenic markers such as Osterix (Osx and alkaline phosphatase (ALP were upregulated with an increase in the matrix mineralization. Furthermore, western blotting data demonstrated that the laser therapy has induced a statistically valid increase in the synthesis of transforming growth factor β1 (TGF-β1 but had no effects on the tumor necrosis factor α (TNFα production. The data has statistically validated the down-regulation of the important pro-inflammatory cytokines such as interleukin IL-6, and IL-17 after 808 nm PBM exposition. An increase in anti-inflammatory cytokines such as IL-1rα and IL-10 was observed. These in vitro studies provide for first time the initial proof that the PBM

  1. Optical properties tailoring by high fluence implantation of Ag ions on sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Silva, R.C. da; Wemans, A.; Maneira, M.J.P.; Kozanecki, A.; Alves, E.

    2006-01-01

    Optical and structural properties of single crystalline α-Al 2 O 3 were changed by the implantation of high fluences of Ag ions. Colourless transparent (101-bar 0) sapphire samples were implanted at room temperature with 160keV silver ions and fluences up to 1x10 17 Agcm -2 . Surface amorphization is observed at the fluence of 6x10 16 Agcm -2 . Except for the lower fluences (below 6x10 16 Agcm -2 ) the optical absorption spectra reveal the presence of a band peaking in the region 450-500nm, depending on the retained fluence. This band has been attributed to the presence of silver colloids, being thus 1x10 16 Agcm -2 below the threshold for colloid formation during the implantation. Annealing in oxidizing atmosphere promotes the recrystallization along with segregation of Ag followed by loss through evaporation. Recrystallization is retarded for annealing in reducing atmosphere and the Ag profile displays now a double peak structure after evaporation. Playing with the implantation fluence, temperature and annealing atmosphere controllable shifts of the position and intensity of the optical bands in the visible were achieved

  2. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  3. Neutron Fluence Evaluation using an Am-Be Neutron Sources Assembly and P ADC Detectors

    International Nuclear Information System (INIS)

    Seddik, U.

    2008-01-01

    An assembly of four 241 Am-Be sources has been constructed at Nuclear Reactions Unit (NRU) of Nuclear Research Center (NRU) to perform analysis of different materials using thermal and fast neutrons. In the present paper, we measure the value of transmittance (T) in percentage of etched CR-39 detectors using a spectrophotometer at different neutron fluences ,to relate the transmittance of the detector with the neutron fluence values. The exposed samples to neutrons with accumulated fluence of order between 10 10 and 10 12 cm -2 were etched for 15 time intervals between 10-600 min in 6.25 N NaOH at 70 degree C. The etched samples were analyzed using Tech 8500 II spectrophotometer. A trend of the sample transmission and the etching time is observed which is different for each fluence value. A linear relation between the transmittance decay constant and the neutron fluence is observed which could be used as a calibration to determine unknown neutron fluence

  4. Neutron fluence measurement in nuclear facilities.; Medicion de flujos de neutrones en instalaciones nucleares.

    Energy Technology Data Exchange (ETDEWEB)

    Camacho L, M E

    1997-12-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant `Laguna Verde`. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the `Centro de Metrologia de Radiaciones Ionizantes` of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author).

  5. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  6. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-04-15

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10{sup 6} cm{sup −2}. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount.

  7. Responses of human normal osteoblast cells and osteoblast-like cell line, MG-63 cells, to pulse electromagnetic field (PEMF

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2008-01-01

    Full Text Available The objective of this in vitro study is to investigate the effect of pulsed electromagnetic field (PEMF on cellular proliferation and osteocalcin production of osteoblast-like cell line, MG-63 cells, and human normal osteoblast cells (NHOC obtained from surgical bone specimens. The cells were placed in 24-well culture plates in the amount of 3x104 cell/wells with 2 ml αMEM media supplemented with 10% FBS. The experimental plates were placed between a pair of Helmoltz coils powered by a pulse generator (PEMF, 50 Hz, 1.5 mV/cm in the upper compartment of a dual incubator (Forma. The control plates were placed in the lower compartment of the incubator without Helmotz coils. After three days, the cell proliferation was measured by the method modified from Mossman (J. Immunol Methods 1983; 65: 55-63. Other sets of plates were used for osteocalcin production assessment. Media from these sets were collected after 6 days and assessed for osteocalcin production using ELISA kits. The data were analyzed using a one-way analysis of variance (ANOVA. The results showed that MG-63 cells from the experimental group proliferated significantly more than those from the control group (20% increase, p<0.05. No significant difference in osteocalcin production was detected between the two groups. On the other hand, NHOC from the experimental group produced larger amount of osteocalcin (25% increase, p<0.05 and proliferated significantly more than those from the control group (100% increase, p<0.05. In conclusion, PEMF effect on osteoblasts might depend on their cell type of origin. For osteoblast-like cell line, MG-63 cells, PEMF increased proliferation rate but not osteocalcin production of the cells. However, PEMF stimulation effect on human normal osteoblast cells was most likely associated with enhancement of both osteocalcin production and cell proliferation.

  8. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  9. Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts.

    Science.gov (United States)

    Milovancev, Milan; Hilgart-Martiszus, Ian; McNamara, Michael J; Goodall, Cheri P; Seguin, Bernard; Bracha, Shay; Wickramasekara, Samanthi I

    2013-06-13

    Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data

  10. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  11. Effects of ion beam treatment on atomic and macroscopic adhesion of copper to different polymer materials

    International Nuclear Information System (INIS)

    Zaporojtchenko, V.; Zekonyte, J.; Faupel, F.

    2007-01-01

    Low-energy ion irradiation of polymer induces different phenomena in the near surface layer, which effect strongly the metal-polymer interface formation and promotes adhesion of polymers to metals. Low-energy argon and oxygen ion beams were used to alter the chemical and physical properties of different polymers (PS (polystyrene), PαMS (poly(α-methylstyrene), BPA-PC (bisphenol-A-polycarbonate) and PMMA (poly(methyl methacrylate)), in order to understand the adhesion phenomena between a deposited Cu layer and the polymers. The resulting changes were investigated by various techniques including X-ray photoelectron spectroscopy, measurements of the metal condensation coefficient and a new technique to measure cross-linking at the polymer surface. Two types of practical adhesion strengths of Cu-polymer systems, measured using 90 o peel tests, were observed: (i) peel strength increased at low ion fluences, reached a maximum and then decreased after prolonged treatment and (ii) no improvement in the peel strength on treated polymer surfaces was recorded. The improvement in the metal-polymer adhesion in the ion fluence range of 10 13 -10 15 cm -2 is attributed to the creation of a large density of new adsorption sites resulting in a larger contact area and incorporation of chemically active groups that lead to increased interaction between metal and polymer by metal-oxygen-polymer species formation. XPS analysis of peeled-off surfaces showed that in most cases the failure location changed from interfacial for untreated polymers to cohesive failure in the polymer for treated surfaces. These observations and measurements of the metal condensation coefficients suggest that bonding is improved at the metal-polymer interface for all metal-polymer systems. However, the decrease in the peel strength at high ion fluences is attributed to the formation of a weak boundary layer in polymers. The correlation between sputter rate of polymers and altering in the peel strength for

  12. Osteoblastic cell response to spark plasma-sintered zirconia/titanium cermets.

    Science.gov (United States)

    Fernandez-Garcia, Elisa; Guillem-Marti, Jordi; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Ginebra, Maria-Pau; Lopez-Esteban, Sonia

    2015-01-01

    Ceramic/metal composites, cermets, arise from the idea to combine the dissimilar properties in the pure materials. This work aims to study the biocompatibility of new micro-nanostructured 3 Y-TZP/Ti materials with 25, 50 and 75 vol.% Ti, which have been successfully obtained by spark slasma sintering technology, as well as to correlate their surface properties (roughness, wettability and chemical composition) with the osteoblastic cell response. All samples had isotropic and slightly waved microstructure, with sub-micrometric average roughness. Composites with 75 vol.% Ti had the highest surface hydrophilicity. Surface chemical composition of the cermets correlated well with the relative amounts used for their fabrication. A cell viability rate over 80% dismissed any cytotoxicity risk due to manufacturing. Cell adhesion and early differentiation were significantly enhanced on materials containing the nanostructured 3 Y-TZP phase. Proliferation and differentiation of SaOS-2 were significantly improved in their late-stage on the composite with 75 vol.% Ti that, from the osseointegration standpoint, is presented as an excellent biomaterial for bone replacement. Thus, spark plasma sintering is consolidated as a suitable technology for manufacturing nanostructured biomaterials with enhanced bioactivity. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Scanning electron microscopical observation of an osteoblast/osteoclast co-culture on micropatterned orthopaedic ceramics.

    Science.gov (United States)

    Halai, Mansur; Ker, Andrew; Meek, Rm Dominic; Nadeem, Danish; Sjostrom, Terje; Su, Bo; McNamara, Laura E; Dalby, Matthew J; Young, Peter S

    2014-01-01

    In biomaterial engineering, the surface of an implant can influence cell differentiation, adhesion and affinity towards the implant. On contact with an implant, bone marrow-derived mesenchymal stromal cells demonstrate differentiation towards bone forming osteoblasts, which can improve osteointegration. The process of micropatterning has been shown to improve osteointegration in polymers, but there are few reports surrounding ceramics. The purpose of this study was to establish a co-culture of bone marrow-derived mesenchymal stromal cells with osteoclast progenitor cells and to observe the response to micropatterned zirconia toughened alumina ceramics with 30 µm diameter pits. The aim was to establish whether the pits were specifically bioactive towards osteogenesis or were generally bioactive and would also stimulate osteoclastogenesis that could potentially lead to osteolysis. We demonstrate specific bioactivity of micropatterns towards osteogenesis, with more nodule formation and less osteoclastogenesis compared to planar controls. In addition, we found that that macrophage and osteoclast-like cells did not interact with the pits and formed fewer full-size osteoclast-like cells on the pitted surfaces. This may have a role when designing ceramic orthopaedic implants.

  14. Understanding the response of pulsed electric field on osteoblast functions in three-dimensional mesh structures.

    Science.gov (United States)

    Kumar, A; Nune, K C; Misra, Rdk

    2016-10-01

    The endogenous electric field plays a determining role in impacting biological functions including communication with the physiological system, brain, and bone regeneration by influencing cellular functions. From this perspective, the objective of the study described here is to elucidate the effect of external electric field under dynamic conditions, in providing a guiding cue to osteoblasts in terms of cell-cell interactions and synthesis of prominent adhesion and cytoskeleton proteins. This was accomplished using pulsed direct current electric field of strength 0.1-1 V/cm. The electric field provided guided cue to the cells to migrate toward cathode. Membrane blebbing or necrosis was nearly absent in the vicinity of cathode at 0.1 and 0.5 V/cm electric field strength. Moreover, a higher cell proliferation as well as higher expression of vinculin and densely packed actin stress fibers was observed. At anode, the cells though healthy but expression of actin and vinculin was less. We underscore for the first time that the biological functionality can be favorably modulated on 3D printed scaffolds in the presence of electric field and under dynamic conditions with consequent positive effect on cell proliferation, growth, and expression level of prominent proteins. © The Author(s) 2016.

  15. Fabrication of biomimetic resorption lacunae-like structure on titanium surface and its osteoblast responses

    Science.gov (United States)

    Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong

    2018-04-01

    Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.

  16. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2016-02-01

    Full Text Available Morshed Khandaker,1,4 Shahram Riahinezhad,1 Fariha Sultana,1 Melville B Vaughan,2,4 Joshua Knight,2 Tracy L Morris3,4 1Department of Engineering & Physics, 2Department of Biology, 3Department of Mathematics and Statistics, 4Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA Abstract: Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples

  17. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    International Nuclear Information System (INIS)

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-01-01

    Research highlights: → In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. → MG63 cells were incubated with BMP-2 and HA for various time periods. → Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. → HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and nuclear translocation

  18. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  19. an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Taghizadeh

    2013-01-01

    Full Text Available Drug-in-adhesive transdermal drug delivery systems  TDDSs containing stimulants, termed as energetic substances, such as caffeine and pantothenic acid, were studied. Caffeine is a white crystalline substance and a stimulant to central nervous system. In humans, caffeine acts as a central nervous system stimulant, temporarily warding off drowsiness and restoring alertness. Pantothenic acid, also recognized as vitamin B5, is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Animals require pantothenic acid to synthesize and metabolize proteins, carbohydrates and fats. For this purpose caffeine and pantothenic acid were  used  as  drug  components with  6.32%  and  1.12%  loadings,  in  different functional and non-functional acrylic pressure sensitive adhesives (PSAs of 52.89%, respectively. Ethylene glycol as a chemical enhancer was used in all TDDSs with 39.67%. The effect of PSAs  type on  in vitro  release and adhesion properties  (peel strength and tack values from drug delivery devices were evaluated. It was found that TDDS containing -COOH functional PSA showed  the  lowest steady state fux. The adhesion properties of the samples were improved by addition of functional acrylic PSA in formulations.

  20. Leukocyte adhesion deficiencies

    NARCIS (Netherlands)

    van de Vijver, Edith; van den Berg, Timo K.; Kuijpers, Taco W.

    2013-01-01

    During inflammation, leukocytes play a key role in maintaining tissue homeostasis through elimination of pathogens and removal of damaged tissue. Leukocytes migrate to the site of inflammation by crawling over and through the blood vessel wall, into the tissue. Leukocyte adhesion deficiencies (ie,

  1. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful...

  2. Wood Composite Adhesives

    Science.gov (United States)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  3. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.

    Science.gov (United States)

    Silva, Edmundo; Vasconcellos, Luana Marotta Reis de; Rodrigues, Bruno V M; Dos Santos, Danilo Martins; Campana-Filho, Sergio P; Marciano, Fernanda Roberta; Webster, Thomas J; Lobo, Anderson Oliveira

    2017-04-01

    Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function

    Energy Technology Data Exchange (ETDEWEB)

    Subramani, K [Institute for Nanoscale Science and Technology (INSAT), University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7AR (United Kingdom); Birch, M A [Institute for Nanoscale Science and Technology (INSAT), University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7AR (United Kingdom)

    2006-09-15

    The aims of this study were to fabricate poly(ethylene glycol) (PEG) hydrogel micropatterns on a biomaterial surface to guide osteoblast behaviour and to study how incorporating vascular endothelial growth factor (VEGF) within the adhered hydrogel influenced cell morphology. Standard photolithographic procedures or photopolymerization through a poly(dimethyl siloxane) (PDMS) mould were used to fabricate patterned PEG hydrogels on the surface of silanized silicon wafers. Hydrogel patterns were evaluated by light microscopy and surface profilometry. Rat osteoblasts were cultured on these surfaces and cell morphology investigated by fluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Release of protein trapped in the polymerized PEG was evaluated and VEGF-PEG surfaces were characterized for their ability to support cell growth. These studies show that photopolymerized PEG can be used to create anti-adhesive structures on the surface of silicon that completely control where cell interaction with the substrate takes place. Using conventional lithography, structures down to 50 {mu}m were routinely fabricated with the boundaries exhibiting sloping sides. Using the PDMS mould approach, structures were fabricated as small as 10 {mu}m and boundaries were very sharp and vertical. Osteoblasts exhibiting typical morphology only grew on the silicon wafer surface that was not coated with PEG. Adding BSA to the monomer solution showed that protein could be released from the hydrogel for up to 7 days in vitro. Incorporating VEGF in the hydrogel produced micropatterns that dramatically altered osteoblast behaviour. At boundaries with the VEGF-PEG hydrogel, there was striking formation of cellular processes and membrane ruffling indicative of a change in cell morphology. This study has explored the morphogenetic properties of VEGF and the applications of nano/microfabrication techniques for guided tissue (bone) regeneration in dental and

  5. Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases.

    Directory of Open Access Journals (Sweden)

    Shamik Das

    Full Text Available The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon.

  6. Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening.

    Science.gov (United States)

    Sun, Wen-xiao; Zheng, Hai-ya; Lan, Jun

    2015-11-01

    Existing evidences have emphasized an important role of oxidative stress in dexamethasone (Dex)-induced osteoblastic cell damages. Here, we investigated the possible anti-Dex activity of edaravone in osteoblastic cells, and studied the underlying mechanisms. We showed that edaravone dose-dependently attenuated Dex-induced death and apoptosis of established human or murine osteoblastic cells. Further, Dex-mediated damages to primary murine osteoblasts were also alleviated by edaravone. In osteoblastic cells/osteoblasts, Dex induced significant oxidative stresses, tested by increased levels of reactive oxygen species and lipid peroxidation, which were remarkably inhibited by edaravone. Meanwhile, edaravone repressed Dex-induced mitochondrial permeability transition pore (mPTP) opening, or mitochondrial membrane potential reduction, in osteoblastic cells/osteoblasts. Significantly, edaravone-induced osteoblast-protective activity against Dex was alleviated with mPTP inhibition through cyclosporin A or cyclophilin-D siRNA. Together, we demonstrate that edaravone protects osteoblasts from Dex-induced damages probably through inhibiting oxidative stresses and following mPTP opening.

  7. Irradiation of Polystyrene and Polypropylene to study NIH 3T3 fibroblasts adhesion

    International Nuclear Information System (INIS)

    Arbeitman, C.R.; Grosso, M.F. del; Ibanez, I.; Garcia Bermudez, G.; Duran, H.; Chappa, V.C.; Mazzei, R.; Behar, M.

    2010-01-01

    When polymers are irradiated with heavy ions new chemical groups are created in a few microns of the material. The irradiation changed the polarity and wettability on the surface so that could enhance the biocompatibility of the modified polymer. The study of chemistry and nanoscale topography of the biomaterial is important in determining its potential applications in medicine and biotechnology, because their strong influence on cell function, adhesion and proliferation. In this study, thin films of Polystyrene and Polypropylene samples were modified by irradiation with low energy ion beams (30-150 keV) and swift heavy ions both with various fluences and energies. The changes were evaluated with different methods. Adhesion of NIH 3T3 fibroblasts onto unirradiated and irradiated surfaces has been studied by in vitro techniques. The correlations between physicochemical properties as a function of different irradiations parameters were compared with cell adhesion on the modified polymer surface.

  8. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  9. SU-F-T-289: MLC Fluence Sonogram Based Delivery Quality Assurance for Bilateral Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder; Mahendran, Ramu; Selvan, Tamil; Duraikannu, Palani [Division of Radiation Oncology, Medanta The Medicity, Gurgaon, Haryana (India); Raj, Nambi [Department of Physics, School of Advanced sciences, VIT University, Vellore (India); Arunai, N

    2016-06-15

    Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without any phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.

  10. Differentiation of bovine spermatogonial stem cells into osteoblasts.

    Science.gov (United States)

    Qasemi-Panahi, Babak; Tajik, Parviz; Movahedin, Mansoureh; Moghaddam, Gholamali; Barzgar, Younes; Heidari-Vala, Hamed

    2011-07-01

    Spermatogonial Stem Cell (SSC) technologies provide multiple opportunities for research in the field of biotechnology and regenerative medicine. The therapeutic use of Embryonic Stem Cells (ESCs) is restricted due to severe ethical and immunological concerns. Therefore, we need a new pluripotent cell type. Despite well-known role of germ cells in the gametogenesis, some facts apparently show their multipotentiality. In the present study, bovine SSCs were co-cultured with Sertoli cell for 7 days. Sertoli cells and SSCs were identified by Vimentin and Oct-4 immunocytochemical staining method, respectively. In order to differentiate SSCs into osteoblasts, we used consecutive inducer media without separation of the colonies. We characterized osteoblasts using Alizarin red staining.

  11. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation.

    Directory of Open Access Journals (Sweden)

    Michael Pujari-Palmer

    Full Text Available Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2 or prostaglandin E2 (PGE2, are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2, BMP-2 and vascular endothelial growth factor (VEGF, in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage. Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM, and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.

  12. Transdifferentiation of myoblasts into osteoblasts - possible use for bone therapy.

    Science.gov (United States)

    Lin, Daphne P L; Carnagarin, Revathy; Dharmarajan, Arun; Dass, Crispin R

    2017-12-01

    Transdifferentiation is defined as the conversion of one cell type to another and is an ever-expanding field with a growing number of cells found to be capable of such a process. To date, the fact remains that there are limited treatment options for fracture healing, osteoporosis and bone repair post-destruction by bone tumours. Hence, this review focuses on the transdifferentiation of myoblast to osteoblast as a means to further understand the transdifferentiation process and to investigate a potential therapeutic option if successful. The potent osteoinductive effects of the bone morphogenetic protein-2 are largely implicated in the transdifferentiation of myoblast to osteoblast. Bone morphogenetic protein-2-induced activation of the Smad1 protein ultimately results in JunB synthesis, the first transcriptional step in myoblast dedifferentiation. The upregulation of the activating protein-1 binding activity triggers the transcription of the runt-related transcription factor 2 gene, a transcription factor that plays a major role in osteoblast differentiation. This potential transdifferentiation treatment may be utilised for dental implants, fracture healing, osteoporosis and bone repair post-destruction by bone tumours. © 2017 Royal Pharmaceutical Society.

  13. Microcracks induce osteoblast alignment and maturation on hydroxyapatite scaffolds

    Science.gov (United States)

    Shu, Yutian

    Physiological bone tissue is a mineral/collagen composite with a hierarchical structure. The features in bone, such as mineral crystals, fibers, and pores can range from the nanometer to the centimeter in size. Currently available bone tissue scaffolds primarily address the chemical composition, pore size, and pore size distribution. While these design parameters are extensively investigated for mimicking bone function and inducing bone regeneration, little is known about microcracks, which is a prevalent feature found in fractured bone in vivo and associated with fracture healing and repair. Since the purpose of bone tissue engineering scaffold is to enhance bone regeneration, the coincidence of microcracks and bone densification should not be neglected but rather be considered as a potential parameter in bone tissue engineering scaffold design. The purpose of this study is to test the hypothesis that microcracks enhance bone healing. In vitro studies were designed to investigate the osteoblast (bone forming cells) response to microcracks in dense (94%) hydroxyapatite substrates. Microcracks were introduced using a well-established Vickers indentation technique. The results of our study showed that microcracks induced osteoblast alignment, enhanced osteoblast attachment and more rapid maturation. These findings may provide insight into fracture healing mechanism(s) as well as improve the design of bone tissue engineering orthopedic scaffolds for more rapid bone regeneration.

  14. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    U. Meyer

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblast-like cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  15. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.

    Science.gov (United States)

    Benmakhlouf, Hamza; Andreo, Pedro

    2017-02-01

    Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by

  16. Burnup influence on the VVER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of the Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of VVER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in 1/4 depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (authors)

  17. Burnup influence on the WWER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of WWER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in ? depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (Authors)

  18. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Siegbahn, E A; Nilsson, B; Fernandez-Varea, J M; Andreo, P

    2003-01-01

    In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor φ water plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water TM and Solid water TM (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with φ water plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of φ water plastic may then be explained considering the different depth-scaling rules used

  19. Nitrogen ion induced nitridation of Si(111) surface: Energy and fluence dependence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Nötzel, R. [ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-06-01

    We present the surface modification of Si(111) into silicon nitride by exposure to energetic N{sub 2}{sup +} ions. In-situ UHV experiments have been performed to optimize the energy and fluence of the N{sub 2}{sup +} ions to form silicon nitride at room temperature (RT) and characterized in-situ by X-ray photoelectron spectroscopy. We have used N{sub 2}{sup +} ion beams in the energy range of 0.2–5.0 keV of different fluence to induce surface reactions, which lead to the formation of Si{sub x}N{sub y} on the Si(111) surface. The XPS core level spectra of Si(2p) and N(1s) have been deconvoluted into different oxidation states to extract qualitative information, while survey scans have been used for quantifying of the silicon nitride formation, valence band spectra show that as the N{sub 2}{sup +} ion fluence increases, there is an increase in the band gap. The secondary electron emission spectra region of photoemission is used to evaluate the change in the work function during the nitridation process. The results show that surface nitridation initially increases rapidly with ion fluence and then saturates. - Highlights: • A systematic study for the formation of silicon nitride on Si(111). • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • Silicon nitride formation at room temperature on Si(111)

  20. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes

    DEFF Research Database (Denmark)

    Karsdal, M A; Levin Andersen, Thomas; Bonewald, L

    2004-01-01

    of osteoblasts forced to transdifferentiate into osteocytes in 3D type I collagen gels were inhibited by more than 50% when exposed to 10 microM GM6001 and to Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), a natural MT1-MMP inhibitor. This shows the importance of MMPs in safeguarding osteoblasts from......Osteoblasts undergo apoptosis or differentiate into either osteocytes or bone-lining cells after termination of bone matrix synthesis. In this study, we investigated the role of matrix metalloproteinases (MMPs) in differentiation of osteoblasts, bone formation, transdifferentiation into osteocytes......, and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation...

  1. Platelet-rich plasma stimulates osteoblastic differentiation in the presence of BMPs

    International Nuclear Information System (INIS)

    Tomoyasu, Akihiro; Higashio, Kanji; Kanomata, Kazuhiro; Goto, Masaaki; Kodaira, Kunihiko; Serizawa, Hiroko; Suda, Tatsuo; Nakamura, Atsushi; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2007-01-01

    Platelet-rich plasma (PRP) is clinically used as an autologous blood product to stimulate bone formation in vivo. In the present study, we examined the effects of PRP on proliferation and osteoblast differentiation in vitro in the presence of bone morphogenetic proteins (BMPs). PRP and its soluble fraction stimulated osteoblastic differentiation of myoblasts and osteoblastic cells in the presence of BMP-2, BMP-4, BMP-6 or BMP-7. The soluble PRP fraction stimulated osteoblastic differentiation in 3D cultures using scaffolds made of collagen or hydroxyapatite. Moreover, heparin-binding fractions obtained from serum also stimulated osteoblastic differentiation in the presence of BMP-4. These results suggested that platelets contain not only growth factors for proliferation but also novel potentiator(s) for BMP-dependent osteoblastic differentiation

  2. Biglycan deficiency increases osteoclast differentiation and activity due to defective osteoblasts

    DEFF Research Database (Denmark)

    Bi, Yanming; Nielsen, Karina L; Kilts, Tina M

    2006-01-01

    to be independent of the differential production of soluble RANKL and OPG and, instead, due to a decrease in osteoblast maturation accompanied by increase in osteoblastic proliferation. In addition to the imbalance between differentiation and proliferation, there was a differential decrease in secretory leukocyte......Bone mass is maintained by a fine balance between bone formation by osteoblasts and bone resorption by osteoclasts. Although osteoblasts and osteoclasts have different developmental origins, it is generally believed that the differentiation, function, and survival of osteoclasts are regulated...... by osteogenic cells. We have previously shown that the extracellular matrix protein, biglycan (Bgn), plays an important role in the differentiation of osteoblast precursors. In this paper, we showed that Bgn is involved in regulating osteoclast differentiation through its effect on osteoblasts...

  3. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying.

    Science.gov (United States)

    Gokcekaya, Ozkan; Webster, Thomas J; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2017-08-01

    Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  5. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress

    OpenAIRE

    Gao, Jing; Feng, Zhihui; Wang, Xueqiang; Zeng, Mengqi; Liu, Jing; Han, Shujun; Xu, Jie; Chen, Lei; Cao, Ke; Long, Jiangang; Li, Zongfang; Shen, Weili; Liu, Jiankang

    2017-01-01

    Recent studies have revealed robust metabolic changes during cell differentiation. Mitochondria, the organelles where many vital metabolic reactions occur, may play an important role. Here, we report the involvement of SIRT3-regulated mitochondrial stress in osteoblast differentiation and bone formation. In both the osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts, robust mitochondrial biogenesis and supercomplex formation were observed during differentiation, accompanied by in...

  6. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast.

    Science.gov (United States)

    Yin, Chengcheng; Zhang, Yanjing; Cai, Qing; Li, Baosheng; Yang, Hua; Wang, Heling; Qi, Hua; Zhou, Yanmin; Meng, Weiyan

    2017-03-01

    In clinical applications, osseointegration is essential for the long-term stability of dental implants. Inspired by the hierarchical structure of natural bone, we applied the electrochemical etching (EC) technique to form a micro-nano structure on a titanium alloy (Ti6Al4V) substrate, called EC surface. Sand blasting and acid etching (SLA) and machined (M) methods were employed to generate micro and smooth textures, respectively, as the control groups. The surface topographies of the three substrates were characterized using scanning electron microscopy (SEM). Then, human osteoblast-like cells (MG63) were cultured on substrates, and adhesion, proliferation, morphology, alkaline phosphatase activity (ALP), and gene expression levels of Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COLIA 1) were analyzed. MG63 cells cultured on the EC Ti alloy substrates displayed better cell adhesion, significant proliferation, and a higher production level of ALP, gene expressions of RUNX2, OCN, OPN and COLIA 1 (p < 0.01 or p < 0.05) compared with those of SLA and M substrates. These results indicate that the micro-nano structure fabricated by electrochemical etching method is beneficial for the biological functions of MG63 cells and may be a promising candidate in dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 757-769, 2017. © 2016 Wiley Periodicals, Inc.

  7. Lethality in repair-proficient Escherichia coli after 365nm ultraviolet light irradiation is dependent on fluence rate

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.

    1982-01-01

    Reciprocity (total applied fluence produces the same response, regardless of the fluence rate) for the lethal effects caused by 365 and 254 nm ultraviolet light (UV) was studied for repair-proficient and -deficient Escherichia coli strains. In the repair-proficient strain, E. coli WP2 uvr A + recA + , reciprocity after 365 nm UV was only observed at fluence rates of about 750 Wm -2 and above. Below this rate, the cells became increasingly sensitive as the fluence rate was decreased. Similar lack of reciprocity was obtained whether the cells were exposed at 0 or 25 0 C. The double repair-defective mutant, E. coli WP100 uvr A recA, showed complete reciprocity after 365 nm UV over the same range of fluence rates measured for the repair-proficient strain. For 254 nm UV, complete reciprocity occurred in both strains over a range of fluence rates differing by an order of magnitude. (author)

  8. Irradiation induced creep in graphite with respect to the flux effect and the high fluence behaviour

    International Nuclear Information System (INIS)

    Cundy, M.R.

    1984-01-01

    In accelerated irradiation creep tests, performed in the HFR Petten, in a fast neutron flux of about 2x10 4 cm -2 s -1 and at temperatures of 300 and 500 0 C, a fast neutron fluence in excess of 20x10 21 cm -2 (EDN) has been attained so far. As a supplement to this, an analogous creep test was conducted in a fast neutron flux lower by a factor of four which is more typical for the service conditions in a HTR, with a maximum fast fluence of only 4x10 21 cm -2 (EDN). This experiment was aimed at answering the question if, for equal fast fluence, enhanced irradiation creep and Wigner dimensional change would take place in a reduced fast neutron flux. This problem has more generally been addressed to as the ''flux effect'' or the ''equivalent temperature concept''. (orig./IHOE)

  9. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    Science.gov (United States)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  10. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    Science.gov (United States)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  11. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  12. Fast reactor fluence dosimetry. Technical progress report, January--November 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The objectives of this task are to: (1) develop and demonstrate the use of 10 B and 6 Li helium accumulation fluence monitors (HAFM's) as a reliable and accurate method of measuring reactor neutron fluence; (2) develop and apply an expanded set of HAFM's which will provide fluence responses in different but overlapping neutron energy ranges; (3) identify, through the precise measurement of spectrum-integrated helium production cross sections, those elements which produce significant helium when used individually or as components of advanced alloys in FTR and LMFBR neutron environments, so that their use might be eliminated, minimized, or controlled; (4) use this information to predict, with confidence, the helium production rate for any alloy or material considered for fast reactor use, and (5) maintain a centralized helium measurements laboratory available to the research community, and upgrade the sample throughput capacity to handle FTR dosimetry requirements

  13. Neutron fluence rate and energy spectrum in SPRR-300 reactor thermal column

    International Nuclear Information System (INIS)

    Dou Haifeng; Dai Junlong

    2006-01-01

    In order to modify the simple one-dimension model, the neutron fluence rate distribution calculated with ANISN code ws checked with that calculated with MCNP code. To modify the error caused by ignoring the neutron landscape orientation leaking, the reflector that can't be modeled in a simple one-dimension model was dealt by extending landscape orientation scale. On this condition the neutron fluence rate distribution and the energy spectrum in the thermal column of SPRR-300 reactor were calculated with one-dimensional code ANISN, and the results of Cd ratio are well accorded with the experimental results. The deviation between them is less than 5% and it isn't above 10% in one or two special positions. It indicates that neutron fluence rate distribution and energy spectrum in the thermal column can be well calculated with one-dimensional code ANISN. (authors)

  14. Upper limits of the photon fluence rate on CT detectors: Case study on a commercial scanner

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mats, E-mail: mats.persson@mi.physics.kth.se; Bornefalk, Hans; Danielsson, Mats [Department of Physics, Royal Institute of Technology, Stockholm SE-10691 (Sweden); Bujila, Robert; Nowik, Patrik; Andersson, Henrik [Unit of X-ray Physics, Section of Imaging Physics Solna, Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176 (Sweden); Kull, Love [Medical Radiation Physics, Sunderby Hospital, Luleå SE-97180 (Sweden); Andersson, Jonas [Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå SE-90185 (Sweden)

    2016-07-15

    Purpose: The highest photon fluence rate that a computed tomography (CT) detector must be able to measure is an important parameter. The authors calculate the maximum transmitted fluence rate in a commercial CT scanner as a function of patient size for standard head, chest, and abdomen protocols. Methods: The authors scanned an anthropomorphic phantom (Kyoto Kagaku PBU-60) with the reference CT protocols provided by AAPM on a GE LightSpeed VCT scanner and noted the tube current applied with the tube current modulation (TCM) system. By rescaling this tube current using published measurements on the tube current modulation of a GE scanner [N. Keat, “CT scanner automatic exposure control systems,” MHRA Evaluation Report 05016, ImPACT, London, UK, 2005], the authors could estimate the tube current that these protocols would have resulted in for other patient sizes. An ECG gated chest protocol was also simulated. Using measured dose rate profiles along the bowtie filters, the authors simulated imaging of anonymized patient images with a range of sizes on a GE VCT scanner and calculated the maximum transmitted fluence rate. In addition, the 99th and the 95th percentiles of the transmitted fluence rate distribution behind the patient are calculated and the effect of omitting projection lines passing just below the skin line is investigated. Results: The highest transmitted fluence rates on the detector for the AAPM reference protocols with centered patients are found for head images and for intermediate-sized chest images, both with a maximum of 3.4 ⋅ 10{sup 8} mm{sup −2} s{sup −1}, at 949 mm distance from the source. Miscentering the head by 50 mm downward increases the maximum transmitted fluence rate to 5.7 ⋅ 10{sup 8} mm{sup −2} s{sup −1}. The ECG gated chest protocol gives fluence rates up to 2.3 ⋅ 10{sup 8} − 3.6 ⋅ 10{sup 8} mm{sup −2} s{sup −1} depending on miscentering. Conclusions: The fluence rate on a CT detector reaches 3 ⋅ 10{sup 8

  15. Neutron fluence-to-dose equivalent conversion factors: a comparison of data sets and interpolation methods

    International Nuclear Information System (INIS)

    Sims, C.S.; Killough, G.G.

    1983-01-01

    Various segments of the health physics community advocate the use of different sets of neutron fluence-to-dose equivalent conversion factors as a function of energy and different methods of interpolation between discrete points in those data sets. The major data sets and interpolation methods are used to calculate the spectrum average fluence-to-dose equivalent conversion factors for five spectra associated with the various shielded conditions of the Health Physics Research Reactor. The results obtained by use of the different data sets and interpolation methods are compared and discussed. (author)

  16. Measurement of angular distribution of cosmic-ray muon fluence rate

    International Nuclear Information System (INIS)

    Lin, Jeng-Wei; Chen, Yen-Fu; Sheu, Rong-Jiun; Jiang, Shiang-Huei

    2010-01-01

    In this work a Berkeley Lab cosmic ray detector was used to measure the angular distribution of the cosmic-ray muon fluence rate. Angular response functions of the detector at each measurement orientation were calculated by using the FLUKA Monte Carlo code, where no energy attenuation was taken into account. Coincidence counting rates were measured at ten orientations with equiangular intervals. The muon angular fluence rate spectrum was unfolded from the measured counting rates associated with the angular response functions using both the MAXED code and the parameter adjusting method.

  17. Fluence inhomogeneities due to a ripple filter induced Moiré effect.

    Science.gov (United States)

    Ringbæk, Toke Printz; Brons, Stephan; Naumann, Jakob; Ackermann, Benjamin; Horn, Julian; Latzel, Harald; Scheloske, Stefan; Galonska, Michael; Bassler, Niels; Zink, Klemens; Weber, Uli

    2015-02-07

    At particle therapy facilities with pencil beam scanning, the implementation of a ripple filter (RiFi) broadens the Bragg peak, so fewer energy steps from the accelerator are required for a homogeneous dose coverage of the planning target volume (PTV). However, sharply focusing the scanned pencil beams at the RiFi plane by ion optical settings can lead to a Moiré effect, causing fluence inhomogeneities at the isocenter. This has been experimentally proven at the Heidelberg Ionenstrahl-Therapiezentrum (HIT), Universitätsklinikum Heidelberg, Germany. 150 MeV u(-1) carbon-12 ions are used for irradiation with a 3 mm thick RiFi. The beam is focused in front of and as close to the RiFi plane as possible. The pencil beam width is estimated to be 0.78 mm at a 93 mm distance from the RiFi. Radiographic films are used to obtain the fluence profile 30 mm in front of the isocenter, 930 mm from the RiFi. The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi-induced inhomogeneities in the fluence distribution at the isocenter for a similar setup, pencil beam widths at the RiFi plane ranging from σχ(RiFi to 1.2 mm and for scanning step sizes ranging from 1.5 to 3.7 mm. The beam application and monitoring system (BAMS) used at HIT is modelled and simulated. When the width of the pencil beams at the RiFi plane is much smaller than the scanning step size, the resulting inhomogeneous fluence distribution at the RiFi plane interfers with the inhomogeneous RiFi mass distribution and fluence inhomogeneity can be observed at the isocenter as large as an 8% deviation from the mean fluence. The inverse of the fluence ripple period at the isocenter is found to be the difference between the inverse of the RiFi period and the inverse of the scanning step size. We have been able to use MC simulations to reproduce the spacing of the ripple stripes seen in films irradiated at HIT. Our findings clearly indicate that pencil beams sharply focused near the RiFi plane result in

  18. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells.

    Science.gov (United States)

    Son, Hyo-Eun; Kim, Eun-Jung; Jang, Won-Gu

    2018-01-15

    Curcumin (diferuloylmethane or [1E,6E]-1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6heptadiene-3,5-dione) is a phenolic natural product derived from the rhizomes of the turmeric plant, Curcuma longa. It is reported to have various biological actions such as anti-oxidative, anti-inflammatory, and anti-cancer effects. However, the molecular mechanism of osteoblast differentiation by curcumin has not yet been reported. The cytotoxicity of curcumin was identified using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of osteogenic markers and endoplasmic reticulum (ER) stress markers in C3H1-T1/2 cells were measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity in C3H10T1/2 cells. Transcriptional activity was detected using a luciferase reporter assay. Curcumin increased the expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC), which subsequently induced osteoblast differentiation in C3H10T1/2 cells. In addition, ALP activity and mineralization was found to be increased by curcumin treatment. Curcumin also induced mild ER stress similar to bone morphogenetic protein 2 (BMP2) function in osteoblast cells. Next, we confirmed that curcumin increased mild ER stress and osteoblast differentiation similar to BMP2 in C3H10T1/2 mesenchymal stem cells. Transient transfection studies also showed that curcumin increased ATF6-Luc activity, while decreasing the activities of CREBH-Luc and SMILE-Luc. In addition, similar to BMP2, curcumin induced the phosphorylation of Smad 1/5/9. Overall, these results demonstrate that curcumin-induced mild ER stress increases osteoblast differentiation via ATF6 expression in C3H10T1/2 cells. Copyright © 2017. Published by Elsevier Inc.

  19. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature.

    Science.gov (United States)

    Mohamedali, Khalid A; Li, Zhi Gang; Starbuck, Michael W; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G; Navone, Nora M

    2011-04-15

    A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF(121)/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting nontumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF(121)/rGel. VEGF(121)/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF(121)/rGel internalization into osteoblasts was VEGF(121) receptor driven. Furthermore, VEGF(121)/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF(121)/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomographic analysis revealed that VEGF(121)/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non-tumor-bearing) femurs. VEGF(121)/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF(121)/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF(121)/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Targeting VEGF receptor (VEGFR)-1- or VEGFR-2-expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. ©2011 AACR.

  20. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature

    Science.gov (United States)

    Mohamedali, Khalid A.; Li, Zhi Gang; Starbuck, Michael W.; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G.; Navone, Nora M.

    2011-01-01

    Purpose A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF121/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting non-tumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Experimental Design Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF121/rGel. Results VEGF121/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF121/rGel internalization into osteoblasts was VEGF121 receptor driven. Furthermore, VEGF121/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF121/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomography analysis revealed that VEGF121/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non–tumor bearing) femurs. VEGF121/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF121/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF121/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Conclusions Targeting VEGFR-1 – or VEGFR-2–expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. PMID:21343372

  1. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes.

    Science.gov (United States)

    Kroustalli, Anthoula A; Kourkouli, Souzana N; Deligianni, Despina D

    2013-12-01

    Multiwalled carbon nanotubes (MWCNTs) are considered to be excellent reinforcements for biorelated applications, but, before being incorporated into biomedical devices, their biocompatibility need to be investigated thoroughly. We investigated the ability of films of pristine MWCNTs to influence human mesenchymal stem cells' proliferation, morphology, and differentiation into osteoblasts. Moreover, the selective integrin subunit expression and the adhesion mechanism to the substrate were evaluated on the basis of adherent cell number and adhesion strength, following the treatment of cells with blocking antibodies to a series of integrin subunits. Results indicated that MWCNTs accelerated cell differentiation to a higher extent than tissue culture plastic, even in the absence of additional biochemical inducing agents. The pre-treatment with anti-integrin antibodies decreased number of adherent cells and adhesion strength at 4-60%, depending on integrin subunit. These findings suggest that pristine MWCNTs represent a suitable reinforcement for bone tissue engineering scaffolds.

  2. Novel immobilizations of an adhesion peptide on the TiO2 surface: An XPS investigation

    International Nuclear Information System (INIS)

    Iucci, G.; Dettin, M.; Battocchio, C.; Gambaretto, R.; Bello, C. Di; Polzonetti, G.

    2007-01-01

    The covalent attachment of an adhesive peptide, reproducing the 351-359 sequence of human vitronectin, to oxidized titanium surfaces was investigated by XPS spectroscopy. The peptide enhances osteoblast adhesion to titanium, the most used biomaterial for implants and prostheses. Core level spectra of the TiO 2 surface and of the biomimetic surface were investigated. Novel selective covalent immobilization of (351-359) HVP was carried out by treatment of the TiO 2 surface with (3-aminopropyl) triethoxysilane, glutaric anhydride and a side chain protected peptide sequence presenting only a free terminal amino group, followed by side chain deprotection. An alternative strategy for covalent attachment consists in photoactivation of physisorbed (351-359) HVP directly on the TiO 2 surface; samples were incubated with HVP solution and subsequently irradiated with UV light. A comparison with the results previously obtained for non-selective HVP immobilization will be discussed

  3. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  4. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Chung, Chong-Pyoung [Department of Periodontology, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  5. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  6. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    International Nuclear Information System (INIS)

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2011-01-01

    Highlights: ► Doxazocin directly up-regulated bone metabolism at a low dose. ► Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. ► This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor γ, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and according to our data doxazosin might be useful for application in the field of bone

  7. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    International Nuclear Information System (INIS)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-01-01

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects

  8. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  9. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    International Nuclear Information System (INIS)

    Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo

    2016-01-01

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  10. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Ana, E-mail: am.lourenco@ucl.ac.uk [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thomas, Russell; Bouchard, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Kacperek, Andrzej [National Eye Proton Therapy Centre, Clatterbridge Cancer Centre, Wirral CH63 4JY (United Kingdom); Vondracek, Vladimir [Proton Therapy Center, Budinova 1a, Prague 8 CZ-180 00 (Czech Republic); Royle, Gary [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Palmans, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, A-2700 Wiener Neustadt (Austria)

    2016-07-15

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  11. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    International Nuclear Information System (INIS)

    Walker, B. J.; Miller, D. T.

    2017-01-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  12. Evaluation of the Fluence Conversion Factor for 32P in Sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-18

    When 32S is exposed to neutrons it undergoes a 32S(n,p)32P reaction with a neutron cross section as shown in Figure 1. This reaction may be used to characterize the neutron fluence for neutrons greater than 3 MeV.

  13. Determination of fluence-to-dose conversion coefficients by means of artificial neural networks

    International Nuclear Information System (INIS)

    Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R.; Gallego, E.; Lorente, A.

    2012-10-01

    In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,θ) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)

  14. International intercomparison of fluence of fast neutrons using 115In(n,γ) activation

    International Nuclear Information System (INIS)

    Lesiecki, H.; Cosack, M.

    1985-07-01

    The Physikalisch-Technische Bundesanstalt (PTB) has participated in an international intercomparison of fluence measurements of fast neutrons. This was organized under the auspices of the ''Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI)'', Sect. 3 (Mesures Neutronique). The National Physical Laboratory (NPL), Teddington, UK volunteered to assume responsibility for the experimental realization and final evaluation. This report deals with the measurements performed at the PTB for the neutron fluence intercomparison at neutron energies of Esub(n) = 144 keV and 570 keV which was based on the 115 In(n,γ) 116 Insup(m) reaction. The count rate of a 4πβ-counter which had to be used to determine the activation of the In sample was to be compared with the neutron fluence by which the sample was irradiated. A description of the neutron production, the fluence determination, the 4πβ-counting, and the evaluation of the results will be given. (orig.) [de

  15. Atomic mixing effects on high fluence Ge implantation into Si at 40 keV

    International Nuclear Information System (INIS)

    Gras-Marti, A.; Jimenez-Rodriguez, J.J.; Peon-Fernandez, J.; Rodriguez-Vidal, M.; Tognetti, N.P.; Carter, G.; Nobes, M.J.; Armour, D.G.

    1982-01-01

    Ion implanted profiles of 40 keV Ge + into Si at fluences ranging from approx. equal to 10 15 ions/cm 2 up to saturation have been measured using the RBS technique. The profiles compare well with the predictions of an analytical model encompasing sputter erosion plus atomic relocation. (orig.)

  16. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    International Nuclear Information System (INIS)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-01-01

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  17. Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence

    International Nuclear Information System (INIS)

    Etoh, Y.; Shimada, S.

    1993-01-01

    Intermetallic precipitates in Zircaloy-2 and -4, recrystallized at the α-phase temperature, have been examined using analytical electron microscopy. The specimens were irradiated in BWRs up to a fast neutron fluence of 1.4x10 26 n/m 2 (E>1 MeV). Neutron irradiation induces a crystalline-to-amorphous transition, depleting Fe in the amorphous phase of Zr(Fe, Cr) 2 precipitates in the alloys. Amorphization starts from the periphery of the precipitates and all of them are totally amorphized at higher fluences than 1.2x10 26 n/m 2 . The width of the Fe-depleted zone increases in proportion to the 0.45 power of fluence. This result indicates that diffusion of Fe is the rate-controlling process for Fe depletion in Zr(Fe, Cr) 2 precipitates. Dissolution of Zr 2 (Fe, Ni) precipitates in Zircaloy-2 occurs during neutron irradiation. At a high fluence, such as 1.2x10 26 n/m 2 , Zr 2 (Fe, Ni) precipitates are almost completely dissolved into the matrix and the dissolution rate of Fe is faster than that of Ni. (orig.)

  18. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    Science.gov (United States)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  19. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    Energy Technology Data Exchange (ETDEWEB)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao [Department of Medical Physics, CancerCare Manitoba, Winnipeg, MB, CAN, Department of Physics and Astronomy, University of Calgary, Calgary, AB, CAN, Department of Mathematics and Statistics, University of Calgary, Calgary, AB, CAN, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO (United States)

    2016-08-15

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  20. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, D. T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-06

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  1. Determination of fluence-to-dose conversion coefficients by means of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: tzinnia.soto@gmail.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain)

    2012-10-15

    In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,{theta}) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)

  2. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  3. Calculation of fluence rate distributions in a pre design clinical facility for BNCT at the LFR

    International Nuclear Information System (INIS)

    Peeters, T.T.J.M.; Freudenreich, W.E.

    1995-12-01

    In a previous study [1], it was demonstrated that the creation of a thermal neutron facility for clinical BNCT in the LFR is feasible. Monte Carlo calculations had shown that the neutron fluence rates and gamma dose rates at the detector position of a model representing a first outline of a clinical facility met all requirements that are necessary for clinical BNCT. In order to gain more information about the neutron fluence rates at several positions, a second step is required. Calculations have been performed for the free beam and for a tumour bearing phantom at 5 cm and 10 cm distance from the irradiation window. Due to thermalization and back scattering, the thermal fluence rates in the tumour at 5 and 10 cm distance from the bismuth shield appeared to be approximately twice as high as the thermal fluence rates in the free beam at the corresponding positions of 5 to 6 cm and 10 to 11 cm from the irradiation window. (orig.)

  4. Towards a laser fluence dependent nanostructuring of thin Au films on Si by nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Ruffino, F.; Pugliara, A.; Carria, E.; Romano, L.; Bongiorno, C.; Fisicaro, G.; La Magna, A.; Spinella, C.; Grimaldi, M.G.

    2012-01-01

    Highlights: ► Au nanoclusters are produced by nanosecond laser irradiations of thin Au film on Si. ► The shape, size, and surface density of the Au nanoclusters are tunable by laser fluence. ► The formation dynamic of the Au nanoclusters under nanosecond laser irradiation is analyzed. - Abstract: In this work, we study the nanostructuring effects of nanosecond laser irradiations on 5 nm thick Au film sputter-deposited on Si. After deposition of Au on Si substrate, nanosecond laser irradiations were performed increasing the laser fluence from 750 to 1500 mJ/cm 2 . Several analyses techniques, such as Rutherford backscattering spectrometry, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy were crossed to study the morphological evolution of the Au film as a function of laser fluence. In particular, the formation of Au nanoparticles was observed. The analyses allowed a quantitative evaluation of the evolution of the nanoparticles size, surface density, and shape as a function of the laser fluence. Therefore, a control the structural properties of the Au nanoparticles is reached, for example, for applications in Si nanowires growth or plasmonics.

  5. High-accuracy fluence determination in ion beams using fluorescent nuclear track detectors

    DEFF Research Database (Denmark)

    Osinga, J.-M.; Akselrod, M.S.; Herrmann, Rochus

    2013-01-01

    We present an approach to use Al2O3:C,Mg-based fluorescent nuclear track detectors (FNTDs) and confocal laser scanning microscopy as a semiautomatic tool for fluence measurements in clinical ion beams. The method was found to cover a linear energy transfer (LET) range from at least L∞(Al2O3) = 0...

  6. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.M. [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of); Lee, J.I. [Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Lim, Y.J., E-mail: limdds@snu.ac.kr [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of)

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  7. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    International Nuclear Information System (INIS)

    Lee, J.M.; Lee, J.I.; Lim, Y.J.

    2010-01-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  8. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells.

    Science.gov (United States)

    Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael

    2013-04-01

    Granule-shaped calcium phosphate-based bone graft materials are often required for bone regeneration especially in implant dentistry. Two newly developed bone graft materials are Ceracell(®) , an open-celled highly porous bioceramic from β-tricalcium phosphate (β-TCP) under addition of bioglass and Osseolive(®) , an open porous glass ceramic with the general formula Ca2 KNa(PO4 )2 . The goal of this study was to characterize different modifications of the two bone graft materials in vitro in comparison to already established ceramic bone grafts Cerasorb M(®) , NanoBone(®) and BONIT Matrix(®) . Adhesion and proliferation of SaOS-2 osteoblast-like cells were evaluated quantitatively by determining DNA content and lactate dehydrogenase (LDH) activity and qualitatively by scanning electron microscopy (SEM). In addition, MTT cell-vitality staining was applied to confirm the attachment of viable cells to the different materials. Osteogenic differentiation was evaluated by measurement of alkaline phosphatase (ALP) activity as well as gene expression analysis of osteogenic markers using reverse transcriptase PCR. DNA content and LDH activity revealed good cell attachment and proliferation for Ceracell and Cerasorb M. When pre-incubated with cell-culture medium, also Osseolive showed good cell attachment and proliferation. Attachment and proliferation of osteoblast-like cells on NanoBone and BONIT Matrix was very low, even after pre-incubation with cell-culture medium. Specific ALP activity on Ceracell(®) , Osseolive (®) and Cerasorb M(®) increased with time and expression of bone-related genes ALP, osteonectin, osteopontin and bone sialoprotein II was demonstrated. Ceracell as well as Osseolive granules support proliferation and osteogenic differentiation in vitro and may be promising candidates for in vivo applications. © 2011 John Wiley & Sons A/S.

  9. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Ho-Jin; Yun, Young-Pil [Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Han, Choong-Wan; Kim, Min Sung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Institute of Oral Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Sung Eun; Bae, Min Soo [Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Gyu-Tae; Choi, Yong-Suk; Hwang, Eui-Hwan [Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Institute of Oral Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Lee, Joon Woo [Department of Technology Commercialization Information, Korea Institute of Science and Technology Information (KISTI), 66, Hoegi-ro, Dongdaemun-gu, Seoul 130-741 (Korea, Republic of); Lee, Jin-Moo; Lee, Chang-Hoon [Department of Oriental Gynecology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Duck-Su [Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kwon, Il Keun, E-mail: kwoni@khu.ac.kr [Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Institute of Oral Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2011-09-23

    Highlights: {yields} We examine bone metabolism of engineered alendronate attached to Ti surfaces. {yields} Alendronate-immobilized Ti enhances activation of osteoblast differentiation. {yields} Alendronate-immobilized Ti inhibits osteoclast differentiation. {yields} Alendronate-immobilized Ti may be a bioactive implant with dual functions. -- Abstract: The failure of orthopedic and dental implants has been attributed mainly to loosening of the implant from host bone, which may be due to weak bonding of the implant material to bone tissue. Titanium (Ti) is used in the field of orthopedic and dental implants because of its excellent biocompatibility and outstanding mechanical properties. Therefore, in the field of materials science and tissue engineering, there has been extensive research to immobilize bioactive molecules on the surface of implant materials in order to provide the implants with improved adhesion to the host bone tissue. In this study, chemically active functional groups were introduced on the surface of Ti by a grafting reaction with heparin and then the Ti was functionalized by immobilizing alendronate onto the heparin-grafted surface. In the MC3T3-E1 cell osteogenic differentiation study, the alendronate-immobilized Ti substrates significantly enhanced alkaline phosphatase activity (ALP) and calcium content. Additionally, nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation of RAW264.7 cells was inhibited with the alendronate-immobilized Ti as confirmed by TRAP analysis. Real time PCR analysis showed that mRNA expressions of osteocalcin and osteopontin, which are markers for osteogenesis, were upregulated in MC3T3-E1 cells cultured on alendronate-immobilized Ti. The mRNA expressions of TRAP and Cathepsin K, markers for osteoclastogenesis, in RAW264.7 cells cultured on alendronate-immobilized Ti were down-regulated. Our study suggests that alendronate-immobilized Ti may be a bioactive implant with dual functions to enhance

  10. Ringhals unit 3 and 4 - Fluence determination in a historic and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Green, E.L. [Primary Systems Inspection and Repair, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden); Rouden, J. [Material and Analytical Services, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden); Efsing, P. [Materials Mechanics, Research and Nuclear Development, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Ringhals site is situated on the Swedish southwest coastline. At the site, there are four operating nuclear power plants. Historically, the Swedish policy has been that the nuclear power plants were to be closed in 2010. The present position is to operate the units until their technical and economic lifetime has run out. The units shall be maintained and invested in to ensure a lifetime of at least 50 years, but the actions taken shall not limit the time to this date. When the initial surveillance capsules were evaluated, it was noted that the material properties of the weld material of unit 3 and 4 showed some deviations from the expected behaviour. Currently there is an extensive project running for re-evaluating the embrittlement situation from a long-term operating perspective. One part of the project is aimed at more accurately determining the fluence levels of the reactor pressure vessels (RPVs). The basis for the early evaluations of the dosimeters in the surveillance capsules and the corresponding fluence evaluation had an operating lifetime of 25 years as a target value. Therefore, the accuracy and refinement of the measurement and calculation were taken to be good enough to suit this life span. Looking back at the results from the dosimetry measurements there are a few discrepancies. Some of the dosimeters were disintegrated and some measurements had comparatively large uncertainties. When starting this project there were some re-evaluations done with the old fluence prediction model. For every new run and refinement there appeared new difficulties, and the decision was to start the evaluation from scratch. Then there are two questions remaining regarding the fluence: What is the current fluence level? What will the resulting fluence be after 60 years of operation, when we have up-rated output power of both reactors? This paper aims to describe the view of the fluence evaluation

  11. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    Science.gov (United States)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  12. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts

    Directory of Open Access Journals (Sweden)

    Alison B. Shupp

    2018-06-01

    Full Text Available The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone.

  13. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation

    International Nuclear Information System (INIS)

    Vezeridis, Peter S.; Semeins, Cornelis M.; Chen Qian; Klein-Nulend, Jenneke

    2006-01-01

    Osteocytes are thought to orchestrate bone remodeling, but it is unclear exactly how osteocytes influence neighboring bone cells. Here, we tested whether osteocytes, osteoblasts, and periosteal fibroblasts subjected to pulsating fluid flow (PFF) produce soluble factors that modulate the proliferation and differentiation of cultured osteoblasts and periosteal fibroblasts. We found that osteocyte PFF conditioned medium (CM) inhibited bone cell proliferation, and osteocytes produced the strongest inhibition of proliferation compared to osteoblasts and periosteal fibroblasts. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) attenuated the inhibitory effects of osteocyte PFF CM, suggesting that a change in NO release is at least partially responsible for the inhibitory effects of osteocyte PFF CM. Furthermore, osteocyte PFF CM stimulated osteoblast differentiation measured as increased alkaline phosphatase activity, and L-NAME decreased the stimulatory effects of osteocyte PFF CM on osteoblast differentiation. We conclude that osteocytes subjected to PFF inhibit proliferation but stimulate differentiation of osteoblasts in vitro via soluble factors and that the release of these soluble factors was at least partially dependent on the activation of a NO pathway in osteocytes in response to PFF. Thus, the osteocyte appears to be more responsive to PFF than the osteoblast or periosteal fibroblast with respect to the production of soluble signaling molecules affecting osteoblast proliferation and differentiation

  14. Expression and Dynamics of Podoplanin in Cultured Osteoblasts with Mechanostress and Mineralization Stimulus.

    Science.gov (United States)

    Takenawa, Tomohiro; Kanai, Takenori; Kitamura, Tetsuya; Yoshimura, Yoshitaka; Sawa, Yoshihiko; Iida, Junichiro

    2018-02-27

    This study investigates the significance of the expression and dynamics of podoplanin in mechanostress and mineralization in cultured murine osteoblasts. Podoplanin increased in osteoblasts subjected to straining in non-mineralization medium, suggesting that the mechanostress alone is a podoplanin induction factor. In osteoblasts subjected to vertical elongation straining in the mineralization medium, the mRNA amounts of podoplanin, osteopontin, and osteocalcin were significantly larger than those in cells not subjected to straining, suggesting that mechanostress is the cause of a synergistic effect in the expression of these proteins. In osteoblasts in the mineralization medium, significant increases in osteocalcin mRNA occurred earlier in cells subjected to straining than in the cells not subjected to straining, suggesting that the mechanostress is a critical factor to enhance the expression of osteocalcin. Western blot and ELISA analysis showed increased podoplanin production in osteoblasts with longer durations of straining. There was significantly less mineralization product in osteoblasts with antibodies for podoplanin, osteopontin, and osteocalcin. There was also less osteopontin and osteocalcin produced in osteoblasts with anti-podoplanin. These findings suggest that mechanostress induces the production of podoplanin in osteoblasts and that podoplanin may play a role in mineralization in cooperation with bone-associated proteins.

  15. SU-E-T-436: Fluence-Based Trajectory Optimization for Non-Coplanar VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, G; Bamber, JC; Bedford, JL [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom); Evans, PM [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford (United Kingdom); Saran, FH; Mandeville, HC [The Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)

    2015-06-15

    Purpose: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. Methods: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstem (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. Results: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. Conclusion: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases.

  16. Characterization of saturation of CR-39 detector at high alpha-particle fluence

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    2018-04-01

    Full Text Available The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from 0.06 × 108 to 7.36 × 108 alphas/cm2 from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of 70°C for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV–Visible (UV–Vis absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of 4.05 × 108, 5.30 × 108, and 7.36 × 108 alphas/cm2. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs in measurement of high fluence of heavy ions as well as in radiation dosimetry. Keywords: Alpha Particle, Bulk Etch Rate, CR-39 Detector, Saturated Regime, UV–Vis Spectroscopy

  17. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  18. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  19. Neutron fluence-to-dose conversion coefficients for embryo and fetus

    International Nuclear Information System (INIS)

    Chen, J.; Meyerhof, D.; Vlahovich, S.

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. (authors)

  20. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    Science.gov (United States)

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  1. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  2. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  3. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    Abdullah, A R; Afendi, Mohd; Majid, M S Abdul

    2013-01-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  4. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y.

    2010-01-01

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  5. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines

    International Nuclear Information System (INIS)

    Zhang, Zhiyu; Ma, Fang; Cai, Zhengdong; Zhang, Lijun; Hua, Yingqi; Jia, Xiaofang; Li, Jian; Hu, Shuo; Peng, Xia; Yang, Pengyuan; Sun, Mengxiong

    2010-01-01

    Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, the knowledge in diagnostic modalities has progressed less. To identify new biomarkers for the early diagnosis of OS as well as for potential novel therapeutic candidates, we performed a sub-cellular comparative proteomic research. An osteosarcoma cell line (MG-63) and human osteoblastic cells (hFOB1.19) were used as our comparative model. Plasma membrane (PM) was obtained by aqueous two-phase partition. Proteins were analyzed through iTRAQ-based quantitative differential LC/MS/MS. The location and function of differential proteins were analyzed through GO database. Protein-protein interaction was examined through String software. One of differentially expressed proteins was verified by immunohistochemistry. 342 non-redundant proteins were identified, 68 of which were differentially expressed with 1.5-fold difference, with 25 up-regulated and 43 down-regulated. Among those differential proteins, 69% ware plasma membrane, which are related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and interaction with each other. One protein--CD151 located in net nodes was verified to be over-expressed in osteosarcoma tissue by immunohistochemistry. It is the first time to use plasma membrane proteomics for studying the OS membrane proteins according to our knowledge. We generated preliminary but comprehensive data about membrane protein of osteosarcoma. Among these, CD151 was further validated in patient samples, and this small molecule membrane might be a new target for OS research. The plasma membrane proteins identified in this study may provide new insight into osteosarcoma biology and potential diagnostic and therapeutic biomarkers

  6. Innovative biodegradable poly(L-lactide/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation

    Directory of Open Access Journals (Sweden)

    Zhou GQ

    2017-10-01

    Full Text Available Guoqiang Zhou,1–3 Sudan Liu,1 Yanyan Ma,1 Wenshi Xu,1 Wei Meng,1 Xue Lin,1 Wenying Wang,1,3 Shuxiang Wang,1–3 Jinchao Zhang1–3 1College of Chemistry and Environmental Science, 2Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, 3Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, People’s Republic of China Abstract: The development of an artificial bone graft which can promote the regeneration of fractures or diseased bones is currently the most challenging aspect in bone tissue engineering. To achieve the purpose of promoting bone proliferation and differentiation, the artificial graft needs have a similar structure and composition of extracellular matrix. One-step electrospinning method of biocomposite nanofibers containing hydroxyapatite (HA nanoparticles and collagen (Coll were developed for potential application in bone tissue engineering. Nanocomposite scaffolds of poly(L-lactide (PLLA, PLLA/HA, PLLA/Coll, and PLLA/Coll/HA were fabricated by electrospinning. The morphology, diameter, elements, hydrophilicity, and biodegradability of the composite scaffolds have been investigated. The biocompatibility of different nanocomposite scaffolds was assessed using mouse osteoblasts MC3T3-E1 in vitro, and the proliferation, differentiation, and mineralization of cells on different nanofibrous scaffolds were investigated. The results showed that PLLA/Coll/HA nanofiber scaffolds enhanced cell adhesion, spreading, proliferation, differentiation, mineralization, and gene expression of osteogenic markers compared to other scaffolds. In addition, the nanofibrous scaffolds maintained a stable composition at the beginning of the degradation period and morphology wastage and weight loss were observed when incubated for up to 80 days in physiological simulated conditions. The PLLA/Coll/HA composite nanofibrous scaffolds could be a potential material for guided bone regeneration

  7. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    International Nuclear Information System (INIS)

    Melnichuk, Iurii; Choukourov, Andrei; Bilek, Marcela; Weiss, Anthony; Vandrovcová, Marta; Bačáková, Lucie; Hanuš, Jan; Kousal, Jaroslav; Shelemin, Artem; Solař, Pavel

    2015-01-01

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment

  8. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    International Nuclear Information System (INIS)

    Muthukumaran, Padmalosini; Lim, Chwee Teck; Lee, Taeyong

    2012-01-01

    Highlights: ► Estradiol induced stiffness changes of osteoblasts were quantified using AFM. ► Estradiol causes significant decrease in the stiffness of osteoblasts. ► Decreased stiffness was caused by decreased density of f-actin network. ► Stiffness changes were not associated with mineralized matrix of osteoblasts. ► Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E ∗ ) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with β-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E ∗ . The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E ∗ of osteoblasts significantly decreased by 43–46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness changes of osteoblasts were not associated with changes in the synthesized mineralized matrix of the cells. Thus, a decrease in osteoblast stiffness with estrogen treatment was

  9. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, Padmalosini [Department of Bioengineering, National University of Singapore (Singapore); Lim, Chwee Teck [Department of Bioengineering, National University of Singapore (Singapore); Department of Mechanical Engineering, National University of Singapore (Singapore); Mechanobiology Institute, National University of Singapore (Singapore); Singapore-MIT Alliance for Research and Technology (SMART), National University of Singapore (Singapore); Lee, Taeyong, E-mail: bielt@nus.edu.sg [Department of Bioengineering, National University of Singapore (Singapore)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Estradiol induced stiffness changes of osteoblasts were quantified using AFM. Black-Right-Pointing-Pointer Estradiol causes significant decrease in the stiffness of osteoblasts. Black-Right-Pointing-Pointer Decreased stiffness was caused by decreased density of f-actin network. Black-Right-Pointing-Pointer Stiffness changes were not associated with mineralized matrix of osteoblasts. Black-Right-Pointing-Pointer Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E{sup Asterisk-Operator }) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with {beta}-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E{sup Asterisk-Operator }. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E{sup Asterisk-Operator} of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness

  10. Red light-induced shift of the fluence-response curve for first positive curvature of maize [Zea mays] coleoptiles

    International Nuclear Information System (INIS)

    Hofmann, E.; Schäfer, E.

    1987-01-01

    The fluence-response curve for first positive phototropic curvture of dark-grown maize coleoptiles is shifted to ten-fold higher fluences if the coieoptiles are irradiated with red light 2 h prior to the phototropic induction with blue light. Fluence-response curves for this red-induced shift were obtained with unilateral red irradiations 2 h prior to inductive blue pulses of different fluences. They differ significantly depending on whether the red light was given from the same side as or the opposite side to the respective inductive blue pulse, thus demonstrating that the red light effect is a local response of the coleoptile. The fluence-response curves for an inductive blue pulse in the ascending part were compared with those for an inductive blue pulse in the descending part of the fluence-response curve for blue light induced phototropism. They are quite different in threshold of red light sensitivity and shape for irradiations from both the same and the opposite sides. This offers evidence for the hypothesis that at least two different photosystems are involved in phototropism, and that they are modulated differently by a red light preirradiation. All these fluence-response curves indicate that it is possible to increase the response in the coleoptile, if the red light preirradiation is given opposite to the inductive blue pulse. This is supported by blue light fluence-response curves obtained after a weak unilateral red preirradiation. (author)

  11. Absolute measurement and international intercomparison of 0.1-0.8 MeV monoenergetic neutron fluence rate

    International Nuclear Information System (INIS)

    Ma Hongchang; Lu Hanlin; Rong Chaofan

    1988-01-01

    The methods for absolute measurement of 0.1-18MeV monoenergetic neutron fluence rate are described. Which include proton recoil telescope, semicoducetor telescope, hydrogen filled proportional counter and associated particale method. A long counter used as secondary recent international intercomparison of neutron fluence rate organized by BIPM, and the results were given

  12. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    International Nuclear Information System (INIS)

    Wu, Li-An; Yuan, Guohua; Yang, Guobin; Ortiz-Gonzalez, Iris; Yang, Wuchen; Cui, Yong; MacDougall, Mary; Donly, Kevin J.; Harris, Stephen; Chen, Shuo

    2009-01-01

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  13. Establishment of a new model for culturing rabbit osteoblasts in vitro

    International Nuclear Information System (INIS)

    Cao Xianying; Yin Meizhen; Zhang Lina; Li Shipu; Cao Yang

    2006-01-01

    To establish an experimental model for culturing rabbit osteoblasts in vitro, the osteoblasts were isolated from the calvarial bone of a 15-day old rabbit using a method of culturing the bone pieces in a medium after they had been digested by an enzyme for 15 min. The acquired cells were assayed by cell morphology, alkaline phosphatase activity and production of a mineralized matrix. The results showed that the cells had the morphologic characteristics and some biological behaviours of osteoblasts. Based on the primary isolation of osteoblasts from bone and combining digestion with explants, a novel model for culturing rabbit osteoblasts in vitro was established, which is easy, efficient and effective. This model can be used in many studies of osteogenesis mechanisms and bone replacement materials. (communication)

  14. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  15. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  16. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    International Nuclear Information System (INIS)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel; Aifantis, Katerina E

    2011-01-01

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  17. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.

    Science.gov (United States)

    Sethu, Sai Nievethitha; Namashivayam, Subhapradha; Devendran, Saravanan; Nagarajan, Selvamurugan; Tsai, Wei-Bor; Narashiman, Srinivasan; Ramachandran, Murugesan; Ambigapathi, Moorthi

    2017-05-01

    Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO 4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells.

    Science.gov (United States)

    Yeh, Lee-Chuan C; Ford, Jeffery J; Lee, John C; Adamo, Martin L

    2014-07-18

    Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Measured thermal and fast neutron fluence rates ATR Cycle 101-B, October 11, 1993--November 27, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-01-01

    This report contains the thermal (2200 m/s) and fast (E>lMeV) neutron fluence rate data for ATR Cycle 101-B which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations proper header identification of all monitor positions contained herein

  20. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  1. Controlling adhesive behavior during recycling

    Science.gov (United States)

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  2. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass.

    Science.gov (United States)

    Guntur, Anyonya R; Le, Phuong T; Farber, Charles R; Rosen, Clifford J

    2014-05-01

    Osteoblastogenesis is the process by which mesenchymal stem cells differentiate into osteoblasts that synthesize collagen and mineralize matrix. The pace and magnitude of this process are determined by multiple genetic and environmental factors. Two inbred strains of mice, C3H/HeJ and C57BL/6J, exhibit differences in peak bone mass and bone formation. Although all the heritable factors that differ between these strains have not been elucidated, a recent F1 hybrid expression panel (C3H × B6) revealed major genotypic differences in osteoblastic genes related to cellular respiration and oxidative phosphorylation. Thus, we hypothesized that the metabolic rate of energy utilization by osteoblasts differed by strain and would ultimately contribute to differences in bone formation. In order to study the bioenergetic profile of osteoblasts, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) first in a preosteoblastic cell line MC3T3-E1C4 and subsequently in primary calvarial osteoblasts from C3H and B6 mice at days 7, 14, and 21 of differentiation. During osteoblast differentiation in media containing ascorbic acid and β-glycerophosphate, all 3 cell types increased their oxygen consumption and extracellular acidification rates compared with the same cells grown in regular media. These increases are sustained throughout differentiation. Importantly, C3H calvarial osteoblasts had greater oxygen consumption rates than B6 consistent with their in vivo phenotype of higher bone formation. Interestingly, osteoblasts utilized both oxidative phosphorylation and glycolysis during the differentiation process although mature osteoblasts were more dependent on glycolysis at the 21-day time point than oxidative phosphorylation. Thus, determinants of oxygen consumption reflect strain differences in bone mass and provide the first evidence that during collagen synthesis osteoblasts use both glycolysis and oxidative phosphorylation to synthesize and

  3. Effect of soybean extract after tooth extraction on osteoblast numbers

    Directory of Open Access Journals (Sweden)

    Rosa Sharon Suhono

    2011-06-01

    Full Text Available Background: Many researches were done to find natural materials that may increase and promote bone healing processes after trauma and surgery. One of natural material that had been studied was soybean extract which contains phytoestrogen, a non-steroidal compounds found in plants that may binds to estrogen receptors and have estrogen-like activity. Purpose: The aim of this study was to investigate the effect of soybean extract feeding on the number of osteoblast cells in alveolar bone socket after mandibular tooth extraction. Methods: This study was studied on male Rattus norvegicus strain Wistar. Seventeen rats divided into three groups were used in this study. Group 1 fed with carboxy methyl cellulose (CMC solution 0,2% for seven days, and the left mandibular central incisivus was extracted; group 2 fed with soybean extract for seven days and the left mandibular central incisives was extracted; group 3 received the left mandibular central incisives extraction followed by soybean extract feeding for seven days after the extraction. All groups were sacrificed on the seventh day post-extraction, and the alveolar bone sockets were taken for histopathological observation. The tissues were processed and stained using hematoxylin and eosin to identify the amount of osteoblast cells. The number of osteoblast cells was counted using an Image Tool program. The data was analyzed statistically using the One-Way ANOVA test. Results: Significant differences were found on the number of osteoblast cells in alveolar bone after tooth extraction between groups. Group 2 (fed with soybean extract is higher than group 1 (fed with CMC and group 3 (fed with soybean extract after extraction. Conclusion: Soybean extract feeding that given for seven days pre-tooth extraction can increase the number of osteoblast cells compared with the group that were not given soybean extract feeding and also with the group that were given soybean extract feeding for seven days post

  4. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  5. The effect of cationically-modified phosphorylcholine polymers on human osteoblasts in vitro and their effect on bone formation in vivo.

    Science.gov (United States)

    Lawton, Jonathan M; Habib, Mariam; Ma, Bingkui; Brooks, Roger A; Best, Serena M; Lewis, Andrew L; Rushton, Neil; Bonfield, William

    2017-08-17

    The effect of introducing cationic charge into phosphorylcholine (PC)-based polymers has been investigated in this study with a view to using these materials as coatings to improve bone formation and osseointegration at the bone-implant interface. PC-based polymers, which have been used