WorldWideScience

Sample records for osmotically induced differential

  1. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    Science.gov (United States)

    Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan

    2013-01-01

    Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  2. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    Directory of Open Access Journals (Sweden)

    Maria João Gaspar

    Full Text Available Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  3. Topology and shape optimization of induced-charge electro-osmotic micropumps

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Okkels, Fridolin; Bazant, M. Z.

    2009-01-01

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing...... conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize...... the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology-optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial...

  4. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials

    Science.gov (United States)

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. DOI: http://dx.doi.org/10.7554/eLife.03695.001 PMID:25318069

  5. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Devon eChandler-Brown

    2015-10-01

    Full Text Available The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370 and independently of daf-16(mu86, sir-2.1(ok434, aak-2(ok524, and hif-1(ia04. Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113 fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813 and osm-7(n1515, were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes.

  6. The Role of Superoxide Dismutase in Inducing of Wheat Seedlings Tolerance to Osmotic Shock

    Directory of Open Access Journals (Sweden)

    Oboznyi A.I.

    2013-08-01

    Full Text Available Influence of short-term hardening osmotic exposure (immersion in 1 M sucrose solution with subsequent transferring to distilled water for 20 min on the hydrogen peroxide generation and superoxide dismutase activity in wheat (Triticum aestivum L., cv. Elegiya seedlings and their tolerance to osmotic shock were investigated. During the initial 30 min after osmotic exposure, the increasing of hydrogen peroxide amount in roots and shoots (to a lesser extent was observed, but the resistance of the seedlings and superoxide dismutase (SOD activity decreased. Sometime later the decrease in hydrogen peroxide amount and the increase of seedlings tolerance to osmotic shock took place. SOD activity increased in 10 min after hardening osmotic exposure. Transient accumulation of hydrogen peroxide induced in this way was suppressed by the treatment of seedlings with sodium diethyldithiocarbamate (DDC, SOD inhibitor. DDC and hydrogen peroxide scavenger dimethylthiourea decreased positive hardening effect of osmotic exposure on the development of seedlings tolerance. It was concluded that SOD providing the generation of signal hydrogen peroxide pool took part in the induction of seedlings tolerance to osmotic shock development caused by preliminary hardening effect.

  7. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways

    Directory of Open Access Journals (Sweden)

    Dewey Ralph E

    2007-11-01

    Full Text Available Abstract Background Despite the potential of the endoplasmic reticulum (ER stress response to accommodate adaptive pathways, its integration with other environmental-induced responses is poorly understood in plants. We have previously demonstrated that the ER-stress sensor binding protein (BiP from soybean exhibits an unusual response to drought. The members of the soybean BiP gene family are differentially regulated by osmotic stress and soybean BiP confers tolerance to drought. While these results may reflect crosstalk between the osmotic and ER-stress signaling pathways, the lack of mutants, transcriptional response profiles to stresses and genome sequence information of this relevant crop has limited our attempts to identify integrated networks between osmotic and ER stress-induced adaptive responses. As a fundamental step towards this goal, we performed global expression profiling on soybean leaves exposed to polyethylene glycol treatment (osmotic stress or to ER stress inducers. Results The up-regulated stress-specific changes unmasked the major branches of the ER-stress response, which include enhancing protein folding and degradation in the ER, as well as specific osmotically regulated changes linked to cellular responses induced by dehydration. However, a small proportion (5.5% of total up-regulated genes represented a shared response that seemed to integrate the two signaling pathways. These co-regulated genes were considered downstream targets based on similar induction kinetics and a synergistic response to the combination of osmotic- and ER-stress-inducing treatments. Genes in this integrated pathway with the strongest synergistic induction encoded proteins with diverse roles, such as plant-specific development and cell death (DCD domain-containing proteins, an ubiquitin-associated (UBA protein homolog and NAC domain-containing proteins. This integrated pathway diverged further from characterized specific branches of ER-stress as

  8. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose.

    OpenAIRE

    Hammer, H F; Santa Ana, C A; Schiller, L R; Fordtran, J S

    1989-01-01

    The purpose of these studies was to gain insight into the pathophysiology of pure osmotic diarrhea and the osmotic diarrhea caused by carbohydrate malabsorption. Diarrhea was induced in normal volunteers by ingestion of polyethylene glycol (PEG), which is nonabsorbable, not metabolized by colonic bacteria, and carries no electrical charge. In PEG-induced diarrhea, (a) stool weight was directly correlated with the total mass of PEG ingested; (b) PEG contributed 40-60% of the osmolality of the ...

  9. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose.

    Science.gov (United States)

    Hammer, H F; Santa Ana, C A; Schiller, L R; Fordtran, J S

    1989-10-01

    The purpose of these studies was to gain insight into the pathophysiology of pure osmotic diarrhea and the osmotic diarrhea caused by carbohydrate malabsorption. Diarrhea was induced in normal volunteers by ingestion of polyethylene glycol (PEG), which is nonabsorbable, not metabolized by colonic bacteria, and carries no electrical charge. In PEG-induced diarrhea, (a) stool weight was directly correlated with the total mass of PEG ingested; (b) PEG contributed 40-60% of the osmolality of the fecal fluid, the remainder being contributed by other solutes either of dietary, endogenous, or bacterial origin; and (c) fecal sodium, potassium, and chloride were avidly conserved by the intestine, in spite of stool water losses exceeding 1,200 g/d. Diarrhea was also induced in normal subjects by ingestion of lactulose, a disaccharide that is not absorbed by the small intestine but is metabolized by colonic bacteria. In lactulose-induced diarrhea, (a) a maximum of approximate 80 g/d of lactulose was metabolized by colonic bacteria to noncarbohydrate moieties such as organic acids; (b) the organic acids were partially absorbed in the colon; (c) unabsorbed organic acids obligated the accumulation of inorganic cations (Na greater than Ca greater than K greater than Mg) in the diarrheal fluid; (d) diarrhea associated with low doses of lactulose was mainly due to unabsorbed organic acids and associated cations, whereas with larger doses of lactulose unmetabolized carbohydrates also played a major role; and (e) the net effect of bacterial metabolism of lactulose and partial absorption of organic acids on stool water output was done dependent. With low or moderate doses of lactulose, stool water losses were reduced by as much as 600 g/d (compared with equimolar osmotic loads of PEG); with large dose, the increment in osmotically active solutes within the lumen exceeded the increment of the ingested osmotic load, and the severity of diarrhea was augmented.

  10. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress.

    Science.gov (United States)

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root

  11. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress.

    Science.gov (United States)

    Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng

    2018-05-25

    Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.

  12. The effects of osmotic stress on the structure and function of the cell nucleus.

    Science.gov (United States)

    Finan, John D; Guilak, Farshid

    2010-02-15

    Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis. (c) 2009 Wiley-Liss, Inc.

  13. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  14. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    Science.gov (United States)

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Characterization of Macrophomina phaseolina isolates by their response to different osmotic potentials and AFLP

    Directory of Open Access Journals (Sweden)

    Bárbara J. Gutiérrez Cedeño

    2014-01-01

    Full Text Available Charcoal rot of Phaseolus vulgaris is caused by the fungus Macrophomina phaseolina, the disease is associated with high temperature and water stress. The objective of this study was to characterize isolates of M. phaseolina by their response to different osmotic potentials and AFLP. The growth of 11 isolates was determined on potato dextrose agar at 48 and 72 h in a gradient of osmotic potential induced using NaCl as well as their effects on germination of sclerotia. Three water groups were statistically different indicating differential response to osmotic potential and all sclerotia grown under these conditions, germinated between 24 and 48h. There were groups of isolates that were tolerant to water stress induced. The AFLP genotyping allowed the formation of five genetic groups, showing a wide genetic variability. Of the nine starters CTA-AT showed a high degree of confidence in the identification of genotypes of M. phaseolina and CAA-AC had the lowest discriminatory power. These results show that M. phaseolina isolates responded differently to osmotic potential and are genetically different between them. Although there was a clear correspondence of genetic groups to water groups; these responses are important features in the search for alternative management in black bean pathosystem. Keywords: molecular marker, M. phaseolina, water deficit

  16. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation.

    Directory of Open Access Journals (Sweden)

    Kyung Min Kim

    Full Text Available Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif, a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.

  17. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.

    Science.gov (United States)

    Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-10-01

    The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric

    2013-01-01

    Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...... molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...... sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mM of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured...

  19. Osmocapsules for direct measurement of osmotic strength.

    Science.gov (United States)

    Kim, Shin-Hyun; Lee, Tae Yong; Lee, Sang Seok

    2014-03-26

    Monodisperse microcapsules with ultra-thin membranes are microfluidically designed to be highly sensitive to osmotic pressure, thereby providing a tool for the direct measurement of the osmotic strength. To make such osmocapsules, water-in-oil-in-water double-emulsion drops with ultra-thin shells are prepared as templates through emulsification of core-sheath biphasic flow in a capillary microfluidic device. When photocurable monomers are used as the oil phase, the osmocapsules are prepared by in-situ photopolymerization of the monomers, resulting in semipermeable membranes with a relatively large ratio of membrane thickness to capsule radius, approximately 0.02. These osmocapsules are buckled by the outward flux of water when they are subjected to a positive osmotic pressure difference above 125 kPa. By contrast, evaporation-induced consolidation of middle-phase containing polymers enables the production of osmocapsules with a small ratio of membrane thickness to capsule radius of approximately 0.002. Such an ultra-thin membrane with semi-permeability makes the osmocapsules highly sensitive to osmotic pressure; a positive pressure as small as 12.5 kPa induces buckling of the capsules. By employing a set of distinct osmocapsules confining aqueous solutions with different osmotic strengths, the osmotic strength of unknown solutions can be estimated through observation of the capsules that are selectively buckled. This approach provides the efficient measurement of the osmotic strength using only a very small volume of liquid, thereby providing a useful alternative to other measurement methods which use complex setups. In addition, in-vivo measurement of the osmotic strength can be potentially accomplished by implanting these biocompatible osmocapsules into tissue, which is difficult to achieve using conventional methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    Science.gov (United States)

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  3. Fecal osmotic gap and pH in experimental diarrhea of various causes.

    Science.gov (United States)

    Eherer, A J; Fordtran, J S

    1992-08-01

    Although the osmotic gap of fecal fluid is often used to distinguish osmotic diarrhea from secretory diarrhea, there has never been a scientific evaluation of the validity of this concept. Similarly, although a low fecal fluid pH value is used to indicate that diarrhea is mediated by carbohydrate malabsorption, the validity of this method is unproven. Therefore, in the present study, diarrhea was induced in normal subjects by different mechanisms and fecal fluid osmotic gap (using an assumed fecal fluid osmolality of 290 mOsm/kg) and pH were measured. In secretory diarrhea caused by phenolphthalein, the osmotic gap was always less than 50 mOsm/kg, whereas in osmotic diarrhea caused by polyethylene glycol, magnesium hydroxide, lactulose, and sorbitol, the osmotic gap always exceeded 50 mOsm/kg. In osmotic diarrhea caused by sodium sulfate, the fecal fluid osmotic gap was less than 50 mOsm/kg, but phenolphthalein-induced secretory diarrhea could be distinguished from sodium sulfate-induced osmotic diarrhea by the fecal chloride concentration. When diarrhea was caused by carbohydrate malabsorption (lactulose or sorbitol), the fecal fluid pH was always less than 5.6 and usually less than 5.3; by contrast, other causes of diarrhea rarely caused a fecal pH as low as 5.6 and never caused a pH less than 5.3. It is concluded that measurement of fecal fluid osmotic gap and pH can distinguish various mechanisms of experimental diarrhea in normal subjects. The concepts on which these tests are based are therefore verified experimentally.

  4. Osmotic stress upregulates the transcription of thiamine (vitamin B1 ...

    African Journals Online (AJOL)

    Osmotic stress upregulates the transcription of thiamine (vitamin B1) ... Oil palm's responses in terms of the expression profiles of these two thiamine biosynthesis genes to an osmotic stress inducer, polyethylene glycol ... from 32 Countries:.

  5. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    Science.gov (United States)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  6. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Directory of Open Access Journals (Sweden)

    Hui Xia

    Full Text Available The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP technique. Great alterations (52.9~54.3% of total individual-locus combinations of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187 was detected on the highly divergent epiloci (HDE. The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  7. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Science.gov (United States)

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  8. Effect of plasma colloid osmotic pressure on intraocular pressure during haemodialysis

    OpenAIRE

    Tokuyama, T.; Ikeda, T.; Sato, K.

    1998-01-01

    BACKGROUND—In a previous case report, it was shown that an increase in plasma colloid osmotic pressure induced by the removal of fluid during haemodialysis was instrumental in decreasing intraocular pressure. The relation between changes in intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight before and after haemodialysis is evaluated.
METHODS—Intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight were evaluated before a...

  9. The osmotic stress response of split influenza vaccine particles in an acidic environment.

    Science.gov (United States)

    Choi, Hyo-Jick; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D

    2014-12-01

    Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow light scattering (SFLS), intrinsic fluorescence, transmission electron microscopy (TEM), and hemagglutination assay. Split vaccine particles were found to exhibit a step-wise morphological change in response to osmotic stress due to double-layered wall structure. The presence of hyper-osmotic stress in acidic medium (0.3 osmolarity, pH 2.0) induced a significant level of membrane perturbation as measured by SFLS and TEM, imposing more damage to antigenic proteins on vaccine envelope than can be caused by pH-induced conformational change at acidic iso-osmotic condition. Further supports were provided by the intrinsic fluorescence and hemagglutinin activity measurements. Thus, hyper-osmotic stress becomes an important factor for determining stability of split vaccine particles in acidic medium. These results are useful in better understanding the destabilizing mechanism of split influenza vaccine particles in gastric environment and in designing oral influenza vaccine formulations.

  10. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Huai-Juan Xiao

    2014-05-01

    Full Text Available Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.. The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF, and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper.

  11. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    Science.gov (United States)

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-01-01

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper. PMID:24823878

  12. Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta).

    Science.gov (United States)

    Gao, Shan; Zheng, Zhenbing; Gu, Wenhui; Xie, Xiujun; Huan, Li; Pan, Guanghua; Wang, Guangce

    2014-10-01

    The photosynthetic performance of the desiccation-tolerant, intertidal macro-algae Ulva prolifera was significantly affected by sorbitol-induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non-photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700(+) in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non-photochemical energy dissipation in PS I due to acceptor-side limitation (Y(NA)) during rehydration in seawater containing DCMU. © 2014 Scandinavian Plant Physiology Society.

  13. Saltstone Osmotic Pressure

    International Nuclear Information System (INIS)

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-01-01

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency 3 , KNO 3 , Na 3 PO 4 x12H 2 O, and K 3 PO 4 when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that

  14. Modulation of δ-Aminolevulinic Acid Dehydratase Activity by the Sorbitol-Induced Osmotic Stress in Maize Leaf Segments.

    Science.gov (United States)

    Jain, M; Tiwary, S; Gadre, R

    2018-01-01

    Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.

  15. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    Science.gov (United States)

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  16. Osmotic Gradients Induce Bio-reminiscent Morphological Transformations in Giant Unilamellar Vesicles

    Directory of Open Access Journals (Sweden)

    Kamila eOglecka

    2012-05-01

    Full Text Available We report observations of large-scale, in-plane and out-of-plane membrane deformations in giant uni- and multilamellar vesicles composed of binary and ternary lipid mixtures in the presence of net transvesicular osmotic gradients. The lipid mixtures we examined consisted of binary mixtures of DOPC and DPPC lipids and ternary mixtures comprising POPC, sphingomyelin, and cholesterol over a range of compositions – both of which produce co-existing phases for selected ranges of compositions at room temperature under thermodynamic equilibrium. In the presence of net osmotic gradient, we find that the in-plane phase separation potential of these mixtures is non-trivially altered and a variety of out-of-plane morphological remodeling occurs. The repertoire of membrane deformations we observe display striking resemblance to their biological counterparts in live cells encompassing vesiculation, membrane fission and fusion, tubulation and pearling, as well as expulsion of entrapped vesicles from multicompartmental GUV architectures through large, self-healing transient pores. These observations suggest that the forces introduced by simple osmotic gradients across membrane boundaries could act as a trigger for shape-dependent membrane and vesicle trafficking activities. We speculate that such coupling of osmotic gradients with membrane properties might have provided lipid-mediated mechanisms during the early evolution of membrane compartmentalization in the absence of osmoregulatory protein machinery.

  17. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress.

    Science.gov (United States)

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance.

  18. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  19. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  20. Effect of osmotic stress on in vitro propagation of Musa sp. (Malbhog ...

    African Journals Online (AJOL)

    This study demonstrates up to 36% reduced microbial contamination in aseptic culture establishment and subsequent micropropagation due to osmotic stress induction in the banana suckers. Osmotic stress was induced by keeping the freshly collected suckers in shade and measuring fresh weight at 0, 7, 14, 21, and 28 ...

  1. Saltstone Osmotic Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRN

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  2. The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution.

    Science.gov (United States)

    Lech, Krzysztof; Michalska, Anna; Wojdyło, Aneta; Nowicka, Paulina; Figiel, Adam

    2017-12-16

    The osmotic dehydration (OD) process consists of the removal of water from a material during which the solids from the osmotic solution are transported to the material by osmosis. This process is commonly performed in sucrose and salt solutions. Taking into account that a relatively high consumption of those substances might have a negative effect on human health, attempts have been made to search for alternatives that can be used for osmotic dehydration. One of these is an application of chokeberry juice with proven beneficial properties to human health. This study aimed to evaluate the physicochemical properties of the OD solution (chokeberry juice concentrate) before and after the osmotic dehydration of carrot and zucchini. The total polyphenolics content, antioxidant capacity (ABTS, FRAP), dynamic viscosity, density, and water activity were examined in relation to the juice concentration used for the osmotic solution before and after the OD process. During the osmotic dehydration process, the concentration of the chokeberry juice decreased. Compounds with lower molecular weight and lower antioxidant capacity present in concentrated chokeberry juice had a stronger influence on the exchange of compounds during the OD process in carrot and zucchini. The water activity of the osmotic solution increased after the osmotic dehydration process. It was concluded that the osmotic solution after the OD process might be successfully re-used as a product with high quality for i.e. juice production.

  3. Neutral lipid production in Dunaliella salina during osmotic stress and adaptation

    DEFF Research Database (Denmark)

    Yao, Shuo; Lu, Jingquan; Sárossy, Zsuzsa

    2016-01-01

    The salt-tolerant green microalga Dunaliella salina can survive both hyper- and hypo-osmotic shock. Upon osmotic shock, the cells transiently and rapidly decreased or increased in size within minutes and slowly over hours acquired their original cell size and volume. Cell size distribution differs...... significantly in the cultures grown in the salinity range from 1.5 to 15 % NaCl. By using Nile Red fluorescence to detect neutral lipids, it became clear that only hyper-osmotic shock on cells induced transient neutral lipid appearance in D. salina, while those transferred from 9 to 15 % NaCl stimulated...

  4. Erythroid differentiation and commitment in rat erythroleukemia cells with hypertonic culture conditions.

    OpenAIRE

    Yamaguchi, Y; Kluge, N; Ostertag, W; Furusawa, M

    1981-01-01

    Cell cultures of 7,12-dimethylbenz[a]anthracene-induced rat erythroleukemia can be stimulated to synthesize hemoglobin when cultured in hypertonic media. During hypertonic treatment the intracellular osmotic conditions immediately readjust to those of the extracellular medium. None of the Friend virus-induced mouse erythroleukemia cell lines was inducible for differentiation with the same hypertonic culture conditions used for rat cells. Earliest commitment to erythroid terminal differentiati...

  5. Resolution of methylphenidate osmotic release oral system-induced hair loss in two siblings after dose escalation.

    Science.gov (United States)

    Ardic, Ulku Akyol; Ercan, Eyup Sabri

    2017-11-01

    This report describes the cases of two siblings who experienced hair loss after treatment with methylphenidate (MPH) osmotic release oral system (OROS). Hair loss was resolved after discontinuation of the drug, but the children re-initiated treatment, after which hair loss again occurred, but they continued the treatment. After dose escalation, the hair loss resolved. This is the first report to describe resolution of OROS-MPH-induced hair loss after dose escalation. © 2017 Japan Pediatric Society.

  6. Novel regulation of aquaporins during osmotic stress.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Bohnert, Hans J; Pantoja, Omar

    2004-08-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions.

  7. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    OpenAIRE

    Simon Swapna; Korukkanvilakath Samban Shylaraj

    2017-01-01

    Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000), and followed by the pot...

  8. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure

    Science.gov (United States)

    Henderson, Ashley G.; Ehre, Camille; Button, Brian; Abdullah, Lubna H.; Cai, Li-Heng; Leigh, Margaret W.; DeMaria, Genevieve C.; Matsui, Hiro; Donaldson, Scott H.; Davis, C. William; Sheehan, John K.; Boucher, Richard C.; Kesimer, Mehmet

    2014-01-01

    The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer–dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease. PMID:24892808

  9. Role of Arabidopsis ABF1/3/4 during det1 germination in salt and osmotic stress conditions.

    Science.gov (United States)

    Fernando, V C Dilukshi; Al Khateeb, Wesam; Belmonte, Mark F; Schroeder, Dana F

    2018-05-01

    Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4. While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.

  10. Physiological adaptations to osmotic stress and characterization of a polyethylene glycol-responsive gene in Braya humilis

    Directory of Open Access Journals (Sweden)

    Wang Lirong

    2016-03-01

    Full Text Available Braya humilis (Brassicaceae is a widely distributed plant in arid and semi-arid regions of northern Asia. This plant is well adapted to extremely arid conditions and is a promising candidate species to discover novel drought tolerance strategies. However, not much information about the mechanism(s mediating drought resistance in this species is currently available. Therefore, the present study aimed to characterize the physiological traits and expression patterns of a polyethylene glycol (PEG-responsive gene in B. humilis responding to different levels of osmotic stress induced by PEG-6000. Several important physiological parameters were examined, including the levels of relative water content, soluble protein, malondialdehyde, and antioxidant enzyme activity. A tolerance threshold between 20 and 30% PEG-6000 was identified for B. humilis. The water status and oxidative damage below this threshold were maintained at a relatively constant level during the 12 h of treatment. However, once the threshold was exceeded, the water status and oxidative damage were obviously affected after treatment for 4 h. The soluble protein results suggest that B. humilis maintains a vigorous resistance to osmotic stress and that it may play a greater role in osmotic regulation at late stages of stress. Moreover, superoxide dismutase and catalase may be important at preventing oxidative damage in plants at early stages of stress, while peroxidase may be more involved in some biological processes that resist osmotic stress at the late stage, especially in severely damaged plants. Furthermore, a PEG-responsive gene, BhCIPK12, was identified by differential display reverse transcription-polymerase chain reaction (PCR, cloned, and characterized by quantitative real-time PCR. We hypothesized that this gene may play an important role in mediating osmotic stress or drought resistance in plants. Altogether, these results provide valuable insights into the mechanism

  11. Role of Osmotic Adjustment in Plant Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Gebre, G.M.

    2001-01-11

    Successful implementation of short rotation woody crops requires that the selected species and clones be productive, drought tolerant, and pest resistant. Since water is one of the major limiting factors in poplar (Populus sp.) growth, there is little debate for the need of drought tolerant clones, except on the wettest of sites (e.g., lower Columbia River delta). Whether drought tolerance is compatible with productivity remains a debatable issue. Among the many mechanisms of drought tolerance, dehydration postponement involves the maintenance of high leaf water potential due to, for example, an adequate root system. This trait is compatible with productivity, but requires available soil moisture. When the plant leaf water potential and soil water content decline, the plant must be able to survive drought through dehydration tolerance mechanisms, such as low osmotic potential or osmotic adjustment. Osmotic adjustment and low osmotic potential are considered compatible with growth and yield because they aid in the maintenance of leaf turgor. However, it has been shown that turgor alone does not regulate cell expansion or stomatal conductance and, therefore, the role of osmotic adjustment is debated. Despite this finding, osmotic adjustment has been correlated with grain yield in agronomic crop species, and gene markers responsible for osmotic adjustment are being investigated to improve drought tolerance in productive progenies. Although osmotic adjustment and low osmotic potentials have been investigated in several forest tree species, few studies have investigated the relationship between osmotic adjustment and growth. Most of these studies have been limited to greenhouse or container-grown plants. Osmotic adjustment and rapid growth have been specifically associated in Populus and black spruce (Picea mariuna (Mill.) B.S.P.) progenies. We tested whether these relationships held under field conditions using several poplar clones. In a study of two hybrid poplar

  12. Ebselen exhibits glycation-inhibiting properties and protects against osmotic fragility of human erythrocytes in vitro.

    Science.gov (United States)

    Soares, Julio C M; Folmer, Vanderlei; Da Rocha, João B T; Nogueira, Cristina W

    2014-05-01

    Diabetic status is associated with an increase on oxidative stress markers in humans and animal models. We have investigated the in vitro effects of high concentrations of glucose on the profile of oxidative stress and osmotic fragility of blood from control and diabetic patients; we considered whether its antioxidant properties could afford some protection against glucose-induced osmotic fragility, and whether ebselen could act as an inhibitor of hemoglobin glycation. Raising blood glucose to 5-100 mmol/L resulted in a concentration-dependent increase of glycated hemoglobin (HbA1c; P Ebselen significantly reduced the glucose-induced increase in osmotic fragility and inhibited HbA1c formation (P < 0.0001). These results indicate that blood from patients with uncontrolled diabetes are more sensitive to osmotic shock than from patients with controlled diabetes and control subjects in relation to increased production of free radicals in vivo. © 2014 International Federation for Cell Biology.

  13. Alterations in the colonic microbiota in response to osmotic diarrhea.

    Science.gov (United States)

    Gorkiewicz, Gregor; Thallinger, Gerhard G; Trajanoski, Slave; Lackner, Stefan; Stocker, Gernot; Hinterleitner, Thomas; Gülly, Christian; Högenauer, Christoph

    2013-01-01

    Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used.

  14. Alterations in the colonic microbiota in response to osmotic diarrhea.

    Directory of Open Access Journals (Sweden)

    Gregor Gorkiewicz

    Full Text Available BACKGROUND & AIMS: Diseases of the human gastrointestinal (GI tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. METHODS: We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG. Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. RESULTS: Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. CONCLUSIONS: Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy are used.

  15. Novel Regulation of Aquaporins during Osmotic Stress1

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; Bohnert, Hans J.; Pantoja, Omar

    2004-01-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions. PMID:15299122

  16. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings

    Directory of Open Access Journals (Sweden)

    Maria Stolarz

    2017-10-01

    Full Text Available Action potentials (APs, i.e., long-distance electrical signals, and circumnutations (CN, i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0–500 mOsm were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs propagating basipetally and acropetally with a velocity of 12–20 cm min−1 were observed. The number of SAPs increased 2–3 times (7–10 SAPs 24 h−1plant−1 in the mild salt stress (160 mOsm NaCl and KCl, compared to the control and strong salt stress (3–4 SAPs 24 h−1 plant−1 in the control and 300 mOsm KCl and NaCl. Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3–24 APs transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.

  17. Olanzapine-induced weight gain: chronic infusion using osmotic minipumps does not result in stable plasma levels due to degradation of olanzapine in solution

    NARCIS (Netherlands)

    van der Zwaal, Esther M.; Luijendijk, Mieneke C. M.; Adan, Roger A. H.; la Fleur, Susanne E.

    2008-01-01

    The mechanisms underlying olanzapine-induced weight gain have not yet been fully elucidated. To examine the effects of long-term treatment with olanzapine on different aspects of energy balance, we administered olanzapine to male rats. Osmotic minipumps were chosen as preferred mode of

  18. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    Science.gov (United States)

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

    International Nuclear Information System (INIS)

    Victor Garcia-Gaytan, Libia Iris Trejo-Tellez; Olga Tejeda-Sartorius; Maribel Ramirez-Martinez; Julian Delgadillo-Martinez; Fernando Carlos Gomez-Merino; Soledad Garcia-Morales

    2018-01-01

    Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (- 0.036, - 0.072, - 0.092, and - 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers. (author)

  20. Recommendation to use iso-osmotic contrast medium in interventional treatment

    International Nuclear Information System (INIS)

    Zhou Bing; Cheng Yongde

    2012-01-01

    With the rapid development of imaging diagnostic and interventional therapeutic techniques, the contrast medium (CM) has been used more and more common in clinical practice, and meanwhile more and more attention has been paid to the CM-related adverse events. Contrast induced nephropathy (CN) is the most common CM-related adverse event, and CM-related neurotoxicity has already attracted the physicians' attention. The osmotic pressure of the iso-osmotic contrast medium (IOCM) is quite the same as that of the plasma, and therefore its safety is higher than that of low-osmotic contrast medium (LOCM), the patient's tolerance to IOCM is better than that to LOCM. For this reason, the use of IOCM should be strongly recommended in interventional procedures, which is of great significance to the reduction of the occurrence of CM-related adverse events. (authors)

  1. Folding propensity of intrinsically disordered proteins by osmotic stress

    International Nuclear Information System (INIS)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.

    2016-01-01

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  2. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    Science.gov (United States)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  3. Hydrothermal Carbonization of Spent Osmotic Solution (SOS Generated from Osmotic Dehydration of Blueberries

    Directory of Open Access Journals (Sweden)

    Kaushlendra Singh

    2014-09-01

    Full Text Available Hydrothermal carbonization of spent osmotic solution (SOS, a waste generated from osmotic dehydration of fruits, has the potential of transformation into hydrochars, a value-added product, while reducing cost and overall greenhouse gas emissions associated with waste disposal. Osmotic solution (OS and spent osmotic solution (SOS generated from the osmotic dehydration of blueberries were compared for their thermo-chemical decomposition behavior and hydrothermal carbonization. OS and SOS samples were characterized for total solids, elemental composition, and thermo-gravimetric analysis (TGA. In addition, hydrothermal carbonization was performed at 250 °C and for 30 min to produce hydrochars. The hydrochars were characterized for elemental composition, Brunauer-Emmett-Teller (BET surface area, particle shape and surface morphology. TGA results show that the SOS sample loses more weight in the lower temperature range than the OS sample. Both samples produced, approximately, 40%–42% (wet-feed basis hydrochar during hydrothermal carbonization but with different properties. The OS sample produced hydrochar, which had spherical particles of 1.79 ± 1.30 μm diameter with a very smooth surface. In contrast, the SOS sample produced hydrochar with no definite particle shape but with a raspberry-like surface.

  4. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  5. The physics of osmotic pressure

    Science.gov (United States)

    Bowler, M. G.

    2017-09-01

    Osmosis drives the development of a pressure difference of many atmospheres between a dilute solution and pure solvent with which it is in contact through a semi-permeable membrane. The educational importance of this paper is that it presents a novel treatment in terms of fluid mechanics that is quantitative and exact. It is also simple and intuitive, showing vividly how osmotic pressures are generated and maintained in equilibrium, driven by differential solvent pressures. The present rigorous analysis using the virial theorem seems unknown and can be easily understood—and taught—at various different levels. It should be valuable to undergraduates, graduate students and indeed to the general physicist.

  6. Piecewise linear approximations to model the dynamics of adaptation to osmotic stress by food-borne pathogens.

    Science.gov (United States)

    Métris, Aline; George, Susie M; Ropers, Delphine

    2017-01-02

    Addition of salt to food is one of the most ancient and most common methods of food preservation. However, little is known of how bacterial cells adapt to such conditions. We propose to use piecewise linear approximations to model the regulatory adaptation of Escherichiacoli to osmotic stress. We apply the method to eight selected genes representing the functions known to be at play during osmotic adaptation. The network is centred on the general stress response factor, sigma S, and also includes a module representing the catabolic repressor CRP-cAMP. Glutamate, potassium and supercoiling are combined to represent the intracellular regulatory signal during osmotic stress induced by salt. The output is a module where growth is represented by the concentration of stable RNAs and the transcription of the osmotic gene osmY. The time course of gene expression of transport of osmoprotectant represented by the symporter proP and of the osmY is successfully reproduced by the network. The behaviour of the rpoS mutant predicted by the model is in agreement with experimental data. We discuss the application of the model to food-borne pathogens such as Salmonella; although the genes considered have orthologs, it seems that supercoiling is not regulated in the same way. The model is limited to a few selected genes, but the regulatory interactions are numerous and span different time scales. In addition, they seem to be condition specific: the links that are important during the transition from exponential to stationary phase are not all needed during osmotic stress. This model is one of the first steps towards modelling adaptation to stress in food safety and has scope to be extended to other genes and pathways, other stresses relevant to the food industry, and food-borne pathogens. The method offers a good compromise between systems of ordinary differential equations, which would be unmanageable because of the size of the system and for which insufficient data are available

  7. In vitro screening of potato genotypes for osmotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Gelmesa Dandena

    2017-02-01

    Full Text Available Potato (Solanum tuberosum L. is a cool season crop which is susceptible to both drought and heat stresses. Lack of suitable varieties of the crop adapted to drought-prone areas of the lowland tropics deprives farmers living in such areas the opportunity to produce and use the crop as a source of food and income. As a step towards developing such varieties, the present research was conducted to evaluate different potato genotypes for osmotic stress tolerance under in vitro conditions and identify drought tolerant genotypes for future field evaluation. The experiment was carried out at the Leibniz University of Hannover, Germany, by inducing osmotic stress using sorbitol at two concentrations (0.1 and 0.2 M in the culture medium. A total of 43 genotypes collected from different sources (27 advanced clones from CIP, nine improved varieties, and seven farmers’ cultivars were used in a completely randomized design with four replications in two rounds. Data were collected on root and shoot growth. The results revealed that the main effects of genotype, sorbitol treatment, and their interactions significantly (P < 0.01 influenced root and shoot growthrelated traits. Under osmotic stress, all the measured root and shoot growth traits were significantly correlated. The dendrogram obtained from the unweighted pair group method with arithmetic mean allowed grouping of the genotypes into tolerant, moderately tolerant, and susceptible ones to a sorbitol concentration of 0.2 M in the culture medium. Five advanced clones (CIP304350.100, CIP304405.47, CIP392745.7, CIP388676.1, and CIP388615.22 produced shoots and rooted earlier than all other genotypes, with higher root numbers, root length, shoot and root mass under osmotic stress conditions induced by sorbitol. Some of these genotypes had been previously identified as drought-tolerant under field conditions, suggesting the capacity of the in vitro evaluation method to predict drought stress tolerant

  8. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.

    Science.gov (United States)

    An, Yan; Wang, Yucheng; Lou, Lingling; Zheng, Tangchun; Qu, Guan-Zheng

    2011-11-01

    In the present study, a zinc-finger-like cDNA (ThZFL) was cloned from the Tamarix hispida. Northern blot analysis showed that the expression of ThZFL can be induced by salt, osmotic stress and ABA treatment. Overexpression of the ThZFL confers salt and osmotic stress tolerance in both yeast Saccharomyces cerevisiae and tobacco. Furthermore, MDA levels in ThZFL transformed tobacco were significantly decreased compared with control plants under salt and osmotic stress, suggesting ThZFL may confer stress tolerance by decreasing membrane lipid peroxidation. Subcellular localization analysis showed the ThZFL protein is localized in the cell wall. Our results indicated the ThZFL gene is an excellent candidate for genetic engineering to improve salt and osmotic tolerance in agricultural plants.

  9. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    Energy Technology Data Exchange (ETDEWEB)

    Finan, John D.; Leddy, Holly A. [Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC (United States); Department of Biomedical Engineering, Duke University, Durham, NC (United States); Guilak, Farshid, E-mail: guilak@duke.edu [Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC (United States); Department of Biomedical Engineering, Duke University, Durham, NC (United States)

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  10. Studies on osmotic concentration of radioactive effluents

    International Nuclear Information System (INIS)

    Thomas, K.C.; Ramachandhran, V.; Misra, B.M.

    1986-01-01

    The potential of direct osmosis for concentrating radioactive effluents is examined on the laboratory scale. Studies were carried out using asymmetric cellulose acetate membranes of a range of porosities under varying salinity gradients. A suitable bench scale osmotic concentrator employing tubular membrane systems has been fabricated and tested. An attempt to understand the mechanism of water permeation under osmotic and hydrostatic gradients has been made based on the irreversible thermodynamic approach. The solute separation of sodium chloride and radionuclides under osmosis is in the range of 85 to 95% for various osmotic sink solutions. The osmotic water flux is observed to be lower than the hydraulic water flux under reverse osmosis conditions. While the solute separation increases with an increase in annealing temperature, water flux decreases for both osmosis and reverse osmosis systems for various feed salinities. The effect of concentration polarization is analysed, and the effect of feed and osmotic sink velocity on the performance of the osmotic concentrator has also been studied. (orig.)

  11. Release and Decay Kinetics of Copeptin vs AVP in Response to Osmotic Alterations in Healthy Volunteers.

    Science.gov (United States)

    Fenske, Wiebke K; Schnyder, Ingeborg; Koch, Gilbert; Walti, Carla; Pfister, Marc; Kopp, Peter; Fassnacht, Martin; Strauss, Konrad; Christ-Crain, Mirjam

    2018-02-01

    Copeptin is the C-terminal fragment of the arginine vasopressin (AVP) prohormone whose measurement is more robust than that of AVP. Similar release and clearance characteristics have been suggested promoting copeptin as a surrogate marker. To characterize the physiology of osmotically regulated copeptin release and its half-life in direct comparison with plasma AVP. Ninety-one healthy volunteers underwent a standardized three-phase test protocol including (1) osmotic stimulation into the hypertonic range by hypertonic-saline infusion followed by osmotic suppression via (2) oral water load and (3) subsequent glucose infusion. Plasma copeptin, AVP, serum sodium, and osmolality levels were measured in regular intervals. In phase 1, an increase in median osmotic pressure [289 (286; 291) to 311 (309; 314) mOsm/kg H2O] caused similar release kinetics of plasma copeptin [4 (3.1; 6) to 29.3 (18.6; 48.2) pmol/L] and AVP [1 (0.7; 1.6) to 10.3 (6.8; 18.8) pg/mL]. Subsequent osmotic suppression to 298 (295; 301) mOsm/kg at the end of phase 3 revealed markedly different decay kinetics between both peptides-an estimated initial half-life of copeptin being approximately 2 times longer than that of AVP (26 vs 12 minutes). Copeptin is released in equimolar amounts with AVP in response to osmotic stimulation, suggesting its high potential as an AVP surrogate for differentiation of osmotic disorders. Furthermore, we here describe the decay kinetics of copeptin in response to osmotic depression enabling to identify a half-life for copeptin in direct comparison with AVP. Copyright © 2017 Endocrine Society

  12. Osmotic stress on nitrification in an airlift bioreactor

    International Nuclear Information System (INIS)

    Jin Rencun; Zheng Ping; Mahmood, Qaisar; Hu Baolan

    2007-01-01

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L -1 and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 10 5 Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 10 5 Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 10 5 Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization

  13. Suppressive effect of cellulose on osmotic diarrhea caused by maltitol in healthy female subjects.

    Science.gov (United States)

    Oku, Tsuneyuki; Hongo, Ryoko; Nakamura, Sadako

    2008-08-01

    Using a single-group time-series design, we determined that osmotic diarrhea caused by maltitol ingestion was suppressed by the addition of not only soluble but also insoluble dietary fiber in healthy humans. We then clarified that cellulose delayed gastric emptying in rats. Twenty-seven healthy volunteers ingested maltitol step-wise at doses of 15, 20, 25, 30, 35, 40 and 45 g from small to large amounts. Within that range of ingested amounts, 22 out of 27 subjects experienced osmotic diarrhea from maltitol ingestion, and the minimal dose level of maltitol that induced osmotic diarrhea (MMD) was established for each subject. When 5 g of cellulose was added to the MMD, osmotic diarrhea was suppressed in 13 out of 19 subjects (68.4%), while partially hydrolyzed alginate-Na (PHA-Na), a soluble dietary fiber, suppressed osmotic diarrhea in 10 out of 20 subjects (50.0%). When a mixed solution of cellulose and maltitol was administered to rats, the gastric emptying of maltitol was significantly delayed at 30 and 60 min after administration (p=0.019, p=0.013), respectively. PHA-Na also significantly delayed gastric emptying at 30 min (p=0.013). In conclusion, cellulose can suppress the osmotic diarrhea caused by maltitol ingestion in humans and delay the gastric emptying of maltitol in rats. A new physiological property of cellulose was clarified in this study.

  14. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    Science.gov (United States)

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  15. Long-term morphine delivery via slow release morphine pellets or osmotic pumps: Plasma concentration, analgesia, and naloxone-precipitated withdrawal.

    Science.gov (United States)

    McLane, Virginia D; Bergquist, Ivy; Cormier, James; Barlow, Deborah J; Houseknecht, Karen L; Bilsky, Edward J; Cao, Ling

    2017-09-15

    Slow-release morphine sulfate pellets and osmotic pumps are common routes of chronic morphine delivery in mouse models, but direct comparisons of these drug delivery systems are lacking. In this study, we assessed the efficacy of slow-release pellets versus osmotic pumps in delivering morphine to adult mice. Male C57BL/6NCr mice (8weeksold) were implanted subcutaneously with slow-release pellets (25mg morphine sulfate) or osmotic pumps (64mg/mL, 1.0μL/h). Plasma morphine concentrations were quantified via LC-MS/MS, analgesic efficacy was determined by tail flick assay, and dependence was assessed with naloxone-precipitated withdrawal behaviors (jumping) and physiological effects (excretion, weight loss). Morphine pellets delivered significantly higher plasma drug concentrations compared to osmotic pumps, which were limited by the solubility of the morphine sulfate and pump volume/flow rate. Within 96h post-implantation, plasma morphine concentrations were indistinguishable in pellet vs. pump-treated samples. While osmotic pump did not have an antinociceptive effect in the tail flick assay, pumps and pellets induced comparable dependence symptoms (naloxone-precipitated jumping behavior) from 24-72h post-implantation. In this study, we compared slow-release morphine pellets to osmotic minipumps for morphine delivery in mice. We found that osmotic pumps and subcutaneous morphine sulfate pellets yielded significantly different pharmacokinetics over a 7-day period, and as a result significantly different antinociceptive efficacy. Nonetheless, both delivery methods induced dependence as measured by naloxone-precipitated withdrawal. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Interaction of prechilling, temperature, osmotic stress, and light in Picea abies seed germination

    International Nuclear Information System (INIS)

    Leinonen, K.; Rita, H.

    1995-01-01

    A multi-factor experimental approach and proportional odds model was used to study interactions between five environmental factors significant to Norway spruce seed germination: prechilling (at +4.5 °C), suboptimal temperatures (+12 and +16 °C), osmotically induced water stress (–0.3 Mpa and 0 Mpa), prolonged white light, and short-period far-red light. Temperature and osmotic stress interacted with one another in the germination of seeds: the effect of osmotic stress being stronger at +16 °C than at +12 °C. In natural conditions, this interaction may prevent germination early in the summer when soil dries and temperature increases. Prolonged white light prevented germination at low temperature and low osmotic potential. Inhibitory effect was less at higher temperatures and higher osmotic potential, as well as after prechilling. Short-period far-red light did not prevent germination of unchilled seeds in darkness. Prechilling tended to make seeds sensitive to short pulses of far-red light, an effect which depended on temperature: at +12 °C the effect on germination was promotive, but at +16 °C, inhibitory and partly reversible by white light. It seems that Norway spruce seeds may have adapted to germinate in canopy shade light rich in far-red. The seeds may also have evolved mechanisms to inhibit germination in prolonged light

  17. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity level

    DEFF Research Database (Denmark)

    Hariadi, Yuda; Marandon, Karl; Tian, Yu

    2011-01-01

    or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment......Cl-induced activation of H+-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K+ leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na...

  18. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Recycling of osmotic solutions in microwave-osmotic dehydration: product quality and potential for creation of a novel product.

    Science.gov (United States)

    Wray, Derek; Ramaswamy, Hosahalli S

    2016-08-01

    Despite osmotic dehydration being a cost effective process for moisture removal, the cost implications of making, regenerating, and properly disposing of the spent osmotic solutions contributes greatly to the economic feasibility of the drying operation. The potential for recycling of osmotic solutions and their use for creation of a novel product was explored using microwave-osmotic dehydration under continuous flow spray (MWODS) conditions. Identical runs were repeated 10 times to determine the progressive physical and compositional effects of the thermal treatment and leaching from the cranberry samples. The microbiological stability and constant drying performance indicated that MWODS would be well suited for employing recycled solutions. While the anthocyanin content of the solution never approached that of cranberry juice concentrate, it is demonstrated that the spent syrup can infuse these health positive components into another product (apple). This study found that re-using osmotic solutions is a viable option to reduce cost in future MWODS applications, with no detriment to product quality and potential to use the spent solution for novel products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum

    DEFF Research Database (Denmark)

    O'Donnell, Natalie H.; Møller, Birger Lindberg; Neale, Alan D.

    2013-01-01

    Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentratio...... of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress....... of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism....... Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20...

  1. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  2. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels.

    Science.gov (United States)

    Hariadi, Yuda; Marandon, Karl; Tian, Yu; Jacobsen, Sven-Erik; Shabala, Sergey

    2011-01-01

    Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na(+), K(+), and Cl(-)) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K(+) and lower Na(+) levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K(+) progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K(+) in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na(+) content, suggesting either a very strict control of xylem Na(+) loading or an efficient Na(+) removal from leaves. A very strong correlation between NaCl-induced K(+) and H(+) fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H(+)-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K(+) leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na(+) sequestration, control of Na(+) and K(+) xylem loading, and their transport to the shoot.

  3. Casein Micelle Dispersions under Osmotic Stress

    Science.gov (United States)

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  4. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Afifa Bathool

    2012-01-01

    Full Text Available Microporous osmotic tablet of diltiazem hydrochloride was developed for colon targeting. These prepared microporous osmotic pump tablet did not require laser drilling to deliver the drug to the specific site of action. The tablets were prepared by wet granulation method. The prepared tablets were coated with microporous semipermeable membrane and enteric polymer using conventional pan coating process. The incorporation of sodium lauryl sulfate (SLS, a leachable pore-forming agent, could form in situ delivery pores while coming in contact with gastrointestinal medium. The effect of formulation variables was studied by changing the amounts of sodium alginate and NaCMC in the tablet core, osmogen, and that of pore-forming agent (SLS used in the semipermeable coating. As the amount of hydrophilic polymers increased, drug release rate prolonged. It was found that drug release was increased as the concentration of osmogen and pore-former was increased. Fourier transform infrared spectroscopy and Differential scanning calorimetry results showed that there was no interaction between drug and polymers. Scanning electron microscopic studies showed the formation of pores after predetermined time of coming in contact with dissolution medium. The formation of pores was dependent on the amount of pore former used in the semipermeable membrane. in vitro results showed acid-resistant, timed release at an almost zero order up to 24 hours. The developed osmotic tablets could be effectively used for prolonged delivery of Diltiazem HCl.

  5. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  6. Osmotic dehydration of fruits and vegetables: a review.

    Science.gov (United States)

    Yadav, Ashok Kumar; Singh, Satya Vir

    2014-09-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effects of osmotic dehydration have been reviewed. Studied showed that combination of different osmotic agents were more effective than sucrose alone due to combination of properties of solutes. During the experiments it was found that optimum osmosis was found at approximately 40 °C, 40 °B of osmotic agent and in near about 132 min. Pretreatments also leads to increase the osmotic process in fruits and vegetables. Mass transfer kinetics study is an important parameter to study osmosis. Solids diffusivity were found in wide range (5.09-32.77 kl/mol) studied by Fick's laws of diffusion. These values vary depending upon types of fruits and vegetables and osmotic agents.

  7. Faba Bean Can Adapt to Chocolate Spot Disease by Pretreatment with Shikimic and Salicylic Acids through Osmotic Adjustment, Solutes Allocation and Leaf Turgidity

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2014-03-01

    Full Text Available This study investigated the effect of shikimic and salicylic acids at the concentrations of 0.4 and 0.7 mM, respectively, or their combination as phenolic compounds and Ridomil MZ at the concentration of 250 g/100 L as a fungicide on osmotic pressure (OP, solutes allocation, organic acids, inorganic ions and relative water content were quantified in Vicia faba leaves infected by Botrytis fabae. Pathogen induced noticeable decrease in osmotic pressure, total soluble sugar (TSS and inorganic osmolytes (i.e. Na+, K+, Ca2+, Mg2+ and Cl- while caused obvious increase in proline, total soluble nitrogen (TSN and organic acids (i.e. Keto and citric acids in water extract of the leaf of faba bean plants. Furthermore, pathogen caused marked decrease in relative water content (RWC of infected leaves and as a consequence the saturation water deficit (SWD was increased. Exogenous application of shikimic acid, salicylic acid or their combination could counteract the adverse effects of B. fabae on osmotic adjustment by inducing additional increase in proline, total soluble sugars, total soluble nitrogen and organic acids which in turn increase the osmotic pressure as well as relative water content in leaves of infected plants. Recovery of osmotic adjustment as well as leaf turgidity of infected host by using these chemical inducers may encourage the using of them as protective control means. The results of the present study showed also that the application of chemical inducers such as shikimic and salicylic acids or their interaction increased the resistance of Vicia faba against the chocolate spot disease.

  8. Electro-osmotically actuated oscillatory flow of a physiological fluid on a porous microchannel subject to an external AC electric field having dissimilar frequencies

    Science.gov (United States)

    Misra, Jagadis C.; Chandra, Sukumar

    2014-04-01

    Electro-osmotic flow of a physiological fluid with prominent micropolar characteristics, flowing over a microchannel has been analyzed for a situation, where the system is subject to the action of an external AC electric field. In order to account for the rotation of the micro-particles suspended in the physiological fluid, the fluid has been treated as a micropolar fluid. The microchannel is considered to be bounded by two porous plates executing oscillatory motion. Such motion of the plates will normally induce oscillatory flow of the fluid. The governing equations of the fluid include a second-order partial differential equation depicting Gauss's law of electrical charge distributions and two other partial differential equations of second order that arise out of the laws of conservation of linear and angular momenta. These equations have been solved under the sole influence of electrokinetic forces, by using appropriate boundary conditions. This enabled us to determine explicit analytical expressions for the electro-osmotic velocity of the fluid and the microrotation of the suspended micro-particles. These expressions have been used to obtain numerical estimates of important physical variables associated with the oscillatory electro-osmotic flow of a blood sample inside a micro-bio-fluidic device. The numerical results presented in graphical form clearly indicate that the formation of an electrical double layer near the vicinity of the wall causes linear momentum to reduce. In contrast, the angular momentum increases with the enhancement of microrotation of the suspended microparticles. The study will find important applications in the validation of results of further experimental and numerical models pertaining to flow in micro-bio-fluidic devices. It will also be useful in the improvement of the design and construction of various micro-bio-fluidic devices.

  9. Osmotic properties of sulfobutylether and hydroxypropyl cyclodextrins.

    Science.gov (United States)

    Zannou, E A; Streng, W H; Stella, V J

    2001-08-01

    The purpose of this study was to determine the osmolality of sulfobutylether (SBE) and hydroxypropyl (HP) derivatives of cyclodextrins (CDs) via vapor pressure osmometry (VPO) and freezing point depression (FPD). (SBE) and HP-CDs are efficient excipients capable of solubilizing and stabilizing poorly water-soluble drugs in parenteral formulations. (SBE)-CDs have also been used as solubility enhancers and osmotic agents for the sustained release of poorly water-soluble drugs from osmotic pump tablets. The knowledge of the CD's osmolality in solution or inside such tablets would allow one to further characterize the release mechanisms. Experiments were conducted at 37 degrees C with eight types of HP and (SBE)-CDs. The aqueous solutions ranged from 0.005-0.350 mol(-1). Methods were developed to allow the measurement of high osmolalities using a vapor pressure osmometer or a differential scanning calorimeter. The osmolality calculations from the VPO and FPD measurements correlated well. The osmolality of (SBE)-CDs was significantly higher than the osmolality of HP-CDs and increased with the total degree of substitution (TDS). All CDs showed deviations from ideality at high concentrations. Empirical correlations of osmolality with concentration and TDS allowed the prediction of osmolality over a wide concentration range. This study also gave some useful insights into the behavior of CD derivatives in solution.

  10. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA

  11. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

    Science.gov (United States)

    Wang, Liuqiang; Li, Zhen; Lu, Mengzhu; Wang, Yucheng

    2017-01-01

    NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC) binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD) and peroxidase (POD) activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS) and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential. PMID:28491072

  12. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mengzhu Lu

    2017-04-01

    Full Text Available NAC (NAM, ATAF1/2, and CUC2 proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC recognized sites and calmodulin-binding NAC (CBNAC binding element. Overexpression of ThNAC13 in Arabidopsis improved seed germination rate and increased root growth and fresh weight gain under salt or osmotic stress. Transgenic T. hispida plants transiently overexpressing ThNAC13 and with RNAi-silenced ThNAC13 were generated for gain- and loss-of-function experiments. Following exposure to salt or osmotic stress, overexpression of ThNAC13 induced superoxide dismutase (SOD and peroxidase (POD activities, chlorophyll and proline contents; decreased the reactive oxygen species (ROS and malondialdehyde levels; and reduced electrolyte leakage rates in both transgenic Tamarix and Arabidopsis plants. In contrast, RNAi-silenced ThNAC13 showed the opposite results in transgenic Tamarix. Furthermore, ThNAC13 induced the expression of SODs and PODs in transgenic Arabidopsis. These results suggest that ThNAC13 improves salt and osmotic tolerance by enhancing the ROS-scavenging capability and adjusting osmotic potential.

  13. 21 CFR 864.6600 - Osmotic fragility test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic fragility...

  14. Osmotic effects of polyethylene glycol.

    Science.gov (United States)

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.

  15. Troglitazone induces differentiation in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael

    2007-01-01

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor γ. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator

  16. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  17. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  18. Increased Resistance to osmotic lysis of sickled erythrocytes ...

    African Journals Online (AJOL)

    treated with CNw had significantly reduced osmotic lysis when compared with the untreated set (P<0.05, respectively) at various hypotonic NaCl concentrations. Various Hb genotypes exhibited a graded increase in osmotic pressure lysis in ...

  19. Modelling the coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Baechler, S.; Croise, J.; Altmann, S.

    2010-01-01

    Document available in extended abstract form only. Fine-grained saturated porous materials can act as a semi-permeable osmotic membrane when exposed to a solute concentration gradient. The ions diffusion is hindered while water movement towards higher concentrations takes place in the semi-permeable membrane. The capacity of the fine-grained porous material to act as a semi permeable osmotic membrane is referred to as the osmotic efficiency (its value is 1 when the membranes is ideal, less than 1 when the membrane is leaky, allowing diffusion). The efficiency to retain ions in solution is dependent on the thickness of the diffuse double layer which itself depends on the solution concentration in the membrane. Clay rich formations have been shown to act as non-ideal semi-permeable membrane. Andra is investigating the Callovo-Oxfordian clay as a host rock for intermediate-level to high-level radioactive waste. In this context, it has been feared that osmotic water flows generated by the release of sodium nitrate salt in high concentrations, out of intermediate radioactive bituminous waste, could induce important over-pressures. The latest would eventually lead to fracturing of the host rock around the waste disposal drifts. The purpose of the present study was to develop a simulation code with the capacity to assess the potential impact of osmosis on: the re-saturation of the waste disposal drifts, the pressure evolution and the solute transport in and around a waste disposal drift. A chemo-osmotic coupled flow and transport model was implemented using the FlexPDE-finite element library. Our model is based on the chemo-osmotic formulation developed by Bader and Kooi, 2005. The model has been extended to highly concentrated solutions based on Pitzer's equation. In order to assess the impact of osmotic flow on the re-saturation time, the model was also designed to allow unsaturated flow modelling. The model configuration consists of an initially unsaturated 2D

  20. Structure and osmotic pressure of ionic microgel dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, Mary M. [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Chung, Jun Kyung; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2015-01-21

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.

  1. Structure and osmotic pressure of ionic microgel dispersions

    International Nuclear Information System (INIS)

    Hedrick, Mary M.; Chung, Jun Kyung; Denton, Alan R.

    2015-01-01

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions

  2. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yonghae Son

    2016-01-01

    Full Text Available Oxysterol like 27-hydroxycholesterol (27OHChol has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  3. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... is compared with measurements on PPy(DBS) films. The experiments show that the expansion decreases as the electrolyte concentration is increased. This means that a considerable part of the total expansion is due to the osmotic effect. The osmotic effect should be taken into account when interpreting...

  4. Drying and osmotic conditioning in Hancornia speciosa Gomes seeds

    Directory of Open Access Journals (Sweden)

    Tathiana Elisa Masetto

    Full Text Available Hancornia speciosa is a native tree species of the Brazilian Cerrado whose seeds are desiccation sensitive. In this study, we aimed to evaluate drying and osmotic conditioning in H. speciosa seeds. We used fresh seeds with 48% moisture content, which were slowly dried until they attained contents of 20%, 15%, 10% and 5%. To evaluate osmotic conditioning, the seeds were imbibed in 12 mL osmotic solutions at 0.0; -0.2; -0.4 and -0.6 MPa for two days. After that, they were dehydrated until their original moisture content. The experiments were carried out in a completely randomized design with four repetitions with 50 seeds each. Reduction in moisture content from 20% to 5% decreased the physiological potential of seeds. H. speciosa seeds do not require osmotic priming with PEG solutions, because imbibition of seeds in osmotic solutions of up to -0.6 MPa results in reduction of germination rate and seedling length.

  5. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Maqshoof Ahmad

    2013-12-01

    Full Text Available Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m-1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.

  6. Enhanced monoclonal antibody production by gradual increase of osmotic pressure

    OpenAIRE

    Lin, Jianqiang; Takagi, Mutsumi; Qu, Yinbo; Gao, Peiji; Yoshida, Toshiomi

    1999-01-01

    The time length required for the adaptation of AFP-27 hybridoma cells to high osmotic pressure and the effect of a gradual increase of osmotic pressure on monoclonal antibody production were investigated. When the cells were subjected to an increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg- 1, the intracellular content of osmoprotective free amino acids reached a maximum level 6 h after the osmotic pressure was increased to 366 mOsmol kg-1. The same time period of 6 h incubat...

  7. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-01-01

    Values of the concentration susceptibility (par. deltax/par. deltaΔ)/sub T,P/ near the lambda line and tricritical point in liquid mixtures of 3He and 4 He were calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambrs separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature

  8. Plant response to sunflower seeds to osmotic conditioning

    Directory of Open Access Journals (Sweden)

    Camila Santos Barros de Morais

    2014-10-01

    Full Text Available The aim of this study was to evaluate the effect of seeds osmotic conditioning in seedlings emergence and plants performance of sunflower. Three lots of seeds sunflower (Catissol, was submited to osmotic conditioning with polyethylene glycol solution, –2,0 MPa in aerated system, under 15 ºC for 8 hour and then was evaluated for germination tests and vigour. Under filed conditions was conducted emergency evaluations of seedling, plants development as well as the productivity and seeds quality, and the accumulation of nutrients in the seeds. The osmotic conditioning improve the survival of seedling, the dry matter mass to aerial part of plants from 60 days after sowing and oil content, in lots with low seeds physiological quality. The osmotic conditioning not increase the seeds yield but promotes the vigour of seeds produced, regardless of the lot used for sowing seeds.

  9. Improved Erythrocyte Osmotic Fragility and Packed Cell Volume ...

    African Journals Online (AJOL)

    Improved Erythrocyte Osmotic Fragility and Packed Cell Volume following administration of Aloe barbadensis Juice Extract in Rats. ... Abstract. Aloe barbadensis is a popular house plant that has a long history of a multipurpose folk remedy. ... Keywords: osmotic fragility, packed cell volume, haemoglobin, Aloe vera ...

  10. Transformation of oats and its application to improving osmotic stress tolerance.

    Science.gov (United States)

    Maqbool, Shahina B; Zhong, Heng; Oraby, Hesham F; Sticklen, Mariam B

    2009-01-01

    Oat (Avena sativa L.), a worldwide temperate cereal crop, is deficient in tolerance to osmotic stress due to drought and/or salinity. To genetically transform the available commercial oat cultivars, a genotype-independent and efficient regeneration system from shoot apical meristems was developed using four oat cultivars: Prairie, Porter, Ogle, and Pacer. All these oat cultivars generated a genotype-independent in vitro differentiated multiple shoots from shoot apical meristems at a high frequency. Using this system, three oat cultivars were genetically co-transformed with pBY520 (containing hva1 and bar) and pAct1-D (containing gus) using biolistic trade mark bombardment. Transgenic plants were selected and regenerated using herbicide resistance and GUS as a marker. Molecular and biochemical analyses of putative transgenic plants confirmed the co-integration of hva1 and bar genes with a frequency of 100%, and 61.6% of the transgenic plants carried all three genes (hva1, bar and gus). Further analyses of R0, R1, and R2 progenies confirmed stable integration, expression, and Mendalian inheritance for all transgenes. Histochemical analysis of GUS protein in transgenic plants showed a high level of GUS expression in vascular tissues and in the pollen grains of mature flowers. Immunochemical analysis of transgenic plants indicated a constitutive expression of hva1 at all developmental stages. However, the level of HVA1 was higher during the early seedling stages. The characteristic of HVA1 expression for osmotic tolerance in transgenic oat progeny was analyzed in vitro as well as in vivo. Transgenic plants exhibited significantly (Pplants. The symptoms of wilting or death of leaves as observed in 80% of non-transgenic plants due to osmotic stress was delayed and detected only in less than 10% of trans-genic plants. These observations confirmed the characteristic of HVA1 protein as providing or enhancing the osmotic tolerance in transgenic plants against salinity and

  11. New Osmosis Law and Theory: the New Formula that Replaces van't Hoff Osmotic Pressure Equation

    OpenAIRE

    Huang, Hung-Chung; Xie, Rongqing

    2012-01-01

    This article derived a new abstract concept from the osmotic process and concluded it via "osmotic force" with a new law -- "osmotic law". The "osmotic law" describes that, in an osmotic system, osmolyte moves osmotically from the side with higher "osmotic force" to the side with lower "osmotic force". In addition, it was proved mathematically that the osmotic process could be explained perfectly via "osmotic force" and "osmotic laws", which can prevent the difficulties in using current "osmo...

  12. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    Science.gov (United States)

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.

  13. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    Science.gov (United States)

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  14. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions.

    Science.gov (United States)

    Cichowska, Joanna; Żubernik, Joanna; Czyżewski, Jakub; Kowalska, Hanna; Witrowa-Rajchert, Dorota

    2018-02-17

    The present study aimed to evaluate the influence of selected compounds from the polyol group, as well as other saccharides, on the osmotic dehydration process of apples. The following alternative solutions were examined: erythritol, xylitol, maltitol, inulin and oligofructose. Efficiency of the osmotic dehydration process was evaluated based on the kinetics of the process, and through comparison of the results obtained during the application of a sucrose solution. This innovative research utilizes alternative solutions in osmotic pretreatment, which until now, have not been commonly used in fruit processing by researchers worldwide. Results indicate that erythritol and xylitol show stronger or similar efficiency to sucrose; however, the use of inulin, as well as oligofructose, was not satisfactory due to the insufficient, small osmotic driving forces of the process, and the low values of mass transfer parameters.

  15. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  16. Osmotic stress tolerance in semi-terrestrial tardigrades

    DEFF Research Database (Denmark)

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high......-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress....

  17. Integrin-linked kinase is involved in matrix-induced hepatocyte differentiation

    International Nuclear Information System (INIS)

    Gkretsi, Vasiliki; Bowen, William C.; Yang, Yu; Wu, Chuanyue; Michalopoulos, George K.

    2007-01-01

    Hepatocytes have restricted proliferative capacity in culture and when cultured without matrix, lose the hepatocyte-specific gene expression and characteristic cellular micro-architecture. Overlay of matrix-preparations on de-differentiated hepatocytes restores differentiation. Integrin-linked kinase (ILK) is a cell-matrix-adhesion protein crucial in fundamental processes such as differentiation and survival. In this study, we investigated the role of ILK, and its binding partners PINCH, α-parvin, and Mig-2 in matrix-induced hepatocyte differentiation. We report here that ILK is present in the liver and localizes at cell-matrix adhesions of cultured hepatocytes. We also show that ILK, PINCH, α-parvin, and Mig-2 expression level is dramatically reduced in the re-differentiated hepatocytes. Interestingly, hepatocytes lacking ILK undergo matrix-induced differentiation but their differentiation is incomplete, as judged by monitoring cell morphology and production of albumin. Our results show that ILK and cell-matrix adhesion proteins play an important role in the process of matrix-induced hepatocyte differentiation

  18. On Volatility Induced Stationarity for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Albin, J.M.P.; Astrup Jensen, Bjarne; Muszta, Anders

    2006-01-01

    This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.......This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples....

  19. Osmotic dehydration of fruit and berry raw materials in the food industry

    Directory of Open Access Journals (Sweden)

    N. A. Gribova

    2017-01-01

    Full Text Available Osmotic dehydration has recently received more attention as an effective method of preserving fruits and berries. Osmosis is a simple process that facilitates the processing of fruits and berries in order to preserve the original characteristics, namely nutritional value and organoleptic properties: color, aroma and texture. Osmotic dehydration has found wide application in the preservation of food products, as the activity of water in fruits and berries decreases, in some of them up to 90% of water is contained. The process of osmotic dehydration with the help of various agents is less energy-intensive than the process of drying or freezing, since it can be processed at ambient temperature. Osmotic dehydration has potential advantages in preserving the quality of food and in maintaining healthy food for the food industry. Treatment includes dehydration of fruits and berries by an osmotic agent followed by dehydration in dry or frozen apparatus where the moisture content decreases and the product becomes more stable. This process is a partial dewatering process to provide improved product quality compared to conventional drying processes or freezing. The purpose of studying osmotic dehydration is to identify the advantages and disadvantages in the treatment of osmotic agents. Various aspects of osmotic dehydration technology are considered, namely the solutions used, the characteristics of solutions, the effect of variable processes and the qualitative characteristics of osmo-dehydrated products. Factors of osmotic dehydration that depend on the osmotic agent, concentration of solute, temperature, time, size, shape and compactness of the material, mixing and the ratio of the solution to the samples.

  20. A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure

    Science.gov (United States)

    Marvel, Stephen C.; Kepler, Megan V.

    2009-01-01

    It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…

  1. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions

    Directory of Open Access Journals (Sweden)

    Joanna Cichowska

    2018-02-01

    Full Text Available The present study aimed to evaluate the influence of selected compounds from the polyol group, as well as other saccharides, on the osmotic dehydration process of apples. The following alternative solutions were examined: erythritol, xylitol, maltitol, inulin and oligofructose. Efficiency of the osmotic dehydration process was evaluated based on the kinetics of the process, and through comparison of the results obtained during the application of a sucrose solution. This innovative research utilizes alternative solutions in osmotic pretreatment, which until now, have not been commonly used in fruit processing by researchers worldwide. Results indicate that erythritol and xylitol show stronger or similar efficiency to sucrose; however, the use of inulin, as well as oligofructose, was not satisfactory due to the insufficient, small osmotic driving forces of the process, and the low values of mass transfer parameters.

  2. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  3. Lactate induces osteoblast differentiation by stabilization of HIF1α.

    Science.gov (United States)

    Wu, Yu; Wang, Miaomiao; Feng, Haihua; Peng, Ying; Sun, Jieyun; Qu, Xiuxia; Li, Chunping

    2017-09-05

    Aerobic glycolysis is involved in osteoblast differentiation induced by Wnt signaling or PTH treatment. However, it is still unclear whether lactate, the end product of aerobic glycolysis, plays any role in osteoblast differentiation. Herein we report that in cultures of osteoblast-lineage cells, lactate promoted alkaline phosphatase-positive cell formation, increased the activity of alkaline phosphatase, and induced the expression of osteocalcin. This osteoblast differentiation-inducing effect of lactate can be inhibited by blocking its entry into cells with MCT1 siRNA or inhibitors, and by interfering with its metabolism by using specific siRNAs for LDHB and PDH. Moreover, lactate stabilized HIF1α expression and inhibited HIF1α activity, with BAY87-2243 lowering the osteoblast differentiation-inducing effect of lactate. Thus, these findings reveal an unrecognized role for aerobic glycolysis in osteoblast differentiation via its end product, lactate. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electro-osmotic flows inside triangular microchannels

    International Nuclear Information System (INIS)

    Vocale, P; Spiga, M; Geri, M; Morini, G L

    2014-01-01

    This work presents a numerical investigation of both pure electro-osmotic and combined electro-osmotic/pressure-driven flows inside triangular microchannels. A finite element analysis has been adopted to solve the governing equations for the electric potential and the velocity field, accounting for a finite thickness of the electric double layer. The influence of non-dimensional parameters such as the aspect ratio of the cross-section, the electrokinetic diameter and the ratio of the pressure force to the electric force on the flow behavior has been investigated. Numerical results point out that the velocity field is significantly influenced by the aspect ratio of the cross section and the electrokinetic diameter. More specifically, the aspect ratio plays an important role in determining the maximum volumetric flow rate, while the electrokinetic diameter is crucial to establishing the range of pressures that may be sustained by the electro-osmotic flow. Numerical results are also compared with two correlations available in the literature which enable to assess the volumetric flow rate and the pressure head for microchannels featuring a rectangular, a trapezoidal or an elliptical cross-section.

  5. Differential blood-brain barrier permeabilities to [14C]sucrose and [3H]inulin after osmotic opening in the rat

    International Nuclear Information System (INIS)

    Ziylan, Y.Z.; Robinson, P.J.; Rapoport, S.I.

    1983-01-01

    The blood-brain barrier (B-BB) in 3-month-old rats was opened unilaterally by infusing 1.8 m L(+)arabinose in water into the internal carotid artery through a catheter in the external carotid. Two poorly penetrating uncharged test radiotracers of differing molecular weight and size, [ 14 C]sucrose (340 daltons, radius 5 A) and [ 3 H]inulin (5500 daltons, radius 15 A), were simultaneously injected i.v. in untreated rats, or rats at 1, 30, or 50 min after infusion of hypertonic arabinose solution. Evans-blue solution was injected 5 min prior to osmotic treatment as a visual indicator of barrier integrity. In regions of uninfused control brains, the [ 14 C]sucrose permeability-surface area (PA) product approximated 10(-5) s-1, whereas PA was not measurable for [ 3 H]inulin. In arabinose-infused animals, PA products on the ipsilateral hemisphere for both [ 14 C]sucrose and [ 3 H]inulin were markedly elevated 6 min after infusion, but decreased by 35 and 55 min. In nearly all regions, statistically significant differences were not found between 6-min [ 14 C]sucrose- and [ 3 H]inulin-PA values (P greater than 0.05). However, at 35 and 55 min in most regions, the PA for [ 3 H]inulin was significantly lower (P less than 0.05) than PA for [ 14 C]sucrose. The results indicated that the B-BB closed more rapidly to larger than to smaller molecules after osmotic treatment and were consistent with a pore model for osmotic B-BB opening

  6. Method of osmotic energy harvesting using responsive compounds and molecules

    KAUST Repository

    Hu, Xiao

    2017-07-27

    The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli responsive draw solutions that are competent in terms of energy production, geographic location flexibility, and the affordable, efficient and economical production and delivery of osmotic power. Specifically, the present invention is a novel osmotic power system that uses stimuli responsive draw solutions, economically feasible larger permeable membranes, and low grade heat sources to deliver osmotic power more efficiently and economically with less negative environmental impact, greater power output, and located in more geographically diverse areas of the world than previously thought possible for supporting such a power source.

  7. Quantified Effects of Late Pregnancy and Lactation on the Osmotic ...

    African Journals Online (AJOL)

    Quantified Effects of Late Pregnancy and Lactation on the Osmotic Stability of ... in the composition of erythrocyte membranes associated with the physiologic states. Keywords: Erythrocyteosmotic stability, osmotic fragility, late pregnancy, ...

  8. Drying characteristics of osmotically pretreated cranberries : Energy and quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, S.; Marcotte, M. [Agriculture and Agri-Food Canada, St. Hyacinthe, PQ (Canada). Food Research and Development Centre; Poirier, M.; Kudra, T. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2002-06-01

    This paper presents the results of a study in which osmotically pretreated cranberries were dried. The osmotic treatment included dehydration and sugar infusion. The process involved pretreating halved cranberries in a standard osmotic solution followed by freeze-drying, vacuum-drying and air-drying in various dryers, such as cabinet-air-through, fluid bed, pulsed fluid bed, and vibrated fluid bed dryers. The intent was to identify the best drying technology. The comparison criteria selected were energy consumption and product quality. Product quality for freeze-dried berries was quantified based on anthocyanins content, rehydration ratio, color, and taste. Unit heat consumption could be used for selecting the drying method, as all other drying methods yielded similar but slightly lower quality products. The highest energy efficiency was obtained with the vibrated fluid bed and the pulsed fluid bed. It was noted that drying rates were reduced during the second drying period when sugar was infused into the cranberries during osmotic pretreatment, but the total energy consumption was reduced by osmotic dehydration. 22 refs., 1 tab., 5 figs.

  9. Detection of osmotic damages in GRP boat hulls

    Science.gov (United States)

    Krstulović-Opara, L.; Domazet, Ž.; Garafulić, E.

    2013-09-01

    Infrared thermography as a tool of non-destructive testing is method enabling visualization and estimation of structural anomalies and differences in structure's topography. In presented paper problem of osmotic damage in submerged glass reinforced polymer structures is addressed. The osmotic damage can be detected by a simple humidity gauging, but for proper evaluation and estimation testing methods are restricted and hardly applicable. In this paper it is demonstrated that infrared thermography, based on estimation of heat wave propagation, can be used. Three methods are addressed; Pulsed thermography, Fast Fourier Transform and Continuous Morlet Wavelet. An additional image processing based on gradient approach is applied on all addressed methods. It is shown that the Continuous Morlet Wavelet is the most appropriate method for detection of osmotic damage.

  10. Modeling osmotic salinity effects on yield characteristics of substrate-grown greenhouse crops

    NARCIS (Netherlands)

    Sonneveld, C.; Bos, van den A.L.; Voogt, W.

    2004-01-01

    In a series of experiments with different osmotic potentials in the root environment, various vegetables, and ornamentals were grown in a substrate system. The osmotic potential was varied by addition of nutrients. Yield characteristics of the crop were related to the osmotic potential of the

  11. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES

    Science.gov (United States)

    Tedeschi, Henry; James, Joseph M.; Anthony, William

    1963-01-01

    Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions. PMID:14064105

  12. Use of osmotic dehydration to improve fruits and vegetables quality during processing.

    Science.gov (United States)

    Maftoonazad, Neda

    2010-11-01

    Osmotic treatment describes a preparation step to further processing of foods involving simultaneous transient moisture loss and solids gain when immersing in osmotic solutions, resulting in partial drying and improving the overall quality of food products. The different aspects of the osmotic dehydration (OD) technology namely the solutes employed, solutions characteristics used, process variables influence, as well as, the quality characteristics of the osmodehydrated products will be discussed in this review. As the process is carried out at mild temperatures and the moisture is removed by a liquid diffusion process, phase change that would be present in the other drying processes will be avoided, resulting in high quality products and may also lead to substantial energy savings. To optimize this process, modeling of the mass transfer phenomenon can improve high product quality. Several techniques such as microwave heating, vacuum, high pressure, pulsed electric field, etc. may be employed during or after osmotic treatment to enhance performance of the osmotic dehydration. Moreover new technologies used in osmotic dehydration will be discussed. Patents on osmotic dehydration of fruits and vegetables are also discussed in this article.

  13. Comparison of Seed Germination and Recovery Responses of a Salt Marsh Halophyte Halopeplis Perfoliata to Osmotic and Ionic Treatments

    International Nuclear Information System (INIS)

    Rasool, S. G.; Hameed, A.; Ahmed, M. Z.; Khan, M. A.

    2016-01-01

    Salinity affects seed germination of halophytes by inducing ionic toxicity, osmotic constraint or both. Information about the effects of salinity on seed germination of a large number of halophytes exists, but generally little is known about the basis of salinity-induced germination inhibition. In order to partition salinity effects, we studied seed germination and recovery responses of a coastal salt marsh halophyte halopeplis perfoliata to different isotonic treatments (Psi/sub S/: -0.5, -1.0, -1.5, -2.0 and -2.5, MPa) of various salts and polythylene glycol (PEG) under two light regimes (12-h light photo period and 24-h complete darkness). Highest seed germination was observed in distilled water under 12-h light photo period and reduction in osmotic potential of the solution decreased seed germination. However, some seeds of H. perfoliata could germinate in as low as -2.5 MPa (600 mM NaCl), which is equivalent to seawater salinity. Sea-salt treatment was more inhibitory than isotonic NaCl at the lowest osmotic potential (Psi/sub S/ -2.5 MPa). Generally, chloride salts with lowest Psi/sub S/ inhibited germination more than the isotonic sulfate salts. Comparable germination responses of the seeds in NaCl and isotonic PEG treatments as well as high recovery of germination in un-germinated seeds after alleviation of NaCl salinity indicated prevalence of osmotic constraint. These results thus indicate that the seeds of H. perfoliata could tolerate high levels of a wide variety of salts found in soil. (author)

  14. Laboratory Characterization of Chemico-osmotic, Hydraulic and Diffusion Properties of Rocks: Apparatus Development

    International Nuclear Information System (INIS)

    Takeda, M.; Hiratsuka, T.; Ito, K.

    2009-01-01

    Excess fluid pressures induced by chemical osmosis in natural formations may have a significant influence on groundwater systems in a geological time scale. Examinations of the possibility and duration times require characterization of the chemico-osmotic, hydraulic and diffusion properties of representative formation media under field conditions. To develop a laboratory apparatus for chemical osmosis experiments that simulates in-situ conditions, typical litho-static and background pore pressures, a fundamental concept of the chemical osmosis experiment using a closed fluid circuit system (referred to as a closed system hereafter) was revisited. Coupled processes in the experiment were examined numerically. In preliminary experiments at atmospheric pressure a chemical osmosis experiment using the closed system was demonstrated. An approximation method for determining the chemico-osmotic property was attempted. Based on preliminary examinations, an experimental system capable of loading the confining and pore pressures on the sample was thus developed. (authors)

  15. Phenotypic variations in osmotic lysis of Sahel goat erythrocytes in non-ionic glucose media.

    Science.gov (United States)

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2016-03-01

    Erythrocyte osmotic lysis in deionised glucose media is regulated by glucose influx, cation efflux, and changes in cell volume after water diffusion. Transmembrane fluxes may be affected by varied expression of glucose transporter protein and susceptibility of membrane proteins to glucose-induced glycosylation and oxidation in various physiologic states. Variations in haemolysis of Sahel goat erythrocytes after incubation in hyposmotic non-ionic glucose media, associated with sex, age, late pregnancy, and lactation, were investigated. The osmotic fragility curve in glucose media was sigmoidal with erythrocytes from goats in late pregnancy (PRE) or lactation (LAC) or from kid (KGT) or middle-aged (MGT) goats. Non-sigmoidal phenotype occurred in yearlings (YGT) and old (OGT) goats. The composite fragility phenotype for males and non-pregnant dry (NPD) females was non-sigmoidal. Erythrocytes with non-sigmoidal curves were more stable than those with sigmoidal curves because of inflectional shift of the curve to the left. Erythrocytes tended to be more fragile with male than female sex, KGT and MGT than YGT and OGT, and LAC and PRE than NPD. Thus, sex, age, pregnancy, and lactation affected the haemolytic pattern of goat erythrocytes in glucose media. The physiologic state of the goat affected the in vitro interaction of glucose with erythrocytes, causing variations in osmotic stability with variants of fragility phenotype. Variations in the effect of high extracellular glucose concentrations on the functions of membrane-associated glucose transporter, aquaporins, and the cation cotransporter were presumed to be relevant in regulating the physical properties of goat erythrocytes under osmotic stress.

  16. Physicochemical characteristics of guava “Paluma” submitted to osmotic dehydration

    OpenAIRE

    Roselene Ferreira Oliveira; Lia Mara Moterlle; Edmar Clemente

    2014-01-01

    The aim of this work was to evaluate the conservation post process osmotic of guava stored temperature at 5oC. Guava (Psidium guajava L.), red variety “Paluma” minimally processed by mild osmotic dehydration, were packaged in polyethylene terephthalate (PET) and stored temperature at 5ºC. Non-treated guava, packed in PET trays, was used as control. The treatment used was osmotic dehydration in sucrose syrup at 60ºBrix and physicochemical determinations were pH, total soluble solids (TSS), tot...

  17. Optimum condition of producing crisp osmotic banana using superheated steam puffing.

    Science.gov (United States)

    Tabtiang, Surapit; Prachayawarakorn, Somkiat; Soponronnarit, Somchart

    2017-03-01

    Puffing can improve textural property of snacks. Nevertheless, high temperature puffing accelerates non-enzymatic browning reactions. The osmotic treatment using sucrose solution potentially retards the browning, but the high amount of sucrose gain causes hard texture. The objective of this work was therefore to study the effects of osmotic time, puffing time and puffing temperature on banana qualities such as colour, shrinkage and textural property. The experimental results showed that puffing temperature, puffing time and osmotic time significantly affected colour, shrinkage and textual properties. The optimisation using response surface methodology was used for a trade-off between colour and textural properties. To obtain a good quality product, the puffed osmotic banana should be operated at the osmotic time of 43 min and puffing temperature of 220 °C and puffing time of 2 min. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Thermal and Osmotic Tolerance of 'Irukandji' Polyps: Cubozoa; Carukia barnesi.

    Directory of Open Access Journals (Sweden)

    Robert Courtney

    Full Text Available This research explores the thermal and osmotic tolerance of the polyp stage of the Irukandji jellyfish Carukia barnesi, which provides new insights into potential polyp habitat suitability. The research also targets temperature, salinity, feeding frequency, and combinations thereof, as cues for synchronous medusae production. Primary findings revealed 100% survivorship in osmotic treatments between 19 and 46‰, with the highest proliferation at 26‰. As salinity levels of 26‰ do not occur within the waters of the Great Barrier Reef or Coral Sea, we conclude that the polyp stage of C. barnesi is probably found in estuarine environments, where these lower salinity conditions commonly occur, in comparison to the medusa stage, which is oceanic. Population stability was achieved at temperatures between 18 and 31°C, with an optimum temperature of 22.9°C. We surmise that C. barnesi polyps may be restricted to warmer estuarine areas where water temperatures do not drop below 18°C. Asexual reproduction was also positively correlated with feeding frequency. Temperature, salinity, feeding frequency, and combinations thereof did not induce medusae production, suggesting that this species may use a different cue, possibly photoperiod, to initiate medusae production.

  19. Effect of pore structure on chemico-osmotic, diffusion and hydraulic properties of mud-stones

    International Nuclear Information System (INIS)

    Takeda, M.; Manaka, M.; Ito, K.; Miyoshi, S.; Tokunaga, T.

    2012-01-01

    Document available in extended abstract form only. An in-situ experiment by Neuzil (2000) has obtained the substantial proof of chemical osmosis in natural clayey formation. Chemical osmosis in clayey formations has thus received attention in recent years in the context of geological disposal of radioactive waste. Chemical osmosis is the diffusion of water through a semi-permeable membrane driven by the difference of chemical potentials between solutions to compensate the difference of water potentials, increasing the other potential differences, such as the pressure difference. Accordingly, the chemical osmosis could generate localized, abnormal fluid pressures in geological formations where formation media act as semi-permeable membranes and groundwater salinity is not uniform. Without taking account of the chemical osmosis, groundwater flow modeling may mislead the prediction of the groundwater flow direction. Therefore the possibility of chemical osmosis needs to be identified for potential host formations for radioactive waste repositories. The chemico-osmotic property of formation media is an essential parameter to identify the possibility of chemical osmosis in the formation; however, the diffusion and hydraulic properties are also fundamental parameters to estimate the duration of chemical osmosis since they control the spatial variation of salinity and the dissipation of osmotically induced pressures. In order to obtain the chemico-osmotic, diffusion and hydraulic parameters from a rock sample, this study developed a laboratory experimental system capable of performing chemical osmosis and permeability experiments. A series of experiments were performed on mud-stones. The chemico-osmotic parameter of each rock sample was further interpreted by the osmotic efficiency model proposed by Bresler (1973) to examine the pore structure inherent in rocks. Diatomaceous and siliceous mud-stone samples were obtained from drill cores taken from the Koetoi and Wakkanai

  20. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay

    2012-01-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine...... are significantly increased following hyperosmotic exposure. Swelling-induced ROS production in NIH3T3 fibroblasts is generated by NOX4 and by increasing total ROS, by either exogenous application of H(2)O(2) or overexpressing NOX4, we demonstrate that TonEBP activity and taurine influx are regulated negatively...... by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low...

  1. Activation of PPARγ is not involved in butyrate-induced epithelial cell differentiation

    International Nuclear Information System (INIS)

    Ulrich, S.; Waechtershaeuser, A.; Loitsch, S.; Knethen, A. von; Bruene, B.; Stein, J.

    2005-01-01

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor γ (PPARγ) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPARγ in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPARγ in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPARγ ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPARγ ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPARγ mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPARγ is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation

  2. Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock

    Science.gov (United States)

    Flores, H. E.; Galston, A. W.

    1982-01-01

    The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.

  3. Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities.

    Science.gov (United States)

    Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E; Omsland, Anders; Call, Douglas R

    2017-10-01

    Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log ( P baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity ( r 2 > 0.82; P baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of

  4. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Science.gov (United States)

    Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław

    2013-01-01

    The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity

  5. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  6. Osmotic Power: A Fresh Look at an Old Experiment

    Science.gov (United States)

    Dugdale, Pam

    2014-01-01

    Electricity from osmotic pressure might seem a far-fetched idea but this article describes a prototype in Norway where the osmotic pressure generated between salt and fresh water drives a turbine. This idea was applied in a student investigation, where they were tasked with researching which alternative materials could be used for the…

  7. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    International Nuclear Information System (INIS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-01-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (G M1 )-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16x10 5 N/m 2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without G M1 , the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing G M1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of G M1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of G M1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  8. An analysis of electro-osmotic and magnetohydrodynamic heat pipes

    International Nuclear Information System (INIS)

    Harrison, M.A.

    1988-01-01

    Mechanically simple methods of improving heat transport in heat pipes are investigated. These methods are electro-osmotic and magnetohydrodynamic augmentation. For the electro-osmotic case, a detailed electrokinetic model is used. The electrokinetic model used includes the effects of pore surface curvature and multiple ion diffusivities. The electrokinetic model is extended to approximate the effects of elevated temperature. When the electro-osmotic model is combined with a suitable heat-pipe model, it is found that the electro-osmotic pump should be a thin membrane. Arguments are provided that support the use of a volatile electrolyte. For the magnetohydrodynamic case, a brief investigation is provided. A quasi-one-dimensional hydromagnetic duct flow model is used. This hydromagnetic model is extended to approximate flow effects unique to heat pipes. When combined with a suitable heat pipe model, it is found that there is no performance gain for the case considered. In fact, there are serious pressure-distribution problems that have not been previously recognized. Potential solutions to these pressure-distribution problems are suggested

  9. Sedimentation equilibria of ferrofluids: II. Experimental osmotic equations of state of magnetite colloids

    International Nuclear Information System (INIS)

    Luigjes, Bob; Thies-Weesie, Dominique M E; Erné, Ben H; Philipse, Albert P

    2012-01-01

    The first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical centrifuge, which is the subject of the accompanying paper I. The pressures of the magnetic colloids, measured accurately to values as low as a few pascals, obey Van ’t Hoff’s law at low concentrations, whereas at increasing colloid densities non-ideality appears in the form of a negative second virial coefficient. This virial coefficient corresponds to a dipolar coupling constant that agrees with the coupling constant obtained via independent magnetization measurements. The coupling constant manifests an attractive potential of mean force that is significant but yet not quite strong enough to induce dipolar chain formation. Our results disprove van der Waals-like phase behavior of dipolar particles for reasons that are explained. (paper)

  10. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  11. Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress

    Science.gov (United States)

    Zhang, Cuimei; Shi, Shangli

    2018-01-01

    Drought severely limits global plant distribution and agricultural production. Elucidating the physiological and molecular mechanisms governing alfalfa stress responses will contribute to the improvement of drought tolerance in leguminous crops. In this study, the physiological and proteomic responses of two alfalfa (Medicago sativa L.) varieties contrasting in drought tolerance, Longzhong (drought-tolerant) and Gannong No. 3 (drought-sensitive), were comparatively assayed when seedlings were exposed to -1.2 MPa polyethylene glycol (PEG-6000) treatments for 15 days. The results showed that the levels of proline, malondialdehyde (MDA), hydrogen peroxide (H2O2), hydroxyl free radical (OH•) and superoxide anion free radical (O2•-) in both varieties were significantly increased, while the root activity, the superoxide dismutase (SOD) and glutathione reductase (GR) activities, and the ratios of reduced/oxidized ascorbate (AsA/DHA) and reduced/oxidized glutathione (GSH/GSSG) were significantly decreased. The soluble protein and soluble sugar contents, the total antioxidant capability (T-AOC) and the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) first increased and then decreased with the increase in treatment days. Under osmotic stress, Longzhong exhibited lower levels of MDA, H2O2, OH• and O2•- but higher levels of SOD, CAT, APX, T-AOC and ratios of AsA/DHA and GSH/GSSG compared with Gannong No.3. Using isobaric tags for relative and absolute quantification (iTRAQ), 142 differentially accumulated proteins (DAPs) were identified from two alfalfa varieties, including 52 proteins (34 up-regulated and 18 down-regulated) in Longzhong, 71 proteins (28 up-regulated and 43 down-regulated) in Gannong No. 3, and 19 proteins (13 up-regulated and 6 down-regulated) shared by both varieties. Most of these DAPs were involved in stress and defense, protein metabolism, transmembrane transport, signal transduction, as well as cell wall and

  12. Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress.

    Science.gov (United States)

    Zhang, Cuimei; Shi, Shangli

    2018-01-01

    Drought severely limits global plant distribution and agricultural production. Elucidating the physiological and molecular mechanisms governing alfalfa stress responses will contribute to the improvement of drought tolerance in leguminous crops. In this study, the physiological and proteomic responses of two alfalfa ( Medicago sativa L.) varieties contrasting in drought tolerance, Longzhong (drought-tolerant) and Gannong No. 3 (drought-sensitive), were comparatively assayed when seedlings were exposed to -1.2 MPa polyethylene glycol (PEG-6000) treatments for 15 days. The results showed that the levels of proline, malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), hydroxyl free radical (OH • ) and superoxide anion free radical (O 2 •- ) in both varieties were significantly increased, while the root activity, the superoxide dismutase (SOD) and glutathione reductase (GR) activities, and the ratios of reduced/oxidized ascorbate (AsA/DHA) and reduced/oxidized glutathione (GSH/GSSG) were significantly decreased. The soluble protein and soluble sugar contents, the total antioxidant capability (T-AOC) and the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) first increased and then decreased with the increase in treatment days. Under osmotic stress, Longzhong exhibited lower levels of MDA, H 2 O 2 , OH • and O 2 •- but higher levels of SOD, CAT, APX, T-AOC and ratios of AsA/DHA and GSH/GSSG compared with Gannong No.3. Using isobaric tags for relative and absolute quantification (iTRAQ), 142 differentially accumulated proteins (DAPs) were identified from two alfalfa varieties, including 52 proteins (34 up-regulated and 18 down-regulated) in Longzhong, 71 proteins (28 up-regulated and 43 down-regulated) in Gannong No. 3, and 19 proteins (13 up-regulated and 6 down-regulated) shared by both varieties. Most of these DAPs were involved in stress and defense, protein metabolism, transmembrane transport, signal transduction, as well as cell

  13. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: Analytical and semi-analytical solutions

    Science.gov (United States)

    Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T.

    2016-09-01

    In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye-Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien-Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.

  14. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    Science.gov (United States)

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  15. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  16. Physicochemical characteristics of guava “Paluma” submitted to osmotic dehydration

    Directory of Open Access Journals (Sweden)

    Roselene Ferreira Oliveira

    2014-09-01

    Full Text Available The aim of this work was to evaluate the conservation post process osmotic of guava stored temperature at 5oC. Guava (Psidium guajava L., red variety “Paluma” minimally processed by mild osmotic dehydration, were packaged in polyethylene terephthalate (PET and stored temperature at 5ºC. Non-treated guava, packed in PET trays, was used as control. The treatment used was osmotic dehydration in sucrose syrup at 60ºBrix and physicochemical determinations were pH, total soluble solids (TSS, total titratable acidity (TTA, reducing sugars (RS, total sugars (TS and parameters related to colour read (a*, chroma (c*, yellow (b*, luminosity (L* of the fresh and osmotically dehydrated guava slices. The dehydrated fruits lost about 34.45% of water, concentrating contents of soluble solids, total and reducing sugars, when compared to control samples. The pH value remained around 3.76 for the OD fruits and 3.87 for the fresh fruits. The colour of the dehydrated fruits was more intense than the control samples’. The guava slices osmotic dehydration had 21 days of shelf life, showed physicochemical characteristics significantly superior to the control samples’, having a stable and high quality product as a result.

  17. The effects of exogenous proline and osmotic stress on morpho ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... For evaluation of growth parameters of strawberry callus under osmotic stress and exogenous proline, embryonic calli were transferred to Murashige and Skoog (MS) medium containing four sucrose. (osmotic stress) treatments including 3, 6, 9 and 12% and various concentrations of exogenous L- proline ...

  18. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    Science.gov (United States)

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Osmotic regulation of the mitochondrial permeability transition pore investigated by light scattering, fluorescence and electron microscopy techniques.

    Science.gov (United States)

    Baev, Artyom Y; Elustondo, Pia A; Negoda, Alexander; Pavlov, Evgeny V

    2017-07-08

    Mitochondrial permeability transition (PT) is a phenomenon of an increase of the inner membrane permeability in response to an excessive matrix calcium accumulation. PTP is caused by the opening of the large weakly selective channel. Molecular composition and regulation of permeability transition pore (PTP) are not well understood. Here we used isolated mitochondria to investigate dependence of PTP activation on the osmotic pressure. We found that in low osmotic strength solution calcium-induced PTP is significantly inhibited. We propose that this effect is linked to the changes in the curvature of the mitochondrial inner membrane. This interpretation is consistent with the idea about the importance of ATP synthase dimerization in modulation of the PTP activity. Copyright © 2017. Published by Elsevier Inc.

  20. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  1. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    Science.gov (United States)

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  2. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.

    Science.gov (United States)

    Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min

    2017-08-25

    Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes

    DEFF Research Database (Denmark)

    Lin, Lin; Kragh, Peter Michael; Purup, Stig

    2009-01-01

    Cl with those of concentrated solutions of two non-permeable osmotic agents, namely sucrose and trehalose, on the cryotolerance and developmental competence of porcine oocytes. In Experiment 1, porcine in vitro-matured cumulus-oocyte complexes (COCs; n = 1200) were exposed to 588 mOsmol NaCl, sucrose...... or trehalose solutions for 1 h, allowed to recover for a further 1 h, vitrified, warmed and subjected to parthenogenetic activation. Both Day 2 (where Day 0 is the day of activation) cleavage and Day 7 blastocyst rates were significantly increased after NaCl, sucrose and trehalose osmotic treatments compared...... with untreated controls (cleavage: 46 ± 5%, 44 ± 7%, 45 ± 4% and 26 ± 6%, respectively; expanded blastocyst rate: 6 ± 1%, 6 ± 2%, 7 ± 2% and 1 ± 1%, respectively). In Experiment 2, COCs (n = 2000) were treated with 588 mOsmol NaCl, sucrose or trehalose, then used as recipients for SCNT (Day 0). Cleavage rates...

  4. Osmotic dehydration of fish: principal component analysis

    Directory of Open Access Journals (Sweden)

    Lončar Biljana Lj.

    2014-01-01

    Full Text Available Osmotic treatment of the fish Carassius gibelio was studied in two osmotic solutions: ternary aqueous solution - S1, and sugar beet molasses - S2, at three solution temperatures of 10, 20 and 30oC, at atmospheric pressure. The aim was to examine the influence of type and concentration of the used hypertonic agent, temperature and immersion time on the water loss, solid gain, dry mater content, aw and content of minerals (Na, K, Ca and Mg. S2 solution has proven to be the best option according to all output variables.[ Projekat Ministarstva nauke Republike Srbije, br. TR 31055

  5. Effect of drought and abscisic acid application on the osmotic adjustment of four wheat cultivars

    International Nuclear Information System (INIS)

    Iqbal, S.; Bano, A.

    2010-01-01

    The accumulation of osmolytes in leaf tissues and the abscisic acid-induced stomatal closure are well-recognized mechanisms associated with drought tolerance in crop plants. We determine the response in terms of osmotic potential and the contents of leaf proline, glycine betaine and soluble sugar at booting and grain filling stages of four wheat (Triticum aestivum L.) cultivars to drought and exogenously applied abscisic acid (ABA) in a pot study. Leaf sample were collected 3, 6 and 9 days after drought induction and at 48 and 72 h of re-watering (recovery). Marked decreases in osmotic potential associated with the accumulation of proline, glycine betaine and soluble sugars occurred under conditions of drought stress Accession 011320 was most sensitive to drought and showed the largest decrease in osmotic potential and least accumulation of proline, sugar and glycine betaine The inhibitory effects of drought stress were ameliorated by exogenous application of ABA. This ameliorating effect was more pronounced at the booting than at grain filling stage particularly in the sensitive accession 011320. Upon rewatering the recovery from drought stress was found to be greater in case of abscisic acid application. The leaf praline content is seen to be a suitable indicator for selecting drought-tolerant genotypes. (author)

  6. The effects of exogenous proline and osmotic stress on morpho ...

    African Journals Online (AJOL)

    For evaluation of growth parameters of strawberry callus under osmotic stress and exogenous proline, embryonic calli were transferred to Murashige and Skoog (MS) medium containing four sucrose (osmotic stress) treatments including 3, 6, 9 and 12% and various concentrations of exogenous Lproline (0, 2.5, 5 and 10 ...

  7. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  8. Hematology and erythrocyte osmotic fragility of the Franquet's fruit bat (Epomops franqueti).

    Science.gov (United States)

    Ekeolu, Oyetunde Kazeem; Adebiyi, Olamide Elizabeth

    2018-03-15

    Hematological parameters are vital diagnostic tools for understanding health dynamics of humans and animals. Franquet's fruit bat (Epomops franqueti) is host to several parasites such as protozoa, bacteria, viruses and mites. Yet, studies exploring the values of its blood components with interest for research or food purposes are scarce. Thus, this study was carried out to investigate the hematological values of the adult E. franqueti. Seventeen (nine female and eight male) apparently healthy adult E. franqueti were captured from their roosting colony. Blood samples were collected for determination of erythrocyte indices [red blood cell count (RBC), packed cell volume (PCV), hemoglobin (Hb) concentration, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC)] and leukocyte indices [total white blood cell counts (WBC), lymphocytes, eosinophil, monocytes, neutrophil count and erythrocytes osmotic fragility]. There were no significant (p≥0.05) sex-related differences in RBC, PCV, Hb concentration, MCV, MCH, MCHC and total and differential WBC of E. franqueti. Erythrocyte osmotic fragility was significantly higher in female than in male E. franqueti at 0.1% NaCl. These considerations are critical in establishing reference ranges of blood parameters for E. franqueti and may provide insight to why they serve as reservoir hosts for several microorganisms.

  9. Osmotic consolidation of suspensions and gels

    International Nuclear Information System (INIS)

    Miller, K.T.; Zukoski, C.F.

    1994-01-01

    An osmotic method for the consolidation of suspensions of ceramic particles is demonstrated. Concentrated solutions of poly(ethylene oxide) are separated from a suspension of ceramic particles by a semipermeable membrane, creating a gradient in solvent chemical potential. Solvent passes from the suspension into the polymer solution, lowering its free energy and consolidating the suspension. Dispersions of stable 8-nm hydrous zirconia particles were consolidated to over 47% by volume. Suspensions of α-alumina in three states of aggregation (dispersed, weakly flocculated, and strongly flocculated) were consolidated to densities greater than or equal to those produced in conventional pressure filtration. Moreover, the as-consolidated alumina bodies were partially drained of fluid during the osmotic consolidation process, producing cohesive partially dried bodies with improved handling characteristics

  10. Recent experimental data may point to a greater role for osmotic pressures in the subsurface

    Science.gov (United States)

    Neuzil, C.E.; Provost, A.M.

    2009-01-01

    Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility

  11. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  12. Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray.

    Science.gov (United States)

    Zhang, Wenzhi; Li, Xu; Shang, Xifu; Zhao, Qichun; Hu, Yefeng; Xu, Xiang; He, Rui; Duan, Liqun; Zhang, Feng

    2013-12-27

    Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. At present, the molecular mechanisms underlying osmotic regulation in IVD cells are poorly understood. This study aims to screen genes affected by changes in osmotic pressure in cells of subjects aged 29 to 63 years old, with top-scoring pair (TSP) method. Gene expression data set GSE1648 was downloaded from Gene Expression Omnibus database, including four hyper-osmotic stimuli samples, four iso-osmotic stimuli samples, and three hypo-osmotic stimuli samples. A novel, simple method, referred to as the TSP, was used in this study. Through this method, there was no need to perform data normalization and transformation before data analysis. A total of five pairs of genes ((CYP2A6, FNTB), (PRPF8, TARDBP), (RPS5, OAZ1), (SLC25A3, NPM1) and (CBX3, SRSF9)) were selected based on the TSP method. We inferred that all these genes might play important roles in response to osmotic stimuli and age in IVD cells. Additionally, hyper-osmotic and iso-osmotic stimuli conditions were adverse factors for IVD cells. We anticipate that our results will provide new thoughts and methods for the study of IVD disease.

  13. Quantification of osmotic water transport in vivo using fluorescent albumin.

    Science.gov (United States)

    Morelle, Johann; Sow, Amadou; Vertommen, Didier; Jamar, François; Rippe, Bengt; Devuyst, Olivier

    2014-10-15

    Osmotic water transport across the peritoneal membrane is applied during peritoneal dialysis to remove the excess water accumulated in patients with end-stage renal disease. The discovery of aquaporin water channels and the generation of transgenic animals have stressed the need for novel and accurate methods to unravel molecular mechanisms of water permeability in vivo. Here, we describe the use of fluorescently labeled albumin as a reliable indicator of osmotic water transport across the peritoneal membrane in a well-established mouse model of peritoneal dialysis. After detailed evaluation of intraperitoneal tracer mass kinetics, the technique was validated against direct volumetry, considered as the gold standard. The pH-insensitive dye Alexa Fluor 555-albumin was applied to quantify osmotic water transport across the mouse peritoneal membrane resulting from modulating dialysate osmolality and genetic silencing of the water channel aquaporin-1 (AQP1). Quantification of osmotic water transport using Alexa Fluor 555-albumin closely correlated with direct volumetry and with estimations based on radioiodinated ((125)I) serum albumin (RISA). The low intraperitoneal pressure probably accounts for the negligible disappearance of the tracer from the peritoneal cavity in this model. Taken together, these data demonstrate the appropriateness of pH-insensitive Alexa Fluor 555-albumin as a practical and reliable intraperitoneal volume tracer to quantify osmotic water transport in vivo. Copyright © 2014 the American Physiological Society.

  14. X-radiation-induced differentiation of xenotransplanted human undifferentiated rhabdomyosarcoma

    International Nuclear Information System (INIS)

    Takizawa, T.; Matsui, T.; Maeda, Y.

    1989-01-01

    A serially xenotransplantable strain of undifferentiated embryonal rhabdomyosarcoma originating from the nasal cavity of a 42-year-old woman has been established in our laboratory. After radiotherapy for the tumor donor, distinct rhabdomyoblastic differentiation of the undifferentiated sarcoma cells appeared in the primary lesion, and it is a reasonable assumption that X-irradiation has a certain potentiality to induce morphologic differentiation of tumor cells. To study this possibility, tissue fragments of undifferentiated embryonal rhabdomyosarcoma that had grown to more than 10 mm after being transplanted to nude mice were selectively irradiated in situ. The degree of rhabdomyoblastic differentiation according to radiation dose was evaluated by light and electron microscopy and by immunostainability for myoglobin, creatine phosphokinase-MM, and desmin. Distinct morphologic differentiation of undifferentiated sarcoma cells could be induced by repeated X-irradiations at several-week intervals

  15. Biophysical characterization of the Lactobacillus delbrueckii subsp. bulgaricus membrane during cold and osmotic stress and its relevance for cryopreservation.

    Science.gov (United States)

    Meneghel, Julie; Passot, Stéphanie; Dupont, Sébastien; Fonseca, Fernanda

    2017-02-01

    Freezing lactic acid bacteria often leads to cell death and loss of technological properties. Our objective was to provide an in-depth characterization of the biophysical properties of the Lactobacillus delbrueckii subsp. bulgaricus membrane in relation to its freeze resistance. Freezing was represented as a combination of cold and osmotic stress. This work investigated the relative incidence of increasing sucrose concentrations coupled or not with subzero temperatures without ice nucleation on the biological and biophysical responses of two strains with different membrane fatty acid compositions and freeze resistances. Following exposure of bacterial cells to the highest sucrose concentration, the sensitive strain exhibited a survival rate of less than 10 % and 5 h of acidifying activity loss. Similar biological activity losses were observed upon freeze-thawing and after osmotic treatment for each strain thus highlighting osmotic stress as the main source of cryoinjury. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to membrane lipid organization characterized by FTIR spectroscopy. Both approaches made it possible to investigate the specific contributions of the membrane core and the bilayer external surface to cell degradation caused by cold and osmotic stress. Cold-induced membrane rigidification had no significant implication on bacterial freeze-thaw resistance. Interactions between extracellular sucrose and membrane phospholipid headgroups under osmotic stress were also observed. Such interactions were more evident in the sensitive strain and when increasing sucrose concentration, thus suggesting membrane permeabilization. The relevance of biophysical properties for elucidating mechanisms of cryoinjury and cryoprotection is discussed.

  16. Osmotic and Heat Stress Effects on Segmentation.

    Directory of Open Access Journals (Sweden)

    Julian Weiss

    Full Text Available During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process.

  17. Dependence of osmotic pressure on solution properties

    International Nuclear Information System (INIS)

    Fritz, S.J.

    1978-01-01

    Hydrostatic pressure, temperature, salt concentration, and the chemical composition of the salt are parameters affecting solution properties. Pressure and temperature have little effect on osmosis, but osmotic pressure variations due to type of dissolved salt may be significant, especially at high concentrations. For a given salt solution, concentration variations cause large differences in osmotic pressure. A representative difference in concentration across a clay layer in a relatively shallow groundwater system might be 100 to 1,000 ppm. When expressed as ppm NaCl, this difference could cause a head difference of 0.8 to 8 meters of water if one of the rock bodies were closed to fluid escape

  18. Renal cells express different forms of vimentin: the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis.

    Directory of Open Access Journals (Sweden)

    Bettina S Buchmaier

    Full Text Available Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight, besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis.

  19. Osmotic Control of opuA Expression in Bacillus subtilis and Its Modulation in Response to Intracellular Glycine Betaine and Proline Pools

    Science.gov (United States)

    Hoffmann, Tamara; Wensing, Annette; Brosius, Margot; Steil, Leif; Völker, Uwe

    2013-01-01

    Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression. PMID:23175650

  20. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  1. Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young

    2007-01-01

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of α-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-β), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-β with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-β but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90

  2. OSMOTIC DEHYDRATION KINETICS OF GUAVAS IN MALTOSE SOLUTIONS WITH CALCIUM SALT*

    Directory of Open Access Journals (Sweden)

    S. DI S. MASTRANTONIO

    2009-03-01

    Full Text Available

    The osmotic dehydration kinetics of guavas in maltose solutions at 40 and 60ºBrix, with addition of 0, 0.6 and 1.2% of calcium lactate was studied in this paper and the final product quality was evaluated. The experiments were carried out up to 60 hours and samples were taken for analysis at different times to evaluate guavas weight reduction, water loss and sugar gain and to characterize the product according to its texture and color. After 24 hours of process the mass transfer of water and sugar between the osmotic solution and the fruit was negligible, showing that process equilibrium was reached. The increase of sugar concentration in the osmotic solution showed strong influence on the dehydration process, increasing the water loss and reducing sugar gain. The presence of calcium ions in the osmotic solution also influenced the kinetics of mass transfer and showed a strong influence on fruit texture. Higher values of stress and strain at failure were obtained when calcium lactate was employed. The effect of the different osmotic treatments on the color parameters was also investigated and significant changes were observed in the values of chroma C* and hue H* due to sugar concentration and calcium addition.

    KEYWORDS: Osmotic dehydration; kinetics; guava; maltose; calcium lactate.

  3. Osmotic dehydration of Braeburn variety apples in the production of sustainable food products

    Science.gov (United States)

    Ciurzyńska, Agnieszka; Cichowska, Joanna; Kowalska, Hanna; Czajkowska, Kinga; Lenart, Andrzej

    2018-01-01

    The aim of this work was to investigate the effects of osmotic dehydration conditions on the properties of osmotically pre-treated dried apples. The scope of research included analysing the most important mass exchange coefficients, i.e. water loss, solid gain, reduced water content and water activity, as well as colour changes of the obtained dried product. In the study, apples were osmotically dehydrated in one of two 60% solutions: sucrose or sucrose with an addition of chokeberry juice concentrate, for 30 and 120 min, in temperatures of 40 and 60°C. Ultrasound was also used during the first 30 min of the dehydration process. After osmotic pre-treatment, apples were subjected to innovative convective drying with the puffing effect, and to freeze-drying. Temperature and dehydration time increased the effectiveness of mass exchange during osmotic dehydration. The addition of chokeberry juice concentrate to standard sucrose solution and the use of ultrasound did not change the value of solid gain and reduced water content. Water activity of the dried apple tissue was not significantly changed after osmotic dehydration, while changes in colour were significant.

  4. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida.

    Science.gov (United States)

    Bojanovič, Klara; D'Arrigo, Isotta; Long, Katherine S

    2017-04-01

    Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one

  5. A review on controlled porosity osmotic pump tablets and its evaluation

    Directory of Open Access Journals (Sweden)

    Chinmaya Keshari Sahoo

    2015-12-01

    Full Text Available Conventional drug delivery system provides an immediate release of drug which does not control the release of the drug and does not maintain effective concentration at target site for a longer period of time. Hence to avoid the shortcomings there is development of various controlled drug delivery systems. Among these osmotic drug delivery system (ODDS utilizes the principle of osmotic pressure and delivers drug dose in an optimized manner to maintain drug concentration within the therapeutic window and minimizes toxic effects. ODDS releases drug at a controlled rate that is independent of the pH and thermodynamics of dissolution medium. The release of drug from ODDS follows zero order kinetics. The release of drug from osmotic system depends upon various formulation factors such as solubility, osmotic pressure of the core components, size of the delivery orifice and nature of the rate controlling membrane. Controlled porosity osmotic pump (CPOP contains drug, osmogens, excipients in core and a coating of semipermeable membrane with water soluble additives. In CPOP water soluble additives dissolve after coming in contact with water, resulting in an in situ formation of a microporous membrane. The present study gives an idea about osmosis, CPOP, components of CPOP and its evaluation.

  6. Influence of osmotic processes on the excess-hydraulic head measured in the Toarcian/Domerian argillaceous formation of Tournemire

    International Nuclear Information System (INIS)

    Tremosa, J.

    2010-01-01

    able to take into account the effect of multi-ionic solutions, i.e. nearest than the natural waters composition, and, thus, to constrain better the chemo-osmotic efficiency. Thermo-osmosis process is poorly characterized so that no satisfactory macroscopic expression to calculate the thermo-osmotic permeability k T was available nor thermo-osmotic experiments performed on natural shales, so far. This process is interpreted as being related to changes properties of water sorbed at clay minerals surface compared with bulk water. A thermo-osmotic permeability predictive model is proposed here, based on the modifications of the hydrogen bounds associated with water molecules located at the vicinity of the solid surface. Input parameters of this model only consist in petrophysical parameters and medium conditions (pore water concentration and temperature). Chemical osmosis and thermo-osmosis experiments were performed on Tournemire argillite samples and in a test interval equipped borehole at the Tournemire URL. These experiments have consisted in inducing a concentration or temperature gradient across a sample for the laboratory experiments and between the borehole test interval and the formation for the in situ experiments. Osmotic flows were identified by the interpretation of the pressure evolution in the test interval using a hydro-thermo-chemo-mechanical model based on the mass balance equation sand the coupled-flow equations. Inversion of the measured pressure signals allowed identifying a chemo-osmotic efficiency ranging between 0.014 and 0.31 and a thermo-osmotic permeability k T ranging between 6 x 10 -12 and 2 x 10 -10 m 2 K -1 s -1 for the Tournemire clay-rock. In parallel to the characterization of the osmotic processes in the argillaceous formation of Tournemire, pore water composition and temperature profiles were established. Temperature profile was obtained by direct measurement in different boreholes. Pore water composition profile was calculated by a

  7. Osmotic Effects in Sludge Dewatering

    DEFF Research Database (Denmark)

    Keiding, Kristian; Rasmussen, Michael R.

    2003-01-01

    A model of filtration dewatering is presented. The model is based on the d’Arcy flow equation in which the resistance to filtration is described by the Corzeny–Carman equation and the driving force is the difference between the external pressure and the osmotic pressure of the filter cake. It has...

  8. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  9. Recent development in osmotic dehydration of fruit and vegetables: a review.

    Science.gov (United States)

    Chandra, Suresh; Kumari, Durvesh

    2015-01-01

    Osmotic dehydration of fruits and vegetables is achieved by placing the solid/semi solid, whole or in pieces, in a hypertonic solution (sugar and/or salt) with a simultaneous counter diffusion of solutes from the osmotic solution into the tissues. Osmotic dehydration is recommended as a processing method to obtain better quality of food products. Partial dehydration allows structural, nutritional, sensory, and other functional properties of the raw material to be modified. However, the food industry uptake of osmotic dehydration of foods has not been extensive as expected due to the poor understanding of the counter current flow phenomena associated with it. However, these flows are in a dynamic equilibrium with each other and significantly influence the final product in terms of preservation, nutrition, and organoleptic properties. The demand of healthy, natural, nutritious, and tasty processed food products continuously increases, not only for finished products, but also for ingredient to be included in complex foods such as ice cream, cereals, dairy, confectionaries, and bakery products.

  10. Effects of osmotic stress on the activity of MAPKs and PDGFR-beta-mediated signal transduction in NIH-3T3 fibroblasts

    DEFF Research Database (Denmark)

    Nielsen, M-B; Christensen, Søren Tvorup; Hoffmann, E K

    2008-01-01

    Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts...... in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-beta-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most...... likely via a pathway independent of PDGFR-beta and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments...

  11. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua

    2010-04-16

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. © 2010 Blackwell Publishing Ltd.

  12. The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes.

    Science.gov (United States)

    Wang, Z; Irianto, J; Kazun, S; Wang, W; Knight, M M

    2015-02-01

    Osteoarthritis (OA) is associated with a gradual reduction in the interstitial osmotic pressure within articular cartilage. The aim of this study was to compare the effects of sudden and gradual hypo-osmotic challenge on chondrocyte morphology and biomechanics. Bovine articular chondrocytes were exposed to a reduction in extracellular osmolality from 327 to 153 mOsmol/kg applied either suddenly (osmotic stress, 66% of chondrocytes exhibited an increase in diameter followed by RVD, whilst 25% showed no RVD. By contrast, cells exposed to gradual hypo-osmotic stress exhibited reduced cell swelling without subsequent RVD. There was an increase in the equilibrium modulus for cells exposed to sudden hypo-osmotic stress. However, gradual hypo-osmotic challenge had no effect on cell mechanical properties. This cell stiffening response to sudden hypo-osmotic challenge was abolished when actin organization was disrupted with cytochalasin D or RVD inhibited with REV5901. Both sudden and gradual hypo-osmotic challenge reduced cortical F-actin distribution and caused chromatin decondensation. Sudden hypo-osmotic challenge increases chondrocyte mechanics by activation of RVD and interaction with the actin cytoskeleton. Moreover, the rate of hypo-osmotic challenge is shown to have a profound effect on chondrocyte morphology and biomechanics. This important phenomenon needs to be considered when studying the response of chondrocytes to pathological hypo-osmotic stress. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Plasma osmotic changes during major abdominal surgery.

    Science.gov (United States)

    Malone, R A; McLeavey, C A; Arens, J F

    1977-12-01

    Fluid balance across the capillary membrane is maintained normally by a balance of hydrostatic and colloid osmotic pressures (COP). In 12 patients having major intra-abdominal procedures, the COP was followed during the operative and immediate postoperative periods. The patients' intraoperative fluid management consisted of replacing shed blood with blood and following Shires' concept of crystalloid replacement. Significant decreases in COP to approximately two thirds of the initial value occurred in patients having intra-abdominal procedures versus only a 10 percent decrease in those having peripheral procedures (greater than .001). As a result of this decrease in COP, the balance between hydrostatic and colloid osmotic pressures is lost and risk of pulmonary intersitial edema is increased.

  14. Transcriptomic Profiling and Physiological Analysis of Haloxylon ammodendron in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Hui-Juan Gao

    2017-12-01

    Full Text Available Haloxylon ammodendron, a perennial xero-halophyte, is an essential species for investigating the effects of drought on desert tree. To gain a comprehensive knowledge on the responses of H. ammodendron to drought stress, we specially performed the molecular and physiological analysis of H. ammodendron in response to −0.75 MPa osmotic stress for six and 24 h in lab condition via RNA-seq and digital gene expression (DGE. In total, 87,109 unigenes with a mean length of 680 bp and 13,486 potential simple sequence repeats (SSRs were generated, and 3353 differentially expressed genes (DEGs in shoots and 4564 in roots were identified under stress. These DEGs were mainly related to ion transporters, signal transduction, ROS-scavenging, photosynthesis, cell wall organization, membrane stabilization and hormones. Moreover, the physiological changes of inorganic ions and organic solute content, peroxidase (POD activity and osmotic potential were in accordance with dynamic transcript profiles of the relevant genes. In this study, a detailed investigation of the pathways and candidate genes identified promote the research on the molecular mechanisms of abiotic stress tolerance in the xero-halophytic species. Our data provides valuable genetic resources for future improvement of forage and crop species for better adaptation to abiotic stresses.

  15. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems

    Directory of Open Access Journals (Sweden)

    DINAKAR eCHALLABATHULA

    2016-02-01

    Full Text Available The present study reveals the importance of alternative oxidase (AOX pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 µmoles m-2 s-1 at 25 oC under a range of sorbitol concentrations from 0.4 M to 1.0M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 oC to 10 oC to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25 OC, the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation, under both hyper-osmotic (1.0 M sorbitol and sub-optimal temperature stress conditions (10 OC, while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG related to antioxidative system during hyper-osmotic stress. Nevertheless, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD and sub-optimal temperature (NADPH/NADP stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM, the observed changes in NaHCO3 dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(PH/NAD(P and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the

  16. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    Directory of Open Access Journals (Sweden)

    Simon Swapna

    2017-09-01

    Full Text Available Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000, and followed by the pot planted experiments in the rain-out-zone. The activities of antioxidant enzymes, relative water content, cell membrane stability, photosynthetic pigments, proline content, along with plant growth parameters of the varieties under drought condition were evaluated. Moreover, the standard scores of these rice varieties were assessed under stress and recovery conditions based on the scoring scale of the Standard Evaluation System for rice. Among the 42 rice varieties, we identified 2 rice varieties, Swarnaprabha and Kattamodan, with less leaf rolling, better drought recovery ability as well as relative water content, increased membrane stability index, osmolyte accumulation, and antioxidant enzyme activities pointed towards their degree of tolerance to drought stress. The positive adaptive responses of these rice varieties towards drought stress can be used in the genetic improvement of rice drought resistance breeding program.

  17. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    Science.gov (United States)

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Modulation of mouse macrophage polarization in vitro using IL-4 delivery by osmotic pumps.

    Science.gov (United States)

    Pajarinen, Jukka; Tamaki, Yasunobu; Antonios, Joseph K; Lin, Tzu-Hua; Sato, Taishi; Yao, Zhenyu; Takagi, Michiaki; Konttinen, Yrjö T; Goodman, Stuart B

    2015-04-01

    Modulation of macrophage polarization is emerging as promising means to mitigate wear particle-induced inflammation and periprosthetic osteolysis. As a model for continuous local drug delivery, we used miniature osmotic pumps to deliver IL-4 in order to modulate macrophage polarization in vitro from nonactivated M0 and inflammatory M1 phenotypes towards a tissue regenerative M2 phenotype. Pumps delivered IL-4 into vials containing mouse bone marrow macrophage (mBMM) media. This conditioned media (CM) was collected at seven day intervals up to four weeks (week 1 to week 4 samples). IL-4 concentration in the CM was determined by ELISA and its biological activity was assayed by exposing M0 and M1 mBMMs to week 1 or week 4 CM. The IL-4 concentration in the CM approximated the mathematically calculated amount, and its biological activity was well retained, as both M0 and M1 macrophages exposed to either the week 1 or week 4 CM assumed M2-like phenotype as determined by qRT-PCR, ELISA, and immunocytochemistry. The results show that IL-4 can be delivered using osmotic pumps and that IL-4 delivered can modulate macrophage phenotype. Results build a foundation for in vivo studies using our previously validated animal models and provide possible strategies to locally mitigate wear particle-induced macrophage activation and periprosthetic osteolysis. © 2014 Wiley Periodicals, Inc.

  19. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    Science.gov (United States)

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc.

  20. The osmotic second virial coefficient and the Gibbs-McMillan-Mayer framework

    DEFF Research Database (Denmark)

    Mollerup, J.M.; Breil, Martin Peter

    2009-01-01

    The osmotic second virial coefficient is a key parameter in light scattering, protein crystallisation. self-interaction chromatography, and osmometry. The interpretation of the osmotic second virial coefficient depends on the set of independent variables. This commonly includes the independent...... variables associated with the Kirkwood-Buff, the McMillan-Mayer, and the Lewis-Randall solution theories. In this paper we analyse the osmotic second virial coefficient using a Gibbs-McMillan-Mayer framework which is similar to the McMillan-Mayer framework with the exception that pressure rather than volume...... is an independent variable. A Taylor expansion is applied to the osmotic pressure of a solution where one of the solutes is a small molecule, a salt for instance, that equilibrates between the two phases. Other solutes are retained. Solvents are small molecules that equilibrate between the two phases...

  1. On equations for the total suction and its matric and osmotic components

    International Nuclear Information System (INIS)

    Dao, Vinh N.T.; Morris, Peter H.; Dux, Peter F.

    2008-01-01

    A clear fundamental understanding of suctions is crucial for the study of the behaviour of plastic cement mortar and concrete, including plastic shrinkage cracking. In this paper, the expression relating the change in free energy of the pore water with an isothermal change in pressure is first derived. Based upon definitions of suctions, it is then shown that total, matric, and osmotic suctions can all be expressed in the same thermodynamic form. The widely accepted, but not yet satisfactorily validated, assumption that the total suction comprises matric and osmotic components is then confirmed theoretically. The well-known Kelvin equation for matric suction, and Morse and van't Hoff equations for osmotic suction are subsequently derived from the corresponding thermodynamic equations. The applicability of latter two equations in evaluating the osmotic suctions of cement mortar and concrete is highlighted

  2. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma

    International Nuclear Information System (INIS)

    Mori, Jun; Takahashi-Yanaga, Fumi; Miwa, Yoshikazu; Watanabe, Yutaka; Hirata, Masato; Morimoto, Sachio; Shirasuna, Kanemitsu; Sasaguri, Toshiyuki

    2005-01-01

    Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G 0 /G 1 phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3β (GSK-3β). Depletion of endogenous GSK-3β by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3β and found that DIF-1 dephosphorylated GSK-3β on Ser 9 and induced the nuclear translocation of GSK-3β, suggesting that DIF-1 activated GSK-3β. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr 286 was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3β-mediated phosphorylation of Thr 286

  3. Influence of some DNA-alkylating drugs on thermal stability, acid and osmotic resistance of the membrane of whole human erythrocytes and their ghosts.

    Science.gov (United States)

    Ivanov, I T; Gadjeva, V

    2000-09-01

    Human erythrocytes and their resealed ghosts were alkylated under identical conditions using three groups of alkylating antitumor agents: mustards, triazenes and chloroethyl nitrosoureas. Osmotic fragility, acid resistance and thermal stability of membranes were changed only in alkylated ghosts in proportion to the concentration of the alkylating agent. All the alkylating agents decreased acid resistance in ghosts. The clinically used drugs sarcolysine, dacarbazine and lomustine all decreased osmotic fragility and thermal stability of ghost membranes depending on their lipophilicity. DM-COOH did not decrease osmotic fragility and thermal stability of ghost membranes, while NEM increased thermal stability of membranes. The preliminary but not subsequent treatment of ghosts with DM-COOH fully abolished the alkylation-induced thermal labilization of ghost membrane proteins while NEM had a partial effect only. The present study gives direct evidence that alkylating agents, having a high therapeutic activity against malignant growth, bind covalently to proteins of cellular membranes.

  4. Proteomic analysis of PC12 cell differentiation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Zhang Junquan; Gao Ronglian; Chen Xiaohua; Wang Zhidong; Dong Bo; Rao Yalan; Hou Lili; Zhang Hao; Mao Bingzhi

    2005-01-01

    Objective: To explore the molecular mechanism of PC12 cell differentiation induced by ionizing radiation and screen the molecular target of nervous system injured by irradiation. Methods: PC12 cells were irradiated with 16 Gy 60 Co γ ray. Total proteins of normal and irradiated cells were prepared 48 hours after irradiation and separated with two dimensional gel electrophoresis. Some differential expressed proteins were characterized with mass spectrometry. Results: 876 differential expressed proteins were observed. Up-regulated expression of ubiquitin carboxyl-terminal hydratase L1 was found. Down-regulated expression of new protein similar to HP1α was found. Conclusion: The characterization of some differential expressed proteins through proteomic analysis would benefit the research of molecular mechanism of PC12 cell differentiation induced by ionizing radiation. (authors)

  5. Studies of Protein Solution Properties Using Osmotic Pressure Measurements

    Science.gov (United States)

    Agena, S.; Bogle, David; Pusey, Marc; Agena, S.

    1998-01-01

    Examination of the protein crystallization process involves investigation of the liquid and solid state and a protein's properties in these states. Liquid state studies such as protein self association in solution by light scattering methods or other methods have been used to examine a protein Is properties and therefore its crystallization process and conditions. Likewise can osmotic pressure data be used to examine protein properties and various published osmotic pressure studies were examined by us to correlate osmotic pressure to protein solution properties. The solution behavior of serum albumin, alpha - chymotrypsin, beta - lactoglobulin and ovalbumin was examined over a range of temperatures, pH values and different salt types and concentrations. Using virial expansion and a local composition model the non ideal solution behavior in form of the activity coefficients (thermodynamic) was described for the systems. This protein activity coefficient data was related to a protein's solubility behavior and this process and the results will be presented.

  6. Electro-osmotic flow through nanopores in thin and ultrathin membranes

    Science.gov (United States)

    Melnikov, Dmitriy V.; Hulings, Zachery K.; Gracheva, Maria E.

    2017-06-01

    We theoretically study how the electro-osmotic fluid velocity in a charged cylindrical nanopore in a thin solid state membrane depends on the pore's geometry, membrane charge, and electrolyte concentration. We find that when the pore's length is comparable to its diameter, the velocity profile develops a concave shape with a minimum along the pore axis unlike the situation in very long nanopores with a maximum velocity along the central pore axis. This effect is attributed to the induced pressure along the nanopore axis due to the fluid flow expansion and contraction near the exit or entrance to the pore and to the reduction of electric field inside the nanopore. The induced pressure is maximal when the pore's length is about equal to its diameter while decreasing for both longer and shorter nanopores. A model for the fluid velocity incorporating these effects is developed and shown to be in a good agreement with numerically computed results.

  7. Inhibition of the NAD-dependent protein deacetylase SIRT2 induces granulocytic differentiation in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Yoshitaka Sunami

    Full Text Available Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia-retinoic acid receptor α (PML-RAR-α stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.

  8. Experimental Support for a Predictive Osmotic Model of Clay Membranes

    International Nuclear Information System (INIS)

    Fritz, S.J.

    2001-01-01

    Osmosis has been cited as a mechanism for explaining anomalously high fluid pressures in the subsurface. Clays and shales act as membranes, and osmotic flux across these units may result in pressures sufficiently high to explain these anomalies. The theoretical osmotic pressures as calculated solely from solution properties can be quite large; however, it is not yet resolved whether these geologic membranes are sufficiently ideal to generate such pressures

  9. SAXS investigations on lipid membranes under osmotic stress

    Energy Technology Data Exchange (ETDEWEB)

    Rubim, R.L.; Vieira, V.; Gerbelli, B.B.; Teixeira da Silva, E.R.; Oliveira, C.L.P.; Oliveira, E.A. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: In this work we, experimentally, investigate the interactions between lipid bilayers. A structural characterization is performed by small angle x-ray scattering (SAXS) on multilamellar systems under known osmotic pressure. Changes in the composition of membranes can modify their mechanical properties and structural parameters, like the flexibility of these membranes, which plays a key role on the determination of the tridimensional organization of bilayers. The membranes are composed of soya lecithin, where the major component is DPPC (Dipalmitoylphosphatidylcholine), and fatty acids are incorporated to the membrane in different concentrations, in order to turn the membrane more fluid. The membranes are inserted in a solution of PVP [poly(vinyl-pyrrolidone) - 40000] and the polymer will apply an osmotic pressure on them. The osmotic pressure is controlled by preparing PVP solutions of desired composition and, as we know the concentration of polymer in solution, we can obtain the intensity of the osmotic pressure. SAXS experiments were done in order to determine the distance between the bilayer. From the position of the Bragg peaks, the lamellar periodicity (the thickness of the membranes plus their distance of separation) was determined. Using theoretical model for the form and structure factors we fitted those experimental data and determined the thickness of the membranes. The distance between the membranes was controlled by the osmotic pressure (P) applied to the membranes and, for a given pressure, we determine the distance between the bilayers (a) on equilibrium. The experimental curve P(a) is theoretically described by the different contributions from van der Waals, hydration and fluctuation forces. From the fitting of experimental curves, relevant parameters characterizing the strength of the different interactions are obtained, such as Hamaker and rigidity constant [2, 3]. We observe that the separation between the bilayers on equilibrium is

  10. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei; He, Hanzi; Vitali, Marco; Visentin, Ivan; Charnikhova, Tatsiana V.; Haider, Imran; Schubert, Andrea; Ruyter-Spira, Carolien P.; Bouwmeester, Harro J J; Lovisolo, Claudio; Cardinale, Francesca

    2015-01-01

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  11. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei

    2015-02-26

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  12. A micropuncture study of proximal tubular transport of lithium during osmotic diuresis

    DEFF Research Database (Denmark)

    Leyssac, P P; Holstein-Rathlou, N H; Skøtt, P

    1990-01-01

    Lithium and sodium are normally reabsorbed in parallel with water by the renal proximal tubule whereby their tubular fluid-to-plasma concentration ratios (TF/P) remain close to unity throughout the proximal convoluted segment. During osmotic diuresis, the late proximal (TF/P)Na is known to decrease....... The present experiments were undertaken to study whether the late proximal TF/P for Li decreases like that of Na during osmotic diuresis. Data were obtained in a control period (C) and in two successive periods during mannitol diuresis (P1, P2). Glomerular filtration rate decreased gradually during osmotic...

  13. Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions.

    Science.gov (United States)

    Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani

    2015-05-01

    The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments.

  14. The safety of osmotically acting cathartics in colonic cleansing

    DEFF Research Database (Denmark)

    Nyberg, Caroline; Hendel, J.; Nielsen, O.H.

    2010-01-01

    Efficient cleansing of the colon before a colonoscopy or a radiological examination is essential. The osmotically acting cathartics (those given the Anatomical Therapeutic Chemical code A06AD) currently used for this purpose comprise products based on three main substances: sodium phosphate...... hyperphosphatemia and irreversible kidney damage owing to acute phosphate nephropathy, have been reported after use of sodium-phosphate-based products. The aim of this Review is to provide an update on the potential safety issues related to the use of osmotically acting cathartics, especially disturbances of renal...

  15. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua; Lee, Byeongha; Dellinger, Michael T.; Cui, Xinping; Zhang, Changqing; Wu, Shang; Nothnagel, Eugene A.; Zhu, Jian-Kang

    2010-01-01

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have

  16. Understanding Fast and Robust Thermo-osmotic Flows through Carbon Nanotube Membranes: Thermodynamics Meets Hydrodynamics.

    Science.gov (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2018-04-19

    Following our recent theoretical prediction of the giant thermo-osmotic response of the water-graphene interface, we explore the practical implementation of waste heat harvesting with carbon-based membranes, focusing on model membranes of carbon nanotubes (CNT). To that aim, we combine molecular dynamics simulations and an analytical model considering the details of hydrodynamics in the membrane and at the tube entrances. The analytical model and the simulation results match quantitatively, highlighting the need to take into account both thermodynamics and hydrodynamics to predict thermo-osmotic flows through membranes. We show that, despite viscous entrance effects and a thermal short-circuit mechanism, CNT membranes can generate very fast thermo-osmotic flows, which can overcome the osmotic pressure of seawater. We then show that in small tubes confinement has a complex effect on the flow and can even reverse the flow direction. Beyond CNT membranes, our analytical model can guide the search for other membranes to generate fast and robust thermo-osmotic flows.

  17. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Science.gov (United States)

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  18. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  19. Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature.

    Science.gov (United States)

    Chahine, Nadeen O; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2005-09-01

    Articular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.015 M, 0.15 M, 0.5 M, 1 M, and 2 M NaCl) at room temperature. The osmotic pressure (pi) was found to increase nonlinearly with increasing chondroitin sulfate concentration and decreasing NaCl ionic bath environment. Above 1 M NaCl, pi changes negligibly with further increases in salt concentration, suggesting that Donnan osmotic pressure is negligible above this threshold, and the resulting pressure is attributed to configurational entropy. Results of the current study were also used to estimate the contribution of osmotic pressure to the stiffness of cartilage based on theoretical and experimental considerations. Our findings indicate that the osmotic pressure resulting from configurational entropy is much smaller in cartilage (based on an earlier study on bovine articular cartilage) than in free solution. The rate of change of osmotic pressure with compressive strain is found to contribute approximately one-third of the compressive modulus (H(A)(eff)) of cartilage (Pi approximately H(A)(eff)/3), with the balance contributed by the intrinsic structural modulus of the solid matrix (i.e., H(A) approximately 2H(A)(eff)/3). A strong dependence of this intrinsic modulus on salt concentration was found; therefore, it appears that proteoglycans contribute structurally to the magnitude of H(A), in a manner independent of osmotic pressure.

  20. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  1. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    Science.gov (United States)

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.

  2. Differential expression of ozone-induced gene during exposures to ...

    African Journals Online (AJOL)

    Differential expression of ozone-induced gene during exposures to salt stress in Polygonum sibiricum Laxm leaves, stem and underground stem. ... PcOZI-1 mRNA in untreated plants was detected at low levels in underground stem, leaves and at higher levels in stem. PcOZI-1 mRNA accumulation was transiently induced ...

  3. Study on enhanced lymphatic tracing of isosulfan blue injection by influence of osmotic pressure on lymphatic exposure.

    Science.gov (United States)

    Ye, Tiantian; He, Rui; Wu, Yue; Shang, Lei; Wang, Shujun

    2018-04-01

    Isosulfan blue (IB) is being used as a lymphatic tracer has been approved by the FDA in 1981. This study aimed at improving lymphatic exposure of IB injection by osmotic pressure regulation to achieve step-by step lymphatic tracing. First, IB injection with appropriate osmotic pressure, stability, and suitable pH was prepared. Next, the lymphatic tracing ability of different osmotic pressure was studied to determine the blue-stained state of IB in three-level lymph nodes after subcutaneous administration. Furthermore, pharmacokinetics of lymphatic drainage, lymph node uptake, and plasma concentration was investigate to explore the improving law of the lymphatic tracing by osmotic pressure, and combined with tissue irritation to determine the optimal osmotic pressure. At last, the tissue distribution in mice of IB injection which had the property of optimal osmotic pressure was investigated. The results showed that increasing osmotic pressure could significantly reduce injection site retention and increase IB concentration of lymph node. The lymph nodes could be obviously blue-stained by IB injection which had 938 mmol/kg osmotic pressure and would not cause inflammatory reaction and blood exposure. The tissue distribution study suggested that IB injection which had 938 mmol/kg osmotic pressure was mainly distributed into gallbladder and duodenum that verified the reports that 90% IB was excreted through the feces through biliary excretion. In conclusion, this study provides the basic study to improve lymphatic exposure of IB injection by regulate the osmotic pressure and have the potential to be the helpful guidance for the elective lymph node dissection.

  4. Osmotic and stimulant laxatives for the management of childhood constipation

    OpenAIRE

    Gordon, Morris; Macdonald, John; Parker, Claire; Akobeng, Anthony; Thomas, Adrian

    2016-01-01

    Background\\ud \\ud Constipation within childhood is an extremely common problem. Despite the widespread use of osmotic and stimulant laxatives by health professionals to manage constipation in children, there has been a long standing paucity of high quality evidence to support this practice.\\ud \\ud \\ud Objectives\\ud \\ud We set out to evaluate the efficacy and safety of osmotic and stimulant laxatives used to treat functional childhood constipation.\\ud \\ud \\ud Search methods\\ud \\ud We searched ...

  5. Solute Transfer in Osmotic Dehydration of Vegetable Foods: A Review.

    Science.gov (United States)

    Muñiz-Becerá, Sahylin; Méndez-Lagunas, Lilia L; Rodríguez-Ramírez, Juan

    2017-10-01

    While various mechanisms have been proposed for the water transfer during osmotic dehydration (OD), little progress has been made to understand the mechanisms of solute transfer during osmotic dehydration. The transfer of solutes has been often described only by the diffusion mechanism; however, numerous evidences suggest the participation of a variety of mechanisms. This review deals with the main issues of solute transfer in the OD of vegetables. In this context, several studies suggest that during OD of fruits and vegetables, the migration of solutes is not influenced by diffusion. Thus, new theories that may explain the solute transport are analyzed, considering the influence of the plant microstructure and its interaction with the physicochemical properties of osmotic liquid media. In particular, the surface adhesion phenomenon is analyzed and discussed, as a possible mechanism present during the transfer of solutes in OD. © 2017 Institute of Food Technologists®.

  6. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds.

    Science.gov (United States)

    Pramsohler, Manuel; Neuner, Gilbert

    2013-08-01

    In deciduous trees, measurement of stem water potential can be difficult during the leafless period in winter. By using thermocouple psychrometry, osmotic water potentials (Ψo; actual Ψo: Ψo(act); Ψo at full saturation: Ψo(sat)) of expressed sap of bark and bud tissue were measured in order to test if the severity of winter desiccation in apple stems could be sufficiently assessed with Ψo. Water potentials were related to frost resistance and freezing behaviour of buds. The determination of Ψo reliably allowed winter desiccation and osmotic adjustments in apple stem tissue to be assessed. In winter in bark tissue, a pronounced decrease in Ψo(act) and Ψo(sat) was found. Decreased Ψo(sat) indicates active osmotic adjustment in the bark as observed earlier in the leaves of evergreen woody plants. In terminal bud meristems, no significant osmotic adjustments occurred and dehydration during winter was much less. Osmotic water potentials, Ψo(act) and Ψo(sat), of bud tissue were always less negative than in the bark. To prevent water movement and dehydration of the bud tissue via this osmotic gradient, it must be compensated for either by a sufficiently high turgor pressure (Ψp) in bark tissue or by the isolation of the bud tissue from the bark during midwinter. During freezing of apple buds, freeze dehydration and extra-organ freezing could be demonstrated by significantly reduced Ψo(act) values of bud meristems that had been excised in the frozen state. Infrared video thermography was used to monitor freezing patterns in apple twigs. During extracellular freezing of intact and longitudinally dissected stems, infrared differential thermal analysis (IDTA) images showed that the bud meristem remains ice free. Even if cooled to temperatures below the frost-killing temperature, no freezing event could be detected in bud meristems during winter. In contrast, after bud break, terminal buds showed a second freezing at the frost-killing temperature that indicates

  8. Isolation of furocoumarins from bergamot fruits as HL-60 differentiation-inducing compounds.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-10-01

    The HL-60 differentiation-inducing compounds in bergamot fruits were isolated with column chromatography and identified as bergamottin, bergapten, and citropten by (1)H and (13)C NMR. Their HL-60 differentiation-inducing activity was measured by examining nitro blue tetrazolium (NBT) reducing, nonspecific acid esterase (NSE), specific esterase (SE), and phagocytic activities, and bergamottin showed the strongest activity among the coumarins isolated from bergamot fruits. The structure-activity relationship obtained from HL-60 differentiation assay suggests that hydrophobicity of furocoumarins is correlated with their activity.

  9. Osmotically driven membrane process for the management of urban runoff in coastal regions

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Abu-Ghdaib, Muhannad; Zhan, Tong; Yangali-Quintanilla, Victor; Amy, Gary L.

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier

  10. The dependence of molecular transmembrane electrotransfer efficiency on medium conductivity and osmotic pressure

    OpenAIRE

    Jakutavičiūtė, Milda; Ruzgys, Paulius; Šatkauskas, Saulius

    2014-01-01

    The electrotransfer efficiency was evaluated for different external medium conductivities, osmotic pressures and electric pulse voltages. It was found that increase in conductivity or decrease in electric pulse strength decreases electrotransfer efficiency. Decrease in osmotic pressure tends to decrease electrotransfer efficiency.

  11. Dimethyl sulfoxide-inducible cytoplasmic factor involved in erythroid differentiation in mouse erythroleukemia (Friend) cells

    International Nuclear Information System (INIS)

    Watanabe, T.; Oishi, M.

    1987-01-01

    A previous report described an intracellular factor (differentiation-inducing factor I, or DIF-I) that seem to play a role in erythroid differentiation in mouse erythroleukemia (MEL) cells. The authors have detected another erythroid-inducing factor in cell-free extracts from dimethyl sulfoxide- or hexamethylenebis(acetamide)-treated MEL cells, which acts synergistically with DIF-I. The partially purified factor (termed DIF-II) triggered erythroid differentiation when introduced into undifferentiated MEL cells that had been potentiated by the induction of DIF-I. The activity in the extracts appeared in an inducible manner after addition of dimethyl sulfoxide or hexamethylenebis(acetamide), reached a maximum at 6 hr, and then rapidly decreased. The induction was inhibited by phorbol 12-myristate 13-acetate and also by cycloheximide. No induction was observed in a mutant MEL cell line defective in erythroid differentiation. These characteristics are consistent with the supposition that DIF-II is one of the putative dimethyl sulfoxide-inducible factors detected in previously reported cell-fusion and cytoplast-fusion experiments. The role of DIF-II in MEL-cell differentiation and in vitro differentiation in general is discussed

  12. Shelf-life extension of gilthead seabream fillets by osmotic treatment and antimicrobial agents.

    Science.gov (United States)

    Tsironi, T N; Taoukis, P S

    2012-02-01

    The objectives of the study were to evaluate the effect of selected antimicrobial agents on the shelf life of osmotically pretreated gilthead seabream and to establish reliable kinetic equations for shelf-life determination validated in dynamic conditions. Fresh gilthead seabream (Sparus aurata) fillets were osmotically treated with 50% high dextrose equivalent maltodextrin (HDM, DE 47) plus 5% NaCl and 0·5% carvacrol, 0·5% glucono-δ-lactone or 1% Citrox (commercial antimicrobial mix). Untreated and treated slices were aerobically packed and stored isothermally (0-15°C). Microbial growth and quality-related chemical indices were modelled as functions of temperature. Models were validated at dynamic storage conditions. Osmotic pretreatment with the use of antimicrobials led to significant shelf-life extension of fillets, in terms of microbial growth and organoleptic deterioration. The shelf life was 7 days for control samples at 5°C. The osmotic pretreatment with carvacrol, glucono-δ-lactone and Citrox allowed for shelf-life extension by 8, 10 and 5 days at 5°C, respectively. The results of the study show the potential of adding carvacrol, glucono-δ-lactone or Citrox in the osmotic solution to extend the shelf life and improve commercial value of chilled osmotically pretreated fish products. The developed models can be a reliable tool for predicting the shelf life of fresh or minimally processed gilthead seabream fillets in the real chill chain. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  13. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula.

    Science.gov (United States)

    Lintunen, Anna; Lindfors, Lauri; Nikinmaa, Eero; Hölttä, Teemu

    2017-04-01

    Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the

  14. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment.

    Science.gov (United States)

    Zhang, Wenjin; Xie, Zhicai; Wang, Lianhong; Li, Ming; Lang, Duoyong; Zhang, Xinhui

    2017-05-01

    This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the pathways of antioxidant defense and osmotic adjustment. Seedling growth, lipid peroxidation, antioxidant metabolism, osmolytes concentration and Si content of G. uralensis seedlings were analyzed under control, salt and drought stress [100 mM NaCl with 0, 10 and 20% of PEG-6000 (Polyethylene glycol-6000)] with or without 1 mM Si. Si addition markedly affected the G. uralensis growth in a combined dose of NaCl and PEG dependent manner. In brief, Si addition improved germination rate, germination index, seedling vitality index and biomass under control and NaCl; Si also increased radicle length under control, NaCl and NaCl-10% PEG, decreased radicle length, seedling vitality index and germination parameters under NaCl-20% PEG. The salt and drought stress-induced-oxidative stress was modulated by Si application. Generally, Si application increased catalase (CAT) activity under control and NaCl-10% PEG, ascorbate peroxidase (APX) activity under all treatments and glutathione (GSH) content under salt combined drought stress as compared with non-Si treatments, which resisted to the increase of superoxide radicals and hydrogen peroxide caused by salt and drought stress and further decreased membrane permeability and malondialdehyde (MDA) concentration. Si application also increased proline concentration under NaCl and NaCl-20% PEG, but decreased it under NaCl-10% PEG, indicating proline play an important role in G. uralensis seedling response to osmotic stress. In conclusion, Si could ameliorate adverse effects of salt and drought stress on G. uralensis likely by reducing oxidative stress and osmotic stress, and the oxidative stress was regulated through enhancing of antioxidants (mainly CAT, APX and GSH) and osmotic stress was regulated by proline.

  15. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    International Nuclear Information System (INIS)

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2012-01-01

    Highlights: ► Metformin induces differentiation in NB4 and primary APL cells. ► Metformin induces activation of the MEK/ERK signaling pathway in APL cells. ► Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. ► Metformin induces the relocalization and degradation of the PML-RARα fusion protein. ► The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RARα and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  16. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    Science.gov (United States)

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  17. Relation between lowered colloid osmotic pressure, respiratory failure, and death.

    Science.gov (United States)

    Tonnesen, A S; Gabel, J C; McLeavey, C A

    1977-01-01

    Plasma colloid osmotic pressure was measured each day in 84 intensive care unit patients. Probit analysis demonstrated a direct relationship between colloid osmotic pressure (COP) and survival. The COP associated with a 50% survival rate was 15.0 torr. COP was higher in survivors than in nonsurvivors without respiratory failure and in patients who recovered from respiratory failure. We conclude that lowered COP is associated with an elevated mortality rate. However, the relationship to death is not explained by the relationship to respiratory failure.

  18. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    KAUST Repository

    Fujii, Hiroaki

    2011-01-10

    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.

  19. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.

    1987-01-01

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  20. A view on thermodynamics of concentrated electrolytes: Modification necessity for electrostatic contribution of osmotic coefficient

    Science.gov (United States)

    Sahu, Jyoti; Juvekar, Vinay A.

    2018-05-01

    Prediction of the osmotic coefficient of concentrated electrolytes is needed in a wide variety of industrial applications. There is a need to correctly segregate the electrostatic contribution to osmotic coefficient from nonelectrostatic contribution. This is achieved in a rational way in this work. Using the Robinson-Stokes-Glueckauf hydrated ion model to predict non-electrostatic contribution to the osmotic coefficient, it is shown that hydration number should be independent of concentration so that the observed linear dependence of osmotic coefficient on electrolyte concentration in high concentration range could be predicted. The hydration number of several electrolytes (LiCl, NaCl, KCl, MgCl2, and MgSO4) has been estimated by this method. The hydration number predicted by this model shows correct dependence on temperature. It is also shown that the electrostatic contribution to osmotic coefficient is underpredicted by the Debye-Hückel theory at concentration beyond 0.1 m. The Debye-Hückel theory is modified by introducing a concentration dependent hydrated ionic size. Using the present analysis, it is possible to correctly estimate the electrostatic contribution to the osmotic coefficient, beyond the range of validation of the D-H theory. This would allow development of a more fundamental model for electrostatic interaction at high electrolyte concentrations.

  1. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    Science.gov (United States)

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  2. Theoretical prediction of fast 3D AC electro-osmotic pumps.

    Science.gov (United States)

    Bazant, Martin Z; Ben, Yuxing

    2006-11-01

    AC electro-osmotic (ACEO) pumps in microfluidics currently involve planar electrode arrays, but recent work on the underlying phenomenon of induced-charge electro-osmosis (ICEO) suggests that three-dimensional (3D) geometries may be exploited to achieve faster flows. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the "fluid conveyor belt" of ICEO flow over a stepped electrode array. Numerical simulations of these designs (using the standard low-voltage model) predict flow rates almost twenty times faster than existing planar ACEO pumps, for the same applied voltage and minimum feature size. These pumps may enable new portable or implantable lab-on-a-chip devices, since rather fast (mm s(-1)), tuneable flows should be attainable with battery voltages (<10 V).

  3. Osmotic heat engine using thermally responsive ionic liquids

    KAUST Repository

    Zhong, Yujiang

    2017-07-11

    The osmotic heat engine (OHE) is a promising technology for converting low grade heat to electricity. Most of the existing studies have focused on thermolytic salt systems. Herein, for the first time, we proposed to use thermally responsive ionic liquids (TRIL) that have either an upper critical solution temperature (UCST) or lower critical solution temperature (LCST) type of phase behavior as novel thermolytic osmotic agents. Closed-loop TRIL-OHEs were designed based on these unique phase behaviors to convert low grade heat to work or electricity. Experimental studies using two UCST-type TRILs, protonated betaine bis(trifluoromethyl sulfonyl)imide ([Hbet][Tf2N]) and choline bis(trifluoromethylsulfonyl)imide ([Choline][Tf2N]) showed that (1) the specific energy of the TRIL-OHE system could reach as high as 4.0 times that of the seawater and river water system, (2) the power density measured from a commercial FO membrane reached up to 2.3 W/m2, and (3) the overall energy efficiency reached up to 2.6% or 18% of the Carnot efficiency at no heat recovery and up to 10.5% or 71% of the Carnet efficiency at 70% heat recovery. All of these results clearly demonstrated the great potential of using TRILs as novel osmotic agents to design high efficient OHEs for recovery of low grade thermal energy to work or electricity.

  4. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China); Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  5. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    International Nuclear Information System (INIS)

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-01-01

    Highlights: ► We investigated the role of S1P signaling for osteoblast differentiation. ► Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. ► S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. ► MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.

  6. [Exercise-induced inspiratory stridor. An important differential diagnosis of exercise-induced asthma].

    Science.gov (United States)

    Christensen, Pernille; Thomsen, Simon Francis; Rasmussen, Niels; Backer, Vibeke

    2007-11-19

    Recent studies suggest that exercise-induced inspiratory stridor (EIIS) is an important and often overlooked differential diagnosis of exercise-induced asthma. EIIS is characterised by astma-like symptoms, but differs by inspiratory limitation, fast recovery, and a lack of effect of inhaled bronchodilators. The prevalence of EIIS is reported to be 5-27%, and affects both children and adults. The pathophysiology, the pathogenesis, and the treatment of the condition are not yet clarified. At present, a population-based study is being conducted in order to address these points.

  7. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  8. Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill.

    Science.gov (United States)

    Whitehead, Andrew; Roach, Jennifer L; Zhang, Shujun; Galvez, Fernando

    2012-04-15

    The killifish Fundulus heteroclitus is abundant in osmotically dynamic estuaries and it can quickly adjust to extremes in environmental salinity. We performed a comparative osmotic challenge experiment to track the transcriptomic and physiological responses to two salinities throughout a time course of acclimation, and to explore the genome regulatory mechanisms that enable extreme osmotic acclimation. One southern and one northern coastal population, known to differ in their tolerance to hypo-osmotic exposure, were used as our comparative model. Both populations could maintain osmotic homeostasis when transferred from 32 to 0.4 p.p.t., but diverged in their compensatory abilities when challenged down to 0.1 p.p.t., in parallel with divergent transformation of gill morphology. Genes involved in cell volume regulation, nucleosome maintenance, ion transport, energetics, mitochondrion function, transcriptional regulation and apoptosis showed population- and salinity-dependent patterns of expression during acclimation. Network analysis confirmed the role of cytokine and kinase signaling pathways in coordinating the genome regulatory response to osmotic challenge, and also posited the importance of signaling coordinated through the transcription factor HNF-4α. These genome responses support hypotheses of which regulatory mechanisms are particularly relevant for enabling extreme physiological flexibility.

  9. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions.

    Science.gov (United States)

    Piterková, Jana; Luhová, Lenka; Hofman, Jakub; Turecková, Veronika; Novák, Ondrej; Petrivalsky, Marek; Fellner, Martin

    2012-09-01

    Nitric oxide (NO) is involved in the signalling and regulation of plant growth and development and responses to biotic and abiotic stresses. The photoperiod-sensitive mutant 7B-1 in tomato (Solanum lycopersicum) showing abscisic acid (ABA) overproduction and blue light (BL)-specific tolerance to osmotic stress represents a valuable model to study the interaction between light, hormones and stress signalling. The role of NO as a regulator of seed germination and ABA-dependent responses to osmotic stress was explored in wild-type and 7B-1 tomato under white light (WL) and BL. Germination data were obtained from the incubation of seeds on germinating media of different composition. Histochemical analysis of NO production in germinating seeds was performed by fluorescence microscopy using a cell-permeable NO probe, and endogenous ABA was analysed by mass spectrometry. The NO donor S-nitrosoglutathione stimulated seed germination, whereas the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) had an inhibitory effect. Under WL in both genotypes, PTIO strongly suppressed germination stimulated by fluridone, an ABA inhibitor. The stimulatory effect of the NO donor was also observed under osmotic stress for 7B-1 seeds under WL and BL. Seed germination inhibited by osmotic stress was restored by fluridone under WL, but less so under BL, in both genotypes. This effect of fluridone was further modulated by the NO donor and NO scavenger, but only to a minor extent. Fluorescence microscopy using the cell-permeable NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) revealed a higher level of NO in stressed 7B-1 compared with wild-type seeds. As well as defective BL signalling, the differential NO-dependent responses of the 7B-1 mutant are probably associated with its high endogenous ABA concentration and related impact on hormonal cross-talk in germinating seeds. These data confirm that light-controlled seed germination and

  10. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  11. An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program.

    Science.gov (United States)

    Tasseff, Ryan; Jensen, Holly A; Congleton, Johanna; Dai, David; Rogers, Katharine V; Sagar, Adithya; Bunaciu, Rodica P; Yen, Andrew; Varner, Jeffrey D

    2017-10-30

    In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.

  12. Osmotic therapies added to antibiotics for acute bacterial meningitis

    Science.gov (United States)

    Wall, Emma Cb; Ajdukiewicz, Katherine Mb; Bergman, Hanna; Heyderman, Robert S; Garner, Paul

    2018-01-01

    Background Every day children and adults die from acute community-acquired bacterial meningitis, particularly in low-income countries, and survivors risk deafness, epilepsy and neurological disabilities. Osmotic therapies may attract extra-vascular fluid and reduce cerebral oedema, and thus reduce death and improve neurological outcomes. This is an update of a Cochrane Review first published in 2013. Objectives To evaluate the effects of osmotic therapies added to antibiotics for acute bacterial meningitis in children and adults on mortality, deafness and neurological disability. Search methods We searched CENTRAL (2017, Issue 1), MEDLINE (1950 to 17 February 2017), Embase (1974 to 17 February 2017), CINAHL (1981 to 17 February 2017), LILACS (1982 to 17 February 2017) and registers of ongoing clinical trials (ClinicalTrials.com, WHO ICTRP) (21 February 2017). We also searched conference abstracts and contacted researchers in the field (up to 12 December 2015). Selection criteria Randomised controlled trials testing any osmotic therapy in adults or children with acute bacterial meningitis. Data collection and analysis Two review authors independently screened the search results and selected trials for inclusion. Results are presented using risk ratios (RR) and 95% confidence intervals (CI) and grouped according to whether the participants received steroids or not. We used the GRADE approach to assess the certainty of the evidence. Main results We included five trials with 1451 participants. Four trials evaluated glycerol against placebo, and one evaluated glycerol against 50% dextrose; in addition three trials evaluated dexamethasone and one trial evaluated acetaminophen (paracetamol) in a factorial design. Stratified analysis shows no effect modification with steroids; we present aggregate effect estimates. Compared to placebo, glycerol probably has little or no effect on death in people with bacterial meningitis (RR 1.08, 95% CI 0.90 to 1.30; 5 studies, 1272

  13. Optimization of Vacuum Frying Parameters in Combination with Osmotic Dehydration of Kiwi Slices to Produce Healthy Product

    Directory of Open Access Journals (Sweden)

    Fatemeh Aghabozorg Afjeh Aghabozorg Afjeh

    2014-05-01

    Full Text Available Osmotic dehydration under discontinuous reduced pressure is one of the new methods of preparation fruits and vegetable processing with in view of good health. Processing of foods at high temperatures used to cook them can cause the formation of carcinogenic substances like acrylamide, and this risk remains even if the trans-fat is removed. The low temperatures employed in this method resulted in the products with the desired texture, nutritional, and colour. The purpose of this research was evaluation of the variable effects of osmotic dehydration process (ambient pressure, contact time of product and solution, concentration and temperature of osmotic solution on the quality factors of product (colour changes, texture, moisture, oil uptake, and water loss to solid gain ratio and achieving the optimum process conditions. Studying the quality parameters of the product, the temperature range of osmotic solution, pressure, concentration of the osmotic solution and contact time of product and solution were assumed as 30 to 50°C, 500 to 700 mbar, 30 to 50% and 60 to 180 min, respectively. The test plans involving 31 tests were obtained by using response surface statistical models and central composite design. They were fried at the condition of 108ºC, 8 min and 320 mbar by using statistical correlations, 48.71ºC for the osmotic solution temperature, 592.07 mbar for the pressure, 62.92 min for the time and 34.87% for the osmotic solution. Concentrations were obtained as optimum conditions of osmotic dehydration of kiwi slices under reduced pressure. In summary combination of osmotic dehydration and vacuum frying improved the quality of the final fried kiwi, so this method is recommended for production of healthy products.

  14. Osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Sagert, N.H.; Lau, D.W.P.

    1983-01-01

    Vapor pressure osmometry was used to measure osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50 o C and at molalities up to 0.2 mol·kg -1 . The data were fitted to three- and four-parameter equations containing limiting-law terms for a 4:1 electrolyte. The variation of the osmotic coefficients as a function of temperature was found to be small. The results are compared to published values for the osmotic coefficients. (author)

  15. A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension

    Science.gov (United States)

    Yao, Lingxing; Mori, Yoichiro

    2017-12-01

    Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.

  16. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    NARCIS (Netherlands)

    van de Klundert, L.J.M.; Bos, M.R.E.; van der Meij, J.A.M.; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3He-4He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated.

  17. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    International Nuclear Information System (INIS)

    Klundert, L.J.M. van de; Bos, M.R.E.; Meij, J.A.M. van der; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3 He- 4 He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4 He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated. (Auth.)

  18. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-01

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  19. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-01-01

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  20. Does Osmotic Stress Affect Natural Product Expression in Fungi?

    Science.gov (United States)

    Overy, David; Correa, Hebelin; Roullier, Catherine; Chi, Wei-Chiung; Pang, Ka-Lai; Rateb, Mostafa; Ebel, Rainer; Shang, Zhuo; Capon, Rob; Bills, Gerald; Kerr, Russell

    2017-08-13

    The discovery of new natural products from fungi isolated from the marine environment has increased dramatically over the last few decades, leading to the identification of over 1000 new metabolites. However, most of the reported marine-derived species appear to be terrestrial in origin yet at the same time, facultatively halo- or osmotolerant. An unanswered question regarding the apparent chemical productivity of marine-derived fungi is whether the common practice of fermenting strains in seawater contributes to enhanced secondary metabolism? To answer this question, a terrestrial isolate of Aspergillus aculeatus was fermented in osmotic and saline stress conditions in parallel across multiple sites. The ex-type strain of A. aculeatus was obtained from three different culture collections. Site-to-site variations in metabolite expression were observed, suggesting that subculturing of the same strain and subtle variations in experimental protocols can have pronounced effects upon metabolite expression. Replicated experiments at individual sites indicated that secondary metabolite production was divergent between osmotic and saline treatments. Titers of some metabolites increased or decreased in response to increasing osmolite (salt or glycerol) concentrations. Furthermore, in some cases, the expression of some secondary metabolites in relation to osmotic and saline stress was attributed to specific sources of the ex-type strains.

  1. Osmotically-driven membrane processes for water reuse and energy recovery

    Science.gov (United States)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  2. Sugar beet molasses: Properties and applications in osmotic dehydration of fruits and vegetables

    Directory of Open Access Journals (Sweden)

    Šarić Ljubiša Ć.

    2016-01-01

    Full Text Available Molasses is an important by-product of sugar beet or sugar cane refining industry and it was one of the first sweeteners used in human nutrition. Sugar cane molasses has unique characteristics that can make it suitable for application in food industry, especially in confectionery and bakery products. On the other hand, sugar beet molasses has not had greater application in the human diet, primarily because of its strong smell and taste of the beet, which makes it unattractive for consumption. Since recent investigations showed that sugar beet molasses can be used as a hypertonic solution in osmotic dehydration of different materials of plant and animal origin, the objective of this work was to review recently studied sugar beet molasses in terms of its applications in osmotic dehydrations of fruits and vegetables. Previous studies showed that sugar beet molasses is an excellent medium for osmotic dehydration of fruits and vegetables (apple, carrot, plum, etc. primarily due to a high content of dry matter (80%, w/w and specific nutrient content. An important advantage of using sugar beet molasses as a hypertonic solution is an enrichment of the dehydrated material in minerals and vitamins, which penetrate from molasses into the plant tissue. Concentration of sugar beet molasses solution and immersion time had the biggest influence on the process of osmotic dehydration of fruit and vegetables, while the temperature of the solution was the least influential parameter. The effect of immersion time on the kinetics of osmotic dehydration in sugar beet molasses increases with an increase in concentration of hypertonic solution. Fruit and vegetables dehydrated in sugar beet molasses had a higher dry matter content compared to samples treated in sucrose solutions. Besides, application of sugar beet molasses in osmotic dehydration of fruits and vegetables had some other advantages such as lower cost of molasses compared to sugar and its liquid aggregate

  3. System analysis of salt and osmotic stress induced proteins in Nostoc muscorum and Bradyrhizobium japonicum

    Directory of Open Access Journals (Sweden)

    Vipin Kaithwas

    2017-06-01

    Full Text Available In this study the proteome response of the two diazotrophic organism’s viz. Nostoc muscorum and Bradyrhizobium japonicum exposed to salt (NaCl and osmotic (sucrose stresses was compared. Out of the total over expressed proteins; we have selected only three over expressed proteins viz. GroEL chaperonin, nitrogenase Mo-Fe protein and argininosuccinate synthase for further analysis, and then we analyzed the amino acid frequencies of all the three over expressed proteins. That led to the conclusion that amino acids e.g. alanine, glycine and valine that were energetically cheaper to produce were showing higher frequencies. This study would help in tracing the phylogenetic relationship between protein families.

  4. Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase

    Directory of Open Access Journals (Sweden)

    Hong Liao

    2013-03-01

    Full Text Available With no lysine kinases (WNKs play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.

  5. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  6. Distinct cellular responses differentiating alcohol- and hepatitis C virus-induced liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Boix Loreto

    2006-11-01

    Full Text Available Abstract Background Little is known at the molecular level concerning the differences and/or similarities between alcohol and hepatitis C virus induced liver disease. Global transcriptional profiling using oligonucleotide microarrays was therefore performed on liver biopsies from patients with cirrhosis caused by either chronic alcohol consumption or chronic hepatitis C virus (HCV. Results Global gene expression patterns varied significantly depending upon etiology of liver disease, with a greater number of differentially regulated genes seen in HCV-infected patients. Many of the gene expression changes specifically observed in HCV-infected cirrhotic livers were expectedly associated with activation of the innate antiviral immune response. We also compared severity (CTP class of cirrhosis for each etiology and identified gene expression patterns that differentiated ethanol-induced cirrhosis by class. CTP class A ethanol-cirrhotic livers showed unique expression patterns for genes implicated in the inflammatory response, including those related to macrophage activation and migration, as well as lipid metabolism and oxidative stress genes. Conclusion Stages of liver cirrhosis could be differentiated based on gene expression patterns in ethanol-induced, but not HCV-induced, disease. In addition to genes specifically regulating the innate antiviral immune response, mechanisms responsible for differentiating chronic liver damage due to HCV or ethanol may be closely related to regulation of lipid metabolism and to effects of macrophage activation on deposition of extracellular matrix components.

  7. Development of an electro-osmotic heat pump

    NARCIS (Netherlands)

    Stoel, J.P. van der; Oostendorp, P.A.

    1999-01-01

    The majority of heat pumps and refrigerators is driven by a mechanical compressor. Although they usually function very well, the search for new and in some cases better heat pumping concepts continues. One of the topics in this field is the development of an electro-osmotic heat pump. As each

  8. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    Science.gov (United States)

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  9. Effect of process variables on the osmotic dehydration of star-fruit slices

    Directory of Open Access Journals (Sweden)

    Camila Dalben Madeira Campos

    2012-06-01

    Full Text Available The objective of this work was to study the effect of blanching and the influence of temperature, solution concentration, and the initial fruit:solution ratio on the osmotic dehydration of star-fruit slices. For blanching, different concentrations of citric and ascorbic acids were studied. The samples immersed in 0.75% citric acid presented little variation in color in relation to the fresh star-fruit. Osmotic dehydration was carried out in an incubator with orbital shaking, controlled temperature, and constant shaking at 120 rpm. The influence of process variables was studied in trials defined by a complete 23 central composite design. In general, water loss and solids gain were positively influenced by temperature and by solution concentration. Nevertheless, lower temperatures reduced water loss throughout the osmotic dehydration process. An increase in the amount of dehydrating solution (initial fruit:solution ratio slightly influenced the evaluated responses. The process carried out at 50 ºC with a solution concentration of 50% resulted in a product with lower solids gain and greater water loss. Under these conditions, blanching minimized the effect of the osmotic treatment on star-fruit browning, and therefore the blanched fruits showed little variation in color in relation to the fresh fruit.

  10. ERα inhibited myocardin-induced differentiation in uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xing-Hua, E-mail: xinghualiao@hotmail.com [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Li, Jun-Yan [Henan Vocational College of Applied Technology, Zhengzhou 450042 (China); Dong, Xiu-Mei [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); Yuncheng County People' s Hospital, Shandong 274700 (China); Wang, Xiuhong [Xianning Central Hospital, Department of Obstetrics and Gynecology, Xianning, Hubei 437100 (China); Xiang, Yuan; Li, Hui; Yu, Cheng-Xi; Li, Jia-Peng; Yuan, Bai-Yin [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); Zhou, Jun, E-mail: zhoujun@wust.edu.cn [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); School of Medicine, Wuhan University of Science and Technology, Wuhan 430065 (China); Zhang, Tong-Cun, E-mail: zhangtongcun@wust.edu.cn [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2017-01-01

    Uterine fibroids, also known as uterine leiomyomas, are a benign tumor of the human uterus and the commonest estrogen-dependent benign tumor found in women. Myocardin is an important transcriptional regulator in smooth and cardiac muscle development. The role of myocardin and its relationship with ERα in uterine fibroids have barely been addressed. We noticed that the expression of myocardin was markedly reduced in human uterine fibroid tissue compared with corresponding normal or adjacent myometrium tissue. Here we reported that myocardin induced the transcription and expression of differentiation markers SM22α and alpha smooth muscle actin (α-SMA) in rat primary uterine smooth muscle cells (USMCs) and this effect was inhibited by ERα. Notably, we showed that, ERα induced expression of proliferation markers PCNA and ki-67 in rat primary USMCs. We also found ERα interacted with myocardin and formed complex to bind to CArG box and inhibit the SM22α promoter activity. Furthermore, ERα inhibited the transcription and expression of myocardin, and reduced the levels of transcription and expression of downstream target SM22α, a SMC differentiation marker. Our data thus provided important and novel insights into how ERα and myocardin interact to control the cell differentiation and proliferation of USMCs. Thus, it may provide potential therapeutic target for uterine fibroids.

  11. BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2012-01-01

    Full Text Available Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9 in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's MDSCs were extracted by type I collagenase and trypsin methods, and BMP9 was introduced into MDSCs by infection with recombinant adenovirus. Effects of BMP9-induced osteogenetic differentiation of MDSCs were identified with alkaline phosphatase (ALP activity and expression of later marker. In stem-cell implantation assay, MDSCs have also shown valuable potential bone formation ability induced by BMP9 in rabbit radius defects repairing test. Taken together, our findings suggest that MDSCs are potentiated osteogenetic stem cells which can be induced by BMP9 to treat large segmental bone defects, nonunion fracture, and/or osteoporotic fracture.

  12. Flow cytometric determination of osmotic behaviour of animal erythrocytes toward their engineering for drug delivery

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2015-01-01

    Full Text Available Despite the fact that the methods based on the osmotic properties of the cells are the most widely used for loading of drugs in human and animal erythrocytes, data related to the osmotic properties of erythrocytes derived from animal blood are scarce. This work was performed with an aim to investigate the possibility of use the flow cytometry as a tool for determination the osmotic behaviour of porcine and bovine erythrocytes, and thus facilitate the engineering of erythrocytes from animal blood to be drug carriers. The method of flow cytometry successfully provided the information about bovine and porcine erythrocyte osmotic fragility, and made the initial steps in assessment of erythrocyte shape in a large number of erythrocytes. Although this method is not able to confirm the swelling of pig erythrocytes, it indicated to the differences in pig erythrocytes that had basic hematological parameters inside and outside the reference values. In order to apply/use the porcine and bovine erythrocytes as drug carriers, the method of flow cytometry, confirming the presence of osmotically different fractions of red blood cells, indicated that various amounts of the encapsulated drug in porcine and bovine erythrocytes can be expected.

  13. Influence of high energy electron irradiation and gamma irradiation on the osmotic resistance of human erythrocyte membranes

    International Nuclear Information System (INIS)

    Catana, D.; Hategan, Alina; Moraru, Rodica; Popescu, Alina; Morariu, V. V.

    1998-01-01

    The effects of 5 MeV electrons and of gamma irradiation at 0 deg. C on the osmotic fragility of human erythrocyte membranes are presented. Both electron and gamma radiation in the range 0-400 Gy induced no hemolysis indicating that the membrane modifications due to radiation interaction do not reach a critical point as to cause swelling of the cells and subsequent lysis. The osmotic stress experiments performed after irradiation showed that the gamma irradiated erythrocytes exhibited an almost similar sigmoidal behavior for all irradiation doses, whereas the electron irradiated samples showed a much larger increase in hemolysis degree and, in the case of a given electron dose (100 Gy), the hemolysis was found much smaller than for the control sample (a similar behavior of the erythrocytes was found in the case of microwave irradiation at temperatures under 0 deg. C). Our experimental data suggest that electron radiation and gamma radiation have different impacts on the erythrocyte membrane fluidity, involving, probably, the different rate of energy deposition in the samples and the direct interaction of electrons with the erythrocyte membranes. (authors)

  14. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  15. Random small interfering RNA library screen identifies siRNAs that induce human erythroleukemia cell differentiation.

    Science.gov (United States)

    Fan, Cuiqing; Xiong, Yuan; Zhu, Ning; Lu, Yabin; Zhang, Jiewen; Wang, Song; Liang, Zicai; Shen, Yan; Chen, Meihong

    2011-03-01

    Cancers are characterized by poor differentiation. Differentiation therapy is a strategy to alleviate malignant phenotypes by inducing cancer cell differentiation. Here we carried out a combinatorial high-throughput screen with a random siRNA library on human erythroleukemia K-562 cell differentiation. Two siRNAs screened from the library were validated to be able to induce erythroid differentiation to varying degrees, determined by CD235 and globin up-regulation, GATA-2 down-regulation, and cell growth inhibition. The screen we performed here is the first trial of screening cancer differentiation-inducing agents from a random siRNA library, demonstrating that a random siRNA library can be considered as a new resource in efforts to seek new therapeutic agents for cancers. As a random siRNA library has a broad coverage for the entire genome, including known/unknown genes and protein coding/non-coding sequences, screening using a random siRNA library can be expected to greatly augment the repertoire of therapeutic siRNAs for cancers.

  16. Drying of carrots in slices with osmotic dehydration

    African Journals Online (AJOL)

    SAM

    2014-07-23

    Jul 23, 2014 ... extend the shelf-life by a few weeks, one year or more. The methods .... drated carrots, this work studied the drying of carrot with pre-osmotic ... e) Weight Loss - obtained directly using balance semi-analytical model BEL ...

  17. Comparative Erythrocytes Osmotic Fragility Test and some ...

    African Journals Online (AJOL)

    Erythrocytes osmotic fragility and haematological parameters of subjects with HbAS (sickle cell trait) and HbSS (sickle cell anaemia) were determined and compared with subjects with HbAA (normal adult haemoglobin), which acted as control. They were divided into three groups of 40 subjects for HbAA, 35 subjects for ...

  18. Acridones as inducers of HL-60 cell differentiation.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H

    1999-03-01

    Fifteen acridone alkaloids were examined for their activity of induction of human promyelocytic leukemia cell (HL-60) differentiation. HL-60 cells were differentiated into mature monocyte/macrophage by atalaphyllidine (9), atalaphyllinine (12), and des-N-methylnoracronycine (13). The activities of NBT reduction, nonspecific esterase, and phagocytosis, were induced by 2.5 microM of 9, 12, and 13. After a 4-day treatment, 9, 12, and 13 at 10 microM inhibited clonal proliferation of HL-60 cells by 28, 96, and 63%, respectively. The structure-activity relationship established from the results revealed that hydroxyl group at C-1 and prenyl group at C-2 had an important role.

  19. Ambient salinity modifies the action of triiodothyronine in the air-breathing fish Anabas testudineus Bloch: effects on mitochondria-rich cell distribution, osmotic and metabolic regulations.

    Science.gov (United States)

    Peter, M C Subhash; Leji, J; Peter, Valsa S

    2011-04-01

    The hydromineral and metabolic actions of thyroid hormone on osmotic acclimation in fish is less understood. We, therefore, studied the short-term action of triiodothyronine (T(3)), the potent thyroid hormone, on the distribution and the function of gill mitochondria-rich (MR) cells and on the whole body hydromineral and metabolic regulations of air-breathing fish (Anabas testudineus) adapted to either freshwater (FW) or acclimated to seawater (SA; 30 g L(-1)). As expected, 24 h T(3) injection (100 ng g(-1)) elevated (Pfish, suggest an action of T(3) on gill MR cell migration, though the density of these cells remained unchanged after T(3) treatment. The ouabain-sensitive Na(+), K(+)-ATPase activity, a measure of hydromineral competence, showed increases (Pfish after T(3) administration, but inhibited (Pfish and not in the SA fish. Exogenous T(3) reduced glucose (Pfish, whereas these metabolites were elevated (Pfish, suggesting a modulatory effect of ambient salinity on the T(3)-driven metabolic actions. Our data identify gill MR cell as a target for T(3) action as it promotes the spatial distribution and the osmotic function of these cells in both fresh water and in seawater. The results besides confirming the metabolic and osmotic actions of T(3) in fish support the hypothesis that the differential actions of T(3) may be due to the direct influence of ambient salinity, a major environmental determinant that alters the osmotic and metabolic strategies of fish. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The osmotic fragility of human erythrocytes is inhibited by laser irradiation

    International Nuclear Information System (INIS)

    Habodaszova, D.; Sikurova, L.; Waczulikova, I.

    2004-01-01

    In this study we investigated the influence of green laser irradiation (532 nm, 30 mW, 31,7 J/cm 2 ) on the membrane integrity of human erythrocytes and compared the results with the effect of infrared laser irradiation (810 nm, 50 mW, 31,3 J/cm 2 ). To evaluate the membrane integrity of erythrocytes, one clinical parameter, the osmotic fragility, was investigated. We observed a decrease in osmotic fragility of the erythrocytes after irradiation by the green laser light as well as by the infrared laser compared to non-irradiated controls (Authors)

  1. Effect of Osmotic Stress on Seed Germination Indices of Nigella sativa and Silybum marianum

    Directory of Open Access Journals (Sweden)

    H Balouchi

    2012-04-01

    Full Text Available Evaluation of medicinal plants to drought and salt stress tolerance, in an attempt to plant them under drought and saline regions, is of utmost importance. Environmental stresses, especially drought and salt, reduce the global crop yields more than other factors. Selection of drought tolerant crops at germination stage, usually is, the fast and low cost method. In order to study the effect of osmotic stress on germination indices of black cumin and milk thistle, an experiment carried out in a completely randomized design with four replications at the Seed Technology Laboratoary of Yasouj University in 2008. Treatments were 0 (as control, -2.4, -4.8, -7.2 and -9.4 bar osmotic potentials created by using PEG 6000. Results showed that, decreasing of osmotic potential reduced speed of germination and its percentage, root and shoot lengths and dry matter in these two plants. Black cumin showed higher tolerance, to -4.8 bar osmotic potential, as compared to milk thistle. However, milk thistle showed higher tolerance to drought stress, up to this osmotic potential (-4.8 bar, compared to black cumin. Milk thistle had lower germination speed and percentage at higher drought stress as compared to black cumin. Generally, milk thistle showed better growth and survival than black cumin due to its higher root and shoot length and dry matter.

  2. Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols

    International Nuclear Information System (INIS)

    González, Emilio J.; Calvar, Noelia; Macedo, Eugénia A.

    2014-01-01

    Highlights: • Physical and osmotic properties of [HMim][TfO] in alcohols are reported. • Apparent molar properties and osmotic coefficients were obtained. • Apparent molar volumes were fitted using a Redlich–Meyer type equation. • The osmotic coefficients were modeled with the Extended Pitzer and the MNRTL models. -- Abstract: In this work, density for the binary mixtures of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate in alcohols (1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol) was measured at T = 323.15 K and atmospheric pressure. From this property, the corresponding apparent molar volumes were calculated and fitted to a Redlich–Meyer type equation. For these mixtures, the osmotic and activity coefficients, and vapor pressures of these binary systems were also determined at the same temperature using the vapor pressure osmometry technique. The experimental osmotic coefficients were modeled by the Extended Pitzer model of Archer. The parameters obtained in this correlation were used to calculate the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures

  3. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  4. Osmotic concentration in three races of honey bee, Apis mellifera L. under environmental conditions of arid zone.

    Science.gov (United States)

    Ali, Hussain; Alqarni, Abdulaziz S; Owayss, Ayman A; Hassan, Awad M; Smith, Brian H

    2017-07-01

    Hemolymph osmolarity has great effect on honey bee health, especially in arid and semi-arid zones. It regulates water and nutrients in stressed tissues. Osmotic concentration in three races ( Apis mellifera ligustica , A. m. carnica and A. m. jemenitica ) of Apis mellifera was tested in central Saudi Arabia during spring and summer seasons in 2015. Newly emerged bee workers were first marked and later their hemolymph was extracted after intervals of 1, 5, 10, 15, 20 and 25 days. A significant positive correlation between age and osmolarity was found in all three races during spring and summer seasons. The lowest combined osmotic concentration for all three races was found after 1 day interval, while the highest osmotic concentration was recorded after 25 days. Among all races, A. m. ligustica showed significantly high osmotic concentration after 25 days in spring and summer seasons as compared to the other two races. Only A. m. jemenitica showed similar osmotic concentration after 10 and 15 days in both spring and summer seasons compared to other two races. Mean osmotic concentration of all three races was significantly different after 20 and 25 days in spring and summer seasons. Overall mean recorded during summer was significantly higher than the mean of spring season. Combined osmotic concentration in young drones of all races was significantly lower than that of old drones during spring and summer seasons.

  5. Osmotic dehydration of fruit and berry raw materials in the food industry

    OpenAIRE

    N. A. Gribova; L. G. Eliseeva

    2017-01-01

    Osmotic dehydration has recently received more attention as an effective method of preserving fruits and berries. Osmosis is a simple process that facilitates the processing of fruits and berries in order to preserve the original characteristics, namely nutritional value and organoleptic properties: color, aroma and texture. Osmotic dehydration has found wide application in the preservation of food products, as the activity of water in fruits and berries decreases, in some of them up to 90% o...

  6. A novel potassium deficiency-induced stimulon in Anabaena torulosa

    Indian Academy of Sciences (India)

    Unknown

    torulosa and of nine proteins in Escherichia coli. These were termed potassium deficiency-induced proteins or. PDPs and constitute hitherto unknown potassium deficiency–induced stimulons. Potassium deficiency also enhanced the synthesis of certain osmotic stress-induced proteins. Addition of K+ repressed the ...

  7. Analytical Expressions for Thermo-Osmotic Permeability of Clays

    Science.gov (United States)

    Gonçalvès, J.; Ji Yu, C.; Matray, J.-M.; Tremosa, J.

    2018-01-01

    In this study, a new formulation for the thermo-osmotic permeability of natural pore solutions containing monovalent and divalent cations is proposed. The mathematical formulation proposed here is based on the theoretical framework supporting thermo-osmosis which relies on water structure alteration in the pore space of surface-charged materials caused by solid-fluid electrochemical interactions. The ionic content balancing the surface charge of clay minerals causes a disruption in the hydrogen bond network when more structured water is present at the clay surface. Analytical expressions based on our heuristic model are proposed and compared to the available data for NaCl solutions. It is shown that the introduction of divalent cations reduces the thermo-osmotic permeability by one third compared to the monovalent case. The analytical expressions provided here can be used to advantage for safety calculations in deep underground nuclear waste repositories.

  8. Discovery of novel inducers of cellular differentiation using HL-60 promyelocytic cells.

    Science.gov (United States)

    Mata-Greenwood, E; Ito, A; Westenburg, H; Cui, B; Mehta, R G; Kinghorn, A D; Pezzuto, J M

    2001-01-01

    Non-physiological inducers of terminal differentiation have been used as novel therapies for the prevention and therapy of cancer. We have used cultured HL-60 promyelocytic cells to monitor differentiation, proliferation and cell death events as induced by a large set of extracts derived from plants. Screening of more than 1400 extracts led to the discovery of 34 with potent activity (ED50 Petiveria alliacea, and desmethylrocaglamide from Aglaia ponapensis. Zapotin demonstrated the most favorable biological profile in that induction of differentiation correlated with proliferation arrest, and a lack of cytotoxicity. We conclude that the HL-60 cell model is a useful system for the discovery of novel pharmacophores with potential to suppress the process of carcinogenesis, and that flavonoids may be especially useful in this capacity.

  9. A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration.

    Science.gov (United States)

    Zhang, Meijia; Peng, Wei; Chen, Jianrong; He, Yiming; Ding, Linxian; Wang, Aijun; Lin, Hongjun; Hong, Huachang; Zhang, Ye; Yu, Haiying

    2013-05-15

    Big gap between experimental filtration resistance of cake layer formed on membrane surface and the hydraulic resistance calculated through the Carman-Kozeny equation, suggested the existence of a new membrane fouling mechanism: osmotic pressure during cake layer filtration in SMBR system. An osmotic pressure model based on chemical potential difference was then proposed. Simulation of the model showed that osmotic pressure accounted for the major fraction of total operation pressure, and pH, applied pressure and ionic strength were the key determining factors for osmosis effect. It was found that, variations of osmotic pressure with pH, applied pressure and added ionic strength were well coincident with perditions of model's simulation, providing the first direct evidences of the real occurrence of osmosis mechanism and the feasibility of the proposed model. These findings illustrate the essential role of osmotic pressure in filtration resistance, and improve fundamental understanding on membrane fouling in SMBR systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Tirilazad mesylate protects stored erythrocytes against osmotic fragility.

    Science.gov (United States)

    Epps, D E; Knechtel, T J; Bacznskyj, O; Decker, D; Guido, D M; Buxser, S E; Mathews, W R; Buffenbarger, S L; Lutzke, B S; McCall, J M

    1994-12-01

    The hypoosmotic lysis curve of freshly collected human erythrocytes is consistent with a single Gaussian error function with a mean of 46.5 +/- 0.25 mM NaCl and a standard deviation of 5.0 +/- 0.4 mM NaCl. After extended storage of RBCs under standard blood bank conditions the lysis curve conforms to the sum of two error functions instead of a possible shift in the mean and a broadening of a single error function. Thus, two distinct sub-populations with different fragilities are present instead of a single, broadly distributed population. One population is identical to the freshly collected erythrocytes, whereas the other population consists of osmotically fragile cells. The rate of generation of the new, osmotically fragile, population of cells was used to probe the hypothesis that lipid peroxidation is responsible for the induction of membrane fragility. If it is so, then the antioxidant, tirilazad mesylate (U-74,006f), should protect against this degradation of stored erythrocytes. We found that tirilazad mesylate, at 17 microM (1.5 mol% with respect to membrane lecithin), retards significantly the formation of the osmotically fragile RBCs. Concomitantly, the concentration of free hemoglobin which accumulates during storage is markedly reduced by the drug. Since the presence of the drug also decreases the amount of F2-isoprostanes formed during the storage period, an antioxidant mechanism must be operative. These results demonstrate that tirilazad mesylate significantly decreases the number of fragile erythrocytes formed during storage in the blood bank.

  11. A physiological evaluation of the enhanced osmotic stress tolerance ...

    African Journals Online (AJOL)

    ELO

    2012-01-05

    Jan 5, 2012 ... SR3 and Jinan 177 were hydroponically subjected to osmotic stress, the accumulation of proline .... hydroponically in half strength Hoagland's solution for three weeks ..... ascrobate specific peroxidase in spinach chloroplasts.

  12. Methods to increase the rate of mass transfer during osmotic dehydration of foods.

    Science.gov (United States)

    Chwastek, Anna

    2014-01-01

    Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires  elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.

  13. Molecular sieving action of the cell membrane during gradual osmotic hemolysis

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, R.D. II

    1977-05-01

    Rat erythrocytes were hemolyzed by controlled gradual osmotic hemolysis to study cell morphology and hemoglobin loss from individual cells. Results suggest that each increase in the rate of loss of a protein from the cells during the initial phases of controlled gradual osmotic hemolysis is caused by the passage of a previously impermeable species across the stressed membrane. Similarly, during the final stages of controlled gradual osmotic hemolysis, each sharp decrease in the rate of loss of a protein corresponds to the termination of a molecular flow. A theoretical model is described that predicts the molecular sieving of soluble globular proteins across the stressed red cell membrane. Hydrophobic interactions occur between the soluble proteins and the lipid bilayer portion of the cell membrane. A spectrin network subdivides the bilayer into domains that restrict the insertion of large molecules into the membrane. Other membrane proteins affect soluble protein access to the membrane. Changes in the loss curves caused by incubation of red cells are discussed in terms of the model.

  14. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.

    Science.gov (United States)

    Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei

    2016-08-01

    To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.

  15. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara; D'Arrigo, Isotta; Long, Katherine

    2017-01-01

    functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions...... intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous......Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification...

  16. Self-consistent unstirred layers in osmotically driven flows

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Bohr, Tomas; Bruus, Henrik

    2010-01-01

    It has long been recognized that the osmotic transport characteristics of membranes may be strongly influenced by the presence of unstirred concentration boundary layers adjacent to the membrane. Previous experimental as well as theoretical works have mainly focused on the case where the solutions...

  17. Spermatozoa from the maned wolf (Chrysocyon brachyurus) display typical canid hyper-sensitivity to osmotic and freezing-induced injury, but respond favorably to dimethyl sulfoxide.

    Science.gov (United States)

    Johnson, Amy E M; Freeman, Elizabeth W; Wildt, David E; Songsasen, Nucharin

    2014-06-01

    We assessed the influences of medium osmolality, cryoprotectant and cooling and warming rate on maned wolf (Chrysocyon brachyurus) spermatozoa. Ejaculates were exposed to Ham's F10 medium (isotonic control) or to this medium plus NaCl (350-1000mOsm), sucrose (369 and 479mOsm), 1M glycerol (1086mOsm) or dimethyl sulfoxide (Me2SO, 1151mOsm) for 10 min. Each sample then was diluted back into Ham's medium and assessed for sperm motility and plasma membrane integrity. Although glycerol and Me2SO had no influence (P>0.05), NaCl and sucrose solutions affected sperm motility (P0.05) to the control. As osmolality of the NaCl solution increased, motility decreased to maned wolf spermatozoa are similar to domestic dog sperm in their sensitivity to osmotic-induced motility damage, the plasma membranes tolerate dehydration, and the cells respond favorably to Me2SO as a cryoprotectant. Published by Elsevier Inc.

  18. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang; Zuo, Jian; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic

  19. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.

    Science.gov (United States)

    Santos, Margarida A; Faryabi, Robert B; Ergen, Aysegul V; Day, Amanda M; Malhowski, Amy; Canela, Andres; Onozawa, Masahiro; Lee, Ji-Eun; Callen, Elsa; Gutierrez-Martinez, Paula; Chen, Hua-Tang; Wong, Nancy; Finkel, Nadia; Deshpande, Aniruddha; Sharrow, Susan; Rossi, Derrick J; Ito, Keisuke; Ge, Kai; Aplan, Peter D; Armstrong, Scott A; Nussenzweig, André

    2014-10-02

    Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.

  20. The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: Characterization of EgTIP2, a root-specific and osmotic stress-responsive gene.

    Science.gov (United States)

    Rodrigues, Marcela I; Bravo, Juliana P; Sassaki, Flávio T; Severino, Fábio E; Maia, Ivan G

    2013-12-01

    Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells.

    Science.gov (United States)

    Li, Xiao-Li; Zeng, Di; Chen, Yan; Ding, Lu; Li, Wen-Ju; Wei, Ting; Ou, Dong-Bo; Yan, Song; Wang, Bin; Zheng, Qiang-Sun

    2017-02-01

    Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a promising source of cells for regenerative heart disease therapies, but progress towards their use has been limited by their low differentiation efficiency and high cellular heterogeneity. Previous studies have demonstrated expression of adrenergic receptors (ARs) in stem cells after differentiation; however, roles of ARs in fate specification of stem cells, particularly in cardiomyocyte differentiation and development, have not been characterized. Murine-induced pluripotent stem cells (miPSCs) were cultured in hanging drops to form embryoid bodies, cells of which were then differentiated into cardiomyocytes. To determine whether ARs regulated miPSC differentiation into cardiac lineages, effects of the AR agonist, epinephrine (EPI), on miPSC differentiation and underlying signalling mechanisms, were evaluated. Treatment with EPI, robustly enhanced miPSC cardiac differentiation, as indicated by increased expression levels of cardiac-specific markers, GATA4, Nkx2.5 and Tnnt2. Although β-AR signalling is the foremost signalling pathway in cardiomyocytes, EPI-enhanced cardiac differentiation depended more on α-AR signalling than β-AR signalling. In addition, selective activation of α 1 -AR signalling with specific agonists induced vigorous cardiomyocyte differentiation, whereas selective activation of α 2 - or β-AR signalling induced no or less differentiation, respectively. EPI- and α 1 -AR-dependent cardiomyocyte differentiation from miPSCs occurred through specific promotion of CPC proliferation via the MEK-ERK1/2 pathway and regulation of miPS cell-cycle progression. These results demonstrate that activation of ARs, particularly of α 1 -ARs, promoted miPSC differentiation into cardiac lineages via MEK-ERK1/2 signalling. © 2016 John Wiley & Sons Ltd.

  2. [miRNA profile of the human dental pulp cells during odontoblast differentiation induced by BMP-2].

    Science.gov (United States)

    Bao, Li-Rong; Zhao, Wen-Qing; Lin, Tian; Lu, Yan-Ling; Wu, Yu

    2017-10-01

    To screen and verify the differentially expressed microRNAs (miRNAs) during the differentiation of human dental pulp cells (hDPCs) to odontoblasts induced by BMP-2. The isolated hDPCs were cultured in vitro and induced by BMP-2. The levels of ALP, DMP-1 and DSPP were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). The potential characteristics of hDPCs were investigated by miRNA microarray and highly expressed miRNAs were selected with bio-information software for predicting target genes and their biological functions. Then the results were validated using qRT-PCR analysis for the selected miRNAs. Statistical analysis was performed using SPSS 18.0 software package. The expression of ALP, DSPP, and DMP-1 showed significantly higher levels in BMP-2 induced groups compared to the control group(Pfunction(33%), while the function of other 0.2% genes remained unknown. This study identified differential expression of miRNAs in BMP-2-induced odontoblastic differentiation of hDPCs, thus contributing to further investigations of regulatory mechanisms and biological effect of target genes in BMP-2-induced odontoblastic differentiation of hDPCs.

  3. Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles.

    Directory of Open Access Journals (Sweden)

    Hyo-Jick Choi

    Full Text Available Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 - 6×10-4 cm s-1 and high Arrhenius activation energy (Ea = 15.0 kcal mol-1, indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination.

  4. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  5. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  6. Glucose Monitoring System Based on Osmotic Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Alexandra LEAL

    2011-02-01

    Full Text Available This paper presents the design and development of a prototype sensor unit for implementation in a long-term glucose monitoring system suitable for estimating glucose levels in people suffering from diabetes mellitus. The system utilizes osmotic pressure as the sensing mechanism and consists of a sensor prototype that is integrated together with a pre-amplifier and data acquisition unit for both data recording and processing. The sensor prototype is based on an embedded silicon absolute pressure transducer and a semipermeable nanoporous membrane that is enclosed in the sensor housing. The glucose monitoring system facilitates the integration of a low power microcontroller that is combined with a wireless inductive powered communication link. Experimental verification have proven that the system is capable of tracking osmotic pressure changes using albumin as a model compound, and thereby show a proof of concept for novel long term tracking of blood glucose from remote sensor nodes.

  7. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Wada, Hiromichi; Abe, Mitsuru; Ono, Koh; Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide; Satoh, Noriko; Fujita, Masatoshi; Kita, Toru; Shimatsu, Akira; Hasegawa, Koji

    2008-01-01

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 μM of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-α-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 μM), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs

  8. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Hiromichi [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Abe, Mitsuru; Ono, Koh [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Satoh, Noriko [Division of Metabolic Research, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Fujita, Masatoshi [Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Kita, Toru [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Shimatsu, Akira [Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Hasegawa, Koji [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan)

    2008-10-03

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 {mu}M of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-{alpha}-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 {mu}M), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs.

  9. Correlation and prediction of osmotic coefficient and water activity of aqueous electrolyte solutions by a two-ionic parameter model

    International Nuclear Information System (INIS)

    Pazuki, G.R.

    2005-01-01

    In this study, osmotic coefficients and water activities in aqueous solutions have been modeled using a new approach based on the Pitzer model. This model contains two physically significant ionic parameters regarding ionic solvation and the closest distance of approach between ions in a solution. The proposed model was evaluated by estimating the osmotic coefficients of nine electrolytes in aqueous solutions. The obtained results showed that the model is suitable for predicting the osmotic coefficients in aqueous electrolyte solutions. Using adjustable parameters, which have been calculated from regression between the experimental osmotic coefficient and the results of this model, the water activity coefficients of aqueous solutions were calculated. The average absolute relative deviations of the osmotic coefficients between the experimental data and the calculated results were in agreement

  10. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion

    OpenAIRE

    Yan, Jing; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2017-01-01

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmot...

  11. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  12. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded

  13. Differential osmotic pressure measurements of the concentration susceptibility of liquid 3He/4He mixtures near the lambda curve and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.; Zimmermann, W. Jr.

    1979-01-01

    Values of the concentration susceptibility (partial x/partial Δ)/sub T/,P of liquid 3 He/ 4 He mixtures have been determined near the lambda curve and tricritical point from measurements of the differential osmotic pressure as a function of temperature T at four values of the 3 He mole fraction, x = 0.594, x = 0.644, x = 0.680, and x = 0.706. Here Δ = μ 3 - μ 4 is the difference between molar chemical potentials and P is the pressure. Our results for the two values of x less than the tricritical value x/sub t/ = 0.675 show pronounced peaks at the lambda transition. For 3 x 10 -4 -2 , where t equals [T - T/sub lambda/(x)]/T/sub lambda/(x), these peaks may be characterized both above and below the transition by the form (A/sub plus-or-minus//α/sub plus-or-minus/) (vertical-bart vertical-bar/sup -alpha/ +- - 1) + B/sub plus-or-minus/, with exponents α/sub plus-or-minus/ lying in the range from approx. 0.0 to approx. 0.2. Except perhaps for x -1 [T-T/sub t//T/sub t/)/vertical-barx-x/sub t//x/sub t/vertical-bar], where f and Ψ are functions determined by experiment and T/sub t/ = 0.867 K is the tricritical value of T. With the aid of this scaling relationship, the behavior of (partialx/partialΔ)/sub T/,P along curves of constant Δ near the lambda curve has been constucted from our data at constant x

  14. The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp.

    Science.gov (United States)

    Hu, Xue-Chao; Ren, Lu-Jing; Chen, Sheng-Lan; Zhang, Li; Ji, Xiao-Jun; Huang, He

    2015-11-01

    The effects of different osmotic pressure, changed by six salts (NaCl, Na2SO4, (NH4)2SO4, KH2PO4 and MSG), on cell growth and DHA synthesis by Schizochytrium sp. were investigated. Six optimal mediums were obtained to study different osmotic pressure combinations at cell growth stage and DHA synthesis stage. Results showed that cultivated cell in higher osmotic pressure condition and fermented in lower osmotic pressure condition was benefit to enhance DHA synthesis. Combination 17-6 could get the maximum cell dry weight of 56.95 g/L and the highest DHA percentage in total fatty acids of 55.21%, while combination 17-B could get the highest lipid yield of 33.47 g/L with 42.10% DHA in total fatty acids. This was the first report about the enhancement of DHA production by osmotic regulation and this work provided two novel osmotic control processes for high lipid yield and high DHA percentage in total fatty acids.

  15. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-03

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.

    Directory of Open Access Journals (Sweden)

    Rebecca Schroeter

    Full Text Available The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl, and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes, the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.

  17. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.

    Science.gov (United States)

    Schroeter, Rebecca; Hoffmann, Tamara; Voigt, Birgit; Meyer, Hanna; Bleisteiner, Monika; Muntel, Jan; Jürgen, Britta; Albrecht, Dirk; Becher, Dörte; Lalk, Michael; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Putzer, Harald; Hecker, Michael; Schweder, Thomas; Bremer, Erhard

    2013-01-01

    The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.

  18. An analysis of the effects of osmotic backwashing on the seawater reverse osmosis process.

    Science.gov (United States)

    Park, JunYoung; Jeong, WooWon; Nam, JongWoo; Kim, JaeHun; Kim, JiHoon; Chon, Kangmin; Lee, Euijong; Kim, HyungSoo; Jang, Am

    2014-01-01

    Fouling control is an important consideration in the design and operation of membrane-based water treatment processes. It has been generally known that chemical cleaning is still the most common method to remove foultants and maintain the performance of reverse osmosis (RO) desalination. Regardless of the chemical membrane cleaning methods applied effectively, however, frequent chemical cleaning can shorten the membrane life. In addition, it also increases operating and maintenance costs due to the waste chemical disposal. As an alternative, osmotic backwashing can be applied to RO membranes by diluting the concentration polarization (CP) layer. In this study, the effects of osmotic backwashing were analysed under different total dissolved salts (TDSs) and backwashing conditions, and the parameters of the osmotic backwashing were evaluated. The results of the analysis based on the properties of the organic matters found in raw water showed that the cleaning efficiency in respect to the fouling by hydrophilic organic matters was the greatest. Osmotic backwashing was carried out by changing the TDS of the permeate. As a result, the backwashing volume decreased with time due to the CP of the permeate and the backwashing volume. The difference in the osmotic pressure between the raw water and the permeate (Delta pi) also decreased as time passed. It was confirmed that when the temperature of the effluent was high, both the cleaning efficiency and the backwashing volume, which inpours at the same time, increased. When the circulation flow of the effluent was high, both the cleaning efficiency and the backwashing volume increased.

  19. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.

    Science.gov (United States)

    Hughes, Nicole M; Carpenter, Kaylyn L; Cannon, Jonathan G

    2013-01-15

    The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψ(π,100)) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was -0.7MPa for G. urceolata and -0.8MPa for G. procumbens. In vivo concentrations of anthocyanin (3-10mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψ(π,100) in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψ(π,100). We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an

  20. Osmotic and apparent molar properties of binary mixtures alcohol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid

    International Nuclear Information System (INIS)

    González, Emilio J.; Calvar, Noelia; Domínguez, Ángeles; Macedo, Eugénia A.

    2013-01-01

    Highlights: ► Osmotic and physical properties of binary mixtures {alcohol + [BMim][TfO]} were measured. ► From experimental data, apparent molar properties and osmotic coefficients were calculated. ► The apparent properties were fitted using a Redlich–Meyer type equation. ► The osmotic coefficients were correlated using the Extended Pitzer model. -- Abstract: In this work, physical properties (densities and speeds of sound) for the binary systems {1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate} were experimentally measured from T = (293.15 to 323.15) K and at atmospheric pressure. These data were used to calculate the apparent molar volume and apparent molar isentropic compression which were fitted to a Redlich–Meyer type equation. This fit was used to obtain the corresponding apparent molar properties at infinite dilution. On the other hand, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The Extended Pitzer model of Archer was employed to correlate the experimental osmotic coefficients. From the parameters obtained in the correlation, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated

  1. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  2. Microarray‑based screening of differentially expressed genes in glucocorticoid‑induced avascular necrosis.

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-06-01

    The underlying mechanisms of glucocorticoid (GC)‑induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC‑induced ANFH. E‑MEXP‑2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid‑induced ANFH rats compared with 5 placebo‑treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC‑induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25‑Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α‑2‑macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC‑induced ANFH via interacting with VDR. A2M may also be involved in the development of GC‑induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC‑induced ANFH may provide novel targets for diagnostics and therapeutic treatment.

  3. Efficiency of osmotic pipe flows

    DEFF Research Database (Denmark)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Helix Nielsen, Claus

    2013-01-01

    efficiency of these flows is limited by the presence of “unstirred” concentration boundary layers near the tube walls, and our primary aim is to understand and quantify these layers and their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate Q*, concentration c......We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping...

  4. Endogenous WNT Signals Mediate BMP-Induced and Spontaneous Differentiation of Epiblast Stem Cells and Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Dorota Kurek

    2015-01-01

    Full Text Available Therapeutic application of human embryonic stem cells (hESCs requires precise control over their differentiation. However, spontaneous differentiation is prevalent, and growth factors induce multiple cell types; e.g., the mesoderm inducer BMP4 generates both mesoderm and trophoblast. Here we identify endogenous WNT signals as BMP targets that are required and sufficient for mesoderm induction, while trophoblast induction is WNT independent, enabling the exclusive differentiation toward either lineage. Furthermore, endogenous WNT signals induce loss of pluripotency in hESCs and their murine counterparts, epiblast stem cells (EpiSCs. WNT inhibition obviates the need to manually remove differentiated cells to maintain cultures and improves the efficiency of directed differentiation. In EpiSCs, WNT inhibition stabilizes a pregastrula epiblast state with novel characteristics, including the ability to contribute to blastocyst chimeras. Our findings show that endogenous WNT signals function as hidden mediators of growth factor-induced differentiation and play critical roles in the self-renewal of hESCs and EpiSCs.

  5. The Response Strategy of Maize, Pea and Broad Bean Plants to Different Osmotic Potential Stress

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2013-08-01

    Full Text Available This investigation was conducted to study the tolerance strategy of maize, broad bean and pea plants to salinity stress with exogenous applications of proline or phenylalanine on seed germination and seedlings growth. From the results obtained, it can be observed that osmotic stress affected adversely the rate of germination in maize, broad bean and pea plants. The excessive inhibition was more prominent at higher concentration of NaCl. The seeds and grains tested were exhibited some differential responses to salinity, in a manner that the inhibitory effect of salinity on seed germination ran in the order, maize higher than broad bean and the later was higher than pea plant. Treatment with proline or phenylalanine (100 ppm significantly increased these seed germination and seedlings growth characteristics even at lowest salinity level tested.

  6. Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models

    NARCIS (Netherlands)

    Wognum, Silvia; Huyghe, Jacques M.; Baaijens, Frank P. T.

    2006-01-01

    An experimental hydrogel model and a numerical mixture model were used to investigate why the disc herniates while osmotic pressure is decreasing. To investigate the influence of decreasing osmotic pressure on the opening of cracks in the disc. In the degeneration process, the disc changes structure

  7. [Extrapontine osmotic myelinolysis].

    Science.gov (United States)

    Silva, Federico A; Rueda-Clausen, Christian F; Ramírez, Fabián

    2005-06-01

    Extrapontine osmotic myelinolysis is a rare nervous system complication. Symptoms of this malady were presented during the clinical examination of a 49-year-old alcoholic male, who arrived at the hospital emergency room in a state of cardiorespiratory arrest. After resuscitation methods were applied, the patient was found in metabolic acidosis (pH 7.014) and was treated with sodium bicarbonate. Forty-eight hours later, sodium levels in the patient had risen from 142 to 174 mEq/l. During the period of clinical observation, the patient showed signs of cognitive impairment, disartria, bilateral amaurosis, hyporeflexia and right-half body hemiparesias. After 72 hours, computer tomography was applied; this showed a bilateral lenticular hypodensity with internal and external capsule compromise. One month later, when the patient was referred to another institution for rehabilitation, the patient showed cognitive impairment, bilateral optic atrophy, residual disartria, bradikynesia and double hemiparesia.

  8. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yong; Fang, Shi-ji [The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000 (China); Zhu, Li-juan [Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021 (China); Zhu, Lun-qing, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children’s Bone Diseases, The Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000 (China); Zhou, Xiao-zhong, E-mail: zhouxz@suda.edu.cn [The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000 (China)

    2014-10-24

    Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which was detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.

  9. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway.

    Science.gov (United States)

    Liu, Mei; Guo, Jingjing; Wang, Juan; Zhang, Luyong; Pang, Tao; Liao, Hong

    2014-08-01

    Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.

  10. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Hui-Fang Chang

    Full Text Available We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz. The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  11. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Science.gov (United States)

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  12. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    Science.gov (United States)

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  13. Using miniature osmotic infusion pumps to maintain tritiated thymidine exposure to cells in culture

    International Nuclear Information System (INIS)

    Neely, J.E.; Hake, D.A.

    1982-01-01

    To provide a constant level of tracer doses of tritiated thymidine to cultured cells during continuous infusion, miniature osmotic infusion pumps were used to provide replacement thymidine. By determining the loss of isotope from the media during nonreplacement, the rate of constant infusion replacement to maintain thymidine levels was calculated. The replacement rates were similar for the three cell lines examined and allowed a standard osmotic pump infusion

  14. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique

    NARCIS (Netherlands)

    Basser, P.J.; Schneiderman, R.; Bank, R.A.; Wachtel, E.; Maroudas, A.

    1998-01-01

    We have used an isotropic osmotic stress technique to assess the swelling pressures of human articular cartilage over a wide range of hydrations in order to determine from these measurements, for the first time, the tensile stress in the collagen network, P(c), as a function of hydration. Osmotic

  15. An osmotic model of the growing pollen tube.

    Directory of Open Access Journals (Sweden)

    Adrian E Hill

    Full Text Available Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip.

  16. An Osmotic Model of the Growing Pollen Tube

    Science.gov (United States)

    Hill, Adrian E.; Shachar-Hill, Bruria; Skepper, Jeremy N.; Powell, Janet; Shachar-Hill, Yair

    2012-01-01

    Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip. PMID:22615784

  17. Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency

    Directory of Open Access Journals (Sweden)

    Seyed A. Hosseini

    2017-08-01

    Full Text Available Drought is one of the major stress factors reducing cereal production worldwide. There is ample evidence that the mineral nutrient status of plants plays a critical role in increasing plant tolerance to different biotic and abiotic stresses. In this regard, the important role of various nutrients e.g., potassium (K or silicon (Si in the mitigation of different stress factors, such as drought, heat or frost has been well documented. Si application has been reported to ameliorate plant nutrient deficiency. Here, we used K and Si either solely or in combination to investigate whether an additive positive effect on barley growth can be achieved under osmotic stress and which mechanisms contribute to a better tolerance to osmotic stress. To achieve this goal, barley plants were subjected to polyethylene glycol (PEG-induced osmotic stress under low or high K supply and two Si regimes. The results showed that barley silicon transporters HvLsi1 and HvLsi2 regulate the accumulation of Si in the shoot only when plant suffered from K deficiency. Si, in turn, increased the starch level under both osmotic stress and K deficiency and modulated the glycolytic and TCA pathways. Hormone profiling revealed that the beneficial effect of Si is most likely mediated also by ABA homeostasis and active cytokinin isopentenyl adenine (iP. We conclude that Si may effectively improve stress tolerance under K deficient condition in particular when additional stress like osmotic stress interferes.

  18. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    Science.gov (United States)

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  19. Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation

    Science.gov (United States)

    Brero, Alessandro; Easwaran, Hariharan P.; Nowak, Danny; Grunewald, Ingrid; Cremer, Thomas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2005-01-01

    Pericentric heterochromatin plays an important role in epigenetic gene regulation. We show that pericentric heterochromatin aggregates during myogenic differentiation. This clustering leads to the formation of large chromocenters and correlates with increased levels of the methyl CpG–binding protein MeCP2 and pericentric DNA methylation. Ectopic expression of fluorescently tagged MeCP2 mimicked this effect, causing a dose-dependent clustering of chromocenters in the absence of differentiation. MeCP2-induced rearrangement of heterochromatin occurred throughout interphase, did not depend on the H3K9 histone methylation pathway, and required the methyl CpG–binding domain (MBD) only. Similar to MeCP2, another methyl CpG–binding protein, MBD2, also increased during myogenic differentiation and could induce clustering of pericentric regions, arguing for functional redundancy. This MeCP2- and MBD2-mediated chromatin reorganization may thus represent a molecular link between nuclear genome topology and the epigenetic maintenance of cellular differentiation. PMID:15939760

  20. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    KAUST Repository

    Fujii, Hiroaki; Verslues, Paul E.; Zhu, Jian-Kang

    2011-01-01

    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved

  1. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    Science.gov (United States)

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient ( Ldlr -/- ) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr -/- mice led to intrahepatic Th1 cell differentiation and CD11b + CD11c + leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4 + T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  2. Conditions Inducing Excessive O-GlcNAcylation Inhibit BMP2-Induced Osteogenic Differentiation of C2C12 Cells.

    Science.gov (United States)

    Gu, Hanna; Song, Mina; Boonanantanasarn, Kanitsak; Baek, Kyunghwa; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2018-01-09

    Hyperglycemic conditions in diabetic patients can affect various cellular functions, including the modulation of osteogenic differentiation. However, the molecular mechanisms by which hyperglycemia affects osteogenic differentiation are yet to be clarified. This study aimed to investigate whether the aberrant increase in protein O -linked-β- N -acetylglucosamine glycosylation ( O -GlcNAcylation) contributes to the suppression of osteogenic differentiation due to hyperglycemia. To induce osteogenic differentiation, C2C12 cells were cultured in the presence of recombinant human bone morphogenetic protein 2 (BMP2). Excessive protein O -GlcNAcylation was induced by treating C2C12 cells with high glucose, glucosamine, or N -acetylglucosamine concentrations or by O -GlcNAc transferase (OGT) overexpression. The effect of O -GlcNAcylation on osteoblast differentiation was then confirmed by examining the expression levels of osteogenic marker gene mRNAs, activity of alkaline phosphatase, and transcriptional activity of Runx2, a critical transcription factor for osteoblast differentiation and bone formation. Cell treatment with high glucose, glucosamine or N -acetylglucosamine increased O -GlcNAcylation of Runx2 and the total levels of O -GlcNAcylated proteins, which led to a decrease in the transcriptional activity of Runx2, expression levels of osteogenic marker genes (Runx2, osterix, alkaline phosphatase, and type I collagen), and activity of alkaline phosphatase. These inhibitory effects were rescued by lowering protein O -GlcNAcylation levels by adding STO45849, an OGT inhibitor, or by overexpressing β- N -acetylglucosaminidase. Our findings suggest that excessive protein O -GlcNAcylation contributes to high glucose-suppressed osteogenic differentiation.

  3. The Na+/H+ exchanger, NHE1, differentially regulates mitogen-activated protein kinase subfamilies after osmotic shrinkage in Ehrlich Lettre Ascites cells

    DEFF Research Database (Denmark)

    Petersen, Stine Helene Falsig; Rasmussen, Maria; Darborg, Barbara Vasek

    2007-01-01

    Osmotic stress modulates mitogen activated protein kinase (MAPK) activities, leading to altered gene transcription and cell death/survival balance, however, the mechanisms involved are incompletely elucidated. Here, we show, using a combination of biochemical and molecular biology approaches...... by human (h) NHE1 expression in cells lacking endogenous NHE1 activity. The effect of NHE1 on ERK1/2 was pH(i)-independent and upstream of MEK1/2. Shrinkage-activation of JNK1/2 was attenuated by EIPA, augmented by hNHE1 expression, and abolished in the presence of HCO(3)(-). Basal JNK activity...

  4. Benchtop-magnetic resonance imaging (BT-MRI) characterization of push-pull osmotic controlled release systems.

    Science.gov (United States)

    Malaterre, Vincent; Metz, Hendrik; Ogorka, Joerg; Gurny, Robert; Loggia, Nicoletta; Mäder, Karsten

    2009-01-05

    The mechanism of drug release from push-pull osmotic systems (PPOS) has been investigated by Magnetic Resonance Imaging (MRI) using a new benchtop apparatus. The signal intensity profiles of both PPOS layers were monitored non-invasively over time to characterize the hydration and swelling kinetics. The drug release performance was well-correlated to the hydration kinetics. The results show that (i) hydration and swelling critically depend on the tablet core composition, (ii) high osmotic pressure developed by the push layer may lead to bypassing the drug layer and incomplete drug release and (iii) the hydration of both the drug and the push layers needs to be properly balanced to efficiently deliver the drug. MRI is therefore a powerful tool to get insights on the drug delivery mechanism of push-pull osmotic systems, which enable a more efficient optimization of such formulations.

  5. Biochemical degradation and physical migration of polyphenolic compounds in osmotic dehydrated blueberries with pulsed electric field and thermal pretreatments.

    Science.gov (United States)

    Yu, Yuanshan; Jin, Tony Z; Fan, Xuetong; Wu, Jijun

    2018-01-15

    Fresh blueberries were pretreated by pulsed electric fields (PEF) or thermal pretreatment and then were subject to osmotic dehydration. The changes in contents of anthocyanins, predominantly phenolic acids and flavonols, total phenolics, polyphenol oxidase (PPO) activity and antioxidant activity in the blueberry samples during pretreatment and osmotic dehydration were investigated. Biochemical degradation and physical migration of these nutritive compounds from fruits to osmotic solutions were observed during the pretreatments and osmotic dehydration. PEF pretreated samples had the least degradation loss but the most migration loss of these compounds compared to thermally pretreated and control samples. Higher rates of water loss and solid gain during osmotic dehydration were also obtained by PEF pretreatment, reducing the dehydration time from 130 to 48h. PEF pretreated and dehydrated fruits showed superior appearance to thermally pretreated and control samples. Therefore, PEF pretreatment is a preferred technology that balances nutritive quality, appearance, and dehydration rate. Published by Elsevier Ltd.

  6. Inducing and assessing differentiated emotion-feeling states in the laboratory.

    Science.gov (United States)

    Philippot, P

    1993-03-01

    Two questions are addressed. The first question pertains to the capacity of film segments to induce emotional states that are: (a) as comparable as possible to naturally occurring emotions; (b) similar across individuals; and (c) clearly differentiated across the intended emotions. The second question concerns the discriminant capacity of self-report questionnaires of emotion-feeling states differing in their theoretical assumptions. Subjects viewed six short film segments and rated the strength of their responses on one of three kinds of questionnaires. The questionnaires were: (1) the Differential Emotions Scale that postulates category-based distinctions between emotions; (2) the Semantic Differential that postulates that emotions are distinguished along bipolar dimensions; and (3) free labelling of their feelings by the subjects (control condition with no theoretical a priori). Overall, results indicate that film segments can elicit a diversity of predictable emotions, in the same way, in a majority of individuals. In the present procedure, the Differential Emotions Scale yielded a better discrimination between emotional states than the Semantic Differential. Implications for emotion research and theories of the cognitive structure of emotion are discussed.

  7. Differential metabolic responses in three life stages of mussels Mytilus galloprovincialis exposed to cadmium.

    Science.gov (United States)

    Wu, Huifeng; Xu, Lanlan; Yu, Deliang; Ji, Chenglong

    2017-01-01

    Cadmium (Cd) is one of the most important metal contaminants in the Bohai Sea. In this work, NMR-based metabolomics was used to investigate the toxicological effects of Cd at an environmentally relevant concentration (50 µg L -1 ) in three different life stages (D-shape larval, juvenile and adult) of mussels Mytilus galloprovincialis. Results indicated that the D-shape larval mussel was the most sensitive life stage to Cd. The significantly different metabolic profiles meant that Cd induced differential toxicological effects in three life stages of mussels. Basically, Cd caused osmotic stress in all the three life stages via different metabolic pathways. Cd exposure reduced the anaerobiosis in D-shape larval mussels and disturbed lipid metabolism in juvenile mussels, respectively. Compared with the D-shape larval and juvenile mussels, the adult mussels reduced energy consumption to deal with Cd stress.

  8. THE IMPORTANCE OF THE ERYTHROCYTES OSMOTIC FRAGILITY TEST PERFORMED IN CHILDREN WITH INDIRECT HYPERBILIRUB1NEMIA

    Directory of Open Access Journals (Sweden)

    Ivana Stojanović

    2005-07-01

    Full Text Available The osmotic fragility test of erythrocytes is useful in the diagnosis of different types of hereditary hemolytic anemias followed with hyperbilirubinemia. Hemolytic anemias, characterized by accelerated destruction of red blood cells, are usually the consequence of many metabolic abnormalities like cellular membrane defect, erythrocyte enzymes defect or hemoglobin abnormalities – hemoglobinopathies. The object of our study was to assess the relationship between osmotic fragility test of erythrocytes and severity of indirect hyperbilirubinemia in some inherited erythrocytes’ disorders. We did the osmotic fragility test of erythrocytes by using Dacie, s method with normal values of erythrocytes hemolysis between 0,48 to 0,34% NaCl (minimal to maximal hemolysis. In hereditary spherocytosis, fragility of erythrocytes was increased (min. at 0,50 % NaCl to max. 0,44 % NaCl . In the child with β- thalassemia and cycle cell anemia erythrocytes fragility was decreased (min . at 0,42 to max. 0,32 % NaCl, that is 0,40% min. of hemolysis and 0,34% max. hemolysis in the second case. In newborn infants with high levels of indirect bilirubin in serum as a cause of physiological jaundice, the osmotic fragility test was within a normal range. Our findings point out the diagnostic value of osmotic fragility test in assessing patients with the indirect hyperbilirubinemia. This simple and important diagnostic test can be performed in small laboratories.

  9. Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress.

    Science.gov (United States)

    Solís-Guzmán, María Gloria; Argüello-Astorga, Gerardo; López-Bucio, José; Ruiz-Herrera, León Francisco; López-Meza, Joel Edmundo; Sánchez-Calderón, Lenin; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2017-11-01

    Sucrose is synthesized from UDP-Glc and Fru-6-phosphate via the activity of sucrose-phosphate synthase (SPS) enzymes, which produce Suc-6-phosphate. Suc-6-phosphate is rapidly dephosphorylated by phosphatases to produce Suc and inorganic phosphate. Arabidopsis has four sps genes encoding SPS enzymes. Of these enzymes, AtSPS1F and AtSPS2F have been grouped with other dicotyledonous SPS enzymes, while AtSPS3F and AtSPS4F are included in groups with both dicotyledonous and monocotyledonous SPS enzymes. In this work, we generated Arabidopsis thaliana transformants containing the promoter region of each sps gene fused to gfp::uidA reporter genes. A detailed characterization of expression conferred by the sps promoters in organs and tissues was performed. We observed expression of AtSPS1F, AtSPS2F and AtSPS3F in the columella roots of the plants that support sucrose synthesis. Hence, these findings support the idea that sucrose synthesis occurs in the columella cells, and suggests that sucrose has a role in this tissue. In addition, the expression of AtSPS4F was identified in embryos and suggests its participation in this developmental stage. Quantitative transcriptional analysis of A. thaliana plants grown in media with different osmotic potential showed that AtSPS2F and AtSPS4F respond to osmotic stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mathematical modelling of the osmotic dehydration of cherry tomato (Lycopersicon esculentum var. cerasiforme

    Directory of Open Access Journals (Sweden)

    AZOUBEL Patricia Moreira

    2000-01-01

    Full Text Available Osmotic dehydration of cherry tomato as influenced by osmotic agent (sodium chloride and a mixed sodium chloride and sucrose solutions and solution concentration (10 and 25% w/w at room temperature (25°C was studied. Kinetics of water loss and solids uptake were determined by a two parameter model, based on Fick's second law and applied to spherical geometry. The water apparent diffusivity coefficients obtained ranged from 2.17x10-10 to 11.69x10-10 m²/s.

  11. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4.

    Science.gov (United States)

    Ruibal, Cecilia; Castro, Alexandra; Carballo, Valentina; Szabados, László; Vidal, Sabina

    2013-11-05

    Plant small heat shock proteins (sHsps) accumulate in response to various environmental stresses, including heat, drought, salt and oxidative stress. Numerous studies suggest a role for these proteins in stress tolerance by preventing stress-induced protein aggregation as well as by facilitating protein refolding by other chaperones. However, in vivo evidence for the involvement of sHsps in tolerance to different stress factors is still missing, mainly due to the lack of appropriate mutants in specific sHsp genes. In this study we characterized the function of a sHsp in abiotic stress tolerance in the moss Physcomitrella patens, a model for primitive land plants. Using suppression subtractive hybridization, we isolated an abscisic acid-upregulated gene from P. patens encoding a 16.4 kDa cytosolic class II sHsp. PpHsp16.4 was also induced by salicylic acid, dithiothreitol (DTT) and by exposure to various stimuli, including osmotic and salt stress, but not by oxidative stress-inducing compounds. Expression of the gene was maintained upon stress relief, suggesting a role for this protein in the recovery stage. PpHsp16.4 is encoded by two identical genes arranged in tandem in the genome. Targeted disruption of both genes resulted in the inability of plants to recover from heat, salt and osmotic stress. In vivo localization studies revealed that PpHsp16.4 localized in cytosolic granules in the vicinity of chloroplasts under non stress conditions, suggesting possible distinct roles for this protein under stress and optimal growth. We identified a member of the class II sHsp family that showed hormonal and abiotic stress gene regulation. Induction of the gene by DTT treatment suggests that damaged proteins may act as signals for the stress-induction of PpHsp16.4. The product of this gene was shown to localize in cytosolic granules near the chloroplasts, suggesting a role for the protein in association with these organelles. Our study provides the first direct genetic

  12. Activation of PKA/CREB Signaling is Involved in BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Hongyu Zhang

    2015-09-01

    Full Text Available Background/Aims: BMP9 is highly capable of promoting osteogenic differentiation of mesenchymal stem cells (MSCs although the molecular mechanism involved is largely unknown. Here, we explored the detail role of PKA/CREB signaling in BMP9-induced osteogenic differentiation. Methods: Activation status of PKA/CREB signaling is assessed by nonradioactive assay and Western blot. Using PKA inhibitors and a dominant negative protein of CREB (A-CREB, we investigated the effect of PKA/CREB signaling on BMP9-induced osteogenic differentiation. Results: We found that BMP9 promotes PKA activity and enhances CREB phosphorylation in MSCs. BMP9 is shown to down-regulate protein kinase A inhibitor γ (PKIγ expression. We demonstrated that PKA inhibitors suppress BMP9-induced early osteogenic marker alkaline phosphatase (ALP activity in MSCs as well as late osteogenic markers osteopontin (OPN, osteocalcin (OCN and matrix mineralization. We found that PKA inhibitor reduces BMP9-induced Runx2 activation and p38 phosphorylation in MSCs. Lastly, interference of CREB function by A-CREB decreased BMP9-induced osteogenic differentiation as well. Conclusion: Our results revealed that BMP9 may activate PKA/CREB signaling in MSCs through suppression of PKIγ expression. It is noteworthy that inhibition of PKA/CREB signaling may impair BMP9-induced osteogenic differentiation of MSCs, implying that activation of PKA/CREB signaling is required for BMP9 osteoinductive activity.

  13. Regulation of Aquaporin Z osmotic permeability in ABA tri-block copolymer

    Directory of Open Access Journals (Sweden)

    Wenyuan Xie

    2015-08-01

    Full Text Available Aquaporins are transmembrane water channel proteins present in biological plasma membranes that aid in biological water filtration processes by transporting water molecules through at high speeds, while selectively blocking out other kinds of solutes. Aquaporin Z incorporated biomimetic membranes are envisaged to overcome the problem of high pressure needed, and holds great potential for use in water purification processes, giving high flux while keeping energy consumption low. The functionality of aquaporin Z in terms of osmotic permeability might be regulated by factors such as pH, temperature, crosslinking and hydrophobic thickness of the reconstituted bilayers. Hence, we reconstituted aquaporin Z into vesicles that are made from a series of amphiphilic block copolymers PMOXA-PDMS-PMOXAs with various hydrophobic molecular weights. The osmotic permeability of aquaporin Z in these vesicles was determined through a stopped-flow spectroscopy. In addition, the temperature and pH value of the vesicle solutions were adjusted within wide ranges to investigate the regulation of osmotic permeability of aquaporin Z through external conditions. Our results show that aquaporin Z permeability was enhanced by hydrophobic mismatch. In addition, the water filtration mechanism of aquaporin Z is significantly affected by the concentration of H+ and OH- ions.

  14. Design and development of controlled porosity osmotic tablet of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Sadhana R Shahi

    2012-01-01

    Full Text Available The present work aims towards the design and development of extended release formulation of freely water-soluble drug diltiazem hydrochloride (DLTZ based on osmotic technology by using controlled porosity approach. DLTZ is an ideal candidate for a zero-order drug delivery system because it is freely water-soluble and has a short half-life (2-3 h. Sodium chloride (Osmogen was added to the core tablet to alter the solubility of DLTZ in an aqueous medium. Cellulose acetate (CA and sorbitol were used as semipermeable membrane and pore former, respectively. The effect of different formulation variables namely concentration of osmogen in the core tablet, % pore former, % weight gain, pH of the dissolution medium and agitation intensity on the in vitro release was studied. DLTZ release was directly proportional to % pore former and inversely proportional to % weight gain. The optimized formulation (F8 delivered DLTZ independent of pH and agitation intensity for 12 h at the upper level concentration of % pore former (25% w/w and middle level concentration of % weight gain (6% w/w. The comparative study of elementary osmotic pump (EOP and controlled porosity osmotic pump revealed that it superior than conventional EOP and also easier and cost effective to formulate.

  15. Autophagy contributes to 4-Amino-2-Trifluoromethyl-Phenyl Retinate-induced differentiation in human acute promyelocytic leukemia NB4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yue; Li, Ge; Wang, Ke; Xie, Ya-Ya; Zhou, Ren-Peng; Meng, Yao; Ding, Ran; Ge, Jin-Fang; Chen, Fei-Hu, E-mail: cfhchina@sohu.com

    2017-03-15

    As a classic differentiation agent, all-trans retinoic acid (ATRA) has been widely used in treatment of acute promyelocytic leukemia (APL). However, clinical application of ATRA has limitations. Our previous studies suggested that 4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, could induce differentiation of APL cells in vivo and in vitro. To explore the underlying mechanism of ATPR, the effect of ATPR on autophagy of APL cells was observed in the present study. The results showed that the differentiation effect of ATPR on APL cells was accompanied with autophagy induction and PML-RARα degradation via activating Notch1 signaling pathway. Moreover, inhibition of autophagy using 3-methyladenine (3-MA) or small interfering RNA (siRNA) that targets essential autophagy gene ATG5 abrogated the ATPR-induced cell differentiation. Furthermore, when pretreated with DAPT, a γ-secretase inhibitor, the Notch1 signaling pathway was blocked in APL cells, followed by the reduction of ATPR-induced autophagy and differentiation. Taken together, these results suggested that autophagy play an important role in ATPR-induced cell differentiation, which may provide a novel approach to cure APL patients. - Highlights: • ATPR induces autophagy in APL cell line NB4 cells. • Autophagy induction is essential for cell differentiation in NB4 cells. • Notch1 signaling is involved in ATPR-induced autophagy and differentiation in NB4 cells.

  16. Method of osmotic energy harvesting using responsive compounds and molecules

    KAUST Repository

    Hu, Xiao; Cai, Yufeng; Lai, Zhiping; Zhong, Yujiang

    2017-01-01

    The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli

  17. Modeling and computational simulation of the osmotic evaporation process

    Directory of Open Access Journals (Sweden)

    Freddy Forero Longas

    2016-09-01

    Conclusions: It was found that for the conditions studied the Knudsen diffusion model is most suitable to describe the transfer of water vapor through the hydrophobic membrane. Simulations developed adequately describe the process of osmotic evaporation, becoming a tool for faster economic development of this technology.

  18. Sustained Low-Dose Treatment with the Histone Deacetylase Inhibitor LBH589 Induces Terminal Differentiation of Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Jason E. Cain

    2013-01-01

    Full Text Available Histone deacetylase inhibitors (HDACi were identified nearly four decades ago based on their ability to induce cellular differentiation. However, the clinical development of these compounds as cancer therapies has focused on their capacity to induce apoptosis in hematologic and lymphoid malignancies, often in combination with conventional cytotoxic agents. In many cases, HDACi doses necessary to induce these effects result in significant toxicity. Since osteosarcoma cells express markers of terminal osteoblast differentiation in response to DNA methyltransferase inhibitors, we reasoned that the epigenetic reprogramming capacity of HDACi might be exploited for therapeutic benefit. Here, we show that continuous exposure of osteosarcoma cells to low concentrations of HDACi LBH589 (Panobinostat over a three-week period induces terminal osteoblast differentiation and irreversible senescence without inducing cell death. Remarkably, transcriptional profiling revealed that HDACi therapy initiated gene signatures characteristic of chondrocyte and adipocyte lineages in addition to marked upregulation of mature osteoblast markers. In a mouse xenograft model, continuous low dose treatment with LBH589 induced a sustained cytostatic response accompanied by induction of mature osteoblast gene expression. These data suggest that the remarkable capacity of osteosarcoma cells to differentiate in response to HDACi therapy could be exploited for therapeutic benefit without inducing systemic toxicity.

  19. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    Science.gov (United States)

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  20. Optimization of the Energy Output of Osmotic Power Plants

    Directory of Open Access Journals (Sweden)

    Florian Dinger

    2013-01-01

    Full Text Available On the way to a completely renewable energy supply, additional alternatives to hydroelectric, wind, and solar power have to be investigated. Osmotic power is such an alternative with a theoretical global annual potential of up to 14400 TWh (70% of the global electricity consumption of 2008 per year. It utilizes the phenomenon that upon the mixing of fresh water and oceanic salt water (e.g., at a river mouth, around 2.88 MJ of energy per 1 m3 of fresh water is released. Here, we describe a new approach to derive operational parameter settings for osmotic power plants using a pressure exchanger for optimal performance, either with respect to maximum generated power or maximum extracted energy. Up to now, only power optimization is discussed in the literature, but when considering the fresh water supply as a limiting factor, the energy optimization appears as the challenging task.

  1. Water and sucrose diffusion coefficients during osmotic dehydration of sapodilla (Achras zapota L.

    Directory of Open Access Journals (Sweden)

    Lívia Muritiba Pereira de Lima Coimbra

    Full Text Available ABSTRACT: Sapodilla is an original fruit from Central America that is well adapted in all regions of the Brazilian territory. Despite its wide adaptation and acceptance in fruit markets, it is rare to find it outside tropical regions, partially because of its high perishability. The development of alternative, simple, and inexpensive methods to extend the conservation and marketing of these fruits is important, and osmotic dehydration is one of these methods. The main objective of this study was to determine the water and sucrose diffusion coefficients during the osmotic dehydration of sapodilla. This process was performed in short duration (up to 6h to evaluate detailed information on water loss and solids gain kinetics at the beginning of the process and in long duration (up to 60h to determine the equilibrium concentrations in sapodilla. The immersion time had greater influence on the water and sucrose diffusion coefficients (P<0.05; the maximum water loss (WL and solute gain (SG occurred in the osmotic solution at the highest concentration. Water and sucrose diffusion coefficients ranged from 0.00 x 10-10 m2/s to 1.858 x 10-10 m2/s, and from 0.00 x 10-10to 2.304 x 10-10 m2/s, respectively. Thus, understanding the WL and SG kinetics during the process of sapodilla osmotic dehydration could significantly contribute to new alternatives of preservation and commercialization of this fruit.

  2. MORPHOMETRIC PARAMETERS AND MICRORELIEF OF THE LUMBRICUS CELOMOCYTES IN THE CONDITIONS OF THE OSMOTIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Andrey Andreevich Prisnyi

    2017-10-01

    Full Text Available Background: Study the morphometric parameters and microrelief of the coelomocytes membrane of the Lumbricus representatives in normal and under osmotic pressure. Materials and methods: In the experiments, representatives of three species belonging to the genus Lumbricus were used. To conduct each series of experiments a coelomic liquid of 15 representatives of each species was used. From the circulation system of each individual examined, at least 250 cells were processed. The study of morphometric parameters of coelomocytes was carried out in isotonic conditions, and also with the use of osmotic tests in vitro. The features of the surface topography of coelomocytes were study using the “Integra Vita Probe Nanaboratorium” (NT-MDT, Russia. The analysis of amplitude and functional average statistical parameters of membrane roughness is carried out. The results of the research were processed using statistics methods using the Microsoft Excel 7.0 analysis package. Results: The Lumbricus representatives of revealed differences in the responses of amoebocytes and eleocytes to the effect of osmotic stress. Under the conditions of osmotic pressure, several morphologically different forms were found among the cells of each type. This indicates the potential ability of coelomocytes to spread out on the substrate for any type of osmotic pressure. The change in the topography of the cell membrane of coelomocytes under the hypoosmotic pressure is characterized by a smoothing of the microrelief structures with a decrease in the size of the microvysings and microinvaginations. Conclusion: The microrelief of the coelomocytes membrane reflects the features of their functional status changing under the influence of environmental factors.

  3. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    Science.gov (United States)

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  4. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    Science.gov (United States)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  5. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    International Nuclear Information System (INIS)

    Dey, Nandini; Howell, Brian W.; De, Pradip K.; Durden, Donald L.

    2005-01-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation

  6. Hydro-osmotic Instabilities in Active Membrane Tubes

    Science.gov (United States)

    Al-Izzi, Sami C.; Rowlands, George; Sens, Pierre; Turner, Matthew S.

    2018-03-01

    We study a membrane tube with unidirectional ion pumps driving an osmotic pressure difference. A pressure-driven peristaltic instability is identified, qualitatively distinct from similar tension-driven Rayleigh-type instabilities on membrane tubes. We discuss how this instability could be related to the function and biogenesis of membrane bound organelles, in particular, the contractile vacuole complex. The unusually long natural wavelength of this instability is in agreement with that observed in cells.

  7. Root water extraction under combined water and osmotic stress

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Dam, van J.C.; Metselaar, K.

    2009-01-01

    Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The

  8. Clozapine modifies the differentiation program of human adipocytes inducing browning.

    Science.gov (United States)

    Kristóf, E; Doan-Xuan, Q-M; Sárvári, A K; Klusóczki, Á; Fischer-Posovszky, P; Wabitsch, M; Bacso, Z; Bai, P; Balajthy, Z; Fésüs, L

    2016-11-29

    Administration of second-generation antipsychotic drugs (SGAs) often leads to weight gain and consequent cardio-metabolic side effects. We observed that clozapine but not six other antipsychotic drugs reprogrammed the gene expression pattern of differentiating human adipocytes ex vivo, leading to an elevated expression of the browning marker gene UCP1, more and smaller lipid droplets and more mitochondrial DNA than in the untreated white adipocytes. Laser scanning cytometry showed that up to 40% of the differentiating single primary and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes had the characteristic morphological features of browning cells. Furthermore, clozapine significantly upregulated ELOVL3, CIDEA, CYC1, PGC1A and TBX1 genes but not ZIC1 suggesting induction of the beige-like and not the classical brown phenotype. When we tested whether browning induced by clozapine can be explained by its known pharmacological effect of antagonizing serotonin (5HT) receptors, it was found that browning cells expressed 5HT receptors 2A, 1D, 7 and the upregulation of browning markers was diminished in the presence of exogenous 5HT. Undifferentiated progenitors or completely differentiated beige or white adipocytes did not respond to clozapine administration. The clozapine-induced beige cells displayed increased basal and oligomycin-inhibited (proton leak) oxygen consumption, but these cells showed a lower response to cAMP stimulus as compared with control beige adipocytes indicating that they are less capable to respond to natural thermogenic anti-obesity cues. Our data altogether suggest that novel pharmacological stimulation of these masked beige adipocytes can be a future therapeutic target for the treatment of SGA-induced weight gain.

  9. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  10. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    International Nuclear Information System (INIS)

    Li Tie; Lu Luo

    2007-01-01

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFκB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells

  11. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  12. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih; Ingram, Patrick; Lou, Xia; Yoon, Euisik

    2013-01-01

    at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations

  13. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence.

    Science.gov (United States)

    Yang, Fan; Yang, Lei; Li, Yuan; Yan, Gege; Feng, Chao; Liu, Tianyi; Gong, Rui; Yuan, Ye; Wang, Ning; Idiiatullina, Elina; Bikkuzin, Timur; Pavlov, Valentin; Li, Yang; Dong, Chaorun; Wang, Dawei; Cao, Yang; Han, Zhenbo; Zhang, Lai; Huang, Qi; Ding, Fengzhi; Bi, Zhengang; Cai, Benzhi

    2017-10-01

    Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Novel insights into E. coli's hexuronate metabolism: KduI facilitates the conversion of galacturonate and glucuronate under osmotic stress conditions.

    Directory of Open Access Journals (Sweden)

    Monique Rothe

    Full Text Available Using a gnotobiotic mouse model, we previously observed the upregulation of 2-deoxy-D-gluconate 3-dehydrogenase (KduD in intestinal E. coli of mice fed a lactose-rich diet and the downregulation of this enzyme and of 5-keto 4-deoxyuronate isomerase (KduI on a casein-rich diet. The present study aimed to define the role of the so far poorly characterized E. coli proteins KduD and KduI in vitro. Galacturonate and glucuronate induced kduD and kduI gene expression 3-fold and 7 to 11-fold, respectively, under aerobic conditions as well as 9 to 20-fold and 19 to 54-fold, respectively, under anaerobic conditions. KduI facilitated the breakdown of these hexuronates. In E. coli, galacturonate and glucuronate are normally degraded by UxaABC and UxuAB. However, osmotic stress represses the expression of the corresponding genes in an OxyR-dependent manner. When grown in the presence of galacturonate or glucuronate, kduID-deficient E. coli had a 30% to 80% lower maximal cell density and 1.5 to 2-fold longer doubling times under osmotic stress conditions than wild type E. coli. Growth on lactose promoted the intracellular formation of hexuronates, which possibly explain the induction of KduD on a lactose-rich diet. These results indicate a novel function of KduI and KduD in E. coli and demonstrate the crucial influence of osmotic stress on the gene expression of hexuronate degrading enzymes.

  15. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    Science.gov (United States)

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  16. Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: Its evaluation using curcumin.

    Science.gov (United States)

    Varma, Sandeep R; Sivaprakasam, Thiyagarajan O; Mishra, Abheepsa; Prabhu, Sunil; M, Rafiq; P, Rangesh

    2017-10-15

    Psoriasis is considered to be a systemic disease of immune dysfunction. It is still unclear what triggers the inflammatory cascade associated with psoriasis but recent evidences suggest the vital role of IL-23/IL-17A cytokine axis in etiology of psoriasis. Several studies have been conducted in psoriatic-like animal models but ethical issues and complexity surrounding it halts the screening of new anti-psoriatic drug candidates. Hence, in this study, we developed a new in-vitro model for psoriasis using imiquimod (IMQ) induced differentiated HaCaT cells which could be used for screening of new anti-psoriatic drug candidates. The differentiated HaCaT cells were treated with IMQ (100μM) to induce psoriatic like inflammation and its effect was investigated using a natural anti-psoriatic compound, curcumin. The proliferation of psoriatic-like cells was inhibited by curcumin at 25 and 50µM concentrations. The psoriatic-like cells decreased in number with increase in apoptotic and dead cells upon curcumin treatment. Curcumin inhibited the proliferation of IMQ-induced differentiated HaCaT cells (Psoriatic-like cells) by down-regulation of pro-inflammatory cytokines, interleukin-17, tumor necrosis factor-α, interferon-γ, and interleukin-6. Apart from this, curcumin significantly enhanced the skin-barrier function by up-regulation of involucrin (iNV) and filaggrin (FLG), the regulators of epidermal skin barrier. The IMQ-induced differentiated HaCaT in vitro model recapitulated some aspects of the psoriasis pathogenesis similar to murine model. Henceforth, we conclude that this model may be used for rapid screening of anti-psoriatic drug candidates and warrant further mechanistic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes.

    Directory of Open Access Journals (Sweden)

    Jonathan G Boucher

    Full Text Available Bisphenol S (BPS is increasingly used as a replacement plasticizer for bisphenol A (BPA but its effects on human health have not been thoroughly examined. Recent evidence indicates that both BPA and BPS induce adipogenesis, although the mechanisms leading to this effect are unclear. In an effort to identify common and distinct mechanisms of action in inducing adipogenesis, transcriptional profiles of differentiating human preadipocytes exposed to BPA or BPS were compared. Human subcutaneous primary preadipocytes were differentiated in the presence of either 25 μM BPA or BPS for 2 and 4 days. Poly-A RNA-sequencing was used to identify differentially expressed genes (DEGs. Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. BPA-treatment resulted in 472 and 176 DEGs on days 2 and 4, respectively, affecting pathways such as liver X receptor (LXR/retinoid X receptor (RXR activation, hepatic fibrosis and cholestasis. BPS-treatment resulted in 195 and 51 DEGs on days 2 and 4, respectively, revealing enrichment of genes associated with adipogenesis and lipid metabolism including the adipogenesis pathway and cholesterol biosynthesis. Interestingly, the transcription repressor N-CoR was identified as a negative upstream regulator in both BPA- and BPS-treated cells. This study presents the first comparison of BPA- and BPS-induced transcriptional profiles in human differentiating preadipocytes. While we previously showed that BPA and BPS both induce adipogenesis, the results from this study show that BPS affects adipose specific transcriptional changes earlier than BPA, and alters the expression of genes specifically related to adipogenesis and lipid metabolism. The findings provide insight into potential BPS and BPA-mediated mechanisms of action in inducing adipogenesis in human primary preadipocytes.

  18. Differentiation-inducing effects of small fruit juices on HL-60 leukemic cells.

    Science.gov (United States)

    Yoshizawa, Y; Kawaii, S; Urashima, M; Fukase, T; Sato, T; Murofushi, N; Nishimura, H

    2000-08-01

    Epidemiological studies indicate that high intakes of fruits and vegetables are associated with a reduced risk of cancer, and several plant-derived drugs have been developed in medical oncology. Since only a small part of the flora has been tested for any kind of bioactivity, we chose small fruits as sources of differentiation-inducing activity against HL-60 leukemic cells. We have prepared juices from various small fruits that grow mainly in the northern part of Japan. Screening of 43 samples indicated that juices of Actinidia polygama Maxim., Rosa rugosa Thunb., Vaccinium smallii A. Gray, and Sorbus sambucifolia Roem. strongly induced differentiation of HL-60 cells to monocyte/macrophage characteristics in a concentration-dependent manner as indicated by histochemical and biochemical examinations.

  19. Augmentation of peristaltic microflows through electro-osmotic mechanisms

    International Nuclear Information System (INIS)

    Chakraborty, Suman

    2006-01-01

    The present work aims to theoretically establish that the employment of an axial electric field can substantially augment the rate of microfluidic transport occurring in peristaltic microtubes. For theoretical analysis, shape evolution of the tube is taken to be arbitrary, except for the fact that the characteristic wavelength is assumed to be significantly greater than the average radius of cross section. First, expressions for the velocity profile within the tube are derived and are subsequently utilized to obtain variations in the net flow rate across the same, as a function of the pertinent system parameters. Subsequently, the modes of interaction between the electro-osmotic and peristaltic mechanisms are established through the variations in the time-averaged flow rates for zero pressure rise and the pressure rise for zero time-averaged flow rates, as expressed in terms of the occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. From the simulation predictions, it is suggested that a judicious combination of peristalsis and an axial electrokinetic body force can drastically enhance the time-averaged flow rate, provided that the occlusion number is relatively small

  20. Alleviation of osmotic stress of water and salt in germination and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... ening, osmoconditioning, osmohardening, and hormonal priming have ... germination, emergence and plant growth of wheat (Das and Choudhury .... In the present study, a significant three way interaction. (osmotic agents ...

  1. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  2. Simulating Osmotic Equilibria: A New Tool for Calculating Activity Coefficients in Concentrated Aqueous Salt Solutions.

    Science.gov (United States)

    Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François

    2017-10-19

    Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.

  3. Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology.

    Science.gov (United States)

    Oladejo, Ayobami Olayemi; Ma, Haile

    2016-08-01

    Sweet potato is a highly nutritious tuber crop that is rich in β-carotene. Osmotic dehydration is a pretreatment method for drying of fruit and vegetables. Recently, ultrasound technology has been applied in food processing because of its numerous advantages which include time saving, little damage to the quality of the food. Thus, there is need to investigate and optimise the process parameters [frequency (20-50 kHz), time (10-30 min) and sucrose concentration (20-60% w/v)] for ultrasound-assisted osmotic dehydration of sweet potato using response surface methodology. The optimised values obtained were frequency of 33.93 kHz, time of 30 min and sucrose concentration of 35.69% (w/v) to give predicted values of 21.62, 4.40 and 17.23% for water loss, solid gain and weight reduction, respectively. The water loss and weight reduction increased when the ultrasound frequency increased from 20 to 35 kHz and then decreased as the frequency increased from 35 to 50 kHz. The results from this work show that low ultrasound frequency favours the osmotic dehydration of sweet potato and also reduces the use of raw material (sucrose) needed for the osmotic dehydration of sweet potato. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Comparison of the compressive yield response of aggregated suspensions: Pressure filtration, centrifugation, and osmotic consolidation

    International Nuclear Information System (INIS)

    Miller, K.T.; Melant, R.M.; Zukoski, C.F.

    1996-01-01

    The compressive rheological responses of suspensions containing flocculated kaolin, alumina (average particle sizes of 0.2 and 0.5 microm), and hydrous zirconia (average particle sizes of 8, 57, and 139 nm) particles have been measured using three different techniques: pressure filtration, volume fraction profile during centrifugation, and sediment height during centrifugation at multiple spinning speeds. While the volume fraction profile technique appears to be experimentally most robust, equivalent responses are found using the different techniques, indicating that the compressive yield stress is a material property of a given suspension. The compressive yield stress of each suspension increases rapidly with volume fraction but cannot be generally described using simple power-law or exponential fits. The compressive yield stress also increases with the inverse square of particle size. The packing behavior of the suspensions undergoing osmotic consolidation is compared with the mechanical compressive yield response. Some suspensions exhibited the same packing behavior as in the mechanical techniques, while others consistently packed to higher densities during osmotic consolidation. Although equivalent osmotic and mechanical loads do not always result in the same volume fractions, the similar increases in volume fraction with applied driving force suggest that both the osmotic and mechanical techniques are controlled by the force needed to rearrange the particle network

  5. Colloid osmotic pressure during and after surgical interventions in adult and geriatric dogs

    Directory of Open Access Journals (Sweden)

    Mario A.F. Rego

    Full Text Available ABSTRACT: The objective this study is to evaluate colloid osmotic pressure (COP fluctuations in adult and senile dogs during surgical interventions. Thirty-six healthy dogs to surgical interventions, distributed in two groups, A and B, according to their age, and were all subjected to the same anesthetic protocol. Values of albumin, total plasmatic protein and COP were evaluated from samples collected before pre-anesthetic medication, fifteen minutes after pre-anesthetic medication, and shortly after the end of the intervention. Results were tested using t-test to compare among groups and ANOVA for repeated measures followed by Tukey’s test to compare different moments within the same group. Statistical significance was set at p<0.05. In both groups, significant decreases were observed in colloid osmotic pressure, as well as albumin and total proteins (p<0.001. Despite slightly lower COP values for the group of adult animals, this difference was not significant as there was a high individual variation within groups. The results therefore indicate no difference in colloid osmotic pressure values or fluctuation patterns among adult and senile dogs (p=0.124. The observed results indicate that colloid osmotic pressure decreases significantly during surgical procedures, due to hypotension caused by the anesthetic drugs and to hemodilution caused by the fluid administration but there is no difference between groups. However, in both adult and senile dogs, these variables recover gradually after the animals awaken, through increased urine production and recovery of vascular tonus, indicating the successful reestablishment of homeostasis.

  6. Intercellular Communication between Keratinocytes and Fibroblasts Induces Local Osteoclast Differentiation: a Mechanism Underlying Cholesteatoma-Induced Bone Destruction.

    Science.gov (United States)

    Iwamoto, Yoriko; Nishikawa, Keizo; Imai, Ryusuke; Furuya, Masayuki; Uenaka, Maki; Ohta, Yumi; Morihana, Tetsuo; Itoi-Ochi, Saori; Penninger, Josef M; Katayama, Ichiro; Inohara, Hidenori; Ishii, Masaru

    2016-06-01

    Bone homeostasis is maintained by a balance in activity between bone-resorbing osteoclasts and bone-forming osteoblasts. Shifting the balance toward bone resorption causes osteolytic bone diseases such as rheumatoid arthritis and periodontitis. Osteoclast differentiation is regulated by receptor activator of nuclear factor κB ligand (RANKL), which, under some pathological conditions, is produced by T and B lymphocytes and synoviocytes. However, the mechanism underlying bone destruction in other diseases is little understood. Bone destruction caused by cholesteatoma, an epidermal cyst in the middle ear resulting from hyperproliferation of keratinizing squamous epithelium, can lead to lethal complications. In this study, we succeeded in generating a model for cholesteatoma, epidermal cyst-like tissue, which has the potential for inducing osteoclastogenesis in mice. Furthermore, an in vitro coculture system composed of keratinocytes, fibroblasts, and osteoclast precursors was used to demonstrate that keratinocytes stimulate osteoclast differentiation through the induction of RANKL in fibroblasts. Thus, this study demonstrates that intercellular communication between keratinocytes and fibroblasts is involved in the differentiation and function of osteoclasts, which may provide the molecular basis of a new therapeutic strategy for cholesteatoma-induced bone destruction. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Cross tolerance of osmotically and ionically adapted cell lines of rice ...

    African Journals Online (AJOL)

    saad

    2012-01-10

    Jan 10, 2012 ... The phenomenon of cross tolerance in osmotically and ionically adapted rice .... the mean values of 5 replicates ± standard error. variance showed .... Education Commission of Pakistan and Pakistan Science. Foundation.

  8. Compression and reswelling of microgel particles after an osmotic shock

    NARCIS (Netherlands)

    Sleeboom, J.F.; Voudouris, P.; Punter, M.T.J.J.M.; Aangenendt, F.J.; Florea, D.; van der Schoot, P.P.A.M.; Wyss, H.M.

    2016-01-01

    We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a non-monotonic response: After an initial rapid compression the particle slowly reswells to approximately its original size. Using a simple

  9. Maintenance and Neuronal Differentiation of Chicken Induced Pluripotent Stem-Like Cells

    OpenAIRE

    Dai, Rui; Rossello, Ricardo; Chen, Chun-chun; Kessler, Joeran; Davison, Ian; Hochgeschwender, Ute; Jarvis, Erich D.

    2014-01-01

    Pluripotent stem cells have the potential to become any cell in the adult body, including neurons and glia. Avian stem cells could be used to study questions, like vocal learning, that would be difficult to examine with traditional mouse models. Induced pluripotent stem cells (iPSCs) are differentiated cells that have been reprogrammed to a pluripotent stem cell state, usually using inducing genes or other molecules. We recently succeeded in generating avian iPSC-like cells using mammalian ge...

  10. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    Science.gov (United States)

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  11. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    Science.gov (United States)

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  12. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  13. Tremor pattern differentiates drug-induced resting tremor from Parkinson disease.

    Science.gov (United States)

    Nisticò, R; Fratto, A; Vescio, B; Arabia, G; Sciacca, G; Morelli, M; Labate, A; Salsone, M; Novellino, F; Nicoletti, A; Petralia, A; Gambardella, A; Zappia, M; Quattrone, A

    2016-04-01

    DAT-SPECT, is a well-established procedure for distinguishing drug-induced parkinsonism from Parkinson's disease (PD). We investigated the usefulness of blink reflex recovery cycle (BRrc) and of electromyographic parameters of resting tremor for the differentiation of patients with drug-induced parkinsonism with resting tremor (rDIP) from those with resting tremor due to PD. This was a cross-sectional study. In 16 patients with rDIP and 18 patients with PD we analysed electrophysiological parameters (amplitude, duration, burst and pattern) of resting tremor. BRrc at interstimulus intervals (ISI) of 100, 150, 200, 300, 400, 500 and 750 msec was also analysed in patients with rDIP, patients with PD and healthy controls. All patients and controls underwent DAT-SPECT. Rest tremor amplitude was higher in PD patients than in rDIP patients (p tremor showed a synchronous pattern in all patients with rDIP, whereas it had an alternating pattern in all PD patients (p tremor can be considered a useful investigation for differentiating rDIP from PD. Copyright © 2016. Published by Elsevier Ltd.

  14. Ion and solvent Transport in Polypyrrole: Experimental Test of Osmotic Model

    DEFF Research Database (Denmark)

    Velmurugu, Yogambigai; Skaarup, Steen

    2005-01-01

    Ion and solvent transport in the conjugated polymer actuator material, polypyrrole, doped with the immobile anion dodecyl benzene sulphonate, has been investigated by simultaneous cyclic voltammetry and Electrochemical Quartz Crystal Microbalance measurements. The purpose was to elucidate the pre...... from almost pure cation transport to ca. equal amount of anion transport; exchanging Br- for Cl- ions has only negligible effect at lower concentrations at equal osmotic pressures. Ca. 4 H2O molecules are tightly bound to each Na+ ion at concentrations ... the precise nature of the mobile species during redox cycling, and to seek confirmation for the osmotic mechanism of actuation. Three testable aspects of the model were confirmed: The number of inserted H2O molecules decreases with electrolyte concentration; at the same time the mechanism gradually changes...

  15. Osmotic membrane bioreactor for phenol biodegradation under continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, Prashant; Loh, Kai-Chee, E-mail: chelohkc@nus.edu.sg

    2016-03-15

    Highlights: • Osmotic membrane bioreactor was used for phenol biodegradation in continuous mode. • Extractant impregnated membranes were used to alleviate substrate inhibition. • Phenol removal was achieved through both biodegradation and membrane rejection. • Phenol concentrations up to 2500 mg/L were treated at HRT varying in 2.8–14 h. • A biofilm removal strategy was formulated to improve bioreactor sustainability. - Abstract: Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600–2000 mg/L, and also at spiked concentrations of 2500 mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5–6 days at removal rates varying between 2000 and 5500 mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2–7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4 h. A washing cycle, comprising 1 h osmotic backwashing using 0.5 M NaCl and 2 h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500 cm{sup −1}, 1450–1450 cm{sup −1} and 1200–1000 cm{sup −1}, indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.

  16. Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte.

    Science.gov (United States)

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2016-06-01

    It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic force microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate-dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young's modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young's modulus. Moreover, using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

  17. Field effect control of electro-osmotic flow in microfluidic networks

    NARCIS (Netherlands)

    van der Wouden, E.J.

    2006-01-01

    This thesis describes the development of a Field Effect Flow Control (FEFC) system for the control of Electro Osmotic Flow (EOF) in microfluidic networks. For this several aspects of FEFC have been reviewed and a process to fabricate microfluidic channels with integrated electrodes has been

  18. Interleukin-24 induces neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis by promoting ROS production.

    Science.gov (United States)

    Li, Yuan; Zhang, Hongwei; Zhu, Xiaoyu; Feng, Dongchuan; Gong, Jinchao; Han, Tao

    2013-11-01

    Neuroblastoma is among the most aggressive tumors that occur in childhood and infancy. The clinical prognosis of children with advanced-stage neuroblastoma is still poor. Interleukin-24 (IL-24) is emerging as a new cytokine involved in tumor cellular proliferation, differentiation, and apoptosis and has been widely studied as a tumor inhibitor. However, little is known about this cytokine's role in neuroblastoma. In this study, we investigated the possible effects of IL-24 on inducing neuroblastoma cell differentiation, growth inhibition, and apoptosis in vitro. Our data show that IL-24 promotes neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis. Furthermore, we found that the differentiation- and apoptosis-inducing action of IL-24 depends on the accumulation of reactive oxygen species (ROS). These results suggest that IL-24 can induce neuroblastoma cell differentiation and apoptosis and may be a potential therapeutic agent for neuroblastoma.

  19. Osmotic and activity coefficients of triorganophosphates in n-octane

    International Nuclear Information System (INIS)

    Sagert, N.H.; Lau, D.W.P.

    1982-01-01

    Vapour pressure osmometry was used to measure osmotic coefficients for tributylphosphate (TBP), tricresylphosphate (TCP), and triethylhexylphosphate (THEP) in n-octane at 30, 40, 50, and 60 0 C and at molalities up to 0.3 mol/kg. Activity coefficients and excess thermodynamic properties (unsymmetrical definition) were calculated from these osmotic coefficients. At 30 0 C, the excess Gibbs free energies for 0.1 mol of solute in 1.0 kg n-octane were -42 J, -66 J, and -20 J for TBP, TCP, and TEHP, respectively. The more ideal behavior of the TEHP-octane system is attributed to the increasing importance of hydrocarbon-hydrocarbon interactions as the chain length is increased. The excess enthalpies for 0.1 mol of solute in 1.0 kg of solvent were -100 J, and -300 J, and -150 J for TBP, TCP, and TEHP, respectively. Thus, association of these solutes arises primarily from entropic effects. Our data could generally be accommodated adequately by postulating association of monomers into dimmers. The exception was TCP at lower temperatures, where more complex models were required

  20. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    Science.gov (United States)

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  1. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2

    Directory of Open Access Journals (Sweden)

    Alberto eScoma

    2016-05-01

    Full Text Available Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea contaminated environments is negligible. Recent laboratory evidences highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs. In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain A. borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively, under atmospheric or increased HP (0.1 and 10MPa. Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1MPa in hyperosmosis-acclimated cells and at 10MPa under isosmotic conditions, supporting the hypothesis that ectoine synthesis may be primarily triggered by HP rather than osmotic stress. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-day incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in

  2. Osmotic properties of binary mixtures 1-butyl-1-methylpyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride with water: Effect of aggregation of ions

    International Nuclear Information System (INIS)

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2015-01-01

    Graphical abstract: Osmotic properties of binary mixture of two ionic liquids (ILs): 1-butyl-1-methyl pyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride with water was reported by using vapour pressure osmometry (VPO) method. - Highlights: • Osmotic properties of binary mixture of ionic liquids (ILs) with water by using vapour pressure osmometry (VPO) method. • The experimental osmotic coefficients were well correlated by Archer extension of Pitzer model. • From the experimental osmotic coefficient data the critical micellar concentration (cmc) of the ILs in water was estimated. • Mean molar activity coefficient and the excess Gibbs free energy was determine for the (ILs + water) binary mixture. - Abstract: In this work, the osmotic properties of the binary mixture of ionic liquids (ILs) and water were studied by using vapour pressure osmometry (VPO) method. We have used two ILs: 1-butyl-1-methyl pyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride. The aqueous solution of NaCl was used as the reference solution to precisely measure the osmotic coefficients of the above systems. We have calculated the activity of water in the above systems and the change of vapour pressure of water due to the addition of ILs in water. The experimental osmotic coefficients were correlated by the Archer extension of Pitzer model. The parameters of this Archer extension of Pitzer model were found from this data fitting. From the experimental osmotic coefficient value we have estimated the critical micellar concentration (cmc) of ILs in water. The experimental values of osmotic coefficient in the above systems were compared with the literature and the reason of variation was explained, in terms of the aggregation of ILs in water

  3. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering

    DEFF Research Database (Denmark)

    Starokozhko, Viktoriia; Hemmingsen, Mette; Larsen, Layla

    2018-01-01

    Hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) under flow conditions in a 3D scaffold is expected to be a major step forward for construction of bioartificial livers. The aims of this study were to induce hepatic differentiation of hiPSCs under perfusion conditions...... and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis...... in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted...

  4. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    Science.gov (United States)

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  5. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency

    Directory of Open Access Journals (Sweden)

    Yufen Xie

    2014-11-01

    Full Text Available Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC, elevated O2 and mitochondrial function are necessary to placental lineages at the maternal–placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. In an implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor 4 (FGF4 enabled the highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2 initiated the most TSC differentiation after 24 h despite exposure to FGF4. However, hypoxic stress supported differentiation poorly after 4–7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential and maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos, and high pyruvate kinase M2 (glycolysis despite FGF4 removal. Inhibiting OxPhos inhibited optimum differentiation at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2 > 0.5–2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation.

  6. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    International Nuclear Information System (INIS)

    Goodale, Britton C.; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn R.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert L.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  7. Protein-polysaccharide interactions: The determination of the osmotic second virial coefficients in aqueous solutions of ß-lactoglobulin and dextran

    NARCIS (Netherlands)

    Schaink, H.M.; Smit, J.A.M.

    2007-01-01

    Solutions containing dextran and solutions containing mixtures of dextran +ß-lactoglobulin are studied by membrane osmometry. The low concentration range of these solutions is considered. From the measured osmotic pressures the virial coefficients are obtained. These are analyzed using the osmotic

  8. Osmotic pressure of ring polymer solutions : A Monte Carlo study

    NARCIS (Netherlands)

    Flikkema, Edwin; Brinke, Gerrit ten

    2000-01-01

    Using the wall theorem, the osmotic pressure of ring polymers in solution has been determined using an off-lattice topology conserving Monte Carlo algorithm. The ring polymers are modeled as freely-jointed chains with point-like beads, i.e., under conditions corresponding to θ-conditions for the

  9. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study

    Directory of Open Access Journals (Sweden)

    Hermanova Marketa

    2010-05-01

    Full Text Available Abstract Background We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2 and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA and inhibitors of lipoxygenases (LOX and cyclooxygenases (COX. This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Methods Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Results Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2 or SH-SY5Y after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX in combination with ATRA in both cell lines. Conclusions Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  10. Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI, is approved for the second-line treatment of chronic myeloid leukemia (CML in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA. We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.

  11. Proteomics unveil corticoid-induced S100A11 shuttling in keratinocyte differentiation

    International Nuclear Information System (INIS)

    Dezitter, Xavier; Hammoudi, Fatma; Belverge, Nicolas; Deloulme, Jean-Christophe; Drobecq, Herve; Masselot, Bernadette; Formstecher, Pierre; Mendy, Denise; Idziorek, Thierry

    2007-01-01

    Unlike classical protein extraction techniques, proteomic mapping using a selective subcellular extraction kit revealed S100A11 as a new member of the S100 protein family modulated by glucocorticoids in keratinocytes. Glucocorticoids (GC)-induced S100A11 redistribution in the 'organelles and membranes' compartment. Microscopic examination indicated that glucocorticoids specifically routed cytoplasmic S100A11 toward perinuclear compartment. Calcium, a key component of skin terminal differentiation, directed S100A11 to the plasma membrane as previously reported. When calcium was added to glucocorticoids, minor change was observed at the proteomic level while confocal microscopy revealed a rapid and dramatic translocation of S100A11 toward plasma membrane. This effect was accompanied by strong nuclear condensation, loss of mitochondrial potential and DNA content, and increased high molecular weight S100A11 immunoreactivity, suggesting corticoids accelerate calcium-induced terminal differentiation. Finally, our results suggest GC-induced S100A11 relocalization could be a key step in both keratinocyte homeostasis and glucocorticoids side effects in human epidermis

  12. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    2012-01-01

    The osmotic pressure of the cutaneous surface fluid (CSF) in vivo was measured for investigating whether evaporative water loss (EWL) derives from water diffusing through the skin or fluid secreted by exocrine subepidermal mucous glands. EWL was stimulated by subjecting R. esculenta to 30–34 °C....../Kg, n = 16. Osmolality of lymph was, 239 ± 4 mosmol/Kg, n = 8. Thus the flow of water across the epidermis would be in the direction from CSF to the interstitial fluid driven by the above osmotic gradients and/or coupled to the inward active Na+ flux via the slightly hyperosmotic paracellular...... compartment [EH Larsen et al. (2009) Acta Physiologica 195: 171–186]. It is concluded that the source of EWL of the frog on land is the fluid secreted by the mucous glands and not water diffusing through the skin. The study supports the hypothesis [EH Larsen (2011) Acta Physiologica 202: 435–464] that volume...

  13. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation.

    Science.gov (United States)

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N; Vainchenker, William; Solary, Eric; Giraudier, Stéphane

    2014-09-25

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. © 2014 by The American Society of Hematology.

  15. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production

    Directory of Open Access Journals (Sweden)

    Adel O. Sharif

    2014-08-01

    Full Text Available This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  16. Theoretical and experimental investigations of the potential of osmotic energy for power production.

    Science.gov (United States)

    Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter

    2014-08-08

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  17. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Morizane, Ryuji [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Monkawa, Toshiaki, E-mail: monkawa@sc.itc.keio.ac.jp [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Itoh, Hiroshi [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan)

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  18. Differentiation-inducing factor-1 and -2 function also as modulators for Dictyostelium chemotaxis.

    Directory of Open Access Journals (Sweden)

    Hidekazu Kuwayama

    Full Text Available BACKGROUND: In the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2 were originally identified as the factors (chlorinated alkylphenones that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions. METHODOLOGY/PRINCIPAL FINDINGS: To further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase and a decrease in the intracellular cGMP concentration ([cGMP](i. DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase and an increase in [cGMP](i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules for chemotaxis having differentiation-inducing activity.

  19. Monitoring change in refractive index of cytosol of animal cells on affinity surface under osmotic stimulus for label-free measurement of viability.

    Science.gov (United States)

    Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom

    2015-02-15

    We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Differentiation of human B lymphocyte subpopulations induced by an alloreactive helper T-cell clone

    International Nuclear Information System (INIS)

    Anderson, S.J.; Hummell, D.S.; Lawton, A.R.

    1988-01-01

    We have used cloned alloreactive helper T cells to determine if direct T cell-B cell interaction can induce differentiation of human peripheral blood B cells which do not respond to pokeweed mitogen (PWM). T-cell clone 2F8 was derived from a one-way mixed lymphocyte reaction. 2F8 cells are T3+T4+T8-IL-2R+ and proliferate in response to irradiated stimulator cells, but not autologous cells, in the absence of exogenous interleukin-2. 2F8 cells provide allospecific help for polyclonal proliferation and differentiation of B cells in the absence of any other stimulus. The magnitude of this response is comparable to that of the response of the same B cells to PWM and fresh autologous T cells. 2F8 cells could also provide nonspecific help for unrelated donor B cells in the presence of PWM, with no requirement for costimulation by irradiated stimulator cells. Allospecific stimulation of B cells was completely inhibited by antibodies to class II major histocompatibility complex (MHC) framework determinants and was abrogated by 1000-rad irradiation. Cloned 2F8 T cells stimulated differentiation of both small, high-density B cells and larger B cells, generating up to 30% plasma cells with either fraction. B cells forming rosettes with mouse erythrocytes were also induced to differentiate by the helper T cell clone. As found previously, neither small, high-density B cells nor mouse rosette+ B cells responded well to PWM. Direct interaction with allospecific T cells induces differentiation of a broader spectrum of B cells than soluble growth and differentiation factors in conjunction with polyclonal activators such as PWM and protein A containing staphylococci

  1. Recovery of leaf elongation during short term osmotic stress correlates with osmotic adjustment and cell turgor restoration in different durum wheat cultivars

    International Nuclear Information System (INIS)

    Mahdid, M.

    2014-01-01

    In order to investigate the responses of leaf elongation rate (LER), turgor and osmotic adjustment (OA) during a short-term stress (7 hours) imposed by PEG6000 and a recovery phase, three durum wheat (Triticum durum L.) varieties (Inrat; MBB; and OZ ) were grown in aerated nutrient solutions. Leaf elongation kinetics of leaf 3 was estimated using LVDT. Turgor was estimated using a cell pressure probe; osmotic potential as well as total sugars and potassium (K+) concentrations were estimated from expressed sap of elongation zone. Growth recovered rapidly and then stabilised at a lower value. A significant difference was found in % recovery of LER between the varieties. The cessation of growth after stress coincided with a decrease in turgor followed by a recovery period reaching control values in MBB and Inrat. A strong correlation (R2 = 0.83) between the reduction in turgor (turgor) and % recovery of LER was found at 7 hours after stress. The difference in the partial recovery of LER between varieties was thus related to the capacity of partial turgor recovery. Partial turgor recovery is associated with sugar or K+ based OA which indicates its importance in maintaining high LER values under water deficit. (author)

  2. Nano-funnels as electro-osmotic ``tweezers and pistons''

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  3. Quantitative glycomics monitoring of induced pluripotent- and embryonic stem cells during neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Michiyo Terashima

    2014-11-01

    Full Text Available Alterations in the structure of cell surface glycoforms occurring during the stages of stem cell differentiation remain unclear. We describe a rapid glycoblotting-based cellular glycomics method for quantitatively evaluating changes in glycoform expression and structure during neuronal differentiation of murine induced pluripotent stem cells (iPSCs and embryonic stem cells (ESCs. Our results show that changes in the expression of cellular N-glycans are comparable during the differentiation of iPSCs and ESCs. The expression of bisect-type N-glycans was significantly up-regulated in neurons that differentiated from both iPSCs and ESCs. From a glycobiological standpoint, iPSCs are an alternative neural cell source in addition to ESCs.

  4. Osmotic stress alters the balance between organic and inorganic solutes in flax (Linum usitatissimum).

    Science.gov (United States)

    Quéro, Anthony; Molinié, Roland; Elboutachfaiti, Redouan; Petit, Emmanuel; Pau-Roblot, Corinne; Guillot, Xavier; Mesnard, François; Courtois, Josiane

    2014-01-01

    Flax (Linum usitatissimum) is grown for its oil and its fiber. This crop, cultivated in temperate regions, has seen a renewed interest due to the presence of abundant molecules of interest for many applications. Little information is available about the behavior of flax during osmotic stress; yet this is considered a major stress that causes significant yield losses in most crops. To control the presence of this stress better, flax behavior was investigated following the application of osmotic stress and the response was examined by applying increasing concentrations of PEG 8000. This resulted in the reorganization of 32 metabolites and 6 mineral ions in the leaves. The analysis of these two types of solute highlighted the contrasting behavior between a higher metabolite content (particularly fructose, glucose and proline) and a decrease in mineral ions (especially nitrate and potassium) following PEG treatment. However, this reorganization did not lead to a greater accumulation of solutes, with the total amount remaining unchanged in leaves during osmotic stress. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.

    Science.gov (United States)

    Gillespie, Dirk; Pennathur, Sumita

    2013-03-05

    Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.

  6. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.

    Science.gov (United States)

    Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z

    2007-05-15

    Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.

  7. Ferulic acid promotes survival and differentiation of neural stem cells to prevent gentamicin-induced neuronal hearing loss.

    Science.gov (United States)

    Gu, Lintao; Cui, Xinhua; Wei, Wei; Yang, Jia; Li, Xuezhong

    2017-11-15

    Neural stem cells (NSCs) have exhibited promising potential in therapies against neuronal hearing loss. Ferulic acid (FA) has been widely reported to enhance neurogenic differentiation of different stem cells. We investigated the role of FA in promoting NSC transplant therapy to prevent gentamicin-induced neuronal hearing loss. NSCs were isolated from mouse cochlear tissues to establish in vitro culture, which were then treated with FA. The survival and differentiation of NSCs were evaluated. Subsequently, neurite outgrowth and excitability of the in vitro neuronal network were assessed. Gentamicin was used to induce neuronal hearing loss in mice, in the presence and absence of FA, followed by assessments of auditory brainstem response (ABR) and distortion product optoacoustic emissions (DPOAE) amplitude. FA promoted survival, neurosphere formation and differentiation of NSCs, as well as neurite outgrowth and excitability of in vitro neuronal network. Furthermore, FA restored ABR threshold shifts and DPOAE in gentamicin-induced neuronal hearing loss mouse model in vivo. Our data, for the first time, support potential therapeutic efficacy of FA in promoting survival and differentiation of NSCs to prevent gentamicin-induced neuronal hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Variation of radiation sensitivity of Friend Erythroleukemia cells cultured in the presence of the differentiation inducer DMSO

    International Nuclear Information System (INIS)

    Einspenner, M.; Boulton, J.E.; Borsa, J.

    1984-01-01

    Differentiation of Friend erythroleukemia cells (FELC) was induced with 1.5% dimethyl sulfoxide (DMSO) in the culture medium. Cell growth, erythroid differentiation, and radiosensitivity of the proliferative capacity of the cells were measured and compared to a noninduced control culture of identical age. Induced cells first appeared on Day 2 after DMSO addition, and increased to a maximum of 80 to 90% of the cell population on Day 5, whereas in the control culture, induction was less than 2% of the cells. Radiosensitivity of the cells in the induced culture relative to that of cells in the control culture, showed an age-dependent variation. On days 1 and 2 after DMSO addition, the cells in the induced culture were less radiosensitive than those in the control culture. At later times, this relationship was reversed, and between days 3 and 5 the clonable cells in the induced culture were less radiosensitive than those in the control culture. These results suggest that the metabolic events associated with commitment of FELC to differentiate affect their ability to cope with the radiation-induced lesions underlying the loss of division capacity

  9. Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions.

    Directory of Open Access Journals (Sweden)

    Xuelin Zhao

    Full Text Available Environmental salinity creates a key barrier to limit the distribution of most aquatic organisms. Adaptation to osmotic fluctuation is believed to be a factor facilitating species diversification. Adaptive evolution often involves beneficial mutations at more than one locus. Bivalves hold great interest, with numerous species living in waters, as osmoconformers, who maintain the osmotic pressure balance mostly by free amino acids. In this study, 107,076,589 reads from two groups of Crassostrea hongkongensis were produced and the assembled into 130,629 contigs. Transcripts putatively involved in stress-response, innate immunity and cell processes were identified according to Gene ontology and KEGG pathway analyses. Comparing with the transcriptome of C. gigas to characterize the diversity of transcripts between species with osmotic divergence, we identified 182,806 high-quality single nucleotide polymorphisms (SNPs for C. hongkongensis, and 196,779 SNPs for C. gigas. Comparison of 11,602 pairs of putative orthologs allowed for identification of 14 protein-coding genes that experienced strong positive selection (Ka/Ks>1. In addition, 45 genes that may show signs of moderate positive selection (1 ≥ Ka/Ks>0.5 were also identified. Based on Ks ratios and divergence time between the two species published previously, we estimated a neutral transcriptome-wide substitution mutation rate of 1.39 × 10(-9 per site per year. Several genes were differentially expressed across the control and treated groups of each species. This is the first time to sequence the transcriptome of C. hongkongensis and provide the most comprehensive transcriptomic resource available for it. The increasing amount of transcriptome data on Crassostrea provides an excellent resource for phylogenetic analysis. A large number of SNPs identified in this work are expected to provide valuable resources for future marker and genotyping assay development. The analysis of natural

  10. Relationship between osmotic pressure of the blood and secretion of sweat

    Science.gov (United States)

    Montuori, A.

    1978-01-01

    Experiments with cats show that the thermic secretion of sweat represents a specific case of a general law: The central nervous apparatus that controls the secretion of sweat begins to function when the osmotic pressure of the blood drops below normal.

  11. Not any type of rice performs equally to improve lactose-induced diarrhea characteristics in rats: is amylose an antidiarrheal factor?

    OpenAIRE

    Felipoff,Ana Lia; Zuleta,Angela; Sambucetti,Maria Elena; Rio,Maria Esther

    2012-01-01

    The effectiveness of different types of rice in relation to their ability to accelerate diarrhea recovering was evaluated in a rat model of osmotic diarrhea (OD). Animals (90-100 g) received protein free diet until reaching up to 20% weight loss, followed by lactose rich diet (LRD) to induce osmotic diarrhea. Rats presenting osmotic diarrhea were divided into 4 groups, which received lactose rich diet for 4 days from 8 am to 8 pm, and one of three experimental products containing 6% rice flou...

  12. Portland cement induces human periodontal ligament cells to differentiate by upregulating miR-146a

    Directory of Open Access Journals (Sweden)

    Min-Ching Wang

    2018-04-01

    Full Text Available Background/Purpose: Bioaggregates such as Portland cement (PC can be an economical alternative for mineral trioxide aggregate (MTA with additional benefit of less discoloration. MTA has been known to induce differentiations of several dental cells. MicroRNAs are important regulators of biological processes, including differentiation, physiologic homeostasis, and disease progression. This study is to explore how PC enhances the differentiation of periodontal ligament (PDL cells in microRNAs level. Methods: PDL cells were cultured in a regular PC- or MTA-conditioned medium or an osteoinduction medium (OIM. Alizarin red staining was used to evaluate the extent of mineralization. Transfection of microRNA mimics induced exogenous miR-31 and miR-146a expression. The expression of microRNAs and differentiation markers was assayed using reverse-transcriptase polymerase chain reaction. Results: PC enhanced the mineralization of PDL cells in a dose-dependent manner in the OIM. Exogenous miR-31 and miR-146a expression upregulated alkaline phosphatase (ALP, bone morphogenic protein (BMP, and dentin matrix protein 1 (DMP1 expression. However, miR-31 and miR-146a modulates cementum protein 1 (CEMP1 expression in different ways. PC also enhanced ALP and BMP but attenuated CEMP1 in the OIM. Although the OIM or PC treatment upregulated miR-21, miR-29b, and miR-146a, only miR-146a was able to be induced by PC in combination with OIM. Conclusion: This study demonstrated that PC enhances the differentiation of PDL cells, especially osteogenic through miR-146a upregulation. In order to control the ankylosis after regenerative endodontics with the usage of bioaggregates, further investigations to explore these differentiation mechanisms in the miRNA level may be needed. Keywords: Portland cement, Bioaggregate, miR-146a, Osteogenic differentiation, Periodontal ligament (PDL

  13. A new magnetorheological damper with improved displacement differential self-induced ability

    International Nuclear Information System (INIS)

    Hu, Guoliang; Zhou, Wei; Li, Weihua

    2015-01-01

    This work is an extension of our previous study on the development of a linear variable differential sensor (LVDS)-based magnetorheological (MR) damper with self-sensing capability, where a new MR damper integrated with LVDS technology was developed and prototyped, then its self-induced performance under static and dynamic working conditions was experimentally evaluated. The results of the static and dynamic experiments indicated that the self-induced voltage was proportional to the displacement of the damper. Moreover, the damping performance of this new MR damper was also evaluated through an experimental study. Compared with our previous study, the new MR damper performed better in terms of its self-induced sensing ability and damping capacity. (technical note)

  14. Flow cytometric osmotic fragility test and eosin-5'-maleimide dye-binding tests are better than conventional osmotic fragility tests for the diagnosis of hereditary spherocytosis.

    Science.gov (United States)

    Arora, R D; Dass, J; Maydeo, S; Arya, V; Radhakrishnan, N; Sachdeva, A; Kotwal, J; Bhargava, M

    2018-03-24

    Hereditary spherocytosis (HS) is the most common inherited hemolytic anemia with heterogeneous clinico-laboratory manifestations. We evaluated the flow-cytometric tests: eosin-5'-maleimide (EMA) and flow-cytometric osmotic fragility test (FOFT) and the conventional osmotic fragility tests (OFT) for the diagnosis of hereditary spherocytosis (HS). One hundred two suspected HS patients underwent EMA, FOFT, incubated OFT (IOFT), and room temperature OFT (RT-OFT). In addition, 10 cases of immune hemolytic anemia (IHA) were included, and performance of the above 4 tests was evaluated. For EMA and FOFT, 5 normal controls were assessed together with the patients and cutoffs were calculated using receiver-operator-characteristics curve (ROC) analysis. The best cutoff for %EMA decrease was 12.5%, and for FOFT, %residual red cells (%RRC) was 25.6%. The sensitivity and specificity of RT-OFT was 62.06% and 86.3%, respectively, while that of IOFT was 79.31% and 87.67%, respectively. Both flow cytometric tests performed better. Sensitivity and specificity of EMA was 86.2% and 93.9% respectively, and that of FOFT was 96.6% and 98.63%, respectively. The combination of the FOFT with IOFT or EMA dye-binding test yields a sensitivity of 100%, but with EMA, it had a higher specificity. Hb/MCHC was a predictor of the severity of the disease while %EMA decrease and %RRC did not correlate with severity of the disease. Flow-cytometric osmotic fragility test is the best possible single test followed by EMA for diagnosis of HS. A combination of FOFT and EMA can correctly diagnose 100% patients. These tests are likely to replace conventional OFTs in future. © 2018 John Wiley & Sons Ltd.

  15. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    International Nuclear Information System (INIS)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-01-01

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein δ expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor γ expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-α did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  16. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  17. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    International Nuclear Information System (INIS)

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-01-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression

  18. A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomi Hirako

    Full Text Available We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.

  19. Osmotic coefficients of alcoholic mixtures containing BMpyrDCA: Experimental determination and correlation

    International Nuclear Information System (INIS)

    Calvar, N.; Domínguez, Á.; Macedo, E.A.

    2014-01-01

    Graphical abstract: - Highlights: • Osmotic coefficients of alcohols with BMpyrDCA ionic liquid are determined. • Experimental data were correlated with Extended Pitzer model of Archer and MNRTL. • Mean molal activity coefficients and excess Gibbs free energies were calculated. • The results have been interpreted in terms of interactions. - Abstract: The vapour pressure osmometry technique (VPO) has been used to obtain the osmotic coefficients of the binary mixtures of the primary and secondary alcohols 1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol with the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide, BMpyrDCA. From these coefficients, the corresponding activity coefficients and vapour pressures of the mixtures have been also determined. The results have been discussed in terms of solute–solvent and ion–ion interactions and have been compared with those taken from literature in order to analyse the influence of the anion or cation constituting the ionic liquid. For the treatment of the experimental data, the Extended Pitzer model of Archer and the MNRTL model have been applied, obtaining standard deviations from the experimental osmotic coefficients lower than 0.015 and 0.065, respectively. From the parameters obtained with the Extended Pitzer model or Archer, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures have been calculated

  20. Mycobacterium tuberculosis directs T helper 2 cell differentiation by inducing interleukin-1β production in dendritic cells.

    Science.gov (United States)

    Dwivedi, Ved Prakash; Bhattacharya, Debapriya; Chatterjee, Samit; Prasad, Durbaka Vijay Raghva; Chattopadhyay, Debprasad; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2012-09-28

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), resides and replicates within phagocytes and persists in susceptible hosts by modulating protective innate immune responses. Furthermore, M. tuberculosis promotes T helper 2 (Th2) immune responses by altering the balance of T cell polarizing cytokines in infected cells. However, cytokines that regulate Th2 cell differentiation during TB infection remain unknown. Here we show that IL-1β, produced by phagocytes infected by virulent M. tuberculosis strain H37Rv, directs Th2 cell differentiation. In sharp contrast, the vaccine strain bacille Calmette-Guérin as well as RD-1 and ESAT-6 mutants of H37Rv failed to induce IL-1β and promote Th2 cell differentiation. Furthermore, ESAT-6 induced IL-1β production in dendritic cells (DCs), and CD4(+) T cells co-cultured with infected DCs differentiated into Th2 cells. Taken together, our findings indicate that IL-1β induced by RD-1/ESAT-6 plays an important role in the differentiation of Th2 cells, which in turn facilitates progression of TB by inhibiting host protective Th1 responses.

  1. Assessment of Osmotic Pre-Drying Treatment on Drying Rates of Fresh Tomato Fruits

    Directory of Open Access Journals (Sweden)

    P. A. Idah

    2014-06-01

    Full Text Available The aim of this work is to investigate the influence of osmotic pre-drying treatments on drying rates of tomato (Lycopersiconesculentum at various drying temperatures. Fresh Roma tomato fruit samples were sliced to a thickness of 5 mm and the seeds were removed. Weight of 300 g was measured for each of the three replicates and immersed in a hypertonic solution of sucrose of different concentrations 40 and 60 oBrix each held for osmotic duration of 1 and 2 hours, drained for 10 min and then dried at 50, 60, and 70 oC in a mechanical dryer. Control samples were also weighed 300 g per replicate and dried at 50, 60, and 70 oC without pre-drying treatment. The initial moisture content of fresh tomato used was 94.5% (wb. Moisture loss of each sample was monitored and recorded hourly until the product has reached the desired final moisture content (≤ 7%.The data collected were subjected to statistical analysis of variance (ANOVA and Duncan New Multiple range tests (DNMRT to ascertain the level of significance differences between the individual treatments and their interaction at p ≤ 0.05.The results show that at all the drying temperatures used, the control tomato samples exhibited the fastest drying rate with an average of 35.2 g/hr, samples pre-treated at 40 oBrix has an average drying rate of 26.6 g/hr, while samples pre-treated at 60 oBrix has the slowest drying rate of 25.2 g/hr. It was also revealed that samples subjected to 1 hour osmotic time have faster drying rates than those treated for 2 hours osmotic time.

  2. ROS Mediates Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa Rah; Ahn, Ji Yeon; Kim, Mi Hyeung; Lim, Min Jin; Yun, Yeon Sook; Song, Jie Young

    2009-01-01

    One of the most common tumors worldwide is lung cancer and the number of patients with lung cancer received radiotherapy is increasing rapidly. Although radiotherapy may have lots of advantages, it can also induce serious adverse effects such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of smooth muscle actin-alpha (a-SMA) and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-b), tumor necrosis factor (TNF), IL-6, platelet-derived growth factor (PDGF) and reactive oxygen species are related to fibrosis. It is also reported that reactive oxygen species (ROS) can be induced by radiation and can act as a second messenger in various signaling pathways. Therefore we focused on the role of ROS in radiation induced fibrosis. Here, we suggest that irradiation generate ROS mainly through NOX4, result in differentiation of lung fibroblast into myofibroblast

  3. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp [Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan); Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro [Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression

  4. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    International Nuclear Information System (INIS)

    Ishizuka, Toshiaki; Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro

    2012-01-01

    Highlights: ► Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. ► Angiotensin II may enhance the DNA synthesis via induction of superoxide. ► Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. ► Angiotensin II enhanced differentiation into mesodermal progenitor cells. ► Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT 1 R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation

  5. TBTC induces adipocyte differentiation in human bone marrow long term culture

    International Nuclear Information System (INIS)

    Carfi, M.; Croera, C.; Ferrario, D.; Campi, V.; Bowe, G.; Pieters, R.; Gribaldo, L.

    2008-01-01

    Organotins are widely used in agriculture and the chemical industry, causing persistent and widespread pollution. Organotins may affect the brain, liver and immune system and eventually human health. Recently, it has been shown that tri-butyltin (TBT) interacts with nuclear receptors PPARγ (peroxisome proliferator-activated receptor γ) and RXR (retinoid x receptor) leading to adipocyte differentiation in the 3T3 cell line. Since adipocytes are known to influence haematopoiesis, for instance through the expression of cytokines and adhesion molecules, it was considered of interest to further study the adipocyte-stimulating effect of TBTC in human bone marrow cultures. Nile Red spectrofluorimetric analysis showed a significant increase of adipocytes in TBTC-treated cultures after 14 days of long term culture. Real-time PCR and Western blot analysis confirmed the high expression of the specific adipocyte differentiation marker aP2 (adipocyte-specific fatty acid binding protein). PPARγ, but not RXR, mRNA was increased after 24 h and 48 h exposure. TBTC also induced a decrease in a number of chemokines, interleukins, and growth factors. Also the expression of leptin, a hormone involved in haematopoiesis, was down regulated by TBTC treatment. It therefore appears that TBTC induced adipocyte differentiation, whilst reducing a number of haematopoietic factors. This study indicates that TBTC may interfere in the haematopoietic process through an alteration of the stromal layer and cytokine homeostasis

  6. Effects of osmotic stress on predation behaviour of Asterias rubens L.

    NARCIS (Netherlands)

    Aguera Garcia, Antonio; Schellekens, Tim; Jansen, J.M.; Smaal, A.C.

    2015-01-01

    Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may

  7. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    Science.gov (United States)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  8. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells.

    Science.gov (United States)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Effect of road transport stress on Erthrocyte Osmotic Fragility (EOF ...

    African Journals Online (AJOL)

    After an overnight fast, venous blood was collected from each subject for the determination of serum cortisol, glucose concentration and erythrocyte osmotic fragility. The subjects were then transported at a speed of 65 – 75Km/h covering a distance of 180km. Thereafter venous blood was again collected (within 10 minutes) ...

  10. A model of strategic marketing alliances for hospices: vertical, internal, osmotic alliances and the complete model.

    Science.gov (United States)

    Starnes, B J; Self, D R

    1999-01-01

    This article develops two previous research efforts. William J. Winston (1994, 1995) has proposed a set of strategies by which health care organizations can benefit from forging strategic alliances. Raadt and Self (1997) have proposed a classification model of alliances including horizontal, vertical, internal, and osmotic. In the second of two articles, this paper presents a model of vertical, internal, and osmotic alliances. Advantages and disadvantages of each are discussed. Finally, the complete alliance system model is presented.

  11. Osmotic dehydration of fruits and vegetables: a review

    OpenAIRE

    Yadav, Ashok Kumar; Singh, Satya Vir

    2012-01-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effec...

  12. Combined osmotic dehydration and drying process of pirarucu (Arapaima gigas) fillets.

    Science.gov (United States)

    Martins, Mayara Galvão; da Silva Pena, Rosinelson

    2017-09-01

    The osmotic dehydration (OD) and complementary drying of pirarucu ( Arapaima gigas ) fillets were studied. Pieces of the dorsal portion of pirarucu (60 mm × 20 mm × 10 mm) underwent OD in a binary solution (NaCl-water) with the application of vacuum pulse following a central rotatable composite design. The effect of the following process variables was assessed: temperature (20-40 °C), osmotic solution concentration (15-25% NaCl), and vacuum pulse pressure (7-101 kPa) on water loss (WL), solid gain (SG), and water activity (a w ). OD kinetics was obtained and the Peleg model was fitted to WL and SG data. The osmotically dehydrated pirarucu was dried (40-70 °C) in a fixed-bed dryer and mathematical models were fitted to the drying data. The optimal operational condition for the OD process was 35 °C, solution with 25% NaCl, and atmospheric pressure, which yielded WL of 14.87 ± 1.46%, SG of 8.56 ± 0.45%, and a w of 0.87 ± 0.02. The Peleg model efficiently predicted the WL and SG kinetics. The increase in the water loss in drying was more evident at low temperatures (40-50 °C) with effective diffusivity ranging from 10.85 × 10 -9 to 12.30 × 10 -9 m 2 /s. The Midilli and Page models efficiently predicted the drying kinetics.

  13. Modelling the Thin-Layer Drying Kinetics of Untreated and Blanch-Osmotic Pre-treated Tomato Slices

    OpenAIRE

    Samuel Enahoro Agarry

    2016-01-01

    The objective of this study was to investigate the effect of pre-treatment and drying temperature on the drying kinetics and nutritional quality of tomato (Lycopersicon esculantum L.) under hot air drying. Tomato samples were blanched at 80oC and osmotically dehydrated using 20% w/w sodium chloride solutions at 30oC for 20 min. The blanch-osmotic pre-treated and untreated tomato slices were dried at temperature of 40, 50, 60, 70 and 80oC, respectively in a hot air-dryer. The results showed th...

  14. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei, E-mail: hongfeixia@yahoo.com.cn; Ma, Xu

    2012-08-15

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity. Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.

  15. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    International Nuclear Information System (INIS)

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei; Ma, Xu

    2012-01-01

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity. Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.

  16. Feasibility of electro-osmotic belt filter dewatering technology at pilot scale

    CSIR Research Space (South Africa)

    Snyman, HG

    2000-01-01

    Full Text Available -air. The technology was found as sensitive to polyelectrolyte dosages as belt presses. The performance of the electro-osmotic belt filter was sensitive to feed rate, but performed well with non-thickened waste activated sludge (0.61% solids), resulting in cake solids...

  17. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  18. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2014-01-01

    Full Text Available The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin exhibited optimum solubility (56.25 mg/mL for osmotic controlled delivery. Asymmetric membrane capsules (AMCs were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1, glycerol (X2, and NaCl (X3 which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1 and correlation coefficient of drug release (Y2. The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium.

  19. Upregulations of Clcn3 and P-Gp Provoked by Lens Osmotic Expansion in Rat Galactosemic Cataract

    Directory of Open Access Journals (Sweden)

    Lixia Ji

    2017-01-01

    Full Text Available Objective. Lens osmotic expansion, provoked by overactivated aldose reductase (AR, is the most essential event of sugar cataract. Chloride channel 3 (Clcn3 is a volume-sensitive channel, mainly participating in the regulation of cell fundamental volume, and P-glycoprotein (P-gp acts as its modulator. We aim to study whether P-gp and Clcn3 are involved in lens osmotic expansion of galactosemic cataract. Methods and Results. In vitro, lens epithelial cells (LECs were primarily cultured in gradient galactose medium (10–60 mM, more and more vacuoles appeared in LEC cytoplasm, and mRNA and protein levels of AR, P-gp, and Clcn3 were synchronously upregulated along with the increase of galactose concentration. In vivo, we focused on the early stage of rat galactosemic cataract, amount of vacuoles arose from equatorial area and scattered to the whole anterior capsule of lenses from the 3rd day to the 9th day, and mRNA and protein levels of P-gp and Clcn3 reached the peak around the 9th or 12th day. Conclusion. Galactosemia caused the osmotic stress in lenses; it also markedly leads to the upregulations of AR, P-gp, and Clcn3 in LECs, together resulting in obvious osmotic expansion in vitro and in vivo.

  20. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  1. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  2. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-01-01

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases

  3. Protozoa inhibition by different salts: Osmotic stress or ionic stress?

    Science.gov (United States)

    Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui

    2017-09-01

    Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.

  4. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production †

    Science.gov (United States)

    Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  5. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  6. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  7. Model Dependency of TMAO's Counteracting Effect Against Action of Urea: Kast Model versus Osmotic Model of TMAO.

    Science.gov (United States)

    Borgohain, Gargi; Paul, Sandip

    2016-03-10

    Classical molecular dynamics simulation of GB1 peptide (a 16-residue β-hairpin) in different osmotic environments is studied. Urea is used for denaturation of the peptide, and trimethylamine-N-oxide (TMAO) is used to offset the effect of urea. Protein-urea electrostatic interactions are found to play a major role in protein-denaturation. To emphasize on protein protecting action of TMAO against urea, two different models of TMAO are used, viz., the Kast model and the Osmotic model. We observe that the Osmotic model of TMAO gives the best protection to counteract urea's action when used in ratio 1:2 of urea:TMAO (i.e., reverse ratio). This is because the presence of TMAO makes urea-protein electrostatic interactions more unfavorable. Preferential solvation of TMAO molecules by urea (and water) molecules is also observed, which causes depletion in the number of urea molecules in the vicinity of the protein. The calculations of intraprotein hydrogen bonds between different residues of protein further reveal the breaking of backbone hydrogen bonds of residues 2 and 15 in the presence of urea, and the same is preserved in the presence of TMAO. Free energy landscapes show that the narrowest distribution is obtained for the osmotic TMAO model when used in reverse ratio.

  8. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line.

    Science.gov (United States)

    Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu

    2012-01-01

    Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.

  9. Toward an injectable continuous osmotic glucose sensor.

    Science.gov (United States)

    Johannessen, Erik; Krushinitskaya, Olga; Sokolov, Andrey; Philipp, Häfliger; Hoogerwerf, Arno; Hinderling, Christian; Kautio, Kari; Lenkkeri, Jaakko; Strömmer, Esko; Kondratyev, Vasily; Tønnessen, Tor Inge; Mollnes, Tom Eirik; Jakobsen, Henrik; Zimmer, Even; Akselsen, Bengt

    2010-07-01

    The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. An in vitro model based on a 3.6 x 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4-6 nm large pores. The affinity assay offers a dynamic range of 36-720 mg/dl with a resolution of +/-16 mg/dl. An integrated 1 x 1 mm(2) large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 microW. Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG. 2010 Diabetes Technology Society.

  10. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation

    Energy Technology Data Exchange (ETDEWEB)

    Herzmann, Nicole; Salamon, Achim [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany); Fiedler, Tomas [Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany)

    2017-01-01

    Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.

  11. Flux limitation in ultrafiltration: Osmotic pressure model and gel layer model

    NARCIS (Netherlands)

    Wijmans, J.G.; Nakao, S.; Smolders, C.A.

    1984-01-01

    The characteristic permeate flux behaviour in ultrafiltration, i.e., the existence of a limiting flux which is independent of applied pressure and membrane resistance and a linear plot of the limiting flux versus the logarithm of the feed concentration, is explained by the osmotic pressure model. In

  12. Free water transport, small pore transport and the osmotic pressure gradient

    NARCIS (Netherlands)

    Parikova, Alena; Smit, Watske; Zweers, Machteld M.; Struijk, Dirk G.; Krediet, Raymond T.

    2008-01-01

    BACKGROUND: Water transport in peritoneal dialysis (PD) patients occurs through the small pores and water channels, the latter allowing free water transport (FWT). The osmotic gradient is known to be one of the major determinants of water transport. The objective of the study was to analyse the

  13. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Cheng, Ya-Ting; Yeih, Dong-Feng; Liang, Shu-Man; Chien, Chia-Ying; Yu, Yen-Ling; Ko, Bor-Sheng; Jan, Yee-Jee; Kuo, Cheng-Chin; Sung, Li-Ying; Shyue, Song-Kun; Chen, Ming-Fong; Yet, Shaw-Fang; Wu, Kenneth K; Liou, Jun-Yang

    2015-12-15

    Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Influence of power ultrasound on the main quality properties and cell viability of osmotic dehydrated cranberries.

    Science.gov (United States)

    Nowacka, Malgorzata; Fijalkowska, Aleksandra; Wiktor, Artur; Dadan, Magdalena; Tylewicz, Urszula; Dalla Rosa, Marco; Witrowa-Rajchert, Dorota

    2018-02-01

    The aim of the study was to investigate the effect of ultrasound treatment in two osmotic solutions, carried out at different time, on some physical properties, antioxidant activity and cell survival of cranberries. Ultrasound treatment was conducted at 21kHz for 30 and 60min in liquid medium: 61.5% sucrose solution and 30% sucrose solution with 0.1% steviol glycosides addition. Some samples before the ultrasound treatment were subjected to cutting or blanching. The results showed that dry matter content and concentration of the dissolved substances increased during ultrasound treatment in osmotic solution, however higher value was observed for treatment in 61.5% sucrose solution and for longer time. Water activity and volume of cranberries did not change after the ultrasonic treatment. Combined treatment led to colour and antioxidant activity alterations as well. A cell viability of whole and cut samples decreased after 60min of osmotic treatment and completely lost in the blanched samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fabrication of a novel cascade high-pressure electro-osmotic pump.

    Science.gov (United States)

    Zhang, Feifang; Wang, Rong; Han, Tingting; Yang, Bingcheng; Liang, Xinmiao

    2011-07-07

    A novel cascade electro-osmotic pump (EOP) has been fabricated by alternately connecting a cation monolithic column and anion monolithic column in series. In this manner, the change of electric polarity between each stage of the cascade EOP is easily achieved and the pressure output of the EOP could be greatly enhanced without increase of the applied voltage.

  16. [Drug induced diarrhea].

    Science.gov (United States)

    Morard, Isabelle; Hadengue, Antoine

    2008-09-03

    Diarrhea is a frequent adverse event involving the most frequently antibiotics, laxatives and NSAI. Drug induced diarrhea may be acute or chronic. It may be due to expected, dose dependant properties of the drug, to immuno-allergic or bio-genomic mechanisms. Several pathophysiological mechanisms have been described resulting in osmotic, secretory or inflammatory diarrhea, shortened transit time, or malabsorption. Histopathological lesions sometimes associated with drug induced diarrhea are usually non specific and include ulcerations, inflammatory or ischemic lesions, fibrous diaphragms, microscopic colitis and apoptosis. The diagnosis of drug induced diarrhea, sometimes difficult to assess, relies on the absence of other obvious causes and on the rapid disappearance of the symptoms after withdrawal of the suspected drug.

  17. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress

    KAUST Repository

    Kinoshita, Natsuko

    2012-09-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. © 2012 American Society of Plant Biologists. All rights reserved.

  18. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress

    KAUST Repository

    Kinoshita, Natsuko; Wang, Huan; Kasahara, Hiroyuki; Liu, Jun; MacPherson, Cameron R.; Machida, Yasunori; Kamiya, Yuji; Hannah, Matthew A.; Chuaa, Nam Hai

    2012-01-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. © 2012 American Society of Plant Biologists. All rights reserved.

  19. Carnosol promotes endothelial differentiation under H2O2-induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Ou Shulin

    2017-01-01

    Full Text Available Oxidative stress causes deregulation of endothelial cell differentiation. Carnosol is a potent antioxidant and antiinflammatory compound. In the present study, we examined whether the antioxidant effect of carnosol might protect bone marrow stem cells against H2O2-induced oxidative stress and promote endothelial differentiation. We examined cell viability by the MTT assay; oxidative stress and apoptosis were analyzed through changes in ROS levels, apoptotic ratio and caspase-3 activity; changes in protein expression of OCT-4, Flk-1, CD31 and Nrf-2 were assessed by Western blot analysis. H2O2 treatment increased oxidative stress and reduced cell viability, while the stem cell marker OCT-4 and endothelial markers Flk-1, CD31 were significantly downregulated as a result of the treatment with H2O2. Treatment with carnosol improved the antioxidant status, increased OCT-4 expression and promoted endothelial differentiation. This study provides evidence that carnosol could increase the antioxidant defense mechanism and promote endothelial differentiation.

  20. Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter.

    Science.gov (United States)

    Raghothama, K G; Liu, D; Nelson, D E; Hasegawa, P M; Bressan, R A

    1993-12-01

    Osmotin is a small (24 kDa), basic, pathogenesis-related protein, that accumulates during adaptation of tobacco (Nicotiana tabacum) cells to osmotic stress. There are more than 10 inducers that activate the osmotin gene in various plant tissues. The osmotin promoter contains several sequences bearing a high degree of similarity to ABRE, as-1 and E-8 cis element sequences. Gel retardation studies indicated the presence of at least two regions in the osmotin promoter that show specific interactions with nuclear factors isolated from cultured cells or leaves. The abundance of these binding factors increased in response to salt, ABA and ethylene. Nuclear factors protected a 35 bp sequence of the promoter from DNase I digestion. Different 5' deletions of the osmotin promoter cloned into a promoter-less GUSNOS plasmid (pBI 201) were used in transient expression studies with a Biolistic gun. The transient expression studies revealed the presence of three distinct regions in the osmotin promoter. The promoter sequence from -108 to -248 bp is absolutely required for reporter gene activity, followed by a long stretch (up to -1052) of enhancer-like sequence and then a sequence upstream of -1052, which appears to contain negative elements. The responses to ABA, ethylene, salt, desiccation and wounding appear to be associated with the -248 bp sequence of the promoter. This region also contains a putative ABRE (CACTGTG) core element. Activation of the osmotin gene by various inducers is discussed in view of antifungal activity of the osmotin protein.

  1. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    Science.gov (United States)

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can

  2. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype.

    Science.gov (United States)

    Kume, Toshiaki; Kawato, Yuka; Osakada, Fumitaka; Izumi, Yasuhiko; Katsuki, Hiroshi; Nakagawa, Takayuki; Kaneko, Shuji; Niidome, Tetsuhiro; Takada-Takatori, Yuki; Akaike, Akinori

    2008-10-10

    Dibutyryl cyclic AMP (dbcAMP) and retinoic acid (RA) have been demonstrated to be the inducers of morphological differentiation in SH-SY5Y cells, a human catecholaminergic neuroblastoma cell line. However, it remains unclear whether morphologically differentiated SH-SY5Y cells by these compounds acquire catecholaminergic properties. We focused on the alteration of tyrosine hydroxylase (TH) expression and intracellular content of noradrenaline (NA) as the indicators of functional differentiation. Three days treatment with dbcAMP (1mM) and RA (10microM) induced morphological changes and an increase of TH-positive cells using immunocytochemical analysis in SH-SY5Y cells. The percentage of TH-expressing cells in dbcAMP (1mM) treatment was larger than that in RA (10microM) treatment. In addition, dbcAMP increased intracellular NA content, whereas RA did not. The dbcAMP-induced increase in TH-expressing cells is partially inhibited by KT5720, a protein kinase A (PKA) inhibitor. We also investigated the effect of butyrate on SH-SY5Y cells, because dbcAMP is enzymatically degraded by intracellular esterase, thereby resulting in the formation of butyrate. Butyrate induced the increase of NA content at lower concentrations than dbcAMP, although the increase in TH-expressing cells by butyrate was smaller than that by dbcAMP. The dbcAMP (1mM)- and butyrate (0.3mM)-induced increase in NA content was completely suppressed by alpha-methyl-p-tyrosine (1mM), an inhibitor of TH. These results suggest that dbcAMP induces differentiation into the noradrenergic phenotype through both PKA activation and butyrate.

  3. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.

    Science.gov (United States)

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.

  4. CHD1 regulates cell fate determination by activation of differentiation-induced genes

    DEFF Research Database (Denmark)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq

    2017-01-01

    The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start...... site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes....... Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close...

  5. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots.

    Science.gov (United States)

    Chen, Ziyan; Zhu, Dong; Wu, Jisu; Cheng, Zhiwei; Yan, Xing; Deng, Xiong; Yan, Yueming

    2018-05-17

    In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd 2+ ) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd 2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd 2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd 2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd 2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.

  6. A Novel Sugar Transporter from Dianthus spiculifolius, DsSWEET12, Affects Sugar Metabolism and Confers Osmotic and Oxidative Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Aimin; Ma, Hongping; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2018-02-07

    Plant SWEETs (sugars will eventually be exported transporters) play a role in plant growth and plant response to biotic and abiotic stresses. In the present study, DsSWEET12 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that DsSWEET12 expression was induced by sucrose starvation, mannitol, and hydrogen peroxide. Colocalization experiment showed that the DsSWEET12-GFP fusion protein was localized to the plasma membrane, which was labeled with FM4-64 dye, in Arabidopsis and suspension cells of D. spiculifolius . Compared to wild type plants, transgenic Arabidopsis seedlings overexpressing DsSWEET12 have longer roots and have a greater fresh weight, which depends on sucrose content. Furthermore, a relative root length analysis showed that transgenic Arabidopsis showed higher tolerance to osmotic and oxidative stresses. Finally, a sugar content analysis showed that the sucrose content in transgenic Arabidopsis was less than that in the wild type, while fructose and glucose contents were higher than those in the wild type. Taken together, our results suggest that DsSWEET12 plays an important role in seedling growth and plant response to osmotic and oxidative stress in Arabidopsis by influencing sugar metabolism.

  7. Does osmotic distillation change the isotopic relation of wines?

    Directory of Open Access Journals (Sweden)

    Schmitt Matthias

    2014-01-01

    Full Text Available Currently partial alcohol reduction of wine is in the focus of research worldwide. There are several technologies available to achieve this target. These techniques are either based on distilling or membrane processes. Osmotic distillation, one of the possibilities, is a quite modern membrane process that can be used. During that process, wine is pumped in counter flow to water along a micro porous, hydrophobic membrane. The volatile components of the wine can permeate that membrane and are dissolved in water. The driving force of that process is the vapor pressure difference between the volatiles on the wine and water side of the membrane. The aim of this work was to determine if the alcohol reduction by osmotic distillation can change the isotopic relation in a wine. Can this enological practice change the composition of a wine in a way that an illegal water addition is simulated? Different wines were reduced by 2% alcohol v/v with varying process parameters. The isotopic analysis of the O 16/18 ratio in the wine were performed according to the OIV methods (353/2009 These analyses showed that the isotopic ratio is modified by an alcohol reduction of 2% v/v in a way that corresponds to an addition of 4–5% of external water.

  8. From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress

    Science.gov (United States)

    Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek

    Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by

  9. BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells.

    Science.gov (United States)

    Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Taya, Masahito

    2015-04-01

    Introduction of a polyploidy inducer is a promising strategy to achieve a high level of polyploidization during megakaryocytic (MK) differentiation. Here, we report that a multi-kinase inhibitor, BMS-777607, is a potent polyploidy inducer for elevating high ploidy cell formation in the MK-differentiated CHRF-288-11 (CHRF) cells. Our result showed that BMS-777607 strongly inhibited cell division without affecting cell viability when detected at day 1 after treatment. As a consequence, the high ploidy (≥8N) cells were accumulated in culture for 8 days, with an increase from 16.2 to 75.2 % of the total cell population. The elevated polyploidization was accompanied by the increased expression level of MK marker, CD41 (platelet glycoprotein IIb/IIIa, GPIIb/IIIa), suggesting that BMS-777607 promoted both polyploidization and commitment of MK-differentiated CHRF cells. Platelet-like fragments (PFs) were released by mature CHRF cells. Based on a flow cytometry assay, it was found that the PFs produced from BMS-777607-treated cells tended to have larger size and higher expression of GPIIb/IIIa, a receptor for platelet adhesion. Taken together, these results suggested that BMS-777607 promoted MK differentiation of CHRF cells and increased the functional property of platelet-like fragments.

  10. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    Science.gov (United States)

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  11. Lactic Acid is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation Via pH-Dependent Activation of Transforming Growth Factor-β

    Energy Technology Data Exchange (ETDEWEB)

    Kottman, R. M.; Kulkarni, Ajit A.; Smolnycki, Katie A.; Lyda, Elizabeth; Dahanayake, Thinesh; Salibi, Rami; Honnons, Sylvie; Jones, Carolyn; Isern, Nancy G.; Hu, Jian Z.; Nathan, Steven D.; Grant, Geraldine; Phipps, Richard P.; Sime, Patricia J.

    2012-10-15

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods:We used metabolomic analysis to examine cellular metabolism in lung tissuefrom patients with IPFanddeterminedthe effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-b activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; a-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-b. TGF-b induced expression of LDH5 via hypoxia-inducible factor 1a (HIF1a). Importantly, overexpression of both HIF1a and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low dose TGF-b to induce differentiation. Furthermore, inhibition of both HIF1a and LDH5 inhibited TGF-b–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pHdependent activation of TGF-b. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders.

  12. Zinc absorption in experimental osmotic diarrhea: effect of long-chain fatty acids.

    Science.gov (United States)

    Lee, S Y; Wapnir, R A

    1993-03-01

    The effect of free fatty acids on zinc absorption was studied in a rat model of chronic osmotic diarrhea induced with magnesium citrate and phenolphthalein. In vivo rates of zinc removal from the lumen and analysis of tissue for zinc uptake and metallothionein alterations were monitored. One mmol/L stearate enhanced zinc absorption in rats with or without diarrhea, from 207 +/- 22 and 353 +/- 13 pmol/min x cm to 676 +/- 34 and 610 +/- 26 pmol/min x cm, respectively. Palmitate was only effective in normal rats. Zinc absorption inversely correlated with mucosal zinc content in the perfused intestinal segments, in both type of rats. Hepatic metallothionein was enhanced by zinc and even more by oleate plus zinc in both groups; kidney metallothionein in animals with diarrhea was normalized by either oleate or zinc. The data support previous reports on the effect of long-chain fatty acids on the enhancement of zinc absorption: saturation and a longer chain appear to be positive factors. A membrane modification role of long-chain fatty acids could have nutritional implications in the formulation of special diets.

  13. Osmotic pressure and virial coefficients of star and comb polymer solutions: dissipative particle dynamics.

    Science.gov (United States)

    Wang, Tzu-Yu; Fang, Che-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-03-28

    The effects of macromolecular architecture on the osmotic pressure pi and virial coefficients (B(2) and B(3)) of star and comb polymers in good solvents are studied by dissipative particle dynamics simulations for both dilute and semiconcentrated regimes. The dependence of the osmotic pressure on polymer concentration is directly calculated by considering two reservoirs separated by a semipermeable, fictitious membrane. Our simulation results show that the ratios A(n+1) identical with B(n+1)/R(g)(3n) are essentially constant and A(2) and A(3) are arm number (f) dependent, where R(g) is zero-density radius of gyration. The value of dimensionless virial ratio g = A(3)/A(2)(2) increases with arm number of stars whereas it is essentially arm number independent for comb polymers. In semiconcentrated regime the scaling relation between osmotic pressure and volume fraction, pi proportional to phi(lambda), still holds for both star and comb polymers. For comb polymers, the exponent lambda is close to lambda(*) (approximately = 2.73 for linear chains) and is independent of the arm number. However, for star polymers, the exponent lambda deviates from lambda(*) and actually grows with increasing the arm number. This may be attributed to the significant ternary interactions near the star core in the many-arm systems.

  14. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-06-01

    Values of the concentration susceptibility near the lambda line and tricritical point in liquid mixtures of 3 He and 4 He have been calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambers separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature. Osmotic equilibrium was established through a Vycor glass superleak, which for 3 He mole fraction x > 0.55 functions not only in the superfluid phase but in portions of the normal fluid region of the phase diagram as well. Measurements were made at four 3 He mole fractions, x = 0.59, x = 0.64, x = 0.68, and x = 0.70. In contrast with determinations from light scattering and vapor pressure measurements, the present measurements show a pronounced peak at the lambda transition for the two values of x less than the tricritical value (x/sub t/ = 0.675). The susceptibilities are consistent with α = 0 both above and below the lambda transition except at x = 0.64, where some combination of α and α' greater than zero seems to be preferred. (The result α = 0 corresponds to a logarithmic divergence.) It is possible that this positive value of α or α' represents the influence of tricritical effects. It should be emphasized that there is considerable ambiguity in our determination of α, with acceptable least-squares fits corresponding to values of α between 0.0 and 0.2 being found at both concentrations, both above and below T/sub lambda/. The results appear to be consistent with the results of other experiments away from the lambda line, and also to be consistent with a simple tricritical scaling relationship

  15. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming

    Science.gov (United States)

    Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Renée; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle; Beauséjour, Christian; Stroncek, David; Le Deist, Françoise; Haddad, Elie

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to-DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation. PMID:27070086

  16. Osmotic and activity coefficients in the binary solutions of 1-butyl-3-methylimidazolium chloride and bromide in methanol or ethanol at T = 298.15 K from isopiestic measurements

    International Nuclear Information System (INIS)

    Sardroodi, Jaber Jahanbin; Azamat, Jafar; Atabay, Maryam

    2011-01-01

    Highlights: → The osmotic coefficients of the solutions of 1-butyl-3-methylimidazolium chloride and bromide in ethanol and methanol have been measured. → Measured osmotic coefficients were correlated using NRTL and Pitzer models. → Vapor pressures were evaluated from the correlated osmotic coefficients. → Model parameters have been interpreted in terms of ion-ion and ion-solvent interactions. - Abstract: Osmotic coefficients of the binary solutions of two room-temperature ionic liquids (1-butyl-3-methylimidazolium chloride and bromide) in methanol and ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficient data have been correlated using a forth-order polynomial in terms of (molality) 0.5 , with both, ion interaction model of Pitzer and electrolyte non-random two liquid (e-NRTL) model of Chen. The values of vapor pressures of above-mentioned solutions have been calculated from the osmotic coefficients. The model parameters fitted to the experimental osmotic coefficients have been used for prediction of the mean ionic activity coefficients of those ionic liquids in methanol and ethanol.

  17. Modelling the Thin-Layer Drying Kinetics of Untreated and Blanch-Osmotic Pre-treated Tomato Slices

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2016-10-01

    Full Text Available The objective of this study was to investigate the effect of pre-treatment and drying temperature on the drying kinetics and nutritional quality of tomato (Lycopersicon esculantum L. under hot air drying. Tomato samples were blanched at 80oC and osmotically dehydrated using 20% w/w sodium chloride solutions at 30oC for 20 min. The blanch-osmotic pre-treated and untreated tomato slices were dried at temperature of 40, 50, 60, 70 and 80oC, respectively in a hot air-dryer. The results showed that blanch-osmotic pre-treatment offered a higher drying rate and lower or faster drying time than untreated condition. The tomato drying regime was characteristically in the constant and falling rate period. The tomato drying rate curve showed characteristics of porous hygroscopic solids. The optimum drying temperature for tomato was found to be 60oC. Four semi-empirical drying models of Newton, Page, Henderson and Pabis, and Logarithmic were fitted to the drying data using non-linear regression analysis. The most appropriate model was selected using the coefficient of determination (R2 and root mean square error (RMSE. The Page model has shown a better fit to the drying kinetics data of tomato in comparison with other tested models. Transport of moisture during drying was described by Fick’s diffusion model application and the effective moisture diffusivity (Deff thus estimated. The Deff at 60oC was 4.43 × 10-11m2/s and 6.33 × 10-11m2/s for blanch-osmotic pre-treated and untreated tomato slices, respectively.

  18. Importance of ERK activation in As2O3-induced differentiation and promyelocytic leukemia nuclear bodies formation in neuroblastoma cells.

    Science.gov (United States)

    Petit, A; Delaune, A; Falluel-Morel, A; Goullé, J-P; Vannier, J-P; Dubus, I; Vasse, M

    2013-11-01

    Neuroblastoma malignant cell growth is dependent on their undifferentiated status. Arsenic trioxide (As2O3) induces neuroblastoma cell differentiation in vitro, but its mechanisms still remains unknown. We used three human neuroblastoma cell lines (SH-SY5Y, IGR-N-91, LAN-1) that differ from their MYCN and p53 status to explore the intracellular events activated by As2O3 and involved in neurite outgrowth, a morphological marker of differentiation. As2O3 (2μM) induced neurite outgrowth in all cell lines, which was dependent on ERK activation but independent on MYCN status. This process was induced either by a sustained (3 days) or a transient (2h) incubation with As2O3, indicating that very early events trigger the induction of differentiation. In parallel, As2O3 induced a rapid assembly of promyelocytic leukemia nuclear bodies (PML-NB) in an ERK-dependent manner. In conclusion, mechanisms leading to neuroblastoma cell differentiation in response to As2O3 appear to involve the ERK pathway activation and PML-NB formation, which are observed in response to other differentiating molecules such as retinoic acid derivates. This open new perspectives based on the use of treatment combinations to potentiate the differentiating effects of each drug alone and reduce their adverse side effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Analysis of unsaturated clayey materials hydration incorporating the effect of thermo-osmotic flow

    International Nuclear Information System (INIS)

    Sanchez, M.; Arson, C.

    2012-01-01

    Document available in extended abstract form only. The hydraulic gradient is the main physical phenomenon influencing the movement of water in permeable porous media. It is, however, not the only one. Figure 1 presents the main kinds of flow that can occur in a porous media alongside with the corresponding gradient responsible for the movements. The word 'law' is generally used for the diagonal terms associated with the direct flow phenomena, and the name 'effect' is reserved to the non-diagonal ones, called also 'coupled processes'. Lippmann (1907) discovered and named the phenomenon of thermo-osmosis. He discovered it experimentally by separating a volume of water into two parts by means of a membrane. Different temperatures were held in the two regions of the system. The thermal gradient caused a flow of water through the membrane from the cold to the hot side. In permeable reservoirs, the non-diagonal coefficients are relatively small and negligible compared to the diagonal terms. That is the reason why the coupled processes are generally ignored when analyzing problems in aquifers. However, in non-isothermal problems involving low permeability media and/or low hydraulic gradients thermo-osmosis may play a more influential role. Srivastava and Avasthi (1975) and Horseman and McEwen (1996) showed that water flux due to thermo-osmosis can easily exceed Darcy flux in low permeability clays. The 'phenomenological coefficient' that links each flow with the corresponding driving gradient must be measured experimentally. Accounting for thermo-osmosis is assuming that the transport of heat may modify the transport of fluids. The counterpart phenomenon of thermo-osmosis is thermo-filtration, which reflects the influence of a pressure gradient on heat flow. Thermo-osmosis and thermo-filtration are generally formulated as reciprocal relations, so that the coupled conductivity terms related to each phenomenon are set equal. Thermo-osmotic effects have been studied in the

  20. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

    Directory of Open Access Journals (Sweden)

    Nina M. Soares-Cavalcanti

    2012-01-01

    Full Text Available Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.