WorldWideScience

Sample records for osmotic pressure difference

  1. Saltstone Osmotic Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRN

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  2. Saltstone Osmotic Pressure

    International Nuclear Information System (INIS)

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-01-01

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency 3 , KNO 3 , Na 3 PO 4 x12H 2 O, and K 3 PO 4 when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that

  3. The physics of osmotic pressure

    Science.gov (United States)

    Bowler, M. G.

    2017-09-01

    Osmosis drives the development of a pressure difference of many atmospheres between a dilute solution and pure solvent with which it is in contact through a semi-permeable membrane. The educational importance of this paper is that it presents a novel treatment in terms of fluid mechanics that is quantitative and exact. It is also simple and intuitive, showing vividly how osmotic pressures are generated and maintained in equilibrium, driven by differential solvent pressures. The present rigorous analysis using the virial theorem seems unknown and can be easily understood—and taught—at various different levels. It should be valuable to undergraduates, graduate students and indeed to the general physicist.

  4. The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp.

    Science.gov (United States)

    Hu, Xue-Chao; Ren, Lu-Jing; Chen, Sheng-Lan; Zhang, Li; Ji, Xiao-Jun; Huang, He

    2015-11-01

    The effects of different osmotic pressure, changed by six salts (NaCl, Na2SO4, (NH4)2SO4, KH2PO4 and MSG), on cell growth and DHA synthesis by Schizochytrium sp. were investigated. Six optimal mediums were obtained to study different osmotic pressure combinations at cell growth stage and DHA synthesis stage. Results showed that cultivated cell in higher osmotic pressure condition and fermented in lower osmotic pressure condition was benefit to enhance DHA synthesis. Combination 17-6 could get the maximum cell dry weight of 56.95 g/L and the highest DHA percentage in total fatty acids of 55.21%, while combination 17-B could get the highest lipid yield of 33.47 g/L with 42.10% DHA in total fatty acids. This was the first report about the enhancement of DHA production by osmotic regulation and this work provided two novel osmotic control processes for high lipid yield and high DHA percentage in total fatty acids.

  5. Dependence of osmotic pressure on solution properties

    International Nuclear Information System (INIS)

    Fritz, S.J.

    1978-01-01

    Hydrostatic pressure, temperature, salt concentration, and the chemical composition of the salt are parameters affecting solution properties. Pressure and temperature have little effect on osmosis, but osmotic pressure variations due to type of dissolved salt may be significant, especially at high concentrations. For a given salt solution, concentration variations cause large differences in osmotic pressure. A representative difference in concentration across a clay layer in a relatively shallow groundwater system might be 100 to 1,000 ppm. When expressed as ppm NaCl, this difference could cause a head difference of 0.8 to 8 meters of water if one of the rock bodies were closed to fluid escape

  6. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  7. Studies of Protein Solution Properties Using Osmotic Pressure Measurements

    Science.gov (United States)

    Agena, S.; Bogle, David; Pusey, Marc; Agena, S.

    1998-01-01

    Examination of the protein crystallization process involves investigation of the liquid and solid state and a protein's properties in these states. Liquid state studies such as protein self association in solution by light scattering methods or other methods have been used to examine a protein Is properties and therefore its crystallization process and conditions. Likewise can osmotic pressure data be used to examine protein properties and various published osmotic pressure studies were examined by us to correlate osmotic pressure to protein solution properties. The solution behavior of serum albumin, alpha - chymotrypsin, beta - lactoglobulin and ovalbumin was examined over a range of temperatures, pH values and different salt types and concentrations. Using virial expansion and a local composition model the non ideal solution behavior in form of the activity coefficients (thermodynamic) was described for the systems. This protein activity coefficient data was related to a protein's solubility behavior and this process and the results will be presented.

  8. Recent experimental data may point to a greater role for osmotic pressures in the subsurface

    Science.gov (United States)

    Neuzil, C.E.; Provost, A.M.

    2009-01-01

    Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility

  9. Enhanced monoclonal antibody production by gradual increase of osmotic pressure

    OpenAIRE

    Lin, Jianqiang; Takagi, Mutsumi; Qu, Yinbo; Gao, Peiji; Yoshida, Toshiomi

    1999-01-01

    The time length required for the adaptation of AFP-27 hybridoma cells to high osmotic pressure and the effect of a gradual increase of osmotic pressure on monoclonal antibody production were investigated. When the cells were subjected to an increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg- 1, the intracellular content of osmoprotective free amino acids reached a maximum level 6 h after the osmotic pressure was increased to 366 mOsmol kg-1. The same time period of 6 h incubat...

  10. The dependence of molecular transmembrane electrotransfer efficiency on medium conductivity and osmotic pressure

    OpenAIRE

    Jakutavičiūtė, Milda; Ruzgys, Paulius; Šatkauskas, Saulius

    2014-01-01

    The electrotransfer efficiency was evaluated for different external medium conductivities, osmotic pressures and electric pulse voltages. It was found that increase in conductivity or decrease in electric pulse strength decreases electrotransfer efficiency. Decrease in osmotic pressure tends to decrease electrotransfer efficiency.

  11. Osmotic pressure in a bacterial swarm.

    Science.gov (United States)

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G; Tang, Jay X; Berg, Howard C

    2014-08-19

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Effect of plasma colloid osmotic pressure on intraocular pressure during haemodialysis

    OpenAIRE

    Tokuyama, T.; Ikeda, T.; Sato, K.

    1998-01-01

    BACKGROUND—In a previous case report, it was shown that an increase in plasma colloid osmotic pressure induced by the removal of fluid during haemodialysis was instrumental in decreasing intraocular pressure. The relation between changes in intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight before and after haemodialysis is evaluated.
METHODS—Intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight were evaluated before a...

  13. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  14. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    Science.gov (United States)

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  15. Structure and osmotic pressure of ionic microgel dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, Mary M. [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Chung, Jun Kyung; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2015-01-21

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.

  16. Structure and osmotic pressure of ionic microgel dispersions

    International Nuclear Information System (INIS)

    Hedrick, Mary M.; Chung, Jun Kyung; Denton, Alan R.

    2015-01-01

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions

  17. A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration.

    Science.gov (United States)

    Zhang, Meijia; Peng, Wei; Chen, Jianrong; He, Yiming; Ding, Linxian; Wang, Aijun; Lin, Hongjun; Hong, Huachang; Zhang, Ye; Yu, Haiying

    2013-05-15

    Big gap between experimental filtration resistance of cake layer formed on membrane surface and the hydraulic resistance calculated through the Carman-Kozeny equation, suggested the existence of a new membrane fouling mechanism: osmotic pressure during cake layer filtration in SMBR system. An osmotic pressure model based on chemical potential difference was then proposed. Simulation of the model showed that osmotic pressure accounted for the major fraction of total operation pressure, and pH, applied pressure and ionic strength were the key determining factors for osmosis effect. It was found that, variations of osmotic pressure with pH, applied pressure and added ionic strength were well coincident with perditions of model's simulation, providing the first direct evidences of the real occurrence of osmosis mechanism and the feasibility of the proposed model. These findings illustrate the essential role of osmotic pressure in filtration resistance, and improve fundamental understanding on membrane fouling in SMBR systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Relation between lowered colloid osmotic pressure, respiratory failure, and death.

    Science.gov (United States)

    Tonnesen, A S; Gabel, J C; McLeavey, C A

    1977-01-01

    Plasma colloid osmotic pressure was measured each day in 84 intensive care unit patients. Probit analysis demonstrated a direct relationship between colloid osmotic pressure (COP) and survival. The COP associated with a 50% survival rate was 15.0 torr. COP was higher in survivors than in nonsurvivors without respiratory failure and in patients who recovered from respiratory failure. We conclude that lowered COP is associated with an elevated mortality rate. However, the relationship to death is not explained by the relationship to respiratory failure.

  19. Osmotic pressure of ring polymer solutions : A Monte Carlo study

    NARCIS (Netherlands)

    Flikkema, Edwin; Brinke, Gerrit ten

    2000-01-01

    Using the wall theorem, the osmotic pressure of ring polymers in solution has been determined using an off-lattice topology conserving Monte Carlo algorithm. The ring polymers are modeled as freely-jointed chains with point-like beads, i.e., under conditions corresponding to θ-conditions for the

  20. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    Science.gov (United States)

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  1. Study on enhanced lymphatic tracing of isosulfan blue injection by influence of osmotic pressure on lymphatic exposure.

    Science.gov (United States)

    Ye, Tiantian; He, Rui; Wu, Yue; Shang, Lei; Wang, Shujun

    2018-04-01

    Isosulfan blue (IB) is being used as a lymphatic tracer has been approved by the FDA in 1981. This study aimed at improving lymphatic exposure of IB injection by osmotic pressure regulation to achieve step-by step lymphatic tracing. First, IB injection with appropriate osmotic pressure, stability, and suitable pH was prepared. Next, the lymphatic tracing ability of different osmotic pressure was studied to determine the blue-stained state of IB in three-level lymph nodes after subcutaneous administration. Furthermore, pharmacokinetics of lymphatic drainage, lymph node uptake, and plasma concentration was investigate to explore the improving law of the lymphatic tracing by osmotic pressure, and combined with tissue irritation to determine the optimal osmotic pressure. At last, the tissue distribution in mice of IB injection which had the property of optimal osmotic pressure was investigated. The results showed that increasing osmotic pressure could significantly reduce injection site retention and increase IB concentration of lymph node. The lymph nodes could be obviously blue-stained by IB injection which had 938 mmol/kg osmotic pressure and would not cause inflammatory reaction and blood exposure. The tissue distribution study suggested that IB injection which had 938 mmol/kg osmotic pressure was mainly distributed into gallbladder and duodenum that verified the reports that 90% IB was excreted through the feces through biliary excretion. In conclusion, this study provides the basic study to improve lymphatic exposure of IB injection by regulate the osmotic pressure and have the potential to be the helpful guidance for the elective lymph node dissection.

  2. Glucose Monitoring System Based on Osmotic Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Alexandra LEAL

    2011-02-01

    Full Text Available This paper presents the design and development of a prototype sensor unit for implementation in a long-term glucose monitoring system suitable for estimating glucose levels in people suffering from diabetes mellitus. The system utilizes osmotic pressure as the sensing mechanism and consists of a sensor prototype that is integrated together with a pre-amplifier and data acquisition unit for both data recording and processing. The sensor prototype is based on an embedded silicon absolute pressure transducer and a semipermeable nanoporous membrane that is enclosed in the sensor housing. The glucose monitoring system facilitates the integration of a low power microcontroller that is combined with a wireless inductive powered communication link. Experimental verification have proven that the system is capable of tracking osmotic pressure changes using albumin as a model compound, and thereby show a proof of concept for novel long term tracking of blood glucose from remote sensor nodes.

  3. Measuring the osmotic pressure of active colloids

    Science.gov (United States)

    Wang, Michael; Soni, Vishal; Magkiriadou, Sofia; Ferrari, Melissa; Youssef, Mina; Driscoll, Michelle; Sacanna, Stefano; Chaikin, Paul; Irvine, William

    We study the behavior of a system of colloidal spinners, consisting of weakly magnetic colloids driven by a rotating magnetic field. First the particles are allowed to sediment to an equilibrium density profile in a gravitational field, from which we measure the equilibrium equation of state. By spinning the particles at various frequencies, we introduce activity into the system through the hydrodynamic interactions between particles. We observe that the activity expands the sedimentation profile to a new steady state, from which we measure the pressure as a function of the density and activity. We compare the effects of activity on the pressure and mean-squared displacement of spinners and tracer particles.

  4. A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure

    Science.gov (United States)

    Marvel, Stephen C.; Kepler, Megan V.

    2009-01-01

    It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…

  5. Ultrafiltration of protein solutions; the role of protein association in rejection and osmotic pressure

    NARCIS (Netherlands)

    van den Berg, G.B.; Hanemaaijer, J.H.; Smolders, C.A.

    1987-01-01

    The monomer-dimer equilibrium of the protein β-lactoglobulin under neutral conditions appears to influence the rejection and the osmotic pressure build-up, both phenomena closely related to ultrafiltration. Rejection measurements indicate different rejections for the β-lactoglobulin monomers and

  6. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    2012-01-01

    The osmotic pressure of the cutaneous surface fluid (CSF) in vivo was measured for investigating whether evaporative water loss (EWL) derives from water diffusing through the skin or fluid secreted by exocrine subepidermal mucous glands. EWL was stimulated by subjecting R. esculenta to 30–34 °C....../Kg, n = 16. Osmolality of lymph was, 239 ± 4 mosmol/Kg, n = 8. Thus the flow of water across the epidermis would be in the direction from CSF to the interstitial fluid driven by the above osmotic gradients and/or coupled to the inward active Na+ flux via the slightly hyperosmotic paracellular...... compartment [EH Larsen et al. (2009) Acta Physiologica 195: 171–186]. It is concluded that the source of EWL of the frog on land is the fluid secreted by the mucous glands and not water diffusing through the skin. The study supports the hypothesis [EH Larsen (2011) Acta Physiologica 202: 435–464] that volume...

  7. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.

    1987-01-01

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  8. Design of an osmotic pressure sensor for sensing an osmotically active substance

    International Nuclear Information System (INIS)

    Ch, Nagesh; Paily, Roy P

    2015-01-01

    A pressure sensor based on the osmosis principle has been designed and demonstrated successfully for the sensing of the concentration levels of an osmotically active substance. The device is fabricated using the bulk micro-machining technique on a silicon on insulator (SOI) substrate. The substrate has a square cavity on the bottom side to fill with the reference glucose solution and a silicon (Si) membrane on the top side for the actuation. Two sets of devices, having membrane thicknesses of 10 µm and 25 µm, but the same area of 3 mm ×3 mm, are fabricated. The cavity is filled with a glucose solution of 100 mg dL −1 and it is sealed with a semi-permeable membrane made up of cellulose acetate material. The glucose solution is employed to prove the functionality of the device and it is tested for different glucose concentration levels, ranging from 50 mg dL −1 to 450 mg dL −1 . The output voltage obtained for the corresponding glucose concentration levels ranges from −6.7 mV to 22.7 mV for the 10 µm device and from −1.7 mV to 4 mV for the 25 µm device. The device operation was simulated using the finite element method (FEM) and the finite volume method (FVM), and the simulation and experimental results match closely. A response time of 40 min is obtained in the case of the 10 µm device compared to one of 30 min for the 25 µm device. The response times obtained for these devices are found to be small compared to those in similar works based on the osmosis principle. This pressure sensor has the potential to provide controlled drug delivery if it can be integrated with other microfluidic devices. (paper)

  9. MORPHOMETRIC PARAMETERS AND MICRORELIEF OF THE LUMBRICUS CELOMOCYTES IN THE CONDITIONS OF THE OSMOTIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Andrey Andreevich Prisnyi

    2017-10-01

    Full Text Available Background: Study the morphometric parameters and microrelief of the coelomocytes membrane of the Lumbricus representatives in normal and under osmotic pressure. Materials and methods: In the experiments, representatives of three species belonging to the genus Lumbricus were used. To conduct each series of experiments a coelomic liquid of 15 representatives of each species was used. From the circulation system of each individual examined, at least 250 cells were processed. The study of morphometric parameters of coelomocytes was carried out in isotonic conditions, and also with the use of osmotic tests in vitro. The features of the surface topography of coelomocytes were study using the “Integra Vita Probe Nanaboratorium” (NT-MDT, Russia. The analysis of amplitude and functional average statistical parameters of membrane roughness is carried out. The results of the research were processed using statistics methods using the Microsoft Excel 7.0 analysis package. Results: The Lumbricus representatives of revealed differences in the responses of amoebocytes and eleocytes to the effect of osmotic stress. Under the conditions of osmotic pressure, several morphologically different forms were found among the cells of each type. This indicates the potential ability of coelomocytes to spread out on the substrate for any type of osmotic pressure. The change in the topography of the cell membrane of coelomocytes under the hypoosmotic pressure is characterized by a smoothing of the microrelief structures with a decrease in the size of the microvysings and microinvaginations. Conclusion: The microrelief of the coelomocytes membrane reflects the features of their functional status changing under the influence of environmental factors.

  10. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    NARCIS (Netherlands)

    van de Klundert, L.J.M.; Bos, M.R.E.; van der Meij, J.A.M.; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3He-4He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated.

  11. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    International Nuclear Information System (INIS)

    Klundert, L.J.M. van de; Bos, M.R.E.; Meij, J.A.M. van der; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3 He- 4 He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4 He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated. (Auth.)

  12. Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte.

    Science.gov (United States)

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2016-06-01

    It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic force microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate-dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young's modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young's modulus. Moreover, using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

  13. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium.

    Directory of Open Access Journals (Sweden)

    Xi Cheng

    Full Text Available The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea.

  14. Colloid osmotic pressure during and after surgical interventions in adult and geriatric dogs

    Directory of Open Access Journals (Sweden)

    Mario A.F. Rego

    Full Text Available ABSTRACT: The objective this study is to evaluate colloid osmotic pressure (COP fluctuations in adult and senile dogs during surgical interventions. Thirty-six healthy dogs to surgical interventions, distributed in two groups, A and B, according to their age, and were all subjected to the same anesthetic protocol. Values of albumin, total plasmatic protein and COP were evaluated from samples collected before pre-anesthetic medication, fifteen minutes after pre-anesthetic medication, and shortly after the end of the intervention. Results were tested using t-test to compare among groups and ANOVA for repeated measures followed by Tukey’s test to compare different moments within the same group. Statistical significance was set at p<0.05. In both groups, significant decreases were observed in colloid osmotic pressure, as well as albumin and total proteins (p<0.001. Despite slightly lower COP values for the group of adult animals, this difference was not significant as there was a high individual variation within groups. The results therefore indicate no difference in colloid osmotic pressure values or fluctuation patterns among adult and senile dogs (p=0.124. The observed results indicate that colloid osmotic pressure decreases significantly during surgical procedures, due to hypotension caused by the anesthetic drugs and to hemodilution caused by the fluid administration but there is no difference between groups. However, in both adult and senile dogs, these variables recover gradually after the animals awaken, through increased urine production and recovery of vascular tonus, indicating the successful reestablishment of homeostasis.

  15. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  16. Comparison of the compressive yield response of aggregated suspensions: Pressure filtration, centrifugation, and osmotic consolidation

    International Nuclear Information System (INIS)

    Miller, K.T.; Melant, R.M.; Zukoski, C.F.

    1996-01-01

    The compressive rheological responses of suspensions containing flocculated kaolin, alumina (average particle sizes of 0.2 and 0.5 microm), and hydrous zirconia (average particle sizes of 8, 57, and 139 nm) particles have been measured using three different techniques: pressure filtration, volume fraction profile during centrifugation, and sediment height during centrifugation at multiple spinning speeds. While the volume fraction profile technique appears to be experimentally most robust, equivalent responses are found using the different techniques, indicating that the compressive yield stress is a material property of a given suspension. The compressive yield stress of each suspension increases rapidly with volume fraction but cannot be generally described using simple power-law or exponential fits. The compressive yield stress also increases with the inverse square of particle size. The packing behavior of the suspensions undergoing osmotic consolidation is compared with the mechanical compressive yield response. Some suspensions exhibited the same packing behavior as in the mechanical techniques, while others consistently packed to higher densities during osmotic consolidation. Although equivalent osmotic and mechanical loads do not always result in the same volume fractions, the similar increases in volume fraction with applied driving force suggest that both the osmotic and mechanical techniques are controlled by the force needed to rearrange the particle network

  17. Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models

    NARCIS (Netherlands)

    Wognum, Silvia; Huyghe, Jacques M.; Baaijens, Frank P. T.

    2006-01-01

    An experimental hydrogel model and a numerical mixture model were used to investigate why the disc herniates while osmotic pressure is decreasing. To investigate the influence of decreasing osmotic pressure on the opening of cracks in the disc. In the degeneration process, the disc changes structure

  18. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.

    Science.gov (United States)

    Gillespie, Dirk; Pennathur, Sumita

    2013-03-05

    Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.

  19. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-01-01

    Values of the concentration susceptibility (par. deltax/par. deltaΔ)/sub T,P/ near the lambda line and tricritical point in liquid mixtures of 3He and 4 He were calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambrs separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature

  20. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    Science.gov (United States)

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. OSMOTIC PRESSURE INFLUENCE ON THE VEGETABLE CHIPS DEHYDRATION PROCESS

    Directory of Open Access Journals (Sweden)

    LILIANA I. MIHALCEA

    2017-03-01

    Full Text Available The low fruit and vegetable consumption identified by the World Health Organization is a significant factor for adverse health consequences, like obesity and noncommunicable diseases. In the worldwide effort of boosting fruit and vegetable consumption to at least five servings of fruits and vegetables per day (5-A-Day, healthy, mildly sweet and salty dried crunchy vegetable snacks can add up increasing attractiveness of vegetables among youngsters. The objectives of this research were to obtain sweet and salty dried parsnip snacks, pretreated with concentrated whey (CW and concentrated hydrolyzed whey (HW, to study the influence of osmotic pressure and temperature (45, 55 and 65 °C on the convective drying process and to estimate the kinetic parameters (diffusion coefficients, activation energy of parsnip drying. Nonlinear regression models were applied to estimate the drying parameters based on Henderson - Pabis equations. Results have shown that the activation energy required during drying by the chips treated with HW (23.89 kJ·mol-1 and CW (20.06 kJ·mol-1 is lower than in the reference sample (31.02 kJ·mol-1. Moreover, these represents a smart valorization of a by product from dairy industry rich in valuable minerals, proteins and sugars in the veggie industry.

  2. Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature.

    Science.gov (United States)

    Chahine, Nadeen O; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2005-09-01

    Articular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.015 M, 0.15 M, 0.5 M, 1 M, and 2 M NaCl) at room temperature. The osmotic pressure (pi) was found to increase nonlinearly with increasing chondroitin sulfate concentration and decreasing NaCl ionic bath environment. Above 1 M NaCl, pi changes negligibly with further increases in salt concentration, suggesting that Donnan osmotic pressure is negligible above this threshold, and the resulting pressure is attributed to configurational entropy. Results of the current study were also used to estimate the contribution of osmotic pressure to the stiffness of cartilage based on theoretical and experimental considerations. Our findings indicate that the osmotic pressure resulting from configurational entropy is much smaller in cartilage (based on an earlier study on bovine articular cartilage) than in free solution. The rate of change of osmotic pressure with compressive strain is found to contribute approximately one-third of the compressive modulus (H(A)(eff)) of cartilage (Pi approximately H(A)(eff)/3), with the balance contributed by the intrinsic structural modulus of the solid matrix (i.e., H(A) approximately 2H(A)(eff)/3). A strong dependence of this intrinsic modulus on salt concentration was found; therefore, it appears that proteoglycans contribute structurally to the magnitude of H(A), in a manner independent of osmotic pressure.

  3. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    Science.gov (United States)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  4. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion

    OpenAIRE

    Yan, Jing; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2017-01-01

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmot...

  5. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.

    Science.gov (United States)

    Chen, Xi; Yip, Ngai Yin

    2018-02-20

    Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.

  6. Flux limitation in ultrafiltration: Osmotic pressure model and gel layer model

    NARCIS (Netherlands)

    Wijmans, J.G.; Nakao, S.; Smolders, C.A.

    1984-01-01

    The characteristic permeate flux behaviour in ultrafiltration, i.e., the existence of a limiting flux which is independent of applied pressure and membrane resistance and a linear plot of the limiting flux versus the logarithm of the feed concentration, is explained by the osmotic pressure model. In

  7. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure

    Science.gov (United States)

    Henderson, Ashley G.; Ehre, Camille; Button, Brian; Abdullah, Lubna H.; Cai, Li-Heng; Leigh, Margaret W.; DeMaria, Genevieve C.; Matsui, Hiro; Donaldson, Scott H.; Davis, C. William; Sheehan, John K.; Boucher, Richard C.; Kesimer, Mehmet

    2014-01-01

    The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer–dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease. PMID:24892808

  8. Force fluctuations of non-adherent cells: effects of osmotic pressure and motor inhibition

    Science.gov (United States)

    Rezvani, Samaneh; Schmidt, Christoph F.; Squires, Todd M.

    Cells sense their micro-environment through biochemical and mechanical interactions. They can respond to stimuli by undergoing shape- and possibly volume changes. Key components in determining the mechanical response of a cell are the viscoelastic properties of the actomyosin cortex, effective surface tension, and the osmotic pressure. We use custom-designed microfluidic chambers with integrated hydrogel micro windows to be able to rapidly change solution conditions for cells without active mixing, stirring or diluting of fluid. We use biochemical inhibitors and different osmolytes and investigate the time-dependent response of individual cells. Using a dual optical trap makes it possible to probe viscoelasticity of suspended cells by active and passive microrheology to quantify the response to the various stimuli. SFB 937, Germany.

  9. A simple relation for the concentration dependence of osmotic pressure and depletion thickness in polymer solutions

    NARCIS (Netherlands)

    Fleer, G.J.; Skvortsov, A.M.; Tuinier, R.

    2007-01-01

    We propose simple expressions II/IIo = 1 + and (omega/omega(ex))(3 alpha-1) and (delta(0)/delta)(2) = 1 + (omega/omega(ex))(2 alpha) for the osmotic pressure II and the depletion thickness 6 as a function of the polymer concentration omega. Here, IIo and delta 0 correspond to the dilute limit, and

  10. Fabrication of a novel cascade high-pressure electro-osmotic pump.

    Science.gov (United States)

    Zhang, Feifang; Wang, Rong; Han, Tingting; Yang, Bingcheng; Liang, Xinmiao

    2011-07-07

    A novel cascade electro-osmotic pump (EOP) has been fabricated by alternately connecting a cation monolithic column and anion monolithic column in series. In this manner, the change of electric polarity between each stage of the cascade EOP is easily achieved and the pressure output of the EOP could be greatly enhanced without increase of the applied voltage.

  11. Relationship between osmotic pressure of the blood and secretion of sweat

    Science.gov (United States)

    Montuori, A.

    1978-01-01

    Experiments with cats show that the thermic secretion of sweat represents a specific case of a general law: The central nervous apparatus that controls the secretion of sweat begins to function when the osmotic pressure of the blood drops below normal.

  12. Variability of hydrostatic hepatic vein and ascitic fluid pressure, and of plasma and ascitic fluid colloid osmotic pressure in patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1980-01-01

    The variability of hydrostatic hepatic vein and ascitic fluid pressures and of plasma and ascitic fluid colloid osmotic (oncotic) pressures was assessed during hepatic venous catheterization by repeated measurements on different days and at different locations in patients with cirrhosis...... of the liver. Furthermore, calculation of oncotic pressure from protein determinations was compared to the directly measured value of plasma and ascitic fluid samples. Repeated measurements of hydrostatic pressure in the same hepatic vein within 15 min showed a standard deviation (SD) below 1 mm......Hg. The variation in hydrostatic hepatic vein pressures, pressure differences and ascitic fluid pressures (when measured at different locations within the liver and peritoneal space during a single examination) was 1.5, 1.0 and 1.0 mmHg (SD), respectively. When measured on different days, the variation...

  13. Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles.

    Directory of Open Access Journals (Sweden)

    Hyo-Jick Choi

    Full Text Available Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 - 6×10-4 cm s-1 and high Arrhenius activation energy (Ea = 15.0 kcal mol-1, indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination.

  14. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.

    Science.gov (United States)

    Kim, Yu Chang; Kim, Young; Oh, Dongwook; Lee, Kong Hoon

    2013-03-19

    Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m(-2)h(-1) and 1.0 W/m(2) respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.

  15. Second sound, osmotic pressure, and Fermi-liquid parameters in 3He-4He solutions

    International Nuclear Information System (INIS)

    Corruccini, L.R.

    1984-01-01

    Second-sound velocities and osmotic pressures are analyzed to obtain the first experimental values for the Landau compressibility parameter F 0 /sup s/ in 3 He- 4 He solutions. Data are presented as a function of pressure and 3 He concentration, and are compared to theoretical predictions. The square of the second-sound velocity at finite temperature is found to be accurately proportional to the internal energy of a perfect Fermi gas. Using inertial effective masses given by the Landau-Pomeranchuk theory, the square of the velocity is found to separate into two parts: a temperature-dependent part characterized completely by ideal Fermi-gas behavior and a temperature-independent part containing all the Fermi-liquid corrections. This is related to a similar separation found in the osmotic pressure

  16. Colloid osmotic pressure in decompensated cirrhosis. A 'mirror image' of portal venous hypertension

    DEFF Research Database (Denmark)

    Henriksen, J H

    1985-01-01

    Colloid osmotic pressure in plasma (IIP) and ascitic fluid (IIA) and hydrostatic pressures in the hepatoportal system were measured simultaneously in 20 patients with decompensated cirrhosis. IIP was significantly decreased (mean, 21 mm Hg, versus normal, 30 mm Hg; P less than 0.01), and IIA...... was significantly below that of plasma (average, 25% of IIP; P less than 0.01). Portal pressure (transmural), determined as wedged hepatic venous minus inferior vena caval pressure (WHV--IVCP), was significantly increased (mean, 18 mm Hg, versus normal, 3 mm Hg; P less than 0.01) and inversely correlated to IIA...

  17. Hydrodynamic instabilities and concentration polarization coupled by osmotic pressure in a Taylor-Couette cell

    Science.gov (United States)

    Martinand, Denis; Tilton, Nils

    2016-11-01

    This study addresses analytically and numerically the coupling between hydrodynamic instabilities and osmotic pressure driven by concentration polarization. The configuration consists of a Taylor-Couette cell filled with a Newtonian fluid carrying a passive scalar. Whereas the concentric inner and outer cylinders are membranes permeable to the solvent, they totally reject the scalar. As a radial in- or outflow of solvent is imposed through both cylinders, a concentration boundary layer develops on the cylinder where the solvent exits, until an equilibrium steady state is reached. In addition, the rotation of the inner cylinder is used to drive centrifugal instabilities in the form of toroidal vortices, which interact with the concentration boundary layer. By means of the osmotic pressure, concentration polarization is found to promote or hinder the hydrodynamic instabilities, depending on capacity of the vortices and diffusion to increase the concentration field at the membrane. The results obtained by analytical stability analysis agree with dedicated Direct Numerical Simulations.

  18. Osmotic pressure and virial coefficients of star and comb polymer solutions: dissipative particle dynamics.

    Science.gov (United States)

    Wang, Tzu-Yu; Fang, Che-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-03-28

    The effects of macromolecular architecture on the osmotic pressure pi and virial coefficients (B(2) and B(3)) of star and comb polymers in good solvents are studied by dissipative particle dynamics simulations for both dilute and semiconcentrated regimes. The dependence of the osmotic pressure on polymer concentration is directly calculated by considering two reservoirs separated by a semipermeable, fictitious membrane. Our simulation results show that the ratios A(n+1) identical with B(n+1)/R(g)(3n) are essentially constant and A(2) and A(3) are arm number (f) dependent, where R(g) is zero-density radius of gyration. The value of dimensionless virial ratio g = A(3)/A(2)(2) increases with arm number of stars whereas it is essentially arm number independent for comb polymers. In semiconcentrated regime the scaling relation between osmotic pressure and volume fraction, pi proportional to phi(lambda), still holds for both star and comb polymers. For comb polymers, the exponent lambda is close to lambda(*) (approximately = 2.73 for linear chains) and is independent of the arm number. However, for star polymers, the exponent lambda deviates from lambda(*) and actually grows with increasing the arm number. This may be attributed to the significant ternary interactions near the star core in the many-arm systems.

  19. Vapour pressures and osmotic coefficients of binary mixtures containing alcohol and pyrrolidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Calvar, N.; Domínguez, Á.; Macedo, E.A.

    2013-01-01

    Highlights: • Osmotic coefficients of alcohols with pyrrolidinium ILs are determined. • Experimental data were correlated with extended Pitzer model of Archer and MNRTL. • Mean molal activity coefficients and excess Gibbs free energies were calculated. • The results have been interpreted in terms of interactions. -- Abstract: The osmotic and activity coefficients and vapour pressures of mixtures containing primary (1-propanol, 1-butanol and 1-pentanol) and secondary (2-propanol and 2-butanol) alcohols with pyrrolidinium-based ionic liquids (1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide, C 4 MpyrNTf 2 , and 1-butyl-1-methyl pyrrolidinium trifluoromethanesulfonate, C 4 MpyrTFO) have been experimentally determined at T = 323.15 K. For the experimental measurements, the vapour pressure osmometry technique has been used. The results on the influence of the structure of the alcohol and of the anion of the ionic liquid on the determined properties have been discussed and compared with literature data. For the correlation of the osmotic coefficients obtained, the Extended Pitzer model of Archer and the Modified Non-Random Two Liquids model were applied. The mean molal activity coefficients and the excess Gibbs energy for the studied mixtures were calculated from the parameters obtained in the correlation

  20. Recovery of leaf elongation during short term osmotic stress correlates with osmotic adjustment and cell turgor restoration in different durum wheat cultivars

    International Nuclear Information System (INIS)

    Mahdid, M.

    2014-01-01

    In order to investigate the responses of leaf elongation rate (LER), turgor and osmotic adjustment (OA) during a short-term stress (7 hours) imposed by PEG6000 and a recovery phase, three durum wheat (Triticum durum L.) varieties (Inrat; MBB; and OZ ) were grown in aerated nutrient solutions. Leaf elongation kinetics of leaf 3 was estimated using LVDT. Turgor was estimated using a cell pressure probe; osmotic potential as well as total sugars and potassium (K+) concentrations were estimated from expressed sap of elongation zone. Growth recovered rapidly and then stabilised at a lower value. A significant difference was found in % recovery of LER between the varieties. The cessation of growth after stress coincided with a decrease in turgor followed by a recovery period reaching control values in MBB and Inrat. A strong correlation (R2 = 0.83) between the reduction in turgor (turgor) and % recovery of LER was found at 7 hours after stress. The difference in the partial recovery of LER between varieties was thus related to the capacity of partial turgor recovery. Partial turgor recovery is associated with sugar or K+ based OA which indicates its importance in maintaining high LER values under water deficit. (author)

  1. Protozoa inhibition by different salts: Osmotic stress or ionic stress?

    Science.gov (United States)

    Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui

    2017-09-01

    Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.

  2. Prediction of Osmotic Pressure of Ionic Liquids Inside a Nanoslit by MD Simulation and Continuum Approach

    Science.gov (United States)

    Moon, Gi Jong; Yang, Yu Dong; Oh, Jung Min; Kang, In Seok

    2017-11-01

    Osmotic pressure plays an important role in the processes of charging and discharging of lithium batteries. In this work, osmotic pressure of the ionic liquids confined inside a nanoslit is calculated by using both MD simulation and continuum approach. In the case of MD simulation, an ionic liquid is modeled as singly charged spheres with a short-ranged repulsive Lennard-Jones potential. The radii of the spheres are 0.5nm, reflecting the symmetry of ion sizes for simplicity. The simulation box size is 11nm×11nm×7.5nm with 1050 ion pairs. The concentration of ionic liquid is about 1.922mol/L, and the total charge on an individual wall varies from +/-60e(7.944 μm/cm2) to +/-600e(79.44 μm/cm2) . In the case of continuum approach, we classify the problems according to the correlation length and steric factor, and considered the four separate cases: 1) zero correlation length and zero steric factor, 2) zero correlation length and non-zero steric factor, 3) non-zero correlation length and zero steric factor, and 4) non-zero correlation and non-zero steric factor. Better understanding of the osmotic pressure of ionic liquids confined inside a nanoslit can be achieved by comparing the results of MD simulation and continuum approach. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP: Ministry of Science, ICT & Future Planning) (No. 2017R1D1A1B05035211).

  3. Balancing Osmotic Pressure of Electrolytes for Nanoporous Membrane Vanadium Redox Flow Battery with a Draw Solute.

    Science.gov (United States)

    Yan, Ligen; Li, Dan; Li, Shuaiqiang; Xu, Zhi; Dong, Junhang; Jing, Wenheng; Xing, Weihong

    2016-12-28

    Vanadium redox flow batteries with nanoporous membranes (VRFBNM) have been demonstrated to be good energy storage devices. Yet the capacity decay due to permeation of vanadium and water makes their commercialization very difficult. Inspired by the forward osmosis (FO) mechanism, the VRFBNM battery capacity decrease was alleviated by adding a soluble draw solute (e.g., 2-methylimidazole) into the catholyte, which can counterbalance the osmotic pressure between the positive and negative half-cell. No change of the electrolyte volume has been observed after VRFBNM being operated for 55 h, revealing that the permeation of water and vanadium ions was effectively limited. Consequently, the Coulombic efficiency (CE) of nanoporous TiO 2 vanadium redox flow battery (VRFB) was enhanced from 93.5% to 95.3%, meanwhile, its capacity decay was significantly suppressed from 60.7% to 27.5% upon the addition of soluble draw solute. Moreover, the energy capacity of the VRFBNM was noticeably improved from 297.0 to 406.4 mAh remarkably. These results indicate balancing the osmotic pressure via the addition of draw solute can restrict pressure-dependent vanadium permeation and it can be established as a promising method for up-scaling VRFBNM application.

  4. New Osmosis Law and Theory: the New Formula that Replaces van't Hoff Osmotic Pressure Equation

    OpenAIRE

    Huang, Hung-Chung; Xie, Rongqing

    2012-01-01

    This article derived a new abstract concept from the osmotic process and concluded it via "osmotic force" with a new law -- "osmotic law". The "osmotic law" describes that, in an osmotic system, osmolyte moves osmotically from the side with higher "osmotic force" to the side with lower "osmotic force". In addition, it was proved mathematically that the osmotic process could be explained perfectly via "osmotic force" and "osmotic laws", which can prevent the difficulties in using current "osmo...

  5. Osmotic pressure in Ca/Na montmorillonite dispersions: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Joensson, Bo; Aakesson, T.; Segad, M.; Cabane, B.

    2010-01-01

    Document available in extended abstract form only. In the past, clay-water systems have been extensively studied. due to its importance in agricultural as well as technological applications. A more recent use of clay is as sealing material for nuclear waste. The success for such a containment depends on the clay structure and its swelling properties. This means that the clay should be able to sustain considerable changes in the surrounding ground water including salinities of glacial melt water as well as sea water, while still being an effective hydraulic barrier. We have approached this problem using statistical mechanical simulation techniques. The osmotic pressure in Ca/Na montmorillonite dispersions has been calculated via Monte Carlo simulations. For a clay system in equilibrium with pure water, Monte Carlo simulations predict a large swelling when the clay counterions are monovalent, while in presence of divalent counterions a limited swelling is predicted with an aqueous layer between the clay lamellae of about 1 nm - in excellent agreement with SAXS data. Montmorillonite in contact with a salt reservoir with e.g. both Na and Ca counterions will only show a modest swelling unless the Na + concentration in the bulk is several orders of magnitude larger than the Ca 2+ concentration. This is true both for a clay repository surrounded by ground water as well as sea water of high salinity. The limited swelling of clay in presence of divalent counterions is a consequence of ion-ion correlations, which both reduce the entropic repulsion and give rise to an attractive component in the total osmotic pressure. Ion-ion correlations also favour divalent counterions when competing with monovalent ones. This is an important aspect for the retention of radioactive charged species. A more fundamental result of ion-ion correlations is that the osmotic pressure as a function of clay sheet separation becomes non-monotonic - which indicates the possibility of a phase

  6. Characterization of Macrophomina phaseolina isolates by their response to different osmotic potentials and AFLP

    Directory of Open Access Journals (Sweden)

    Bárbara J. Gutiérrez Cedeño

    2014-01-01

    Full Text Available Charcoal rot of Phaseolus vulgaris is caused by the fungus Macrophomina phaseolina, the disease is associated with high temperature and water stress. The objective of this study was to characterize isolates of M. phaseolina by their response to different osmotic potentials and AFLP. The growth of 11 isolates was determined on potato dextrose agar at 48 and 72 h in a gradient of osmotic potential induced using NaCl as well as their effects on germination of sclerotia. Three water groups were statistically different indicating differential response to osmotic potential and all sclerotia grown under these conditions, germinated between 24 and 48h. There were groups of isolates that were tolerant to water stress induced. The AFLP genotyping allowed the formation of five genetic groups, showing a wide genetic variability. Of the nine starters CTA-AT showed a high degree of confidence in the identification of genotypes of M. phaseolina and CAA-AC had the lowest discriminatory power. These results show that M. phaseolina isolates responded differently to osmotic potential and are genetically different between them. Although there was a clear correspondence of genetic groups to water groups; these responses are important features in the search for alternative management in black bean pathosystem. Keywords: molecular marker, M. phaseolina, water deficit

  7. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells

    Science.gov (United States)

    Lin, Ya-Li; Gong, Ling-Li; Che, Kai-Jun; Li, Sen-Sen; Chu, Cheng-Xu; Cai, Zhi-Ping; Yang, Chaoyong James; Chen, Lu-Jian

    2017-05-01

    We examined the end-pumped lasing behaviors of dye doped cholesteric liquid crystal (DDCLC) microshells which were fabricated by glass capillary microfluidics. Several kinds of mode resonances, including distributed feedback, Fabry-Pérot (FP), and whispering gallery (WG) modes, can be robustly constructed in each individual DDCLC microshell by varying the beam diameter, namely, tuning the DDCLC gain area. The FP and WG modes were further confirmed experimentally, and the corresponding lasing mechanisms are clearly revealed from the unique material characteristics of DDCLC and the geometrical structure of the microshell. Additionally, we demonstrated that the osmotic pressure can be used to shrink/expand the microshell, productively tuning the excitation of lasing modes in a controlled manner. We wish our findings can provide a new insight into the design of DDCLC microlasers with tunable optical properties.

  8. Osmotic Pressure of Aqueous Electrolyte Solutions via Molecular Simulations of Chemical Potentials: Application to NaCl.

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Moučka, F.; Nezbeda, Ivo

    2016-01-01

    Roč. 407, Sl (2016), s. 76-83 ISSN 0378-3812 Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : osmotic pressure * chemical potential * molecular simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.473, year: 2016

  9. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    Science.gov (United States)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  10. Osmotic Effects in Sludge Dewatering

    DEFF Research Database (Denmark)

    Keiding, Kristian; Rasmussen, Michael R.

    2003-01-01

    A model of filtration dewatering is presented. The model is based on the d’Arcy flow equation in which the resistance to filtration is described by the Corzeny–Carman equation and the driving force is the difference between the external pressure and the osmotic pressure of the filter cake. It has...

  11. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2

    Directory of Open Access Journals (Sweden)

    Alberto eScoma

    2016-05-01

    Full Text Available Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea contaminated environments is negligible. Recent laboratory evidences highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs. In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain A. borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively, under atmospheric or increased HP (0.1 and 10MPa. Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1MPa in hyperosmosis-acclimated cells and at 10MPa under isosmotic conditions, supporting the hypothesis that ectoine synthesis may be primarily triggered by HP rather than osmotic stress. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-day incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in

  12. [Magnetic Fe₃O₄Microparticles Conditioning-Pressure Electro-osmotic Dewatering (MPEOD) of Sewage Sludge].

    Science.gov (United States)

    Qian, Xu; Wang, Yi-li; Zhao, Li

    2016-05-15

    For magnetic Fe₃O₄ microparticles conditioning--pressure electro-osmotic dewatering (MPEOD) process of activated sludge (AS), the effects of operating parameters (optimal dosage of Fe₃O₄, electric field duration, mechanical pressure and voltage) on the dewatering efficiency and energy consumption were investigated, and the optimal conditions were determined. Moreover, the properties of supernatant and sludge along MPEOD process were studied as well as the interaction force between the sludge biosolids. Taking the energy consumption into consideration, the results showed that the optimal dewatering effect for AS could be achieved with a magnetic Fe₃O₄ microparticles dosage of 0.15 g · g⁻¹, an electric field duration of 2 h, a mechanical pressure of 400-600 kPa and a voltage of 30-50 V. When MPEOD was conducted at 400 kPa and 50 V for 2 h, the sludge reduction rate reached 98.30%, the percentage of water removal was 99.34% and the moisture content of AS decreased from 99.18% to 44.46%. The corresponding consumption of energy was 0.013 3 kW · h · kg⁻¹. The coagulation mechanism played a slight role in the AS conditioning with magnetic Fe₃O₄ micro-particles. In fact, magnetic Fe₃O₄micro-particles could greatly decrease the acid-base interaction (WA) between AS biosolids, cause floc growth and enlarge pores in AS aggregates, which will be beneficial to AS dewatering. Compared to DLVO theory, the extended DLVO theory could accurately describe the aggregation and dispersion behavior of sludge particles.

  13. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  14. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  15. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-06-01

    Values of the concentration susceptibility near the lambda line and tricritical point in liquid mixtures of 3 He and 4 He have been calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambers separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature. Osmotic equilibrium was established through a Vycor glass superleak, which for 3 He mole fraction x > 0.55 functions not only in the superfluid phase but in portions of the normal fluid region of the phase diagram as well. Measurements were made at four 3 He mole fractions, x = 0.59, x = 0.64, x = 0.68, and x = 0.70. In contrast with determinations from light scattering and vapor pressure measurements, the present measurements show a pronounced peak at the lambda transition for the two values of x less than the tricritical value (x/sub t/ = 0.675). The susceptibilities are consistent with α = 0 both above and below the lambda transition except at x = 0.64, where some combination of α and α' greater than zero seems to be preferred. (The result α = 0 corresponds to a logarithmic divergence.) It is possible that this positive value of α or α' represents the influence of tricritical effects. It should be emphasized that there is considerable ambiguity in our determination of α, with acceptable least-squares fits corresponding to values of α between 0.0 and 0.2 being found at both concentrations, both above and below T/sub lambda/. The results appear to be consistent with the results of other experiments away from the lambda line, and also to be consistent with a simple tricritical scaling relationship

  16. Effect of topical anaesthetics on interstitial colloid osmotic pressure in human subcutaneous tissue sampled by wick technique.

    Directory of Open Access Journals (Sweden)

    Hans Jørgen Timm Guthe

    Full Text Available To measure colloid osmotic pressure in interstitial fluid (COP(i from human subcutaneous tissue with the modified wick technique in order to determine influence of topical application of anaesthetics, dry vs. wet wick and implantation time on COP(i.In 50 healthy volunteers interstitial fluid (IF was collected by subcutaneous implantation of multi-filamentous nylon wicks. Study subjects were allocated to two groups; one for comparing COP(i obtained from dry and saline soaked wicks, and one for comparing COP(i from unanaesthetized skin, and skin after application of a eutectic mixture of local anaesthetic (EMLA®, Astra Zeneca cream. IF was sampled from the skin of the shoulders, and implantation time was 30, 60, 75, 90 and 120 min. Colloid osmotic pressure was measured with a colloid osmometer. Pain assessment during the procedure was compared for EMLA cream and no topical anaesthesia using a visual analogue scale (VAS in a subgroup of 10 subjects.There were no significant differences between COP(i obtained from dry compared to wet wicks, except that the values after 75 and 90 min. were somewhat higher for the dry wicks. Topical anaesthesia with EMLA cream did not affect COP(i values. COP(i decreased from 30 to 75 min. of implantation (23.2 ± 4.4 mmHg to 19.6 ± 2.9 mmHg, p = 0.008 and subsequently tended to increase until 120 min. EMLA cream resulted in significant lower VAS score for the procedure.COP(i from subcutaneous tissue was easily obtained and fluid harvesting was well tolerated when topical anaesthetic was used. The difference in COP(i assessed by dry and wet wicks between 75 min. and 90 min. of implantation was in accordance with previous reports. The use of topical analgesia did not influence COP(i and topical analgesia may make the wick technique more acceptable for subjects who dislike technical procedures, including children.ClinicalTrials.gov NCT01044979.

  17. Effect of salinity on hemolymph osmotic pressure, sodium concentration and Na+-K+-ATPase activity of gill of Chinese crab, Eriocheir sinensis

    Science.gov (United States)

    Liu, Hongyu; Pan, Luqing; Fu, Lü

    2008-02-01

    The effects of salinity on hemolymph osmotic pressure, Na+ concentration and Na+-K+-ATPase activity of gill of Chinese crab Eriocheir sinensis were studied. The results showed that hemolymph osmotic pressure and Na+ concentration increased significantly ( P0.05); However, the protein concentration decreased gradually with the increase of salinity from 0.25 d to 1 d, and then tended to be stable from day 1 to day 15.

  18. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage.

    Science.gov (United States)

    Han, EunHee; Chen, Silvia S; Klisch, Stephen M; Sah, Robert L

    2011-08-17

    The negatively charged proteoglycans (PG) provide compressive resistance to articular cartilage by means of their fixed charge density (FCD) and high osmotic pressure (π(PG)), and the collagen network (CN) provides the restraining forces to counterbalance π(PG). Our objectives in this work were to: 1), account for collagen intrafibrillar water when transforming biochemical measurements into a FCD-π(PG) relationship; 2), compute π(PG) and CN contributions to the compressive behavior of full-thickness cartilage during bovine growth (fetal, calf, and adult) and human adult aging (young and old); and 3), predict the effect of depth from the articular surface on π(PG) in human aging. Extrafibrillar FCD (FCD(EF)) and π(PG) increased with bovine growth due to an increase in CN concentration, whereas PG concentration was steady. This maturation-related increase was amplified by compression. With normal human aging, FCD(EF) and π(PG) decreased. The π(PG)-values were close to equilibrium stress (σ(EQ)) in all bovine and young human cartilage, but were only approximately half of σ(EQ) in old human cartilage. Depth-related variations in the strain, FCD(EF), π(PG), and CN stress profiles in human cartilage suggested a functional deterioration of the superficial layer with aging. These results suggest the utility of the FCD-π(PG) relationship for elucidating the contribution of matrix macromolecules to the biomechanical properties of cartilage. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Osmolyte depletion viewed in terms of the dividing membrane and its work of expansion against osmotic pressure.

    Science.gov (United States)

    Shimizu, Seishi; Matubayasi, Nobuyuki

    2017-12-01

    How osmolytes enhance the folding, binding, and self-assembly of biological macromolecules at a microscopic scale has long been a matter of debate. Ambiguities persist on the key interpretive concepts, such as the "effective membrane" (which marks the boundary of the volume from which osmolytes are excluded) and the "free energy of exclusion" of osmolytes from biomolecular surfaces. In this paper, we formulate these elusive concepts based upon chemical thermodynamics and rigorous statistical thermodynamics (the Kirkwood-Buff theory). Positioning of the membrane at the osmotic dividing surface is crucial in order not to affect the thermodynamics of solvation. The notion of the free energy (work) of excluding osmolytes is refined to the expansion work against the osmotic pressure, which indeed describes the change of solvation free energy at dilute osmolyte concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparison of different methods of osmotic shocks for extraction of Human Granulocyte Colony Stimulating Factor produced in periplasm

    Directory of Open Access Journals (Sweden)

    Sharareh Peymanfar

    2018-06-01

    Discussion and conclusion: Regarding the results, it is concluded that the MgSO4 with Tris buffer create a good osmotic pressure and accordingly is a more effective way for G-CSF protein extraction. As a result, this method could be used for production and simple separation of recombinant drug proteins.

  1. Osmotic effects of polyethylene glycol.

    Science.gov (United States)

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.

  2. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  3. Osmotic Pressure in the Physics Course for Students of the Life Sciences

    Science.gov (United States)

    Hobbie, Russell K.

    1974-01-01

    Discusses the use of an ideal gas model to explain osmotic equilibrium and nonequilibrium flows through an ideal semipermeable membrane. Included are a justification of the relationship between an ideal gas and a dilute solution, a review of the irreversible thermodynamic flow, and some sample applications to physiology. (CC)

  4. Free water transport, small pore transport and the osmotic pressure gradient

    NARCIS (Netherlands)

    Parikova, Alena; Smit, Watske; Zweers, Machteld M.; Struijk, Dirk G.; Krediet, Raymond T.

    2008-01-01

    BACKGROUND: Water transport in peritoneal dialysis (PD) patients occurs through the small pores and water channels, the latter allowing free water transport (FWT). The osmotic gradient is known to be one of the major determinants of water transport. The objective of the study was to analyse the

  5. Thermodynamic study of aqueous solutions of polyelectrolytes of low and medium charge density without added salt by direct measurement of osmotic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Miklos, E-mail: miklosnagy@chem.elte.h [Institute of Chemistry, Department of Physical Chemistry, Laboratory for Colloid and Supermolecular Structures, L. Eoetvoes University, P.O. Box 32 H-1518 Budapest 112 (Hungary)

    2010-03-15

    A special block osmometer has been constructed and applied to a systematic study of poly (vinyl alcohol and vinyl sulphate ester) (PVS) sodium salts in dilute and moderately concentrated salt free aqueous solutions. In order to avoid surely ionic contamination all parts of the equipment that can contact with the polyelectrolyte solutions were made of different kinds of plastics and glass. The pressure range spans from (50 to 1.3 . 10{sup 5}) Pa. The measuring system was found to be appropriate for determination of the molar mass of water soluble polymers, too. Above a certain analytical density of dissociable groups (ADDG) an ion size dependent transition was observed on the reduced osmotic pressure vs. concentration curves. The analysis of the osmotic pressure data has clearly revealed that the dependence of the degree of dissociation on ADDG calculated at zero polyelectrolyte concentration contradicts to 'ion condensation' theory. With increasing polyelectrolyte concentration the degree of dissociation decreased rather steeply but at very low concentrations sharp maximums appeared due either to the change in conformation of these charged macromolecules, or formation of dynamic clusters induced by salting out of neutral parts of the macromolecules by the ionized groups. The applicability of the scaling concept as well as the many possible ways of characterization of non-ideality of polyelectrolyte solutions will be discussed in detail.

  6. Influence of osmotic pressure on the growth of three species of the genus Zoophthora

    Directory of Open Access Journals (Sweden)

    Jerzy Piątkowski

    2013-12-01

    Full Text Available Strains accomodated in the genus Zoophthora are very sensitive to osmotic value of their habitat. Hipertonical molarity of buffers and NaCl decreases the growth, but this effect strongly depends on the species tested and on the kind of buffer. In 0.66% phtalan buffer the growth of Z. lanceolata is completely stopped whereas Z. psyllae and Z. aphrophora is inhibited only in 50% comparing to the control.

  7. Osmocapsules for direct measurement of osmotic strength.

    Science.gov (United States)

    Kim, Shin-Hyun; Lee, Tae Yong; Lee, Sang Seok

    2014-03-26

    Monodisperse microcapsules with ultra-thin membranes are microfluidically designed to be highly sensitive to osmotic pressure, thereby providing a tool for the direct measurement of the osmotic strength. To make such osmocapsules, water-in-oil-in-water double-emulsion drops with ultra-thin shells are prepared as templates through emulsification of core-sheath biphasic flow in a capillary microfluidic device. When photocurable monomers are used as the oil phase, the osmocapsules are prepared by in-situ photopolymerization of the monomers, resulting in semipermeable membranes with a relatively large ratio of membrane thickness to capsule radius, approximately 0.02. These osmocapsules are buckled by the outward flux of water when they are subjected to a positive osmotic pressure difference above 125 kPa. By contrast, evaporation-induced consolidation of middle-phase containing polymers enables the production of osmocapsules with a small ratio of membrane thickness to capsule radius of approximately 0.002. Such an ultra-thin membrane with semi-permeability makes the osmocapsules highly sensitive to osmotic pressure; a positive pressure as small as 12.5 kPa induces buckling of the capsules. By employing a set of distinct osmocapsules confining aqueous solutions with different osmotic strengths, the osmotic strength of unknown solutions can be estimated through observation of the capsules that are selectively buckled. This approach provides the efficient measurement of the osmotic strength using only a very small volume of liquid, thereby providing a useful alternative to other measurement methods which use complex setups. In addition, in-vivo measurement of the osmotic strength can be potentially accomplished by implanting these biocompatible osmocapsules into tissue, which is difficult to achieve using conventional methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: Analytical and semi-analytical solutions

    Science.gov (United States)

    Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T.

    2016-09-01

    In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye-Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien-Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.

  9. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang; Zuo, Jian; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic

  10. Casein Micelle Dispersions under Osmotic Stress

    Science.gov (United States)

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  11. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2013-01-01

    Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite membranes were fouled with model river water containing natural organic matter. The water permeation carried foulants from the feed river water into the membrane porous support layer and caused severe water flux decline of ∼46%. Analysis of the water flux behavior revealed three phases in membrane support layer fouling. Initial foulants of the first fouling phase quickly adsorbed at the active-support layer interface and caused a significantly greater increase in hydraulic resistance than the subsequent second and third phase foulants. The water permeability of the fouled membranes was lowered by ∼39%, causing ∼26% decrease in projected power density. A brief, chemical-free osmotic backwash was demonstrated to be effective in removing foulants from the porous support layer, achieving ∼44% recovery in projected power density. The substantial performance recovery after cleaning was attributed to the partial restoration of the membrane water permeability. This study shows that membrane fouling detrimentally impacts energy production, and highlights the potential strategies to mitigate fouling in PRO power generation with natural salinity gradients.

  12. IMPROVING STUDENTS’ GENERIC SKILL IN SCIENCE THROUGH CHEMISTRY LEARNING USING ICT-BASED MEDIA ON REACTION RATE AND OSMOTIC PRESSURE MATERIAL

    Directory of Open Access Journals (Sweden)

    S. Mulyani

    2016-04-01

    Full Text Available The research aims to obtain information of improvement students’ generic skills in science through chemistry learning using ICT-based media on reaction rate and osmotic pressure material. This research was designed with quasi-experimental research method, with the design of non-equivalent control group pretest-posttest design. The research subjects were students of class XI and XII one of Madrasah Aliyah Negeri (State Islamic Senior High School in Bandung. Learning process in experiment group were conducted using ICT-based media, whereas in control group conducted by applying laboratory activities. Data were collected through multiple-choice test. The result shows that there was no significant difference of n- gain of students’ generic skill in science between experiment and control group. Therefore it can be concluded that the learning process using ICT-based media can improve students' generic skills in science as well as laboratory-based activities.

  13. The Kinetic-Molecular and Thermodynamic Approaches to Osmotic Pressure: A Study of Dispute in Physical Chemistry and the Implications for Chemistry Education

    Science.gov (United States)

    De Berg, Kevin C.

    2006-01-01

    Osmotic pressure proves to be a useful topic for illustrating the disputes brought to bear on the chemistry profession when mathematics was introduced into its discipline. Some chemists of the late 19th century thought that the introduction of mathematics would destroy that "chemical feeling" or "experience" so necessary to the practice of…

  14. A phenomenological one-parameter equation of state for osmotic pressures of PEG and other neutral flexible polymers in good solvents

    DEFF Research Database (Denmark)

    Cohen, J.A.; Podgornik, R; Hansen, Per Lyngs

    2009-01-01

    We present a phenomenological one-parameter scaling equation of state that accurately represents osmotic pressures of neutral flexible polymers in good solvents from the dilute through the semidilute regime. The equation comprises a sum of scaled van't Hoff and des Cloizeaux terms including a fit...

  15. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    International Nuclear Information System (INIS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-01-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (G M1 )-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16x10 5 N/m 2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without G M1 , the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing G M1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of G M1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of G M1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  16. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng; Chung, Neal Tai-Shung

    2013-01-01

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  17. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed

    KAUST Repository

    Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    Pressure retarded osmosis (PRO) is a promising technology to produce clean and sustainable osmotic energy from salinity gradient. Fresh water is of scarcity in Singapore; however, alternative sources of feed solutions and draw solutions are well explored. For the first time, seawater brine from the TuaSpring desalination plant and wastewater retentate from the NEWater plant were used in a state-of-the-art TFC-PES hollow fiber membrane PRO process. The highest power densities obtained with 1 M NaCl solution and seawater brine were 27.0 W/m2 and 21.1 W/m2 at 20bar, respectively, when deionized (DI) water was used as the feed solution. However, the highest power density dropped to 4.6W/m2 when wastewater retentate was used as the feed solution. Fouling on the porous substrate induced by the wastewater retentate was identified as the main cause of the reduction in the power densities, while the negative effects of seawater brine on the PRO performances were negligible. Both ultrafiltration (UF) and nanofiltration (NF) pretreatment were employed to mitigate fouling from the wastewater retentate, and the power densities were boosted to 6.6W/m2 and 8.9W/m2, respectively, beyond the power density of 5W/m2 proposed by Statkraft for the PRO process to be economical.

  18. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed

    KAUST Repository

    Wan, Chunfeng

    2015-04-01

    Pressure retarded osmosis (PRO) is a promising technology to produce clean and sustainable osmotic energy from salinity gradient. Fresh water is of scarcity in Singapore; however, alternative sources of feed solutions and draw solutions are well explored. For the first time, seawater brine from the TuaSpring desalination plant and wastewater retentate from the NEWater plant were used in a state-of-the-art TFC-PES hollow fiber membrane PRO process. The highest power densities obtained with 1 M NaCl solution and seawater brine were 27.0 W/m2 and 21.1 W/m2 at 20bar, respectively, when deionized (DI) water was used as the feed solution. However, the highest power density dropped to 4.6W/m2 when wastewater retentate was used as the feed solution. Fouling on the porous substrate induced by the wastewater retentate was identified as the main cause of the reduction in the power densities, while the negative effects of seawater brine on the PRO performances were negligible. Both ultrafiltration (UF) and nanofiltration (NF) pretreatment were employed to mitigate fouling from the wastewater retentate, and the power densities were boosted to 6.6W/m2 and 8.9W/m2, respectively, beyond the power density of 5W/m2 proposed by Statkraft for the PRO process to be economical.

  19. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.

    Science.gov (United States)

    Sun, Shi-Peng; Chung, Tai-Shung

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m(2), which is equivalent to 13.72 W/m(2) of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation.

  20. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  1. Vapour pressures, osmotic and activity coefficients for binary mixtures containing (1-ethylpyridinium ethylsulfate + several alcohols) at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gomez, Elena; Dominguez, Angeles; Macedo, Eugenia A.

    2010-01-01

    Osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1-ethylpyridinium ethylsulfate were determined at T = 323.15 K using the vapour pressure osmometry technique. From the experimental results, vapour pressure and activity coefficients can be determined. For the correlation of osmotic coefficients, the extended Pitzer model modified by Archer, and the modified NRTL (MNRTL) model were used, obtaining deviations lower than 0.017 and 0.047, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the binary mixtures studied were determined from the parameters obtained with the extended Pitzer model modified by Archer.

  2. Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements.

    Science.gov (United States)

    Lay, Wesley K; Miller, Mark S; Elcock, Adrian H

    2016-04-12

    GLYCAM06 and CHARMM36 are successful force fields for modeling carbohydrates. To correct recently identified deficiencies with both force fields, we adjusted intersolute nonbonded parameters to reproduce the experimental osmotic coefficient of glucose at 1 M. The modified parameters improve behavior of glucose and sucrose up to 4 M and improve modeling of a dextran 55-mer. While the modified parameters may not be applicable to all carbohydrates, they highlight the use of osmotic simulations to optimize force fields.

  3. Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO: A Review

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    2015-10-01

    Full Text Available Global energy consumption has been highly dependent on fossil fuels which cause severe climate change and, therefore, the exploration of new technologies to produce effective renewable energy plays an important role in the world. Pressure-retarded osmosis (PRO is one of the promising candidates to reduce the reliance on fossil fuels by harnessing energy from the salinity gradient between seawater and fresh water. In PRO, water is transported though a semi-permeable membrane from a low-concentrated feed solution to a high-concentrated draw solution. The increased volumetric water flow then runs a hydro-turbine to generate power. PRO technology has rapidly improved in recent years; however, the commercial-scale PRO plant is yet to be developed. In this context, recent developments on the PRO process are reviewed in terms of mathematical models, membrane modules, process designs, numerical works, and fouling and cleaning. In addition, the research requirements to accelerate PRO commercialization are discussed. It is expected that this article can help comprehensively understand the PRO process and thereby provide essential information to activate further research and development.

  4. Vapor pressures, osmotic and activity coefficients for (LiBr + acetonitrile) between the temperatures (298.15 and 343.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Nasirzadeh, Karamat E-mail: karamat.nasirzadeh@chemie.uni-regensburg.de; Neueder, Roland; Kunz, Werner

    2004-06-01

    Precise vapor pressure data for pure acetonitrile and (LiBr + acetonitrile) are given for temperatures ranging from T=(298.15 to 343.15) K. The molality range is from m=(0.0579 to 0.8298) mol {center_dot} kg{sup -1}. The osmotic coefficients are calculated by taking into account the second virial coefficient of acetonitrile. The parameters of the extended Pitzer ion interaction model of Archer and the mole fraction-based thermodynamic model of Clegg-Pitzer are evaluated. These models accurately reproduce the available osmotic coefficients. The parameters of the extended Pitzer ion interaction model of Archer are used to calculate the mean molal activity coefficients.

  5. The Response Strategy of Maize, Pea and Broad Bean Plants to Different Osmotic Potential Stress

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2013-08-01

    Full Text Available This investigation was conducted to study the tolerance strategy of maize, broad bean and pea plants to salinity stress with exogenous applications of proline or phenylalanine on seed germination and seedlings growth. From the results obtained, it can be observed that osmotic stress affected adversely the rate of germination in maize, broad bean and pea plants. The excessive inhibition was more prominent at higher concentration of NaCl. The seeds and grains tested were exhibited some differential responses to salinity, in a manner that the inhibitory effect of salinity on seed germination ran in the order, maize higher than broad bean and the later was higher than pea plant. Treatment with proline or phenylalanine (100 ppm significantly increased these seed germination and seedlings growth characteristics even at lowest salinity level tested.

  6. Interarm difference in blood pressure

    DEFF Research Database (Denmark)

    Mehlsen, Jesper; Wiinberg, Niels

    2014-01-01

    The present study aimed at examining the interarm difference in blood pressure and its use as an indicator of peripheral arterial disease (PAD). Data were included from consecutive patients referred from their general practitioner to our vascular laboratory for possible PAD aged 50 years or older...... without known cardiac disease, renal disease, or diabetes mellitus. 824 patients (453 women) with mean age of 72 years (range: 50-101) were included. 491 patients had a diagnosis of hypertension and peripheral arterial disease (PAD) was present in 386 patients. Systolic blood pressure was 143 ± 24 mm......Hg and 142 ± 24 mmHg on the right and left arm, respectively (P = 0.015). The interarm difference was greater in patients with hypertension (P = 0.002) and PAD (P blood pressure was reproducible...

  7. Differential osmotic pressure measurements of the concentration susceptibility of liquid 3He/4He mixtures near the lambda curve and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.; Zimmermann, W. Jr.

    1979-01-01

    Values of the concentration susceptibility (partial x/partial Δ)/sub T/,P of liquid 3 He/ 4 He mixtures have been determined near the lambda curve and tricritical point from measurements of the differential osmotic pressure as a function of temperature T at four values of the 3 He mole fraction, x = 0.594, x = 0.644, x = 0.680, and x = 0.706. Here Δ = μ 3 - μ 4 is the difference between molar chemical potentials and P is the pressure. Our results for the two values of x less than the tricritical value x/sub t/ = 0.675 show pronounced peaks at the lambda transition. For 3 x 10 -4 -2 , where t equals [T - T/sub lambda/(x)]/T/sub lambda/(x), these peaks may be characterized both above and below the transition by the form (A/sub plus-or-minus//α/sub plus-or-minus/) (vertical-bart vertical-bar/sup -alpha/ +- - 1) + B/sub plus-or-minus/, with exponents α/sub plus-or-minus/ lying in the range from approx. 0.0 to approx. 0.2. Except perhaps for x -1 [T-T/sub t//T/sub t/)/vertical-barx-x/sub t//x/sub t/vertical-bar], where f and Ψ are functions determined by experiment and T/sub t/ = 0.867 K is the tricritical value of T. With the aid of this scaling relationship, the behavior of (partialx/partialΔ)/sub T/,P along curves of constant Δ near the lambda curve has been constucted from our data at constant x

  8. Renal cells express different forms of vimentin: the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis.

    Directory of Open Access Journals (Sweden)

    Bettina S Buchmaier

    Full Text Available Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight, besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis.

  9. Osmotic flow and over pressures within the Callovo-Oxfordian argillite in the eastern part of the Paris Basin

    Energy Technology Data Exchange (ETDEWEB)

    Croise, J. [Colenco Power Engineering AG, Groundwater Protection and Waste Disposal, Baden (Switzerland); Vinsotz, A. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), Lab. de Recherche Souterrain RD960, 55 - Bure (France); Noya, D. [British Geological Survey, Kingsley Dunham Centre, Nottingham NG (United Kingdom)

    2005-07-01

    A middle Jurassic shale, the Callovo-Oxfordian argillite (420-560 m b.g.), is currently being intensively investigated at the ANDRA site, about 300 km eastern from Paris, and particularly with respect to its hydrogeological and hydrochemical properties. The argillite rests between the Oxfordian Limestone above and the Dogger Limestone below. Observations from the different deep boreholes located at the site can be summarized as follows: the measured apparent hydraulic head across the Callovo-Oxfordian argillite show excess values of several tens of meters in comparison to the upper and lower aquifers, a fact which is referred to as anomalous overpressure in the shale literature; the salinity of the pore water in the Callovo-Oxfordian argillite and the Dogger is much larger than that of the Oxfordian. The salinity levels in the Callovo-Oxfordian and the Dogger are similar. Among all physical processes which can be proposed as explanation for the formation of overpressure in shales, osmosis driven by a chemical potential (total dissolved solids) gradient is a possible candidate. As a matter of fact, the presence of contrasts in water composition and clay minerals content, as observed here, lead to osmotic effects. This paper presents the results of simulations using steady-state approximations and transient simulations (software OSMO, a numerical simulator developed by the British Geological Survey). It is shown that based on the extensive database of argillite measurements applicable to the study (including porosity values, specific surface determinations, pore water compositions, and effective diffusion coefficients), the chemo-osmosis is a process which can at least explain partly the anomalous overpressures observed. (authors)

  10. A semi-automatic device for measuring osmotic pressures (1962); Un dispositif semi-automatique pour la mesure des pressions osmotiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Lucarain, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    A cryoscopic apparatus for measuring osmotic pressure in small samples (0.1 ml) is described. The sample is frozen by air cooled dry ice or liquid nitrogen; the temperature is measured by a thermistor resistance and a recording millivoltmeter. (author) [French] Un appareil cryometrique pour la mesure des pressions osmotiques sur des petits echantillons (0,1 ml) est decrit. L'echantillon est congele par une circulation d'air refroidi par de la carboglace ou de l'azote liquide; sa temperature est mesuree par une thermitance associee a un millivoltmetre enregistreur. (auteur)

  11. Vapour pressures and osmotic coefficients of binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate with alcohols at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gonzalez, Begona; Dominguez, Angeles; Macedo, Eugenia A.

    2009-01-01

    Osmotic coefficients of binary mixtures containing alcohols (ethanol, 1-propanol, and 2-propanol) and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate were determined at T = 323.15 K. Vapour pressure and activity coefficients of the studied systems were calculated from experimental data. The extended Pitzer model modified by Archer, and the modified NRTL model (MNRTL) were used to correlate the experimental data, obtaining standard deviations lower than 0.012 and 0.031, respectively. The mean molal activity coefficients and the excess Gibbs free energy of the studied binary mixtures were calculated from the parameters obtained with the extended Pitzer model of Archer.

  12. Simulation of Changes of Activity Level of Some Carbohydrazes of Russian Sturgeon by the Influence of Environmental Osmotic Pressure by Means of Hybrid Networks

    Directory of Open Access Journals (Sweden)

    A. V. Tuktarov

    2010-01-01

    Full Text Available The article is devoted to the problem of simulation of the influence environmental osmotic pressure to the activity level of maltase and α-amilase of intestinal mucous tunic of Russian sturgeon. For the solving of this problem methods of neural networks and fuzzy logic are used. Create models are rated as the category of adaptive neural-fuzzy inference systems. Regularities of this influence were researched; created models have high approximate property and generalize well.

  13. The Exogenous Amelioration Roles of Growth Regulators on Crop Plants Grow under Different Osmotic Potential

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2014-03-01

    Full Text Available The production of fresh and dry matter of maize, wheat, cotton, broad and parsley plants show a variable response to the elevation of salinity stress. The production of fresh and dry matter of shoots and roots in wheat and broad bean plants tended to decrease with increasing NaCl concentration, salt stress progressively decrease in fresh and dry matter yield of maize plants. The increase in salinization levels induced a general insignificant change in production of fresh and dry matter of both organs of parsley plants. However, salinity induced a marked increase in the values of fresh and dry matter yields of cotton plants grown at the lowest level (-0.3 MPa NaCl and a reduction at higher salinization levels. Leaf area of unsprayed plants was excesivly decreased with the rise of osmotic stress levels especially at higher salinity levels of maize, wheat, cotton, and broad bean and parsley plants. the total pigments concentration decreased with rise of salinization levels in maize and cotton, these contents remained more or less un affected up to the level of 0.6 MPa NaCl in wheat and up to 0.9 MPa in parsley plants, there above, they were significantly reduced with increasing salinity levels. In broad bean plants the total pigments contents showed a non-significant alterations at all salinity stress. Spraying the vegetative parts of the five tested plants with 200 ppm of either GA3 or kinetin completely ameliorated the deleterious effect of salinity in fresh, dry matter, leaf area and pigment contents.

  14. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    Science.gov (United States)

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  15. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  16. Role of Osmotic Adjustment in Plant Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Gebre, G.M.

    2001-01-11

    clones (P. trichocurpa Torr. & Gray x P: deltoides Bartr., TD and P. deltoides x P. nigra L., DN), we determined the TD clone, which was more productive during the first three years, had slightly lower osmotic potential than the DN clone, and also indicated a small osmotic adjustment compared with the DN hybrid. However, the productivity differences were negligible by the fifth growing season. In a separate study with several P. deltoides clones, we did not observe a consistent relationship between growth and osmotic adjustment. Some clones that had low osmotic potential and osmotic adjustment were as productive as another clone that had high osmotic potential. The least productive clone also had low osmotic potential and osmotic adjustment. The absence of a correlation may have been partly due to the fact that all clones were capable of osmotic adjustment and had low osmotic potential. In a study involving an inbred three-generation TD F{sub 2} pedigree (family 331), we did not observe a correlation between relative growth rate and osmotic potential or osmotic adjustment. However, when clones that exhibited osmotic adjustment were analyzed, there was a negative correlation between growth and osmotic potential, indicating clones with lower osmotic potential were more productive. This was observed only in clones that were exposed to drought. Although the absolute osmotic potential varied by growing environment, the relative ranking among progenies remains generally the same, suggesting that osmotic potential is genetically controlled. We have identified a quantitative trait locus for osmotic potential in another three-generation TD F{sub 2} pedigree (family 822). Unlike the many studies in agricultural crops, most of the forest tree studies were not based on plants exposed to severe stress to determine the role of osmotic adjustment. Future studies should consider using clones that are known to be productive but have contrasting osmotic adjustment capability as well as

  17. Increased Resistance to osmotic lysis of sickled erythrocytes ...

    African Journals Online (AJOL)

    treated with CNw had significantly reduced osmotic lysis when compared with the untreated set (P<0.05, respectively) at various hypotonic NaCl concentrations. Various Hb genotypes exhibited a graded increase in osmotic pressure lysis in ...

  18. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric

    2013-01-01

    Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...... molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...... sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mM of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured...

  19. Isopiestic determination of the osmotic coefficient and vapour pressure of N-R-4-(N,N-dimethylamino)pyridinium tetrafluoroborate (R = C4H9, C5H11, C6H13) in the ethanol solution at T = 298.15 K

    International Nuclear Information System (INIS)

    Sardroodi, Jaber Jahanbin; Atabay, Maryam; Azamat, Jafar

    2012-01-01

    Highlights: ► The osmotic coefficients of the solutions of ionic liquid in ethanol have been measured. ► Measured osmotic coefficients were correlated using Pitzer, e-NRTL and NRF models and polynomial equation. ► Vapour pressures were evaluated from the correlated osmotic coefficients. - Abstract: Osmotic coefficients of the solutions of room temperature ionic liquid N-R-4-(N,N-dimethylamino)pyridinium tetrafluoroborate (R = C 4 H 9 , C 5 H 11 , C 6 H 13 ) in ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficients have been correlated using the ion interaction model of Pitzer, electrolyte non-random two liquid (e-NRTL) model of Chen, non-random factor (NRF) and a fourth-order polynomial in terms of molality. The vapour pressures of the solutions studied have been evaluated from the osmotic coefficients.

  20. Hydro-osmotic Instabilities in Active Membrane Tubes

    Science.gov (United States)

    Al-Izzi, Sami C.; Rowlands, George; Sens, Pierre; Turner, Matthew S.

    2018-03-01

    We study a membrane tube with unidirectional ion pumps driving an osmotic pressure difference. A pressure-driven peristaltic instability is identified, qualitatively distinct from similar tension-driven Rayleigh-type instabilities on membrane tubes. We discuss how this instability could be related to the function and biogenesis of membrane bound organelles, in particular, the contractile vacuole complex. The unusually long natural wavelength of this instability is in agreement with that observed in cells.

  1. Synthesis of sorbitol by Zymomonas mobilis under high osmotic pressure Síntese de sorbitol por Zymomonas mobilis sob elevada pressão osmótica

    Directory of Open Access Journals (Sweden)

    Márcio de Barros

    2006-09-01

    Full Text Available The bacterium Zymomonas mobilis presents potential for sorbitol production when grown in culture medium with high sugar concentration. Sorbitol is produced and accumulated in the periplasma of the bacterium to protect the cells from the harmful effects of high osmotic pressure that results from the action of invertase on sucrose. The conversion of sucrose into glucose and fructose increases the osmolarity of the medium. However, an excessive increase in the osmotic pressure may decrease the sorbitol production. In this work Saccharomyces cerevisiae invertase was added two media containing sucrose 200 and 300 g.L-1. Sorbitol production in sucrose at 200 g.L-1 was 42.35 and 38.42 g.L-1, with and without the invertase treatment, respectively. In the culture medium with 300 g.L-1 sucrose, production reached 60.4 g.L-1 and with invertase treatment was 19.14 g.L-1. These results indicated that the excessive rise in osmotic pressure led to a significant decrease in sorbitol production by the Zymomonas mobilis bacterium in the sucrose medium treated with invertase.A bactéria Zymomonas mobilis, apresenta potencial para produção de sorbitol quando crescida em meio com alta concentração de açúcar. O sorbitol produzido é acumulado no periplasma da bactéria para conter os efeitos prejudiciais da elevada pressão osmótica, que resulta pela ação da enzima invertase, que promove hidrólise da sacarose. A conversão da sacarose em glicose e frutose aumentando a osmolaridade do meio. Entretanto, um aumento excessivo na pressão osmótica pode inibir a produção de sorbitol pela bactéria. Este trabalho empregou invertase de Saccharomyces cerevisiae nos meios de fermentação com sacarose a 200 e 300 g.L-1. A produção de sorbitol no meio com sacarose a 200 g.L-1 foi de 42,35 g.L-1 e 38,42 g.L-1 com e sem tratamento com invertase respectivamente. No meio com 300 g.L-1 sem tratamento, a produção foi de 60,42 e com tratamento 19,14 g.L-1. Estes

  2. Water transport through the intestinal epithelial barrier under different osmotic conditions is dependent on LI-cadherin trans-interaction.

    Science.gov (United States)

    Weth, Agnes; Dippl, Carsten; Striedner, Yasmin; Tiemann-Boege, Irene; Vereshchaga, Yana; Golenhofen, Nikola; Bartelt-Kirbach, Britta; Baumgartner, Werner

    2017-04-03

    In the intestine water has to be reabsorbed from the chymus across the intestinal epithelium. The osmolarity within the lumen is subjected to high variations meaning that water transport often has to take place against osmotic gradients. It has been hypothesized that LI-cadherin is important in this process by keeping the intercellular cleft narrow facilitating the buildup of an osmotic gradient allowing water reabsorption. LI-cadherin is exceptional among the cadherin superfamily with respect to its localization along the lateral plasma membrane of epithelial cells being excluded from adherens junction. Furthermore it has 7 but not 5 extracellular cadherin repeats (EC1-EC7) and a small cytosolic domain. In this study we identified the peptide VAALD as an inhibitor of LI-cadherin trans-interaction by modeling the structure of LI-cadherin and comparison with the known adhesive interfaces of E-cadherin. This inhibitory peptide was used to measure LI-cadherin dependency of water transport through a monolayer of epithelial CACO2 cells under various osmotic conditions. If LI-cadherin trans-interaction was inhibited by use of the peptide, water transport from the luminal to the basolateral side was impaired and even reversed in the case of hypertonic conditions whereas no effect could be observed at isotonic conditions. These data are in line with a recently published model predicting LI-cadherin to keep the width of the lateral intercellular cleft small. In this narrow cleft a high osmolarity can be achieved due to ion pumps yielding a standing osmotic gradient allowing water absorption from the gut even if the faeces is highly hypertonic.

  3. A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension

    Science.gov (United States)

    Yao, Lingxing; Mori, Yoichiro

    2017-12-01

    Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.

  4. Use of osmotic dehydration to improve fruits and vegetables quality during processing.

    Science.gov (United States)

    Maftoonazad, Neda

    2010-11-01

    Osmotic treatment describes a preparation step to further processing of foods involving simultaneous transient moisture loss and solids gain when immersing in osmotic solutions, resulting in partial drying and improving the overall quality of food products. The different aspects of the osmotic dehydration (OD) technology namely the solutes employed, solutions characteristics used, process variables influence, as well as, the quality characteristics of the osmodehydrated products will be discussed in this review. As the process is carried out at mild temperatures and the moisture is removed by a liquid diffusion process, phase change that would be present in the other drying processes will be avoided, resulting in high quality products and may also lead to substantial energy savings. To optimize this process, modeling of the mass transfer phenomenon can improve high product quality. Several techniques such as microwave heating, vacuum, high pressure, pulsed electric field, etc. may be employed during or after osmotic treatment to enhance performance of the osmotic dehydration. Moreover new technologies used in osmotic dehydration will be discussed. Patents on osmotic dehydration of fruits and vegetables are also discussed in this article.

  5. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  6. Dependency of radon entry on pressure difference

    International Nuclear Information System (INIS)

    Kokotti, H.; Kalliokoski, P.

    1992-01-01

    Radon levels, ventilation rate and pressure differences were monitored continuously in four apartment houses with different ventilation systems. Two of them were ventilated by mechanical exhaust, one by mechanical supply and exhaust, and one by natural ventilation. The two-storey houses were constructed from concrete elements on a slab and located on a gravel esker. It was surprising to find that increasing the ventilation rate increased levels of radon in the apartments. Increased ventilation caused increased outdoor-indoor pressure difference, which in turn increased the entry rate of radon and counteracted the diluting effect of ventilation. The increase was significant when the outdoor-indoor pressure difference exceeded 5 Pa. Especially in the houses with mechanical exhaust ventilation the pressure difference was the most important factor of radon entry rate, and contributed up to several hundred Bq m -3 h -1 . (Author)

  7. Osmotic stress on nitrification in an airlift bioreactor

    International Nuclear Information System (INIS)

    Jin Rencun; Zheng Ping; Mahmood, Qaisar; Hu Baolan

    2007-01-01

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L -1 and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 10 5 Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 10 5 Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 10 5 Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization

  8. Osmotic Power: A Fresh Look at an Old Experiment

    Science.gov (United States)

    Dugdale, Pam

    2014-01-01

    Electricity from osmotic pressure might seem a far-fetched idea but this article describes a prototype in Norway where the osmotic pressure generated between salt and fresh water drives a turbine. This idea was applied in a student investigation, where they were tasked with researching which alternative materials could be used for the…

  9. Determination and modelling of osmotic coefficients and vapour pressures of binary systems 1- and 2-propanol with CnMimNTf2 ionic liquids (n = 2, 3, and 4) at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gomez, Elena; Dominguez, Angeles; Macedo, Eugenia A.

    2011-01-01

    Highlights: → Osmotic coefficients of 1- and 2-propanol with C n MimNTf 2 (n = 2, 3, and 4) are determined. → Experimental data were correlated with extended Pitzer model of Archer and MNRTL. → Mean molal activity coefficients and excess Gibbs free energies were calculated. → Effect of the anion is studied comparing these results with literature. - Abstract: The osmotic and activity coefficients and vapour pressures of binary mixtures containing 1-propanol, or 2-propanol and imidazolium-based ionic liquids with bis(trifluoromethylsulfonyl)imide as anion (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C 2 MimNTf 2 , 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, C 3 MimNTf 2 , and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C 4 MimNTf 2 ) were determined at T = 323.15 K using the vapour pressure osmometry technique. The experimental osmotic coefficients were correlated using the extended Pitzer model modified by Archer and the MNRTL model, obtaining standard deviations lower than 0.033 and 0.064, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the mixtures studied were calculated from the parameters of the extended Pitzer model modified by Archer. Besides the effect of the alkyl-chain of the cation, the effect of the anion can be assessed comparing the experimental results with those previously obtained for imidazolium ionic liquids with sulphate anions.

  10. Optimization of coffee (Coffea arabica transformation parameters using uidA and hpt genes: effect of osmotic pre-treatment, helium pressure and target distance

    Directory of Open Access Journals (Sweden)

    Andrés M Gatica

    2009-11-01

    Full Text Available The aim of this work was to optimize the biolistic delivery parameters that affect the DNA delivery and stable expression of marker genes into coffee tissues (Coffea arabica. L. cvs. Caturra and Catuaí. The effect of osmotic preculture length, osmotic concentration of medium, Helium pressure and target distance on transient expression of the uidA gene in coffee leaves and somatic embryos were tested. The highest transient uidA expression was obtained when Caturra (18.3±2.8 and Catuaí (6.8±2.0 leaves and Catuaí embryos (80.0±7.4 were cultured for 5h on Yasuda medium complemented with 0.5M Mannitol +0.5M Sorbitol. The combination of 1100psi and a target distance of 9cm resulted in the highest number of blue spots per Caturra leaf segment (23.6±3.9, whereas for the Catuaí variety the combination of 1100psi and a target distance of six (10.2±1.9 and nine (8.2±1.9 cm gave the highest number of blue spots per leaf segment. The optimized protocol was tested with pCAMBIA 1 301 (uidA gene and the hpt gene, pCAMBIA 1 305.2 (uidA version GUSPlus ™ and the hpt gene and pCAMBIA 1 301-BAR (uidA gene and the bar gene. The highest number of blue spots was obtained when Caturra (54.6±5.7 and Catuaí (28.9±4.3 leaves were bombarded with pCAMBIA 1 305.2. Selection of bombarded coffee tissues with 100mg/l hygromicyn caused the oxidation of tissues. Rev. Biol. Trop. 57 (Suppl. 1: 151-160. Epub 2009 November 30.La presente investigación tuvo como objetivo optimizar los parámetros que afectan la incorporación y expresión de genes marcadores mediante biobalística en segmentos de hoja y embriones somáticos de café (Coffea arabica. L. cvs. Caturra y Catuaí. La mayor expresión transitoria del gen uidA en segmentos de hoja de Caturra (18.3±2.8 y Catuaí (6.8±2.0 y embriones somáticos de Catuaí (80.0±7.4 se obtuvo al cultivar los explantes por cinco horas previo al bombardeo en el medio Yasuda complementado con 0.5M mannitol+0.5M sorbitol

  11. Modelling reveals endogenous osmotic adaptation of storage tissue water potential as an important driver determining different stem diameter variation patterns in the mangrove species Avicennia marina and Rhizophora stylosa.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Guyot, Adrien; Hubeau, Michiel; De Swaef, Tom; Lockington, David A; Steppe, Kathy

    2014-09-01

    Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation. Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion-tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa. Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species. The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.

  12. SAXS investigations on lipid membranes under osmotic stress

    Energy Technology Data Exchange (ETDEWEB)

    Rubim, R.L.; Vieira, V.; Gerbelli, B.B.; Teixeira da Silva, E.R.; Oliveira, C.L.P.; Oliveira, E.A. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: In this work we, experimentally, investigate the interactions between lipid bilayers. A structural characterization is performed by small angle x-ray scattering (SAXS) on multilamellar systems under known osmotic pressure. Changes in the composition of membranes can modify their mechanical properties and structural parameters, like the flexibility of these membranes, which plays a key role on the determination of the tridimensional organization of bilayers. The membranes are composed of soya lecithin, where the major component is DPPC (Dipalmitoylphosphatidylcholine), and fatty acids are incorporated to the membrane in different concentrations, in order to turn the membrane more fluid. The membranes are inserted in a solution of PVP [poly(vinyl-pyrrolidone) - 40000] and the polymer will apply an osmotic pressure on them. The osmotic pressure is controlled by preparing PVP solutions of desired composition and, as we know the concentration of polymer in solution, we can obtain the intensity of the osmotic pressure. SAXS experiments were done in order to determine the distance between the bilayer. From the position of the Bragg peaks, the lamellar periodicity (the thickness of the membranes plus their distance of separation) was determined. Using theoretical model for the form and structure factors we fitted those experimental data and determined the thickness of the membranes. The distance between the membranes was controlled by the osmotic pressure (P) applied to the membranes and, for a given pressure, we determine the distance between the bilayers (a) on equilibrium. The experimental curve P(a) is theoretically described by the different contributions from van der Waals, hydration and fluctuation forces. From the fitting of experimental curves, relevant parameters characterizing the strength of the different interactions are obtained, such as Hamaker and rigidity constant [2, 3]. We observe that the separation between the bilayers on equilibrium is

  13. Experimental Support for a Predictive Osmotic Model of Clay Membranes

    International Nuclear Information System (INIS)

    Fritz, S.J.

    2001-01-01

    Osmosis has been cited as a mechanism for explaining anomalously high fluid pressures in the subsurface. Clays and shales act as membranes, and osmotic flux across these units may result in pressures sufficiently high to explain these anomalies. The theoretical osmotic pressures as calculated solely from solution properties can be quite large; however, it is not yet resolved whether these geologic membranes are sufficiently ideal to generate such pressures

  14. Release and Decay Kinetics of Copeptin vs AVP in Response to Osmotic Alterations in Healthy Volunteers.

    Science.gov (United States)

    Fenske, Wiebke K; Schnyder, Ingeborg; Koch, Gilbert; Walti, Carla; Pfister, Marc; Kopp, Peter; Fassnacht, Martin; Strauss, Konrad; Christ-Crain, Mirjam

    2018-02-01

    Copeptin is the C-terminal fragment of the arginine vasopressin (AVP) prohormone whose measurement is more robust than that of AVP. Similar release and clearance characteristics have been suggested promoting copeptin as a surrogate marker. To characterize the physiology of osmotically regulated copeptin release and its half-life in direct comparison with plasma AVP. Ninety-one healthy volunteers underwent a standardized three-phase test protocol including (1) osmotic stimulation into the hypertonic range by hypertonic-saline infusion followed by osmotic suppression via (2) oral water load and (3) subsequent glucose infusion. Plasma copeptin, AVP, serum sodium, and osmolality levels were measured in regular intervals. In phase 1, an increase in median osmotic pressure [289 (286; 291) to 311 (309; 314) mOsm/kg H2O] caused similar release kinetics of plasma copeptin [4 (3.1; 6) to 29.3 (18.6; 48.2) pmol/L] and AVP [1 (0.7; 1.6) to 10.3 (6.8; 18.8) pg/mL]. Subsequent osmotic suppression to 298 (295; 301) mOsm/kg at the end of phase 3 revealed markedly different decay kinetics between both peptides-an estimated initial half-life of copeptin being approximately 2 times longer than that of AVP (26 vs 12 minutes). Copeptin is released in equimolar amounts with AVP in response to osmotic stimulation, suggesting its high potential as an AVP surrogate for differentiation of osmotic disorders. Furthermore, we here describe the decay kinetics of copeptin in response to osmotic depression enabling to identify a half-life for copeptin in direct comparison with AVP. Copyright © 2017 Endocrine Society

  15. Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Bardees M. Mickky

    2017-03-01

    Full Text Available The objective of the present study was to find out a straightforward technique for screening the tolerance of ten wheat genotypes to two levels of osmotic stress at early seedling stage. Data revealed that polyethylene glycol-induced drought had general negative effect on seedling morphological characters indicated by plumule and radicle length, number of adventitious roots as well as seedling biomass and water content. Water deficit could also suppress membrane integrity by stimulating lipid peroxidation with marked increase in membrane leakage and subsequent decrease in its stability index. For all the addressed germination parameters and seedling membrane features, the impact of severe drought was more pronounced than that of moderate drought. Simultaneously, moderate stress could activate peroxidase, polyphenol oxidase and ascorbic peroxidase of the studied genotypes; but these enzymes were inhibited by severe stress. The activity of catalase, superoxide dismutase and glutathione reductase was conversely retarded by drought whether at moderate or severe level. More interestingly, a novel function “Stress Impact Index; SII” was introduced to rank the estimated morpho-physiological traits (SIItrait as well as the considered genotypes (SIIgenotype according to their sensitivity to stress. Values of SIItrait implied that germination parameters were generally affected by drought more intensively than membrane characteristics and finally came the antioxidant enzymes with the least degree of suppression when applying stress. Based on the magnitudes of SIIgenotype, Sids 13 seemed to be the most drought-tolerant wheat cultivar while Shandawel 1 could be the most sensitive one at their juvenile growth stage.

  16. Rennet-induced gelation of concentrated milk in the presence of sodium caseinate: differences between milk concentration using ultrafiltration and osmotic stressing.

    Science.gov (United States)

    Krishnankutty Nair, P; Corredig, M

    2015-01-01

    Concentrating milk is a common unit operation in the dairy industry. With the reduction of water, the particles interact more frequently with each other and the functionality of the casein micelles may depend on the interactions occurring during concentration. The objective of this research was to investigate the effect of concentration on the renneting properties of the casein micelles by comparing 2 concentration methods: ultrafiltration and osmotic stressing. Both methods selectively concentrate the protein fraction of milk, while the composition of the soluble phase is unaltered. To evaluate possible differences in the rearrangements of the casein micelles during concentration, renneting properties were evaluated with or without the addition of soluble caseins, added either before or after concentration. The results indicate that casein micelles undergo rearrangements during concentration and that shear during membrane filtration may play a role in affecting the final properties of the milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Comportamento de sementes de feijão sob diferentes potenciais osmóticos Bean seed performance under different osmotic potentials

    Directory of Open Access Journals (Sweden)

    Gilberto Antonio Freitas de Moraes

    2005-08-01

    Full Text Available A hidratação é o fator externo mais importante na germinação de sementes. Para simular as condições complexas do solo, soluções com diferentes potenciais osmóticos têm sido usadas para umedecer os substratos. O objetivo deste trabalho foi avaliar os efeitos do estresse hídrico e salino sobre a germinação e o vigor de sementes de feijão. Sementes da cultivar IAPAR 44 foram colocadas a germinar em papel-toalha embebido em soluções de polietileno glicol (PEG 6000 e cloreto de sódio (NaCl nos potenciais osmóticos zero; -0,05; -0,10; -0,15; -0,20; -0,25 e -0,30 MPa. O desempenho das sementes foi avaliado por meio do teste de germinação, primeira contagem da germinação, comprimento e matéria seca de plântulas. Concluiu-se que a redução do potencial osmótico, induzido por PEG 6000 ou NaCl, reduz o vigor e, a partir de -0,20 MPa, reduz a germinação de sementes de feijão. O PEG 6000 produz efeitos adversos mais drásticos do que o NaCl na qualidade fisiológica das sementes.Hydration is the most important external factor for seed germination. To simulate the complex soil conditions solutions with different osmotic potentials have been used to soak substrata. The objective of this paper was to evaluate the effects of hydric and saline stress to germination and strength of bean seeds. Seeds of the cultivar IAPAR were germinated in towel-paper soaked in PEG 6000 and NaCl solutions in the zero osmotic potentials; -0.05; -0.10; -0.15; -0.20; -0.25 and 0.30 MPa. Seed performance was evaluated through the germination test, first count of germination, length, and dry seedling weight. In conclusion, osmotic potential reduction, induced by Polyethylene glicol (PEG 6000 or Sodium chlorine (NaCl, reduces the strength and, from -0.20 to -0.30 MPa, the germination of bean seeds. The PEG 6000 produces more severe and adverse effects than the NaCl in the physiologic quality of been seeds.

  18. Pressure exerted by a vesicle on a surface

    International Nuclear Information System (INIS)

    Owczarek, A L; Prellberg, T

    2014-01-01

    Several recent works have considered the pressure exerted on a wall by a model polymer. We extend this consideration to vesicles attached to a wall, and hence include osmotic pressure. We do this by considering a two-dimensional directed model, namely that of area-weighted Dyck paths. Not surprisingly, the pressure exerted by the vesicle on the wall depends on the osmotic pressure inside, especially its sign. Here, we discuss the scaling of this pressure in the different regimes, paying particular attention to the crossover between positive and negative osmotic pressure. In our directed model, there exists an underlying Airy function scaling form, from which we extract the dependence of the bulk pressure on small osmotic pressures. (paper)

  19. Osmotic dehydration of fish: principal component analysis

    Directory of Open Access Journals (Sweden)

    Lončar Biljana Lj.

    2014-01-01

    Full Text Available Osmotic treatment of the fish Carassius gibelio was studied in two osmotic solutions: ternary aqueous solution - S1, and sugar beet molasses - S2, at three solution temperatures of 10, 20 and 30oC, at atmospheric pressure. The aim was to examine the influence of type and concentration of the used hypertonic agent, temperature and immersion time on the water loss, solid gain, dry mater content, aw and content of minerals (Na, K, Ca and Mg. S2 solution has proven to be the best option according to all output variables.[ Projekat Ministarstva nauke Republike Srbije, br. TR 31055

  20. An analysis of the effects of osmotic backwashing on the seawater reverse osmosis process.

    Science.gov (United States)

    Park, JunYoung; Jeong, WooWon; Nam, JongWoo; Kim, JaeHun; Kim, JiHoon; Chon, Kangmin; Lee, Euijong; Kim, HyungSoo; Jang, Am

    2014-01-01

    Fouling control is an important consideration in the design and operation of membrane-based water treatment processes. It has been generally known that chemical cleaning is still the most common method to remove foultants and maintain the performance of reverse osmosis (RO) desalination. Regardless of the chemical membrane cleaning methods applied effectively, however, frequent chemical cleaning can shorten the membrane life. In addition, it also increases operating and maintenance costs due to the waste chemical disposal. As an alternative, osmotic backwashing can be applied to RO membranes by diluting the concentration polarization (CP) layer. In this study, the effects of osmotic backwashing were analysed under different total dissolved salts (TDSs) and backwashing conditions, and the parameters of the osmotic backwashing were evaluated. The results of the analysis based on the properties of the organic matters found in raw water showed that the cleaning efficiency in respect to the fouling by hydrophilic organic matters was the greatest. Osmotic backwashing was carried out by changing the TDS of the permeate. As a result, the backwashing volume decreased with time due to the CP of the permeate and the backwashing volume. The difference in the osmotic pressure between the raw water and the permeate (Delta pi) also decreased as time passed. It was confirmed that when the temperature of the effluent was high, both the cleaning efficiency and the backwashing volume, which inpours at the same time, increased. When the circulation flow of the effluent was high, both the cleaning efficiency and the backwashing volume increased.

  1. An osmotic model of the growing pollen tube.

    Directory of Open Access Journals (Sweden)

    Adrian E Hill

    Full Text Available Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip.

  2. An Osmotic Model of the Growing Pollen Tube

    Science.gov (United States)

    Hill, Adrian E.; Shachar-Hill, Bruria; Skepper, Jeremy N.; Powell, Janet; Shachar-Hill, Yair

    2012-01-01

    Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip. PMID:22615784

  3. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    Science.gov (United States)

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  4. Artificial neural network model of pork meat cubes osmotic dehydration

    OpenAIRE

    Pezo, Lato L.; Ćurčić, Biljana Lj.; Filipović, Vladimir S.; Nićetin, Milica R.; Koprivica, Gordana B.; Mišljenović, Nevena M.; Lević, Ljubinko B.

    2013-01-01

    Mass transfer of pork meat cubes (M. triceps brachii), shaped as 1x1x1 cm, during osmotic dehydration (OD) and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w), temperature (20-50ºC), and immersion time (1-5 h) in terms of water loss (WL), solid gain (SG), final dry matter content (DM), and water activity (aw), were investigated using experimental results. Five artificial neural net...

  5. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2014-01-01

    Full Text Available The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin exhibited optimum solubility (56.25 mg/mL for osmotic controlled delivery. Asymmetric membrane capsules (AMCs were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1, glycerol (X2, and NaCl (X3 which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1 and correlation coefficient of drug release (Y2. The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium.

  6. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  7. Effect of Osmotic-Release Oral System Methylphenidate on Different Domains of Attention and Executive Functioning in Children with Attention-Deficit-Hyperactivity Disorder

    Science.gov (United States)

    Blum, Nathan J.; Jawad, Abbas F.; Clarke, Angela T.; Power, Thomas J.

    2011-01-01

    Aim: This study investigated whether components of attention and executive functioning improve when children with attention-deficit-hyperactivity disorder (ADHD) are treated with osmotic-release oral system (OROS) methylphenidate. Method: Thirty children (24 males, six females; mean age 8y 6mo, SD 1y 11mo; range 6y 5mo-12y 6mo) with ADHD combined…

  8. Electro-osmotic flows inside triangular microchannels

    International Nuclear Information System (INIS)

    Vocale, P; Spiga, M; Geri, M; Morini, G L

    2014-01-01

    This work presents a numerical investigation of both pure electro-osmotic and combined electro-osmotic/pressure-driven flows inside triangular microchannels. A finite element analysis has been adopted to solve the governing equations for the electric potential and the velocity field, accounting for a finite thickness of the electric double layer. The influence of non-dimensional parameters such as the aspect ratio of the cross-section, the electrokinetic diameter and the ratio of the pressure force to the electric force on the flow behavior has been investigated. Numerical results point out that the velocity field is significantly influenced by the aspect ratio of the cross section and the electrokinetic diameter. More specifically, the aspect ratio plays an important role in determining the maximum volumetric flow rate, while the electrokinetic diameter is crucial to establishing the range of pressures that may be sustained by the electro-osmotic flow. Numerical results are also compared with two correlations available in the literature which enable to assess the volumetric flow rate and the pressure head for microchannels featuring a rectangular, a trapezoidal or an elliptical cross-section.

  9. Flashing evaporation under different pressure levels

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk; Krepper, Eckhard; Rzehak, Roland

    2013-01-01

    Highlights: • CFD simulation based on two-fluid model for flashing boiling inside a vertical pipe. • Effect of pressure level on the maximum thermal energy available for evaporation. • Effect of presumed bubble size on the onset of flashing as well as evaporation rate. • Effect of pressure level on the critical bubble size that can start stable flashing. • Effect of pressure level on nucleation rate and mechanism. - Abstract: Flashing evaporation of water inside a vertical pipe under four pressure levels is investigated both experimentally and numerically. In the experiment depressurization is realized through a blow-off valve, and the evaporation rate is controlled by the opening rate and degree of the valve. In the CFD simulation phase change is assumed to be caused by thermal heat transfer between steam–water interface and the surrounding water. Consequently, the evaporation rate is determined by heat transfer coefficient, interfacial area density as well as liquid superheat degree. The simulated temporal course of cross-section averaged steam volume fraction is compared with the measured one. It is found that the increasing rate and maximum value of steam volume fraction is over-predicted under low-pressure conditions, which is mainly caused by the neglect of bubble growth in the mono-dispersed simulation. The agreement is notably improved by performing poly-dispersed simulations with the inhomogeneous MUSIG approach (IMUSIG). On the other hand an underestimation of the maximum steam volume fraction is observed in high-pressure cases, since the contribution of nucleation to the total steam generation rate becomes large as the system pressure increases. Reliable models for nucleation rate as well as bubble detachment size are indispensable for reliable predictions. An effect of the system pressure level on the nucleation mechanism is observed in the experiment

  10. Plasma osmotic changes during major abdominal surgery.

    Science.gov (United States)

    Malone, R A; McLeavey, C A; Arens, J F

    1977-12-01

    Fluid balance across the capillary membrane is maintained normally by a balance of hydrostatic and colloid osmotic pressures (COP). In 12 patients having major intra-abdominal procedures, the COP was followed during the operative and immediate postoperative periods. The patients' intraoperative fluid management consisted of replacing shed blood with blood and following Shires' concept of crystalloid replacement. Significant decreases in COP to approximately two thirds of the initial value occurred in patients having intra-abdominal procedures versus only a 10 percent decrease in those having peripheral procedures (greater than .001). As a result of this decrease in COP, the balance between hydrostatic and colloid osmotic pressures is lost and risk of pulmonary intersitial edema is increased.

  11. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    Energy Technology Data Exchange (ETDEWEB)

    Finan, John D.; Leddy, Holly A. [Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC (United States); Department of Biomedical Engineering, Duke University, Durham, NC (United States); Guilak, Farshid, E-mail: guilak@duke.edu [Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC (United States); Department of Biomedical Engineering, Duke University, Durham, NC (United States)

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  12. Membrane distillation against a pressure difference

    NARCIS (Netherlands)

    Keulen, L.; van der Ham, LV; Kuipers, N.J.M.; Hanemaaijer, J.H.; Vlugt, T.J.H.; Kjelstrup, S

    2017-01-01

    Membrane distillation is an attractive technology for production of fresh water from seawater. The MemPower®MemPower® concept, studied in this work, uses available heat (86 °C) to produce pressurized water (2.2 bar and 46 °C) by membrane distillation, which again can be used to power a turbine for

  13. Membrane distillation against a pressure difference

    NARCIS (Netherlands)

    Keulen, L.; Ham, L.V. van der; Kuipers, N.J.M.; Hanemaaijer, J.H.; Vlugt, T.J.H.; Kjelstrup, S.

    2017-01-01

    Membrane distillation is an attractive technology for production of fresh water from seawater. The MemPower® concept, studied in this work, uses available heat (86 °C) to produce pressurized water (2.2 bar and 46 °C) by membrane distillation, which again can be used to power a turbine for

  14. Modeling osmotic salinity effects on yield characteristics of substrate-grown greenhouse crops

    NARCIS (Netherlands)

    Sonneveld, C.; Bos, van den A.L.; Voogt, W.

    2004-01-01

    In a series of experiments with different osmotic potentials in the root environment, various vegetables, and ornamentals were grown in a substrate system. The osmotic potential was varied by addition of nutrients. Yield characteristics of the crop were related to the osmotic potential of the

  15. Membrane distillation against a pressure difference

    OpenAIRE

    Keulen, L.; van der Ham, L.V.; Kuipers, N.J.M.; Hanemaaijer, J.H.; Vlugt, T.J.H.; Kjelstrup, S.

    2017-01-01

    Membrane distillation is an attractive technology for production of fresh water from seawater. The MemPower®MemPower® concept, studied in this work, uses available heat (86 °C) to produce pressurized water (2.2 bar and 46 °C) by membrane distillation, which again can be used to power a turbine for co-production of electricity. We develop a non-equilibrium thermodynamic model to accurately describe the transfer at the liquid-membrane interfaces, as well as through the hydrophobic membrane. The...

  16. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    Science.gov (United States)

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater

  17. Osmotic consolidation of suspensions and gels

    International Nuclear Information System (INIS)

    Miller, K.T.; Zukoski, C.F.

    1994-01-01

    An osmotic method for the consolidation of suspensions of ceramic particles is demonstrated. Concentrated solutions of poly(ethylene oxide) are separated from a suspension of ceramic particles by a semipermeable membrane, creating a gradient in solvent chemical potential. Solvent passes from the suspension into the polymer solution, lowering its free energy and consolidating the suspension. Dispersions of stable 8-nm hydrous zirconia particles were consolidated to over 47% by volume. Suspensions of α-alumina in three states of aggregation (dispersed, weakly flocculated, and strongly flocculated) were consolidated to densities greater than or equal to those produced in conventional pressure filtration. Moreover, the as-consolidated alumina bodies were partially drained of fluid during the osmotic consolidation process, producing cohesive partially dried bodies with improved handling characteristics

  18. [Extrapontine osmotic myelinolysis].

    Science.gov (United States)

    Silva, Federico A; Rueda-Clausen, Christian F; Ramírez, Fabián

    2005-06-01

    Extrapontine osmotic myelinolysis is a rare nervous system complication. Symptoms of this malady were presented during the clinical examination of a 49-year-old alcoholic male, who arrived at the hospital emergency room in a state of cardiorespiratory arrest. After resuscitation methods were applied, the patient was found in metabolic acidosis (pH 7.014) and was treated with sodium bicarbonate. Forty-eight hours later, sodium levels in the patient had risen from 142 to 174 mEq/l. During the period of clinical observation, the patient showed signs of cognitive impairment, disartria, bilateral amaurosis, hyporeflexia and right-half body hemiparesias. After 72 hours, computer tomography was applied; this showed a bilateral lenticular hypodensity with internal and external capsule compromise. One month later, when the patient was referred to another institution for rehabilitation, the patient showed cognitive impairment, bilateral optic atrophy, residual disartria, bradikynesia and double hemiparesia.

  19. Hydrothermal Carbonization of Spent Osmotic Solution (SOS Generated from Osmotic Dehydration of Blueberries

    Directory of Open Access Journals (Sweden)

    Kaushlendra Singh

    2014-09-01

    Full Text Available Hydrothermal carbonization of spent osmotic solution (SOS, a waste generated from osmotic dehydration of fruits, has the potential of transformation into hydrochars, a value-added product, while reducing cost and overall greenhouse gas emissions associated with waste disposal. Osmotic solution (OS and spent osmotic solution (SOS generated from the osmotic dehydration of blueberries were compared for their thermo-chemical decomposition behavior and hydrothermal carbonization. OS and SOS samples were characterized for total solids, elemental composition, and thermo-gravimetric analysis (TGA. In addition, hydrothermal carbonization was performed at 250 °C and for 30 min to produce hydrochars. The hydrochars were characterized for elemental composition, Brunauer-Emmett-Teller (BET surface area, particle shape and surface morphology. TGA results show that the SOS sample loses more weight in the lower temperature range than the OS sample. Both samples produced, approximately, 40%–42% (wet-feed basis hydrochar during hydrothermal carbonization but with different properties. The OS sample produced hydrochar, which had spherical particles of 1.79 ± 1.30 μm diameter with a very smooth surface. In contrast, the SOS sample produced hydrochar with no definite particle shape but with a raspberry-like surface.

  20. Does osmotic distillation change the isotopic relation of wines?

    Directory of Open Access Journals (Sweden)

    Schmitt Matthias

    2014-01-01

    Full Text Available Currently partial alcohol reduction of wine is in the focus of research worldwide. There are several technologies available to achieve this target. These techniques are either based on distilling or membrane processes. Osmotic distillation, one of the possibilities, is a quite modern membrane process that can be used. During that process, wine is pumped in counter flow to water along a micro porous, hydrophobic membrane. The volatile components of the wine can permeate that membrane and are dissolved in water. The driving force of that process is the vapor pressure difference between the volatiles on the wine and water side of the membrane. The aim of this work was to determine if the alcohol reduction by osmotic distillation can change the isotopic relation in a wine. Can this enological practice change the composition of a wine in a way that an illegal water addition is simulated? Different wines were reduced by 2% alcohol v/v with varying process parameters. The isotopic analysis of the O 16/18 ratio in the wine were performed according to the OIV methods (353/2009 These analyses showed that the isotopic ratio is modified by an alcohol reduction of 2% v/v in a way that corresponds to an addition of 4–5% of external water.

  1. Mean Blood Pressure Difference among Adolescents Based on Dyssomnia Types

    OpenAIRE

    Krisnarta Sembiring; Oke Rina Ramayani; Munar Lubis

    2018-01-01

    BACKGROUND: Dyssomnia is the most frequent sleep disturbance and associated with increased blood pressure. There has been no study determining the difference in mean blood pressure based on dyssomnia types among adolescents. OBJECTIVE: To determine the difference in mean blood pressure among adolescents based on dyssomnia types. METHODS: a Cross-sectional study was conducted in SMP Negeri 1 Muara Batang Gadis in April 2016. Samples were students having sleep disturbance based on Sleep...

  2. Influence of osmotic processes on the excess-hydraulic head measured in the Toarcian/Domerian argillaceous formation of Tournemire

    International Nuclear Information System (INIS)

    Tremosa, J.

    2010-01-01

    able to take into account the effect of multi-ionic solutions, i.e. nearest than the natural waters composition, and, thus, to constrain better the chemo-osmotic efficiency. Thermo-osmosis process is poorly characterized so that no satisfactory macroscopic expression to calculate the thermo-osmotic permeability k T was available nor thermo-osmotic experiments performed on natural shales, so far. This process is interpreted as being related to changes properties of water sorbed at clay minerals surface compared with bulk water. A thermo-osmotic permeability predictive model is proposed here, based on the modifications of the hydrogen bounds associated with water molecules located at the vicinity of the solid surface. Input parameters of this model only consist in petrophysical parameters and medium conditions (pore water concentration and temperature). Chemical osmosis and thermo-osmosis experiments were performed on Tournemire argillite samples and in a test interval equipped borehole at the Tournemire URL. These experiments have consisted in inducing a concentration or temperature gradient across a sample for the laboratory experiments and between the borehole test interval and the formation for the in situ experiments. Osmotic flows were identified by the interpretation of the pressure evolution in the test interval using a hydro-thermo-chemo-mechanical model based on the mass balance equation sand the coupled-flow equations. Inversion of the measured pressure signals allowed identifying a chemo-osmotic efficiency ranging between 0.014 and 0.31 and a thermo-osmotic permeability k T ranging between 6 x 10 -12 and 2 x 10 -10 m 2 K -1 s -1 for the Tournemire clay-rock. In parallel to the characterization of the osmotic processes in the argillaceous formation of Tournemire, pore water composition and temperature profiles were established. Temperature profile was obtained by direct measurement in different boreholes. Pore water composition profile was calculated by a

  3. Inter-arm blood pressure differences in pregnant women.

    Science.gov (United States)

    Poon, L C Y; Kametas, N; Strobl, I; Pachoumi, C; Nicolaides, K H

    2008-08-01

    To determine the prevalence of blood pressure inter-arm difference (IAD) in early pregnancy and to investigate its possible association with maternal characteristics. A cross-sectional observational study. Routine antenatal visit in a university hospital. A total of 5435 pregnant women at 11-14 weeks of gestation. Blood pressure was taken from both arms simultaneously with a validated automated device. The presence of inter-arm blood pressure difference of 10 mmHg or more. The IAD in systolic and diastolic blood pressure was 10 mmHg or more in 8.3 and 2.3% of the women, respectively. Systolic IAD was found to be significantly related to systolic blood pressure and pulse pressure, and diastolic IAD was found to be significantly related to maternal age, diastolic blood pressure and pulse pressure. The systolic and diastolic IAD were higher in the hypertensive group compared with the normotensive group and absolute IAD increased with increasing blood pressure. About 31.0 and 23.9% of cases of hypertension would have been underreported if the left arm and the right arm were used, respectively, in measuring the blood pressure. There is a blood pressure IAD in a significant proportion of the pregnant population, and its prevalence increases with increasing blood pressure. By measuring blood pressure only on one arm, there is a one in three chance of underreporting hypertension. Therefore, it would be prudent that during the booking visit blood pressure should be taken in both arms and thus provide guidance for subsequent blood pressure measurements during the course of pregnancy.

  4. Osmotic therapies added to antibiotics for acute bacterial meningitis

    Science.gov (United States)

    Wall, Emma Cb; Ajdukiewicz, Katherine Mb; Bergman, Hanna; Heyderman, Robert S; Garner, Paul

    2018-01-01

    children with bacterial meningitis die in high-income countries with much higher rates in low-income settings. The infection causes the brain to swell, and this is thought to contribute to death and to long-term brain damage in survivors. Osmotic therapies increase the concentration of the blood by exerting an osmotic pressure across a semi-permeable membrane (such as a cell wall or blood vessel lining in the brain). This draws water from the brain into the blood, thereby reducing pressure in the brain. Potentially osmotic therapies could increase the rate of survival, or they could do harm. What are the main results of the review? We included five trials that compared glycerol with placebo in a total of 1451 patients with bacterial meningitis. In the studies steroids were often given as well, but this did not appear to modify any of the effects seen with glycerol. This review detected no benefit from glycerol relating to death. There appeared to be marginal protection against deafness and against neurological disability. No effect on epileptic seizures at follow-up was noted. Glycerol was not associated with any severe adverse effects. The number of trials included was small and only two tested a large number of participants. All trials were from different healthcare settings and examined either adults or children. PMID:29405037

  5. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES

    Science.gov (United States)

    Tedeschi, Henry; James, Joseph M.; Anthony, William

    1963-01-01

    Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions. PMID:14064105

  6. Modelling the coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Baechler, S.; Croise, J.; Altmann, S.

    2010-01-01

    cylindrical radioactive waste disposal drift surrounded by a saturated Callovo-Oxfordian host rock at its undisturbed hydraulic state. Evolution of saturation of the disposal drift, pressure, osmotic efficiency and concentration were investigated through the analyses of 9 simulation runs with ranges of physical parameters and different release scenarios. The following conclusions could be drawn: - The impact of the variation of the activity coefficient (high concentrated solutions) showed to be negligible in comparison to the impact of Bresler's relationship (= dependency of the efficiency coefficient on the concentration). - Simulated pressure and overpressure are mainly influenced by Bresler's relationship. The assumption of an osmotic efficiency coefficient following Bresler's relationship induces a strong limitation of the over-pressures and limits the impact of salt concentrations above 1 M. - The maximal overpressure expected in the disposal drift is of 98 m (0.96 MPa). Therefore no fracturing of the rock should be feared due to osmotic flow. - Mass limitation of the source is also a factor strongly limiting the osmotic overpressure. The release scenario has therefore a strong impact on the results. - Further experimental studies are needed to assess Bresler's relationship in the Callovo-Oxfordian clay. (authors)

  7. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique

    NARCIS (Netherlands)

    Basser, P.J.; Schneiderman, R.; Bank, R.A.; Wachtel, E.; Maroudas, A.

    1998-01-01

    We have used an isotropic osmotic stress technique to assess the swelling pressures of human articular cartilage over a wide range of hydrations in order to determine from these measurements, for the first time, the tensile stress in the collagen network, P(c), as a function of hydration. Osmotic

  8. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  9. Research experiments on pressure-difference sensors with ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Ruican, Hao, E-mail: haoruican@163.com [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Huagang, Liu; Wen, Gong; Na, Zhang [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Ruixiao, Hao [Civil and Architectural Engineering Institute of CCCC-FHEB Co., Ltd., Beijing 101102 (China)

    2016-10-15

    Ferrofluid has distinctive properties and can be applied in many industrial uses, especially in sensors. The principles of pressure-difference sensors with ferrofluid were illustrated and experiments were demonstrated. Four types of ferrofluids with different concentrations were selected for the experiments performed. Then, the parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. Four U tubes with different diameters were designed and built. Experiments were conducted to analyze the impacts of tube diameter and ferrofluid concentration on the output voltage/pressure difference performance. According to the experiment results, the tube diameter has little effect on the sensor output voltage. With the concentration of ferrofluid increasing, the output voltage and sensitivity of the pressure-difference sensor increases. The measurable range of the sensor also increases with the increasing concentration of ferrofluid. The workable range and the sensitivity of the designed sensor were (−2000~+2000)Pa and 1.26 mV/Pa, respectively. - Highlights: • The principle of pressure difference sensor with ferrofluid was illustrated. • The parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. • Four series of U tubes with different diameter were designed and manufactured. • The experiments were made to analyze the factors of the tube diameter and the concentration of ferrofluid on the output-input pressure difference. • The sensitivity of the pressure difference sensor with ferrofluid was studied and the corresponding conclusions were obtained.

  10. Research experiments on pressure-difference sensors with ferrofluid

    International Nuclear Information System (INIS)

    Ruican, Hao; Huagang, Liu; Wen, Gong; Na, Zhang; Ruixiao, Hao

    2016-01-01

    Ferrofluid has distinctive properties and can be applied in many industrial uses, especially in sensors. The principles of pressure-difference sensors with ferrofluid were illustrated and experiments were demonstrated. Four types of ferrofluids with different concentrations were selected for the experiments performed. Then, the parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. Four U tubes with different diameters were designed and built. Experiments were conducted to analyze the impacts of tube diameter and ferrofluid concentration on the output voltage/pressure difference performance. According to the experiment results, the tube diameter has little effect on the sensor output voltage. With the concentration of ferrofluid increasing, the output voltage and sensitivity of the pressure-difference sensor increases. The measurable range of the sensor also increases with the increasing concentration of ferrofluid. The workable range and the sensitivity of the designed sensor were (−2000~+2000)Pa and 1.26 mV/Pa, respectively. - Highlights: • The principle of pressure difference sensor with ferrofluid was illustrated. • The parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. • Four series of U tubes with different diameter were designed and manufactured. • The experiments were made to analyze the factors of the tube diameter and the concentration of ferrofluid on the output-input pressure difference. • The sensitivity of the pressure difference sensor with ferrofluid was studied and the corresponding conclusions were obtained.

  11. Solute coupled diffusion in osmotically driven membrane processes.

    Science.gov (United States)

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  12. Mean Blood Pressure Difference among Adolescents Based on Dyssomnia Types.

    Science.gov (United States)

    Sembiring, Krisnarta; Ramayani, Oke Rina; Lubis, Munar

    2018-02-15

    Dyssomnia is the most frequent sleep disturbance and associated with increased blood pressure. There has been no study determining the difference in mean blood pressure based on dyssomnia types among adolescents. To determine the difference in mean blood pressure among adolescents based on dyssomnia types. Cross-sectional study was conducted in SMP Negeri 1 Muara Batang Gadis in April 2016. Samples were students having sleep disturbance based on Sleep Disturbance Scale for Children (SDSC) questionnaire. Stature and blood pressure data were collected along with demographic data and sleep disorder questionnaire. Analyses were done with Kruskal-Wallis test and logistic regression. P - value blood pressure (DBP) was 111.1 (SD 16.46) mmHg and 70.3 (SD 11.98) mmHg respectively. Mean SDSC score was 49.7 (SD 8.96), and the most frequent dyssomnia type was disorders of initiating and maintaining sleep. Age and sex were not the risk factors of hypertension in dyssomnia. There was a significant difference in mean SBP (P = 0.006) and DBP (P = 0.022) based on dyssomnia types. Combination dyssomnia type had the highest mean blood pressure among dyssomnia types. There is a significant difference in mean blood pressure among adolescents based on dyssomnia types.

  13. Osmotically-driven membrane processes for water reuse and energy recovery

    Science.gov (United States)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  14. Compression and reswelling of microgel particles after an osmotic shock

    NARCIS (Netherlands)

    Sleeboom, J.F.; Voudouris, P.; Punter, M.T.J.J.M.; Aangenendt, F.J.; Florea, D.; van der Schoot, P.P.A.M.; Wyss, H.M.

    2016-01-01

    We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a non-monotonic response: After an initial rapid compression the particle slowly reswells to approximately its original size. Using a simple

  15. Osmotic dehydration of fruits and vegetables: a review.

    Science.gov (United States)

    Yadav, Ashok Kumar; Singh, Satya Vir

    2014-09-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effects of osmotic dehydration have been reviewed. Studied showed that combination of different osmotic agents were more effective than sucrose alone due to combination of properties of solutes. During the experiments it was found that optimum osmosis was found at approximately 40 °C, 40 °B of osmotic agent and in near about 132 min. Pretreatments also leads to increase the osmotic process in fruits and vegetables. Mass transfer kinetics study is an important parameter to study osmosis. Solids diffusivity were found in wide range (5.09-32.77 kl/mol) studied by Fick's laws of diffusion. These values vary depending upon types of fruits and vegetables and osmotic agents.

  16. Evaluating the effect of different draw solutes in a baffled osmotic membrane bioreactor-microfiltration using optical coherence tomography with real wastewate

    KAUST Repository

    Pathak, Nirenkumar

    2018-05-03

    This study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor for real sewage employing baffles in the reactor. To study the biofouling development on forward osmosis membranes optical coherence tomography (OCT) technique was employed. On-line monitoring of biofilm growth on a flat sheet cellulose triacetate forward osmosis (CTA-FO) membrane was conducted for 21 days. Further, the process performance was evaluated in terms of water flux, organic and nutrient removal, microbial activity in terms of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and floc size. The measured biofouling layer thickness was in the order sodium chloride (NaCl) > ammonium sulfate (SOA) > potassium dihydrogen phosphate (KH2PO4). Very high organic removal (96.9±0.8 %) and reasonably good nutrient removal efficiency (85.2±1.6 % TN) was achieved. The sludge characteristics and biofouling layer thickness suggest that less EPS and higher floc size were the governing factors for less fouling.

  17. Effects of enhanced ultraviolet-B radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances in two different moss species.

    Science.gov (United States)

    Hui, Rong; Zhao, Ruiming; Song, Guang; Li, Yixuan; Zhao, Yang; Wang, Yanli

    2018-05-01

    A simulation experiment was conducted to explore the influence of enhanced ultraviolet-B (UV-B) radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances of mosses Bryum argenteum and Didymodon vinealis isolated from biological soil crusts (BSCs) growing in a revegetated area of the Tengger Desert, China. Four levels of UV-B radiation and two gradients of water regime were employed. Compared with their controls, amounts of total flavonoids, chlorophyll, carotenoids, soluble sugars, and soluble proteins significantly decreased (p argenteum, D. vinealis was more resistant to enhanced UV-B and water deficit singly and in combination. These results suggest that the damage of enhanced UV-B on both species might be alleviated by water deficit. This alleviation is important for understanding the response of BSCs to UV-B radiation in future global climate change. This also provides novel insights into assessment damages of UV-B to BSC stability in arid and semiarid regions.

  18. Pulse pressure and diabetes treatments: Blood pressure and pulse pressure difference among glucose lowering modality groups in type 2 diabetes.

    Science.gov (United States)

    Alemi, Hamid; Khaloo, Pegah; Mansournia, Mohammad Ali; Rabizadeh, Soghra; Salehi, Salome Sadat; Mirmiranpour, Hossein; Meftah, Neda; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2018-02-01

    Type 2 diabetes is associated with higher pulse pressure. In this study, we assessed and compared effects of classic diabetes treatments on pulse pressure (PP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) in patients with type 2 diabetes.In a retrospective cohort study, 718 non-hypertensive patients with type 2 diabetes were selected and divided into 4 groups including metformin, insulin, glibenclamide+metformin, and metformin+insulin. They were followed for 4 consecutive visits lasting about 45.5 months. Effects of drug regimens on pulse and blood pressure over time were assessed separately and compared in regression models with generalized estimating equation method and were adjusted for age, duration of diabetes, sex, smoking, and body mass index (BMI).Studied groups had no significant change in PP, SBP, and DBP over time. No significant difference in PP and DBP among studied groups was observed (PP:P = 0.090; DBP:P = 0.063). Pairwise comparisons of PP, SBP, and DBP showed no statistically significant contrast between any 2 studied groups. Interactions of time and treatment were not different among groups.Our results demonstrate patients using metformin got higher PP and SBP over time. Averagely, pulse and blood pressure among groups were not different. Trends of variation in pulse and blood pressure were not different among studied diabetes treatments.

  19. Osmotic properties of sulfobutylether and hydroxypropyl cyclodextrins.

    Science.gov (United States)

    Zannou, E A; Streng, W H; Stella, V J

    2001-08-01

    The purpose of this study was to determine the osmolality of sulfobutylether (SBE) and hydroxypropyl (HP) derivatives of cyclodextrins (CDs) via vapor pressure osmometry (VPO) and freezing point depression (FPD). (SBE) and HP-CDs are efficient excipients capable of solubilizing and stabilizing poorly water-soluble drugs in parenteral formulations. (SBE)-CDs have also been used as solubility enhancers and osmotic agents for the sustained release of poorly water-soluble drugs from osmotic pump tablets. The knowledge of the CD's osmolality in solution or inside such tablets would allow one to further characterize the release mechanisms. Experiments were conducted at 37 degrees C with eight types of HP and (SBE)-CDs. The aqueous solutions ranged from 0.005-0.350 mol(-1). Methods were developed to allow the measurement of high osmolalities using a vapor pressure osmometer or a differential scanning calorimeter. The osmolality calculations from the VPO and FPD measurements correlated well. The osmolality of (SBE)-CDs was significantly higher than the osmolality of HP-CDs and increased with the total degree of substitution (TDS). All CDs showed deviations from ideality at high concentrations. Empirical correlations of osmolality with concentration and TDS allowed the prediction of osmolality over a wide concentration range. This study also gave some useful insights into the behavior of CD derivatives in solution.

  20. Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray.

    Science.gov (United States)

    Zhang, Wenzhi; Li, Xu; Shang, Xifu; Zhao, Qichun; Hu, Yefeng; Xu, Xiang; He, Rui; Duan, Liqun; Zhang, Feng

    2013-12-27

    Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. At present, the molecular mechanisms underlying osmotic regulation in IVD cells are poorly understood. This study aims to screen genes affected by changes in osmotic pressure in cells of subjects aged 29 to 63 years old, with top-scoring pair (TSP) method. Gene expression data set GSE1648 was downloaded from Gene Expression Omnibus database, including four hyper-osmotic stimuli samples, four iso-osmotic stimuli samples, and three hypo-osmotic stimuli samples. A novel, simple method, referred to as the TSP, was used in this study. Through this method, there was no need to perform data normalization and transformation before data analysis. A total of five pairs of genes ((CYP2A6, FNTB), (PRPF8, TARDBP), (RPS5, OAZ1), (SLC25A3, NPM1) and (CBX3, SRSF9)) were selected based on the TSP method. We inferred that all these genes might play important roles in response to osmotic stimuli and age in IVD cells. Additionally, hyper-osmotic and iso-osmotic stimuli conditions were adverse factors for IVD cells. We anticipate that our results will provide new thoughts and methods for the study of IVD disease.

  1. Osmotic stress regulates the strength and kinetics of sugar binding to the maltoporin channel

    International Nuclear Information System (INIS)

    Gurnev, Philip A; Bezrukov, Sergey M; Harries, Daniel; Adrian Parsegian, V

    2010-01-01

    We study the effect of osmotic stress, exerted by salts, on carbohydrate binding to the sugar-specific bacterial channel maltoporin. When the channel is reconstituted into planar lipid bilayers, single events of its occlusion by sugar are seen as transient interruptions in the flow of small ions. We find that, for most salts, changes in the free energy of maltoporin-sugar binding vary linearly with solution osmotic pressure. Such a change in binding with solution osmolarity indicates that for each salt a constant number of salt-excluding water molecules is released upon sugar-maltoporin association at all salt concentrations. We find that larger numbers of water molecules are released upon binding of the cyclic carbohydrate β-cyclodextrin (CD) than upon binding of the corresponding linear homologue maltoheptaose (m7). Remarkably, the extent to which salts affect the binding constants and rates depends sensitively on the type of salt; dehydration in solutions of different anions corresponds to the Hofmeister series. In sodium sulfate solutions, CD and m7 respectively release about 120 and 35 salt-excluding water molecules; in sodium chloride solutions, 35 and 15 waters. No water release is observed with sodium bromide. Finally, by adding adamantane, known to form an inclusion complex with CD, we can infer that CD not only dehydrates but also undergoes a conformational change upon binding to the channel. As a practical outcome, our results also demonstrate how osmotic stress can improve single-molecule detection of different solutes using protein-based nanopores.

  2. Plantar Pressure Variation during Jogging with Different Heel Height

    Directory of Open Access Journals (Sweden)

    Y. D. Gu

    2013-01-01

    Full Text Available This paper presents the key testing and analysis results of an investigation on the effect of heel height on the plantar pressure over different foot areas in jogging. It is important in improving the understanding of jogging with high heels and damage/injury prevention. It can also potentially guide the development of suitable/adaptive exercise schemes in between daily activities with high heels. In this work, plantar pressure data were collected from 10 habituated healthy female subjects (aged 21–25 years at their natural jogging speed with three different conditions: flat heeled shoes (0.8 cm, low heeled shoes (4.0 cm, and high heeled shoes (6.6 cm. Data analysis showed significantly differences in plantar pressure distribution associated with the heel heights with increased pressure in the first metatarsal region and decreased pressure in the lateral metatarsal and midfoot sections. However, there is no significant alteration of plantar pressure in the central area of the forefoot with jogging gait.

  3. Osmotic stress tolerance in semi-terrestrial tardigrades

    DEFF Research Database (Denmark)

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high......-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress....

  4. Quantification of osmotic water transport in vivo using fluorescent albumin.

    Science.gov (United States)

    Morelle, Johann; Sow, Amadou; Vertommen, Didier; Jamar, François; Rippe, Bengt; Devuyst, Olivier

    2014-10-15

    Osmotic water transport across the peritoneal membrane is applied during peritoneal dialysis to remove the excess water accumulated in patients with end-stage renal disease. The discovery of aquaporin water channels and the generation of transgenic animals have stressed the need for novel and accurate methods to unravel molecular mechanisms of water permeability in vivo. Here, we describe the use of fluorescently labeled albumin as a reliable indicator of osmotic water transport across the peritoneal membrane in a well-established mouse model of peritoneal dialysis. After detailed evaluation of intraperitoneal tracer mass kinetics, the technique was validated against direct volumetry, considered as the gold standard. The pH-insensitive dye Alexa Fluor 555-albumin was applied to quantify osmotic water transport across the mouse peritoneal membrane resulting from modulating dialysate osmolality and genetic silencing of the water channel aquaporin-1 (AQP1). Quantification of osmotic water transport using Alexa Fluor 555-albumin closely correlated with direct volumetry and with estimations based on radioiodinated ((125)I) serum albumin (RISA). The low intraperitoneal pressure probably accounts for the negligible disappearance of the tracer from the peritoneal cavity in this model. Taken together, these data demonstrate the appropriateness of pH-insensitive Alexa Fluor 555-albumin as a practical and reliable intraperitoneal volume tracer to quantify osmotic water transport in vivo. Copyright © 2014 the American Physiological Society.

  5. The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes.

    Science.gov (United States)

    Wang, Z; Irianto, J; Kazun, S; Wang, W; Knight, M M

    2015-02-01

    Osteoarthritis (OA) is associated with a gradual reduction in the interstitial osmotic pressure within articular cartilage. The aim of this study was to compare the effects of sudden and gradual hypo-osmotic challenge on chondrocyte morphology and biomechanics. Bovine articular chondrocytes were exposed to a reduction in extracellular osmolality from 327 to 153 mOsmol/kg applied either suddenly (osmotic stress, 66% of chondrocytes exhibited an increase in diameter followed by RVD, whilst 25% showed no RVD. By contrast, cells exposed to gradual hypo-osmotic stress exhibited reduced cell swelling without subsequent RVD. There was an increase in the equilibrium modulus for cells exposed to sudden hypo-osmotic stress. However, gradual hypo-osmotic challenge had no effect on cell mechanical properties. This cell stiffening response to sudden hypo-osmotic challenge was abolished when actin organization was disrupted with cytochalasin D or RVD inhibited with REV5901. Both sudden and gradual hypo-osmotic challenge reduced cortical F-actin distribution and caused chromatin decondensation. Sudden hypo-osmotic challenge increases chondrocyte mechanics by activation of RVD and interaction with the actin cytoskeleton. Moreover, the rate of hypo-osmotic challenge is shown to have a profound effect on chondrocyte morphology and biomechanics. This important phenomenon needs to be considered when studying the response of chondrocytes to pathological hypo-osmotic stress. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Demonstration of osmotically dependent promotion of aerenchyma formation at different levels in the primary roots of rice using a ‘sandwich’ method and X-ray computed tomography

    Science.gov (United States)

    Karahara, Ichirou; Umemura, Konomi; Soga, Yuumi; Akai, Yuki; Bando, Tadafumi; Ito, Yuko; Tamaoki, Daisuke; Uesugi, Kentaro; Abe, Jun; Yamauchi, Daisuke; Mineyuki, Yoshinobu

    2012-01-01

    Background and Aims The effect of environmental factors on the regulation of aerenchyma formation in rice roots has been discussed for a long time, because aerenchyma is constitutively formed under aerated conditions. To elucidate this problem, a unique method has been developed that enables sensitive detection of differences in the development of aerenchyma under two different environmental conditions. The method is tested to determine whether aerenchyma development in rice roots is affected by osmotic stress. Methods To examine aerenchyma formation both with and without mannitol treatment in the same root, germinating rice (Oryza sativa) caryopses were sandwiched between two agar slabs, one of which contained 270 mm of mannitol. The roots were grown touching both slabs and were thereby exposed unilaterally to osmotic stress. As a non-invasive approach, refraction contrast X-ray computed tomography (CT) using a third-generation synchrotron facility, SPring-8 (Super photon ring 8 GeV, Japan Synchrotron Radiation Research Institute), was used to visualize the three-dimensional (3-D) intact structure of aerenchyma and its formation in situ in rice roots. The effects of unilateral mannitol treatment on the development of aerenchyma were quantitatively examined using conventional light microscopy. Key Results Structural continuity of aerenchyma was clearly visualized in 3-D in the primary root of rice and in situ using X-ray CT. Light microscopy and X-ray CT showed that the development of aerenchyma was promoted on the mannitol-treated side of the root. Detailed light microscopic analysis of cross-sections cut along the root axis from the tip to the basal region demonstrated that aerenchyma developed significantly closer to the root tip on the mannitol-treated side of the root. Conclusions Continuity of the aerenchyma along the rice root axis was morphologically demonstrated using X-ray CT. By using this ‘sandwich’ method it was shown that mannitol promoted

  7. Toward an injectable continuous osmotic glucose sensor.

    Science.gov (United States)

    Johannessen, Erik; Krushinitskaya, Olga; Sokolov, Andrey; Philipp, Häfliger; Hoogerwerf, Arno; Hinderling, Christian; Kautio, Kari; Lenkkeri, Jaakko; Strömmer, Esko; Kondratyev, Vasily; Tønnessen, Tor Inge; Mollnes, Tom Eirik; Jakobsen, Henrik; Zimmer, Even; Akselsen, Bengt

    2010-07-01

    The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. An in vitro model based on a 3.6 x 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4-6 nm large pores. The affinity assay offers a dynamic range of 36-720 mg/dl with a resolution of +/-16 mg/dl. An integrated 1 x 1 mm(2) large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 microW. Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG. 2010 Diabetes Technology Society.

  8. Evaluation of Pressure Generated by Resistors From Different Positive Expiratory Pressure Devices.

    Science.gov (United States)

    Fagevik Olsén, Monika; Carlsson, Maria; Olsén, Erik; Westerdahl, Elisabeth

    2015-10-01

    Breathing exercises with positive expiratory pressure (PEP) are used to improve pulmonary function and airway clearance. Different PEP devices are available, but there have been no studies that describe the pressure generated by different resistors. The purpose of this study was to compare pressures generated from the proprietary resistor components of 4 commercial flow-dependent PEP valves with all other parameters kept constant. Resistors from 4 flow-regulated PEP devices (Pep/Rmt system, Wellspect HealthCare; Pipe P breathing exerciser, Koo Medical Equipment; Mini-PEP, Philips Respironics [including resistors by Rüsch]; and 15-mm endo-adapter, VBM Medizintechnik) were tested randomly by a blinded tester at constant flows of 10 and 18 L/min from an external gas system. All resistors were tested 3 times. Resistors with a similar diameter produced statistically significant different pressures at the same flow. The differences were smaller when the flow was 10 L/min compared with 18 L/min. The differences were also smaller when the diameter of the resistor was increased. The pressures produced by the 4 resistors of the same size were all significantly different when measuring 1.5- and 2.0-mm resistors at a flow of 10 L/min and 2.0-mm resistors at a flow of 18 L/min (P < .001). There were no significant differences between any of the resistors when testing sizes of 4.5 and 5.0 mm at either flow. The Mini-PEP and adapter resistors gave the highest pressures. Pressures generated by the different proprietary resistor components of 4 commercial PEP devices were not comparable, even though the diameter of the resistors is reported to be the same. The pressures generated were significantly different, particularly when using small-diameter resistors at a high flow. Therefore, the resistors may not be interchangeable. This is important information for clinicians, particularly when considering PEP for patients who do not tolerate higher pressures. Copyright © 2015 by

  9. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    Science.gov (United States)

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.

  10. Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities.

    Science.gov (United States)

    Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E; Omsland, Anders; Call, Douglas R

    2017-10-01

    Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log ( P baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity ( r 2 > 0.82; P baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of

  11. Simultaneous compared with sequential blood pressure measurement results in smaller inter-arm blood pressure differences

    NARCIS (Netherlands)

    van der Hoeven, Niels V.; Lodestijn, Sophie; Nanninga, Stephanie; van Montfrans, Gert A.; van den Born, Bert-Jan H.

    2013-01-01

    There are currently few recommendations on how to assess inter-arm blood pressure (BP) differences. The authors compared simultaneous with sequential measurement on mean BP, inter-arm BP differences, and within-visit reproducibility in 240 patients stratified according to age ( <50 or ≥60 years) and

  12. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  13. An analysis of electro-osmotic and magnetohydrodynamic heat pipes

    International Nuclear Information System (INIS)

    Harrison, M.A.

    1988-01-01

    Mechanically simple methods of improving heat transport in heat pipes are investigated. These methods are electro-osmotic and magnetohydrodynamic augmentation. For the electro-osmotic case, a detailed electrokinetic model is used. The electrokinetic model used includes the effects of pore surface curvature and multiple ion diffusivities. The electrokinetic model is extended to approximate the effects of elevated temperature. When the electro-osmotic model is combined with a suitable heat-pipe model, it is found that the electro-osmotic pump should be a thin membrane. Arguments are provided that support the use of a volatile electrolyte. For the magnetohydrodynamic case, a brief investigation is provided. A quasi-one-dimensional hydromagnetic duct flow model is used. This hydromagnetic model is extended to approximate flow effects unique to heat pipes. When combined with a suitable heat pipe model, it is found that there is no performance gain for the case considered. In fact, there are serious pressure-distribution problems that have not been previously recognized. Potential solutions to these pressure-distribution problems are suggested

  14. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    Science.gov (United States)

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc.

  15. Radiation pressure induced difference-sideband generation beyond linearized description

    OpenAIRE

    Xiong, Hao; Fan, Y. W.; Yang, X.; Wu, Y.

    2016-01-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals...

  16. Effect of pore structure on chemico-osmotic, diffusion and hydraulic properties of mud-stones

    International Nuclear Information System (INIS)

    Takeda, M.; Manaka, M.; Ito, K.; Miyoshi, S.; Tokunaga, T.

    2012-01-01

    Document available in extended abstract form only. An in-situ experiment by Neuzil (2000) has obtained the substantial proof of chemical osmosis in natural clayey formation. Chemical osmosis in clayey formations has thus received attention in recent years in the context of geological disposal of radioactive waste. Chemical osmosis is the diffusion of water through a semi-permeable membrane driven by the difference of chemical potentials between solutions to compensate the difference of water potentials, increasing the other potential differences, such as the pressure difference. Accordingly, the chemical osmosis could generate localized, abnormal fluid pressures in geological formations where formation media act as semi-permeable membranes and groundwater salinity is not uniform. Without taking account of the chemical osmosis, groundwater flow modeling may mislead the prediction of the groundwater flow direction. Therefore the possibility of chemical osmosis needs to be identified for potential host formations for radioactive waste repositories. The chemico-osmotic property of formation media is an essential parameter to identify the possibility of chemical osmosis in the formation; however, the diffusion and hydraulic properties are also fundamental parameters to estimate the duration of chemical osmosis since they control the spatial variation of salinity and the dissipation of osmotically induced pressures. In order to obtain the chemico-osmotic, diffusion and hydraulic parameters from a rock sample, this study developed a laboratory experimental system capable of performing chemical osmosis and permeability experiments. A series of experiments were performed on mud-stones. The chemico-osmotic parameter of each rock sample was further interpreted by the osmotic efficiency model proposed by Bresler (1973) to examine the pore structure inherent in rocks. Diatomaceous and siliceous mud-stone samples were obtained from drill cores taken from the Koetoi and Wakkanai

  17. Osmotic mechanism of the loop extrusion process

    Science.gov (United States)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  18. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    Science.gov (United States)

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  19. Osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Sagert, N.H.; Lau, D.W.P.

    1983-01-01

    Vapor pressure osmometry was used to measure osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50 o C and at molalities up to 0.2 mol·kg -1 . The data were fitted to three- and four-parameter equations containing limiting-law terms for a 4:1 electrolyte. The variation of the osmotic coefficients as a function of temperature was found to be small. The results are compared to published values for the osmotic coefficients. (author)

  20. Automatic algorithm for monitoring systolic pressure variation and difference in pulse pressure.

    Science.gov (United States)

    Pestel, Gunther; Fukui, Kimiko; Hartwich, Volker; Schumacher, Peter M; Vogt, Andreas; Hiltebrand, Luzius B; Kurz, Andrea; Fujita, Yoshihisa; Inderbitzin, Daniel; Leibundgut, Daniel

    2009-06-01

    Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.

  1. Detection of osmotic damages in GRP boat hulls

    Science.gov (United States)

    Krstulović-Opara, L.; Domazet, Ž.; Garafulić, E.

    2013-09-01

    Infrared thermography as a tool of non-destructive testing is method enabling visualization and estimation of structural anomalies and differences in structure's topography. In presented paper problem of osmotic damage in submerged glass reinforced polymer structures is addressed. The osmotic damage can be detected by a simple humidity gauging, but for proper evaluation and estimation testing methods are restricted and hardly applicable. In this paper it is demonstrated that infrared thermography, based on estimation of heat wave propagation, can be used. Three methods are addressed; Pulsed thermography, Fast Fourier Transform and Continuous Morlet Wavelet. An additional image processing based on gradient approach is applied on all addressed methods. It is shown that the Continuous Morlet Wavelet is the most appropriate method for detection of osmotic damage.

  2. The osmotic second virial coefficient and the Gibbs-McMillan-Mayer framework

    DEFF Research Database (Denmark)

    Mollerup, J.M.; Breil, Martin Peter

    2009-01-01

    The osmotic second virial coefficient is a key parameter in light scattering, protein crystallisation. self-interaction chromatography, and osmometry. The interpretation of the osmotic second virial coefficient depends on the set of independent variables. This commonly includes the independent...... variables associated with the Kirkwood-Buff, the McMillan-Mayer, and the Lewis-Randall solution theories. In this paper we analyse the osmotic second virial coefficient using a Gibbs-McMillan-Mayer framework which is similar to the McMillan-Mayer framework with the exception that pressure rather than volume...... is an independent variable. A Taylor expansion is applied to the osmotic pressure of a solution where one of the solutes is a small molecule, a salt for instance, that equilibrates between the two phases. Other solutes are retained. Solvents are small molecules that equilibrate between the two phases...

  3. [The interarm blood pressure difference in the critically ill patient].

    Science.gov (United States)

    Valls Matarín, Josefa; del Cotillo Fuente, Mercedes; Quintana Riera, Salvador; de la Sierra Iserte, Alejandro

    2014-02-04

    To evaluate the prevalence of a difference in systolic blood pressure (SBPd) ≥ 10 mmHg between arms in patients admitted in a Critical Care Unit and to examine the clinical characteristics associated with such blood pressure difference. Observational cross-sectional study. Two blood pressure measurements in each arm were carried out at unit admission. The firstly measured arm was chosen at random. One-hundred and sixty-eight patients were studied, with a mean age of 61 (SD=16), 67.3% male and 45% with a previous hypertension diagnosis. On admission, 27.4% presented SBPd ≥ 10 mmHg. Among them, 54% had higher SBP in the right arm and 46% in the left one. A SBPd ≥ 10 mmHg was associated with a previous hypertension diagnosis (67.4 versus 36.9%; Parms. This feature is associated with a previous hypertension diagnosis and reduced consciousness. It should be assessed in the future if the choice of a control arm would help improve patient's care as it would become a more accurate guide for hemodynamic management. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  4. Radiation pressure induced difference-sideband generation beyond linearized description

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Hao, E-mail: haoxiong1217@gmail.com; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying, E-mail: yingwu2@126.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-08-08

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  5. [Is blood pressure control different in women than in men?].

    Science.gov (United States)

    Oliveras, A; Sans-Atxer, L; Vázquez, S

    2015-01-01

    Blood pressure (BP) evolves with age; until the 50's it is higher in men than in women, equaling and even then increasing in women. The prevalence of controlled BP appears to be similar between the sexes, but the prevalence of cardiovascular disease is higher in women than in men. The possibility that BP influences the cardiovascular risk differently according to sex must therefore be considered. While some studies suggest no difference exists, others have shown evidence of an increased risk in women with respect to men despite equal BP. In this way, it seems that the measurement of ambulatory BP, but not office BP, would mark the differences in the association between BP-gender and cardiovascular risk. It should therefore be investigated the possibility of a different BP goal for women and men, especially by evaluating ambulatory BP. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  6. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  7. Investigating Gender Differences under Time Pressure in Financial Risk Taking.

    Science.gov (United States)

    Xie, Zhixin; Page, Lionel; Hardy, Ben

    2017-01-01

    There is a significant gender imbalance on financial trading floors. This motivated us to investigate gender differences in financial risk taking under pressure. We used a well-established approach from behavior economics to analyze a series of risky monetary choices by male and female participants with and without time pressure. We also used second to fourth digit ratio (2D:4D) and face width-to-height ratio (fWHR) as correlates of pre-natal exposure to testosterone. We constructed a structural model and estimated the participants' risk attitudes and probability perceptions via maximum likelihood estimation under both expected utility (EU) and rank-dependent utility (RDU) models. In line with existing research, we found that male participants are less risk averse and that the gender gap in risk attitudes increases under moderate time pressure. We found that female participants with lower 2D:4D ratios and higher fWHR are less risk averse in RDU estimates. Males with lower 2D:4D ratios were less risk averse in EU estimations, but more risk averse using RDU estimates. We also observe that men whose ratios indicate a greater prenatal exposure to testosterone exhibit a greater optimism and overestimation of small probabilities of success.

  8. Gender differences in blood pressure regulation following artificial gravity exposure

    Science.gov (United States)

    Evans, Joyce; Goswami, Nandu; Kostas, Vladimir; Zhang, Qingguang; Ferguson, Connor; Moore, Fritz; Stenger, Michael, , Dr; Serrador, Jorge; W, Siqi

    Introduction. Before countermeasures to space flight cardiovascular deconditioning are established, gender differences in cardiovascular responses to orthostatic stress, in general, and to orthostatic stress following exposure to artificial gravity (AG), in particular, need to be determined. Our recent determination that a short exposure to AG improved the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned subjects drives the current effort to determine mechanisms of that improvement in men and in women. Methods. We determined the OTL of 9 men and 8 women following a 90 min exposure to AG compared to that following 90 min of head down bed rest (HDBR). On both days (21 days apart), subjects were made hypovolemic (low salt diet plus 20 mg intravenous furosemide) and orthostatic tolerance was determined from a combination of head up tilt and increasing lower body negative pressure until presyncope. Mean values and correlations with OTL were determined for heart rate, blood pressure, stroke volume, cardiac output, total peripheral resistance (Finometer), middle cerebral artery flow velocity (DWL), partial pressure of carbon dioxide (Novametrics) and body segmental impedance (UFI THRIM) at supine baseline, during orthostatic stress to presyncope and at supine recovery. Results. Orthostatic tolerance of these hypovolemic subjects was significantly greater following AG than following HDBR. Exposure to AG increased cardiac output in both men and women and increased stroke volume in women. In addition, AG decreased systolic blood pressure in men, but not women, and increased cerebral flow in women, but not men. In both men and women, AG exposure decreased peripheral resistance and decreased cerebrovascular resistance in women. Men’s heart rate rose more at the end of OTL on their AG, compared to their HDBR, day but women’s fell. Presyncopal stroke volume reached the same level on each day of study for both men and women. Conclusions. In the present

  9. Efficiency of osmotic pipe flows

    DEFF Research Database (Denmark)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Helix Nielsen, Claus

    2013-01-01

    efficiency of these flows is limited by the presence of “unstirred” concentration boundary layers near the tube walls, and our primary aim is to understand and quantify these layers and their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate Q*, concentration c......We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping...

  10. Forward osmosis membrane modular configurations for osmotic dilution of seawater by forward osmosis and reverse osmosis hybrid system.

    Science.gov (United States)

    Kim, Jung Eun; Phuntsho, Sherub; Ali, Syed Muztuza; Choi, Joon Young; Shon, Ho Kyong

    2018-01-01

    This study evaluates various options for full-scale modular configuration of forward osmosis (FO) process for osmotic dilution of seawater using wastewater for simultaneous desalination and water reuse through FO-reverse osmosis (RO) hybrid system. Empirical relationship obtained from one FO membrane element operation was used to simulate the operational performances of different FO module configurations. The main limiting criteria for module operation is to always maintain the feed pressure higher than the draw pressure throughout the housing module for safe operation without affecting membrane integrity. Experimental studies under the conditions tested in this study show that a single membrane housing cannot accommodate more than four elements as the draw pressure exceeds the feed pressure. This then indicates that a single stage housing with eight elements is not likely to be practical for safe FO operation. Hence, six different FO modular configurations were proposed and simulated. A two-stage FO configuration with multiple housings (in parallel) in the second stage using same or larger spacer thickness reduces draw pressure build-up as the draw flow rates are reduced to half in the second stage thereby allowing more than four elements in the second stage housing. The loss of feed pressure (pressure drop) and osmotic driving force in the second stage are compensated by operating under the pressure assisted osmosis (PAO) mode, which helps enhance permeate flux and maintains positive pressure differences between the feed and draw chamber. The PAO energy penalty is compensated by enhanced permeate throughput, reduced membrane area, and plant footprint. The contribution of FO/PAO to total energy consumption was not significant compared to post RO desalination (90%) indicating that the proposed two-stage FO modular configuration is one way of making the FO full-scale operation practical for FO-RO hybrid system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension.

    Science.gov (United States)

    Kamiński, Marek; Cieślik-Guerra, Urszula I; Kotas, Rafał; Mazur, Piotr; Marańda, Witold; Piotrowicz, Maciej; Sakowicz, Bartosz; Napieralski, Andrzej; Trzos, Ewa; Uznańska-Loch, Barbara; Rechciński, Tomasz; Kurpesa, Małgorzata

    2016-01-01

    Atmospheric pressure is the most objective weather factor because regardless of if outdoors or indoors it affects all objects in the same way. The majority of previous studies have used the average daily values of atmospheric pressure in a bioclimatic analysis and have found no correlation with blood pressure changes. The main objective of our research was to assess the relationship between atmospheric pressure recorded with a frequency of 1 measurement per minute and the results of 24-h blood pressure monitoring in patients with treated hypertension in different seasons in the moderate climate of the City of Łódź (Poland). The study group consisted of 1662 patients, divided into 2 equal groups (due to a lower and higher average value of atmospheric pressure). Comparisons between blood pressure values in the 2 groups were performed using the Mann-Whitney U test. We observed a significant difference in blood pressure recorded during the lower and higher range of atmospheric pressure: on the days of the spring months systolic (p = 0.043) and diastolic (p = 0.005) blood pressure, and at nights of the winter months systolic blood pressure (p = 0.013). A significant inverse relationship between atmospheric pressure and blood pressure during the spring days and, only for systolic blood pressure, during winter nights was observed. Int J Occup Med Environ Health 2016;29(5):783-792. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Different Selection Pressures Give Rise to Distinct Ethnic Phenomena

    Science.gov (United States)

    Moya, Cristina; Boyd, Robert

    2015-01-01

    Many accounts of ethnic phenomena imply that processes such as stereotyping, essentialism, ethnocentrism, and intergroup hostility stem from a unitary adaptation for reasoning about groups. This is partly justified by the phenomena’s co-occurrence in correlational studies. Here we argue that these behaviors are better modeled as functionally independent adaptations that arose in response to different selection pressures throughout human evolution. As such, different mechanisms may be triggered by different group boundaries within a single society. We illustrate this functionalist framework using ethnographic work from the Quechua-Aymara language boundary in the Peruvian Altiplano. We show that different group boundaries motivate different ethnic phenomena. For example, people have strong stereotypes about socioeconomic categories, which are not cooperative units, whereas they hold fewer stereotypes about communities, which are the primary focus of cooperative activity. We also show that, despite the cross-cultural importance of ethnolinguistic boundaries, the Quechua-Aymara linguistic distinction does not strongly motivate any of these intergroup processes. PMID:25731969

  13. Prognostic significance of between-arm blood pressure differences.

    Science.gov (United States)

    Agarwal, Rajiv; Bunaye, Zerihun; Bekele, Dagim M

    2008-03-01

    Blood pressure (BP) recordings often differ between arms, but the extent to which these differences are reproducible and whether the differences have prognostic importance is unknown. We enrolled 421 consecutive patients from a medicine and a renal clinic at a veterans' hospital. Three BP recordings were obtained in each arm using an oscillometric device in a sequential manner and repeated in 1 week. Patients were followed for all-cause mortality arm had 5.1-mm Hg higher systolic BP that attenuated by approximately 2.2 mm Hg a week later. Systolic BP dropped 6.9 mm Hg over 1 week and by an additional 5.3 mm Hg in patients with chronic kidney disease. Accounting for the visit and arm effect improved the reproducibility of the BP measurements. The intraclass correlation coefficient was 0.74, which improved to 0.88 after accounting for visit and 0.93 after accounting for arm. The crude mortality rate was 6.33 per 100 patient-years. Every 10-mm Hg difference in systolic BP between the arms conferred a mortality hazard of 1.24 (95% CI: 1.01 to 1.52) after adjusting for average systolic BP and chronic kidney disease. BP differences between arms are reproducible and carry prognostic information. Patients should have evaluation of BP in both arms at the screening visit.

  14. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure.

    NARCIS (Netherlands)

    Kiers, H.D.; Hofstra, J.M.; Wetzels, J.F.M.

    2008-01-01

    Mean arterial pressure (MAP) is often used as an index of overall blood pressure. In recent years, the use of automated oscillometric blood pressure measurement devices is increasing. These devices directly measure and display MAP; however, MAP is often calculated from systolic blood pressure (SBP)

  15. Osmotic Power Generation by Inner Selective Hollow Fiber Membranes: An investigation of thermodynamics, mass transfer, and module scale modelling

    KAUST Repository

    Xiong, Jun Ying; Cai, Dong Jun; Chong, Qing Yu; Lee, Swin Hui; Chung, Neal Tai-Shung

    2016-01-01

    A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane

  16. Optimization of the Energy Output of Osmotic Power Plants

    Directory of Open Access Journals (Sweden)

    Florian Dinger

    2013-01-01

    Full Text Available On the way to a completely renewable energy supply, additional alternatives to hydroelectric, wind, and solar power have to be investigated. Osmotic power is such an alternative with a theoretical global annual potential of up to 14400 TWh (70% of the global electricity consumption of 2008 per year. It utilizes the phenomenon that upon the mixing of fresh water and oceanic salt water (e.g., at a river mouth, around 2.88 MJ of energy per 1 m3 of fresh water is released. Here, we describe a new approach to derive operational parameter settings for osmotic power plants using a pressure exchanger for optimal performance, either with respect to maximum generated power or maximum extracted energy. Up to now, only power optimization is discussed in the literature, but when considering the fresh water supply as a limiting factor, the energy optimization appears as the challenging task.

  17. On equations for the total suction and its matric and osmotic components

    International Nuclear Information System (INIS)

    Dao, Vinh N.T.; Morris, Peter H.; Dux, Peter F.

    2008-01-01

    A clear fundamental understanding of suctions is crucial for the study of the behaviour of plastic cement mortar and concrete, including plastic shrinkage cracking. In this paper, the expression relating the change in free energy of the pore water with an isothermal change in pressure is first derived. Based upon definitions of suctions, it is then shown that total, matric, and osmotic suctions can all be expressed in the same thermodynamic form. The widely accepted, but not yet satisfactorily validated, assumption that the total suction comprises matric and osmotic components is then confirmed theoretically. The well-known Kelvin equation for matric suction, and Morse and van't Hoff equations for osmotic suction are subsequently derived from the corresponding thermodynamic equations. The applicability of latter two equations in evaluating the osmotic suctions of cement mortar and concrete is highlighted

  18. From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress

    Science.gov (United States)

    Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek

    the alterations in the composition of wall proteins and polysaccharides. With respect to the cytoskeleton, in cells exposed to short-term osmotic stress significant rearrange-ments were observed. Surprisingly, the analyses of microfilaments and microtubules in adapted and in non-adapted, normal BY-2 cells, revealed no significant changes. It seems that upon prolonged exposure to osmotic stress conditions selective and adaptive alterations in wall com-position were occurring. Walls of cells grown in the presence of ionic agents were homogenous, while longitudinal walls and cross-walls in cells adapted to nonionic agents were significantly different. This might affect the anchorage of the cytoskeleton in the walls and modify the func-tioning of the whole WMC continuum. In this way, cell's mechanical balance restoration will be ensured and, in consequence, cells will be able to resist osmotic pressure and divide under severe stress conditions. In plants, cross-walls within cell files of axial organs exhibit specific properties that allow them to act as domains of contact and intense intercellular communica-tion, and the sites of the anchorage of cytoskeleton. As a further consequence, also cell-to-cell interactions would be affected. MM and RJ are students of biotechnology at Adam Mickiewicz University. The data coming from the authors' lab come from research supported by the DAAD scholarship to AK, and Alexander von Humboldt Research Fellowship and Polish Ministry of Science and Higher Edu-cation grants PBZ-KBN-110/P04/2004, N N303 294434, N N301 164435, and N N303 360735 to PW.

  19. Fecal osmotic gap and pH in experimental diarrhea of various causes.

    Science.gov (United States)

    Eherer, A J; Fordtran, J S

    1992-08-01

    Although the osmotic gap of fecal fluid is often used to distinguish osmotic diarrhea from secretory diarrhea, there has never been a scientific evaluation of the validity of this concept. Similarly, although a low fecal fluid pH value is used to indicate that diarrhea is mediated by carbohydrate malabsorption, the validity of this method is unproven. Therefore, in the present study, diarrhea was induced in normal subjects by different mechanisms and fecal fluid osmotic gap (using an assumed fecal fluid osmolality of 290 mOsm/kg) and pH were measured. In secretory diarrhea caused by phenolphthalein, the osmotic gap was always less than 50 mOsm/kg, whereas in osmotic diarrhea caused by polyethylene glycol, magnesium hydroxide, lactulose, and sorbitol, the osmotic gap always exceeded 50 mOsm/kg. In osmotic diarrhea caused by sodium sulfate, the fecal fluid osmotic gap was less than 50 mOsm/kg, but phenolphthalein-induced secretory diarrhea could be distinguished from sodium sulfate-induced osmotic diarrhea by the fecal chloride concentration. When diarrhea was caused by carbohydrate malabsorption (lactulose or sorbitol), the fecal fluid pH was always less than 5.6 and usually less than 5.3; by contrast, other causes of diarrhea rarely caused a fecal pH as low as 5.6 and never caused a pH less than 5.3. It is concluded that measurement of fecal fluid osmotic gap and pH can distinguish various mechanisms of experimental diarrhea in normal subjects. The concepts on which these tests are based are therefore verified experimentally.

  20. Simultaneous compared with sequential blood pressure measurement results in smaller inter-arm blood pressure differences.

    Science.gov (United States)

    van der Hoeven, Niels V; Lodestijn, Sophie; Nanninga, Stephanie; van Montfrans, Gert A; van den Born, Bert-Jan H

    2013-11-01

    There are currently few recommendations on how to assess inter-arm blood pressure (BP) differences. The authors compared simultaneous with sequential measurement on mean BP, inter-arm BP differences, and within-visit reproducibility in 240 patients stratified according to age (simultaneous and three sequential BP measurements were taken in each patient. Starting measurement type and starting arm for sequential measurements were randomized. Mean BP and inter-arm BP differences of the first pair and reproducibility of inter-arm BP differences of the first and second pair were compared between both methods. Mean systolic BP was 1.3±7.5 mm Hg lower during sequential compared with simultaneous measurement (Psequential measurement was on average higher than the second, suggesting an order effect. Absolute systolic inter-arm BP differences were smaller on simultaneous (6.2±6.7/3.3±3.5 mm Hg) compared with sequential BP measurement (7.8±7.3/4.6±5.6 mm Hg, PSimultaneous measurement of BP at both arms reduces order effects and results in smaller inter-arm BP differences, thereby potentially reducing unnecessary referral and diagnostic procedures. ©2013 Wiley Periodicals, Inc.

  1. Artificial neural network model of pork meat cubes osmotic dehydratation

    Directory of Open Access Journals (Sweden)

    Pezo Lato L.

    2013-01-01

    Full Text Available Mass transfer of pork meat cubes (M. triceps brachii, shaped as 1x1x1 cm, during osmotic dehydration (OD and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w, temperature (20-50ºC, and immersion time (1-5 h in terms of water loss (WL, solid gain (SG, final dry matter content (DM, and water activity (aw, were investigated using experimental results. Five artificial neural network (ANN models were developed for the prediction of WL, SG, DM, and aw in OD of pork meat cubes. These models were able to predict process outputs with coefficient of determination, r2, of 0.990 for SG, 0.985 for WL, 0.986 for aw, and 0.992 for DM compared to experimental measurements. The wide range of processing variables considered for the formulation of these models, and their easy implementation in a spreadsheet calculus make it very useful and practical for process design and control.

  2. Optimization of Vacuum Frying Parameters in Combination with Osmotic Dehydration of Kiwi Slices to Produce Healthy Product

    Directory of Open Access Journals (Sweden)

    Fatemeh Aghabozorg Afjeh Aghabozorg Afjeh

    2014-05-01

    Full Text Available Osmotic dehydration under discontinuous reduced pressure is one of the new methods of preparation fruits and vegetable processing with in view of good health. Processing of foods at high temperatures used to cook them can cause the formation of carcinogenic substances like acrylamide, and this risk remains even if the trans-fat is removed. The low temperatures employed in this method resulted in the products with the desired texture, nutritional, and colour. The purpose of this research was evaluation of the variable effects of osmotic dehydration process (ambient pressure, contact time of product and solution, concentration and temperature of osmotic solution on the quality factors of product (colour changes, texture, moisture, oil uptake, and water loss to solid gain ratio and achieving the optimum process conditions. Studying the quality parameters of the product, the temperature range of osmotic solution, pressure, concentration of the osmotic solution and contact time of product and solution were assumed as 30 to 50°C, 500 to 700 mbar, 30 to 50% and 60 to 180 min, respectively. The test plans involving 31 tests were obtained by using response surface statistical models and central composite design. They were fried at the condition of 108ºC, 8 min and 320 mbar by using statistical correlations, 48.71ºC for the osmotic solution temperature, 592.07 mbar for the pressure, 62.92 min for the time and 34.87% for the osmotic solution. Concentrations were obtained as optimum conditions of osmotic dehydration of kiwi slices under reduced pressure. In summary combination of osmotic dehydration and vacuum frying improved the quality of the final fried kiwi, so this method is recommended for production of healthy products.

  3. The effects of osmotic stress on the structure and function of the cell nucleus.

    Science.gov (United States)

    Finan, John D; Guilak, Farshid

    2010-02-15

    Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis. (c) 2009 Wiley-Liss, Inc.

  4. One arm exercise induces significant interarm diastolic blood pressure difference.

    Science.gov (United States)

    Hong, Dezhi; Wang, Jiwei; Su, Hai; Xu, Jingsong; Liu, Yanna; Peng, Qiang; Wang, Lijuan

    2011-06-01

    This study is designed to investigate the inducing effect of one arm exercise on interarm difference (IAD) in the blood pressure (BP). Fifty healthy young participants were included in the study. Three-minute exercises of the right arm elbow flexion and extension were performed. The bilateral brachial BP was simultaneously measured with two automatic BP measurement devices before (basic) and immediately 0, 5, 10, 15, 20, and 30 min after exercise. The absolute difference in the systolic BP (SBP) and diastolic BP (DBP) between the left and right BP of at least 10 mmHg was recognized as sIAD and dIAD. The baseline data of the SBP and DBP in left and right arms revealed no significant difference (SBP: 110 ± 10 vs. 111 ± 11 mmHg; DBP: 66 ± 8 vs. 66 ± 9 mmHg, both not significant). The prevalence of dIAD was 2% at the baseline. However, this prevalence increased to 80% at 0 min, as right arm exercise induced the right DBP decrease and left DBP increase, and then the prevalence decreased gradually within a 30-min recovery period. The prevalence of sIAD was zero at the baseline and the maximal prevalence was 8% during the 20-min postexercise period. One arm exercise can lead to a significant IAD in DBP. Any arm exercise should be avoided before BP measurement.

  5. Alterations in the colonic microbiota in response to osmotic diarrhea.

    Science.gov (United States)

    Gorkiewicz, Gregor; Thallinger, Gerhard G; Trajanoski, Slave; Lackner, Stefan; Stocker, Gernot; Hinterleitner, Thomas; Gülly, Christian; Högenauer, Christoph

    2013-01-01

    Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used.

  6. Alterations in the colonic microbiota in response to osmotic diarrhea.

    Directory of Open Access Journals (Sweden)

    Gregor Gorkiewicz

    Full Text Available BACKGROUND & AIMS: Diseases of the human gastrointestinal (GI tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. METHODS: We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG. Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. RESULTS: Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. CONCLUSIONS: Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy are used.

  7. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  8. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  9. Different approaches to estimation of reactor pressure vessel material embrittlement

    Directory of Open Access Journals (Sweden)

    V. M. Revka

    2013-03-01

    Full Text Available The surveillance test data for the nuclear power plant which is under operation in Ukraine have been used to estimate WWER-1000 reactor pressure vessel (RPV material embrittlement. The beltline materials (base and weld metal were characterized using Charpy impact and fracture toughness test methods. The fracture toughness test data were analyzed according to the standard ASTM 1921-05. The pre-cracked Charpy specimens were tested to estimate a shift of reference temperature T0 due to neutron irradiation. The maximum shift of reference temperature T0 is 84 °C. A radiation embrittlement rate AF for the RPV material was estimated using fracture toughness test data. In addition the AF factor based on the Charpy curve shift (ΔTF has been evaluated. A comparison of the AF values estimated according to different approaches has shown there is a good agreement between the radiation shift of Charpy impact and fracture toughness curves for weld metal with high nickel content (1,88 % wt. Therefore Charpy impact test data can be successfully applied to estimate the fracture toughness curve shift and therefore embrittlement rate. Furthermore it was revealed that radiation embrittlement rate for weld metal is higher than predicted by a design relationship. The enhanced embrittlement is most probably related to simultaneously high nickel and high manganese content in weld metal.

  10. Inter-arm blood pressure differences in young, healthy patients.

    Science.gov (United States)

    Grossman, Alon; Prokupetz, Alex; Gordon, Barak; Morag-Koren, Nira; Grossman, Ehud

    2013-08-01

    The prevalence and magnitude of inter-arm BP difference (IAD) in young healthy patients is not well characterized. Flight academy applicants and designated aviators undergo annual evaluation that includes blood pressure (BP) measurement on both arms. All BP measurements performed from January 1, 2012, to April 30, 2012, were recorded and IAD was calculated. Results were compared between patients in whom BP was initially measured in the right arm (group 1), those in whom BP was initially measured in the left arm (group 2), and those in whom the arm in which BP was initially measured was not recorded (group 3). A total of 877 healthy patients had BP measured during the study period. In the entire group, mean systolic BP was the same in both arms. Absolute IAD was 5.6±5.5 mm Hg for systolic and 4.7±4.5 mm Hg for diastolic BP. IAD >10 mm Hg was recorded in 111 (12.6%) and 77 (8.8%) patients for systolic and diastolic BP, respectively. IAD was the same in the 3 groups and was unrelated to age, body mass index, and heart rate, but was related to systolic BP. IAD is common in young healthy patients, is not dependent on which arm was measured first, and unrelated to age, body mass index, and heart rate. © 2013 Wiley Periodicals, Inc.

  11. Neutral lipid production in Dunaliella salina during osmotic stress and adaptation

    DEFF Research Database (Denmark)

    Yao, Shuo; Lu, Jingquan; Sárossy, Zsuzsa

    2016-01-01

    The salt-tolerant green microalga Dunaliella salina can survive both hyper- and hypo-osmotic shock. Upon osmotic shock, the cells transiently and rapidly decreased or increased in size within minutes and slowly over hours acquired their original cell size and volume. Cell size distribution differs...... significantly in the cultures grown in the salinity range from 1.5 to 15 % NaCl. By using Nile Red fluorescence to detect neutral lipids, it became clear that only hyper-osmotic shock on cells induced transient neutral lipid appearance in D. salina, while those transferred from 9 to 15 % NaCl stimulated...

  12. Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols

    International Nuclear Information System (INIS)

    González, Emilio J.; Calvar, Noelia; Macedo, Eugénia A.

    2014-01-01

    Highlights: • Physical and osmotic properties of [HMim][TfO] in alcohols are reported. • Apparent molar properties and osmotic coefficients were obtained. • Apparent molar volumes were fitted using a Redlich–Meyer type equation. • The osmotic coefficients were modeled with the Extended Pitzer and the MNRTL models. -- Abstract: In this work, density for the binary mixtures of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate in alcohols (1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol) was measured at T = 323.15 K and atmospheric pressure. From this property, the corresponding apparent molar volumes were calculated and fitted to a Redlich–Meyer type equation. For these mixtures, the osmotic and activity coefficients, and vapor pressures of these binary systems were also determined at the same temperature using the vapor pressure osmometry technique. The experimental osmotic coefficients were modeled by the Extended Pitzer model of Archer. The parameters obtained in this correlation were used to calculate the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures

  13. Osmotic and apparent molar properties of binary mixtures alcohol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid

    International Nuclear Information System (INIS)

    González, Emilio J.; Calvar, Noelia; Domínguez, Ángeles; Macedo, Eugénia A.

    2013-01-01

    Highlights: ► Osmotic and physical properties of binary mixtures {alcohol + [BMim][TfO]} were measured. ► From experimental data, apparent molar properties and osmotic coefficients were calculated. ► The apparent properties were fitted using a Redlich–Meyer type equation. ► The osmotic coefficients were correlated using the Extended Pitzer model. -- Abstract: In this work, physical properties (densities and speeds of sound) for the binary systems {1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate} were experimentally measured from T = (293.15 to 323.15) K and at atmospheric pressure. These data were used to calculate the apparent molar volume and apparent molar isentropic compression which were fitted to a Redlich–Meyer type equation. This fit was used to obtain the corresponding apparent molar properties at infinite dilution. On the other hand, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The Extended Pitzer model of Archer was employed to correlate the experimental osmotic coefficients. From the parameters obtained in the correlation, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated

  14. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  15. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  16. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua

    2010-04-16

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. © 2010 Blackwell Publishing Ltd.

  17. Variation in Resistance of Natural Isolates of Escherichia coli O157 to High Hydrostatic Pressure, Mild Heat, and Other Stresses

    OpenAIRE

    Benito, Amparo; Ventoura, Georgia; Casadei, Maria; Robinson, Tobin; Mackey, Bernard

    1999-01-01

    Strains of Escherichia coli O157 isolated from patients with clinical cases of food-borne illness and other sources exhibited wide differences in resistance to high hydrostatic pressure. The most pressure-resistant strains were also more resistant to mild heat than other strains. Strain C9490, a representative pressure-resistant strain, was also more resistant to acid, oxidative, and osmotic stresses than the pressure-sensitive strain NCTC 12079. Most of these differences in resistance were o...

  18. Blood pressure variations in Subjects with different Haemoglobin ...

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    compared with the normal controls. The systolic blood pressures in control (HB AA) and SCD patients were .... especially in older patients and may predispose them to stroke and other ... autonomic responses to change in posture or vitamin C.

  19. Blood pressure differences between arms and association of dominant hands with blood pressure differences and carotid atherosclerosis.

    Science.gov (United States)

    Maeda, Shinji

    2013-06-01

    Guidelines for the management of hypertension recommend that blood pressure (BP) should be measured twice at every visit; it should be measured in both arms at the first visit, and the right arm BP or higher BP should be recorded. Manufacturers of home BP monitors tend to design the device for measurement of left arm BP. The arm preferred for BP measurement differs according to the methods recommended by the society and according to the home BP monitors. The BP difference (ΔBP) is calculated by subtracting left arm BP from right arm BP. Here, we aim to first investigate which hand will give the most accurate reading by a sphygmomanometer in daily medical practice. Second, we wish to assess the association of the dominant hand with absolute BP difference (|ΔBP|) of at least 10 mmHg and with early atherosclerotic markers in a subanalysis. We found that 6.4% of outpatients were left handed, and the percentage of individuals with systolic |ΔBP| (|ΔSBP|) and diastolic |ΔBP| (|ΔDBP|) of at least 10 mmHg was 14.4 and 7.2%, respectively. The dominant hand was not significantly associated with |ΔBP| of at least 10 mmHg or early atherosclerotic markers. This study suggests that BP measured in one arm is substitutable with that of the other arm because of a lack of association of |ΔBP| with the dominant hand. However, BP of both arms should be actively measured in new outpatients with moderate fever, lifestyle-related diseases, vascular events, age 65 years and above, and smoking history, all of which are factors potentially associated with |ΔBP| of at least 10 mmHg, regardless of the dominant hand.

  20. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    Science.gov (United States)

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution.

    Science.gov (United States)

    Lech, Krzysztof; Michalska, Anna; Wojdyło, Aneta; Nowicka, Paulina; Figiel, Adam

    2017-12-16

    The osmotic dehydration (OD) process consists of the removal of water from a material during which the solids from the osmotic solution are transported to the material by osmosis. This process is commonly performed in sucrose and salt solutions. Taking into account that a relatively high consumption of those substances might have a negative effect on human health, attempts have been made to search for alternatives that can be used for osmotic dehydration. One of these is an application of chokeberry juice with proven beneficial properties to human health. This study aimed to evaluate the physicochemical properties of the OD solution (chokeberry juice concentrate) before and after the osmotic dehydration of carrot and zucchini. The total polyphenolics content, antioxidant capacity (ABTS, FRAP), dynamic viscosity, density, and water activity were examined in relation to the juice concentration used for the osmotic solution before and after the OD process. During the osmotic dehydration process, the concentration of the chokeberry juice decreased. Compounds with lower molecular weight and lower antioxidant capacity present in concentrated chokeberry juice had a stronger influence on the exchange of compounds during the OD process in carrot and zucchini. The water activity of the osmotic solution increased after the osmotic dehydration process. It was concluded that the osmotic solution after the OD process might be successfully re-used as a product with high quality for i.e. juice production.

  2. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula.

    Science.gov (United States)

    Lintunen, Anna; Lindfors, Lauri; Nikinmaa, Eero; Hölttä, Teemu

    2017-04-01

    Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the

  3. Extra pontine osmotic demyelination syndrome.

    Science.gov (United States)

    Zunga, Pervaiz M; Farooq, Omar; Dar, Mohd I; Dar, Ishrat H; Rashid, Samia; Rather, Abdul Q; Basu, Javid A; Ashraf, Mohammed; Bhat, Jahangeer A

    2015-01-01

    The osmotic demyelination syndrome (ODS) has been identified as a complication of the rapid correction of hyponatremia for decades. However, in recent years, a variety of other medical conditions have been associated with the development of ODS, independent of changes in serum sodium which cause a rapid changes in osmolality of the interstitial (extracellular) compartment of the brain leading to dehydration of energy-depleted cells with subsequent axonal damage that occurs in characteristic areas. Slow correction of the serum sodium concentration and additional administration of corticosteroids seems to be a major prevention step in ODS patients. In the current report we aimed to share a rare case which we observed in our hospital. A 65 year old female admitted as altered sensorium with history of vomiting, diarrhea was managed with intravenous fluids for 2 days at a peripheral health centre. Patient was referred to our centre with encephalopathy, evaluated and found to have hyponatremia and hypokalemia rest of biochemical parameters and septic profile were normal. Patient's electrolyte disturbances were managed as per guidelines but encephalopathy persisted. Supportive treatment was continued and patient was discharged after 2 wks of stay in hospital after gaining full sensorium and neurological functions.

  4. Protein-polysaccharide interactions: The determination of the osmotic second virial coefficients in aqueous solutions of ß-lactoglobulin and dextran

    NARCIS (Netherlands)

    Schaink, H.M.; Smit, J.A.M.

    2007-01-01

    Solutions containing dextran and solutions containing mixtures of dextran +ß-lactoglobulin are studied by membrane osmometry. The low concentration range of these solutions is considered. From the measured osmotic pressures the virial coefficients are obtained. These are analyzed using the osmotic

  5. Studies on osmotic concentration of radioactive effluents

    International Nuclear Information System (INIS)

    Thomas, K.C.; Ramachandhran, V.; Misra, B.M.

    1986-01-01

    The potential of direct osmosis for concentrating radioactive effluents is examined on the laboratory scale. Studies were carried out using asymmetric cellulose acetate membranes of a range of porosities under varying salinity gradients. A suitable bench scale osmotic concentrator employing tubular membrane systems has been fabricated and tested. An attempt to understand the mechanism of water permeation under osmotic and hydrostatic gradients has been made based on the irreversible thermodynamic approach. The solute separation of sodium chloride and radionuclides under osmosis is in the range of 85 to 95% for various osmotic sink solutions. The osmotic water flux is observed to be lower than the hydraulic water flux under reverse osmosis conditions. While the solute separation increases with an increase in annealing temperature, water flux decreases for both osmosis and reverse osmosis systems for various feed salinities. The effect of concentration polarization is analysed, and the effect of feed and osmotic sink velocity on the performance of the osmotic concentrator has also been studied. (orig.)

  6. Compression and Reswelling of Microgel Particles after an Osmotic Shock

    Science.gov (United States)

    Sleeboom, Jelle J. F.; Voudouris, Panayiotis; Punter, Melle T. J. J. M.; Aangenendt, Frank J.; Florea, Daniel; van der Schoot, Paul; Wyss, Hans M.

    2017-09-01

    We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a surprising, nonmonotonic response: After an initial rapid compression, the particle slowly reswells to approximately its original size. We theoretically account for this behavior, enabling us to extract important material properties from a single microfluidic experiment, including the compressive modulus, the gel permeability, and the diffusivity of the osmolyte inside the gel. We expect our approach to be relevant to applications such as controlled release, chromatography, and responsive materials.

  7. In vitro screening of potato genotypes for osmotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Gelmesa Dandena

    2017-02-01

    Full Text Available Potato (Solanum tuberosum L. is a cool season crop which is susceptible to both drought and heat stresses. Lack of suitable varieties of the crop adapted to drought-prone areas of the lowland tropics deprives farmers living in such areas the opportunity to produce and use the crop as a source of food and income. As a step towards developing such varieties, the present research was conducted to evaluate different potato genotypes for osmotic stress tolerance under in vitro conditions and identify drought tolerant genotypes for future field evaluation. The experiment was carried out at the Leibniz University of Hannover, Germany, by inducing osmotic stress using sorbitol at two concentrations (0.1 and 0.2 M in the culture medium. A total of 43 genotypes collected from different sources (27 advanced clones from CIP, nine improved varieties, and seven farmers’ cultivars were used in a completely randomized design with four replications in two rounds. Data were collected on root and shoot growth. The results revealed that the main effects of genotype, sorbitol treatment, and their interactions significantly (P < 0.01 influenced root and shoot growthrelated traits. Under osmotic stress, all the measured root and shoot growth traits were significantly correlated. The dendrogram obtained from the unweighted pair group method with arithmetic mean allowed grouping of the genotypes into tolerant, moderately tolerant, and susceptible ones to a sorbitol concentration of 0.2 M in the culture medium. Five advanced clones (CIP304350.100, CIP304405.47, CIP392745.7, CIP388676.1, and CIP388615.22 produced shoots and rooted earlier than all other genotypes, with higher root numbers, root length, shoot and root mass under osmotic stress conditions induced by sorbitol. Some of these genotypes had been previously identified as drought-tolerant under field conditions, suggesting the capacity of the in vitro evaluation method to predict drought stress tolerant

  8. Osmotic dehydration of fruits and vegetables: a review

    OpenAIRE

    Yadav, Ashok Kumar; Singh, Satya Vir

    2012-01-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effec...

  9. Simultaneously Measured Interarm Blood Pressure Difference and Stroke: An Individual Participants Data Meta-Analysis.

    Science.gov (United States)

    Tomiyama, Hirofumi; Ohkuma, Toshiaki; Ninomiya, Toshiharu; Mastumoto, Chisa; Kario, Kazuomi; Hoshide, Satoshi; Kita, Yoshikuni; Inoguchi, Toyoshi; Maeda, Yasutaka; Kohara, Katsuhiko; Tabara, Yasuharu; Nakamura, Motoyuki; Ohkubo, Takayoshi; Watada, Hirotaka; Munakata, Masanori; Ohishi, Mitsuru; Ito, Norihisa; Nakamura, Michinari; Shoji, Tetsuo; Vlachopoulos, Charalambos; Yamashina, Akira

    2018-06-01

    We conducted individual participant data meta-analysis to examine the validity of interarm blood pressure difference in simultaneous measurement as a marker to identify subjects with ankle-brachial pressure index blood pressure difference >5 mm Hg as being associated with a significant odds ratio for the presence of ankle-brachial pressure index blood pressure difference >15 mm Hg was associated with a significant Cox stratified adjusted hazard ratio for subsequent stroke (hazard ratio, 2.42; 95% confidence interval, 1.27-4.60; P blood pressure differences, measured simultaneously in both arms, may be associated with vascular damage in the systemic arterial tree. These differences may be useful for identifying subjects with an ankle-brachial pressure index of blood pressure in both arms at the first visit. © 2018 American Heart Association, Inc.

  10. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    OpenAIRE

    Simon Swapna; Korukkanvilakath Samban Shylaraj

    2017-01-01

    Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000), and followed by the pot...

  11. A review on controlled porosity osmotic pump tablets and its evaluation

    Directory of Open Access Journals (Sweden)

    Chinmaya Keshari Sahoo

    2015-12-01

    Full Text Available Conventional drug delivery system provides an immediate release of drug which does not control the release of the drug and does not maintain effective concentration at target site for a longer period of time. Hence to avoid the shortcomings there is development of various controlled drug delivery systems. Among these osmotic drug delivery system (ODDS utilizes the principle of osmotic pressure and delivers drug dose in an optimized manner to maintain drug concentration within the therapeutic window and minimizes toxic effects. ODDS releases drug at a controlled rate that is independent of the pH and thermodynamics of dissolution medium. The release of drug from ODDS follows zero order kinetics. The release of drug from osmotic system depends upon various formulation factors such as solubility, osmotic pressure of the core components, size of the delivery orifice and nature of the rate controlling membrane. Controlled porosity osmotic pump (CPOP contains drug, osmogens, excipients in core and a coating of semipermeable membrane with water soluble additives. In CPOP water soluble additives dissolve after coming in contact with water, resulting in an in situ formation of a microporous membrane. The present study gives an idea about osmosis, CPOP, components of CPOP and its evaluation.

  12. Prospective Comparative Analysis of 4 Different Intraocular Pressure Measurement Techniques and Their Effects on Pressure Readings.

    Science.gov (United States)

    Berk, Thomas A; Yang, Patrick T; Chan, Clara C

    2016-10-01

    To compare intraocular pressure (IOP) measurement using the Goldmann applanation tonometry (GAT) without fluorescein, with fluorescein strips, with fluorescein droplets, and IOP measurement with Tono-Pen Avia (TPA). This was a prospective comparative clinical analysis. It was performed in clinical practice. The study population consisted of 40 volunteer patients, 1 eye per patient. All patients who were 18 years and older having routine ophthalmological examination were eligible to participate. Active corneal abrasions and/or ulcers, previous glaucoma surgery, or prostheses interfering with GAT measurement were excluded. GAT IOP was measured first without fluorescein, then with fluorescein strip, then with fluorescein droplet, and finally with the TPA device. The main outcome measure was central corneal IOP. Mean±SD IOP measurements for GAT without fluorescein, with fluorescein strip, with fluorescein droplet, and for TPA groups were 12.65±3.01, 14.70±2.82, 15.78±2.64, and 16.33±3.08 mm Hg, respectively. Repeated-measures analysis of variance corrected with the Greenhouse-Geisser estimate ([Latin Small Letter Open E]=0.732) showed that measuring technique had a significant effect on IOP measurements (F2.20,85.59=34.66, P<0.001). The pairwise post hoc testing showed statistically significant mean differences (P≤0.001) between all techniques except when GAT with fluorescein droplet was compared with TPA (P=0.222). The Bland-Altman analyses showed 95% limits of agreement maximum potential discrepancies in measurement ranging from 5.89 mm Hg in the GAT with fluorescein strip versus droplet compared with 11.83 mm Hg in the GAT with fluorescein strip versus TPA comparison. IOP measurement technique significantly impacted the values obtained. The ophthalmologist should ensure consistent measurement technique to minimize variability when following patients.

  13. Does the Position or Contact Pressure of the Stethoscope Make Any Difference to Clinical Blood Pressure Measurements

    Science.gov (United States)

    Pan, Fan; Zheng, Dingchang; He, Peiyu; Murray, Alan

    2014-01-01

    Abstract This study aimed to investigate the effect of stethoscope position and contact pressure on auscultatory blood pressure (BP) measurement. Thirty healthy subjects were studied. Two identical stethoscopes (one under the cuff, the other outside the cuff) were used to simultaneously and digitally record 2 channels of Korotkoff sounds during linear cuff pressure deflation. For each subject, 3 measurements with different contact pressures (0, 50, and 100 mm Hg) on the stethoscope outside the cuff were each recorded at 3 repeat sessions. The Korotkoff sounds were replayed twice on separate days to each of 2 experienced listeners to determine systolic and diastolic BPs (SBP and DBP). Variance analysis was performed to study the measurement repeatability and the effect of stethoscope position and contact pressure on BPs. There was no significant BP difference between the 3 repeat sessions, between the 2 determinations from each listener, between the 2 listeners and between the 3 stethoscope contact pressures (all P > 0.06). There was no significant SBP difference between the 2 stethoscope positions at the 2 lower stethoscope pressures (P = 0.23 and 0.45), but there was a small (0.4 mm Hg, clinically unimportant) significant difference (P = 0.005) at the highest stethoscope pressure. The key result was that, DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.8 mm Hg (P stethoscope outside the cuff, tends to give a higher DBP than the true intra-arterial pressure, this study could suggest that the stethoscope position under the cuff, and closer to the arterial occlusion, might yield measurements closer to the actual invasive DBP. PMID:25546675

  14. Does the position or contact pressure of the stethoscope make any difference to clinical blood pressure measurements: an observational study.

    Science.gov (United States)

    Pan, Fan; Zheng, Dingchang; He, Peiyu; Murray, Alan

    2014-12-01

    This study aimed to investigate the effect of stethoscope position and contact pressure on auscultatory blood pressure (BP) measurement. Thirty healthy subjects were studied. Two identical stethoscopes (one under the cuff, the other outside the cuff) were used to simultaneously and digitally record 2 channels of Korotkoff sounds during linear cuff pressure deflation. For each subject, 3 measurements with different contact pressures (0, 50, and 100 mm Hg) on the stethoscope outside the cuff were each recorded at 3 repeat sessions. The Korotkoff sounds were replayed twice on separate days to each of 2 experienced listeners to determine systolic and diastolic BPs (SBP and DBP). Variance analysis was performed to study the measurement repeatability and the effect of stethoscope position and contact pressure on BPs. There was no significant BP difference between the 3 repeat sessions, between the 2 determinations from each listener, between the 2 listeners and between the 3 stethoscope contact pressures (all P > 0.06). There was no significant SBP difference between the 2 stethoscope positions at the 2 lower stethoscope pressures (P = 0.23 and 0.45), but there was a small (0.4 mm Hg, clinically unimportant) significant difference (P = 0.005) at the highest stethoscope pressure. The key result was that, DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.8 mm Hg (P stethoscope outside the cuff, tends to give a higher DBP than the true intra-arterial pressure, this study could suggest that the stethoscope position under the cuff, and closer to the arterial occlusion, might yield measurements closer to the actual invasive DBP.

  15. Desirability of oysters treated by high pressure processing at different temperatures and elevated pressures

    Science.gov (United States)

    Organoleptic changes in sterile triploid oysters (Crassostrea virginica) induced by high pressure processing (HPP) were investigated using a volunteer panel. Using a 1-7 hedonic scale, where seven is “like very much”, and one is “dislike very much”, oysters were evaluated organoleptically for flavo...

  16. Analysis of unsaturated clayey materials hydration incorporating the effect of thermo-osmotic flow

    International Nuclear Information System (INIS)

    Sanchez, M.; Arson, C.

    2012-01-01

    Document available in extended abstract form only. The hydraulic gradient is the main physical phenomenon influencing the movement of water in permeable porous media. It is, however, not the only one. Figure 1 presents the main kinds of flow that can occur in a porous media alongside with the corresponding gradient responsible for the movements. The word 'law' is generally used for the diagonal terms associated with the direct flow phenomena, and the name 'effect' is reserved to the non-diagonal ones, called also 'coupled processes'. Lippmann (1907) discovered and named the phenomenon of thermo-osmosis. He discovered it experimentally by separating a volume of water into two parts by means of a membrane. Different temperatures were held in the two regions of the system. The thermal gradient caused a flow of water through the membrane from the cold to the hot side. In permeable reservoirs, the non-diagonal coefficients are relatively small and negligible compared to the diagonal terms. That is the reason why the coupled processes are generally ignored when analyzing problems in aquifers. However, in non-isothermal problems involving low permeability media and/or low hydraulic gradients thermo-osmosis may play a more influential role. Srivastava and Avasthi (1975) and Horseman and McEwen (1996) showed that water flux due to thermo-osmosis can easily exceed Darcy flux in low permeability clays. The 'phenomenological coefficient' that links each flow with the corresponding driving gradient must be measured experimentally. Accounting for thermo-osmosis is assuming that the transport of heat may modify the transport of fluids. The counterpart phenomenon of thermo-osmosis is thermo-filtration, which reflects the influence of a pressure gradient on heat flow. Thermo-osmosis and thermo-filtration are generally formulated as reciprocal relations, so that the coupled conductivity terms related to each phenomenon are set equal. Thermo-osmotic effects have been studied in the

  17. Augmentation of peristaltic microflows through electro-osmotic mechanisms

    International Nuclear Information System (INIS)

    Chakraborty, Suman

    2006-01-01

    The present work aims to theoretically establish that the employment of an axial electric field can substantially augment the rate of microfluidic transport occurring in peristaltic microtubes. For theoretical analysis, shape evolution of the tube is taken to be arbitrary, except for the fact that the characteristic wavelength is assumed to be significantly greater than the average radius of cross section. First, expressions for the velocity profile within the tube are derived and are subsequently utilized to obtain variations in the net flow rate across the same, as a function of the pertinent system parameters. Subsequently, the modes of interaction between the electro-osmotic and peristaltic mechanisms are established through the variations in the time-averaged flow rates for zero pressure rise and the pressure rise for zero time-averaged flow rates, as expressed in terms of the occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. From the simulation predictions, it is suggested that a judicious combination of peristalsis and an axial electrokinetic body force can drastically enhance the time-averaged flow rate, provided that the occlusion number is relatively small

  18. Does Osmotic Stress Affect Natural Product Expression in Fungi?

    Science.gov (United States)

    Overy, David; Correa, Hebelin; Roullier, Catherine; Chi, Wei-Chiung; Pang, Ka-Lai; Rateb, Mostafa; Ebel, Rainer; Shang, Zhuo; Capon, Rob; Bills, Gerald; Kerr, Russell

    2017-08-13

    The discovery of new natural products from fungi isolated from the marine environment has increased dramatically over the last few decades, leading to the identification of over 1000 new metabolites. However, most of the reported marine-derived species appear to be terrestrial in origin yet at the same time, facultatively halo- or osmotolerant. An unanswered question regarding the apparent chemical productivity of marine-derived fungi is whether the common practice of fermenting strains in seawater contributes to enhanced secondary metabolism? To answer this question, a terrestrial isolate of Aspergillus aculeatus was fermented in osmotic and saline stress conditions in parallel across multiple sites. The ex-type strain of A. aculeatus was obtained from three different culture collections. Site-to-site variations in metabolite expression were observed, suggesting that subculturing of the same strain and subtle variations in experimental protocols can have pronounced effects upon metabolite expression. Replicated experiments at individual sites indicated that secondary metabolite production was divergent between osmotic and saline treatments. Titers of some metabolites increased or decreased in response to increasing osmolite (salt or glycerol) concentrations. Furthermore, in some cases, the expression of some secondary metabolites in relation to osmotic and saline stress was attributed to specific sources of the ex-type strains.

  19. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    Science.gov (United States)

    2014-11-01

    Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures Allan Fong, MS1,3, Ranjeev...the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the...type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network

  20. Generational Differences in Resistance to Peer Pressure among Mexican-Origin Adolescents.

    Science.gov (United States)

    Umana-Taylor, Adriana J.; Bamaca-Gomez, Mayra Y.

    2003-01-01

    Examined whether Mexican origin adolescents who varied by generational status would differ in their resistance to peer pressure. After controlling for gender, resistance to peer pressure varied significantly by generational status. Adolescents with no familial births in the United States were significantly more resistant to peer pressure than…

  1. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  2. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  3. Methods to increase the rate of mass transfer during osmotic dehydration of foods.

    Science.gov (United States)

    Chwastek, Anna

    2014-01-01

    Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires  elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.

  4. Recommendation to use iso-osmotic contrast medium in interventional treatment

    International Nuclear Information System (INIS)

    Zhou Bing; Cheng Yongde

    2012-01-01

    With the rapid development of imaging diagnostic and interventional therapeutic techniques, the contrast medium (CM) has been used more and more common in clinical practice, and meanwhile more and more attention has been paid to the CM-related adverse events. Contrast induced nephropathy (CN) is the most common CM-related adverse event, and CM-related neurotoxicity has already attracted the physicians' attention. The osmotic pressure of the iso-osmotic contrast medium (IOCM) is quite the same as that of the plasma, and therefore its safety is higher than that of low-osmotic contrast medium (LOCM), the patient's tolerance to IOCM is better than that to LOCM. For this reason, the use of IOCM should be strongly recommended in interventional procedures, which is of great significance to the reduction of the occurrence of CM-related adverse events. (authors)

  5. Understanding Fast and Robust Thermo-osmotic Flows through Carbon Nanotube Membranes: Thermodynamics Meets Hydrodynamics.

    Science.gov (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2018-04-19

    Following our recent theoretical prediction of the giant thermo-osmotic response of the water-graphene interface, we explore the practical implementation of waste heat harvesting with carbon-based membranes, focusing on model membranes of carbon nanotubes (CNT). To that aim, we combine molecular dynamics simulations and an analytical model considering the details of hydrodynamics in the membrane and at the tube entrances. The analytical model and the simulation results match quantitatively, highlighting the need to take into account both thermodynamics and hydrodynamics to predict thermo-osmotic flows through membranes. We show that, despite viscous entrance effects and a thermal short-circuit mechanism, CNT membranes can generate very fast thermo-osmotic flows, which can overcome the osmotic pressure of seawater. We then show that in small tubes confinement has a complex effect on the flow and can even reverse the flow direction. Beyond CNT membranes, our analytical model can guide the search for other membranes to generate fast and robust thermo-osmotic flows.

  6. Analytical calculations of the rotational transform angles in the torsatron systems with different plasma pressure profiles

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.K.; Pinos, I.B.; Tyupa, V.I.

    1999-01-01

    With formulas for averaging over magnetic surfaces general analytical expressions are here deduced to determine the rotational transform angles in stellarator systems having different plasma pressure profiles

  7. Laboratory Characterization of Chemico-osmotic, Hydraulic and Diffusion Properties of Rocks: Apparatus Development

    International Nuclear Information System (INIS)

    Takeda, M.; Hiratsuka, T.; Ito, K.

    2009-01-01

    Excess fluid pressures induced by chemical osmosis in natural formations may have a significant influence on groundwater systems in a geological time scale. Examinations of the possibility and duration times require characterization of the chemico-osmotic, hydraulic and diffusion properties of representative formation media under field conditions. To develop a laboratory apparatus for chemical osmosis experiments that simulates in-situ conditions, typical litho-static and background pore pressures, a fundamental concept of the chemical osmosis experiment using a closed fluid circuit system (referred to as a closed system hereafter) was revisited. Coupled processes in the experiment were examined numerically. In preliminary experiments at atmospheric pressure a chemical osmosis experiment using the closed system was demonstrated. An approximation method for determining the chemico-osmotic property was attempted. Based on preliminary examinations, an experimental system capable of loading the confining and pore pressures on the sample was thus developed. (authors)

  8. Quantified Effects of Late Pregnancy and Lactation on the Osmotic ...

    African Journals Online (AJOL)

    Quantified Effects of Late Pregnancy and Lactation on the Osmotic Stability of ... in the composition of erythrocyte membranes associated with the physiologic states. Keywords: Erythrocyteosmotic stability, osmotic fragility, late pregnancy, ...

  9. Osmotic stress upregulates the transcription of thiamine (vitamin B1 ...

    African Journals Online (AJOL)

    Osmotic stress upregulates the transcription of thiamine (vitamin B1) ... Oil palm's responses in terms of the expression profiles of these two thiamine biosynthesis genes to an osmotic stress inducer, polyethylene glycol ... from 32 Countries:.

  10. The difference in endolymphatic hydrostatic pressure elevation induced by isoproterenol between the ampulla and the cochlea.

    Science.gov (United States)

    Inamoto, Ryuhei; Miyashita, Takenori; Matsubara, Ai; Hoshikawa, Hiroshi; Mori, Nozomu

    2017-06-01

    The purpose of the study was to investigate the difference in the responses of endolymphatic hydrostatic pressure to isoproterenol, β-adrenergic receptor agonist, between pars superior and pars inferior. The hydrostatic pressure of endolymph and perilymph and endolymphatic potential in the ampulla and the cochlea during the intravenous administration of isoproterenol were recorded using a servo-null system in guinea pigs. The hydrostatic pressure of endolymph and perilymph in the ampulla and cochlea was similar in magnitude. Isoproterenol significantly increased hydrostatic pressure of ampullar and cochlear endolymph and perilymph with no change in the ampullar endolymphatic potential and endocochlear potential, respectively. The isoproterenol-induced maximum change of endolymphatic hydrostatic pressure in ampulla was significantly (phydrostatic pressure in the ampulla disappeared like that in the cochlea. Isoproterenol elevates endolymphatic hydrostatic pressure in different manner between the vestibule and the cochlea. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Prevalence of inter-arm blood pressure difference among clinical out-patients.

    Science.gov (United States)

    Sharma, Balkishan; Ramawat, Pramila

    2016-04-01

    An increased inter-arm blood pressure difference is an easily determined physical finding, may use as an indicator of cardio vascular event and other sever diseases. Authors evaluated 477 patients to determine the prevalence and significance of inter-arm blood pressure difference. 477 routine outdoor patients selected to observe the inter-arm blood pressure difference. Age, height, weight, body mass index, history of disease and blood pressure recorded. The prevalence of ≥10 mmHg systolic inter-arm blood pressure difference was 5.0% was more as compared to 3.8% had diastolic inter-arm blood pressure difference. The prevalence of systolic and diastolic inter-arm difference between 6 to 10 mmHg was 31.4% and 27.9% respectively. Mean systolic inter-arm blood pressure difference was significantly higher among those patients had a multisystem disorder (10.57±0.98 mmHg) and followed by patients with cardiovascular disease (10.22±0.67 mmHg) as compared to healthy patients (2.71±0.96 mmHg). Various diseases highly influenced the increase in blood pressure irrespective of systolic or diastolic was confirmed strongly significant (pdifferent inter arm blood pressure difference levels. This study supports the view of inter-arm blood pressure difference as an alarming stage of increased disease risk that incorporated to investigate potential problems at an early diagnostic stage. A significant mean difference between left and right arm blood pressure recorded for many diseases.

  12. Comparative Erythrocytes Osmotic Fragility Test and some ...

    African Journals Online (AJOL)

    Erythrocytes osmotic fragility and haematological parameters of subjects with HbAS (sickle cell trait) and HbSS (sickle cell anaemia) were determined and compared with subjects with HbAA (normal adult haemoglobin), which acted as control. They were divided into three groups of 40 subjects for HbAA, 35 subjects for ...

  13. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA

  14. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways

    Directory of Open Access Journals (Sweden)

    Dewey Ralph E

    2007-11-01

    downstream targets were inversely regulated by osmotic stress. Conclusion The present ER-stress- and osmotic-stress-induced transcriptional studies demonstrate a clear predominance of stimulus-specific positive changes over shared responses on soybean leaves. This scenario indicates that polyethylene glycol (PEG-induced cellular dehydration and ER stress elicited very different up-regulated responses within a 10-h stress treatment regime. In addition to identifying ER-stress and osmotic-stress-specific responses in soybean (Glycine max, our global expression-profiling analyses provided a list of candidate regulatory components, which may integrate the osmotic-stress and ER-stress signaling pathways in plants.

  15. High pressure inactivation of relevant target microorganisms in poultry meat products and the evaluation of pressure-induced protein denaturation of marinated poultry under different high pressure treatments

    Science.gov (United States)

    Schmidgall, Johanna; Hertel, Christian; Bindrich, Ute; Heinz, Volker; Toepfl, Stefan

    2011-03-01

    In this study, the possibility of extending shelf life of marinated poultry meat products by high pressure processing was evaluated. Relevant spoilage and pathogenic strains were selected and used as target microorganisms (MOs) for challenge experiments. Meat and brine were inoculated with MOs and treated at 450 MPa, 4 °C for 3 min. The results of inactivation show a decreasing pressure tolerance in the series Lactobacillus > Arcobacter > Carnobacterium > Bacillus cereus > Brochothrix thermosphacta > Listeria monocytogenes. Leuconostoc gelidum exhibited the highest pressure tolerance in meat. A protective effect of poultry meat was found for L. sakei and L. gelidum. In parallel, the influence of different marinade formulations (pH, carbonates, citrates) on protein structure changes during a pressure treatment was investigated. Addition of sodium carbonate shows a protection against denaturation of myofibrillar proteins and provides a maximum water-holding capacity. Caustic marinades allowed a higher retention of product characteristics than low-pH marinades.

  16. Nano-funnels as electro-osmotic ``tweezers and pistons''

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  17. Osmotic and activity coefficients of triorganophosphates in n-octane

    International Nuclear Information System (INIS)

    Sagert, N.H.; Lau, D.W.P.

    1982-01-01

    Vapour pressure osmometry was used to measure osmotic coefficients for tributylphosphate (TBP), tricresylphosphate (TCP), and triethylhexylphosphate (THEP) in n-octane at 30, 40, 50, and 60 0 C and at molalities up to 0.3 mol/kg. Activity coefficients and excess thermodynamic properties (unsymmetrical definition) were calculated from these osmotic coefficients. At 30 0 C, the excess Gibbs free energies for 0.1 mol of solute in 1.0 kg n-octane were -42 J, -66 J, and -20 J for TBP, TCP, and TEHP, respectively. The more ideal behavior of the TEHP-octane system is attributed to the increasing importance of hydrocarbon-hydrocarbon interactions as the chain length is increased. The excess enthalpies for 0.1 mol of solute in 1.0 kg of solvent were -100 J, and -300 J, and -150 J for TBP, TCP, and TEHP, respectively. Thus, association of these solutes arises primarily from entropic effects. Our data could generally be accommodated adequately by postulating association of monomers into dimmers. The exception was TCP at lower temperatures, where more complex models were required

  18. Investigation of pressure retarded osmosis power production

    Directory of Open Access Journals (Sweden)

    Taousanidis Nikolaos

    2017-01-01

    Full Text Available A major source of energy exists where there is mixing between aqueous solutions of different salinities. This energy source is particularly concentrated where fresh water rivers flow on to the ocean. The power, represented by the osmotic pressure difference between fresh water and salt water, may be called salinity gradient power. In this study the pressure retarded osmosis method for the extraction of salinity gradients’ energy is investigated, main problems and difficulties are pointed out and finally the whole subject is justified with experimental results.

  19. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    Science.gov (United States)

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  20. Osmotic properties of binary mixtures 1-butyl-1-methylpyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride with water: Effect of aggregation of ions

    International Nuclear Information System (INIS)

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2015-01-01

    Graphical abstract: Osmotic properties of binary mixture of two ionic liquids (ILs): 1-butyl-1-methyl pyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride with water was reported by using vapour pressure osmometry (VPO) method. - Highlights: • Osmotic properties of binary mixture of ionic liquids (ILs) with water by using vapour pressure osmometry (VPO) method. • The experimental osmotic coefficients were well correlated by Archer extension of Pitzer model. • From the experimental osmotic coefficient data the critical micellar concentration (cmc) of the ILs in water was estimated. • Mean molar activity coefficient and the excess Gibbs free energy was determine for the (ILs + water) binary mixture. - Abstract: In this work, the osmotic properties of the binary mixture of ionic liquids (ILs) and water were studied by using vapour pressure osmometry (VPO) method. We have used two ILs: 1-butyl-1-methyl pyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride. The aqueous solution of NaCl was used as the reference solution to precisely measure the osmotic coefficients of the above systems. We have calculated the activity of water in the above systems and the change of vapour pressure of water due to the addition of ILs in water. The experimental osmotic coefficients were correlated by the Archer extension of Pitzer model. The parameters of this Archer extension of Pitzer model were found from this data fitting. From the experimental osmotic coefficient value we have estimated the critical micellar concentration (cmc) of ILs in water. The experimental values of osmotic coefficient in the above systems were compared with the literature and the reason of variation was explained, in terms of the aggregation of ILs in water

  1. Flow cytometric determination of osmotic behaviour of animal erythrocytes toward their engineering for drug delivery

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2015-01-01

    Full Text Available Despite the fact that the methods based on the osmotic properties of the cells are the most widely used for loading of drugs in human and animal erythrocytes, data related to the osmotic properties of erythrocytes derived from animal blood are scarce. This work was performed with an aim to investigate the possibility of use the flow cytometry as a tool for determination the osmotic behaviour of porcine and bovine erythrocytes, and thus facilitate the engineering of erythrocytes from animal blood to be drug carriers. The method of flow cytometry successfully provided the information about bovine and porcine erythrocyte osmotic fragility, and made the initial steps in assessment of erythrocyte shape in a large number of erythrocytes. Although this method is not able to confirm the swelling of pig erythrocytes, it indicated to the differences in pig erythrocytes that had basic hematological parameters inside and outside the reference values. In order to apply/use the porcine and bovine erythrocytes as drug carriers, the method of flow cytometry, confirming the presence of osmotically different fractions of red blood cells, indicated that various amounts of the encapsulated drug in porcine and bovine erythrocytes can be expected.

  2. Osmotic concentration in three races of honey bee, Apis mellifera L. under environmental conditions of arid zone.

    Science.gov (United States)

    Ali, Hussain; Alqarni, Abdulaziz S; Owayss, Ayman A; Hassan, Awad M; Smith, Brian H

    2017-07-01

    Hemolymph osmolarity has great effect on honey bee health, especially in arid and semi-arid zones. It regulates water and nutrients in stressed tissues. Osmotic concentration in three races ( Apis mellifera ligustica , A. m. carnica and A. m. jemenitica ) of Apis mellifera was tested in central Saudi Arabia during spring and summer seasons in 2015. Newly emerged bee workers were first marked and later their hemolymph was extracted after intervals of 1, 5, 10, 15, 20 and 25 days. A significant positive correlation between age and osmolarity was found in all three races during spring and summer seasons. The lowest combined osmotic concentration for all three races was found after 1 day interval, while the highest osmotic concentration was recorded after 25 days. Among all races, A. m. ligustica showed significantly high osmotic concentration after 25 days in spring and summer seasons as compared to the other two races. Only A. m. jemenitica showed similar osmotic concentration after 10 and 15 days in both spring and summer seasons compared to other two races. Mean osmotic concentration of all three races was significantly different after 20 and 25 days in spring and summer seasons. Overall mean recorded during summer was significantly higher than the mean of spring season. Combined osmotic concentration in young drones of all races was significantly lower than that of old drones during spring and summer seasons.

  3. Changes of contact pressure and area in patellofemoral joint after different meniscectomies.

    Science.gov (United States)

    Bai, Bo; Shun, Hui; Yin, Zhi Xun; Liao, Zhuang-Wen; Chen, Ni

    2012-05-01

    We investigated the contact pressure and area of the patellofemoral joint both before and after different meniscectomies to provide a biomechanical basis for selecting meniscectomy and its clinical application for meniscus injuries. Six fresh cadaveric knees were used in the study. Using Staubli robots and an ultra-low-min-type pressure-sensitive tablet, changes in contact area and stress in the patellofemoral joint were measured at various flexion angles following different parts and degrees of meniscectomy. The patellofemoral contact area enlarged with the increase of knee flexion angle. From the values obtained from contact areas and average contact pressure of the patellofemoral joint, we found no significant difference between partial meniscectomy and intact knees, but a significant difference was found between total meniscectomy and intact knees. The contact area after lateral meniscectomy was statistically less than that of intact knees. The mean patellofemoral contact pressure after lateral meniscectomy was larger than in intact knees at each angle of flexion. No significant difference in contact area was observed between intact knees and medial meniscectomy. The average patellofemoral contact pressure after medial meniscectomy was larger than in intact knees from 0° ~ 30° of knee flexion, and no significant differences were found between intact knees and medial meniscectomy while knee bending from 60° to 90°. Different meniscectomies result in high contact pressure or disordered distribution of contact pressure, which may be the cause of postoperative patellofemoral degenerative arthrosis.

  4. Inter-arm blood pressure difference in type 2 diabetes: a barrier to effective management?

    Science.gov (United States)

    Clark, Christopher E; Greaves, Colin J; Evans, Philip H; Dickens, Andy; Campbell, John L

    2009-06-01

    Previous studies have identified a substantial prevalence of a blood pressure difference between arms in various populations, but not patients with type 2 diabetes. Recognition of such a difference would be important as a potential cause of underestimation of blood pressure. To measure prevalence of an inter-arm blood pressure difference in patients with type 2 diabetes, and to estimate how frequently blood pressure measurements could be erroneously underestimated if an inter-arm difference is unrecognised. Cross-sectional study. Five surgeries covered by three general practices, Devon, England. Patients with type 2 diabetes underwent bilateral simultaneous blood pressure measurements using a validated protocol. Mean blood pressures were calculated for each arm to derive mean systolic and diastolic differences, and to estimate point prevalence of predefined magnitudes of difference. A total of 101 participants were recruited. Mean age was 66 years (standard deviation [SD] = 13.9 years); 59% were male, and mean blood pressure was 138/79 mmHg (SD = 15/10 mmHg). Ten participants (10%; 95% confidence interval [CI] = 4 to 16) had a systolic inter-arm difference > or =10 mmHg; 29 (29%; 95% CI = 20 to 38) had a diastolic difference >/=5 mmHg; and three (3%; 95% CI = 0 to 6) a diastolic difference > or =10 mmHg. No confounding variable was observed to account for the magnitude of an inter-arm difference. A systolic inter-arm difference > or =10 mmHg was observed in 10% of patients with diabetes. Failure to recognise this would misclassify half of these as normotensive rather than hypertensive using the lower-reading arm. New patients with type 2 diabetes should be screened for an inter-arm blood pressure difference.

  5. Osmotic de-swelling and swelling of latex dispersions

    International Nuclear Information System (INIS)

    Bonnet-Gonnet, Cecile

    1993-01-01

    This research thesis reports the comparison of, on the one hand, direct measurements of de-swelling resistance of latex dispersions obtained by osmotic pressure with, on the other hand, predictions made by models of electrostatic interactions. This resistance is explained in the case of sulphate-stabilised polystyrene particles (direct repulsion between charged particles), and in the case of copolymer (ps-pba) particles covered by an amphiphilic polymer (interactions between surface macromolecules and polymers). The study of de-swelling and swelling cycles highlights the existence of thresholds beyond which the concentrated dispersion has some cohesion. This irreversibility can be modelled by a Van der Waals attraction. The role of hydrophobic forces in latex destabilisation is studied [fr

  6. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    Science.gov (United States)

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  7. THE IMPORTANCE OF THE ERYTHROCYTES OSMOTIC FRAGILITY TEST PERFORMED IN CHILDREN WITH INDIRECT HYPERBILIRUB1NEMIA

    Directory of Open Access Journals (Sweden)

    Ivana Stojanović

    2005-07-01

    Full Text Available The osmotic fragility test of erythrocytes is useful in the diagnosis of different types of hereditary hemolytic anemias followed with hyperbilirubinemia. Hemolytic anemias, characterized by accelerated destruction of red blood cells, are usually the consequence of many metabolic abnormalities like cellular membrane defect, erythrocyte enzymes defect or hemoglobin abnormalities – hemoglobinopathies. The object of our study was to assess the relationship between osmotic fragility test of erythrocytes and severity of indirect hyperbilirubinemia in some inherited erythrocytes’ disorders. We did the osmotic fragility test of erythrocytes by using Dacie, s method with normal values of erythrocytes hemolysis between 0,48 to 0,34% NaCl (minimal to maximal hemolysis. In hereditary spherocytosis, fragility of erythrocytes was increased (min. at 0,50 % NaCl to max. 0,44 % NaCl . In the child with β- thalassemia and cycle cell anemia erythrocytes fragility was decreased (min . at 0,42 to max. 0,32 % NaCl, that is 0,40% min. of hemolysis and 0,34% max. hemolysis in the second case. In newborn infants with high levels of indirect bilirubin in serum as a cause of physiological jaundice, the osmotic fragility test was within a normal range. Our findings point out the diagnostic value of osmotic fragility test in assessing patients with the indirect hyperbilirubinemia. This simple and important diagnostic test can be performed in small laboratories.

  8. Tirilazad mesylate protects stored erythrocytes against osmotic fragility.

    Science.gov (United States)

    Epps, D E; Knechtel, T J; Bacznskyj, O; Decker, D; Guido, D M; Buxser, S E; Mathews, W R; Buffenbarger, S L; Lutzke, B S; McCall, J M

    1994-12-01

    The hypoosmotic lysis curve of freshly collected human erythrocytes is consistent with a single Gaussian error function with a mean of 46.5 +/- 0.25 mM NaCl and a standard deviation of 5.0 +/- 0.4 mM NaCl. After extended storage of RBCs under standard blood bank conditions the lysis curve conforms to the sum of two error functions instead of a possible shift in the mean and a broadening of a single error function. Thus, two distinct sub-populations with different fragilities are present instead of a single, broadly distributed population. One population is identical to the freshly collected erythrocytes, whereas the other population consists of osmotically fragile cells. The rate of generation of the new, osmotically fragile, population of cells was used to probe the hypothesis that lipid peroxidation is responsible for the induction of membrane fragility. If it is so, then the antioxidant, tirilazad mesylate (U-74,006f), should protect against this degradation of stored erythrocytes. We found that tirilazad mesylate, at 17 microM (1.5 mol% with respect to membrane lecithin), retards significantly the formation of the osmotically fragile RBCs. Concomitantly, the concentration of free hemoglobin which accumulates during storage is markedly reduced by the drug. Since the presence of the drug also decreases the amount of F2-isoprostanes formed during the storage period, an antioxidant mechanism must be operative. These results demonstrate that tirilazad mesylate significantly decreases the number of fragile erythrocytes formed during storage in the blood bank.

  9. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  10. Comparative study of interventricular phase difference and pressure gradient in cases of isolated ventricular septal defect

    Energy Technology Data Exchange (ETDEWEB)

    Elhaddad, SH; Moustafa, H; Ziada, G; Seleem, Z; Elsabban, KH; Mahmoud, F [Nuclear medicine department and pediatric cardiology department Faculty of medicine, Cairo university, Cairo, (Egypt)

    1995-10-01

    One hundred and fifty patients with isolated VSD were evaluated by radionuclide MUGA study and Echo-Doppler. Difference between phase angle of the right and left ventricles as detected by MUGA had been divided into main four groups according to pressure gradient between the two ventricles : group I (with pressure gradient {<=}30 mmHg and phase difference 80.10 degree{+-}34.1), group III (with pressure gradient > 70 mmHg and phase difference -0.5 degree {+-} 8.4). It has been found that there was a significant difference between the 4 groups as regards right - to - left ventricular phase difference (P<0.0001). There was significant delay in emptying of right ventricle in groups with pressure gradient < 50 mmHg. Regression analysis revealed inverse correlation between right -to- left ventricular phase difference with changes in pressure gradient (r= 0.81). Similarly, significant correlation had been found between right -to-left ventricular phase difference in relation Qp/Qs (r=0.85); conclusion: interventricular phase difference can be used to evaluate interventricular pressure gradient in cases of isolated VSD. 4 figs., 2 tabs.

  11. Acute tamponade alters subendo- and subepicardial pressure-flow relations differently during vasodilation.

    Science.gov (United States)

    Kingma, J G; Martin, J; Rouleau, J R

    1994-07-01

    Instantaneous diastolic left coronary artery pressure-flow relations (PFR) shift during acute tamponade as pressure surrounding the heart increases. Coronary pressure at zero flow (Pf = 0) on the linear portion of the PFR is the weighted mean of the different myocardial waterfall pressures, the distribution of which varies across the left ventricular wall during diastole. However, instantaneous PFR measured in large epicardial coronary arteries cannot be used to estimate Pf = 0 in the different myocardial tissue layers. During coronary vasodilatation in a capacitance-free model, myocardial PFR differs from subendocardium to subepicardium. Therefore, we studied the effects of acute tamponade during maximal pharmacology induced coronary vasodilatation on myocardial PFR in in situ anesthetized dogs. Tamponade reduced cardiac output, aortic pressure, and coronary blood flow. Results demonstrate that different mechanisms influence distribution of myocardial blood flow during tamponade. Subepicardial vascular resistance is unchanged and the extrapolated Pf = 0 is increased, thereby shifting PFR to a higher intercept on the pressure axis. Subendocardial vascular resistance is increased while the extrapolated Pf = 0 remains unchanged. Results indicate that in the setting of acute tamponade with coronary vasodilatation different mechanisms regulate the distribution of myocardial blood flow: in the subepicardium only outflow pressure increases, whereas in the subendocardium only vascular resistance increases.

  12. The systolic blood pressure difference between arms and cardiovascular disease in the Framingham Heart Study.

    Science.gov (United States)

    Weinberg, Ido; Gona, Philimon; O'Donnell, Christopher J; Jaff, Michael R; Murabito, Joanne M

    2014-03-01

    An increased interarm systolic blood pressure difference is an easily determined physical examination finding. The relationship between interarm systolic blood pressure difference and risk of future cardiovascular disease is uncertain. We described the prevalence and risk factor correlates of interarm systolic blood pressure difference in the Framingham Heart Study (FHS) original and offspring cohorts and examined the association between interarm systolic blood pressure difference and incident cardiovascular disease and all-cause mortality. An increased interarm systolic blood pressure difference was defined as ≥ 10 mm Hg using the average of initial and repeat blood pressure measurements obtained in both arms. Participants were followed through 2010 for incident cardiovascular disease events. Multivariable Cox proportional hazards regression analyses were performed to investigate the effect of interarm systolic blood pressure difference on incident cardiovascular disease. We examined 3390 (56.3% female) participants aged 40 years and older, free of cardiovascular disease at baseline, mean age of 61.1 years, who attended a FHS examination between 1991 and 1994 (original cohort) and from 1995 to 1998 (offspring cohort). The mean absolute interarm systolic blood pressure difference was 4.6 mm Hg (range 0-78). Increased interarm systolic blood pressure difference was present in 317 (9.4%) participants. The median follow-up time was 13.3 years, during which time 598 participants (17.6%) experienced a first cardiovascular event, including 83 (26.2%) participants with interarm systolic blood pressure difference ≥ 10 mm Hg. Compared with those with normal interarm systolic blood pressure difference, participants with an elevated interarm systolic blood pressure difference were older (63.0 years vs 60.9 years), had a greater prevalence of diabetes mellitus (13.3% vs 7.5%,), higher systolic blood pressure (136.3 mm Hg vs 129.3 mm Hg), and a higher total cholesterol

  13. Osmotic and Heat Stress Effects on Segmentation.

    Directory of Open Access Journals (Sweden)

    Julian Weiss

    Full Text Available During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process.

  14. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.

    Science.gov (United States)

    Hughes, Nicole M; Carpenter, Kaylyn L; Cannon, Jonathan G

    2013-01-15

    The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψ(π,100)) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was -0.7MPa for G. urceolata and -0.8MPa for G. procumbens. In vivo concentrations of anthocyanin (3-10mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψ(π,100) in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψ(π,100). We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an

  15. Inter-Arm Difference in Brachial Blood Pressure in the General Population of Koreans.

    Science.gov (United States)

    Song, Bo Mi; Kim, Hyeon Chang; Shim, Jee-Seon; Lee, Myung Ha; Choi, Dong Phil

    2016-05-01

    We investigated the inter-arm difference in blood pressure of the general Korean population to identify associated factors. A total of 806 participants aged 30 to 64 years without history of major cardiovascular disease were analyzed in this cross-sectional study. They participated in the Cardiovascular and Metabolic Disease Etiology Research Center cohort study that began in 2013. Brachial blood pressure was measured simultaneously for both arms using an automated oscillometric device equipped with two cuffs in seated position. After five minutes of rest, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured three times. The average of the three measurements was used for analysis. Multivariate logistic regression models were used to identify factors associated with inter-arm differences in blood pressure. The mean inter-arm difference was 3.3 mmHg for SBP and 2.0 mmHg for DBP. Large inter-arm differences (≥10 mmHg) in SBP and in DBP were found in 3.7% and 0.9% of subjects, respectively. A large inter-arm difference in SBP was associated with mean SBP (p=0.002) and C-reactive protein (p=0.014) while a large inter-arm different in DBP was only associated with body mass index (p=0.015). Sex, age, and anti-hypertensive medication use were not associated with differences in inter-arm blood pressure. Large inter-arm difference in blood pressure is only present in a small portion of healthy Korean adults. Our findings suggest that high SBP, chronic inflammation, and obesity may be associated with larger difference in inter-arm blood pressure.

  16. Lower limb intracast pressures generated by different types of immobilisation casts.

    Science.gov (United States)

    Chaudhury, Salma; Hazlerigg, Alexandra; Vusirikala, Anuhya; Nguyen, Joseph; Matthews, Stuart

    2017-02-18

    To determine if complete, split casts and backslabs [plaster of Paris (POP) and fiberglass] generate different intracast pressures and pain. Increased swelling within casts was modeled by a closed water system attached to an expandable bag placed directly under different types of casts applied to a healthy lower limb. Complete fiberglass and POP casts, split casts and backslabs were applied. Twenty-five milliliter aliquots of saline were injected into the system and the generated intracast pressures were measured using a sphygmomanometer. The subject was blinded to the pressure scores to avoid bias. All casts were applied to the same right limb on the same subject to avoid the effects of variations in anatomy or physiology on intracast pressures. Pain levels were evaluated using the Visual Analogue Score after each sequential saline injection. Each type of cast was reapplied four times and the measurements were repeated on four separate occasions. Sample sizes were determined by a pre-study 90% power calculation to detect a 20% difference in intracast pressures between cast groups. A significant difference between the various types of casts was noted when the saline volume was greater than 100 mL ( P = 0.009). The greatest intracast pressure was generated by complete fiberglass casts, which were significantly higher than complete POP casts or backslabs ( P = 0.018 and P = 0.008 respectively) at intracast saline volumes of 100 mL and higher. Backslabs produced a significantly lower intracast pressure compared to complete POP only once the saline volume within casts exceeded 225 mL ( P = 0.009). Intracast pressures were significantly lower in split casts ( P = 0.003). Split POP and fiberglass casts produced the lowest intracast pressures, even compared to backslabs ( P = 0.009). Complete fiberglass casts generated the highest pain levels at manometer pressures of 75 mmHg and greater ( P = 0.001). Split fiberglass casts had significantly reduced pain levels ( P = 0

  17. Oxygen consumption in EPDM irradiated under different oxygen pressures and at different LET

    International Nuclear Information System (INIS)

    Dely, N.; Ngono-Ravache, Y.; Ramillon, J.-M.; Balanzat, E.

    2005-01-01

    We conceived a novel set-up for measuring the radiochemical yields of oxygen consumption in polymers. The measurement is based on a sampling of the gas mixture with a mass spectrometer, before and after irradiation. We irradiated an ethylene, propylene and 1,4-hexadiene terpolymer (EPDM) with 1 MeV electron and 10.75 MeV/A carbon beams. Samples were irradiated under oxygen within a wide range of pressure (5-200 mbar). The yields under C irradiation are four times smaller than the yields under electron irradiation. This shows that radiooxidation is very sensitive to the linear energy transfer of the projectiles and hence to the heterogeneity of the energy deposition. The oxygen consumption yields do not vary significantly in the range of pressure investigated; even at 5 mbar, the kinetics is still governed by the bimolecular recombination of peroxy radicals

  18. The influence of different auto-ignition modes on the behavior of pressure waves

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde

    2015-01-01

    Highlights: • Modes of pressure oscillations in knocking, HCCI and super knock are recognized. • Three representative auto-ignition modes in engines are proposed. • A new method of “Energy Injected” is brought into understanding pressure wave. • Simulation results revealed the decisive factors for these three auto-ignition modes. • Different modes lead to different pressure wave behaviors damaging engines. - Abstract: For internal combustion engines, the knock of Homogeneous Charge Compression Ignition engines, the conventional knock of gasoline engines and the super knock are all caused by the auto-ignition of unburned mixture which leads to the oscillation burning, but their Maximal Pressure Oscillation Amplitude (MPOA) and Maximum Pressure Rising Rate (MPRR) are totally different. In order to explore the reason, we propose three typical auto-ignition modes and then bring up the method of “Energy Injected” (EI) which is based on the experiment measured heat release rate. Through changing the heat source term in the energy equation for different auto-ignition modes, we conducted a series of numerical simulations for these three modes. After that, the following pressure oscillations can be compared and analyzed. The numerical simulation results show that different combustion pressure waves with different oscillation characteristics come from different auto-ignition modes, thus the macroscopic MPRR and MPOA are totally different. Furthermore, the method of “EI” based on the experiment measured heat release rate can accurately and rapidly help to research the formation and propagation of pressure waves in the engine combustion chamber.

  19. Differences Between Right and Left Arm Blood Pressures in the Elderly

    OpenAIRE

    Hashimoto, Fred; Hunt, William C.; Hardy, Linda

    1984-01-01

    Recommendations vary on whether blood pressures should be measured in the right or in the left arm because no frequency distributions for a pressure difference between the arms exist. We took a total of 12 blood pressure determinations in both arms of 174 elderly persons and analyzed the data by a least-squares components of variance method. The mean difference between the arms (right minus left) was 0.93 mm of mercury for systole and 0.70 mm of mercury for diastole. For systole the proportio...

  20. Response of Escherichia coli growth rate to osmotic shock.

    Science.gov (United States)

    Rojas, Enrique; Theriot, Julie A; Huang, Kerwyn Casey

    2014-05-27

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless "stored" growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan.

  1. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors.

    Science.gov (United States)

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-12-28

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people.

  2. Differences in blood pressure by measurement technique in neurocritically ill patients: A technological assessment.

    Science.gov (United States)

    Lele, Abhijit V; Wilson, Daren; Chalise, Prabhakar; Nazzaro, Jules; Krishnamoorthy, Vijay; Vavilala, Monica S

    2018-01-01

    Blood pressure data may vary by measurement technique. We performed a technological assessment of differences in blood pressure measurement between non-invasive blood pressure (NIBP) and invasive arterial blood pressure (ABP) in neurocritically ill patients. After IRB approval, a prospective observational study was performed to study differences in systolic blood pressure (SBP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) values measured by NIBP arm, ABP at level of the phlebostatic axis (ABP heart) and ABP at level of the external auditory meatus (ABP brain) at 30 and 45-degree head of bed elevation (HOB) using repeated measure analysis of covariance and correlation coefficients. Overall, 168 patients were studied with median age of 57 ± 15 years, were mostly female (57%), with body mass index ≤30 (66%). Twenty-three percent (n = 39) had indwelling intracranial pressure monitors, and 19.7% (n = 33) received vasoactive agents. ABP heart overestimated ABP brain for SBP (11.5 ± 2.7 mmHg, p ABP heart overestimated NIBP arm for SBP (8 ± 1.5 mmHg, p ABP heart overestimates MAP compared to ABP brain and NIBP arm. Using ABP heart data overestimates CPP and may be responsible for not achieving SBP, MAP or CPP targets aimed at the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  4. Sedimentation equilibria of ferrofluids: II. Experimental osmotic equations of state of magnetite colloids

    International Nuclear Information System (INIS)

    Luigjes, Bob; Thies-Weesie, Dominique M E; Erné, Ben H; Philipse, Albert P

    2012-01-01

    The first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical centrifuge, which is the subject of the accompanying paper I. The pressures of the magnetic colloids, measured accurately to values as low as a few pascals, obey Van ’t Hoff’s law at low concentrations, whereas at increasing colloid densities non-ideality appears in the form of a negative second virial coefficient. This virial coefficient corresponds to a dipolar coupling constant that agrees with the coupling constant obtained via independent magnetization measurements. The coupling constant manifests an attractive potential of mean force that is significant but yet not quite strong enough to induce dipolar chain formation. Our results disprove van der Waals-like phase behavior of dipolar particles for reasons that are explained. (paper)

  5. Study, with the help of nuclear indicators (HTO, Urea 14C and 24Na), of the renewal of water, urea and sodium in different parts of the rat kidney in aqueous diuresis and of the gerbil kidney in osmotic diuresis or in oliguria

    International Nuclear Information System (INIS)

    Lechene, C.P.

    1965-06-01

    In the kidney of the gerbil in oliguria there exists a cortico-papillary gradient in the concentration of the sodium and of the urea; this gradient disappears in the gerbil kidney in osmotic diuresis or in the rat kidney in aqueous diuresis; in these three states of diuresis there is no significant difference in the potassium concentration between the surface and interior regions of the kidneys. Kinetic studies using tritiated water, urea 14 C and 24 Na show that water and urea in the interior regions of the kidney are only renewed very slowly (1 h) whereas the sodium is rapidly changed (1 mn). These results can be explained using WIRZ's theory concerning the mechanism of the counter-current concentration of urine. Furthermore, the evolution of the specific radioactivity of urea 14 C is favorable for a cortical synthesis of urea. (author) [fr

  6. Empirical Formulas for Calculation of Negative Pressure Difference in Vacuum Pipelines

    Directory of Open Access Journals (Sweden)

    Marek Kalenik

    2015-10-01

    Full Text Available The paper presents the analysis of results of empirical investigations of a negative pressure difference in vacuum pipelines with internal diameters of 57, 81, 102 mm. The investigations were performed in an experimental installation of a vacuum sewage system, built in a laboratory hall on a scale of 1:1. The paper contains a review of the literature concerning two-phase flows (liquid-gas in horizontal, vertical and diagonal pipelines. It presents the construction and working principles of the experimental installation of vacuum sewage system in steady and unsteady conditions during a two-phase flow of water and air. It also presents a methodology for determination of formula for calculation of a negative pressure difference in vacuum pipelines. The results obtained from the measurements of the negative pressure difference Δpvr in the vacuum pipelines were analyzed and compared with the results of calculations of the negative pressure difference Δpvr, obtained from the determined formula. The values of the negative pressure difference Δpvr calculated for the vacuum pipelines with internal diameters of 57, 81, and 102 mm with the use of Formula (19 coincide with the values of Δpvr measured in the experimental installation of a vacuum sewage system. The dependence of the negative pressure difference Δpvr along the length of the vacuum pipelines on the set negative pressure in the vacuum container pvzp is linear. The smaller the vacuum pipeline diameter, the greater the negative pressure difference Δpvr is along its length.

  7. Osmotic load from glucose polymers.

    Science.gov (United States)

    Koo, W W; Poh, D; Leong, M; Tam, Y K; Succop, P; Checkland, E G

    1991-01-01

    Glucose polymer is a carbohydrate source with variable chain lengths of glucose units which may result in variable osmolality. The osmolality of two commercial glucose polymers was measured in reconstituted powder infant formulas, and the change in osmolality of infant milk formulas at the same increases in energy density (67 kcal/dL to 81 and 97 kcal/dL) from the use of additional milk powder or glucose polymers was compared. All samples were prepared from powders (to nearest 0.1 mg), and osmolality was measured by freezing point depression. For both glucose polymers the within-batch variability of the measured osmolality was less than 3.5%, and between-batch variability of the measured osmolality was less than 9.6%. The measured osmolality varies linearly with energy density (p less than 0.001) and was highest in infant formula reconstituted from milk powder alone. However, there exist significant differences in the measured osmolality between different glucose polymer preparations. At high energy densities (greater than or equal to 97 kcal/dL), infant milk formulas prepared with milk powder alone or with the addition of certain glucose polymer preparation may have high osmolality (greater than or equal to 450 mosm/kg) and theoretically predispose the infant to complications of hyperosmotic feeds.

  8. OSMOTIC DEHYDRATION KINETICS OF GUAVAS IN MALTOSE SOLUTIONS WITH CALCIUM SALT*

    Directory of Open Access Journals (Sweden)

    S. DI S. MASTRANTONIO

    2009-03-01

    Full Text Available

    The osmotic dehydration kinetics of guavas in maltose solutions at 40 and 60ºBrix, with addition of 0, 0.6 and 1.2% of calcium lactate was studied in this paper and the final product quality was evaluated. The experiments were carried out up to 60 hours and samples were taken for analysis at different times to evaluate guavas weight reduction, water loss and sugar gain and to characterize the product according to its texture and color. After 24 hours of process the mass transfer of water and sugar between the osmotic solution and the fruit was negligible, showing that process equilibrium was reached. The increase of sugar concentration in the osmotic solution showed strong influence on the dehydration process, increasing the water loss and reducing sugar gain. The presence of calcium ions in the osmotic solution also influenced the kinetics of mass transfer and showed a strong influence on fruit texture. Higher values of stress and strain at failure were obtained when calcium lactate was employed. The effect of the different osmotic treatments on the color parameters was also investigated and significant changes were observed in the values of chroma C* and hue H* due to sugar concentration and calcium addition.

    KEYWORDS: Osmotic dehydration; kinetics; guava; maltose; calcium lactate.

  9. Difference in blood pressure measurements between arms: methodological and clinical implications.

    Science.gov (United States)

    Clark, Christopher E

    2015-01-01

    Differences in blood pressure measurements between arms are commonly encountered in clinical practice. If such differences are not excluded they can delay the diagnosis of hypertension and can lead to poorer control of blood pressure levels. Differences in blood pressure measurements between arms are associated cross sectionally with other signs of vascular disease such as peripheral arterial disease or cerebrovascular disease. Differences are also associated prospectively with increased cardiovascular mortality and morbidity and all cause mortality. Numbers of publications on inter-arm difference are rising year on year, indicating a growing interest in the phenomenon. The prevalence of an inter-arm difference varies widely between reports, and is correlated with the underlying cardiovascular risk of the population studied. Prevalence is also sensitive to the method of measurement used. This review discusses the prevalence of an inter-arm difference in different populations and addresses current best practice for the detection and the measurement of a difference. The evidence for clinical and for vascular associations of an inter-arm difference is presented in considering the emerging role of an inter-arm blood pressure difference as a novel risk factor for increased cardiovascular morbidity and mortality. Competing aetiological explanations for an inter-arm difference are explored, and gaps in our current understanding of this sign, along with areas in need of further research, are considered.

  10. Differences in center of pressure trajectory between normal and steppage gait

    Science.gov (United States)

    Jamshidi, Nima; Rostami, Mostafa; Najarian, Siamak; Menhaj, Mohammad Bagher; Saadatnia, Mohammad; Salami, Firooz

    2010-01-01

    BACKGROUND: This pilot study aimed to assess the differences in center of pressure trajectory in neuropathic patients with steppage gait. Steppage gait has previously been evaluated by several biomechanical methods, but plantar pressure distribution has been much less studied. The purpose of this study was to analyze the changes in center of pressure trajectory using a force plate. METHODS: The steppage gait group was selected from the patients using drop foot brace (25 male) and the control group was selected from Isfahan university students (20 male). They walked at self- selected speed at a mean of ten trials (+2) to collect the center of pressure using a force plate. Center of pressure patterns were categorized into four patterns based on the center of pressure displacement magnitude (spatial features) through time (temporal features) when the longitudinal axis of the insole was plotted as the Y- axis and the transverse axis of the insole as X- axis during stance phase. RESULTS: The horizontal angle measured from center of pressure linear regression was positive in the control group (4.6 ± 2.4) (p < 0.005), but negative in the patient group (- 2.3 ± 1.6) (p < 0.005). CONCLUSIONS: The finding of this research measured center of pressure trajectory in steppage gait over time, which is useful for designing better shoe sole and also orthopaedic device and better understanding of stability in patients with drop foot. PMID:21526056

  11. Custom-made different designs of pressure clips for the management of ear lobe keloids

    Directory of Open Access Journals (Sweden)

    Anshul Chugh

    2013-01-01

    Full Text Available Introduction : Keloids are frequent finding after physical trauma. Keloids of ear lobe are common complication of ear piercing, although its incidence remains unknown. The use of intrakeloid resection and a form pressure device to treat pinna keloids. The recommendation of this therapy is to maintain constant pressure and duration of pressure therapy was about 25 weeks. Clinical innovation : This article will present inexpensive custom made pressure clips of various designs. The dimensions of polymethylmethacrylate (PMMA plates in ear lobe clip presented by us though they esthetically not so good, but colored PMMA has been used to make it decorative and acceptable by most of the patients. This has been an encouraging experience to use the different designs. Discussion : Ear clip prosthesis has been developed for maintaining pressure on ear lobe keloids before and after surgical removal. The prosthesis includes an ear clip to which heat-polymerized acrylic resin is attached, which covers the keloid area. Pressure therapy is widely used to help in the early maturation of scar tissue and to prevent the recurrence of keloid. The preliminary report by Brent revealed that constant light pressure was an effective means of preventing post excision recurrence of ear lobe keloids using a decorative, spring-pressure earring.

  12. Differences in center of pressure trajectory between normal and steppage gait

    Directory of Open Access Journals (Sweden)

    Nima Jamshidi

    2010-01-01

    Full Text Available Background: This pilot study aimed to assess the differences in center of pressure trajectory in neuropathic patients with steppage gait. Steppage gait has previously been evaluated by several biomechanical methods, but plantar pressure distribution has been much less studied. The purpose of this study was to analyze the changes in center of pressure tra-jectory using a force plate. Methods: The steppage gait group was selected from the patients using drop foot brace (25 male and the control group was selected from Isfahan university students (20 male. They walked at self- selected speed at a mean of ten tri-als (+2 to collect the center of pressure using a force plate. Center of pressure patterns were categorized into four pat-terns based on the center of pressure displacement magnitude (spatial features through time (temporal features when the longitudinal axis of the insole was plotted as the Y- axis and the transverse axis of the insole as X- axis during stance phase. Results: The horizontal angle measured from center of pressure linear regression was positive in the control group (4.6 ± 2.4 (p < 0.005, but negative in the patient group (- 2.3 ± 1.6 (p < 0.005. Conclusions: The finding of this research measured center of pressure trajectory in steppage gait over time, which is useful for designing better shoe sole and also orthopaedic device and better understanding of stability in patients with drop foot.

  13. High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids.

    Science.gov (United States)

    Im, Junhyuck; Yim, Narae; Kim, Jaheon; Vogt, Thomas; Lee, Yongjae

    2016-09-14

    Pressure-dependent structural and chemical changes of the zeolitic imidazolate framework compound ZIF-8 have been investigated using different pressure transmitting media (PTM) up to 4 GPa. The unit cell of ZIF-8 expands and contracts under hydrostatic pressure depending on the solvent molecules used as PTM. When pressurized in water up to 2.2(1) GPa, the unit cell of ZIF-8 reveals a gradual contraction. In contrast, when alcohols are used as PTM, the ZIF-8 unit cell volume initially expands by 1.2% up to 0.3(1) GPa in methanol, and by 1.7% up to 0.6(1) GPa in ethanol. Further pressure increase then leads to a discontinuous second volume expansion by 1.9% at 1.4(1) GPa in methanol and by 0.3% at 2.3(1) GPa in ethanol. The continuous uptake of molecules under pressure, modeled by the residual electron density derived from Rietveld refinements of X-ray powder diffraction, reveals a saturation pressure near 2 GPa. In non-penetrating PTM (silicone oil), ZIF-8 becomes amorphous at 0.9(1) GPa. The structural changes observed in the ZIF-8-PTM system under pressure point to distinct molecular interactions within the pores.

  14. Thermal and Osmotic Tolerance of 'Irukandji' Polyps: Cubozoa; Carukia barnesi.

    Directory of Open Access Journals (Sweden)

    Robert Courtney

    Full Text Available This research explores the thermal and osmotic tolerance of the polyp stage of the Irukandji jellyfish Carukia barnesi, which provides new insights into potential polyp habitat suitability. The research also targets temperature, salinity, feeding frequency, and combinations thereof, as cues for synchronous medusae production. Primary findings revealed 100% survivorship in osmotic treatments between 19 and 46‰, with the highest proliferation at 26‰. As salinity levels of 26‰ do not occur within the waters of the Great Barrier Reef or Coral Sea, we conclude that the polyp stage of C. barnesi is probably found in estuarine environments, where these lower salinity conditions commonly occur, in comparison to the medusa stage, which is oceanic. Population stability was achieved at temperatures between 18 and 31°C, with an optimum temperature of 22.9°C. We surmise that C. barnesi polyps may be restricted to warmer estuarine areas where water temperatures do not drop below 18°C. Asexual reproduction was also positively correlated with feeding frequency. Temperature, salinity, feeding frequency, and combinations thereof did not induce medusae production, suggesting that this species may use a different cue, possibly photoperiod, to initiate medusae production.

  15. Effect of high-pressure homogenization on different matrices of food supplements.

    Science.gov (United States)

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  16. Influence of the Pressure Difference and Door Swing on Heavy Contaminants Migration between Rooms.

    Science.gov (United States)

    Hendiger, Jacek; Chludzińska, Marta; Ziętek, Piotr

    2016-01-01

    This paper presents the results of investigations whose aim was to describe the influence of the pressure difference level on the ability of contaminants migration between neighbouring rooms in dynamic conditions associated with door swing. The analysis was based on airflow visualization made with cold smoke, which simulated the heavy contaminants. The test room was pressurized to a specific level and then the door was opened to observe the trail of the smoke plume in the plane of the door. The door was opened in both directions: to the positively and negatively pressurized room. This study focuses on the visualization of smoke plume discharge and an uncertainty analysis is not applicable. Unlike other studies which focus on the analysis of pressure difference, the present study looks at the contaminants which are heavier than air and on "pumping out" the contaminants by means of door swing. Setting the proper level of pressure difference between the contaminated room and the neighbouring rooms can prove instrumental in ensuring protection against toxic contaminants migration. This study helped to establish the threshold of pressure difference necessary to reduce migration of heavy contaminants to neighbouring rooms.

  17. Differences in Activation Area Within Brodmann Area 2 Caused by Pressure Stimuli on Fingers and Joints

    Science.gov (United States)

    Choi, Mi-Hyun; Kim, Hyung-Sik; Baek, Ji-Hye; Lee, Jung-Chul; Park, Sung-Jun; Jeong, Ul-Ho; Gim, Seon-Young; Kim, Sung-Phil; Lim, Dae-Woon; Chung, Soon-Cheol

    2015-01-01

    Abstract In this study, a constant pressure stimulus was applied on the 3 joints (first [p1], second [p2], and third [p3] joints) of 4 fingers (index, middle, ring, and little fingers), and the activation areas within Brodmann area 2 (BA 2) were compared for these different fingers and joints by using functional magnetic resonance imaging. Eight healthy male college students (25.4 ± 1.32 years) participated in the study. Each session was composed of 3 blocks, and each block was composed of a Control phase (30 seconds) and a Pressure phase (30 seconds). No pressure stimulus was applied in the Control phase, during which the subjects would simply lay comfortably with their eyes closed. In the Pressure phase, a pressure stimulus was applied onto one of the joints of the selected finger. For each finger and joint, BA 2 areas activated by the pressure stimulus were extracted by the region of interest method. There was a significant difference in the activation areas for the different fingers (P = .042) as well as for the different joints (P = .050). The activation area decreased in the order of the little, index, and middle fingers, as well as in the order of p1, p3, and p2. PMID:26402840

  18. The difference in blood pressure readings between arms and survival: primary care cohort study.

    Science.gov (United States)

    Clark, Christopher E; Taylor, Rod S; Shore, Angela C; Campbell, John L

    2012-03-20

    To determine whether a difference in systolic blood pressure readings between arms can predict a reduced event free survival after 10 years. Cohort study. Rural general practice in Devon, United Kingdom. 230 people receiving treatment for hypertension in primary care. Bilateral blood pressure measurements recorded at three successive surgery attendances. Cardiovascular events and deaths from all causes during a median follow-up of 9.8 years. At recruitment 24% (55/230) of participants had a mean interarm difference in systolic blood pressure of 10 mm Hg or more and 9% (21/230) of 15 mm Hg or more; these differences were associated with an increased risk of all cause mortality (adjusted hazard ratio 3.6, 95% confidence interval 2.0 to 6.5 and 3.1, 1.6 to 6.0, respectively). The risk of death was also increased in 183 participants without pre-existing cardiovascular disease with an interarm difference in systolic blood pressure of 10 mm Hg or more or 15 mm Hg or more (2.6, 1.4 to 4.8 and 2.7, 1.3 to 5.4). An interarm difference in diastolic blood pressure of 10 mm Hg or more was weakly associated with an increased risk of cardiovascular events or death. Differences in systolic blood pressure between arms can predict an increased risk of cardiovascular events and all cause mortality over 10 years in people with hypertension. This difference could be a valuable indicator of increased cardiovascular risk. Bilateral blood pressure measurements should become a routine part of cardiovascular assessment in primary care.

  19. The Phase Envelope of Multicomponent Mixtures in the Presence of a Capillary Pressure Difference

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando; Yan, Wei; Michelsen, Michael Locht

    2016-01-01

    for test mixtures with wide ranges of compositions at different capillary radii and vapor fractions. The calculation results show that the phase envelope changes everywhere except at the critical point. The bubble point and the lower branch of the dew point show a decrease in the saturation pressure......, whereas the upper branch of the dew point shows an increase. The cricondentherm is shifted to a higher temperature. We also presented a mathematical analysis of the phase envelope shift due to capillary pressure based on linear approximations. The resulting linear approximation equations can predict...... the magnitude of shift, and the approximation is close for the change in the bubble point pressure....

  20. Features of blood pressure in student-athletes from different directions of the training process.

    Directory of Open Access Journals (Sweden)

    Kalenichenko Aleksej Vladimirovich

    2011-11-01

    Full Text Available Performed blood pressure (BP and hemodynamics of 85 students: 30 non-athletes (group I, 27 athletes power enforcement types (group II and 28 - endurance sports (group III. It was found that the second and third groups had higher systolic and mean arterial pressure than in the I group. There are differences in blood pressure reactivity to changes in body position, mental and physical activity among the various groups studied. It is shown that the formation of moderate hypertension in group III is carried out by increasing peripheral vascular resistance, and II - at the expense of increased cardiac output.

  1. The influence of slightly different main circulation pumps on PWR coolant pressure pulsations

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1989-01-01

    Pressure distribution along the core barrel circumference caused by the simultaneous operation of six main circulating pumps with slightly different revolutions obtained as a result of measurement in operated NPP is determined on the basis of the well-known Penzes method based on the solving of the wave equation with source term using the expansion into the infinite series of eigenfunctions. Results of calculations can be summarized as follows: the pressure distribution and the resulting force acting on the core barrel has a random character. The same is valid for core barrel vibrations and mainly for the joint between core barrel and pressure vessel. (orig.)

  2. Osmotic Pressure, Bacterial Cell Walls, and Penicillin: A Demonstration.

    Science.gov (United States)

    Lennox, John E.

    1984-01-01

    An easily constructed apparatus that models the effect of penicillin on the structure of bacterial cells is described. Background information and procedures for using the apparatus during a classroom demonstration are included. (JN)

  3. The inversion of relative shear rigidity in different material classes at megabar pressures

    CERN Document Server

    Brazhkin, V V

    2002-01-01

    The behaviour of elastic moduli of substances is analysed in the megabar pressure range. A new effect - inversion of the shear moduli and mechanical properties upon compression - is predicted for various classes of substances. The melting-curve data for different materials confirm the predicted phenomenon. The materials traditionally considered the softest, such as rare-gas solids and molecular substances, may become the hardest in the megabar range. This should be taken into account in developing experimental high-pressure techniques.

  4. The difference in blood pressure readings between arms and survival: primary care cohort study

    OpenAIRE

    Clark, Christopher E; Taylor, Rod S; Shore, Angela C; Campbell, John L

    2012-01-01

    Objective To determine whether a difference in systolic blood pressure readings between arms can predict a reduced event free survival after 10 years. Design Cohort study. Setting Rural general practice in Devon, United Kingdom. Participants 230 people receiving treatment for hypertension in primary care. Intervention Bilateral blood pressure measurements recorded at three successive surgery attendances. Main outcome measures Cardiovascular events and deaths from all causes during a median fo...

  5. Bursting tests on pressure vessels with cracks differing in configuration and location

    International Nuclear Information System (INIS)

    Stahlberg, R.

    1978-01-01

    For assessing the safety of nuclear pressure vessels exhibiting cracks, bursting test were carried out on a series of medium-size pressure vessels with and without welded nozzles and exhibiting cracks differing in configuration and location. The linear-elastic approach proved to be sufficiently accurate for straight strain conditions up to the onset of general yielding. Other analytical methods were successfully used to cover the plastic region. (orig.) [de

  6. Medial stabilized and posterior stabilized TKA affect patellofemoral kinematics and retropatellar pressure distribution differently.

    Science.gov (United States)

    Glogaza, Alexander; Schröder, Christian; Woiczinski, Matthias; Müller, Peter; Jansson, Volkmar; Steinbrück, Arnd

    2018-06-01

    Patellofemoral kinematics and retropatellar pressure distribution change after total knee arthroplasty (TKA). It was hypothesized that different TKA designs will show altered retropatellar pressure distribution patterns and different patellofemoral kinematics according to their design characteristics. Twelve fresh-frozen knee specimens were tested dynamically in a knee rig. Each specimen was measured native, after TKA with a posterior stabilized design (PS) and after TKA with a medial stabilized design (MS). Retropatellar pressure distribution was measured using a pressure sensitive foil which was subdivided into three areas (lateral and medial facet and patellar ridge). Patellofemoral kinematics were measured by an ultrasonic-based three-dimensional motion system (Zebris CMS20, Isny Germany). Significant changes in patellofemoral kinematics and retropatellar pressure distribution were found in both TKA types when compared to the native situation. Mean retropatellar contact areas were significantly smaller after TKA (native: 241.1 ± 75.6 mm 2 , MS: 197.7 ± 74.5 mm 2 , PS: 181.2 ± 56.7 mm 2 , native vs. MS p patellofemoral kinematics were found in both TKA designs when compared to the native knee during flexion and extension with a more medial patella tracking. Patellofemoral kinematics and retropatellar pressure change after TKA in different manner depending on the type of TKA used. Surgeons should be aware of influencing the risks of patellofermoral complications by the choice of the prosthesis design.

  7. Different centre of pressure patterns within the golf stroke II: group-based analysis.

    Science.gov (United States)

    Ball, K A; Best, R J

    2007-05-01

    Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the "Front Foot" and "Reverse" styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.

  8. Environmental assessment of an osmotic power plant at Sunndalsoera; Miljoeutredning for et saltkraftverk i Sunndalsoera

    Energy Technology Data Exchange (ETDEWEB)

    Staalstroem, A.; Farmen, E.; Gitmark, J.

    2012-07-01

    In this report the environmental impact by running an osmotic power plant at Sunndalsoera is assessed. Osmotic power means that the osmotic pressure between fresh and saltwater is utilized. At Sunndalsoera it is planned that 4 m{sub 3}/s of freshwater will be pumped up from 30 m depth out in the fjord where the salinity is sufficient. From the power plant Aura 2 m{sub 3}/s of freshwater will be lead into the osmotic power plant, and the two water molecules and not the salt molecules through. To balance the osmotic pressure, fresh water is sucked through the membrane, and the pressure at the salt water side increase. This pressure is used to rotate a turbine. The mixture of 6 m{sub 3}/s will have typical salinity of 20 and a temperature of 5-10 celsius degrees depending on the time of the season. This volume will be discharged in the sea through 3 pipes with diameter 1,2 m, and the consequences of three different discharge locations are assessed in this report; in the lower parts of the river Litedalselva, in a nearby harbour for small boats or just outside the river mouth/harbour inlet. At the membranes fouling occurs that needs to be removed and certain types of chemicals might be necessary. The relevant chemicals are Trisodiumcitrate, Ufacid and Divos 80-5. The concentrations of chemicals mentioned in this report are based on the use of a dirty fresh water source at Sunndalsoera is much cleaner, and the aim is to not use chemicals at all. It is found that a discharge in the surface just outside the inlet to the harbour will have little affect on the environment, if about 1/200 of the concentration of trisodiumcitrate in the worst case scenario is used. A discharge in the harbour will have little effect concerning minerals, if 1/230 of the concentration of trisodiumcitrate in the worst case scenario is used, but it is a possibility of increased eutrophication effects in the occasions when the nutrient concentrations is high at 30 m. On the other hand a discharge

  9. Effect of sintering pressure on structure and magnetic properties of Zn0.99Ni0.01O bulk samples synthesized under different pressures

    International Nuclear Information System (INIS)

    Wang, Yongqiang; Yuan, Chaosheng; Su, Lei; Wang, Zheng; Hao, Junhong; Ren, Yufen

    2015-01-01

    A series of Zn 0.99 Ni 0.01 O bulk samples were prepared by a coprecipitation method, and then sintered at 600 °C under various pressures from normal pressure(NP) to 3 GPa. The effects of sintering pressure (P S ) on the structure, morphology and magnetic properties of the doping samples were investigated in detail. The XRD and HRTEM results reveal that all samples are of single-phase hexagonal structure. Compared with the sample sintered at normal pressure, the lattice parameters a and c of the samples sintered at high pressures (HP) show a sharply decrease. With the increase of sintering pressure, the particle size gradually increases as well as the particles get closer to each other. At 300 K, the sample sintered at normal pressure shows a superparamagnetic-like behavior, while the samples sintered at high pressures display typical ferromagnetic behaviors. The saturation magnetization of the samples sintered at high pressures is three orders of magnitude larger than that of the one sintered at normal pressure. Our results reveal that an appropriate sintering pressure can tune the magnetic properties of Ni-doped ZnO system by changing the lattice parameters, particle size and inter-particle spacing, which may be helpful to the practical applications. - Highlights: • A series of Zn 0.99 Ni 0.01 O bulk samples were sintered in different pressures. • The lattice constants of the samples sintered at high pressure clearly decrease. • The particle size increases gradually with the increase of sintering pressure. • The samples sintered at different pressures show different magnetic behaviors. • Appropriate sintering pressure can tune the magnetic properties of Zn–Ni–O system

  10. Cloudiness and Its Relationship to Saturation Pressure Differences during a Developing East Coast Winter Storm.

    Science.gov (United States)

    Alliss, Randall J.; Raman, Sethu

    1995-11-01

    Cloudiness derived from surface observations and the Geostationary Operational Environmental Satellite VISSR (Visible Infrared Spin Scan Radiometer) Atmospheric Sounder (VAS) are compared with thermodynamic properties derived from upper-air soundings over the Gulf Stream locale during a developing winter storm. The Gulf Stream locale covers the United States mid-Atlantic coastal states, the Gulf Stream, and portions of the Sargasso Sea. Cloudiness is found quite frequently in this region. Cloud-top pressures are derived from VAS using the CO2 slicing technique and a simple threshold procedure. Cloud-base heights and cloud fractions are obtained from National Weather Service hourly reporting stations. The saturation pressure differences, defined as the difference between air parcel pressure and saturation-level pressure (lifted condensation level), are derived from upper-air soundings. Collocated comparisons with VAS and surface observations are also made. Results indicate that cloudiness is observed nearly all of the time during the 6-day period, well above the 8-yr mean. High, middle, and low opaque cloudiness are found approximately equally. Furthermore, of the high- and midlevel cloudiness observed, a considerable amount is determined to be semitransparent to terrestrial radiation. Comparisons of satellite-inferred cloudiness with surface observations indicate that the satellite can complement surface observations of cloud cover, particularly above 700 mb.Surface-observed cloudiness is segregated according to a composite cloud fraction and compared to the mean saturation pressure difference for a 1000 600-mb layer. The analysis suggests that this conserved variable may be a good indicator for estimating cloud fraction. Large negative values of saturation pressure difference correlate highly with clear skies, while those approaching zero correlate with overcast conditions. Scattered and broken cloud fractions are associated with increasing values of the

  11. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  12. Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill.

    Science.gov (United States)

    Whitehead, Andrew; Roach, Jennifer L; Zhang, Shujun; Galvez, Fernando

    2012-04-15

    The killifish Fundulus heteroclitus is abundant in osmotically dynamic estuaries and it can quickly adjust to extremes in environmental salinity. We performed a comparative osmotic challenge experiment to track the transcriptomic and physiological responses to two salinities throughout a time course of acclimation, and to explore the genome regulatory mechanisms that enable extreme osmotic acclimation. One southern and one northern coastal population, known to differ in their tolerance to hypo-osmotic exposure, were used as our comparative model. Both populations could maintain osmotic homeostasis when transferred from 32 to 0.4 p.p.t., but diverged in their compensatory abilities when challenged down to 0.1 p.p.t., in parallel with divergent transformation of gill morphology. Genes involved in cell volume regulation, nucleosome maintenance, ion transport, energetics, mitochondrion function, transcriptional regulation and apoptosis showed population- and salinity-dependent patterns of expression during acclimation. Network analysis confirmed the role of cytokine and kinase signaling pathways in coordinating the genome regulatory response to osmotic challenge, and also posited the importance of signaling coordinated through the transcription factor HNF-4α. These genome responses support hypotheses of which regulatory mechanisms are particularly relevant for enabling extreme physiological flexibility.

  13. Simulating Osmotic Equilibria: A New Tool for Calculating Activity Coefficients in Concentrated Aqueous Salt Solutions.

    Science.gov (United States)

    Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François

    2017-10-19

    Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.

  14. The difference in pediatric blood pressure between middle childhood and late childhood prior to dental treatment

    Directory of Open Access Journals (Sweden)

    Fitri Anissa Syaimima bt. Syaiful Azim

    2018-01-01

    Full Text Available Every child will go through several stages in his or her life. They are different from each other as they are in the process of development of cognition, physics, emotion, and personality. For many children, a visit to the dentist can raise their anxiety. This anxiousness will lead to stress that influences the cardiovascular function in the body. The purpose of this research was to determine the difference in pediatric blood pressure between middle childhood and late childhood prior to dental treatment. This research was a clinical trial, pure experimental study. The sample consisted of 30 children within the range of 4-12 years old where they were divided into two groups of age; middle childhood (4-7 years old and late childhood (8-12 years old. The blood pressures were measured before any dental treatment began and the values were recorded. The data were then analyzed using the One-Sample T-Test analysis. The results of blood pressure in middle childhood and late childhood were compared to the average mean values for each age group. It showed that there was a significant difference in the systolic pressure, which was found higher in the middle childhood group compared to the late childhood. From the result can be concluded that there was a difference in the pediatric blood pressure between middle childhood and late childhood prior to dental treatment.

  15. Comparison of plantar pressure distribution between three different shoes and three common movements in futsal.

    Directory of Open Access Journals (Sweden)

    Meghdad Teymouri

    Full Text Available Analysis of in-shoe pressure distribution during sport-specific movements may provide a clue to improve shoe design and prevent injuries. This study compared the mean and the peak pressures over the whole foot and ten separate areas of the foot, wearing different shoes during specific movements.Nine male adult recreational futsal players performed three trials of three sport-specific movements (shuffle, sprint and penalty kick, while they were wearing three brands of futsal shoes (Adidas, Lotto and Tiger. Plantar pressures on dominant feet were collected using the F-SCAN system. Peak and mean pressures for whole foot and each separate area were extracted. For statistical analysis, the mean differences in outcome variables between different shoes and movements were estimated using random-effects regression model using STATA ver.10.In the average calculation of the three movements, the peak pressure on the whole foot in Adidas shoe was less than Lotto [8.8% (CI95%: 4.1-13.6%] and Tiger shoes [11.8% (CI95%:7-16.7%], (P<0.001. Also, the recorded peak pressure on the whole foot in penalty kick was 61.1% (CI95%: 56.3-65.9% and 57.6% (CI95%: 52.8-62.3% less than Shuffle and Sprint tests, respectively (P<0.001.Areas with the highest peak pressure during all 3 movements were not different between all shoes. This area was medial forefoot in cases of shuffle and sprint movements and medial heel in case of penalty kick.

  16. Comparison of plantar pressure distribution between three different shoes and three common movements in futsal.

    Science.gov (United States)

    Teymouri, Meghdad; Halabchi, Farzin; Mirshahi, Maryam; Mansournia, Mohammad Ali; Mousavi Ahranjani, Ali; Sadeghi, Amir

    2017-01-01

    Analysis of in-shoe pressure distribution during sport-specific movements may provide a clue to improve shoe design and prevent injuries. This study compared the mean and the peak pressures over the whole foot and ten separate areas of the foot, wearing different shoes during specific movements. Nine male adult recreational futsal players performed three trials of three sport-specific movements (shuffle, sprint and penalty kick), while they were wearing three brands of futsal shoes (Adidas, Lotto and Tiger). Plantar pressures on dominant feet were collected using the F-SCAN system. Peak and mean pressures for whole foot and each separate area were extracted. For statistical analysis, the mean differences in outcome variables between different shoes and movements were estimated using random-effects regression model using STATA ver.10. In the average calculation of the three movements, the peak pressure on the whole foot in Adidas shoe was less than Lotto [8.8% (CI95%: 4.1-13.6%)] and Tiger shoes [11.8% (CI95%:7-16.7%)], (P<0.001). Also, the recorded peak pressure on the whole foot in penalty kick was 61.1% (CI95%: 56.3-65.9%) and 57.6% (CI95%: 52.8-62.3%) less than Shuffle and Sprint tests, respectively (P<0.001). Areas with the highest peak pressure during all 3 movements were not different between all shoes. This area was medial forefoot in cases of shuffle and sprint movements and medial heel in case of penalty kick.

  17. Extreme pressure differences at 0900 NZST and winds across New Zealand

    Science.gov (United States)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are

  18. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura [INAF-Trieste Astronomical Observatory, Trieste (Italy); Provenzale, Antonello [Institute of Atmospheric Sciences and Climate-CNR, Torino (Italy); Ferri, Gaia; Ragazzini, Gregorio, E-mail: vladilo@oats.inaf.it [Department of Physics, University of Trieste, Trieste (Italy)

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  19. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    International Nuclear Information System (INIS)

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-01-01

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  20. CaCO{sub 3} scaling in pressure retarded osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Willy; Holt, Torleif; Sivertsen, Edvard

    2010-07-01

    Full text: Osmotic power is a renewable energy source exploiting the energy of mixing between freshwater and seawater. Pressure retarded osmosis (PRO) is one of the methods that is technically feasible to extract this energy. In PRO, freshwater and seawater are separated by a semi permeable membrane that ideally only will allow transport of water, whereas salts and dissolved constituents will be retained by the membrane. Due to the difference in osmotic pressure across the membrane, there will be an osmotic transport of water from the freshwater side to the seawater side of the membrane. The osmotic transport of water will take place against a pressure gradient equal to approximately half the osmotic pressure between the two solutions. The resulting net volume increase on the seawater side will be utilised to drive a turbine. One of the major challenges towards realisation of osmotic power as a commercially feasible renewable energy source will be to maintain stable performance of the PRO membranes over time. In this respect the control of membrane fouling and scaling will be essential. Both adequate pre-treatment, in order to reduce the fouling potential of incoming feed waters, and operation and maintenance aspects such as flux control, disinfection and suitable membrane cleaning procedures will be important. A study investigating the CaCO{sub 3} scaling potential in PRO has been accomplished. Laboratory experiments with model solutions having different saturation index (SI) with respect to CaCO{sub 3} have been performed, and the flux decline over time due to precipitation of CaCO{sub 3} scale was monitored. A transport model estimating the concentration of Ca{sup 2+} and CO{sub 3}{sup 2-} at the membrane surface was developed and used to determine the SI for each of the experiments. Further, the SI of CaCO{sub 3} for a selection of 32 Norwegian rivers were calculated and for all cases the SI at the membrane surface was simulated for operation in PRO. (Author)

  1. Benchtop-magnetic resonance imaging (BT-MRI) characterization of push-pull osmotic controlled release systems.

    Science.gov (United States)

    Malaterre, Vincent; Metz, Hendrik; Ogorka, Joerg; Gurny, Robert; Loggia, Nicoletta; Mäder, Karsten

    2009-01-05

    The mechanism of drug release from push-pull osmotic systems (PPOS) has been investigated by Magnetic Resonance Imaging (MRI) using a new benchtop apparatus. The signal intensity profiles of both PPOS layers were monitored non-invasively over time to characterize the hydration and swelling kinetics. The drug release performance was well-correlated to the hydration kinetics. The results show that (i) hydration and swelling critically depend on the tablet core composition, (ii) high osmotic pressure developed by the push layer may lead to bypassing the drug layer and incomplete drug release and (iii) the hydration of both the drug and the push layers needs to be properly balanced to efficiently deliver the drug. MRI is therefore a powerful tool to get insights on the drug delivery mechanism of push-pull osmotic systems, which enable a more efficient optimization of such formulations.

  2. Novel regulation of aquaporins during osmotic stress.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Bohnert, Hans J; Pantoja, Omar

    2004-08-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions.

  3. Trpv4 involvement in the sex differences in blood pressure regulation in spontaneously hypertensive rats.

    Science.gov (United States)

    Onishi, Makiko; Yamanaka, Ko; Miyamoto, Yasunori; Waki, Hidefumi; Gouraud, Sabine

    2018-04-01

    Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.

  4. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  5. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  6. Osmotic coefficients of alcoholic mixtures containing BMpyrDCA: Experimental determination and correlation

    International Nuclear Information System (INIS)

    Calvar, N.; Domínguez, Á.; Macedo, E.A.

    2014-01-01

    Graphical abstract: - Highlights: • Osmotic coefficients of alcohols with BMpyrDCA ionic liquid are determined. • Experimental data were correlated with Extended Pitzer model of Archer and MNRTL. • Mean molal activity coefficients and excess Gibbs free energies were calculated. • The results have been interpreted in terms of interactions. - Abstract: The vapour pressure osmometry technique (VPO) has been used to obtain the osmotic coefficients of the binary mixtures of the primary and secondary alcohols 1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol with the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide, BMpyrDCA. From these coefficients, the corresponding activity coefficients and vapour pressures of the mixtures have been also determined. The results have been discussed in terms of solute–solvent and ion–ion interactions and have been compared with those taken from literature in order to analyse the influence of the anion or cation constituting the ionic liquid. For the treatment of the experimental data, the Extended Pitzer model of Archer and the MNRTL model have been applied, obtaining standard deviations from the experimental osmotic coefficients lower than 0.015 and 0.065, respectively. From the parameters obtained with the Extended Pitzer model or Archer, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures have been calculated

  7. High voltage tests of an electrostatic accelerator for different mixtures of gases at various pressures

    International Nuclear Information System (INIS)

    Hellborg, R.

    1996-01-01

    An account is given of high voltage tests of an electrostatic accelerator. High voltage conditioning is measured and is reported for the same accelerator tube after different periods of usage. Tests of different mixtures of sulphur hexafluoride and nitrogen have been performed. A considerable amount of data was obtained for various parameters connected with the high voltage system for different proportions of nitrogen in sulphur hexafluoride at various gas pressures. (orig.)

  8. The effects of exogenous proline and osmotic stress on morpho ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... For evaluation of growth parameters of strawberry callus under osmotic stress and exogenous proline, embryonic calli were transferred to Murashige and Skoog (MS) medium containing four sucrose. (osmotic stress) treatments including 3, 6, 9 and 12% and various concentrations of exogenous L- proline ...

  9. The effects of exogenous proline and osmotic stress on morpho ...

    African Journals Online (AJOL)

    For evaluation of growth parameters of strawberry callus under osmotic stress and exogenous proline, embryonic calli were transferred to Murashige and Skoog (MS) medium containing four sucrose (osmotic stress) treatments including 3, 6, 9 and 12% and various concentrations of exogenous Lproline (0, 2.5, 5 and 10 ...

  10. 21 CFR 864.6600 - Osmotic fragility test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic fragility...

  11. Improved Erythrocyte Osmotic Fragility and Packed Cell Volume ...

    African Journals Online (AJOL)

    Improved Erythrocyte Osmotic Fragility and Packed Cell Volume following administration of Aloe barbadensis Juice Extract in Rats. ... Abstract. Aloe barbadensis is a popular house plant that has a long history of a multipurpose folk remedy. ... Keywords: osmotic fragility, packed cell volume, haemoglobin, Aloe vera ...

  12. Analytical Solution of Electro-Osmotic Peristalsis of Fractional Jeffreys Fluid in a Micro-Channel

    Directory of Open Access Journals (Sweden)

    Xiaoyi Guo

    2017-11-01

    Full Text Available The electro-osmotic peristaltic flow of a viscoelastic fluid through a cylindrical micro-channel is studied in this paper. The fractional Jeffreys constitutive model, including the relaxation time and retardation time, is utilized to describe the viscoelasticity of the fluid. Under the assumptions of long wavelength, low Reynolds number, and Debye-Hückel linearization, the analytical solutions of pressure gradient, stream function and axial velocity are explored in terms of Mittag-Leffler function by Laplace transform method. The corresponding solutions of fractional Maxwell fluid and generalized second grade fluid are also obtained as special cases. The numerical analysis of the results are depicted graphically, and the effects of electro-osmotic parameter, external electric field, fractional parameters and viscoelastic parameters on the peristaltic flow are discussed.

  13. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  14. Ion and solvent Transport in Polypyrrole: Experimental Test of Osmotic Model

    DEFF Research Database (Denmark)

    Velmurugu, Yogambigai; Skaarup, Steen

    2005-01-01

    Ion and solvent transport in the conjugated polymer actuator material, polypyrrole, doped with the immobile anion dodecyl benzene sulphonate, has been investigated by simultaneous cyclic voltammetry and Electrochemical Quartz Crystal Microbalance measurements. The purpose was to elucidate the pre...... from almost pure cation transport to ca. equal amount of anion transport; exchanging Br- for Cl- ions has only negligible effect at lower concentrations at equal osmotic pressures. Ca. 4 H2O molecules are tightly bound to each Na+ ion at concentrations ... the precise nature of the mobile species during redox cycling, and to seek confirmation for the osmotic mechanism of actuation. Three testable aspects of the model were confirmed: The number of inserted H2O molecules decreases with electrolyte concentration; at the same time the mechanism gradually changes...

  15. Diastolic Pressure Difference to Classify Pulmonary Hypertension in the Assessment of Heart Transplant Candidates.

    Science.gov (United States)

    Wright, Stephen P; Moayedi, Yasbanoo; Foroutan, Farid; Agarwal, Suhail; Paradero, Geraldine; Alba, Ana C; Baumwol, Jay; Mak, Susanna

    2017-09-01

    The diastolic pressure difference (DPD) is recommended to differentiate between isolated postcapillary and combined pre-/postcapillary pulmonary hypertension (Cpc-PH) in left heart disease (PH-LHD). However, in usual practice, negative DPD values are commonly calculated, potentially related to the use of mean pulmonary artery wedge pressure (PAWP). We used the ECG to gate late-diastolic PAWP measurements. We examined the method's impact on calculated DPD, PH-LHD subclassification, hemodynamic profiles, and mortality. We studied patients with advanced heart failure undergoing right heart catheterization to assess cardiac transplantation candidacy (N=141). Pressure tracings were analyzed offline over 8 to 10 beat intervals. Diastolic pulmonary artery pressure and mean PAWP were measured to calculate the DPD as per usual practice (diastolic pulmonary artery pressure-mean PAWP). Within the same intervals, PAWP was measured gated to the ECG QRS complex to calculate the QRS-gated DPD (diastolic pulmonary artery pressure-QRS-gated PAWP). Outcomes occurring within 1 year were collected retrospectively from chart review. Overall, 72 of 141 cases demonstrated PH-LHD. Within PH-LHD, the QRS-gated DPD yielded higher calculated DPD values (3 [-1 to 6] versus 0 [-4 to 3] mm Hg; P pulmonary hypertension ( P pulmonary hypertension. The QRS-gated DPD reclassifies a subset of PH-LHD patients from isolated postcapillary pulmonary hypertension to Cpc-PH, which is characterized by an adverse hemodynamic profile. © 2017 American Heart Association, Inc.

  16. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve

    Directory of Open Access Journals (Sweden)

    Piotrowski Jeff S

    2012-04-01

    Full Text Available Abstract Background Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. Results As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. Conclusions This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution

  17. Analysis of influence of different pressure and different depth of pvd on soft foundation treatment

    Science.gov (United States)

    Li, Bin; Wang, XueKui

    2018-02-01

    According to the depth of plastic vertical drainage (pvd), the arrangement mode and the loading mode to analyze the influence of Vacuum preloading near the existing road. An arrangement mode of vacuum preloading to reduce the impact was put forward. The combination of different depth of pvd and loading modes are used to analyze the effect of vacuum preloading treatment and its influence range. The calculations show that the deformation and the influence distance are smaller by using the 40kPa vacuum loading and 41kPa surcharge load preloading. Reducing the depth of the pvd and vacuum combined surcharge preloading can weaken the influence to the existing highway.

  18. An ex vivo porcine skin model to evaluate pressure-reducing devices of different mechanical properties used for pressure ulcer prevention.

    Science.gov (United States)

    Yeung, Ching-Yan C; Holmes, David F; Thomason, Helen A; Stephenson, Christian; Derby, Brian; Hardman, Matthew J

    2016-11-01

    Pressure ulcers are complex wounds caused by pressure- and shear-induced trauma to skin and underlying tissues. Pressure-reducing devices, such as dressings, have been shown to successfully reduce pressure ulcer incidence, when used in adjunct to pressure ulcer preventative care. While pressure-reducing devices are available in a range of materials, with differing mechanical properties, understanding of how a material's mechanical properties will influence clinical efficacy remains limited. The aim of this study was to establish a standardized ex vivo model to allow comparison of the cell protection potential of two gel-like pressure-reducing devices with differing mechanical properties (elastic moduli of 77 vs. 35 kPa). The devices also displayed differing energy dissipation under compressive loading, and resisted strain differently under constant load in compressive creep tests. To evaluate biological efficacy we employed a new ex vivo porcine skin model, with a confirmed elastic moduli closely matching that of human skin (113 vs. 119 kPa, respectively). Static loads up to 20 kPa were applied to porcine skin ex vivo with subsequent evaluation of pressure-induced cell death and cytokine release. Pressure application alone increased the percentage of epidermal apoptotic cells from less than 2% to over 40%, and increased cellular secretion of the pro-inflammatory cytokine TNF-alpha. Co-application of a pressure-reducing device significantly reduced both cellular apoptosis and cytokine production, protecting against cellular damage. These data reveal new insight into the relationship between mechanical properties of pressure-reducing devices and their biological effects. After appropriate validation of these results in clinical pressure ulcer prevention with all tissue layers present between the bony prominence and external surface, this ex vivo porcine skin model could be widely employed to optimize design and evaluation of devices aimed at reducing pressure

  19. Microbial quality of soil from the Pampa biome in response to different grazing pressures

    Directory of Open Access Journals (Sweden)

    Rafael S. Vargas

    2015-06-01

    Full Text Available The aim of this study was to evaluate the impact of different grazing pressures on the activity and diversity of soil bacteria. We performed a long-term experiment in Eldorado do Sul, southern Brazil, that assessed three levels of grazing pressure: high pressure (HP, with 4% herbage allowance (HA, moderate pressure (MP, with 12% HA, and low pressure (LP, with 16% HA. Two reference areas were also assessed, one of never-grazed native vegetation (NG and another of regenerated vegetation after two years of grazing (RG. Soil samples were evaluated for microbial biomass and enzymatic (β-glucosidase, arylsulfatase and urease activities. The structure of the bacterial community and the population of diazotrophic bacteria were evaluated by RFLP of the 16S rRNA and nifH genes, respectively. The diversity of diazotrophic bacteria was assessed by partial sequencing of the 16S rDNA gene. The presence of grazing animals increased soil microbial biomass in MP and HP. The structures of the bacterial community and the populations of diazotrophic bacteria were altered by the different grazing managements, with a greater diversity of diazotrophic bacteria in the LP treatment. Based on the characteristics evaluated, the MP treatment was the most appropriate for animal production and conservation of the Pampa biome.

  20. Application of vacuum-assisted closure in seawater-immersed wound treatment under different negative pressures.

    Science.gov (United States)

    Cao, L; Peng, M M; Sun, J J; Yu, X C; Shi, B

    2015-06-11

    The therapeutic effect of vacuum-assisted closure (VAC) has been confirmed in many types of complex wounds, but there are few relevant reports regarding seawater-immersed wounds. The aim of this study was to determine the effect of VAC on seawater-immersed wound healing under different negative pressures and explore the optimal negative pressure value. Four purebred miniature pigs were used as the experimental animal models. Four acute, symmetrical wounds were made on each side of the spine and designated as the experimental group (wounds with 2 h of seawater immersion) and the control group (wounds without seawater immersion). Wounds were divided into a conventional dressing group and 3 further groups with different VAC therapies (negative pressure at either 120, 180, or 240 mmHg). The extent of wound healing, and speed of granulation growth and re-epithelialization were measured. Bacterial flora distribution in the wounds was observed, and fibronectin levels in the exudate of the wounds were tested. Results showed that seawater immersion aggravated wound injury and that VAC therapy with 180 mmHg negative pressure induced the fastest epidermis migration, obvious edema elimination, significant capillary proliferation, and the highest level of fibronectin, and that in wounds, the proportion of Gram-negative bacteria tended to decrease and that of Gram-positive bacteria tended to increase. Our results show that VAC promotes seawater-immersed wound healing and that 180 mmHg negative pressure may be optimal for wound healing.

  1. Effect of different body postures on the pressures generated during an L-1 maneuver.

    Science.gov (United States)

    Williams, C A; Lind, A R; Wiley, R L; Douglas, J E; Miller, G

    1988-10-01

    Changes in blood pressure, intrathoracic pressure, heart rate and the electromyographic activity of various muscle groups were determined while nine male subjects performed 15-s L-1 straining maneuvers at four spine-to-thigh angles (70, 84, 94, and 105 degrees) and two seatback angles (30 and 60 degrees). There was no significant difference between the changes in these variables due to the different body positions. At the onset of the L-1, arterial pressure immediately increased to 195 +/- 5 mm Hg, but fell progressively during the next 5 s to 160 +/- 5 mm Hg. It remained constant during the next 5 s of the maneuver and then recovered to 180 +/- mm Hg during the last 5 s of the maneuver. Esophageal pressure followed essentially the same pattern of response, but heart rate progressively increased during the entire L-1. No one muscle group was utilized more than another. Inflation of an anti-G suit to 4 PSI had no effect on the variables measured. Generation of high arterial pressures during L-1 maneuvers is transitory and not affected either positively or negatively by altering subject body position.

  2. Association between body size and blood pressure in children from different ethnic origins

    NARCIS (Netherlands)

    LA de Hoog, Marieke; van Eijsden, Manon; Stronks, Karien; Gemke, Reinoud J. B. J.; Vrijkotte, Tanja G. M.

    2012-01-01

    Objective: To assess associations between body size and blood pressure in children (5-6 years) from different ethnic origins. Method: Five ethnic groups of the ABCD cohort were examined: Dutch (n=1 923), Turkish (n=99), Moroccan (n=187), Black-African (n=67) and Black-Caribbean (n=121). Data on

  3. The inter-arm blood pressure difference and peripheral vascular disease: cross-sectional study.

    Science.gov (United States)

    Clark, Christopher E; Campbell, John L; Powell, Roy J; Thompson, John F

    2007-10-01

    A blood pressure (BP) difference between the upper limbs is often encountered in primary care. Knowledge of its prevalence and importance in the accurate measurement of BP is poor, representing a source of error. Current hypertension guidelines do not emphasize this. To establish the prevalence of an inter-arm blood pressure difference (IAD) and explore its association with other indicators of peripheral vascular disease (PVD) in a hypertensive primary care population. This was a cross-sectional study. Primary care, one rural general practice, was the setting of the study. The methods were controlled simultaneous measurement of brachial BPs, ankle-brachial pressure index (ABPI) and tiptoe stress testing in 94 subjects. In all, 18 of 94 [19%, 95% confidence interval (CI) 11-27%] subjects had mean systolic inter-arm difference (sIAD) > or =10 mmHg and seven of 94 (7%, 95% CI 2-12%) had mean diastolic inter-arm difference (dIAD) > or =10 mmHg. Nineteen of 91 (20%, 95% CI 12-28%) had a reduced ABPI pressure drop > or =20%. An IAD and asymptomatic PVD are common in a primary care hypertensive population. Magnitude of the IAD is inversely correlated with ABPI, supporting the hypotheses that IADs are causally linked to PVD, and that IAD is a useful marker for the presence of PVD. Consequently, detection of an IAD should prompt the clinician to screen subjects for other signs of vascular disease and target them for aggressive cardiovascular risk factor modification.

  4. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    Science.gov (United States)

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  5. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.

    Science.gov (United States)

    Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-10-01

    The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of process variables on the osmotic dehydration of star-fruit slices

    Directory of Open Access Journals (Sweden)

    Camila Dalben Madeira Campos

    2012-06-01

    Full Text Available The objective of this work was to study the effect of blanching and the influence of temperature, solution concentration, and the initial fruit:solution ratio on the osmotic dehydration of star-fruit slices. For blanching, different concentrations of citric and ascorbic acids were studied. The samples immersed in 0.75% citric acid presented little variation in color in relation to the fresh star-fruit. Osmotic dehydration was carried out in an incubator with orbital shaking, controlled temperature, and constant shaking at 120 rpm. The influence of process variables was studied in trials defined by a complete 23 central composite design. In general, water loss and solids gain were positively influenced by temperature and by solution concentration. Nevertheless, lower temperatures reduced water loss throughout the osmotic dehydration process. An increase in the amount of dehydrating solution (initial fruit:solution ratio slightly influenced the evaluated responses. The process carried out at 50 ºC with a solution concentration of 50% resulted in a product with lower solids gain and greater water loss. Under these conditions, blanching minimized the effect of the osmotic treatment on star-fruit browning, and therefore the blanched fruits showed little variation in color in relation to the fresh fruit.

  7. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  8. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded

  9. Body fat and blood pressure: comparison of blood pressure measurements in Chinese children with different body fat levels.

    Science.gov (United States)

    Ma, Jun; Wang, Zhiqiang; Dong, Bin; Song, Yi; Hu, Peijin; Zhang, Bing

    2012-11-14

    Children in China are experiencing a rapid increase in the prevalence of obesity, which is associated with hypertension. To compare the effect of body fat on blood pressure (BP) with that of the normal physical growth, we compared BP levels in Chinese children with different body fat levels. In the present population-based study, 13 972 children in the highest-skinfold-thickness-quartile group were individually matched to 13 972 children in the lowest-skinfold-thickness-quartile group by height and weight. Similarly, 5103 children in the highest-waist-circumference-quartile group were matched to the same number of children in the lowest-waist-circumference-quartile group. The high- and low-fat groups had similar height and weight but the high-fat group had significantly higher skinfold and waist circumference measurements. The differences in systolic BP (SBP) between the high- and low-skinfold-thickness groups were small: 0·01 (95 % CI -0·41, 0·44) mmHg in boys and 0·20 (95 % CI -0·15, 0·54) mmHg in girls. The differences in diastolic BP (DBP) were also small (0·39 and 0·38 mmHg for boys and girls, respectively) but were statistically significant. The differences in both SBP and DBP between the high- and low-waist-circumference groups were small but not statistically significant. For a given body size as measured by height and weight, relative body fat had little impact on BP levels in these children. Fat mass and lean mass may have a similar quantitative impact on BP in healthy-weight children.

  10. Interarm blood pressure difference in a post-stroke population.

    Science.gov (United States)

    Gaynor, Eva; Brewer, Linda; Mellon, Lisa; Hall, Patricia; Horgan, Frances; Shelley, Emer; Dolan, Eamonn; Hickey, Anne; Bennett, Kathleen; Williams, David J

    2017-09-01

    An increased interarm systolic blood pressure (SBP) difference of ≥10 mm Hg is associated with increased cardiovascular risk and a difference of ≥15 mm Hg with increased cerebrovascular risk. The stroke population presents a high-risk group for future cardiovascular and cerebrovascular events and therefore estimation of interarm SBP difference as a predictive tool may assist with further secondary stroke prevention. The aim of the study was to determine the prevalence of interarm SBP and diastolic blood pressure difference in a post-stroke population. A comprehensive assessment of secondary risk factors along with blood pressure measurements were taken 6-months' post-ischemic stroke from the Action on Secondary Prevention Interventions and Rehabilitation in Stroke cohort. Descriptive and logistic regression analyses were performed. Odds ratios and 95% confidence intervals are presented. Two hundred thirty-eight (M: F,139:99; mean age, 68.4 years) of 256 patients followed up at 6 months post-stroke had suitable blood pressure readings from both arms. Ninety-six patients (40.3%) had an interarm SBP difference of ≥10 mm Hg and 49 (20.6%) had a difference of ≥15 mm Hg. A history of hypertension, diabetes, smoking, and obesity was not significantly associated with an increased risk of interarm SBP difference. After multivariate logistic analysis, a history of alcohol excess was associated with an increased IASBP ≥15 mm Hg (odds ratio 2.32, 95% confidence interval 1.03-5.22). We have demonstrated that interarm SBP difference is commonly seen in a post stroke population. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  11. Isolated Extrapontine Myelinolysis of Osmotic Demyelination Syndrome

    Directory of Open Access Journals (Sweden)

    Ömer Yılmaz

    2013-01-01

    Full Text Available The osmotic demyelination syndrome (ODS has been identified as a complication of the rapid correction of hyponatremia for decades (King and Rosner, 2010. However, in recent years, a variety of other medical conditions have been associated with the development of ODS, independent of changes in serum sodium which cause a rapid changes in osmolality of the interstitial (extracellular compartment of the brain leading to dehydration of energy-depleted cells with subsequent axonal damage that occurs in characteristic areas (King and Rosner, 2010. Slow correction of the serum sodium concentration and additional administration of corticosteroids seems to be a major prevention step in ODS patients. In the current report we aimed to share a rare case which we observed in our clinic.

  12. Peripheral arterial volume distensibility: significant differences with age and blood pressure measured using an applied external pressure

    International Nuclear Information System (INIS)

    Zheng, Dingchang; Murray, Alan

    2011-01-01

    A new arterial distensibility measurement technique was assessed in 100 healthy normotensive subjects. Arterial transmural pressures on the whole right arm were reduced with a 50 cm long cuff inflated to 10, 20, 30 and 40 mmHg. The electrocardiogram, and finger and ear photoplethysmograms were recorded simultaneously. Arm pulse propagation time, pulse wave velocity (PWV) and arterial volume distensibility were determined. With a 40 mmHg reduction in transmural pressure, arm pulse propagation time increased from 61 to 83 ms, PWV decreased from 12 to 8 m s −1 and arterial distensibility increased from 0.102% to 0.232% per mmHg (all P < 0.0001). At all cuff pressures, arterial distensibility was significantly related to resting mean arterial pressure (MAP), diastolic blood pressure (DBP) and age, and for systolic blood pressure at 30 and 40 mmHg (all P < 0.05). At 40 mmHg cuff pressure, arterial distensibility fell by 54% for a MAP increase from 75 to 105 mmHg, 57% for a DBP increase from 60 to 90 mmHg and 47% for an age increase from 20 to 70 years. These changes were more than double than those without cuff pressure. Our technique showed that systemic volume distensibility of the peripheral arm artery reduced with age, with a greater effect at higher external and lower transmural pressures

  13. Pressure transmission area and maximum pressure transmission of different thermoplastic resin denture base materials under impact load.

    Science.gov (United States)

    Nasution, Hubban; Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu

    2018-01-01

    The purposes of the present study were to examine the pressure transmission area and maximum pressure transmission of thermoplastic resin denture base materials under an impact load, and to evaluate the modulus of elasticity and nanohardness of thermoplastic resin denture base. Three injection-molded thermoplastic resin denture base materials [polycarbonate (Basis PC), ethylene propylene (Duraflex), and polyamide (Valplast)] and one conventional heat-polymerized acrylic resin (PMMA, SR Triplex Hot) denture base, all with a mandibular first molar acrylic resin denture tooth set in were evaluated (n=6). Pressure transmission area and maximum pressure transmission of the specimens under an impact load were observed by using pressure-sensitive sheets. The modulus of elasticity and nanohardness of each denture base (n=10) were measured on 15×15×15×3mm 3 specimen by using an ultramicroindentation system. The pressure transmission area, modulus of elasticity, and nanohardness data were statistically analyzed with 1-way ANOVA, followed by Tamhane or Tukey HSD post hoc test (α=.05). The maximum pressure transmission data were statistically analyzed with Kruskal-Wallis H test, followed by Mann-Whitney U test (α=.05). Polymethyl methacrylate showed significantly larger pressure transmission area and higher maximum pressure transmission than the other groups (Pelasticity and nanohardness among the four types of denture bases (Pelasticity and nanohardness of each type of denture base were demonstrated. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey

    OpenAIRE

    Lee, Si Hyung; Kwak, Seung Woo; Kang, Eun Min; Kim, Gyu Ah; Lee, Sang Yeop; Bae, Hyoung Won; Seong, Gong Je; Kim, Chan Yun

    2016-01-01

    Background To investigate the association between estimated trans-lamina cribrosa pressure difference (TLCPD) and prevalence of normal tension glaucoma (NTG) with low-teen and high-teen intraocular pressure (IOP) using a population-based study design. Methods A total of 12,743 adults (? 40 years of age) who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) from 2009 to 2012 were included. Using a previously developed formula, cerebrospinal fluid pressure (C...

  15. [Comparison of different continuous positive airway pressure titration methods for obstructive sleep apnea hypopnea syndrome].

    Science.gov (United States)

    Li, Jingjing; Ye, Jingying; Zhang, Peng; Kang, Dan; Cao, Xin; Zhang, Yuhuan; Ding, Xiu; Zheng, Li; Li, Hongguang; Bian, Qiuli

    2014-10-01

    To explore whether there were differences between the results of automatic titration and the results of manual titration for positive airway pressure treatment in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) and its influencing factors, the results might provide a theoretical basis for the rational use of two pressure titration methods. Sixty one patients with OSAHS were included in this study. All patients underwent a manual titration and an automatic titration within one week. The clinical informations, polysomnography data, and the results of both two titration of all patients were obtained for analysis. The overall apnea/hypopnea index was (63.1 ± 17.7)/h, with a range of 14.9/h to 110.4/h. The treatment pressure of manual titration was (8.4 ± 2.1) cmH(2)O, which was significantly lower than the treatment pressure of automatic titration, (11.5 ± 2.7) cmH(2)O (t = -9.797, P titration and manual titration), it was found that the pressure of automatic titration was significantly higher in patients with a ΔP > 3 cmH(2)O than in patients with a ΔP ≤ 3 cmH(2)O, which was (13.3 ± 2.3) cmH(2)O vs (10.0 ± 2.0) cmH(2)O (t = -6.159, P titration between these two groups, which was (8.6 ± 2.4) cmH(2)O vs (8.3 ± 2.0)cmH(2)O (P > 0.05). There was no significant difference in age, body mass index, neck circumference, abdomen circumference, apnea hypopnea index, and arterial oxygen saturation between these two groups. The treatment pressure of automatic titration is usually higher than that of manual titration. For patients with a high treatment pressure which is derived from automatic titration, a suggestion about manual titration could be given to decrease the potential treatment pressure of continuous positive airway pressure, which may be helpful in improving the comfortableness and the compliance of this treatment.

  16. The Difference in Translaminar Pressure Gradient and Neuroretinal Rim Area in Glaucoma and Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Lina Siaudvytyte

    2014-01-01

    Full Text Available Purpose. To assess differences in translaminar pressure gradient (TPG and neuroretinal rim area (NRA in patients with normal tension glaucoma (NTG, high tension glaucoma (HTG, and healthy controls. Methods. 27 patients with NTG, HTG, and healthy controls were included in the prospective pilot study (each group consisted of 9 patients. Intraocular pressure (IOP, intracranial pressure (ICP, and confocal laser scanning tomography were assessed. TPG was calculated as the difference of IOP minus ICP. ICP was measured using noninvasive two-depth transcranial Doppler device. The level of significance P 0.05. The difference between TPG for healthy (5.4(7.7 mmHg and glaucomatous eyes (NTG 6.3(3.1 mmHg, HTG 15.7(7.7 mmHg was statistically significant (P < 0.001. Higher TPG was correlated with decreased NRA (r = −0.83; P = 0.01 in the NTG group. Conclusion. Translaminar pressure gradient was higher in glaucoma patients. Reduction of NRA was related to higher TPG in NTG patients. Further prospective studies are warranted to investigate the involvement of TPG in glaucoma management.

  17. Positron annihilation spectroscopy studies of bronze exposed to sandblasting at different pressure

    Science.gov (United States)

    Kurdyumov, S.; Siemek, K.; Horodek, P.

    2017-11-01

    An application of Doppler broadening of annihilation line spectroscopy to samples of beryllium bronze DIN-CuBe2 exposed to sandblasting is presented in performed studies. It is familiar that sandblasting introduces open-volume defects. Samples were sandblasted under different pressure for 1 minute using 110 μm particles of Al2O3. For a non-defected sample the constant value of S-parameter was detected. In the cases of sandblasted samples, S-parameter decreased when the depth enhanced. In our studies the thicknesses of defected zones were determined (it was c.a. 30 μm for a sample blasted under pressure of 1 bar and 110 μm - for 5 bar), and it was also observed that if sandblasting pressure is higher the defected zone is larger.

  18. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  19. EMG activities and plantar pressures during ski jumping take-off on three different sized hills.

    Science.gov (United States)

    Virmavirta, M; Perttunen, J; Komi, P V

    2001-04-01

    Different profiles of ski jumping hills have been assumed to make the initiation of take-off difficult especially when moving from one hill to another. Neuromuscular adaptation of ski jumpers to the different jumping hills was examined by measuring muscle activation and plantar pressure of the primary take-off muscles on three different sized hills. Two young ski jumpers volunteered as subjects and they performed several trials from each hill (K-35 m, K-65 m and K-90 m) with the same electromyographic (EMG) electrode and insole pressure transducer set-up. The results showed that the differences in plantar pressure and EMGs between the jumping hills were smaller than expected for both jumpers. The small changes in EMG amplitudes between the hills support the assumption that the take-off was performed with the same intensity on different jumping hills and the timing of the gluteus EMG demonstrates well the similarity of the muscle activation on different hills. On the basis of the results obtained it seems that ski jumping training on small hills does not disturb the movement patterns for bigger hills and can also be helpful for special take-off training with low speed.

  20. Interarm Difference in Blood Pressure: Reproducibility and Association with Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Jesper Mehlsen

    2014-01-01

    Full Text Available The present study aimed at examining the interarm difference in blood pressure and its use as an indicator of peripheral arterial disease (PAD. Data were included from consecutive patients referred from their general practitioner to our vascular laboratory for possible PAD aged 50 years or older without known cardiac disease, renal disease, or diabetes mellitus. 824 patients (453 women with mean age of 72 years (range: 50–101 were included. 491 patients had a diagnosis of hypertension and peripheral arterial disease (PAD was present in 386 patients. Systolic blood pressure was 143 ± 24 mmHg and 142 ± 24 mmHg on the right and left arm, respectively (P=0.015. The interarm difference was greater in patients with hypertension (P=0.002 and PAD (P20 mmHg. This study confirmed the presence of a systematic but clinically insignificant difference in systolic blood pressure between arms. The interarm difference was larger in hypertension and PAD. Consistent lateralisation is present for differences ≥20 mmHg and an interarm difference >25 mmHg is a reliable indicator of PAD in the legs.

  1. Racial differences in the impact of social support on nocturnal blood pressure.

    Science.gov (United States)

    Cooper, Denise C; Ziegler, Michael G; Nelesen, Richard A; Dimsdale, Joel E

    2009-06-01

    To investigate whether black and white adults benefit similarly from perceived social support in relation to blood pressure (BP) dipping during sleep. The Interpersonal Support Evaluation List (ISEL, 12-item version), which measures the perceived availability of several types of functional social support, was examined for interactive effects with race on dipping of mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) derived from 24-hour ambulatory blood pressure monitoring (ABPM). The sample consisted of 156 young to middle-aged adults (61 blacks, 95 whites; mean age = 35.7 years). Mean ISEL scores did not differ between racial groups. Controlling for age, body mass index (BMI), resting BP, and socioeconomic status (SES), the interaction of social support by race yielded associations with nighttime dipping in MAP and DBP (p social support increased, white adults received cardiovascular benefits as suggested by enhanced nocturnal dipping of BP, but black adults accrued risks as evidenced by blunted declines in BP during sleep.

  2. Sensing performances of ZnO nanostructures grown under different oxygen pressures to hydrogen

    International Nuclear Information System (INIS)

    Chu, Jin; Peng, Xiaoyan; Wang, Zhenbo; Feng, Peter

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Surface morphology depends on the oxygen pressure. ► Structural degradation was observed for the ZnO samples when oxygen pressure was overhigh. ► The sensitivity of the ZnO-based sensors increase with grown oxygen pressure. -- Abstract: For extensive use in an industrialized process of individual ZnO nanostructures applied in gas sensors, a simple, inexpensive, and safe synthesis process is required. Here, nanostructured ZnO films were grown by a pulsed laser deposition technique under different oxygen pressures. Scanning electron microscopy images show nanopores, nanotips, and nanoparticles are obtained and energy dispersive X-ray spectroscopy data indicate oxygen concentration of the synthesized samples increases monotonously with oxygen pressure. The sensor based on ZnO with high oxygen concentration has high sensitivity, rapid response (9 s) and recovery (80 s) behavior to 500 ppm hydrogen below 150 °C. Experimental data indicate that high oxygen concentration effectively improves the sensing properties of nanostructured ZnO.

  3. Blood pressure reduction induced by low dose of epinephrine via different routes in rats.

    Science.gov (United States)

    Wu, Jing; Ji, Mu-Huo; Wang, Zhong-Yun; Zhu, Wei; Yang, Jian-Jun; Peng, Yong G

    2013-09-01

    Epinephrine was recently shown to induce a hypotension episode. Activation of β₂-adrenoceptors with smooth muscle relaxation may be the underlying mechanism. This study investigated the effects of ICI 118551, a β₂-adrenoceptors antagonist, on epinephrine-induced blood pressure reduction via different administration routes in rats. A total of 144 Sprague Dawley rats were equally randomized into 3 groups (intranasal, intravenous, and intra-arterial administration), each with 4 subgroups: saline + saline, ICI 118551 + saline, saline + epinephrine, and ICI 118551 + epinephrine. All rats were anesthetized while spontaneously breathing. Epinephrine was administered at doses of 5 μg/kg via nose, 0.25 μg/kg via femoral vein, and 0.1 μg/kg via aorta. Mean arterial pressure and heart rate were monitored. Mean arterial pressure decreased in all 3 saline + epinephrine subgroups after administration (P blood pressure reduction can be prevented by ICI 118551 in rats, suggesting that the activation of β₂-adrenoceptors contributes to blood pressure reduction.

  4. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2017-09-01

    Full Text Available Modeling of microbial inactivation by high hydrostatic pressure (HHP requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa, and with holding time ≤10 min for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5 inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj and highest mean square error (MSE values, while the Fermi equation had the best fit (the highest R2adj and lowest MSE values. Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for

  5. Predicting mass loading as a function of pressure difference across prefilter/HEPA filter systems

    International Nuclear Information System (INIS)

    Novick, V.J.; Klassen, J.F.; Monson, P.R.

    1992-01-01

    The purpose of this work is to develop a methodology for predicting the mass loading and pressure drop effects on a prefilter/ HEPA filter system. The methodology relies on the use of empirical equations for the specific resistance of the aerosol loaded filter as a function of the particle diameter. These correlations relate the pressure difference across a filter to the mass loading on the filter and accounts for aerosol particle density effects. These predictions are necessary for the efficient design of new filtration systems and for risk assessment studies of existing filter systems. This work specifically addresses the prefilter/HEPA filter Airborne Activity Confinement Systems (AACS) at the Savannah River Plant. In order to determine the mass loading on the system, it is necessary to establish the efficiency characteristics for the prefilter, the mass loading characteristics of the prefilter measured as a function of pressure difference across the prefilter, and the mass loading characteristics of the HEPA filter as a function of pressure difference across the filter. Furthermore, the efficiency and mass loading characteristics need to be determined as a function of the aerosol particle diameter. A review of the literature revealed that no previous work had been performed to characterize the prefilter material of interest. In order to complete the foundation of information necessary to predict total mass loadings on prefilter/HEPA filter systems, it was necessary to determine the prefilter efficiency and mass loading characteristics. The measured prefilter characteristics combined with the previously determined HEPA filter characteristics allowed the resulting pressure difference across both filters to be predicted as a function of total particle mass for a given particle distribution. These predictions compare favorably to experimental measurements (±25%)

  6. THE APPLICATION OF LEAF ULTRASONIC RESONANCE TO VITIS VINIFERA L. SUGGESTS THE EXISTENCE OF A DIURNAL OSMOTIC ADJUSTMENT SUBJECTED TO PHOTOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Domingo Sancho-Knapik

    2016-10-01

    Full Text Available The main objective of this study was to apply the air-coupled broad-band ultrasonic spectroscopy in attached transpiring leaves of Vitis vinifera L. to monitor changes in leaf water potential (Y through the measurements of the standardized value of the resonant frequency associated with the maximum transmitance (f/fo. With this purpose, the response of grapevine to a drought stress period was investigated in terms of leaf water status, ultrasounds, gas exchange and sugar accumulation. Two strong correlations were obtained between f/fo and Y measured at predawn (pd and at midday (md with different slopes. This fact implied the existence of two values of Y for a given value of f/fo, which was taken as a sign that the ultrasonic technique was not directly related to the overall Y, but only to one of its components: the turgor pressure (P. The difference in Y at constant f/fo (d was found to be dependent on net CO2 assimilation (A and might be used as a rough estimator of photosynthetic activity. It was then, the other main component of Y, osmotic potential (π, the one that may have lowered the values of midday Y with respect to predawn Y by the accumulation of sugars associated to net CO2 assimilation. This phenomenon suggests the existence of a diurnal osmotic adjustment in this species associated to sugars production in well-watered plants.

  7. Respiratory Pattern and Tidal Volumes Differ for Pressure Support and Volume-assured Pressure Support in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Nicholson, Trevor T; Smith, Sean B; Siddique, Teepu; Sufit, Robert; Ajroud-Driss, Senda; Coleman, John M; Wolfe, Lisa F

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease resulting in respiratory failure and death. Use of noninvasive ventilation (NIV) improves survival. However, use of volume-assured pressure support (VAPS) has not been extensively studied in ALS. To explore the clinical usefulness of a detailed evaluation of device-recorded NIV data in the management of chronic respiratory failure in ALS, and to determine whether there are differences in efficacy between patients using VAPS or PS. We performed a retrospective chart review of 271 patients with ALS using either PS or VAPS, along with an evaluation of device-recorded data to explore differences in attainment of goal tidal volumes (Vt) and ratio of respiratory rate to tidal volume (f/Vt), in addition to triggering and cycling ability. Two hundred and fifteen patients were using PS, while 56 were using VAPS. There were no significant differences in demographic data, symptoms, pulmonary function, or patient compliance. Compared with VAPS, achieved Vt was significantly lower for PS while f/Vt was significantly higher. Percent spontaneous triggering was relatively preserved in both cohorts, whereas percent spontaneous cycling was considerably decreased in both. Furthermore, there was no association found between spontaneous triggering or cycling, and pulmonary function, indicating the presence of low spontaneous breath cycling or triggering ability is difficult to predict. Examination of device data for exhaled tidal volumes and f/Vt may be of use in evaluating efficacy of NIV in ALS. VAPS provides more reliable goal Vt than does PS, and is associated with decreased f/Vt. Spontaneous cycling is decreased in ALS despite preservation of triggering ability. Although a set backup rate may address decreased triggering, perhaps more importantly, setting a sufficient fixed inspiratory time would address the issue of decreased cycling.

  8. Sugar beet molasses: Properties and applications in osmotic dehydration of fruits and vegetables

    Directory of Open Access Journals (Sweden)

    Šarić Ljubiša Ć.

    2016-01-01

    Full Text Available Molasses is an important by-product of sugar beet or sugar cane refining industry and it was one of the first sweeteners used in human nutrition. Sugar cane molasses has unique characteristics that can make it suitable for application in food industry, especially in confectionery and bakery products. On the other hand, sugar beet molasses has not had greater application in the human diet, primarily because of its strong smell and taste of the beet, which makes it unattractive for consumption. Since recent investigations showed that sugar beet molasses can be used as a hypertonic solution in osmotic dehydration of different materials of plant and animal origin, the objective of this work was to review recently studied sugar beet molasses in terms of its applications in osmotic dehydrations of fruits and vegetables. Previous studies showed that sugar beet molasses is an excellent medium for osmotic dehydration of fruits and vegetables (apple, carrot, plum, etc. primarily due to a high content of dry matter (80%, w/w and specific nutrient content. An important advantage of using sugar beet molasses as a hypertonic solution is an enrichment of the dehydrated material in minerals and vitamins, which penetrate from molasses into the plant tissue. Concentration of sugar beet molasses solution and immersion time had the biggest influence on the process of osmotic dehydration of fruit and vegetables, while the temperature of the solution was the least influential parameter. The effect of immersion time on the kinetics of osmotic dehydration in sugar beet molasses increases with an increase in concentration of hypertonic solution. Fruit and vegetables dehydrated in sugar beet molasses had a higher dry matter content compared to samples treated in sucrose solutions. Besides, application of sugar beet molasses in osmotic dehydration of fruits and vegetables had some other advantages such as lower cost of molasses compared to sugar and its liquid aggregate

  9. A National Trial on Differences in Cerebral Perfusion Pressure Values by Measurement Location.

    Science.gov (United States)

    McNett, Molly M; Bader, Mary Kay; Livesay, Sarah; Yeager, Susan; Moran, Cristina; Barnes, Arianna; Harrison, Kimberly R; Olson, DaiWai M

    2018-04-01

    Cerebral perfusion pressure (CPP) is a key parameter in management of brain injury with suspected impaired cerebral autoregulation. CPP is calculated by subtracting intracranial pressure (ICP) from mean arterial pressure (MAP). Despite consensus on importance of CPP monitoring, substantial variations exist on anatomical reference points used to measure arterial MAP when calculating CPP. This study aimed to identify differences in CPP values based on measurement location when using phlebostatic axis (PA) or tragus (Tg) as anatomical reference points. The secondary study aim was to determine impact of differences on patient outcomes at discharge. This was a prospective, repeated measures, multi-site national trial. Adult ICU patients with neurological injury necessitating ICP and CPP monitoring were consecutively enrolled from seven sites. Daily MAP/ICP/CPP values were gathered with the arterial transducer at the PA, followed by the Tg as anatomical reference points. A total of 136 subjects were enrolled, resulting in 324 paired observations. There were significant differences for CPP when comparing values obtained at PA and Tg reference points (p Differences remained significant in repeated measures model when controlling for clinical factors (mean CPP-PA = 80.77, mean CPP-Tg = 70.61, p identified as adequate with PA values, yet inadequate with CPP values measured at the Tg. Findings identify numerical differences for CPP based on anatomical reference location and highlight importance of a standard reference point for both clinical practice and future trials to limit practice variations and heterogeneity of findings.

  10. Assessment of intraocular pressure in chinchillas of different age groups using rebound tonometry

    Directory of Open Access Journals (Sweden)

    Flor Diana Yokoay Claros Chacaltana

    2016-01-01

    Full Text Available ABSTRACT: The aim of this research was to measure the intraocular pressure (IOP of normal chinchilla eyes using the rebound tonometer. A further aim was to assess whether there were differences in the values of intraocular pressure in relation to animals age, gender and time of day. Thirty-six chinchillas were divided into three groups of 12 chinchillas each, by age: Group I (2-6-month-old, Group II (20 and 34 months and Group III (37 and 135 months. Ophthalmic examination was performed previously by Schirmer tear test, slit lamp biomicroscopy, indirect ophthalmoscopy and fluorescein test in all chinchillas. Three measurements of intraocular pressure were assessed on the same day (7, 12 and 19h. Tonometry was performed on both eyes using the rebound tonometer after calibration in "p" mode. Statistical analysis was performed with SigmaPlot for Windows. The mean IOP for groups I, II and III were 2.47±0.581mmHg, 2.47±0.581mmHg and 2.51±0.531mmHg, respectively. No significant differences were reported between age and IOP and no significant differences were reported between the time of day and IOP. The IOP in chinchillas did not differ significantly between genders or ages of the animals, and did not change with time of day.

  11. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    Science.gov (United States)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  12. Regulation of Aquaporin Z osmotic permeability in ABA tri-block copolymer

    Directory of Open Access Journals (Sweden)

    Wenyuan Xie

    2015-08-01

    Full Text Available Aquaporins are transmembrane water channel proteins present in biological plasma membranes that aid in biological water filtration processes by transporting water molecules through at high speeds, while selectively blocking out other kinds of solutes. Aquaporin Z incorporated biomimetic membranes are envisaged to overcome the problem of high pressure needed, and holds great potential for use in water purification processes, giving high flux while keeping energy consumption low. The functionality of aquaporin Z in terms of osmotic permeability might be regulated by factors such as pH, temperature, crosslinking and hydrophobic thickness of the reconstituted bilayers. Hence, we reconstituted aquaporin Z into vesicles that are made from a series of amphiphilic block copolymers PMOXA-PDMS-PMOXAs with various hydrophobic molecular weights. The osmotic permeability of aquaporin Z in these vesicles was determined through a stopped-flow spectroscopy. In addition, the temperature and pH value of the vesicle solutions were adjusted within wide ranges to investigate the regulation of osmotic permeability of aquaporin Z through external conditions. Our results show that aquaporin Z permeability was enhanced by hydrophobic mismatch. In addition, the water filtration mechanism of aquaporin Z is significantly affected by the concentration of H+ and OH- ions.

  13. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... is compared with measurements on PPy(DBS) films. The experiments show that the expansion decreases as the electrolyte concentration is increased. This means that a considerable part of the total expansion is due to the osmotic effect. The osmotic effect should be taken into account when interpreting...

  14. Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolium dicyanamide mixed with primary and secondary alcohols

    International Nuclear Information System (INIS)

    Calvar, Noelia; González, Emilio J.; Domínguez, Ángeles; Macedo, Eugénia A.

    2012-01-01

    Highlights: ► Physical and osmotic properties of binary mixtures {alcohol + [BMim][dca]} were measured. ► From experimental data, apparent molar properties and osmotic coefficients were calculated. ► The apparent properties were fitted using a Redlich–Meyer type equation. ► The osmotic coefficients were correlated using the Extended Pitzer and the MNRTL models. - Abstract: In this paper, densities and speeds of sound for five binary systems {alcohol + 1-butyl-3-methylimidazolium dicyanamide} were measured from T = (293.15 to 323.15) K and atmospheric pressure. From these experimental data, apparent molar volume and apparent molar isentropic compression have been calculated and fitted to a Redlich–Meyer type equation. This fit was also used to calculate the apparent molar volume and apparent molar isentropic compression at infinite dilution for the studied binary mixtures. Moreover, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The experimental osmotic coefficients were correlated using the Extended Pitzer model of Archer. The mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated from the parameters obtained in the correlation.

  15. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    Science.gov (United States)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  16. Interarm Difference in Blood Pressure: Reproducibility and Association with Peripheral Vascular Disease

    OpenAIRE

    Mehlsen, Jesper; Wiinberg, Niels

    2014-01-01

    The present study aimed at examining the interarm difference in blood pressure and its use as an indicator of peripheral arterial disease (PAD). Data were included from consecutive patients referred from their general practitioner to our vascular laboratory for possible PAD aged 50 years or older without known cardiac disease, renal disease, or diabetes mellitus. 824 patients (453 women) with mean age of 72 years (range: 50–101) were included. 491 patients had a diagnosi...

  17. Age-specific differences between conventional and ambulatory daytime blood pressure values

    DEFF Research Database (Denmark)

    Conen, David; Aeschbacher, Stefanie; Thijs, Lutgarde

    2014-01-01

    Mean daytime ambulatory blood pressure (BP) values are considered to be lower than conventional BP values, but data on this relation among younger individuals ... population-based cohorts. We compared individual differences between daytime ambulatory and conventional BP according to 10-year age categories. Age-specific prevalences of white coat and masked hypertension were calculated. Among individuals aged 18 to 30, 30 to 40, and 40 to 50 years, mean daytime BP...

  18. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    OpenAIRE

    Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu

    2015-01-01

    Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...

  19. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    Science.gov (United States)

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  20. Sex differences in step count-blood pressure association: a preliminary study in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Priya Manjoo

    Full Text Available BACKGROUND: Walking and cardiovascular mortality are inversely associated in type 2 diabetes, but few studies have objectively measured associations of walking with individual cardiovascular risk factors. Such information would be useful for "dosing" daily steps in clinical practice. This study aimed to quantify decrements in blood pressure and glycated hemoglobin (A1C per 1,000 daily step increments. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred and one subjects with type 2 diabetes underwent assessments of step counts (pedometer-measured, blood pressure, A1C and anthropometric parameters. Due to missing data, the final analysis was conducted on 83 women and 102 men, with a mean age of 60 years. Associations of daily steps with blood pressure and A1C were evaluated using sex-specific multivariate linear regression models (adjusted for age, ethnicity, and BMI. Potential sex differences were confirmed in a combined model (women and men with interaction terms. Mean values for daily steps, blood pressure, A1C and BMI were 5,357 steps/day; 137/80 mm Hg; 7.7% and 30.4 kg/m(2 respectively. A 1,000 daily step increment among women was associated with a -2.6 (95% CI: -4.1 to -1.1 mm Hg change in systolic and a -1.4 (95% CI: -2.2 to -0.6 mm Hg change in diastolic blood pressure. Among men, corresponding changes were -0.7 (95% CI: -2.1 to 0.7 and -0.6 (95% CI: -1.4 to 0.3 mm Hg, respectively. Sex differences were confirmed in combined models. Step counts and A1C did not demonstrate clinically important associations. CONCLUSIONS/SIGNIFICANCE: A 1,000 steps/day increment is associated with important blood pressure decrements among women with type 2 diabetes but the data were inconclusive among men. Targeted "dose increments" of 1,000 steps/day in women may lead to measurable blood pressure reductions. This information may be of potential use in the titration or "dosing" of daily steps. No associations were found between step count increments and A1C.

  1. Comparison of different screening methods for blood pressure disorders in children and adolescents

    Directory of Open Access Journals (Sweden)

    Felipe Alves Mourato

    2015-06-01

    Full Text Available OBJECTIVE: To compare different methods of screening for blood pressure disorders in children and adolescents. METHOD: A database with 17,083 medical records of patients from a pediatric cardiology clinic was used. After analyzing the inclusion and exclusion criteria, 5,650 were selected. These were divided into two age groups: between 5 and 13 years and between 13 and 18 years. The blood pressure measurement was classified as normal, pre-hypertensive, or hypertensive, consistent with recent guidelines and the selected screening methods. Sensitivity, specificity, and accuracy were then calculated according to gender and age range. RESULTS: The formulas proposed by Somu and Ardissino's table showed low sensitivity in identifying pre-hypertension in all age groups, whereas the table proposed by Kaelber showed the best results. The ratio between blood pressure and height showed low specificity in the younger age group, but showed good performance in adolescents. CONCLUSION: Screening tools used for the assessment of blood pressure disorders in children and adolescents may be useful to decrease the current rate of underdiagnosis of this condition. The table proposed by Kaelber showed the best results; however, the ratio between BP and height demonstrated specific advantages, as it does not require tables.

  2. Comparison of different screening methods for blood pressure disorders in children and adolescents.

    Science.gov (United States)

    Mourato, Felipe Alves; Lima Filho, José Luiz; Mattos, Sandra da Silva

    2015-01-01

    To compare different methods of screening for blood pressure disorders in children and adolescents. A database with 17,083 medical records of patients from a pediatric cardiology clinic was used. After analyzing the inclusion and exclusion criteria, 5,650 were selected. These were divided into two age groups: between 5 and 13 years and between 13 and 18 years. The blood pressure measurement was classified as normal, pre-hypertensive, or hypertensive, consistent with recent guidelines and the selected screening methods. Sensitivity, specificity, and accuracy were then calculated according to gender and age range. The formulas proposed by Somu and Ardissino's table showed low sensitivity in identifying pre-hypertension in all age groups, whereas the table proposed by Kaelber showed the best results. The ratio between blood pressure and height showed low specificity in the younger age group, but showed good performance in adolescents. Screening tools used for the assessment of blood pressure disorders in children and adolescents may be useful to decrease the current rate of underdiagnosis of this condition. The table proposed by Kaelber showed the best results; however, the ratio between BP and height demonstrated specific advantages, as it does not require tables. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  3. Low-pressure glow discharges with oscillating electrons in different electrode systems

    International Nuclear Information System (INIS)

    Bersenev, V.V.; Gavriolv, N.V.; Nikulin, S.P.

    1995-01-01

    One of the main applications of low - pressure glow discharges is the development on their basis of charged - particle beam sources. The use of glow discharges with oscillating electrons, which can operate stably in the voltage and pressure range to the left of the left branch of Pashen's curve, shows promise, because the decrease in critical pressure p 0 , below which the discharge operation becomes impossible, in the discharge system of a source promotes an increase in the electrical strength of its accelerating system. This, in its turn, makes possible the expansion of the operation range of accelerating voltages. This experimental investigation of glow discharges in such well - known systems with oscillating electrons, as Hollow Cathode (HC), Penning's System (PS) and Inverse Magnetron (IM), is aimed at revealing the system operating at the lowest pressure. Besides, both common features and peculiarities of discharge operation in these systems are discussed. Though there is an extensive amount of published information covering all the specified discharges, the carrying out of such investigation is justified, since a comparative analysis of results obtained by different authors is hampered by various conditions of their experiments

  4. Hemodynamic differences between continual positive and two types of negative pressure ventilation.

    Science.gov (United States)

    Lockhat, D; Langleben, D; Zidulka, A

    1992-09-01

    In seven anesthetized dogs, ventilated with matching lung volumes, tidal volumes, and respiratory rates, we compared the effects on cardiac output (CO), arterial venous oxygen saturation difference (SaO2 - SVO2), and femoral and inferior vena cava pressure (1) intermittent positive pressure ventilation with positive end-expiratory pressure (CPPV); (2) iron-lung ventilation with negative end-expiratory pressure (ILV-NEEP); (3) grid and wrap ventilation with NEEP applied to the thorax and upper abdomen (G&W-NEEP). The values of CO and SaO2 - SVO2 with ILV-NEEP were similar to those with CPPV. However, with G&W-NEEP as compared with ILV-NEEP, mean CO was greater (2.9 versus 2.6 L/min, p = 0.02) and mean (SaO2 - SVO2) was lower (26.6% versus 28.3%, p = NS). Mean PFEM-IVC was higher with G&W-NEEP than with the other types of ventilation. We conclude that (1) ILV-NEEP is hemodynamically equivalent to CPPV and (2) G&W-NEEP has less adverse hemodynamic consequences. has less adverse hemodynamic consequences.

  5. Effect of different pneumoperitoneum pressure on stress state in patients underwent gynecological laparoscopy

    Directory of Open Access Journals (Sweden)

    Ai-Yun Shen

    2016-10-01

    Full Text Available Objective: To observe the effect of different CO2 pneumoperitoneum pressure on the stress state in patients underwent gynecological laparoscopy. Methods: A total of 90 patients who were admitted in our hospital from February, 2015 to October, 2015 for gynecological laparoscopy were included in the study and divided into groups A, B, and C according to different CO2 pneumoperitoneum pressure. The changes of HR, BP, and PetCO2 during the operation process in the three groups were recorded. The changes of stress indicators before operation (T0, 30 min during operation (T1, and 12 h after operation (T2 were compared. Results: The difference of HR, BP, and PetCO2 levels before operation among the three groups was not statistically significant (P>0.05. HR, BP, and PetCO2 levels 30 min after pneumoperitoneum were significantly elevated when compared with before operation (P0.05. PetCO2 level 30 min after pneumoperitoneum in group B was significantly higher than that in group A (P0.05. Conclusions: Low pneumoperitoneum pressure has a small effect on the stress state in patients underwent gynecological laparoscopy, will not affect the surgical operation, and can obtain a preferable muscular relaxation and vision field; therefore, it can be selected in preference.

  6. Literature investigation of air/steam ingress through small cracks in concrete wall under pressure differences

    International Nuclear Information System (INIS)

    Jiang, J.T.

    2008-01-01

    Traditionally within CANDU safety analysis, a loss coefficient of ∼2.8 is used to characterize turbulent flow leakage through narrow, sharp-edged cracks into, and out of Steam Protected Rooms (SPRs). In the event of main steam line break (MSLB), the pressure differences observed between SPRs and the surrounding area of the powerhouse range from 0.01kPa to 0.1 kPa. The relatively low pressure differences, coupled with narrow crack sizes, for instance, below 1 mm, may result in laminar flow leakage pathways as opposed to the turbulent variety assumed in analysis. The main purpose of this paper is thus (a) to calculate the loss coefficient for laminar flow through small cracks; and (b) to assess the effect of steam ingress to SPRs when the flow through some or all of the room leakage area is assumed to be laminar. Based on the literature review, the loss coefficient for laminar flow, through 1 mm crack size at 0.1 kPa pressure difference, ranges from 10 to about 65. This value represents an increase in loss coefficient of 3 ∼ 22 times the loss coefficient used for SPR safety analysis. The actual volumetric leakage rate is therefore 3 ∼ 8 times smaller than the amount previously applied. This paper demonstrates how the traditional loss coefficient used in safety analysis is extremely conservative in the analysis of the SPRs steam ingress phenomenon. (author)

  7. Literature investigation of air/steam ingress through small cracks in concrete wall under pressure differences

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.T. [McMaster Univ., Engineering Physics Dept., Hamilton, Ontario (Canada)], E-mail: jiangj3@mcmaster.ca

    2008-07-01

    Traditionally within CANDU safety analysis, a loss coefficient of {approx}2.8 is used to characterize turbulent flow leakage through narrow, sharp-edged cracks into, and out of Steam Protected Rooms (SPRs). In the event of main steam line break (MSLB), the pressure differences observed between SPRs and the surrounding area of the powerhouse range from 0.01kPa to 0.1 kPa. The relatively low pressure differences, coupled with narrow crack sizes, for instance, below 1 mm, may result in laminar flow leakage pathways as opposed to the turbulent variety assumed in analysis. The main purpose of this paper is thus (a) to calculate the loss coefficient for laminar flow through small cracks; and (b) to assess the effect of steam ingress to SPRs when the flow through some or all of the room leakage area is assumed to be laminar. Based on the literature review, the loss coefficient for laminar flow, through 1 mm crack size at 0.1 kPa pressure difference, ranges from 10 to about 65. This value represents an increase in loss coefficient of 3 {approx} 22 times the loss coefficient used for SPR safety analysis. The actual volumetric leakage rate is therefore 3 {approx} 8 times smaller than the amount previously applied. This paper demonstrates how the traditional loss coefficient used in safety analysis is extremely conservative in the analysis of the SPRs steam ingress phenomenon. (author)

  8. Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application

    Science.gov (United States)

    Mondal, A.; Shit, G. C.

    2017-11-01

    In this paper, we have examined the motion of magnetic-nanoparticles and the flow characteristics of biofluid in a micro-tube in the presence of externally applied magnetic field and electrokinetic effects. In the drug delivery system, the motion of the magnetic nanoparticles as carriers is important for therapeutic procedure in the treatment of tumor cells, infections and removing blood clots. The unidirectional electro-osmotic flow of biofluid is driven by the combined effects of pulsatile pressure gradient and electrokinetic force. The governing equation for unsteady electromagnetohydrodynamic flow subject to the no-slip boundary condition has been solved numerically by using Crank-Nicolson implicit finite difference scheme. We have analyzed the variation of axial velocity, velocity distribution of magnetic nanoparticles, volumetric flow rate and wall shear stress for various values of the non-dimensional parameters. The study reveals that blood flow velocity, carriers velocity and flow rate are strongly influenced by the electro-osmotic parameter as well as the Hartmann number. The particle mass parameter as well as the particle concentration parameter have efficient capturing effect on magnetic nanoparticles during blood flow through a micro-tube for drug delivery.

  9. Relationships between phenotypic variation in osmotic adjustment, water-use efficiency, and drought tolerance of seven cultivars of Lotus corniculatus L.

    Directory of Open Access Journals (Sweden)

    Luis Inostroza

    2015-03-01

    Full Text Available Lotus corniculatus L. is a perennial forage legume species highly-adapted to growth under drought conditions. However, the genetic and physiological mechanisms involved in its adaptive capacity have not been elucidated. The role of osmotic adjustment (OA and water-use efficiency (WUE on the drought tolerance of L. corniculatus was studied in a greenhouse experiment. Seven cultivars of different origin were subjected to two contrasting treatments of available soil water: No water stress (NWS and with water stress (WWS. Xylem water potential (Ψx, osmotic potential (Ψπ, pressure potential (Ψp, relative water content (RWC, stomatal conductance (g s, shoot DM production, water transpiration (T, and WUE (shoot DM/T were measured. Water treatments significantly (P < 0.05 affected plant water status, which was reflected in reduced Ψx, RWC, g s, and transpiration rate in the WWS treatment compared with the NWS treatment. All cultivars showed a high capacity for OA under WWS treatment because Ψπ decreased by approximately 60% and Ψp increased by approximately 30%, compared with the NWS treatment. Cultivars with a higher solute accumulation (low Ψπ value had the lowest DM production under WWS treatment. In contrast, WUE varied greatly among cultivars and was positively associated (R² = 0.88; P < 0.01 with DM production under drought conditions.

  10. The indentation of pressurized elastic shells: from polymeric capsules to yeast cells

    KAUST Repository

    Vella, D.

    2011-08-10

    Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker\\'s yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium.

  11. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions

    Directory of Open Access Journals (Sweden)

    Joanna Cichowska

    2018-02-01

    Full Text Available The present study aimed to evaluate the influence of selected compounds from the polyol group, as well as other saccharides, on the osmotic dehydration process of apples. The following alternative solutions were examined: erythritol, xylitol, maltitol, inulin and oligofructose. Efficiency of the osmotic dehydration process was evaluated based on the kinetics of the process, and through comparison of the results obtained during the application of a sucrose solution. This innovative research utilizes alternative solutions in osmotic pretreatment, which until now, have not been commonly used in fruit processing by researchers worldwide. Results indicate that erythritol and xylitol show stronger or similar efficiency to sucrose; however, the use of inulin, as well as oligofructose, was not satisfactory due to the insufficient, small osmotic driving forces of the process, and the low values of mass transfer parameters.

  12. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions.

    Science.gov (United States)

    Cichowska, Joanna; Żubernik, Joanna; Czyżewski, Jakub; Kowalska, Hanna; Witrowa-Rajchert, Dorota

    2018-02-17

    The present study aimed to evaluate the influence of selected compounds from the polyol group, as well as other saccharides, on the osmotic dehydration process of apples. The following alternative solutions were examined: erythritol, xylitol, maltitol, inulin and oligofructose. Efficiency of the osmotic dehydration process was evaluated based on the kinetics of the process, and through comparison of the results obtained during the application of a sucrose solution. This innovative research utilizes alternative solutions in osmotic pretreatment, which until now, have not been commonly used in fruit processing by researchers worldwide. Results indicate that erythritol and xylitol show stronger or similar efficiency to sucrose; however, the use of inulin, as well as oligofructose, was not satisfactory due to the insufficient, small osmotic driving forces of the process, and the low values of mass transfer parameters.

  13. Method of osmotic energy harvesting using responsive compounds and molecules

    KAUST Repository

    Hu, Xiao; Cai, Yufeng; Lai, Zhiping; Zhong, Yujiang

    2017-01-01

    The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli

  14. Plant response to sunflower seeds to osmotic conditioning

    Directory of Open Access Journals (Sweden)

    Camila Santos Barros de Morais

    2014-10-01

    Full Text Available The aim of this study was to evaluate the effect of seeds osmotic conditioning in seedlings emergence and plants performance of sunflower. Three lots of seeds sunflower (Catissol, was submited to osmotic conditioning with polyethylene glycol solution, –2,0 MPa in aerated system, under 15 ºC for 8 hour and then was evaluated for germination tests and vigour. Under filed conditions was conducted emergency evaluations of seedling, plants development as well as the productivity and seeds quality, and the accumulation of nutrients in the seeds. The osmotic conditioning improve the survival of seedling, the dry matter mass to aerial part of plants from 60 days after sowing and oil content, in lots with low seeds physiological quality. The osmotic conditioning not increase the seeds yield but promotes the vigour of seeds produced, regardless of the lot used for sowing seeds.

  15. A physiological evaluation of the enhanced osmotic stress tolerance ...

    African Journals Online (AJOL)

    ELO

    2012-01-05

    Jan 5, 2012 ... SR3 and Jinan 177 were hydroponically subjected to osmotic stress, the accumulation of proline .... hydroponically in half strength Hoagland's solution for three weeks ..... ascrobate specific peroxidase in spinach chloroplasts.

  16. Method of osmotic energy harvesting using responsive compounds and molecules

    KAUST Repository

    Hu, Xiao

    2017-07-27

    The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli responsive draw solutions that are competent in terms of energy production, geographic location flexibility, and the affordable, efficient and economical production and delivery of osmotic power. Specifically, the present invention is a novel osmotic power system that uses stimuli responsive draw solutions, economically feasible larger permeable membranes, and low grade heat sources to deliver osmotic power more efficiently and economically with less negative environmental impact, greater power output, and located in more geographically diverse areas of the world than previously thought possible for supporting such a power source.

  17. The effect of different depths of medial heel skive on plantar pressures

    Directory of Open Access Journals (Sweden)

    Bonanno Daniel R

    2012-08-01

    Full Text Available Abstract Background Foot orthoses are often used to treat lower limb injuries associated with excessive pronation. There are many orthotic modifications available for this purpose, with one being the medial heel skive. However, empirical evidence for the mechanical effects of the medial heel skive modification is limited. This study aimed to evaluate the effect that different depths of medial heel skive have on plantar pressures. Methods Thirty healthy adults (mean age 24 years, range 18–46 with a flat-arched or pronated foot posture and no current foot pain or deformity participated in this study. Using the in-shoe pedar-X® system, plantar pressure data were collected for the rearfoot, midfoot and forefoot while participants walked along an 8 metre walkway wearing a standardised shoe. Experimental conditions included a customised foot orthosis with the following 4 orthotic modifications: (i no medial heel skive, (ii a 2 mm medial heel skive, (iii a 4 mm medial heel skive and (iv a 6 mm medial heel skive. Results Compared to the foot orthosis with no medial heel skive, statistically significant increases in peak pressure were observed at the medial rearfoot – there was a 15% increase (p = 0.001 with the 4 mm skive and a 29% increase (p  Conclusions This study found that a medial heel skive of 4 mm or 6 mm increases peak pressure under the medial rearfoot in asymptomatic adults with a flat-arched or pronated foot posture. Plantar pressures at the midfoot and forefoot were not altered by a medial heel skive of 2, 4 or 6 mm. These findings provide some evidence for the effects of the medial heel skive orthotic modification.

  18. Analysis of French (Paluel) pressurized water reactor design differences compared to current US PWR designs

    International Nuclear Information System (INIS)

    1986-05-01

    To understand better the regulatory approaches to reactor safety in foreign countries, the staff of the Nuclear Regulatory Commisssion has reviewed design information on the Paluel nuclear power plant, one of the current standard 1300-MWe plant operating in France. This report provides the staff's evaluation of major design differences between this standardized French plant and current US pressurized water reactor plants, as well as insights concerning French regulatory practices. The staff identified approximately 25 design differences, and an analysis of the safety significance of each of these design features is presented, along with an assessment comparing the relative safety benefit of each

  19. ZnO nanorod arrays grown under different pressures and their photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xiuqing [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China)]. E-mail: dxzhao2000@yahoo.com.cn; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Li Binghui [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Wang Xiaohua [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and technology, 7089 Weixing Road Changchun (China); Fan Xiwu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China)

    2007-01-15

    The ZnO nanorod arrays were synthesized via a simple vapor deposition method on Si (1 1 1) substrates at a low growth temperature of 520 deg. C. By selecting different source materials under different growth pressures, well-aligned hexagonal-shaped ZnO nanorod arrays were obtained under both conditions. X-ray diffraction (XRD) analysis confirmed the nanorods are c-axis orientated. Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) analyses show the superior optical properties of the nanorod arrays.

  20. ZnO nanorod arrays grown under different pressures and their photoluminescence properties

    International Nuclear Information System (INIS)

    Meng Xiuqing; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Li Binghui; Wang Xiaohua; Fan Xiwu

    2007-01-01

    The ZnO nanorod arrays were synthesized via a simple vapor deposition method on Si (1 1 1) substrates at a low growth temperature of 520 deg. C. By selecting different source materials under different growth pressures, well-aligned hexagonal-shaped ZnO nanorod arrays were obtained under both conditions. X-ray diffraction (XRD) analysis confirmed the nanorods are c-axis orientated. Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) analyses show the superior optical properties of the nanorod arrays

  1. Biophysical characterization of the Lactobacillus delbrueckii subsp. bulgaricus membrane during cold and osmotic stress and its relevance for cryopreservation.

    Science.gov (United States)

    Meneghel, Julie; Passot, Stéphanie; Dupont, Sébastien; Fonseca, Fernanda

    2017-02-01

    Freezing lactic acid bacteria often leads to cell death and loss of technological properties. Our objective was to provide an in-depth characterization of the biophysical properties of the Lactobacillus delbrueckii subsp. bulgaricus membrane in relation to its freeze resistance. Freezing was represented as a combination of cold and osmotic stress. This work investigated the relative incidence of increasing sucrose concentrations coupled or not with subzero temperatures without ice nucleation on the biological and biophysical responses of two strains with different membrane fatty acid compositions and freeze resistances. Following exposure of bacterial cells to the highest sucrose concentration, the sensitive strain exhibited a survival rate of less than 10 % and 5 h of acidifying activity loss. Similar biological activity losses were observed upon freeze-thawing and after osmotic treatment for each strain thus highlighting osmotic stress as the main source of cryoinjury. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to membrane lipid organization characterized by FTIR spectroscopy. Both approaches made it possible to investigate the specific contributions of the membrane core and the bilayer external surface to cell degradation caused by cold and osmotic stress. Cold-induced membrane rigidification had no significant implication on bacterial freeze-thaw resistance. Interactions between extracellular sucrose and membrane phospholipid headgroups under osmotic stress were also observed. Such interactions were more evident in the sensitive strain and when increasing sucrose concentration, thus suggesting membrane permeabilization. The relevance of biophysical properties for elucidating mechanisms of cryoinjury and cryoprotection is discussed.

  2. Inter-arm blood pressure difference in hospitalized elderly patients--is it consistent?

    Science.gov (United States)

    Grossman, Alon; Weiss, Avraham; Beloosesky, Yichayaou; Morag-Koren, Nira; Green, Hefziba; Grossman, Ehud

    2014-07-01

    Inter-arm blood pressure difference (IAD) is recognized as a risk factor for cardiovascular mortality. Its reproducibility in the elderly is unknown. The authors determined the prevalence and reproducibility of IAD in hospitalized elderly patients. Blood pressure was measured simultaneously in both arms on two different days in elderly individuals hospitalized in a geriatric ward. The study included 364 elderly patients (mean age, 85±5 years). Eighty-four patients (23%) had systolic IAD >10 and 62 patients (17%) had diastolic IAD >10 mm Hg. A total of 319 patients had two blood pressure measurements. Systolic and diastolic IAD remained in the same category in 203 (64%) and 231 (72%) patients, respectively. Correlations of systolic and diastolic IAD between the two measurements were poor. Consistency was not affected by age, body mass index, comorbidities, or treatment. IAD is extremely common in hospitalized elderly patients, but, because of poor consistency, its clinical significance in this population is uncertain. ©2014 Wiley Periodicals, Inc.

  3. A discussion of hyperbolicity in CATHENA 4. Virtual mass and phase-to-interface pressure differences

    International Nuclear Information System (INIS)

    Aydemir, Nusret U.

    2012-01-01

    It is well known that the one-dimensional equations of motion for two-phase flow are non-hyperbolic. Non-hyperbolicity can lead to numerical instabilities, destroying the solution. However, researchers in the last few decades were able to show that inclusion of virtual mass and/or phase-to-interface pressure differences in the momentum equations successfully render the equations of motion hyperbolic. In the present paper, the effect of including virtual mass and phase-to-interface pressure terms in the momentum equations on the hyperbolicity of the two-phase model in the CATHENA 4 code is discussed. The study is motivated by the fact that the inclusion of either model has been shown in the open literature to lead to a hyperbolic system separately. However, no known study exists that examine hyperbolicity in the presence of both these terms in the momentum equations. In this work, both terms are considered in the model equations simultaneously and their implications on the hyperbolicity of the two-phase model are discussed. Specifically, it is shown that in the case of mixed flow, there is a distinct region of non-hyperbolicity that developers need to be aware of when their equations include both the virtual mass and the phase-to-interface terms. Selecting the coefficients of phase-to-interface pressure difference terms properly ensures that the equations are hyperbolic for a wide range of conditions. (orig.)

  4. Mean Blood Pressure Assessment during Post-Exercise: Result from Two Different Methods of Calculation

    Directory of Open Access Journals (Sweden)

    Gianmarco Sainas, Raffaele Milia, Girolamo Palazzolo, Gianfranco Ibba, Elisabetta Marongiu, Silvana Roberto, Virginia Pinna, Giovanna Ghiani, Filippo Tocco, Antonio Crisafulli

    2016-09-01

    Full Text Available At rest the proportion between systolic and diastolic periods of the cardiac cycle is about 1/3 and 2/3 respectively. Therefore, mean blood pressure (MBP is usually calculated with a standard formula (SF as follows: MBP = diastolic blood pressure (DBP + 1/3 [systolic blood pressure (SBP – DBP]. However, during exercise this proportion is lost because of tachycardia, which shortens diastole more than systole. We analysed the difference in MBP calculation between the SF and a corrected formula (CF which takes into account changes in the diastolic and systolic periods caused by exercise-induced tachycardia. Our hypothesis was that the SF potentially induce a systematic error in MBP assessment during recovery after exercise. Ten healthy males underwent two exercise-recovery tests on a cycle-ergometer at mild-moderate and moderate-heavy workloads. Hemodynamics and MBP were monitored for 30 minutes after exercise bouts. The main result was that the SF on average underestimated MBP by –4.1 mmHg with respect to the CF. Moreover, in the period immediately after exercise, when sustained tachycardia occurred, the difference between SF and CF was large (in the order of -20-30 mmHg. Likewise, a systematic error in systemic vascular resistance assessment was present. It was concluded that the SF introduces a substantial error in MBP estimation in the period immediately following effort. This equation should not be used in this situation.

  5. Osmotic and activity coefficients in the binary solutions of 1-butyl-3-methylimidazolium chloride and bromide in methanol or ethanol at T = 298.15 K from isopiestic measurements

    International Nuclear Information System (INIS)

    Sardroodi, Jaber Jahanbin; Azamat, Jafar; Atabay, Maryam

    2011-01-01

    Highlights: → The osmotic coefficients of the solutions of 1-butyl-3-methylimidazolium chloride and bromide in ethanol and methanol have been measured. → Measured osmotic coefficients were correlated using NRTL and Pitzer models. → Vapor pressures were evaluated from the correlated osmotic coefficients. → Model parameters have been interpreted in terms of ion-ion and ion-solvent interactions. - Abstract: Osmotic coefficients of the binary solutions of two room-temperature ionic liquids (1-butyl-3-methylimidazolium chloride and bromide) in methanol and ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficient data have been correlated using a forth-order polynomial in terms of (molality) 0.5 , with both, ion interaction model of Pitzer and electrolyte non-random two liquid (e-NRTL) model of Chen. The values of vapor pressures of above-mentioned solutions have been calculated from the osmotic coefficients. The model parameters fitted to the experimental osmotic coefficients have been used for prediction of the mean ionic activity coefficients of those ionic liquids in methanol and ethanol.

  6. Osmotic and stimulant laxatives for the management of childhood constipation

    OpenAIRE

    Gordon, Morris; Macdonald, John; Parker, Claire; Akobeng, Anthony; Thomas, Adrian

    2016-01-01

    Background\\ud \\ud Constipation within childhood is an extremely common problem. Despite the widespread use of osmotic and stimulant laxatives by health professionals to manage constipation in children, there has been a long standing paucity of high quality evidence to support this practice.\\ud \\ud \\ud Objectives\\ud \\ud We set out to evaluate the efficacy and safety of osmotic and stimulant laxatives used to treat functional childhood constipation.\\ud \\ud \\ud Search methods\\ud \\ud We searched ...

  7. Association of Interarm Systolic Blood Pressure Difference with Atherosclerosis and Left Ventricular Hypertrophy

    Science.gov (United States)

    Su, Ho-Ming; Lin, Tsung-Hsien; Hsu, Po-Chao; Chu, Chun-Yuan; Lee, Wen-Hsien; Chen, Szu-Chia; Lee, Chee-Siong; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2012-01-01

    An interarm systolic blood pressure (SBP) difference of 10 mmHg or more have been associated with peripheral artery disease and adverse cardiovascular outcomes. We investigated whether an association exists between this difference and ankle-brachial index (ABI), brachial-ankle pulse wave velocity (baPWV), and echocardiographic parameters. A total of 1120 patients were included in the study. The bilateral arm blood pressures were measured simultaneously by an ABI-form device. The values of ABI and baPWV were also obtained from the same device. Clinical data, ABIdifference ≥10 mmHg were compared and analyzed. We performed two multivariate forward analyses for determining the factors associated with an interarm SBP difference ≥10 mmHg [model 1: significant variables in univariate analysis except left ventricular mass index (LVMI); model 2: significant variables in univariate analysis except ABIdifference ≥10 mmHg. Female, hypertension, and high body mass index were also associated with an interarm SBP difference ≥10 mmHg. Our study demonstrated that ABIdifference of 10 mmHg or more. Detection of an interarm SBP difference may provide a simple method of detecting patients at increased risk of atherosclerosis and left ventricular hypertrophy. PMID:22927905

  8. Effects of different block size distributions in pressure transient response of naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, G.H. [Islamic Azad University, Mahshahr (Iran, Islamic Republic of). Dept. of Chemical and Petroleum Engineering], E-mail: montazeri_gh@yahoo.com; Tahami, S.A. [Mad Daneshgostar Tabnak Co. (MDT),Tehran (Iran, Islamic Republic of); Moradi, B.; Safari, E. [Iranian Central Oil Fields Co, Tehran (Iran, Islamic Republic of)], E-mail: morady.babak@gmail.com

    2011-07-15

    This paper presents a model for pressure transient and derivative analysis for naturally fractured reservoirs by a formulation of inter porosity flow incorporating variations in matrix block size, which is inversely related to fracture intensity. Geologically realistic Probability Density Functions (PDFs) of matrix block size, such as uniform, bimodal, linear and exponential distributions, are examined and pseudo-steady-state and transient models for inter porosity flow are assumed. The results have been physically interpreted, and, despite results obtained by other authors, it was found that the shape of pressure derivative curves for different PDFs are basically identical within some ranges of block size variability, inter porosity skin, PDFs parameters and matrix storage capacity. This tool can give an insight on the distribution of block sizes and shapes, together with other sources of information such as Logs and geological observations. (author)

  9. Clam bioaccumulation of Alkylphenols and Polyciclic aromatic hydrocarbons in the Venice lagoon under different pressures.

    Science.gov (United States)

    Ademollo, N; Patrolecco, L; Matozzo, V; Marin, M G; Valsecchi, S; Polesello, S

    2017-11-15

    Biota-Sediment Accumulation Factors (BSAFs) of nonylphenols (NPs) and polycyclic aromatic hydrocarbons (PAHs) in Ruditapes philippinarum from the Venice Lagoon (Italy) were determined with the aim to verify whether the routine biomonitoring studies are reliable in contaminated sites. Clams and sediments were collected in field campaigns (October 2003 to June 2004) in three sites of the Venice Lagoon. Results showed that Marghera and Campalto sediments were more contaminated by NPs and PAHs than Poveglia. Different trends were observed in the contamination of clams with the highest BSAFs found at Poveglia. BSAF trend appeared to be inversely related to the contaminant pressure on the sites. These results suggest that clam bioaccumulation is not always representative of the chemical pressure on aquatic biota. The direct correlation between sediment and biota concentrations in contaminated sites can be lost as a function of the site-specific conditions such as sediment toxicity and food availability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    Science.gov (United States)

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.

  11. Aging attenuates the interarm diastolic blood pressure difference induced by one-arm exercise.

    Science.gov (United States)

    Hu, Wei-tong; Li, Ju-xiang; Wang, Ji-wei; Xu, Jin-song; Yang, Qing; Geng, Yong-Jian; Su, Hai; Cheng, Xiao-shu

    2013-04-01

    It is known that one-arm exercise increases the interarm diastolic blood pressure difference (dIAD) in young individuals, but no research has been carried out in middle-aged and more senior populations. This study aimed to determine whether aging impacts the exercise-induced dIAD in healthy individuals. Normotensive adults (n=120) were recruited and divided into the young (22.5±1.5 years), middle-aged (42.8±4.6 years), and senior (61.0±7.0 years) groups. The right arm exercise involved performing cycling movements at 60 times/min for 3 min. Bilateral brachial blood pressures (BPs) were simultaneously measured using two automatic BP measurement devices before (baseline), immediately (0), 5, 10, and 15 min after the exercise. The difference in bilateral diastolic BPs was calculated as BP l-r and its absolute value of at least 10 mmHg was considered as IAD. At baseline, the systolic blood pressure (SBP) l-r and diastolic blood pressure (DBP) l-r were similar in three age groups. One-arm exercise induced a marked decrease in DBP in the exercised arm, and then increased the prevalence of DBP l-r and dIAD in the three age groups in an age-dependent manner. The prevalence of dIAD increased from the baseline of zero to 85% at 0 min in young, 37% in middle-aged, and 30% in senior groups. One-arm exercise did not significantly alter the prevalence of SBP l-r and systolic IAD in the three groups. A reverse correlation was found between the DBP l-r 0 and ages (r=-0.359, Parm exercise in healthy adults.

  12. Assessment of plantar pressure in forefoot relief shoes of different designs.

    Science.gov (United States)

    Carl, Hans-Dieter; Pfander, David; Swoboda, Bernd

    2006-02-01

    After reconstructive forefoot surgery, patients require complete or partial forefoot relief, which can be obtained with a variety of shoe designs. The aim of this study was to evaluate the effectiveness of two different types of forefoot-relief shoes frequently used after surgery, especially their safety against unintentional forefoot load. Ten healthy volunteers were asked to perform five trials on a treadmill at self-selected speeds. In the first trial, mean peak pressure values in mass-produced shoes and insoles were evaluated and considered as 100%. Two different shoe designs (short heel-short sole, ii: short heel-complete sole) were compared in two trials each with appropriate and inappropriate use (attempting to put weight on the forefoot) gait pattern. Plantar pressure values were obtained using the Pedar cable system (Novel Inc., Munich, Germany). For analysis, pedobarographic pictures were subdivided into midfoot (31% to 60% of the total insole length) and forefoot (61% to 100% of the total insole length). ANOVA was used for statistical analysis, and p values less than 0.01 were considered significant. With the short-soled shoe, forefoot and midfoot relief was 100% in both compliant and in noncompliant use. With wearing a complete sole, compliant use led to a significant reduction (p shoe produced mean peak pressure values significantly higher (p shoes under the forefoot, but not under the midfoot. Forefoot-relief shoes are effective in reducing both mean and peak plantar pressures. Shoes with a nonsupported midfoot and forefoot may be safer with inappropriate use than shoes with a complete sole. The kind of forefoot shoe should be carefully chosen to regulate weightbearing after reconstructive forefoot surgery.

  13. Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress.

    Directory of Open Access Journals (Sweden)

    Elzbieta Petelenz-Kurdziel

    Full Text Available We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2 and glycerol import (Stl1 and activates a regulatory enzyme in glycolysis (Pfk26/27. In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the

  14. Different systolic blood pressure targets for people with history of stroke or transient ischaemic attack: PAST-BP (Prevention After Stroke—Blood Pressure) randomised controlled trial

    Science.gov (United States)

    McManus, Richard J; Roalfe, Andrea; Fletcher, Kate; Taylor, Clare J; Martin, Una; Virdee, Satnam; Greenfield, Sheila; Hobbs, F D Richard

    2016-01-01

    Objective To assess whether using intensive blood pressure targets leads to lower blood pressure in a community population of people with prevalent cerebrovascular disease. Design Open label randomised controlled trial. Setting 99 general practices in England, with participants recruited in 2009-11. Participants People with a history of stroke or transient ischaemic attack whose systolic blood pressure was 125 mm Hg or above. Interventions Intensive systolic blood pressure target (different target, patients in both arms were actively managed in the same way with regular reviews by the primary care team. Main outcome measure Change in systolic blood pressure between baseline and 12 months. Results 529 patients (mean age 72) were enrolled, 266 to the intensive target arm and 263 to the standard target arm, of whom 379 were included in the primary analysis (182 (68%) intensive arm; 197 (75%) standard arm). 84 patients withdrew from the study during the follow-up period (52 intensive arm; 32 standard arm). Mean systolic blood pressure dropped by 16.1 mm Hg to 127.4 mm Hg in the intensive target arm and by 12.8 mm Hg to 129.4 mm Hg in the standard arm (difference between groups 2.9 (95% confidence interval 0.2 to 5.7) mm Hg; P=0.03). Conclusions Aiming for target below 130 mm Hg rather than 140 mm Hg for systolic blood pressure in people with cerebrovascular disease in primary care led to a small additional reduction in blood pressure. Active management of systolic blood pressure in this population using a blood pressure. Trial registration Current Controlled Trials ISRCTN29062286. PMID:26919870

  15. Inter-arm Differences in Simultaneous Blood Pressure Measurements in Ambulatory Patients without Cardiovascular Diseases.

    Science.gov (United States)

    Kim, Kyoung Bog; Oh, Mi Kyeong; Kim, Haa Gyoung; Ki, Ji Hoon; Lee, Soo Hee; Kim, Su Min

    2013-03-01

    It has traditionally been known that there is normally a difference in blood pressure (BP) between the two arms; there is at least 20 mm Hg difference in the systolic blood pressure (SBP) and 10 mm Hg difference in the diastolic blood pressure (DBP). However, recent epidemiologic studies have shown that there are between-arm differences of arm differences in simultaneous BP measurements obtained from ambulatory patients without cardiovascular diseases and to identify the factors associated these differences. We examined 464 patients who visited the outpatient clinic of Gangneung Asan Hospital clinical department. For the current analysis, we excluded patients with ischemic heart disease, stroke, arrhythmia, congestive heart failure, or hyperthyroidism. Simultaneous BP measurements were obtained using the Omron MX3 BP monitor in both arms. The inter-arm difference (IAD) in BP was expressed as the relative difference (right-arm BP [R] minus left-arm BP [L]: R - L) and the absolute difference (|R - L|). The mean absolute IAD in SBP and DBP were 3.19 ± 2.38 and 2.41 ± 1.59 mm Hg, respectively, in men and 2.61 ± 2.18 and 2.25 ± 2.01 mm Hg, respectively, in women. In men, there were 83.8% of patients with the IAD in SBP of ≤ 6 mm Hg, 98.1% with the IAD in SBP of ≤ 10 mm Hg, 96.5% with the IAD in DBP of ≤ 6 mm Hg and 0% with the IAD in DBP of > 10 mm Hg. In women, 89.6% of patients had IAD in SBP of ≤ 6 mm Hg, 92.1% with IAD in DBP of ≤ 6 mm Hg, and 0% with IAD in SBP of > 10 mm Hg or IAD in DBP of > 10 mm Hg. Gangneung Asan Hospital clinical series of patients showed that the absolute IAD in SBP had a significant correlation with cardiovascular risk factors such as the 10-year Framingham cardiac risk scores and higher BP in men and higher BP in women. However, the absolute IAD in SBP and DBP had no significant correlation with the age, obesity, smoking, drinking, hyperlipidemia, diabetes, metabolic syndrome, and renal function. Our results showed that there

  16. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  17. Emergence of ethnic differences in blood pressure in adolescence: the determinants of adolescent social well-being and health study.

    Science.gov (United States)

    Harding, Seeromanie; Whitrow, Melissa; Lenguerrand, Erik; Maynard, Maria; Teyhan, Alison; Cruickshank, J Kennedy; Der, Geoff

    2010-04-01

    The cause of ethnic differences in cardiovascular disease remains a scientific challenge. Blood pressure tracks from late childhood to adulthood. We examined ethnic differences in changes in blood pressure between early and late adolescence in the United Kingdom. Longitudinal measures of blood pressure, height, weight, leg length, smoking, and socioeconomic circumstances were obtained from London, United Kingdom, schoolchildren of White British (n=692), Black Caribbean (n=670), Black African (n=772), Indian (n=384), and Pakistani and Bangladeshi (n=402) ethnicity at 11 to 13 years and 14 to 16 years. Predicted age- and ethnic-specific means of blood pressure, adjusted for anthropometry and social exposures, were derived using mixed models. Among boys, systolic blood pressure did not differ by ethnicity at 12 years, but the greater increase among Black Africans than Whites led to higher systolic blood pressure at 16 years (+2.9 mm Hg). Among girls, ethnic differences in mean systolic blood pressure were not significant at any age, but while systolic blood pressure hardly changed with age among White girls, it increased among Black Caribbeans and Black Africans. Ethnic differences in diastolic blood pressure were more marked than those for systolic blood pressure. Body mass index, height, and leg length were independent predictors of blood pressure, with few ethnic-specific effects. Socioeconomic disadvantage had a disproportionate effect on blood pressure for girls in minority groups. The findings suggest that ethnic divergences in blood pressure begin in adolescence and are particularly striking for boys. They signal the need for early prevention of adverse cardiovascular disease risks in later life.

  18. Inter-arm blood pressure differences compared with ambulatory monitoring: a manifestation of the ‘white-coat’ effect?

    Science.gov (United States)

    Martin, Una; Holder, Roger; Hodgkinson, James; McManus, Richard

    2013-01-01

    Background Inter-arm difference in blood pressure of >10 mmHg is associated with peripheral vascular disease, but it is unclear how much of the difference in sequential right and left arm blood pressure measurements might be due to a ‘white-coat’ effect. Aim To use ambulatory blood pressure monitoring (ABPM) to better understand the clinical significance of inter-arm differences in blood pressure. Design and setting Retrospective study in a teaching hospital in Birmingham. Method Anonymised clinical data collected from 784 patients attending a single hospital-based hypertension clinic were retrospectively analysed. Each participant had blood pressure measured sequentially in both arms, followed by ABPM over the subsequent 24 hours. Result Data were available for 710 (91%) patients, of whom 39.3% (279) had a blood pressure difference of 10 mmHg or more between each arm. Compared to daytime systolic ABPM, the difference was 25.1 mmHg using the arm with the highest reading, but only 15.5 mmHg if the lower reading was taken (mean difference 9.6 mmHg (95% confidence interval [CI] = 9.0 mmHg to 10.3 mmHg)). However, differences between mean right (20.7 mmHg) or left (19.9 mmHg) arm blood pressure and daytime systolic ABPM were very similar. Conclusion Compared with ABPM, use of the higher of the left and right arm readings measured sequentially appears to overestimate true mean blood pressure. As there is no significant difference in the extent of disparity with ABPM by left or right arm, this is unlikely to be due to arm dominance and may be due to the ‘white-coat’ effect reducing blood pressure on repeated measurement. Where a large inter-arm blood pressure difference is detected with sequential measurement, healthcare professionals should re-measure the blood pressure in the original arm. PMID:23561681

  19. Inter-arm blood pressure differences compared with ambulatory monitoring: a manifestation of the 'white-coat' effect?

    Science.gov (United States)

    Martin, Una; Holder, Roger; Hodgkinson, James; McManus, Richard

    2013-02-01

    Inter-arm difference in blood pressure of >10 mmHg is associated with peripheral vascular disease, but it is unclear how much of the difference in sequential right and left arm blood pressure measurements might be due to a 'white-coat' effect. To use ambulatory blood pressure monitoring (ABPM) to better understand the clinical significance of inter-arm differences in blood pressure. Retrospective study in a teaching hospital in Birmingham. Anonymised clinical data collected from 784 patients attending a single hospital-based hypertension clinic were retrospectively analysed. Each participant had blood pressure measured sequentially in both arms, followed by ABPM over the subsequent 24 hours. Data were available for 710 (91%) patients, of whom 39.3% (279) had a blood pressure difference of 10 mmHg or more between each arm. Compared to daytime systolic ABPM, the difference was 25.1 mmHg using the arm with the highest reading, but only 15.5 mmHg if the lower reading was taken (mean difference 9.6 mmHg (95% confidence interval [CI] = 9.0 mmHg to 10.3 mmHg)). However, differences between mean right (20.7 mmHg) or left (19.9 mmHg) arm blood pressure and daytime systolic ABPM were very similar. Compared with ABPM, use of the higher of the left and right arm readings measured sequentially appears to overestimate true mean blood pressure. As there is no significant difference in the extent of disparity with ABPM by left or right arm, this is unlikely to be due to arm dominance and may be due to the 'white-coat' effect reducing blood pressure on repeated measurement. Where a large inter-arm blood pressure difference is detected with sequential measurement, healthcare professionals should re-measure the blood pressure in the original arm.

  20. Soybean mother plant exposure to temperature stress and its effect on germination under osmotic stress

    International Nuclear Information System (INIS)

    Khalil, S.K.; Rehman, A.; Khan, A.Z.; Mexal, J.G.; Zubair, M.; Wahab, S.; Khalil, I.H.; Mohammad, F.

    2010-01-01

    High temperature reduces quality of soybean seed developed at different positions on the plant. The objective of this research was to study the quality of seed produced under different temperature regimes located at different position in the canopy. Soybean plants grown in pots were transferred at first pod stage to three growth chambers fixed at 18/10, 25/15 and 32/20 deg. C day/night temperature having 13/11 hrs day/night length. The plants remained in growth chambers until physiological maturity. Seeds harvested from each growth chamber were exposed to osmotic stress having osmotic potential of -0.5 MPa and unstressed control. Both stressed and control treatments were germinated in three growth chambers fixed at 18, 25 and 35 deg. C. Seed developed at lowest temperature (18/10 deg. C day/night) had maximum germination. Germination decreased linearly with increased day/night temperature and lowest germination was recorded at highest temperature of 32/20 deg. C (day/night). Seed developed at bottom position was heaviest and had better germination compared with seed developed at middle and top position. Seed germination was highest at 25 deg. C and took fewer days to 50% germination than 18 and 25 deg. C. Osmotic stress decreased germination and delayed days to 50% germination than control. It can be concluded that optimum temperature for seed development was 18/10 deg. C (day/night) whereas best germination temperature was 25 deg. C. (author)

  1. The effect of different unstable footwear constructions on centre of pressure motion during standing.

    Science.gov (United States)

    Plom, W; Strike, S C; Taylor, M J D

    2014-06-01

    The aim of this study was to test the effect different unstable footwear constructions have on centre of pressure motion when standing. Sixteen young female volunteers were tested in five conditions, three unstable footwear (Reebok Easy-Tone, FitFlop and Skechers Shape-Ups), a standard shoe and barefoot in a randomised order. Double and single leg balance on a force plate was assessed via centre of pressure excursions and displacements in each condition. For double leg and single leg standing centre of pressure excursions in the anterior-posterior direction were significantly increased wearing Skechers Shape-Ups compared to barefoot and the standard shoe. For the Reebok Easy Tone during single leg standing excursions in the anterior-posterior direction were significantly greater compared to the barefoot condition. Cumulative displacement of the centre of pressure in medial-lateral direction increased significantly during single leg standing when wearing Skechers Shape-Ups compared to barefoot and standard shoe as well as for Reebok Easy Tone vs. barefoot. It would appear from these quiet standing results that the manner of the construction of instability shoes effects the CoP movement which is associated with induced instability. Greater CoP excursion occurred in the A-P direction while the cumulative displacements were greater in the M-L direction for those shoes with the rounded sole and soft foam and those with airpods. The shoe construction with altered density foam did not induce any change in the CoP movement, during quite standing, which tends to suggest that it is not effective at inducing balance. Not all instability shoes are effective in altering the overall instability of the wearer. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Clinical significance of inter-arm pressure difference and ankle-brachial pressure index in patients with suspected coronary artery disease

    International Nuclear Information System (INIS)

    Igarashi, Yuko; Chikamori, Taishiro; Tomiyama, Hirofumi; Usui, Yasuhiro; Hida, Satoshi; Tanaka, Hirokazu; Nagao, Tadashi; Yamashina, Akira

    2007-01-01

    Although measuring blood pressure at the bilateral brachia is common in medical practice, its clinical significance in patients with suspected coronary artery disease (CAD) has not been fully clarified. The method of this study was to define the significance of inter-arm systolic blood pressure difference in patients with suspected CAD, and to assess the relationship between inter-arm pressure difference and CAD, simultaneous brachial and ankle blood pressure measurements and stress myocardial single-photon emission computed tomography (SPECT) were performed in 386 consecutive patients with suspected CAD, excluding those with previous myocardial infarction or coronary revascularization. Subclavian artery stenosis, defined as ≥15 mmHg inter-arm systolic blood pressure difference, was found in 27 patients (7%). Age (65±12 vs 65±11 years), male sex (21/27 vs 244/359), prevalence of hypertension (63% vs 56%), hypercholesterolemia (63% vs 62%), diabetes mellitus (33% vs 38%), cigarette smoking (44% vs 41%) and family history of CAD (15% vs 12%) were similar between patients with subclavian artery stenosis and those without. The incidence of decreased ankle-brachial pressure index (ABI) was higher (37% vs 12%, p=0.001), and percentage ischemic myocardium as assessed by SPECT was greater (9.0±8.5% vs 5.6±6.6%, p=0.05) in patients with subclavian artery stenosis than in those without. Furthermore, significant correlations were observed between inter-arm pressure difference and percentage ischemic myocardium (r=0.13; p=0.01), and ABI (r=-0.26, p<0.0001). Among 386 patients, 283 underwent coronary angiography, and 63% of those who had inter-arm blood pressure difference had CAD. Furthermore, 83% of those CAD patients had multi-vessel CAD, which is regarded as a high-risk subset for subsequent cardiac events. Inter-arm pressure difference is often found in patients with suspected CAD, and is associated with significant CAD and peripheral artery disease. Thus, inter

  3. Microalbuminuria Measured by three Different Methods, Blood Pressure and Cardiovascular Risk Factors in Elderly Swedish Males

    Directory of Open Access Journals (Sweden)

    Gösta Florvall

    2008-01-01

    Full Text Available Microalbuminuria is associated with hypertension and is a strong risk factor for subsequent chronic disease, both renal and coronary heart disease (CHD, Presently there are several methods available for measurement of microalbuminuria. The aim of this study was to evaluate if the three different methods gave similar information or if one of the assays were superior to the others. Blood pressure, inflammatory markers and cardiovascular mortality and morbidity were correlated with urine albumin analysed with a point-of-care testing (POCT instrument, nephelometric determination of albumin and albumin/creatinine ratio in elderly males. The study population consisted of 103 diabetic and 603 nondiabetic males (age 77 years in a cross-sectional study. We analyzed urine albumin with a HemoCue® Urine Albumin POCT instrument and a ProSpec® nephelometer and albumin/creatinine ratio. There were strong correlations between both systolic and diastolic blood pressure and all three urine albumin methods (p < 0.0001. There were also significant correlations between the different urine albumin measurements and serum amyloid A component, high-sensitivity C-reactive protein and interleukin-6. The three different urine albumin methods studied provided similar information in relation to cardiovascular disease. There was a strong correlation between systolic and diastolic blood pressure and microalbuminuria in both the whole study population and in nondiabetic males emphasizing the role of hypertension in glomerular damage. The good correlation between the studied urine albumin measurements show that all three methods can be used for monitoring urine albumin excretion.

  4. Comparative study on two different seal surface structure for reactor pressure vessel sealing behavior

    International Nuclear Information System (INIS)

    Chen Jun; Xiong Guangming; Deng Xiaoyun

    2014-01-01

    The seal surface structure is very important to reactor pressure vessel (RPV) sealing behavior. In this paper, two 3-D RPV sealing analysis finite models have been established with different seal surface structures, in order to study the influence of two structures. The separation of RPV upper and lower flanges, bolt loads and etc. are obtained, which are used to evaluate the sealing behavior of the RPV. Meanwhile, the comparative analysis of safety margin of two seal surface structural had been done, which provides the theoretical basis for RPV seal structure design optimization. (authors)

  5. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces

    Directory of Open Access Journals (Sweden)

    Fabiana M. Flores

    2015-06-01

    Full Text Available Background: Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. Objective: To test whether different types of surfaces promote changes in the amplitude (ACOP and velocity (VCOP of the center of pressure (COP displacement during the rider's contact with the saddle on the horse's back. Method: Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. Results: ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019. The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006. The VCOP did not differ between the surfaces. Conclusion: Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  6. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces.

    Science.gov (United States)

    Flores, Fabiana M; Dagnese, Frederico; Mota, Carlos B; Copetti, Fernando

    2015-01-01

    Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. To test whether different types of surfaces promote changes in the amplitude (ACOP) and velocity (VCOP) of the center of pressure (COP) displacement during the rider's contact with the saddle on the horse's back. Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019). The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006). The VCOP did not differ between the surfaces. Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  7. High hydrostatic pressure resistance of Campylobacter jejuni after different sublethal stresses.

    Science.gov (United States)

    Sagarzazu, N; Cebrián, G; Condón, S; Mackey, B; Mañas, P

    2010-07-01

    To study the development of resistance responses in Campylobacter jejuni to high hydrostatic pressure (HHP) treatments after the exposure to different stressful conditions that may be encountered in food-processing environments, such as acid pH, elevated temperatures and cold storage. Campylobacter jejuni cells in exponential and stationary growth phase were exposed to different sublethal stresses (acid, heat and cold shocks) prior to evaluate the development of resistance responses to HHP. For exponential-phase cells, neither of the conditions tested increased nor decreased HHP resistance of C. jejuni. For stationary-phase cells, acid and heat adaptation-sensitized C. jejuni cells to the subsequent pressure treatment. On the contrary, cold-adapted stationary-phase cells developed resistance to HHP. Whereas C. jejuni can be classified as a stress sensitive micro-organism, our findings have demonstrated that it can develop resistance responses under different stressing conditions. The resistance of stationary phase C. jejuni to HHP was increased after cells were exposed to cold temperatures. The results of this study contribute to a better knowledge of the physiology of C. jejuni and its survival to food preservation agents. Results here presented may help in the design of combined processes for food preservation based on HHP technology. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  8. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations.

    Directory of Open Access Journals (Sweden)

    Mar Sobral

    Full Text Available Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i pollinator visitation rate and (ii escape from seed predation and (iii by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation.

  9. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations.

    Science.gov (United States)

    Sobral, Mar; Veiga, Tania; Domínguez, Paula; Guitián, Javier A; Guitián, Pablo; Guitián, José M

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation.

  10. Combined osmotic dehydration and drying process of pirarucu (Arapaima gigas) fillets.

    Science.gov (United States)

    Martins, Mayara Galvão; da Silva Pena, Rosinelson

    2017-09-01

    The osmotic dehydration (OD) and complementary drying of pirarucu ( Arapaima gigas ) fillets were studied. Pieces of the dorsal portion of pirarucu (60 mm × 20 mm × 10 mm) underwent OD in a binary solution (NaCl-water) with the application of vacuum pulse following a central rotatable composite design. The effect of the following process variables was assessed: temperature (20-40 °C), osmotic solution concentration (15-25% NaCl), and vacuum pulse pressure (7-101 kPa) on water loss (WL), solid gain (SG), and water activity (a w ). OD kinetics was obtained and the Peleg model was fitted to WL and SG data. The osmotically dehydrated pirarucu was dried (40-70 °C) in a fixed-bed dryer and mathematical models were fitted to the drying data. The optimal operational condition for the OD process was 35 °C, solution with 25% NaCl, and atmospheric pressure, which yielded WL of 14.87 ± 1.46%, SG of 8.56 ± 0.45%, and a w of 0.87 ± 0.02. The Peleg model efficiently predicted the WL and SG kinetics. The increase in the water loss in drying was more evident at low temperatures (40-50 °C) with effective diffusivity ranging from 10.85 × 10 -9 to 12.30 × 10 -9 m 2 /s. The Midilli and Page models efficiently predicted the drying kinetics.

  11. [Physiological analysis of various types of osmotic diuresis].

    Science.gov (United States)

    Marina, A S; Kutina, A V; Natochin, Iu V

    2011-12-01

    Efficacy of drugs reduced proximal reabsorption was compared in experiments with female Wistar rats. Urine flow rate for the 1st h of experiment was enhanced after polyethylene glycol-400 (PEG) and 6% Na2SO4 infusion by over 30-fold, exenatide--40-fold, glycerol--11-fold as compared with the control. The maximal values of Na+ excretion were observed during Na2SO4 and exenatide administration (280 +/- 31 micromol/h vs. 3.2 +/- 0.6 Imol/h/100 g bw). The highest K+ excretion was revealed in experiments with glycerol administration (41 +/- 5 micromol/h vs. 7 +/- 2 micromol/h/100 g bw), Mg2+ --after exenatide injection (5.3 +/- 1.3 micromol/h vs. 0.16 +/- 0.03 micromol/ h/100 g bw). Diuretic effects were additive after combined administration of maximal doses of exenatide and PEG which suggests a different mechanism of action of solutes filtrated (PEG) to the proximal nephron segment and generated due to Na+/HW-exchange inhibition (exenatide). Osmotic diuretics differ by potency, mechanism of diuretic action and selectivity of ion excretion).

  12. Theoretical and experimental investigations of the potential of osmotic energy for power production.

    Science.gov (United States)

    Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter

    2014-08-08

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  13. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production †

    Science.gov (United States)

    Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  14. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production

    Directory of Open Access Journals (Sweden)

    Adel O. Sharif

    2014-08-01

    Full Text Available This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  15. Assessment of Osmotic Pre-Drying Treatment on Drying Rates of Fresh Tomato Fruits

    Directory of Open Access Journals (Sweden)

    P. A. Idah

    2014-06-01

    Full Text Available The aim of this work is to investigate the influence of osmotic pre-drying treatments on drying rates of tomato (Lycopersiconesculentum at various drying temperatures. Fresh Roma tomato fruit samples were sliced to a thickness of 5 mm and the seeds were removed. Weight of 300 g was measured for each of the three replicates and immersed in a hypertonic solution of sucrose of different concentrations 40 and 60 oBrix each held for osmotic duration of 1 and 2 hours, drained for 10 min and then dried at 50, 60, and 70 oC in a mechanical dryer. Control samples were also weighed 300 g per replicate and dried at 50, 60, and 70 oC without pre-drying treatment. The initial moisture content of fresh tomato used was 94.5% (wb. Moisture loss of each sample was monitored and recorded hourly until the product has reached the desired final moisture content (≤ 7%.The data collected were subjected to statistical analysis of variance (ANOVA and Duncan New Multiple range tests (DNMRT to ascertain the level of significance differences between the individual treatments and their interaction at p ≤ 0.05.The results show that at all the drying temperatures used, the control tomato samples exhibited the fastest drying rate with an average of 35.2 g/hr, samples pre-treated at 40 oBrix has an average drying rate of 26.6 g/hr, while samples pre-treated at 60 oBrix has the slowest drying rate of 25.2 g/hr. It was also revealed that samples subjected to 1 hour osmotic time have faster drying rates than those treated for 2 hours osmotic time.

  16. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung [Hong-Ik University, Seoul (Korea, Republic of); Chun, Myung-Suk [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of)

    2014-02-15

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

  17. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    International Nuclear Information System (INIS)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung; Chun, Myung-Suk

    2014-01-01

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference

  18. Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode

    Directory of Open Access Journals (Sweden)

    Deyou Li

    2018-06-01

    Full Text Available In pump-turbines, high pressure fluctuation is one of the crucial instabilities, which is harmful to the stable and effective operation of the entire unit. Extensive studies have been carried out to investigate pressure fluctuations (amplitude and frequency at specific locations. However, limited research was conducted on the distribution of pressure fluctuations in turbine mode in a pump-turbine, as well as the influence of the number of runner blades on pressure fluctuations. Hence, in this study, three dimensional numerical simulations were performed to predict the distribution of pressure fluctuations with different numbers of runner blades in a prototype pump-turbine in turbine mode using the shear stress transport (SST k-ω turbulence model. Three operating points with the same hydraulic head and different mass flow rates were simulated. The distribution of pressure fluctuation components of blade passing frequency and its harmonics in the direction along the whole flow path, as well as along the circumferential direction, was presented. The mass flow rate and number of runner blades have great influence on the distribution of pressure fluctuations, especially at blade passing frequency along circumferential direction. The mass flow rate mainly affects the position of peak pressure fluctuations, while the number of runner blades mainly changes the number of peak pressure fluctuations. Additionally, the number of runner blades influences the dominant frequencies of pressure fluctuations especially in the spiral casing and draft tube.

  19. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T; Qin, D Q; Wei, X Z

    2013-01-01

    Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too

  20. Thermodynamics of the multicomponent vapor-liquid equilibrium under capillary pressure difference

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2001-01-01

    We discuss the two-phase multicomponent equilibrium, provided that the phase pressures are different due to the action of capillary forces. We prove the two general properties of such an equilibrium, which have previously been known for a single-component case, however, to the best of our knowledge......, not for the multicomponent mixtures. The importance is emphasized on the space of the intensive variables P, T and mu (i), where the laws of capillary equilibrium have a simple geometrical interpretation. We formulate thermodynamic problems specific to such an equilibrium, and outline changes to be introduced to common...... algorithms of flash calculations in order to solve these problems. Sample calculations show large variation of the capillary properties of the mixture in the very neighborhood of the phase envelope and the restrictive role of the spinodal surface as a boundary for possible equilibrium states with different...

  1. Interarm blood pressure difference and target organ damage in the general population.

    Science.gov (United States)

    Johansson, Jouni K; Puukka, Pauli J; Jula, Antti M

    2014-02-01

    The objective of the study was to investigate interarm differences of blood pressure (BP) and its determinants, and to clarify whether both arms are equally good in assessing BP and target organ damage in the general population. We studied a representative sample of Finnish adult population with 484 study participants, ages 25-74 years. BP was measured twice by an oscillometric monitor simultaneously on both arms. Study participants underwent a clinical examination including measurements of serum lipids, glucose and indicators of target organ damage. BP was 2.3/0.2 mmHg higher on right than on left arm (P differences). SBP and DBP measured on right and left arms correlated equally with left ventricular mass index (LVMI), interventricular septal thickness (IVST), posterior wall thickness (PWT), pulse wave velocity (PWV) and albuminuria. Higher SBP level was an independent determinant of both greater systolic and diastolic interarm BP difference. Exaggerated absolute diastolic interarm BP difference (>5 mmHg) was associated with higher BMI, arm circumference, LVMI, IVST and PWT, whereas exaggerated absolute systolic interarm BP difference (>10 mmHg) was not associated with any clinical variables. There was only a small difference in BP between arms in a healthy general population. Both arms are equally good determinants of target organ damage. BP should be measured at least once on both arms and prefer the arm with higher BP readings in the future BP measurements.

  2. Drying characteristics of osmotically pretreated cranberries : Energy and quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, S.; Marcotte, M. [Agriculture and Agri-Food Canada, St. Hyacinthe, PQ (Canada). Food Research and Development Centre; Poirier, M.; Kudra, T. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2002-06-01

    This paper presents the results of a study in which osmotically pretreated cranberries were dried. The osmotic treatment included dehydration and sugar infusion. The process involved pretreating halved cranberries in a standard osmotic solution followed by freeze-drying, vacuum-drying and air-drying in various dryers, such as cabinet-air-through, fluid bed, pulsed fluid bed, and vibrated fluid bed dryers. The intent was to identify the best drying technology. The comparison criteria selected were energy consumption and product quality. Product quality for freeze-dried berries was quantified based on anthocyanins content, rehydration ratio, color, and taste. Unit heat consumption could be used for selecting the drying method, as all other drying methods yielded similar but slightly lower quality products. The highest energy efficiency was obtained with the vibrated fluid bed and the pulsed fluid bed. It was noted that drying rates were reduced during the second drying period when sugar was infused into the cranberries during osmotic pretreatment, but the total energy consumption was reduced by osmotic dehydration. 22 refs., 1 tab., 5 figs.

  3. Drying and osmotic conditioning in Hancornia speciosa Gomes seeds

    Directory of Open Access Journals (Sweden)

    Tathiana Elisa Masetto

    Full Text Available Hancornia speciosa is a native tree species of the Brazilian Cerrado whose seeds are desiccation sensitive. In this study, we aimed to evaluate drying and osmotic conditioning in H. speciosa seeds. We used fresh seeds with 48% moisture content, which were slowly dried until they attained contents of 20%, 15%, 10% and 5%. To evaluate osmotic conditioning, the seeds were imbibed in 12 mL osmotic solutions at 0.0; -0.2; -0.4 and -0.6 MPa for two days. After that, they were dehydrated until their original moisture content. The experiments were carried out in a completely randomized design with four repetitions with 50 seeds each. Reduction in moisture content from 20% to 5% decreased the physiological potential of seeds. H. speciosa seeds do not require osmotic priming with PEG solutions, because imbibition of seeds in osmotic solutions of up to -0.6 MPa results in reduction of germination rate and seedling length.

  4. Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge : a multi-omics perspective

    NARCIS (Netherlands)

    Kohlstedt, Michael; Sappa, Praveen K; Meyer, Hanna; Maaß, Sandra; Zaprasis, Adrienne; Hoffmann, Tamara; Becker, Judith; Steil, Leif; Hecker, Michael; van Dijl, Jan Maarten; Lalk, Michael; Mäder, Ulrike; Stülke, Jörg; Bremer, Erhard; Völker, Uwe; Wittmann, Christoph

    The Gram-positive bacterium Bacillus subtilis encounters nutrient limitations and osmotic stress in its natural soil ecosystem. To ensure survival and sustain growth, highly integrated adaptive responses are required. Here, we investigated the system-wide response of B.subtilis to different,

  5. Assessing intravascular volume by difference in pulse pressure in pigs submitted to graded hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Hiltebrand, Luzius B; Fukui, Kimiko; Cohen, Delphine; Hager, Helmut; Kurz, Andrea M

    2006-10-01

    We assessed changes in intravascular volume monitored by difference in pulse pressure (dPP%) after stepwise hemorrhage in an experimental pig model. Six pigs (23-25 kg) were anesthetized (isoflurane 1.5 vol%) and mechanically ventilated to keep end-tidal CO2 (etCO2) at 35 mmHg. A PA-catheter and an arterial catheter were placed via femoral access. During and after surgery, animals received lactated Ringer's solution as long as they were considered volume responders (dPP>13%). Then animals were allowed to stabilize from the induction of anesthesia and insertion of catheters for 30 min. After stabilization, baseline measurements were taken. Five percent of blood volume was withdrawn, followed by another 5%, and then in 10%-increments until death from exsanguination occurred. After withdrawal of 5% of blood volume, all pigs were considered volume responders (dPP>13%); dPP rose significantly from 6.1+/-3.3% to 19.4+/-4.2%. The regression analysis of stepwise hemorrhage revealed a linear relation between blood loss (hemorrhage in %) and dPP (y=0.99*x+14; R2=0.7764; P<.0001). In addition, dPP was the only parameter that changed significantly between baseline and a blood loss of 5% (P<0.01), whereas cardiac output, stroke volume, heart rate, MAP, central venous pressure, pulmonary artery occlusion pressure, and systemic vascular resistance, respectively, remained unchanged. We conclude that in an experimental hypovolemic pig model, dPP correlates well with blood loss.

  6. Interarm systolic blood pressure difference is associated with myocardial injury after noncardiac surgery.

    Science.gov (United States)

    Belen, Erdal; Ozal, Ender; Bayyigit, Akif; Gunaydın, Senay; Helvacı, Aysen

    Myocardial injury after non-cardiac surgery (MINS) is closely related to increased cardiovascular mortality. To evaluate the relationship between MINS and interarm systolic blood pressure difference (IASBPD), which has previously been shown to correlate with the frequency of cardiovascular events and arterial arteriosclerotic processes. This observational, single-centre cohort study included 240 consecutive noncardiac surgery patients aged ≥ 45 years. Simultaneous blood pressure recordings were taken preoperatively and IASBPD was calculated. Patients' electrocardiography recordings and high sensitivity cardiac troponin T (hscTnT) levels were obtained for a period of three days postoperatively. Postoperatively, 27 (11.3%) patients were found to have MINS when hscTnT ≥ 14 ng/L was taken as a cut-off value. IASBPD > 10 mm Hg was found in 44 (18.3%) patients. When IASBPD was accepted to be a continuous variable, there was a higher IASBPD value in the MINS group (9.4 ± 5.0 vs. 4.5 ± 3.8, p 10 mm Hg and those not, exaggerate IASBPD was found to be more frequent in patients developing MINS (16 [59.3%] vs. 28 [13.1%], respectively, p 10 mm Hg to be independently associated with the development of MINS (OR: 30.82; CI: 9.14-103.98; p AUC = 0.79; 95% CI 0.71-0.87). Increased IASBPD is closely related to development of MINS. The preoperative measurement of blood pressure from both arms may be an important and easy to use clinical tool in determining cardiovascular risk.

  7. Aortic blood pressure measured via EIT: investigation of different measurement settings.

    Science.gov (United States)

    Braun, Fabian; Proença, Martin; Rapin, Michael; Lemay, Mathieu; Adler, Andy; Grychtol, Bartłomiej; Solà, Josep; Thiran, Jean-Philippe

    2015-06-01

    Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss-Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss-Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg.

  8. Aortic blood pressure measured via EIT: investigation of different measurement settings

    International Nuclear Information System (INIS)

    Braun, Fabian; Proença, Martin; Rapin, Michael; Lemay, Mathieu; Solà, Josep; Adler, Andy; Grychtol, Bartłomiej; Thiran, Jean-Philippe

    2015-01-01

    Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss–Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss–Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg. (paper)

  9. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials

    Science.gov (United States)

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. DOI: http://dx.doi.org/10.7554/eLife.03695.001 PMID:25318069

  11. Osmotic Adjustment in Leaves of VA Mycorrhizal and Nonmycorrhizal Rose Plants in Response to Drought Stress.

    Science.gov (United States)

    Augé, R M; Schekel, K A; Wample, R L

    1986-11-01

    Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Psi(pi)) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Psi(pi) at the turgor loss point, the active Psi(pi) depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.

  12. Influence of power ultrasound on the main quality properties and cell viability of osmotic dehydrated cranberries.

    Science.gov (United States)

    Nowacka, Malgorzata; Fijalkowska, Aleksandra; Wiktor, Artur; Dadan, Magdalena; Tylewicz, Urszula; Dalla Rosa, Marco; Witrowa-Rajchert, Dorota

    2018-02-01

    The aim of the study was to investigate the effect of ultrasound treatment in two osmotic solutions, carried out at different time, on some physical properties, antioxidant activity and cell survival of cranberries. Ultrasound treatment was conducted at 21kHz for 30 and 60min in liquid medium: 61.5% sucrose solution and 30% sucrose solution with 0.1% steviol glycosides addition. Some samples before the ultrasound treatment were subjected to cutting or blanching. The results showed that dry matter content and concentration of the dissolved substances increased during ultrasound treatment in osmotic solution, however higher value was observed for treatment in 61.5% sucrose solution and for longer time. Water activity and volume of cranberries did not change after the ultrasonic treatment. Combined treatment led to colour and antioxidant activity alterations as well. A cell viability of whole and cut samples decreased after 60min of osmotic treatment and completely lost in the blanched samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Design and development of controlled porosity osmotic tablet of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Sadhana R Shahi

    2012-01-01

    Full Text Available The present work aims towards the design and development of extended release formulation of freely water-soluble drug diltiazem hydrochloride (DLTZ based on osmotic technology by using controlled porosity approach. DLTZ is an ideal candidate for a zero-order drug delivery system because it is freely water-soluble and has a short half-life (2-3 h. Sodium chloride (Osmogen was added to the core tablet to alter the solubility of DLTZ in an aqueous medium. Cellulose acetate (CA and sorbitol were used as semipermeable membrane and pore former, respectively. The effect of different formulation variables namely concentration of osmogen in the core tablet, % pore former, % weight gain, pH of the dissolution medium and agitation intensity on the in vitro release was studied. DLTZ release was directly proportional to % pore former and inversely proportional to % weight gain. The optimized formulation (F8 delivered DLTZ independent of pH and agitation intensity for 12 h at the upper level concentration of % pore former (25% w/w and middle level concentration of % weight gain (6% w/w. The comparative study of elementary osmotic pump (EOP and controlled porosity osmotic pump revealed that it superior than conventional EOP and also easier and cost effective to formulate.

  14. Consistency of blood pressure differences between the left and right arms.

    Science.gov (United States)

    Eguchi, Kazuo; Yacoub, Mona; Jhalani, Juhee; Gerin, William; Schwartz, Joseph E; Pickering, Thomas G

    2007-02-26

    It is unclear to what extent interarm blood pressure (BP) differences are reproducible vs the result of random error. The present study was designed to resolve this issue. We enrolled 147 consecutive patients from a hypertension clinic. Three sets of 3 BP readings were recorded, first using 2 oscillometric devices simultaneously in the 2 arms (set 1); next, 3 readings were taken sequentially for each arm using a standard mercury sphygmomanometer (set 2); finally, the readings as performed for set 1 were repeated (set 3). The protocol was repeated at a second visit for 91 patients. Large interarm systolic BP differences were consistently seen in 2 patients with obstructive arterial disease. In the remaining patients, the systolic BP and the diastolic BP, respectively, were slightly higher in the right arm than in the left arm by 2 to 3 mm Hg and by 1 mm Hg for all 3 sets (Pdifference of more than 5 mm Hg were 11 (7.5%) and 4 (2.7%) across all 3 sets of readings. Among patients who repeated the test, none had a consistent interarm BP difference of more than 5 mm Hg across the 2 visits. The interarm BP difference was consistent only when obstructive arterial disease was present. Although BP in the right arm tended to be higher than in the left arm, clinically meaningful interarm differences were not reproducible in the absence of obstructive arterial disease and are attributable to random variation.

  15. Osmotic and activity coefficients of aqueous NaTcO4 and NaReO4 solutions at 250C

    International Nuclear Information System (INIS)

    Boyd, G.E.

    1978-01-01

    Isopiestic vapor-pressure comparison experiments were performed with aqueous binary sodium perchlorate, pertechnetate, and perrhenate solutions to concentrations of approximately 8.5 m. Osmotic coefficients for these solutions and mean molal ionic activity coefficients for NaTcO 4 and NaReO 4 were derived from the isotonic molalities. Pitzer's treatment was applied to describe the concentration dependence of the osmotic coefficients of NaClO 4 , NaTcO 4 , and NaReO 4 , and the implications of the parameters derived from a least-squares fit are discussed in terms of solvent structure and interionic forces. 4 tables, 1 figure

  16. Displacement of an electric arc by a stationary transverse magnetic field to different pressures of the ionized gas

    International Nuclear Information System (INIS)

    Ramos, J.

    1987-01-01

    The displacement of a wall-stabilized electric arc by a stationary transverse magnetic field is measured to different pressures of the ionized gas. The increase of the pressure makes the heat transfer function and the mass flow velocity in the arc column to raise, and it makes the arc displacement to decrease. (author)

  17. Numerical study of pressure fluctuations in different guide vanes' opening angle in pump mode of a pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T

    2012-01-01

    A numerical model based on a pumped storage power station was built to develop the numerical simulation, to analyze the pressure fluctuations in a pump turbine in different guide vanes' opening angle. The different guide vanes' opening angles were simulated using the SST k-ω turbulence model and SIMPLEC Pressure-Velocity coupling scheme. The pressure sensor were placed in mainly three positions, they are: bottom ring between runner and the wicket gates, downstream and left side in the draft tube cone below the runner. All the peak to peak values of pressure fluctuation meet signal probability of 97%. The frequency is gained by Fast Fourier Transform. The pressure fluctuations in different positions of the model in pump condition were showed when the guide vanes' opening angels were different. The simulation results confirmed the results gained in model tests. The results show that pressure fluctuations in design opening angle were much lower than those in off design opening angle. The main source of pressure fluctuations between runner and guide vanes is rotor stator interaction. While a lower frequency is the main frequency of the pressure fluctuation in draft tube.

  18. Comparison of Different Turbulence Models for Numerical Simulation of Pressure Distribution in V-Shaped Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Zhaoliang Bai

    2017-01-01

    Full Text Available V-shaped stepped spillway is a new shaped stepped spillway, and the pressure distribution is quite different from that of the traditional stepped spillway. In this paper, five turbulence models were used to simulate the pressure distribution in the skimming flow regimes. Through comparing with the physical value, the realizable k-ε model had better precision in simulating the pressure distribution. Then, the flow pattern of V-shaped and traditional stepped spillways was given to illustrate the unique pressure distribution using realizable k-ε turbulence model.

  19. Effects of salt substitute on home blood pressure differs according to age and degree of blood pressure in hypertensive patients and their families.

    Science.gov (United States)

    Hu, Jihong; Zhao, Liancheng; Thompson, Brian; Zhang, Yawei; Wu, Yangfeng

    2018-02-05

    It is known that home blood pressure (HBP) is a more reliable assessment of hypertension treatments than clinical blood pressure (BP). Despite this, HBP response to a salt substitute has only been evaluated by one study which, did not look at the salt substitute's effect on family members and did not analyze by age, gender, or BP degree. The aim of this current study was to assess the effects of a low-sodium and high-potassium salt substitute on HBP among hypertensive patients and their family members. A total of 220 households (including 220 hypertensive patients and 380 their families) were randomly assigned to the regular salt or salt substitute groups. HBP was measured at the beginning, 3rd, 6th, and 12th months. Among the patients (n = 220), only home systolic blood pressure (HSBP) was significantly reduced, by an adjusted baseline BP of 4.2 mm Hg (95% CI: 1.3-7.0 mm Hg), in the salt substitute group compared with those in the regular salt group at each visit (all P blood pressure (HDBP) at any visit. Among the family members, HSBP and HDBP were not significantly different between the groups. Furthermore, Individuals ≥60 years old, hypertensive patients with stage-2 hypertension, family members with hypertension, and women experienced greater HSBP reduction. Older subjects, those with higher blood pressure, and women experienced greater home blood pressure reduction from the salt substitute compared to regular salt.

  20. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.

    Science.gov (United States)

    Straub, Anthony P; Elimelech, Menachem

    2017-11-07

    Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.

  1. The application of air pressure difference in reducing indoor radon concentration

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Tso, M.Y.W.

    2000-01-01

    In densely populated tropical cities like Hong Kong, people usually live and work inside high-rise buildings. And because of the hot and humid climate, air conditioning systems are used throughout the year, particularly in commercial buildings. Previous territory-wide surveys have shown that over 10% of commercial buildings in Hong Kong have indoor radon concentrations above 200 Bq m -3 . Since the major source of indoor radon in high-rise buildings is the building materials, increasing ventilation and applying radon barriers on wall surfaces seem to be the only ways to reduce the indoor radon concentration. But it was noted that the ventilation rate the many commercial buildings are not efficient enough to remove the radon because of various reasons such as energy saving, lack of maintenance, etc. In this study, radon mitigation was achieved by reducing the rate of radon exhaled from the building materials. A special laboratory, which has the capability of simulating any meteorological conditions that could be faced by high-rise buildings in Hong Kong, was built. The reduction of radon exhalation rate by applying pressure difference and temperature difference across walls was studied in the laboratory. This paper summarizes the results and tactics for applying pressure difference in existing commercial buildings. A new technique of reducing radon exhalation rate in new buildings by depressurizing the interior of walls was also developed. Tunnels can be embedded in the concrete walls of new buildings during construction. By using simple vacuum pumps, radon exhalation rate from the walls can be reduced significantly by depressurizing the tunnels. The feasibility and applicability of the technique is presented in this paper. (author)

  2. Inter-Arm Blood Pressure Difference in Hospitalized Elderly Patients Is Not Associated With Excess Mortality.

    Science.gov (United States)

    Weiss, Avraham; Grossman, Alon; Beloosesky, Yichayaou; Koren-Morag, Nira; Green, Hefziba; Grossman, Ehud

    2015-10-01

    Inter-arm blood pressure difference (IAD) has been found to be associated with cardiovascular mortality. Its clinical significance and association with mortality in the elderly is not well defined. This study evaluated the association of IAD with mortality in a cohort of hospitalized elderly individuals. Blood pressure (BP) was measured simultaneously in both arms in elderly individuals (older than 65 years) hospitalized in a geriatric ward from October 2012 to July 2014. During the study period, 445 patients, mostly women (54.8%) with a mean age of 85±5 years, were recruited. Systolic and diastolic IAD were >10 mm Hg in 102 (22.9%) and 76 (17.1%) patients, respectively. Patients were followed for an average of 342±201 days. During follow-up, 102 patients (22.9%) died. Mortality was not associated with systolic or diastolic IAD. It is therefore questionable whether BP should be routinely measured in both arms in the elderly. © 2015 Wiley Periodicals, Inc.

  3. High pressure study of the zinc phosphide semiconductor compound in two different phases

    International Nuclear Information System (INIS)

    Mokhtari, Ali

    2009-01-01

    Electronic and structural properties of the zinc phosphide semiconductor compound are calculated at hydrostatic pressure using the full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method in both cubic and tetragonal phases. The exchange-correlation potential is treated by the generalized gradient approximation within the scheme of Perdew, Burke and Ernzerhof, GGA96 (1996 Phys. Rev. Lett. 77 3865). Also, the Engel and Vosko GGA formalism, EV-GGA (Engel and Vosko 1993 Phys. Rev. B 47 13164), is used to improve the band-gap results. Internal parameters are optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The lattice constants, internal parameters, bulk modulus, cohesive energy and band structures have been calculated and compared to the available experimental and theoretical results. The structural calculations predict that the stable phase is tetragonal. The effects of hydrostatic pressure on the behavior of band parameters such as band-gap, valence bandwidths and internal gaps (the energy gap between different parts of the valence bands) are studied using both GGA96 and EV-GGA.

  4. High pressure study of the zinc phosphide semiconductor compound in two different phases

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Ali [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, PB 115, Shahrekord (Iran, Islamic Republic of)], E-mail: mokhtari@sci.sku.ac.ir

    2009-07-08

    Electronic and structural properties of the zinc phosphide semiconductor compound are calculated at hydrostatic pressure using the full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method in both cubic and tetragonal phases. The exchange-correlation potential is treated by the generalized gradient approximation within the scheme of Perdew, Burke and Ernzerhof, GGA96 (1996 Phys. Rev. Lett. 77 3865). Also, the Engel and Vosko GGA formalism, EV-GGA (Engel and Vosko 1993 Phys. Rev. B 47 13164), is used to improve the band-gap results. Internal parameters are optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The lattice constants, internal parameters, bulk modulus, cohesive energy and band structures have been calculated and compared to the available experimental and theoretical results. The structural calculations predict that the stable phase is tetragonal. The effects of hydrostatic pressure on the behavior of band parameters such as band-gap, valence bandwidths and internal gaps (the energy gap between different parts of the valence bands) are studied using both GGA96 and EV-GGA.

  5. Comparison of Cooling Different Parts in a High Pressure Ratio Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    S. Mostafa Moosania

    2016-12-01

    Full Text Available Cooling in a centrifugal compressor can improve the performance and reduce the impeller temperature. In a centrifugal compressor, external walls can be cool down, which is known as the shell cooling. This method avoids undesirable effects induced by other cooling methods. Cooling can be applied on different external walls, such as the shroud, diffuser or the back plate. This paper focuses on seeking the most effective cooling place to increase the performance and reduce the impeller temperature. It is found that shroud cooling improves the compressor performance the most. Shroud cooling with 2400 W of cooling power increases the pressure ratio by 4.6% and efficiency by