WorldWideScience

Sample records for osmium conductive metal

  1. Alkyl Chain Growth on a Transition Metal Center: How Does Iron Compare to Ruthenium and Osmium?

    Directory of Open Access Journals (Sweden)

    Mala A. Sainna

    2015-09-01

    Full Text Available Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu2(μ2-H (μ2-NHCH3(μ3-CPtCH3(P(CH332](COn+ with n = 0, 2 and Cp = η5-C5(CH35, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes.

  2. Alkyl Chain Growth on a Transition Metal Center: How Does Iron Compare to Ruthenium and Osmium?

    Science.gov (United States)

    Sainna, Mala A.; de Visser, Sam P.

    2015-01-01

    Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu)2(μ2-H)(μ2-NHCH3)(μ3-C)PtCH3(P(CH3)3)2](CO)n+ with n = 0, 2 and Cp = η5-C5(CH3)5, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes. PMID:26426009

  3. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  4. Determination of biogenic amines from electrocatalytic responses of graphite electrodes modified with metallic osmium or an osmium oxide-ruthenium cyanide film

    International Nuclear Information System (INIS)

    Shajdarova, L.G.; Gedmina, A.V.; Chelnokova, I.A.; Budnikov, G.K.

    2008-01-01

    Particles of osmium or an inorganic polymeric film of osmium oxide-ruthenium cyanide (OsO-RuCN) electrodeposited on glassy carbon (GC) electrocatalyze the oxidation of dopamine (DA), adrenaline (AD), and noradrenaline (NAD). It is found that these biogenic amines are determined with a high sensitivity by oxidation at an electrode with an OsO-RuCN film. Procedures for the voltammetric determination of DA, AD, or NAD at a composite film electrode are developed. The currents of the substrate oxidation are linear functions of the concentrations in the ranges from 5x10 -7 to 1x10 -3 M for DA and from 1x10 -6 to 1x10 -3 M for AD and NAD [ru

  5. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    Science.gov (United States)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of

  6. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  7. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  8. Optical conductivity of metal nanoshells

    International Nuclear Information System (INIS)

    Tomchuk, P.M.; Kulish, V.V.

    2004-01-01

    The expression for optical conductivity of spherical metal nanoshell as a function of internal and external radii of nanoshell and photon energy - Fermi energy ratio is obtained. Quantization of electron energy in nanoshells is shown to lead to the appearance of an oscillating dependence of optical conductivity on the light frequency. An explicit expression of oscillating addends for optical conductivity is obtained

  9. Thermal Conductivity of Metallic Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hin, Celine

    2018-03-10

    This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels [1]. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn [2], due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those

  10. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  11. Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction?

    Science.gov (United States)

    Walker, R.J.; Morgan, J.W.; Horan, M.F.

    1995-01-01

    Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D??? layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-188 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.

  12. Metal nanoparticles as a conductive catalyst

    Science.gov (United States)

    Coker, Eric N [Albuquerque, NM

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  13. Universal conductance fluctuations in disordered metals

    International Nuclear Information System (INIS)

    Lee, P.A.

    1987-01-01

    The author argues that observed and theoretical fluctuations in the electrical conductance of disordered metals, induced by variations in the magnetic field or the chemical potential, are not time-dependent noise but that the conductance is a deterministic albeit fluctuating function for a given realization of the impurity configuration. A method is constructed for representing the sensitivity of the conductance of a given metal to a small change in the impurity configuration as a function of such variables as sample size, impurities per unit volume, and mean free path. The sensitivity helps explain the size of 1/f noise due to defect motion in disordered metals

  14. Rhenium-osmium geochemistry: method and applications

    International Nuclear Information System (INIS)

    Luck, J.M.

    1982-03-01

    Experimental methods for chemical separation and isotopic analysis of rhenium-osmium are described. Accurate determinations are obtained for a quantity ratio around 10 -6 -10 -7 g. Development as a geochemical tracer is examined. Study of rhenium-osmium in meteorites allows the determination of solar system chronology and age of the galaxy. Rhenium-osmium chronology in meteorites is improved and osmium isotopes are used as petrogenetic and geological tracers. Molybdenites are studied through 187 Re- 187 Os dating [fr

  15. Disorder and conductivity of organic metal

    International Nuclear Information System (INIS)

    Bouffard, Serge

    1982-02-01

    At high temperature, quasi-one-dimensional organic conductors are metallic; at low temperature, the electron gas instabilities drive either a metal to insulator transition or a metal to superconductor transition. Precursors of these 3-D ordering could be appear at higher temperature. A study of the effects of irradiation induced defects on a few organic complexes has shown that defects are produced by radiolitic process. Their concentration can be easily deduced from resistivity measurement at room temperature. In the metallic state, the defects act as strong potentials which break the conducting chains and force the electron to jump to the neighbourg stack. The defects produce a mixing between longitudinal and transverse conductivities. While, it is the 3-D effect of the defects which pins the charge density waves and thus the 3-D ordering can not be acheived: the metal to insulator transition is destroyed, the metallic state is stabilized. In the same time, the fluctuative conductivity is suppress. The superconducting regime has been found to be extremely sensitive to irradiation induced defects. Thus we can demonstrate that the 1-D superconducting fluctuations contribute to the conductivity and that the transition temperature is correlated to the 3-D superconducting fluctuations. [fr

  16. Osmium isotopic tracing of atmospheric emissions from an aluminum smelter

    Science.gov (United States)

    Gogot, Julien; Poirier, André; Boullemant, Amiel

    2015-09-01

    We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.

  17. Electrical conductivity tensor of an irradiated metal

    International Nuclear Information System (INIS)

    Corciovei, A.; Dumitru, R.D.

    1979-01-01

    A method to calculate the electrical conductivity tensor of an irradiated metal is presented. The proposed method relies on the use of the Kubo formula, evaluated by a perturbation method. The one electron Hamiltonian is written as a sum of two terms: the Hamiltonian of the conduction electrons moving in a periodic lattice and the perturbation, namely, the scattering potential due to the irradiation defects of the ideal crystal. Then, the lowest order of the conductivity is determined by the lowest order of the Laplace transform of the current. An integral equation is written for this last quantity. (author)

  18. Electrical conductivity of metal powders under pressure

    Science.gov (United States)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.

    2011-12-01

    A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.

  19. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.

    Science.gov (United States)

    Wong, Christopher C; Curthoys, Ian S; O'Leary, Stephen J; Jones, Allan S

    2013-01-01

    The use of both gadolinium chloride (GdCl(3)) and osmium tetroxide (OsO(4)) allowed for the visualization of the membranous labyrinth and other intralabyrinthine structures, at different intensities, as compared with the control sample. This initial comparison shows the advantages of GdCl(3) in radiological assessments and OsO(4) in more detailed anatomical studies and pathways of labyrinthine pathogenesis using X-ray microtomography (microCT). To assess an improved OsO(4) staining protocol and compare the staining affinities against GdCl(3). Guinea pig temporal bones were stained with either GdCl(3) (2% w/v) for 7 days or OsO(4) (2% w/v) for 3 days, and scanned in a microCT system. The post-scanned datasets were then assessed in a 3D rendering program. The enhanced soft tissue contrast as presented in the temporal bones stained with either GdCl(3) or OsO(4) allowed for the membranous labyrinth to be visualized throughout the whole specimen. GdCl(3)-stained specimens presented more defined contours of the bone profile in the radiographs, while OsO(4)-stained specimens provided more anatomical detail of individual intralabyrinthine structures, hence allowing spatial relationships to be visualized with ease in a 3D rendering context and 2D axial slice images.

  20. Reactions of ruthenium and osmium cluster carbonyls with heteroatom-substituted and functionalized alkynes

    International Nuclear Information System (INIS)

    Koridze, A.A.

    2000-01-01

    The results of studies of the reactions of ruthenium and osmium cluster carbonyls with metal (M = Re, Mn, Fe) alkynes, silylalkynes, propargyl alcohols and their derivatives, diynes, enynes, and ferrocenylacetylene are summarized. Intramolecular rearrangements in the cluster complexes including migrations of carbonyl, hydride, and hydrocarbon ligands and the metal core reorganization are considered [ru

  1. Bioimaging of isosteric osmium and ruthenium anticancer agents by LA-ICP-MS.

    Science.gov (United States)

    Klose, Matthias H M; Theiner, Sarah; Kornauth, Christoph; Meier-Menches, Samuel M; Heffeter, Petra; Berger, Walter; Koellensperger, Gunda; Keppler, Bernhard K

    2018-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatial distribution of two metallodrugs with anticancer activities in vivo, namely the organoruthenium plecstatin-1 (1) and its isosteric osmium analogue (2), in liver, kidneys, muscles and tumours of treated mice bearing a CT-26 tumour after single-dose i.p. administration. To the best of our knowledge, this is the first time that the spatial distribution of an osmium drug candidate has been investigated using LA-ICP-MS in tissues. Independent measurements of the average ruthenium and osmium concentration via microwave digestion and ICP-MS in organs and tumours were in good agreement with the LA-ICP-MS results. Matrix-matched standards (MMS) ranging from 1 to 30 μg g -1 were prepared to quantify the spatial distributions of the metals and the average metal content of the MMS samples was additionally quantified by ICP-MS after microwave digestion. The recoveries for osmium and ruthenium in the MMS were 105% and 101% on average, respectively, validating the sample preparation procedure of the MMS. Preparation of MMS was carried out under an argon atmosphere to prevent oxidation of osmium-species to the volatile OsO 4 . The highest metal concentrations were found in the liver, followed by kidney, lung and tumour tissues, while muscles displayed only very low quantities of the respective metal. Both metallodrugs accumulated in the cortex of the kidneys more strongly compared to the medulla. Interestingly, osmium from 2 was largely located at the periphery and tissue edges, whereas ruthenium from 1 was observed to penetrate deeper into the organs and tumours.

  2. Microscale metallization on conducting polyaniline patterns

    International Nuclear Information System (INIS)

    Uh, Kyung Chan; Lee, Joosub; Kim, Tae Geun; Lee, Chan Woo; Kim, Jong Man

    2016-01-01

    Fabrication of metallic nanomaterial patterns is very important in the electronic industry. A variety of techniques for producing these metallic nanoparticle patterns have been developed, such as ink-jet printing, 2 direct writing, 3,4 electroplati ng, 5,6 screen printing, 7 and soft lithography including micro-contact printing (μCP) 8–10 and we developed a simple and facile strategy for the fabrication of silver micropatterns on the surface of PANI patterns which were prepared by employing a photo- lithographic method. The silver was metallized along the PANI pattern through the oxidation-reduction reaction without requiring any reducing agent. The straightforward approach described above could open new avenues for the fabrication of metal micropatterns

  3. Microscale metallization on conducting polyaniline patterns

    Energy Technology Data Exchange (ETDEWEB)

    Uh, Kyung Chan; Lee, Joosub; Kim, Tae Geun; Lee, Chan Woo; Kim, Jong Man [Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    Fabrication of metallic nanomaterial patterns is very important in the electronic industry. A variety of techniques for producing these metallic nanoparticle patterns have been developed, such as ink-jet printing, 2 direct writing, 3,4 electroplati ng, 5,6 screen printing, 7 and soft lithography including micro-contact printing (μCP) 8–10 and we developed a simple and facile strategy for the fabrication of silver micropatterns on the surface of PANI patterns which were prepared by employing a photo- lithographic method. The silver was metallized along the PANI pattern through the oxidation-reduction reaction without requiring any reducing agent. The straightforward approach described above could open new avenues for the fabrication of metal micropatterns.

  4. Tripodal osmium polypyridyl complexes for self-assembly on platinum nanoparticles

    NARCIS (Netherlands)

    Contreras-Carballada, P.; Edafe, F.; Tichelaar, F.D.; Belser, P.; De Cola, L.; Williams, R.M.

    2011-01-01

    The combination of platinum nanoparticles with a tripodal osmium complex that anchors to the metal surface leads, under visible light irradiation, to the formation of solvated electrons. The formation kinetics is limited by the detachment of the electron from the platinum surface into the solution,

  5. Method and device for electromagnetic pumping by conduction of liquid metals having low electrical conductivity

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1976-01-01

    The invention is related to a method for pumping of liquid metals having a low electrical conductivity. To lower the resistance of the conductive spire containing liquid metal to be pumped, a tape formed by a conductive metal such as copper or nickel is inserted in that spire. The tape is interrupted at the level of the air gap of the main magnetic circuit at least when the conductive spire passes through that air gap

  6. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  7. Acoustical study of electro- and thermal conductivity of liquid metals

    International Nuclear Information System (INIS)

    Tekuchev, V.V.; Rygalov, L.N.; Ivanova, I.V.; Barashkov, B.I.

    2003-01-01

    One established a link between electrical, elastic and structural properties of electronic smelts. One calculated polyterms of resistance and thermal conductivity of liquid metals (Be, Cd, U, V, Mo, Cr, rare-earth metals) on the basis of data covering both melting and boiling points. For some metals the values were obtained for the first time. To analyze kinetic properties of metals under high temperatures one should apply complex many-particles model representations and efficient computing equipment. It is pointed out that essential problems blocking efforts to tackle the mentioned task result in necessity to find simple though approximate models describing satisfactorily properties of metals [ru

  8. Reconfigurable electronics using conducting metal-organic frameworks

    Science.gov (United States)

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  9. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination.

    Science.gov (United States)

    Chen, Cynthia; Sedwick, Peter N; Sharma, Mukul

    2009-05-12

    Osmium is one of the rarer elements in seawater, with typical concentration of approximately 10 x 10(-15) g g(-1) (5.3 x 10(-14) mol kg(-1)). The osmium isotope composition ((187)Os/(188)Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (approximately 1.3) and mantle/cosmic dust (approximately 0.13). Here, we show that the (187)Os/(188)Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (approximately 0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower (187)Os/(188)Os ratio (approximately 0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts.

  10. Measuring electric conductivity in liquid metals by eddy current method

    International Nuclear Information System (INIS)

    Zhuravlev, S.P.; Ostrovskij, O.I.; Grigoryan, V.A.

    1982-01-01

    Technique permitting to apply the method of vertiginous currents for investigation of electric conductivity of metal melts in the high temperature range is presented. Interferences affecting accuracy of measurements are specified and ways of their removing are pointed out. Scheme of measuring and design of the facility are described. Results of measuring electric resistance of liquid Fe, Co, Ni obtained for the first time by this method are presented. The data obtained agree with the results of measurements conducted by the method of the rotating magnetic field. Difference in absolute values of electric resistance in parallel experiments for each metal does not exceed 4%

  11. Method for estimating the lattice thermal conductivity of metallic alloys

    International Nuclear Information System (INIS)

    Yarbrough, D.W.; Williams, R.K.

    1978-08-01

    A method is described for calculating the lattice thermal conductivity of alloys as a function of temperature and composition for temperatures above theta/sub D//2 using readily available information about the atomic species present in the alloy. The calculation takes into account phonon interactions with point defects, electrons and other phonons. Comparisons between experimental thermal conductivities (resistivities) and calculated values are discussed for binary alloys of semiconductors, alkali halides and metals. A discussion of the theoretical background is followed by sufficient numerical work to facilitate the calculation of lattice thermal conductivity of an alloy for which no conductivity data exist

  12. Conductive polymer/metal composites for interconnect of flexible devices

    Science.gov (United States)

    Kawakita, Jin; Hashimoto Shinoda, Yasuo; Shuto, Takanori; Chikyow, Toyohiro

    2015-06-01

    An interconnect of flexible and foldable devices based on advanced electronics requires high electrical conductivity, flexibility, adhesiveness on a plastic substrate, and efficient productivity. In this study, we investigated the applicability of a conductive polymer/metal composite to the interconnect of flexible devices. By combining an inkjet process and a photochemical reaction, micropatterns of a polypyrrole/silver composite were formed on flexible plastic substrates with an average linewidth of approximately 70 µm within 10 min. The conductivity of the composite was improved to 6.0 × 102 Ω-1·cm-1. From these results, it is expected that the conducting polymer/metal composite can be applied to the microwiring of flexible electronic devices.

  13. Electrical Conductivity of Metals: A New Look at this Subject

    Directory of Open Access Journals (Sweden)

    Silva P. R.

    2014-04-01

    Full Text Available Various parameters tied to the electrical conductivity of typical metals are estimated and are expressed in terms of universal constants. It happen s that they are close to those found in metallic copper at room temperature. The fact that the realization of the model occurs at room temperature is explained by using th e Landauer’s erasure principle. The averaged collision time of the electron of conduction is also thought as a particle lifetime. Finally an analogy is established between the motion of the electron of conduction and the cosmological constant problem, where a spherical surface of radius equal to the electron mean free path has been thought as a surf ace horizon for the charge carriers.

  14. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    Science.gov (United States)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  15. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles

    KAUST Repository

    Novak, Maria S.; Bü chel, Gabriel E.; Keppler, Bernhard K.; Jakupec, Michael A.

    2016-01-01

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed.

  16. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles

    KAUST Repository

    Novak, Maria S.

    2016-03-09

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed.

  17. Electrical resistivity anisotropy of osmium single crystals in the range 4,2 to 300 K

    International Nuclear Information System (INIS)

    Volkenshtejn, N.V.; Dyakina, V.P.; Dyakin, V.V.; Startsev, V.E.; Cherepanov, V.I.; Azhazha, V.M.; Kovtun, G.P.; Elenskij, V.A.; AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst.)

    1981-01-01

    Electrical resistivity and size effect anisotropies of pure osmium single crystals with rhosub(273.2/rhosub(4.2)2600 were investigated in the temperature range 4.2 to 300 K. It is found that the electrical resistivity anisotropy (αT)=rhosub( )/rhosub( ) is less than unit and has a maximum at T approximately 50 K; the size effect anisotropy (rho1)sub( )/(rho1)sub( ) is 0.39+-0.07 at T=4.2 K; at liquid helium temperature, the dependence of thin samples is controlled by the scattering of conduction electrons by the surface of the sample. The results are discussed for the specific shape of the Fermi surface geometry of osmium with an account for the scattering processes of conduction electrons by phonons and by surface of the sample

  18. ‘… a metal conducts and a non-metal doesn't’

    Science.gov (United States)

    Edwards, P. P.; Lodge, M. T. J.; Hensel, F.; Redmer, R.

    2010-01-01

    In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement ‘… a metal conducts, and a non-metal doesn’t’ can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues—theoretical and experimental—attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K). We attempt to illustrate Mott’s insights for delving into such complex phenomena and experimental systems, finding intuitively the dominant features of the science, and developing a coherent picture of the different competing electronic processes. A particular emphasis is placed on the idea of a ‘Mott metal to non-metal transition’ in the nominally metallic chemical elements rubidium, caesium and mercury, and the converse metallization transition in the nominally non-metal elements hydrogen and oxygen. We also review major innovations by D. A. Goldhammer (Goldhammer 1913 Dispersion und absorption des lichtes) and K. F. Herzfeld (Herzfeld 1927 Phys. Rev. 29, 701–705. (doi:10.1103/PhysRev.29.701)) in a pre-quantum theory description of the metal–non-metal transition, which emphasize the pivotal role of atomic properties in dictating the metallic or non-metallic status of the chemical elements of the periodic table under ambient and extreme conditions; a link with Pauling’s ‘metallic orbital’ is also established here. PMID:20123742

  19. η2-SO2 Linkage Photoisomer of an Osmium Coordination Complex.

    Science.gov (United States)

    Cole, Jacqueline M; Velazquez-Garcia, Jose de J; Gosztola, David J; Wang, SuYin Grass; Chen, Yu-Sheng

    2018-03-05

    We report the discovery of an η 2 -SO 2 linkage photoisomer in the osmium pentaammine coordination complex, [Os(NH 3 ) 5 (SO 2 )][Os(NH 3 ) 5 (HSO 3 )]Cl 4 (1). Its dark- and light-induced crystal structures are determined via synchrotron X-ray crystallography, at 100 K, where the photoinduced state is metastable in a single crystal that has been stimulated by 505 nm light for 2.5 h. The SO 2 photoisomer in the [Os(NH 3 ) 5 (SO 2 )] 2+ cation contrasts starkly with the photoinactivity of the HSO 3 ligand in its companion [Os(NH 3 ) 5 (HSO 3 )] + cation within the crystallographic asymmetric unit of this single crystal. Panchromatic optical absorption characteristics of this single crystal are revealed in both dark- and light-induced states, using concerted absorption spectroscopy and optical microscopy. Its absorption halves across most of its visible spectrum, upon exposure to 505 nm light. The SO 2 ligand seems to be responsible for this photoinduced bleaching effect, judging from a comparison of the dark- and light-induced crystal structures of 1. The SO 2 photoisomerism is found to be thermally reversible, and so 1 presents a rare example of an osmium-based solid-state optical switch. Such switching in an osmium complex is significant because bottom-row transition metals stand to offer linkage photoisomerism with the greatest photoconversion levels and thermal stability. The demonstration of η 2 -SO 2 bonding in this complex also represents a fundamental contribution to osmium coordination chemistry.

  20. Metal Phosphates as Intermediate Temperature Proton Conducting Electrolytes

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Q.F.; Pan, Chao

    2012-01-01

    A series of metal phosphates were synthesized and screened as potential proton conductor electrolytes for fuel cells and electrolysers operational at intermediate temperatures. Among the selected, niobium and bismuth phosphates exhibited a proton conductivity of 10-2 and 10-7 S cm-1, respectively......, under the anhydrous atmosphere at 250 °C, showing close correlation with the presence of hydroxyl groups in the phosphate phases. At the water partial pressure of above 0.6 atm, both phosphates possessed a proton conductivity to a level of above 3 x 10-2 S cm-1. Reasonable stability of the proton...... conductivity was observed under either a constant low water partial pressure or under a humidity cycling test within a period of more than 80 hours....

  1. Highly Transparent and Conductive Metallized Nanofibers by Electrospinning and Electroplating

    Science.gov (United States)

    Yoon, Sam S.; Yarin, Alexander L.

    2017-11-01

    Transparent conducting films (TCFs) and transparent heaters (THs) are of interest for a wide variety of applications, from displays to window defrosters. Here, we demonstrate production of highly flexible, conducting, and transparent copper (Cu), nickel (Ni), platinum (Pt), and silver (Ag) nanofibers suitable for use not only in TCFs and THs but also in some other engineering applications. The merging of fibers at their intersections (i.e. self-junctioning) minimizes contact resistance in these films. These metallized nanofibers exhibited a remarkably low sheet resistance at a high optical transmittance. This low sheet resistance allows them to serve as low-voltage heaters, achieving a high heating temperature at a relatively low applied voltage. These nanofibers are free-standing, flexible, stretchable, and their mechanical reliability was confirmed through various mechanical endurance tests.

  2. Quantized conductance in atom-sized wires between two metals

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Schiøtz, Jakob; Sørensen, Mads Reinholdt

    1995-01-01

    We present experimental and theoretical results for the conductance and mechanical properties of atom-sized wires between two metals. The experimental part is based on measurements with a scanning tunneling microscope (STM) where a point contact is created by indenting the tip into a gold surface...... is the origin of the scatter in the experimental data, and what is the origin of the scaling of the scattering with the number of conductance quanta? The theoretical discussion is based on a free-electron-like model where scattering from the boundary of the nanowire is included. The configurations...... of the nanowires are deduced from molecular dynamics simulations, which also give information about the mechanical properties of the system. We show that such a model can account semiquantitatively for several of the observed effects. One of the main conclusions of the theoretical analysis is that,; due...

  3. Ruthenium, osmium and rhodium complexes of polypyridyl ligands ...

    Indian Academy of Sciences (India)

    Unknown

    Discipline of Silicates and Catalysis, Central Salt and Marine Chemicals ... However, synthetic methods have also been developed to prepare complexes with ... 3.2 Synthesis and characterisation of ruthenium(II) and osmium(II) complexes18, ...

  4. Tunneling Conductance in Two-Dimensional Junctions between a Normal Metal and a Ferromagnetic Rashba Metal

    Science.gov (United States)

    Oshima, Daisuke; Taguchi, Katsuhisa; Tanaka, Yukio

    2018-03-01

    We have studied charge transport in a ferromagnetic Rashba metal (FRM), where both Rashba type spin-orbit coupling (RSOC) and exchange coupling coexist. It has nontrivial metallic states, i.e., a normal Rashba metal (NRM), anomalous Rashba metal (ARM), and Rashba ring metal (RRM), and they are manipulated by tuning the Fermi level with an applied gate voltage. We theoretically studied the tunneling conductance (G) in a normal metal/FRM junction by changing the Fermi level via an applied gate voltage (Vg) on the FRM. We found a wide variation in the Vg dependence of G, which depends on the metallic states. In an NRM, the Vg dependence of G is the same as that in a conventional two-dimensional system. However, in an ARM, the Vg dependence of G is similar to that in a conventional one- (two-)dimensional system for a large (small) RSOC. Furthermore, in an RRM, which is generated by a large RSOC, the Vg dependence of G is similar to that in the one-dimensional system. In addition, these anomalous properties stem from the density of states in the ARM and RRM caused by the large RSOC and exchange coupling rather than the spin-momentum locking of RSOC.

  5. Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

    Science.gov (United States)

    De Groh, Henry C., III

    2016-01-01

    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  6. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  7. The Interfacial Thermal Conductance of Epitaxial Metal-Semiconductor Interfaces

    Science.gov (United States)

    Ye, Ning

    Understanding heat transport at nanometer and sub-nanometer lengthscales is critical to solving a wide range of technological challenges related to thermal management and energy conversion. In particular, finite Interfacial Thermal Conductance (ITC) often dominates transport whenever multiple interfaces are closely spaced together or when heat originates from sources that are highly confined by interfaces. Examples of the former include superlattices, thin films, quantum cascade lasers, and high density nanocomposites. Examples of the latter include FinFET transistors, phase-change memory, and the plasmonic transducer of a heat-assisted magnetic recording head. An understanding of the physics of such interfaces is still lacking, in part because experimental investigations to-date have not bothered to carefully control the structure of interfaces studied, and also because the most advanced theories have not been compared to the most robust experimental data. This thesis aims to resolve this by investigating ITC between a range of clean and structurally well-characterized metal-semiconductor interfaces using the Time-Domain Thermoreflectance (TDTR) experimental technique, and by providing theoretical/computational comparisons to the experimental data where possible. By studying the interfaces between a variety of materials systems, each with unique aspects to their tunability, I have been able to answer a number of outstanding questions regarding the importance of interfacial quality (epitaxial/non-epitaxial interfaces), semiconductor doping, matching of acoustic and optical phonon band structure, and the role of phonon transport mechanisms apart from direct elastic transmission on ITC. In particular, we are able to comment on the suitability of the diffuse mismatch model (DMM) to describe the transport across epitaxial interfaces. To accomplish this goal, I studied interfacial thermal transport across CoSi2, TiSi2, NiSi and PtSi - Si(100) and Si(111), (silicides

  8. Multiphoton ionization/dissociation of osmium tetroxide

    International Nuclear Information System (INIS)

    Ding, D.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    The mechanisms leading to laser multiphoton ionization and dissociation (MPI/MPD) of osmium tetroxide (OsO 4 ) have been investigated from measurements of the kinetic energies of product ions (Os + , Os 2+ , OsO + , O 2 + , O + ) and photoelectrons as a function of the laser wavelength. Neutral channels, intermediate to the dominant Os + ionization channel, such as OsO 4 →OsO 4-n +nO are examined using resonance-enhanced multiphoton ionization (REMPI) of the fast O atoms. Equipartition of the available photon energy among the fragments is observed. The wavelength dependence of the Os + ion signal suggests that one or more of the steps leading to Os + ions involve molecular ions and/or excited neutral atoms. The observed preponderance of very slow ( 2+ is shown to result primarily from REMPI of Os +

  9. Osmium in environmental samples from Northeast Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Rodushkin, Ilia [Division of Applied Geology, Lulea University of Technology, S-971 87 Lulea (Sweden); ALS Laboratory Group, ALS Analytica AB, Aurorum 10, S-977 75 Lulea (Sweden)], E-mail: ilia.rodushkin@alsglobal.com; Engstroem, Emma [Division of Applied Geology, Lulea University of Technology, S-971 87 Lulea (Sweden); Soerlin, Dieke; Ponter, Christer; Baxter, Douglas C. [ALS Laboratory Group, ALS Analytica AB, Aurorum 10, S-977 75 Lulea (Sweden)

    2007-11-01

    Osmium (Os) concentrations and {sup 187}Os/{sup 188}Os isotope abundance ratios are presented for sedimentary materials, soils, humus, plants, mushrooms, mosses and lichens collected in the vicinity of the town of Lulea, Northeast Sweden, the data for biological specimens being the first reported. Contributions from sampling and varying exposure time to the observed environmental variability were evaluated. Sedimentary materials (from both fresh and brackish water) are most elevated in radiogenic {sup 187}Os, followed by inorganic soil horizons, mushrooms and humus. The Os isotopic compositions of plants, mosses and lichens are much less radiogenic, with mean {sup 187}Os/{sup 188}Os lying within a relatively narrow 0.3-0.6 range. Significant temporal variations in Os concentrations and isotopic compositions of plant samples are attributed to integrative uptake of airborne Os with non-radiogenic composition. Measured Os concentrations in biological matrices increase in the order: small shrub leaves (blueberry and lingonberry) {<=} spruce needles {<=} mushrooms {<=} tree leaves {<=} pine needles < mosses << lichens. The concentrations found in three different species of plant were used to provide the first estimates of gaseous osmium tetroxide (OsO{sub 4}) in the environment. Though the Os content of samples from Northeast Sweden does not differ significantly from matrix-matched international reference materials (not certified for Os) of abiotic origin, the estimates of gaseous OsO{sub 4} concentrations are roughly an order of magnitude higher than have been reported for particle-bound Os in other studies. The pronounced spatial variations between relatively closely situated sites in mean {sup 187}Os/{sup 188}Os ratios for samples of the same species (presumably with the same dominating uptake mechanism) point to the presence of different local Os sources. This study therefore demonstrates that emissions of Os from automobile catalytic converters are not the only

  10. A model for the electric conduction in metal/poly-TiO2/metal structure

    Science.gov (United States)

    Hossein-Babaei, Faramarz; Alaei-Sheini, Navid-

    2017-12-01

    Intensely studied memristive devices have M‧/MO/M″ structures, wherein MO is a nanometer-sized metal oxide crystallite sandwiched between the M‧ and M″ metal electrodes. The most widely used oxide for this purpose is TiO2 and the electrodes are of noble metals such as platinum, silver, and gold. The memristive features of the device is believed to originate from the motion of the ionized oxygen vacancies within the oxide crystal. The operation of the device is further complicated by the motion of the mobile cations originating from the metal electrodes. The complexity of the device performance increases further when the noble metal electrodes form Schottky barriers at their junctions with TiO2, as the conduction takes place through these energy barriers. In a recent publication, the authors have shown that, owing to the ohmicity of the Ti/TiO2 junctions, electronic observations on the devices with Ti/TiO2/Ti structure can be easier to model. The presented model clarified that in a Ti/poly-TiO2/Ti structure, the ionic motion and the electronic conduction take place on the TiO2 grain surfaces and grain boundaries rather than the grain interiors. Here, we show that the suggested model has important implications for chemical sensor design and fabrication.

  11. About the free electron model in electric conduction of metals

    International Nuclear Information System (INIS)

    Hoffmann, C.

    1991-01-01

    In the model proposed by Drude to describe, among others, the electric conduction in metals, it is supposed that electrons move freely in the material with a time interval between encounters T and a probability distribution g(t). The name, 'electron pause time', will be assigned to the time T with that probability distribution. The calculations made by Drude turned out to be erroneous. The error can be corrected observing that the random variable 'pause time' appearing in this intuitive idea is not the previously defined random variable T, 'electron pause time', but another random variable S, which will be called 'observed pause time' whose probability density is Csg(s), where C is a normalization constant. With this distribution, the characteristics of the distribution, q(u), of the wait time can be obtained. (Author) [es

  12. Alternating-current MHD conduction pump for ferrous metals

    International Nuclear Information System (INIS)

    Nadezhnikov, N.M.; Krauya, V.M.; Yankop, E.K.

    1979-01-01

    Results are presented of theoretical and experimental studies pertaining to an ac MHD conduction pump with separate excitation and a C-core magnet structure. Its mathematical model is based on the following assumptions: (1) During complete braking the liquid metal in the channel is stationary; (2) there is no current leakage in the channel beyond the interelectrode region; (3) during operation the longitudinal axis of the pump is in a vertical position; (4) the current density in the electrodes at a distance infinitely far from the active channel segment is uniformly distributed; (5) there are no magnetic leakage fluxes in the model; and (6) the left-hand electrode in the model can be brought out in two different ways, variant I or variant II. 7 references

  13. Standard practice for conducting atmospheric corrosion tests on metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers and defines conditions for exposure of metals and alloys to the weather. It sets forth the general procedures that should be followed in any atmospheric test. It is presented as an aid in conducting atmospheric corrosion tests so that some of the pitfalls of such testing may be avoided. As such, it is concerned mainly with panel exposures to obtain data for comparison purposes. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. A crossover from high stiffness to high hardness. The case of osmium and its borides

    International Nuclear Information System (INIS)

    Bian, Yongming; Li, Anhu; Liu, Xiaomei; Shanghai Univ. of Engineering Science; Liang, Yongcheng

    2016-01-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os_2B_3 and OsB_2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  15. A crossover from high stiffness to high hardness. The case of osmium and its borides

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yongming; Li, Anhu [Tongji Univ., Shanghai (China). School of Mechanical Engineering; Liu, Xiaomei [Tongji Univ., Shanghai (China). School of Mechanical Engineering; Shanghai Univ. of Engineering Science (China). College of Mechanical Engineering; Liang, Yongcheng [Shanghai Ocean Univ. (China). College of Engineering Science and Technology

    2016-07-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os{sub 2}B{sub 3} and OsB{sub 2}) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  16. Metallic Conductive Nanowires Elaborated by PVD Metal Deposition on Suspended DNA Bundles.

    Science.gov (United States)

    Brun, Christophe; Elchinger, Pierre-Henri; Nonglaton, Guillaume; Tidiane-Diagne, Cheikh; Tiron, Raluca; Thuaire, Aurélie; Gasparutto, Didier; Baillin, Xavier

    2017-09-01

    Metallic conductive nanowires (NWs) with DNA bundle core are achieved, thanks to an original process relying on double-stranded DNA alignment and physical vapor deposition (PVD) metallization steps involving a silicon substrate. First, bundles of DNA are suspended with a repeatable process between 2 µm high parallel electrodes with separating gaps ranging from 800 nm to 2 µm. The process consists in the drop deposition of a DNA lambda-phage solution on the electrodes followed by a naturally evaporation step. The deposition process is controlled by the DNA concentration within the buffer solution, the drop volume, and the electrode hydrophobicity. The suspended bundles are finally metallized with various thicknesses of titanium and gold by a PVD e-beam evaporation process. The achieved NWs have a width ranging from a few nanometers up to 100 nm. The electrical behavior of the achieved 60 and 80 nm width metallic NWs is shown to be Ohmic and their intrinsic resistance is estimated according to different geometrical models of the NW section area. For the 80 nm width NWs, a resistance of about few ohms is established, opening exploration fields for applications in microelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Coherent tunnelling conductance in normal-metal/d-wave superconductor/normal-metal double tunnel junctions

    International Nuclear Information System (INIS)

    Dong, Z C; Zheng, Z M; Xing, D Y

    2004-01-01

    Taking simultaneously into account the electron-injected current from one normal-metal (N) electrode and the hole-injected current from the other N electrode, we study the coherent tunnelling conductance and quantum interference effects in N/d-wave superconductor (S)/N double tunnel junctions. It is found that oscillations of all quasiparticle transport coefficients and the conductance spectrum with quasiparticle energy and thickness of the d-wave S depend to a great extent on the crystal orientation of the d-wave S. The zero-bias conductance peak is gradually lowered with increasing barrier strength and/or temperature, its magnitude exhibiting damped oscillatory behaviour with thickness of S

  18. Determination of microgramme amounts of osmium and ruthenium based on inhibition of the iodine-azide reaction by their complexes with 6-mercaptopurine

    International Nuclear Information System (INIS)

    Matusiewicz, H.; Kurzawa, Z.

    1976-01-01

    A new kinetic method of the determination of microamounts of osmium and ruthenium has been developed. The reaction between sodum azide and iodine induced by 6-mercaptopurine (6-MP) was used for this purpose. Under suitable experimental conditions the induction coefficient of 6-MP amounts to 1750+-40. The formed complexes of the metals are stable in the medium containing an excess of azide ions and do not induce the iodine-azide reaction. The method consists in the determination of the 6-MP not bound to the metal. The amount of osmium or ruthenium is then determined from linear relations. Before the determination osmium and ruthenium must be separated from other cations and from each other by distillation as volatile tetroxides. The iodine-azide method is simple, sensitive and does not require any apparatus. The range of the determination is 0.1-5.0 μg in 5 cm 3 of the solution of Os(8) and 0.5-5.0 μg for Ru(8). The error of the determination is +-6.4% and +- 6.1% for osmium and ruthenium, respectively. The time of the determination is 30 minutes not taking into account 2-hour waiting time necessary for the formation of the complexes. (author)

  19. Charge dynamics in conducting polyaniline–metal oxalate composites

    Indian Academy of Sciences (India)

    Unknown

    Polyaniline; metal oxalate composites; charge transport; mobile and fixed spins; VRH conduc- tion mechanism ... Al, Mn and Co on doping into Pani improve the poly- merization ... dopants on charge dynamics with EPR and other tech- niques.

  20. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.; Fan, Shanhui

    2010-01-01

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from

  1. Osmium in environmental samples from Northeast Sweden

    International Nuclear Information System (INIS)

    Rodushkin, Ilia; Engstroem, Emma; Soerlin, Dieke; Ponter, Christer; Baxter, Douglas C.

    2007-01-01

    Osmium (Os) concentrations and 187 Os/ 188 Os isotope abundance ratios are presented for sedimentary materials, soils, humus, plants, mushrooms, mosses and lichens collected in the vicinity of the town of Lulea, Northeast Sweden, the data for biological specimens being the first reported. Contributions from sampling and varying exposure time to the observed environmental variability were evaluated. Sedimentary materials (from both fresh and brackish water) are most elevated in radiogenic 187 Os, followed by inorganic soil horizons, mushrooms and humus. The Os isotopic compositions of plants, mosses and lichens are much less radiogenic, with mean 187 Os/ 188 Os lying within a relatively narrow 0.3-0.6 range. Significant temporal variations in Os concentrations and isotopic compositions of plant samples are attributed to integrative uptake of airborne Os with non-radiogenic composition. Measured Os concentrations in biological matrices increase in the order: small shrub leaves (blueberry and lingonberry) ≤ spruce needles ≤ mushrooms ≤ tree leaves ≤ pine needles 4 ) in the environment. Though the Os content of samples from Northeast Sweden does not differ significantly from matrix-matched international reference materials (not certified for Os) of abiotic origin, the estimates of gaseous OsO 4 concentrations are roughly an order of magnitude higher than have been reported for particle-bound Os in other studies. The pronounced spatial variations between relatively closely situated sites in mean 187 Os/ 188 Os ratios for samples of the same species (presumably with the same dominating uptake mechanism) point to the presence of different local Os sources. This study therefore demonstrates that emissions of Os from automobile catalytic converters are not the only source of contemporary environmental contamination

  2. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  3. Possibility of a ferromagnetic and conducting metal-organic network

    Science.gov (United States)

    Mabrouk, Manel; Hayn, Roland; Denawi, Hassan; Ben Chaabane, Rafik

    2018-05-01

    In this paper, we present first principles calculations based on the spin-polarized generalized gradient approximation with on-site Coulomb repulsion term (SGGA + U), to explore the electronic and magnetic properties of the novel planar metal-organic networks TM-Pc and TM-TCNB (where TM means a transition metal of the 3d series: Ti, V, Cr, …, or Zn, Pc - Phthalocyanine, and TCNB - Tetracyanobenzene) as free-standing sheets. This work is an extension of two earlier research works dealing with the Mn (Mabrouk et al., 2015) and Fe (Mabrouk et al., 2017) cases. Our theoretical investigations demonstrate that TM-Pc are more stable than TM-TCNB. Our results unveil that all the TM-Pc frameworks have an insulating behavior with the exception of Mn-Pc which is half-metallic and favor antiferromagnetic order in the case of our magnetic systems except for V-Pc which is ferromagnetic. In contrast, the TM-TCNB networks are metallic at least in one spin direction and exhibit long-range ferromagnetic coupling in case for magnetic structures, which represent ideal candidates and an interesting prospect of unprecedented applications in spintronics. In addition, these results may shed light to achieve a new pathway on further experimental research in molecular spintronics.

  4. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  5. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide.

    Science.gov (United States)

    Burton, K

    1967-08-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0 degrees by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO(3)NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient.

  6. Charge Transport in Metal-Molecule-Metal Junctions Probed by Conducting Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Lee, Min Hyung; Song, Hyunwook

    2013-01-01

    We have demonstrated a proof of intrinsic charge transport properties in alkanedithiol molecular junctions using a multiprobe approach combining a variety of transport techniques. The temperature-independent I(V) behavior and the correct exponential decay of conductance with respect to molecular length shows that the dominant charge transport mechanism is off-resonant tunneling. Length-dependent TVS measurements for the saturated alkane-dithiol series indicate that we did indeed probe a molecular system with CAFM. These results can provide stringent criteria to establish a valid molecular transport junction via a probabilistic measurement technique. In this study, we report a study of charge transport in alkanedithiol SAMs formed in metal-molecule-metal junctions using CAFM in combination with a variety of molecular transport techniques including temperature-and length-variable transport measurements and transition voltage spectroscopy. The main goal of this study is to probe the intrinsic transport properties of component molecules using CAFM, but not parasitic or defect-related effects

  7. Manipulating Conduction in Metal Oxide Semiconductors: Mechanism Investigation and Conductance Tuning in Doped Fe2O3 Hematite and Metal/Ga2O3/Metal Heterostructure

    Science.gov (United States)

    Zhao, Bo

    This study aims at understanding the fundamental mechanisms of conduction in several metal oxide semiconductors, namely alpha-Fe2O 3 and beta-Ga2O3, and how it could be tuned to desired values/states to enable a wide range of application. In the first effort, by adding Ti dopant, we successfully turned Fe2O3 from insulating to conductive by fabricated compositionally and structurally well-defined epitaxial alpha-(TixFe1-x)2 O3(0001) films for x ≤ 0.09. All films were grown by oxygen plasma assisted molecular beam epitaxy on Al2O3(0001) sapphire substrate with a buffer layer of Cr2O3 to relax the strain from lattice mismatch. Van der Pauw resistivity and Hall effect measurements reveal carrier concentrations between 1019 and 1020 cm-3 at room temperature and mobilities in the range of 0.1 to 0.6 cm2/V˙s. Such low mobility, unlike conventional band-conduction semiconductor, was attributed to hopping mechanism due to strong electron-phonon interaction in the lattice. More interestingly, conduction mechanism transitions from small-polaron hopping at higher temperatures to variable range hopping at lower temperatures with a transition temperature between 180 to 140 K. Consequently, by adding Ti dopant, conductive Fe 2O3 hematite thin films were achieved with a well-understood conducting mechanism that could guide further device application such as spin transistor and water splitting. In the case of Ga2O3, while having a band gap as high as 5 eV, they are usually conductive for commercially available samples due to unintentional Si doping. However, we discovered the conductance could be repeatedly switched between high resistance state and low resistance state when made into metal/Ga2O3 /metal heterostructure. However, to obtain well controlled switching process with consistent switching voltages and resistances, understanding switching mechanism is the key. In this study, we fabricated resistive switching devices utilizing a Ni/Ga2O3/Ir heterostructure. Bipolar

  8. Residency of rhenium and osmium in a heavy crude oil

    Science.gov (United States)

    DiMarzio, Jenna M.; Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.

    2018-01-01

    Rhenium-osmium (Re-Os) isotope geochemistry is an emerging tool for the study of oil formation and migration processes, and a new technology for petroleum exploration. Little is known, however, about the residency of Re and Os within asphaltene and maltene sub-fractions of crude oil. This information is crucial for understanding the 187Re-187Os radiometric clock held in petroleum systems and for interpreting geochronology for key processes such as oil formation, migration, and biodegradation. In this study, a heavy crude oil was separated into soluble (maltene, MALT) and insoluble (asphaltene, ASPH) fractions using n-heptane as the asphaltene-precipitating agent. The asphaltenes were separated sequentially into sub-fractions using two different solvent pairs (heptane-dichloromethane and acetone-toluene), and the bulk maltenes were separated into saturate, aromatic, and resin (SAR) fractions using open column chromatography. Each asphaltene and maltene sub-fraction was analyzed for Re and Os. The asphaltene sub-fractions and the bulk ASPH, MALT, and crude oil were analyzed for a suite of trace metals by ICP-MS. Our results show that Re and Os concentrations co-vary between the asphaltene sub-fractions, and that both elements are found mostly in the more polar and aromatic sub-fractions. Significant Re and Os are also present in the aromatic and resin fractions of the maltenes. However, each asphaltene and maltene sub-fraction has a distinct isotopic composition, and sub-fractions are not isochronous. This suggests that asphaltene sub-fractionation separates Re-Os complexes to the point where the isotopic integrity of the geochronometer is compromised. The mobility of individual Re and Os isotopes and the decoupling possibilities between radiogenic 187Os produced from 187Re remain elusive, but their recognition in this study is a critical first step. Re and Os correlate strongly with Mo and Cd in the asphaltene sub-fractions, suggesting that these metals occupy

  9. Angle-specific transparent conducting electrodes with metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Rivolta, N. X. A., E-mail: nicolas.rivolta@umons.ac.be; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, Avenue Maistriau 19, B-7000 Mons (Belgium)

    2014-08-07

    Transparent conducting electrodes, which are not made from indium tin oxide, and which display a strong angular dependence are useful for various technologies. Here, we introduce a tilted silver grating that combines a large conductance with a strong and angle-specific transmittance. When the light incidence angle matches the tilt angle of the grating, transmittance is close to the maximum along a very broadband range. We explain the behavior through simulations that show in detail the plasmonic and interference effects at play.

  10. Scattering and conductance quantization in three-dimensional metal nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1997-01-01

    The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r...

  11. Possible explanation for the conductance of a single quantum unit in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Choi, Hyoung Joon; Ihm, Jisoon; Yoon, Young-Gui; Louie, Steven G.

    1999-01-01

    The quantum conductance of a metallic carbon nanotube with one end immersed in a jellium metal is studied. We find that the incident π * -band electrons, having a very high angular momentum with respect to the tube axis, go through the tube without being scattered by the free electrons in surrounding metal and contribute a quantum unit (2e 2 /h) to the conductance. On the other hand, the incident π-band electrons, with the p z atomic orbitals in phase along the tube circumference, experience strong resonant back-scattering because the low-angular-momentum states at the Fermi level have a dominantly metallic character in the nanotube-jellium metal coexistence region. These results provide a possible explanation for the experimentally observed conductance of one quantum unit instead of two for nanotubes with one end dipped into liquid metal such as mercury. (c) 1999 The American Physical Society

  12. Infrared conductivity of metallic (III, Mn)V ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Sinova, J.; Jungwirth, Tomáš; Yang, E. S. R.; MacDonald, A. H.

    2002-01-01

    Roč. 66, č. 4 (2002), s. 041202-1-041202-4 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * infrared conductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  13. The electrical conductivity and longitudinal magnetoresistance of metallic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Luis, E-mail: luismoragajaramillo@gmail.com [Universidad Central de Chile, Toesca 1783, Santiago 8370178 (Chile); Henriquez, Ricardo, E-mail: rahc.78@gmail.com [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bravo, Sergio, E-mail: bravo.castillo.sergio@gmail.com [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Solis, Basilio, E-mail: bsolis1984@gmail.com [Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn (Germany)

    2017-03-01

    Proceeding from exact solutions of the Boltzmann transport equation in the relaxation time approximation, we present formulas for the electrical conductivity and longitudinal magnetoresistance of single-crystalline cylindrical nanotubes. The effects of surface scattering are taken into account by introducing different specularity parameters at the inner and outer surfaces. For small values of the inner diameter, these formulas reduce to the respective expressions for cylindrical nanowires. It is found that the existing measurements of the resistivity of nanotubes (Venkata Kamalakar and Raychaudhuri, New J. Phys. 14, 043032 (2012)) can be accurately described by this formalism.

  14. Proton conducting ceramics for potentiometric hydrogen sensors for molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Borland, H.; Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2013-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaZrY, BaCeZrY and SrFeCo ceramics. -- Abstract: Tritium monitoring in lithium–lead eutectic (Pb–15.7Li) is of great importance for the performance of liquid blankets in fusion reactors. Also, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. Potentiometric hydrogen sensors for molten lithium–lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as proton exchange membranes (PEM). In this work the following compounds: BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−α}, Sr(Ce{sub 0.6}-Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−α} and Sr{sub 3}Fe{sub 1.8}Co{sub 2}O{sub 7} have been synthesized in order to be tested as PEM H-probes. Potentiometric measurements of the synthesized ceramic elements at 500 °C have been performed at a fixed hydrogen concentration. The sensors constructed using the proton conductor elements BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr{sub 3}Fe{sub 1.8}Co{sub 0.2}O{sub 7−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation (deviation around 60 mV). In contrast, the sensor constructed using the proton conductor element Sr(Ce{sub 0.6}–Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−δ} showed a deviation higher than 100 mV between experimental an theoretical data.

  15. A new superhard material: Osmium diboride OsB 2

    Science.gov (United States)

    Hebbache, M.; Stuparević, L.; Živković, D.

    2006-08-01

    Superhard materials have many industrial applications, wherever resistance to abrasion and wear are important. The synthesis of new superhard materials is one of the great challenges to scientists. We re-examined the phase diagram of the binary osmium-boron system and confirmed the existence of two hexagonal phases, OsB 1.1, Os 2B 3, and an orthorhombic phase, OsB 2. Almost nothing is known about the physical properties of osmium borides. Microhardness measurements show that OsB 2 is extremely hard. Ab initio calculations show that this is due to formation of covalent bonds between boron atoms. OsB 2 is also a low compressibility material. It can be used as hard coating.

  16. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons

    International Nuclear Information System (INIS)

    Chihara, Junzo

    1987-01-01

    X-ray scattered intensity from a liquid metal as an electron-ion mixture is described using the structure factors, which are exactly expressed in terms of the static and dynamic direct correlation functions. This intensity for a metal is shown to differ from the usual scattered intensity from a non-metal in two points: the atomic form factor and the incoherent (Compton) scattering factor. It is shown that the valence electron form factor, which constitutes the atomic form factor in a liquid metal, leads to a determination of the electron-electron and electron-ion structure factors by combining the ionic structure factor. It is also shown that a part of the electron structure factor, which appears as the incoherent x-ray scattering, is usually approximated as the electron structure factor of the jellium model in the case of a simple metal. As a by-product, the x-ray scattered intensity from a crystalline metal and the inelastic scattering from a liquid metal are given by taking account of the presence of conduction electrons. In this way, we clarify some confusion which appeared in the proposal by Egelstaff et al for extracting the electron-electron correlation function in a metal from x-ray and neutron scattering experiments. A procedure to extract the electron-electron and electron-ion structure factors in a liquid metal is proposed on the basis of formula for scattered intensity derived here. (author)

  17. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    International Nuclear Information System (INIS)

    Bauer, T.H.; Holland, J.W.

    1995-01-01

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis is placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel

  18. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  19. The First Homoleptic Complex of Seven-Coordinated Osmium: Synthesis and Crystallographical Evidence of Pentagonal Bipyramidal Polyhedron of Heptacyanoosmate(IV

    Directory of Open Access Journals (Sweden)

    Eugenia V. Peresypkina

    2016-08-01

    Full Text Available The ligand exchange in (n-Bu4N2OsIVCl6 (n-Bu4N = tetra-n-butylammonium leads to the formation of the osmium(IV heptacyanide, the first fully inorganic homoleptic complex of heptacoordinated osmium. The single-crystal X-ray diffraction (SC-XRD study reveals the pentagonal bipyramidal molecular structure of the [Os(CN7]3− anion. The latter being a diamagnetic analogue of the highly anisotropic paramagnetic synthon, [ReIV(CN7]3− can be used for the synthesis of the model heterometallic coordination compounds for the detailed study and simulation of the magnetic properties of the low-dimensional molecular nanomagnets involving 5d metal heptacyanides.

  20. Spectroscopic Identification of the Carbyne Hydride Structure of the Dehydrogenation Product of Methane Activation by Osmium Cations.

    Science.gov (United States)

    Armentrout, P B; Kuijpers, Stach E J; Lushchikova, Olga V; Hightower, Randy L; Boles, Georgia C; Bakker, Joost M

    2018-04-09

    The present work explores the structures of species formed by dehydrogenation of methane (CH 4 ) and perdeuterated methane (CD 4 ) by the 5d transition metal cation osmium (Os + ). Using infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT), the structures of the [Os,C,2H] + and [Os,C,2D] + products are explored. This study complements previous work on the related species formed by dehydrogenation of methane by four other 5d transition metal cations (M + = Ta + , W + , Ir + , and Pt + ). Osmium cations are formed in a laser ablation source, react with methane pulsed into a reaction channel downstream, and the resulting products spectroscopically characterized through photofragmentation using the Free-Electron Laser for IntraCavity Experiments (FELICE) in the 300-1800 cm -1 range. Photofragmentation was monitored by the loss of H 2 /D 2 . Comparison of the experimental spectra and DFT calculated spectra leads to identification of the ground state carbyne hydride, HOsCH + ( 2 A') as the species formed, as previously postulated theoretically. Further, a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy, is achieved. A full rotational contour analysis explains the observed linewidths as well as the observation of doublet structures in several bands, consistent with previous observations for HIrCH + ( 2 A'). Graphical Abstract ᅟ.

  1. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  2. Electric conductivity of alkali metal vapors in the region of critical point

    International Nuclear Information System (INIS)

    Likal'ter, A.A.

    1982-01-01

    A behaviour of alkali metal conductivity in the vicinity of a critical point has been analyzed on the base of deVeloped representations on a vapor state. A phenomenological conductivity theory has been developed, which is in a good agreement with experimental data obtained

  3. Novel Rear Side Metallization Route for Si Solar Cells Using a Transparent Conducting Adhesive: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lee, Benjamin G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nemeth, William M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); LaSalvia, Vincenzo A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-14

    The rear side metallization of Si solar cells comes with a number of inherent losses and trade-offs: a larger metallized area fraction improves fill factor at the expense of open-circuit voltage, depositing directly on textured Si leads to low contact resistivity at the expense of short-circuit current, and some metallization processes create defects in Si. To mitigate many of these losses we have developed a novel approach for rear side metallization of Si solar cells, utilizing a transparent conducting adhesive (TCA) to metallize Si without exposing the wafer to the metal deposition process. The TCA consists of an insulating adhesive loaded with conductive microspheres. This approach leads to virtually no loss in implied open-circuit voltage upon metallization. Electrical measurements showed that contact resistivities of 3-9 ..omega.. cm2 were achieved, and an analysis of the transit resistance per microsphere showed that less than 1 ..omega.. cm2 should be achievable with higher microsphere loading of the TCA.

  4. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    Pakula, Christina; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Zargarani, Dordaneh; Herges, Rainer

    2010-01-01

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  5. Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-M. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)]. E-mail: smchen78@ms15.hinet.net; Liao, C.-J. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)

    2004-11-15

    Osmium hexacyanoferrate films have been prepared using repeated cyclic voltammetry, and the deposition process and the films' electrocatalytic properties in electrolytes containing various cations have been investigated. The cyclic voltammograms recorded the deposition of osmium hexacyanoferrate films directly from the mixing of Os{sup 3+} and Fe(CN){sub 6}{sup 3-} ions from solutions containing various cations. An electrochemical quartz crystal microbalance, cyclic voltammetry, and UV-visible spectroscopy were used to study the growth mechanism of the osmium hexacyanoferrate films. The osmium hexacyanoferrate films showed a single redox couple, and the redox reactions included 'electron transfer' and 'proton transfer' with a formal potential that demonstrates a proton effect in acidic solutions up to a 12 M aqueous HCl solution. The electrochemical and electrochemical quartz crystal microbalance results indicate that the redox process was confined to the immobilized osmium hexacyanoferrate film. The electrocatalytic reduction of dopamine, epinephrine, norepinephrine, S{sub 2}O{sub 3}{sup 2-}, and SO{sub 5}{sup 2-} by the osmium hexacyanoferrate films was performed. The preparation and electrochemical properties of co-deposited osmium(III) hexacyanoferrate and copper(II) hexacyanoferrate films were determined, and their two redox couples showed formal potentials that demonstrated a proton effect and an alkaline cation effect, respectively. Electrocatalytic reactions on the hybrid films were also investigated.

  6. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    Science.gov (United States)

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-07

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  7. Low temperature formation of electrode having electrically conductive metal oxide surface

    Science.gov (United States)

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  8. Metal Phosphates as Proton Conducting Materials for Intermediate Temperature Fuel Cell and Electrolyser Applications

    DEFF Research Database (Denmark)

    Anfimova, Tatiana

    The present thesis presents the results achieved during my ph.d. project on a subject of intermediate temperature proton conducting metal phosphates as electrolyte materials for fuel cells and electrolysers. Fuel cells and electrolysers are electrochemical devices with high energy conversion...... with a proton conductivity of above 10-2S cm-1. Chapter 1 of the thesis is an introduction to basics of fuel cell and electrolyser technologies as well as proton conducting materials. Extended discussion on the proton conducting materials, a particularly phosphates is made in Chapter 2. Three major types...... starts with synthesis and investigation of three rare earth metal phosphate hydrates, which is first presented in Chapter 5. Structural and surface water as well as its stability has been investigated using thermogravimetric and differential thermal analyses combined with structural modeling calculations...

  9. A highly conducting organic metal derived from an organic-transistor material: benzothienobenzothiophene.

    Science.gov (United States)

    Kadoya, Tomofumi; Ashizawa, Minoru; Higashino, Toshiki; Kawamoto, Tadashi; Kumeta, Shohei; Matsumoto, Hidetoshi; Mori, Takehiko

    2013-11-07

    BTBT ([1]benzothieno[3,2-b][1]benzothiophene) is an organic semiconductor that realizes high mobility in organic transistors. Here we report that the charge-transfer (CT) salt, (BTBT)2PF6, shows a high room-temperature conductivity of 1500 S cm(-1). This compound exhibits a resistivity jump around 150 K, but when it is covered with Apiezon N grease the resistivity jump is suppressed, and the metallic conductivity is maintained down to 60 K. Owing to the very high conductivity, the ESR signal shows a significantly asymmetric Dysonian lineshape (A/B ≅ 3) even at room temperature. Since most organic conductors are based on strong electron donors, it is remarkable that such a weak electron donor as BTBT realizes a stable and highly conducting organic metal.

  10. Conductance growth in metallic bilayer graphene nanoribbons with disorder and contact scattering

    International Nuclear Information System (INIS)

    Xu, N; Ding, J W

    2008-01-01

    By using a decomposition elimination method for Green's function matrix, we explore the effects of both disorder and contact scattering on electronic transport in metallic bilayer graphene nanoribbons (BGNRs) and related structures, in the limit of phase-coherent transport. Due to the inter-layer interaction, a conductance gap is observed at Fermi energy in primary metallic zigzag BGNRs. It is found that the fashion of the conductance variations with disorder depends strongly on the type of disorder and contact scattering. In the edge disordered BGNR, the conductance decreases monotonically with the disorder increasing and finally tends to disappear, while a nonmonotonic behavior is obtained in the single-layer disordered BGNR, first decreasing then increasing. In the presence of contact scattering, especially, an abnormal growth of the conductance appears at much lower disorder in both edge and single-layer disordered BGNRs, which may be due to the destruction of coherence by the introduction of disorder.

  11. Anomalous conductance oscillations and half-metallicity in atomic Ag-O chains

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Sethna, James P

    2008-01-01

    . The conductances of the chains exhibit weak even-odd oscillations around an anomalously low value of 0.1G(0) (G(0) = 2e(2)/h) which coincide with the averaged experimental conductance in the long chain limit. The unusual conductance properties are explained in terms of a resonating-chain model, which takes...... the reflection probability and phase shift of a single bulk-chain interface as the only input. The model also explains the conductance oscillations for other metallic chains.......Using spin density functional theory, we study the electronic and magnetic properties of atomically thin, suspended chains containing silver and oxygen atoms in an alternating sequence. Chains longer than 4 atoms develop a half-metallic ground state implying fully spin-polarized charge carriers...

  12. Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Parijat; Bellotti, Enrico [Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 (United States)

    2016-05-23

    We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; the spin Hall conductivity of WSe{sub 2} was found to be larger.

  13. Behavior of solid matters and heavy metals during conductive drying process of sewage sludge

    Directory of Open Access Journals (Sweden)

    Jianping Luo

    2016-12-01

    Full Text Available Behavior of solid matters and heavy metals during conductive drying process of sewage sludge was evaluated in a sewage sludge disposal center in Beijing, China. The results showed most of solid matters could be retained in the dried sludge after drying. Just about 3.1% of solid matters were evaporated with steam mainly by the form of volatile fatty acids. Zn was the dominant heavy metal in the sludge, followed by Cu, Cr, Pb, Ni, Hg, and Cd. The heavy metals in the condensate were all below the detection limit except Hg. Hg in the condensate accounted for less than 0.1% of the total Hg. It can be concluded that most of the heavy metals are also retained in the dried sludge during the drying process, but their bioavailability could be changed significantly. The results are useful for sewage sludge utilization and its condensate treatment.

  14. Changes of electrical conductivity of the metal surface layer by the laser alloying with foreign elements

    Science.gov (United States)

    Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria

    1994-09-01

    Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.

  15. Measurement of thermal conductivity of uranium metal using transient plane source technique

    International Nuclear Information System (INIS)

    Subramanian, G.G.S.; Bapuji, T.; Panneerselvam, G.; Antony, M.P.; Nagarajan, K.

    2012-01-01

    Thermo physical properties of fuel, cladding and structural materials play a significant role in the reactor operation. Thermal conductivity is one of the most important physical properties of the fuel which determines the maximum linear heat rating of the fuel in a reactor. As part of this study, the thermal conductivity of uranium metal was measured using a transient plane source (TPS) by Hot-disc method

  16. Reaction factors for photo-electrochemical deposition of metal silver on polypyrrole as conducting polymer

    International Nuclear Information System (INIS)

    Kawakita, Jin; Boter, Jelmer M.; Shova, Neupane; Fujihira, Hiroshi; Chikyow, Toyohiro

    2015-01-01

    Composite of metal and conducting polymer is expected for electrical application by the use of their advantages. For improvement of the composite’s characteristics, it is important to control formation rate and structure of the composites obtained by simultaneous metal deposition and polymerization under photo irradiation. The purpose of this research was to reveal the effects of UV irradiation and dopant type for conducting polymer on photo-electrochemical deposition of metal. Cathodic polarization curves for silver deposition on polypyrrole doped with different types of anion at different intensity of the UV light were compared. Deposited particles were evaluated by the statistical analysis. The experimental results showed that silver deposition on polypyrrole was enhanced by UV introduction and depended on the dopant type.

  17. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  18. Theory of Persistent, P-Type, Metallic Conduction in C-GeTe

    National Research Council Canada - National Science Library

    Edwards, Arthur H; Pineda, Andrew C; Schultz, Peter A; Martin, Marcus G; Thompson, Aidan P; Hjalmarson, Harold P

    2005-01-01

    .... However, it always displays p-type metallic conduction. This behavior is also observed in other chalcogenide materials, including Ge2Sb2Te5, commonly used for optically and electrically switched, non-volatile memory, and so is or great interest...

  19. Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts

    Czech Academy of Sciences Publication Activity Database

    Starčuková, Jana; Starčuk jr., Zenon; Hubálková, H.; Linetskiy, I.

    2008-01-01

    Roč. 24, č. 6 (2008), s. 715-723 ISSN 0109-5641 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : metallic dental materials * dental alloys * amalgams * MR imaging * magnetic susceptibility * electric conductivity * image artifact Subject RIV: FF - HEENT, Dentistry Impact factor: 2.941, year: 2008

  20. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    International Nuclear Information System (INIS)

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  1. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    Science.gov (United States)

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  2. Metal-insulator transition and Frohlich conductivity in the Su-Schrieffer-Heeger model

    NARCIS (Netherlands)

    Michielsen, K.F L; de Raedt, H.A.

    1996-01-01

    A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the

  3. Electrical conductivity of metal (hydr)oxide–activated carbon composites under compression. A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bogeat, A., E-mail: adrianbogeat@unex.es [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Alexandre-Franco, M.; Fernández-González, C. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Sánchez-González, J. [Department of Mechanical, Energetic and Materials Engineering, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Gómez-Serrano, V. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain)

    2015-02-15

    From a granular commercial activated carbon (AC) and six metal (hydr)oxide precursors, including Al(NO{sub 3}){sub 3}, Fe(NO{sub 3}){sub 3}, SnCl{sub 2}, TiO{sub 2}, Na{sub 2}WO{sub 4} and Zn(NO{sub 3}){sub 2}, a broadly varied series of metal (hydr)oxide–AC composites were prepared by wet impregnation and subsequent oven-drying at 120 °C. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The dc electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays show that the mechanical properties of the composites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density under compression were very small and only significant at pressures lower than 100 kPa for AC and most composites. By contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the nature, content and intrinsic conductivity of the supported metal phases, which act as insulating thin layers thereby hindering the effective electron transport between AC cores of neighbouring sample particles in contact under compression. Conductivity values for the composites were lower than for the raw AC, all of them falling in the range of typical semiconductor materials. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure effects rather than the volume ones. - Highlights: • Pressure-dependent conductivity is studied for metal (hydr)oxide–AC composites. • Mechanical properties of the composites are essentially determined by AC. • Supported metal (hydr)oxides determine the bulk conductivity of the composites. • Metal (hydr)oxides act as insulating thin layers hindering the

  4. Theory of quantum metal to superconductor transitions in highly conducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  5. Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate

    Science.gov (United States)

    Zhu, Shuze; Geng, Xiumei; Han, Yang; Benamara, Mourad; Chen, Liao; Li, Jingxiao; Bilgin, Ismail; Zhu, Hongli

    2017-10-01

    Element sulfur in nature is an insulating solid. While it has been tested that one-dimensional sulfur chain is metallic and conducting, the investigation on two-dimensional sulfur remains elusive. We report that molybdenum disulfide layers are able to serve as the nanotemplate to facilitate the formation of two-dimensional sulfur. Density functional theory calculations suggest that confined in-between layers of molybdenum disulfide, sulfur atoms are able to form two-dimensional triangular arrays that are highly metallic. As a result, these arrays contribute to the high conductivity and metallic phase of the hybrid structures of molybdenum disulfide layers and two-dimensional sulfur arrays. The experimentally measured conductivity of such hybrid structures reaches up to 223 S/m. Multiple experimental results, including X-ray photoelectron spectroscopy (XPS), transition electron microscope (TEM), selected area electron diffraction (SAED), agree with the computational insights. Due to the excellent conductivity, the current density is linearly proportional to the scan rate until 30,000 mV s-1 without the attendance of conductive additives. Using such hybrid structures as electrode, the two-electrode supercapacitor cells yield a power density of 106 Wh kg-1 and energy density 47.5 Wh kg-1 in ionic liquid electrolytes. Our findings offer new insights into using two-dimensional materials and their Van der Waals heterostructures as nanotemplates to pattern foreign atoms for unprecedented material properties.

  6. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    Science.gov (United States)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  7. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Maaroufi, A., E-mail: maaroufi@fsr.ac.ma [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Oabi, O. [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Lucas, B. [XLIM UMR 7252 – Université de Limoges/CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO–55 mol%P{sub 2}O{sub 5}, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator – semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10{sup −1} S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10{sup −8} S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 10{sup 5} for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson–Cole and Havriliak–Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson–Cole model, and an account of the interpretation of results is given. - Highlights: • Composites of ZnO-P{sub 2}O{sub 5}/metal were investigated by impedance spectroscopy. • Original ac-conductivity behavior was discovered in ZnO-P{sub 2}O{sub 5}/metal composites. • High dielectric constant is measured in ZnO-P{sub 2}O{sub 5}/metal composites. • Dielectric constant as filler function is well interpreted with percolation theory. • Observed relaxation processes are well described using electric modulus formalism.

  8. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    International Nuclear Information System (INIS)

    Yadawa, P K

    2012-01-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB 2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB 2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB 2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  9. Dynamic conductivity from audio to optical frequencies of semiconducting manganites approaching the metal-insulator transition

    Science.gov (United States)

    Lunkenheimer, P.; Mayr, F.; Loidl, A.

    2006-07-01

    We report the frequency-dependent conductivity of the manganite system La1-xSrxMnO3 (x0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state.

  10. Dynamic conductivity from audio to optical frequencies of semiconducting manganites approaching the metal-insulator transition

    International Nuclear Information System (INIS)

    Lunkenheimer, P.; Mayr, F.; Loidl, A.

    2006-01-01

    We report the frequency-dependent conductivity of the manganite system La 1-x Sr x MnO 3 (x≤0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Assessment of effective thermal conductivity in U–Mo metallic fuels with distributed gas bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang; Casella, Andrew M.; Lavender, Curt A.; Senor, David J.; Burkes, Douglas E.

    2015-07-15

    This work presents a numerical method to assess the relative impact of various microstructural features including grain sizes, nanometer scale intragranular gas bubbles, and larger intergranular gas bubbles in irradiated U–Mo metallic fuels on the effective thermal conductivity. A phase-field model was employed to construct a three-dimensional polycrystalline U–Mo fuel alloy with a given crystal morphology and gas bubble microstructures. An effective thermal conductivity “concept” was taken to capture the effect of polycrystalline structures and gas bubble microstructures with significant size differences on the thermal conductivity. The thermal conductivity of inhomogeneous materials was calculated by solving the heat transport equation. The obtained results are in reasonably good agreement with experimental measurements made on irradiated U–Mo fuel samples containing similar microstructural features. The developed method can be used to predict the thermal conductivity degradation in operating nuclear fuels if the evolution of microstructures is known during operation of the fuel.

  12. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  13. The lattice thermal conductivity of pure metals: Aluminium and Indium, ch. 4

    International Nuclear Information System (INIS)

    Lang, H.N. de

    1977-01-01

    The lattice conductivity of aluminium and indium has been determined by reducing the electronic thermal conductivity by means of a magnetic field. This was done using the Corbino configuration which prevents the thermal Hall field from forming, hence produces the largest magnetoresistance for a given field strength. In this way for the first time the lattice conductivity of Al and In was measured by the magnetic field method. Apart from a discussion of these results, a comprehensive and critical examination is given of the different methods to determine the lattice conductivity of metals, the phenomenon of the linear magnetoresistance, the quadratic field dependence of the MR and the anomalous lattice conductivity of Potassium as well as the phenomenon of curve crossing

  14. Interaction of ruthenium (4) and osmium (4) with 2-mercaptobenzimidazole, 2-mercaptobenzoxazole and 2-mercaptobenzothiazole in the presence of edta

    International Nuclear Information System (INIS)

    Busev, A.I.; Ignat'eva, T.I.; Lomakina, L.N.

    1975-01-01

    Interaction of ruthenium (4) and osmium (4) with 2-mercaptobenzimidazole (2MBI), 2-mercaptobenzoxazole (2MBO) and 2-mercaptobenzothiazole (2MBT) in the presence of EDTA was studied. The interaction of ruthenium (4) and osmium (4) with EDTA was constidered. Ruthenium complex is formed with constant output at 2-4.5 pH after 30 min.heating. In the lowacid solution (pH 2-4) osmium reacts with EDTA forming soluble compound. Characteristics of ruthenium (4) compound with 2MBI, 2MBO and 2MBT produced in the presence of EDTA are presented. Osmium (4) in the presence of EDTA and above mentioned organic reagents and when heating forms lowsoluble compounds. Possibility of joint determination of ruthenium and osmium with help of 2MBI in the presence of EDTA under conditions of minimum complexing osmium with EDTA was investigated

  15. Interaction of ruthenium (4) and osmium (4) with 2-mercaptobenzimidazole, 2-mercaptobenzoxazole and 2-mercaptobenzothiazole in the presence of EDTA

    Energy Technology Data Exchange (ETDEWEB)

    Busev, A I; Ignat' eva, T I; Lomakina, L N [Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Analiticheskoj Khimii

    1975-05-01

    Interaction of ruthenium (4) and osmium (4) with 2-mercaptobenzimidazole (2MBI), 2-mercaptobenzoxazole (2MBO) and 2-mercaptobenzothiazole (2MBT) in the presence of EDTA was studied. The interaction of ruthenium (4) and osmium (4) with EDTA was considered. Ruthenium complex is formed with constant output at 2-4.5 pH after 30 min. heating. In the low acid solution (pH 2-4) osmium reacts with EDTA forming soluble compound. Characteristics of ruthenium (4) compound with 2MBI, 2MBO and 2MBT produced in the presence of EDTA are presented. Osmium (4) in the presence of EDTA and above mentioned organic reagents and when heating forms low soluble compounds. Possibility of joint determination of ruthenium and osmium with help of 2MBI in the presence of EDTA under conditions of minimum complexing osmium with EDTA was investigated.

  16. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    International Nuclear Information System (INIS)

    Anil V. Virkar

    2006-01-01

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about ∼0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum ∼0.025 (Omega)cm 2 area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO 3 with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating ∼1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life

  17. Preparation of large-area molecular junctions with metallic conducting Langmuir–Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Kengo [Division of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima Koto-ku, Tokyo 135-8533 (Japan); Ohnuki, Hitoshi, E-mail: ohnuki@kaiyodai.ac.jp [Division of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima Koto-ku, Tokyo 135-8533 (Japan); Shimizu, Daisuke [Division of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima Koto-ku, Tokyo 135-8533 (Japan); Imakubo, Tatsuro [Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Tsuya, Daiju [National Institute for Materials Science,1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Izumi, Mitsuru [Division of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima Koto-ku, Tokyo 135-8533 (Japan)

    2014-03-03

    Metallic conducting Langmuir–Blodgett (LB) films were used as soft electrodes to fabricate molecular junctions with self-assembled monolayers (SAMs) of alkanethiols (CH{sub 3}(CH{sub 2}){sub n−1}SH) on an Au surface. Alkanethiols can form highly ordered, stable dielectric SAMs on metal surfaces over large areas. However, it is difficult to establish electrical contacts on such SAMs, which has limited their application. In this work, we used metallic conducting LB films composed of bis(ethylenedioxy)tetrathiafulvalene and stearic acid as a soft electrode onto alkanethiol SAMs (C{sub n}-SAM, n = 12, 14, 16, 18) to prepare Au/SAM/metal junctions of relatively large size (∼ 15.6 × 10{sup 3} μm{sup 2}). The current density–voltage (J–V) characteristics across the junctions exhibited rectifying behavior with a ratio R of ∼ 5 (R = |J(V)|/|J(− V)| at ± 1 V). The lower transfer rate corresponding to the electron transport from Au to the LB films exhibited nonlinear J–V characteristics, while the higher transfer rate of electrons from the LB film to Au showed linear J–V characteristics. Kelvin probe force microscopy revealed that the work function of the metallic LB films was smaller than that of Au. The observed rectification behavior is probably caused by different electron transport mechanisms between the two current directions. - Highlights: • Metallic Langmuir–Blodgett (LB) films were used as soft electrodes. • Molecular junctions of metal–alkanethiol–LB films were fabricated. • The current–voltage curve across the junctions exhibited rectifying behavior. • This is the first observation for alkanethiol monolayer junctions. • The work function difference between the electrodes induces the rectification.

  18. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    Science.gov (United States)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  19. Tunneling conductance oscillations in spin-orbit coupled metal-insulator-superconductor junctions

    Science.gov (United States)

    Kapri, Priyadarshini; Basu, Saurabh

    2018-01-01

    The tunneling conductance for a device consisting of a metal-insulator-superconductor (MIS) junction is studied in presence of Rashba spin-orbit coupling (RSOC) via an extended Blonder-Tinkham-Klapwijk formalism. We find that the tunneling conductance as a function of an effective barrier potential that defines the insulating layer and lies intermediate to the metallic and superconducting electrodes, displays an oscillatory behavior. The tunneling conductance shows high sensitivity to the RSOC for certain ranges of this potential, while it is insensitive to the RSOC for others. Additionally, when the period of oscillations is an odd multiple of a certain value of the effective potential, the conductance spectrum as a function of the biasing energy demonstrates a contrasting trend with RSOC, compared to when it is not an odd multiple. The explanations for the observation can be found in terms of a competition between the normal and Andreev reflections. Similar oscillatory behavior of the conductance spectrum is also seen for other superconducting pairing symmetries, thereby emphasizing that the insulating layer plays a decisive role in the conductance oscillations of a MIS junction. For a tunable Rashba coupling, the current flowing through the junction can be controlled with precision.

  20. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    Science.gov (United States)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  1. Mathematical Modeling of Electrical Conductivity of Dielectric with Dispersed Metallic Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are increasingly used for application in engineering as structural, thermal protection and functional materials, including dielectrics, because of a wide variety of properties. The relative dielectric constant and the dielectric loss tangent are basic functional characteristics of a composite used as a dielectric. The quantitative level of these characteristics is mainly affected by the properties of the composite matrix and inclusions as well as their shape and volume concentration. Metallic inclusions in a dielectric, which serves as a function of the composite matrix, expand electrical properties of the composite in particular increase its dielectric constant and dielectric loss tangent and thereby greatly expand its application field. Dielectric losses are defined by the imaginary component of the complex value of the relative dielectric constant of the dielectric. At a relatively low vibration frequency of electromagnetic field affecting the dielectric, this value is proportional to the electrical conductivity of the dielectric and inversely proportional to the frequency. In order to predict the expected value of the electric conductivity of the dielectric with metallic inclusions, a mathematical model that properly describes the structure of the composite and the electrical interaction of the matrix and inclusions is required.In the paper, a mathematical model of the electrical interaction of the representative element of the composite structure and a homogeneous isotropic medium with electrical conductivity, which is desired characteristics of the composite, is constructed. Globular shape of the metallic inclusions as an average statistical form of dispersed inclusions with a comparable size in all directions is adopted. The inclusion is covered with a globular layer of electrical insulation to avoid percolation with increasing volume concentration of inclusions. Outer globular layer of representative structure of composite

  2. Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ci Lijie

    2009-01-01

    Full Text Available Abstract Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes.

  3. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian; Li, Er Qiang; Lubineau, Gilles; Thoroddsen, Sigurdur T; Mulle, Matthieu

    2016-01-01

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young's modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  4. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian

    2016-06-09

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  5. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui

    2013-02-21

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  6. Graphene inclusion controlling conductivity and gas sorption of metal-organic framework

    OpenAIRE

    Lamagni, Paolo; Pedersen, Birgitte Lodberg; Godiksen, Anita; Mossin, Susanne; Hu, Xin Ming; Pedersen, Steen Uttrup; Daasbjerg, Kim; Lock, Nina

    2018-01-01

    A general approach to prepare composite films of metal-organic frameworks and graphene has been developed. Films of copper(ii)-based HKUST-1 and HKUST-1/graphene composites were grown solvothermally on glassy carbon electrodes. The films were chemically tethered to the substrate by diazonium electrografting resulting in a large electrode coverage and good stability in solution for electrochemical studies. HKUST-1 has poor electrical conductivity, but we demonstrate that the addition of graphe...

  7. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui; Xiao, Jiang; Manchon, Aurelien; Maekawa, Sadamichi

    2013-01-01

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  8. Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.

    Science.gov (United States)

    Fairfield, J A; Rocha, C G; O'Callaghan, C; Ferreira, M S; Boland, J J

    2016-11-03

    Nanowire networks act as self-healing smart materials, whose sheet resistance can be tuned via an externally applied voltage stimulus. This memristive response occurs due to modification of junction resistances to form a connectivity path across the lowest barrier junctions in the network. While most network studies have been performed on expensive noble metal nanowires like silver, networks of inexpensive nickel nanowires with a nickel oxide coating can also demonstrate resistive switching, a common feature of metal oxides with filamentary conduction. However, networks made from solely nickel nanowires have high operation voltages which prohibit large-scale material applications. Here we show, using both experiment and simulation, that a heterogeneous network of nickel and silver nanowires allows optimization of the activation voltage, as well as tuning of the conduction behavior to be either resistive switching, memristive, or a combination of both. Small percentages of silver nanowires, below the percolation threshold, induce these changes in electrical behaviour, even for low area coverage and hence very transparent films. Silver nanowires act as current concentrators, amplifying conductivity locally as shown in our computational dynamical activation framework for networks of junctions. These results demonstrate that a heterogeneous nanowire network can act as a cost-effective adaptive material with minimal use of noble metal nanowires, without losing memristive behaviour that is essential for smart sensing and neuromorphic applications.

  9. A new technique for precise measurement of thermal conductivity of metals at normal and high temperatures

    International Nuclear Information System (INIS)

    Binkele, L.

    1990-09-01

    Theoretical and experimental investigations on a new measuring technique are described; a technique similar to the well known Kohlrausch measuring technique, which is characterized by direct electrical sample heating. Subject of the investigations is a cylindrical metallic sample, 5 mm thick and 200 mm in length, which is positioned vertically between water-cooled clamps in a vacuum container. The sample can be heated using two simultaneously operating current sources, a 50 Hz-source for axial flow (main heating) as well as a 200 kHz-induction source for generating eddy currents in two short regions above and below the sample centre (additional heating). By using two heating sources different symmetrical temperature profiles in a central eddy-current-free area of about ± 10mm can be produced for any given central sample temperature. The last chapter contains thermal conductivity and electrical resistivity measuring curves for Pt, W, Fe, Ni, Ag, Al, Mg, Ir, Ru, Re, Ho and Y in the temperature range 273 to 1500 K representative of all the metals and alloys investigated. In cases where comparisons with published precise conductivity data, established by other measuring techniques in restricted temperature ranges, were posible, the new measuring method is greatly supported (in the case of Pt, W, Ni, Ag, Al). For the Metals Ir, Ru, Re, Ho and Y high temperature thermal conductivity data are given for the first time. (orig./MM) [de

  10. Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Abadir, G B; Walus, K; Pulfrey, D L

    2010-01-01

    We study the interaction between short semi-metallic carbon nanotubes and different amino acids using molecular dynamics and ab initio (density functional theory/non-equilibrium Green's function) simulations. We identify two different mechanisms of nanotube conductance change upon adsorption of amino acids: one due to the change of the coordinates of the nanotube arising from van der Waals forces of interaction with the adsorbed amino acid; and one due to electrostatic interactions, which appear only in the case of charged amino acids. We also find that the transport mechanism and the changes in the conductance of the tube upon amino acid adsorption are bias dependent.

  11. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    Yang, X H; Kuang, J J; Lu, T J; Han, F S; Kim, T

    2013-01-01

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  12. Highly Conductive, Transparent Flexible Films Based on Metal Nanoparticle-Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Wen-Yin Ko

    2013-01-01

    Full Text Available Metallic nanoparticles decorated on MWCNTs based transparent conducting thin films (TCFs show a cheap and efficient option for the applications in touch screens and the replacement of the ITO film because of their interesting properties of electrical conductivity, mechanical property, chemical inertness, and other unique properties, which may not be accessible by their individual components. However, a great challenge that always remains is to develop effective ways to prepare junctions between metallic nanoparticles and MWCNTs for the improvement of high-energy barriers, high contact resistances, and weak interactions which could lead to the formation of poor conducting pathways and result in the CNT-based devices with low mechanical flexibility. Herein, we not only discuss recent progress in the preparation of MNP-CNT flexible TCFs but also describe our research studies in the relevant areas. Our result demonstrated that the MNP-CNT flexible TCFs we prepared could achieve a highly electrical conductivity with the sheet resistance of ~100 ohm/sq with ~80% transmittance at 550 nm even after being bent 500 times. This electrical conductivity is much superior to the performances of other MWCNT-based transparent flexible films, making it favorable for next-generation flexible touch screens and optoelectronic devices.

  13. Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts

    International Nuclear Information System (INIS)

    Altaf, Khurram; Rani, Abdul Ahmad Majdi; Ahmad, Faiz; Baharom, Masri; Raghavan, Vijay R.

    2016-01-01

    Polymer injection molds are generally manufactured with metallic materials, such as tool steel, which provide reliable working of molds and extended service life. The manufacture of injection molds with steel is a prolonged process because of the strength of steel. For a short prototype production run, one of the suitable choices could be the use of aluminum-filled epoxy material, which can produce a functional mold in a short time as compared with a conventionally machined tool. Aluminum-filled epoxy tooling is a good choice for short production runs for engineering applications, yet works best for relatively simple shapes. The advantages in relation to the fabrication of injection molds with epoxy-based materials include time saving in producing the mold, epoxy curing at ambient temperature, and ease of machining and post processing. Nevertheless, one major drawback of epoxy material is its poor thermal conductivity, which results in a relatively longer cooling time for epoxy injection molds. This study investigates some of the innovative ideas for enhancing the thermal conductivity for epoxy molds. The basic concept behind these ideas was to embed a highly thermally conductive metal insert within the mold between cavities with an innovative design of cooling channels called profiled cooling channels. This technique will increase the effective thermal conductivity of the epoxy mold, leading to the reduction in cooling time for the injection molded polymer part. Experimental analysis conducted in the current study also verified that the mold with profiled cooling channels and embedded metal insert has significantly reduced the cooling time

  14. Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts

    Energy Technology Data Exchange (ETDEWEB)

    Altaf, Khurram; Rani, Abdul Ahmad Majdi; Ahmad, Faiz; Baharom, Masri [Mechanical Engineering Dept., Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Raghavan, Vijay R. [OYL Manufacturing, Sungai Buloh (Malaysia)

    2016-11-15

    Polymer injection molds are generally manufactured with metallic materials, such as tool steel, which provide reliable working of molds and extended service life. The manufacture of injection molds with steel is a prolonged process because of the strength of steel. For a short prototype production run, one of the suitable choices could be the use of aluminum-filled epoxy material, which can produce a functional mold in a short time as compared with a conventionally machined tool. Aluminum-filled epoxy tooling is a good choice for short production runs for engineering applications, yet works best for relatively simple shapes. The advantages in relation to the fabrication of injection molds with epoxy-based materials include time saving in producing the mold, epoxy curing at ambient temperature, and ease of machining and post processing. Nevertheless, one major drawback of epoxy material is its poor thermal conductivity, which results in a relatively longer cooling time for epoxy injection molds. This study investigates some of the innovative ideas for enhancing the thermal conductivity for epoxy molds. The basic concept behind these ideas was to embed a highly thermally conductive metal insert within the mold between cavities with an innovative design of cooling channels called profiled cooling channels. This technique will increase the effective thermal conductivity of the epoxy mold, leading to the reduction in cooling time for the injection molded polymer part. Experimental analysis conducted in the current study also verified that the mold with profiled cooling channels and embedded metal insert has significantly reduced the cooling time.

  15. Role of Interchain Coupling in the Metallic State of Conducting Polymers

    Science.gov (United States)

    Kim, Nara; Lee, Byoung Hoon; Choi, Doowhan; Kim, Geunjin; Kim, Heejoo; Kim, Jae-Ryoung; Lee, Jongjin; Kahng, Yung Ho; Lee, Kwanghee

    2012-09-01

    We investigated the charge dynamics of the conductivity enhancement from 2 to 1000S/cm in poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) as induced by structural changes through the addition of a polar solvent and the following solvent bath treatment. Our results indicate that the addition of a polar solvent selectively enhanced the π-π coupling of the polymer chains, resulting in the reduction of disorder and tremendously increasing the charge carrier mobility, which yielded an insulator-to-metal transition. In contrast, the following solvent bath treatment selectively enhanced the intergrain coupling, which did not affect the disorder or the mobility but increased the charge carrier density. Therefore, we demonstrate that the conduction-character defining disorder in this conducting polymer system is determined by the extent of interchain coupling.

  16. Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Muller, K.H.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T.

    2002-01-01

    Full text: We have investigated theoretically and experimentally the temperature dependence of the conductance of films of Au nanoparticles linked by alkane dithiol molecules in the temperature range between 5 K and 300 K. Conduction in these films is due to tunneling of single electrons between neighbouring metal nanoparticles. During tunnelling an electron has to overcome the Coulomb charging energy. We find that the observed temperature dependence of the conductance is non-Arrhenius like and can be described in terms of a percolation theory which takes account of disorder in the system. Disorder in our nanoparticle films is caused by variations in the nanoparticle size, fluctuations in the separation gaps between adjacent nanoparticles and by offset charges. To explain in detail our experimental data, a wide distribution of separation gaps and charging energies is needed. We find that a wide Coulomb charging energy distribution can arise from random offset charges even if the nanoparticle size distribution is narrow

  17. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    Science.gov (United States)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  18. Seasonal shift of diet in bank voles explains trophic fate of anthropogenic osmium?

    Science.gov (United States)

    Ecke, Frauke; Berglund, Åsa M M; Rodushkin, Ilia; Engström, Emma; Pallavicini, Nicola; Sörlin, Dieke; Nyholm, Erik; Hörnfeldt, Birger

    2018-05-15

    Diet shifts are common in mammals and birds, but little is known about how such shifts along the food web affect contaminant exposure. Voles are staple food for many mammalian and avian predators. There is therefore a risk of transfer of contaminants accumulated in voles within the food chain. Osmium is one of the rarest earth elements with osmium tetroxide (OsO 4 ) as the most toxic vapor-phase airborne contaminant. Anthropogenic OsO 4 accumulates in fruticose lichens that are important winter food of bank voles (Myodes glareolus). Here, we test if a) anthropogenic osmium accumulates in bank voles in winter, and b) accumulation rates and concentrations are lower in autumn when the species is mainly herbivorous. Our study, performed in a boreal forest impacted by anthropogenic osmium, supported the hypotheses for all studied tissues (kidney, liver, lung, muscle and spleen) in 50 studied bank voles. In autumn, osmium concentrations in bank voles were even partly similar to those in the graminivorous field vole (Microtus agrestis; n=14). In autumn but not in late winter/early spring, osmium concentrations were generally negatively correlated with body weight and root length of the first mandible molar, i.e. proxies of bank vole age. Identified negative correlations between organ-to-body weight ratios and osmium concentrations in late winter/early spring indicate intoxication. Our results suggest unequal accumulation risk for predators feeding on different cohorts of bank voles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...... direct calculation of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules is calculated as a difference. The results yield the following primary hydration numbers: Li+: 5.5-5.6; Na+: 4.0-4.1; K+: 2.0-2.5; Rb+: 0.6-1.2; Cs+: ~0. The most important...

  20. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  1. Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator Transition

    International Nuclear Information System (INIS)

    Desjarlais, Michael P.

    2000-01-01

    The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere

  2. Practical improvements to the Lee-More conductivity near the metal-insulator transition

    International Nuclear Information System (INIS)

    Desjarlais, M.P.

    2001-01-01

    The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere. (orig.)

  3. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  4. Synergistically improved thermal conductivity of polyamide-6 with low melting temperature metal and graphite

    Directory of Open Access Journals (Sweden)

    Y. C. Jia

    2016-08-01

    Full Text Available Low melting temperature metal (LMTM-tin (Sn was introduced into polyamide-6 (PA6 and PA6/graphite composites respectively to improve the thermal conductivity of PA6 by melt processing (extruding and injection molding. After introducing Sn, the thermal conductivity of PA6/Sn was nearly constant because of the serious agglomeration of Sn. However, when 20 wt% (5.4 vol% of Sn was added into PA6 containing 50 wt% (33.3 vol% of graphite, the thermal conductivity of the composite was dramatically increased to 5.364 versus 1.852 W·(m·K–1 for the PA6/graphite composite, which suggests that the incorporation of graphite and Sn have a significant synergistic effect on the thermal conductivity improvement of PA6. What is more, the electrical conductivity of the composite increased nearly 8 orders of magnitudes after introducing both graphite and Sn. Characterization of microstructure and energy dispersive spectrum analysis (EDS indicates that the dispersion of Sn in PA6/graphite/Sn was much more uniform than that of PA6/Sn composite. According to Differential Scanning Calorimetry measurement and EDS, the uniform dispersion of Sn in PA6/graphite/Sn and the high thermal conductivity of PA6/graphite/Sn are speculated to be related with the electron transfer between graphite and Sn, which makes Sn distribute evenly around the graphite layers.

  5. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  6. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks.

    Science.gov (United States)

    Agina, Elena V; Sizov, Alexey S; Yablokov, Mikhail Yu; Borshchev, Oleg V; Bessonov, Alexander A; Kirikova, Marina N; Bailey, Marc J A; Ponomarenko, Sergei A

    2015-06-10

    An approach to polymer surface modification using self-assembled layers (SALs) of functional alkoxysilanes has been developed in order to improve the printability of silver nanoparticle inks and enhance adhesion between the metal conducting layer and the flexible polymer substrate. The SALs have been fully characterized by AFM, XPS, and WCA, and the resulting printability, adhesion, and electrical conductivity of the screen-printed metal contacts have been estimated by cross-cut tape test and 4-point probe measurements. It was shown that (3-mercaptopropyl)trimethoxysilane SALs enable significant adhesion improvements for both aqueous- and organic-based silver inks, approaching nearly 100% for PEN and PDMS substrates while exhibiting relatively low sheet resistance up to 0.1 Ω/sq. It was demonstrated that SALs containing functional -SH or -NH2 end groups offer the opportunity to increase the affinity of the polymer substrates to silver inks and thus to achieve efficient patterning of highly conductive structures on flexible and stretchable substrates.

  7. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    International Nuclear Information System (INIS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-01-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient. - Highlights: • For metallic nanoporous materials, there is an appropriate pore size for thermal conductivity tuning. • ETC increases with increasing pore size until pore size reaches about four times EMFP. • The ETC difference between different directions will be less than 10%. • The ETC can be decreased by 30% with tuning specular coefficient.

  8. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  9. Metallic-like Wilson ratio in the polyaniline hydrochloride conducting polymer

    International Nuclear Information System (INIS)

    Limelette, P.; Schmaltz, B.; Tran Van, F.; Brault, D.

    2015-01-01

    We report on the calorimetric and magnetic properties of the polyaniline hydrochloride in order to discuss its metallicity. Both the specific heat and the magnetic susceptibility χ have been investigated as a function of temperature from 300 K down to 2 K. The measurements of the specific heat have allowed us to determine the electronic Sommerfeld coefficient γ and the temperature dependence of the susceptibility has revealed a Pauli-like component. By combining χ and γ, the dimensionless Wilson ratio R W ∝χ/γ demonstrates that the universal free electrons limit is reached above 100 K as a strong check of the metallicity of this conducting polymer. By removing the Pauli component from the measured susceptibility, the resulting contribution displays below 100 K a well-defined Curie-like component in agreement with a few percents of spins localized by disorder at low temperatures. These results are therefore consistent with an electronic itinerancy, namely, a metallic state even in the presence of disorder

  10. Nonmonotonic anisotropy in charge conduction induced by antiferrodistortive transition in metallic SrTiO3

    Science.gov (United States)

    Tao, Qian; Loret, Bastien; Xu, Bin; Yang, Xiaojun; Rischau, Carl Willem; Lin, Xiao; Fauqué, Benoît; Verstraete, Matthieu J.; Behnia, Kamran

    2016-07-01

    Cubic SrTiO3 becomes tetragonal below 105 K. The antiferrodistortive (AFD) distortion leads to clockwise and counterclockwise rotation of adjacent TiO6 octahedra. This insulator becomes a metal upon the introduction of extremely low concentration of n -type dopants. However, signatures of the structural phase transition in charge conduction have remained elusive. Employing the Montgomery technique, we succeed in resolving the anisotropy of charge conductivity induced by the AFD transition, in the presence of different types of dopants. We find that the slight lattice distortion (liquids, the anisotropy has opposite signs for elastic and inelastic scattering. Increasing the concentration of dopants leads to a drastic shift in the temperature of the AFD transition either upward or downward. The latter result puts strong constraints on any hypothetical role played by the AFD soft mode in the formation of Cooper pairs and the emergence of superconductivity in SrTiO3.

  11. Development of Mo base alloys for conductive metal-alumina cermet applications

    International Nuclear Information System (INIS)

    Stephens, J.J.; Damkroger, B.K.; Monroe, S.L.

    1996-01-01

    A study of thermal expansion for binary Mo-V and ternary Mo-V-Fe/Mo-V-Co alloys has been conducted, with the aim of finding a composition which matches the CTE of 94% alumina ceramic. The overall goal was to identify an alloy which can be used in conductive 27 vol.% metal/73 vol.% alumina cermets. Besides thermal expansion properties, two additional requirements exist for this alloy: (1) compatibility with a hydrogen sinter fire atmosphere and (2) a single phase BCC microstructure. They have identified a ternary alloy with a nominal composition of Mo-22wt.% V-3Fe for use in cermet fabrication efforts. This paper summarizes thermal expansion properties of the various alloys studied, and compares the results with previous CTE data for Mo-V binary alloys

  12. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Science.gov (United States)

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes.

  13. Flow injection kinetic spectrofluorimetric determination of trace amounts of osmium

    Science.gov (United States)

    Tang, Bo; Zhang, Hui; Wang, Yan

    2005-07-01

    A flow injection (FI) kinetic spectrofluorimetric method is described for the determination of osmium(IV) and the possible mechanism of catalytic reaction is discussed. The method is based on the fluorescence enhancing reaction of o-vanillin furfuralhydrazone (OVFH) with potassium bromate, which is catalyzed by Os(IV) in water medium at pH 6.10 and 45 °C. OVFH is newly synthesized and its ionization, IR and elemental analysis are established. Under these experimental conditions, the oxidized product of OVFH has excitation and emission maxima at 337 and 490 nm, respectively. The linear range of this method is 0-600 ng ml -1 with the R.S.D. of 1.2%. The detection limit is 1.0 ng ml -1 of Os(IV). A high analysis rate of 24 samples h -1 is obtained by the FI method. The proposed method is applied successfully to determine Os(IV) in synthetic mixture and mineral samples, and the results are well consistent with the standard values.

  14. Control of Transboundary Movement of Radioactive Material Inadvertently Incorporated into Scrap Metal and Semi-finished Products of the Metal Recycling Industries. Results of the Meetings Conducted to Develop a Draft Code of Conduct

    International Nuclear Information System (INIS)

    2014-02-01

    In 2010, the IAEA initiated the development of a code of conduct on the transboundary movement of radioactive material inadvertently incorporated into scrap metal and semi- finished products of the metal recycling industries (Metal Recycling Code of Conduct). The Metal Recycling Code of Conduct was intended to harmonize the approaches of Member States in relation to the discovery of radioactive material that may inadvertently be present in scrap metals and semi-finished products subject to transboundary movement, and their safe handling and management to facilitate regulatory control. The Metal Recycling Code of Conduct was envisaged as being complementary to the Safety Guide on Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries (IAEA Safety Standards Series No. SSG-17), which provides recommendations, principally within a national context, on the protection of workers, members of the public and the environment in relation to the control of radioactive material inadvertently incorporated in scrap metal. In February 2013, the third open-ended meeting of technical and legal experts to develop the Metal Recycling Code of Conduct was organized. The objective of this meeting was to address the comments received from Member States and to finalize the text of the draft Metal Recycling Code of Conduct. Representatives from 55 Member States, one non-Member State and the EU, together with seven observers from the metal recycling industry, reviewed the comments and revised the draft accordingly. In September 2013, in Resolution GC(57)/RES/9, the IAEA General Conference recorded that it 'Appreciates the intensive efforts undertaken by the Secretariat to develop a code of conduct on the transboundary movement of scrap metal, or materials produced from scrap metal, that may inadvertently contain radioactive material, and encourages the Secretariat to make the results of the discussion conducted on this issue available to

  15. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.

    Science.gov (United States)

    Abdalla, S; Obaid, A; Al-Marzouki, F M

    2017-12-01

    Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a molecular conducting material (wire), semiconductor, or insulator? The answer, after the published data, is still ambiguous without any confirmed and clear scientific answer. DNA is found to be always surrounded with different electric charges, ions, and dipoles. These surrounding charges and electric barrier(s) due to metallic electrodes (as environmental factors (EFs)) play a substantial role when measuring the electrical conductivity through λ-double helix (DNA) molecule suspended between metallic electrodes. We found that strong frequency dependence of AC-complex conductivity comes from the electrical conduction of EFs. This leads to superimposing serious incorrect experimental data to measured ones. At 1 MHz, we carried out a first control experiment on electrical conductivity with and without the presence of DNA molecule. If there are possible electrical conduction due to stray ions and contribution of substrate, we will detected them. This control experiment revealed that there is an important role played by the environmental-charges around DNA molecule and any experiment should consider this role. We have succeeded to measure both electrical conductivity due to EFs (σ ENV ) and electrical conductivity due to DNA molecule (σ DNA ) independently by carrying the measurements at different DNA-lengths and subtracting the data. We carried out measurements as a function of frequency (f) and temperature (T) in the ranges 0.1 Hz molecule from all EFs effects that surround the molecule, but also to present accurate values of σ DNA and the dielectric constant of the molecule ε' DNA as a

  16. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.

    Science.gov (United States)

    Xu, Xingtao; Tang, Jing; Qian, Huayu; Hou, Shujin; Bando, Yoshio; Hossain, Md Shahriar A; Pan, Likun; Yamauchi, Yusuke

    2017-11-08

    Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elaborately designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.

  17. Highly stretchable and conductive fibers enabled by liquid metal dip-coating

    Science.gov (United States)

    Zhang, Qiang; Roach, Devin J.; Geng, Luchao; Chen, Haosen; Qi, H. Jerry; Fang, Daining

    2018-03-01

    Highly stretchable and conductive fibers have been fabricated by dip-coating of a layer of liquid metal (eutectic gallium indium, EGaIn) on printed silicone elastomer filaments. This fabrication method exploits a nanolayer of oxide skin that rapidly forms on the surface of EGaIn when exposed to air. Through dip-coating, the sticky nature of the oxide skin leads to the formation of a thin EGaIn coating (˜5 μm thick) on the originally nonconductive filaments and renders these fibers excellent conductivity. Electrical characterization shows that the fiber resistance increases moderately as the fiber elongates but always maintains conductivity even when stretched by 800%. Besides this, these fibers possess good cyclic electrical stability with little degradation after hundreds of stretching cycles, which makes them an excellent candidate for stretchable conductors. We then demonstrate a highly stretchable LED circuit as well as a conductive stretchable net that extends the 1D fibers into a 2D configuration. These examples demonstrate potential applications for topologically complex stretchable electronics.

  18. Conduction mechanism in assemblies of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Mueller, K.-H.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T.

    2002-01-01

    Full text: We have investigated theoretically and experimentally electron transport through thin films of gold nanoparticles which are linked by alkanedithiol molecules of different chain lengths. We find that conduction between neighbouring nanoparticles takes place by electron tunnelling along weakly conducting organic linker molecules. Using a tight binding model for the alkanedithiol molecules to describe the tunnelling process we predict the conductivity to decrease exponentially with the length of the molecules. During tunnelling the electron has to overcome a charging energy due to the electron-hole interaction between tunnelling electrons and the corresponding holes left behind on the donor nanoparticle. Experimentally we find that large applied voltages cause nonlinear I-V characteristics and that the temperature dependence of the conductivity does not show Arrhenius behaviour but instead is of the form exp[-(E o /kT) 1/2 ]. Using percolation theory for a network of metal nanoparticles separated by barriers we show that strong disorder caused by variations in nanoparticle size and linker length as well as randomly trapped electric charges on the linker molecules can well explain our experimental data

  19. Spectrophotometric determination of hydrogen peroxide with osmium(VIII) and m-carboxyphenylfluorone.

    Science.gov (United States)

    Hoshino, Mitsuru; Kamino, Shinichiro; Doi, Mitsunobu; Takada, Shingo; Mitani, Shota; Yanagihara, Rika; Asano, Mamiko; Yamaguchi, Takako; Fujita, Yoshikazu

    2014-01-03

    Spectrophotometric determination of hydrogen peroxide was accomplished with osmium(VIII) and m-carboxyphenylfluorone (MCPF) in the presence of cetyltrimethylammonium chloride (CTAC). In the determination of hydrogen peroxide based on the fading of the color of osmium(VIII)-MCPF complex, Beer's law was obeyed in the range 20-406 ng mL(-1), with an effective molar absorption coefficient (at 580 nm) of 5.21×10(4) L mol(-1) cm(-1) and a relative standard deviation of 0.33% (n=6). Further, we performed the characterization of MCPF and obtained the crystal structure. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, H., E-mail: helene.takacs@gmail.com [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Viala, B.; Hermán, V. [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); Tortai, J.-H. [LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Duclairoir, F. [Université Grenoble Alpes, INAC, Grenoble 38054 (France); CEA, INAC, Grenoble 38054 (France)

    2016-03-07

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  1. Radiation induced synthesis of conducting polymers and their metal nano-composites

    International Nuclear Information System (INIS)

    Cui, Zhenpeng

    2017-01-01

    The aim of the present work is to demonstrate the versatility of the gamma (γ)-rays based radiolytic method and to extend our methodology to the synthesis of various conducting polymers (CPs) in water in different experimental conditions. Poly(3,4-ethylenedioxy-thiophene) (PEDOT) and poly-pyrrole (PPy) conjugated polymers were successfully prepared and characterized in solution and after deposition by complementary spectroscopic and microscopic techniques. Also their thermal stability and their electrical conductivity were studied and compared with those of CPs prepared by conventional methods. The influence of the nature of radiation-induced oxidizing radicals, of the ionic strength, of the medium, of the pH, of the presence of surfactant-based soft templates on the growth mechanism, on the efficiency of polymerization, on the morphology of the obtained CPs as well as on their absorption and conducting properties was checked. Also, the radiolytic method was extend to the synthesis of CPs/noble metal nano-composites. Different preparation methodologies were developed based on two-step method and one-pot method, by using oxidation route or reduction route. Our new radiolytic strategy described and extended in this manuscript opens the way for the preparation of different kinds of CPs and CPs nano-composites not only in aqueous solutions but also in various environments foreshadowing many promising applications.. (author)

  2. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  3. Metallized compliant 3D microstructures for dry contact thermal conductance enhancement

    Science.gov (United States)

    Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.

    2018-05-01

    Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.

  4. Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point

    Science.gov (United States)

    Kastrinakis, George

    2018-05-01

    We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.

  5. Anomalous electrical conduction in disordered and non-crystalline metallic conductors

    International Nuclear Information System (INIS)

    Tsuei, C.C.

    1978-01-01

    Many disordered and non-crystalline metallic conductors are characterized by both a negative temperature coefficient (α = rho -1 drho/dT) of resistivity rho over a wide range of temperatures T and a gradual leveling-off of rho at low temperatures. Experimental results will be presented to show that rho varies as -ln T (for T >approximately the Debye temperature) in contrast to the predication of existing theories. This anomalous electron transport can be understood in terms of an attractive interaction between conduction electrons and localized excitations arising from a structural indeterminacy in the atomic arrangement. The possibility of using this scattering mechanism to explain the unusual deviation from linear T dependence of resistivity (the bulge effect) in many structurally unstable superconductors such as A-15 Nb 3 Ge, V 3 Si, bcc Nb and alloys containing the ω-phase is also discussed. (author)

  6. Graphene inclusion controlling conductivity and gas sorption of metal-organic framework

    DEFF Research Database (Denmark)

    Lamagni, Paolo; Pedersen, Birgitte Lodberg; Godiksen, Anita

    2018-01-01

    A general approach to prepare composite films of metal-organic frameworks and graphene has been developed. Films of copper(ii)-based HKUST-1 and HKUST-1/graphene composites were grown solvothermally on glassy carbon electrodes. The films were chemically tethered to the substrate by diazonium...... electrografting resulting in a large electrode coverage and good stability in solution for electrochemical studies. HKUST-1 has poor electrical conductivity, but we demonstrate that the addition of graphene to HKUST-1 partially restores the electrochemical activity of the electrodes. The enhanced activity......, however, does not result in copper(ii) to copper(i) reduction in HKUST-1 at negative potentials. The materials were characterised in-depth: microscopy and grazing incidence X-ray diffraction demonstrate uniform films of crystalline HKUST-1, and Raman spectroscopy reveals that graphene is homogeneously...

  7. Conduction and rectification in NbO{sub x}- and NiO-based metal-insulator-metal diodes

    Energy Technology Data Exchange (ETDEWEB)

    Osgood, Richard M., E-mail: richard.m.osgood.civ@mail.mil; Giardini, Stephen; Carlson, Joel [US Army Natick Soldier Research Development and Engineering Center (NSRDEC), 15 General Greene Ave., Natick, Massachusetts 01760 (United States); Periasamy, Prakash; Guthrey, Harvey; O' Hayre, Ryan [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Chin, Matthew; Nichols, Barbara; Dubey, Madan [RF and Electronics Division, US Army Research Laboratory, Adelphi, Maryland 20783 (United States); Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy [Division of Engineering, Brown University, Box D, Providence, Rhode Island 02912 (United States); Parilla, Philip; Berry, Joseph; Ginley, David [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-09-15

    Conduction and rectification in nanoantenna-coupled NbO{sub x}- and NiO-based metal-insulator-metal (MIM) diodes (“nanorectennas”) are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current–voltage (I–V) curves, over 10 orders of magnitude in current density, from [NbO{sub x}(native)-Nb{sub 2}O{sub 5}]- and NiO-based samples with oxide thicknesses in the range of 5–36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I–V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I–V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I–V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I–V curves with our model, the barrier heights in Nb-(NbO{sub x}(native)-Nb{sub 2}O{sub 5})-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbO{sub x} (native)-Nb{sub 2}O{sub 5} dielectric properties improve, and the effective Pt-Nb{sub 2}O{sub 5} barrier height increases as the oxide thickness increases. An observation of direct current of ∼4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports

  8. Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation

    International Nuclear Information System (INIS)

    Bannister, M.E.; Hijazi, H.; Meyer, H.M.; Cianciolo, V.; Meyer, F.W.

    2014-01-01

    An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R and D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 × 10 16 cm −2 , where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5–6.2 × 10 16 cm −2 . Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities

  9. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.).

    Science.gov (United States)

    de Silva, Nayana Dilini Gardiyehewa; Cholewa, Ewa; Ryser, Peter

    2012-10-01

    The effects of heavy metal stress, drought stress, and their combination on xylem structure in red maple (Acer rubrum) seedlings were investigated in an outdoor pot experiment. As metal-contaminated substrate, a mixture of 1.5% slag with sand was used, with Ni, Cu, Co, and Cr as the main contaminants. Plants grown on contaminated substrate had increased leaf metal concentrations. The two stresses reduced plant growth in an additive manner. The effects of metal and drought stresses on xylem characteristics were similar to each other, with a reduced proportion of xylem tissue, reduced conduit density in stems, and reduced conduit size in the roots. This resulted, in both stems and roots, in reductions in hydraulic conductance, xylem-specific conductivity, and leaf-specific conductivity. The similarity of the responses to the two stresses suggests that the plants' response to metals was actually a drought response, probably due to the reduced water uptake capacity of the metal-exposed roots. The only plant responses specific to metal stress were decreasing trends of stomatal density and chlorophyll content. In conclusion, the exposure to metals aggravates water stress in an additive manner, making the plants more vulnerable to drought.

  10. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khasa, S.; Yadav, Arti, E-mail: artidabhur@gmail.com; Dahiya, M. S.; Seema,; Ashima [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Physics Department, G.J. University of science and technology, Hisar-125001 (India)

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  11. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels

    Science.gov (United States)

    Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo

    2016-02-01

    We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a

  12. Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

    Science.gov (United States)

    Na, Min Young; Park, Sung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2018-05-01

    Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔT x ) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔC p ). The measured ΔT x and ΔC p values show a strong composition dependence. However, the composition showing the highest ΔT x and ΔC p does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔT x and ΔC p may be related to enhancement of icosahedral SRO near T g during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.

  13. Conductivity of weakly disordered strange metals: From conformal to hyperscaling-violating regimes

    Directory of Open Access Journals (Sweden)

    Andrew Lucas

    2015-03-01

    Full Text Available We present a semi-analytic method for constructing holographic black holes that interpolate from anti-de Sitter space to hyperscaling-violating geometries. These are holographic duals of conformal field theories in the presence of an applied chemical potential, μ, at a non-zero temperature, T, and allow us to describe the crossover from ‘strange metal’ physics at T≪μ, to conformal physics at T≫μ. Our holographic technique adds an extra gauge field and exploits structure of the Einstein–Maxwell system to manifestly find 1-parameter families of solutions of the Einstein-matter system in terms of a small family of functions, obeying a nested set of differential equations. Using these interpolating geometries, we re-consider holographically some recent questions of interest about hyperscaling-violating field theories. Our focus is a more detailed holographic computation of the conductivity of strange metals, weakly perturbed by disorder coupled to scalar operators, including both the average conductivity as well as sample-to-sample fluctuations. Our findings are consistent with previous scaling arguments, though we point out logarithmic corrections in some special (holographic cases. We also discuss the nature of superconducting instabilities in hyperscaling-violating geometries with appropriate choices of scalar couplings.

  14. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    NARCIS (Netherlands)

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  15. Voltammetry of osmium-modified DNA at a mercury film electrode application in detecting DNA hybridization

    Czech Academy of Sciences Publication Activity Database

    Kostečka, Pavel; Havran, Luděk; Pivoňková, Hana; Fojta, Miroslav

    2004-01-01

    Roč. 63, 1-2 (2004), s. 245-248 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004108; GA AV ČR KJB4004302 Institutional research plan: CEZ:AV0Z5004920 Keywords : osmium * DNA hybridization * mercury film electrode Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  16. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Science.gov (United States)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  17. The effect of metal ion exchange and alkali metal doping on the electrical conductivity of the Faujasite-type zeolite 13X

    International Nuclear Information System (INIS)

    Swart, S.

    1983-12-01

    Zeolite 13X was synthesized in the sodium form. Some transition metal cations were introduced into the zeolite framework by ion exchange reactions. These different cationic zeolite forms were doped or impregnated with sodium metal, utilizing the adsorptive properties of the zeolite. An A.C. technique was used to determine the electrical conductivity of the dehydrated ion exchanged zeolites and the sodium impregnated zeolite samples as a function of temperature. The conductivity value obtained was used to determine some thermodynamic parameters relating to the conduction process. For the dehydrated ion exchanged zeolites the electrical conductivity showed a general decrease with a decreasing ion exchange capacity. The sodium impregnated zeolites showed an increase in conductivity with respect to the dehydrated unimpregnated samples. This was attributed to the presence of Na 6 5 + centres in the impregnated zeolites. The reduction of some of the metal cations by the sodium on impregnation did not appear to have any significant effect on the overall ionic conductivity of the samples. The conductivity as a function of temperature and pressure for the dehydrated sodium form of zeolite 13X and its impregnated counterpart was determined. The conductivity was found to increase with increasing pressure and temperature

  18. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    International Nuclear Information System (INIS)

    Funari, Valerio; Meisel, Thomas; Braga, Roberto

    2016-01-01

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and 187 Os/ 188 Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of 187 Os/ 188 Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m 2 /a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m 2 /a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  19. Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies.

    Science.gov (United States)

    Kaweeteerawat, Chitrada; Ivask, Angela; Liu, Rong; Zhang, Haiyuan; Chang, Chong Hyun; Low-Kam, Cecile; Fischer, Heidi; Ji, Zhaoxia; Pokhrel, Suman; Cohen, Yoram; Telesca, Donatello; Zink, Jeffrey; Mädler, Lutz; Holden, Patricia A; Nel, Andre; Godwin, Hilary

    2015-01-20

    Metal oxide nanoparticles (MOx NPs) are used for a host of applications, such as electronics, cosmetics, construction, and medicine, and as a result, the safety of these materials to humans and the environment is of considerable interest. A prior study of 24 MOx NPs in mammalian cells revealed that some of these materials show hazard potential. Here, we report the growth inhibitory effects of the same series of MOx NPs in the bacterium Escherichia coli and show that toxicity trends observed in E. coli parallel those seen previously in mammalian cells. Of the 24 materials studied, only ZnO, CuO, CoO, Mn2O3, Co3O4, Ni2O3, and Cr2O3 were found to exert significant growth inhibitory effects; these effects were found to relate to membrane damage and oxidative stress responses in minimal trophic media. A correlation of the toxicological data with physicochemical parameters of MOx NPs revealed that the probability of a MOx NP being toxic increases as the hydration enthalpy becomes less negative and as the conduction band energy approaches those of biological molecules. These observations are consistent with prior results observed in mammalian cells, revealing that mechanisms of toxicity of MOx NPs are consistent across two very different taxa. These results suggest that studying nanotoxicity in E. coli may help to predict toxicity patterns in higher organisms.

  20. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  1. Kapitza conductance of metal single crystals by the second sound technique

    International Nuclear Information System (INIS)

    Wagner, F.; Kollarits, F.J.; Wilkes, K.E.; Yaqub, M.

    1975-01-01

    The Kapitza conductance h/sub K/ of high-purity single crystals of gallium, copper, lead, and tin, between 1.2 and 2 0 K, has been determined by an improved version of the second, sound method developed by Challis and Sherlock. By using a special mounting technique, strains in the samples were avoided on cooling. A comparison of the results with those given in the literature shows that our values of h/sub K/ are consistently higher than those obtained by using the steady-state method. By introducing different amounts of strain in a given sample its h/sub K/ was reduced by corresponding amounts. Thus, for a given metal, the entire range of reported steady-state values was covered. In the region of 1--2 0 K, strain not only reduces h/sub K/, but also increases the temperature dependence considerably. Although a reduction of h/sub K / with strain has been reported with the steady-state measurements, it is not accompanied by an increase in the temperature dependence. Possible reasons for this are discussed. Study of the superconductors lead and tin shows that the temperature exponent is nearly the same in the superconducting and normal states. The absolute value of h/sub K/ decreases in lead typically by 6 percent and increases in tin by 5 percent. (auth)

  2. Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory

    International Nuclear Information System (INIS)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Kenyon, Anthony J.; Fearn, Sarah; Chater, Richard; McPhail, David

    2015-01-01

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G 0 , is a natural boundary between the high and low resistance states of our devices

  3. Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory

    Science.gov (United States)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Fearn, Sarah; Chater, Richard; McPhail, David; Kenyon, Anthony J.

    2015-03-01

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G0, is a natural boundary between the high and low resistance states of our devices.

  4. Structural changes and conductance thresholds in metal-free intrinsic SiO{sub x} resistive random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Mehonic, Adnan, E-mail: a.mehonic@ee.ucl.ac.uk, E-mail: t.kenyon@ucl.ac.uk; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Kenyon, Anthony J., E-mail: a.mehonic@ee.ucl.ac.uk, E-mail: t.kenyon@ucl.ac.uk [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Fearn, Sarah; Chater, Richard; McPhail, David [Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2015-03-28

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G{sub 0}, is a natural boundary between the high and low resistance states of our devices.

  5. Growth, morphology, and conductivity in semimetallic/metallic films on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Jnawali, Giriraj

    2009-06-09

    This dissertation deals with the study of epitaxial growth of semimetallic (Bi) and metallic (Ag) films on Si(001) as well as in situ electrical transport study of those films via surface manipulation. The focus of the transport measurements is to study the influence of the surface morphology or structure on the resistance of the film. In spite of the large lattice mismatch and different lattice geometry, it is possible to grow epitaxial Bi(111) films on Si(001) substrates, which are surprisingly smooth, relaxed and almost free of defects. Due to the two-fold symmetry of the substrates, the Bi(111) film is composed of crystallites rotated by 90 with respect to each other. Annealing of 6 nm film from 150 K to 450 K enables the formation of a periodic interfacial misfit dislocations, which accommodates a remaining lattice mismatch of 2.3 %. The surface/interface roughness and the bulk defect density of the film found to be extremely low, indicating the high crystalline quality of the film with atomically smooth surface and abrupt interface. Similar to the Bi films, Ag grows in a (111) orientation on Si(001) with two 90 rotated domains. The remaining strain of 2.2 % (tensile) is accommodated by the formation of an ordered network of dislocations. The Ag film exhibits atomically smooth surface. Those Bi films and Ag films were used as model systems to study the influence of the surface morphology on the electrical resistance. Surprisingly, all the Bi films (3-170 nm thicknesses) have shown an anomalous behavior of conductance with temperature and thickness. As in the case of doped semiconductor, the conductance increases exponentially from 150 K to 300 K and saturates at 350 K before finally decreasing with temperature. In situ measurements of the resistance during additional Bi deposition on the smooth Bi(111) films exhibit a square root dependent with coverage after a linear increase at very low coverage (1 % of a BL). During additional deposition of Bi, carriers are

  6. Determination of the thermal conductivity of metallic coatings; Determinacion de la conductividad termica de recubrimientos metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Uc Way, Manuel Eugenio

    1998-02-01

    Due to the corrosion by high temperature there is a serious problem of unavailability and efficiency of the steam generators in the thermoelectric power stations. One of the parts that is more affected by this phenomenon is the superheater tube banks. In order to diminish this problem it is intended to apply to these tubes a metallic coating nickel and chromium based (80Ni20Cr), the deposition of the coating is made by the method of thermal spraying of powders by flame. The coating thickness once it has been deposited is of the order of 500mm, it is doubtless that the thermal flow between gases of combustion and the fluid conducted in the tubes is affected. That is why it is important to know the thermal conductivity of the coating in order to evaluate the impact that it has in the operation of the steam generator. This necessity is the one that gives rise to the present thesis project, in which a technique that allows to measure the thermal conductivity of the coating is designed. The experimentation is carried out taking as departure point the ASTM norm E1225-87 and is adapted to the characteristics of the material to prove. A test piece of stainless steel 316 was designed to measure the thermal flow that traverses the coating. First the experimental installation was characterized in order to determine its reliability. Later the experimentation was made finding an average thermal conductivity of 2.09{+-}0.72 W/m K in the temperature interval of 110-180 Celsius degrees. This value is 12.3% inferior to the corresponding one of a solid metal of the same composition. If we consider that in the high temperature banks of the steam generators the thermal flow is in the interval from 15.000 to 100.000 W/m{sup 2} and a coating thickness of the order of 500mm it would cause that this material would introduce a temperature difference of 0.6 to 4 Celsius degrees, respectively. Please note that for the highest thermal flow a maximum affectation of 4 Celsuis degrees is

  7. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  8. Transparent and conductive electrodes by large-scale nanostructuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    grid, and nano-wire thin-films [1]. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...

  9. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  10. Effect of island shape on dielectrophoretic assembly of metal nanoparticle chains in a conductive-island-based microelectrode system

    International Nuclear Information System (INIS)

    Ding, Haitao; Shao, Jinyou; Ding, Yucheng; Liu, Weiyu; Li, Xiangming; Tian, Hongmiao; Zhou, Yaopei

    2015-01-01

    Highlights: • Conductive island shape influences the dynamic process occurring in DEP assembly of 10 nm gold nanoparticles in a conductive-island-based microelectrode system. • The DEP-assembled nanoparticle wires form a straighter conduction path with the increase in the geometric angle of conductive island tip. • The different island shapes distort the DEP force distribution and increase the local electrothermally induced fluid flow to different extents, which is important for the morphology and electrical conductance quality of the DEP-assembled metal nanoparticle chains. - Abstract: The electrical conduction quality of an electric circuit connection formed by dielectrophoretic (DEP)-assembled metal nanoparticle wires between small conductive elements plays a significant role in electronic devices. One of the major challenges for improving the electrical conductance of nanowires is optimizing their geometric morphology. So far, the electrical conduction quality has been enhanced by optimizing the AC frequency and conductivity of nanoparticle suspensions. Herein, the effect of the conductive island shapes on the dynamic process occurring in a DEP assembly of 10 nm gold nanoparticles was investigated in a conductive-island-based microelectrode system. The nanoparticle wires between the microelectrodes were assembled in situ from colloidal suspensions. The wires were grown in a much straighter route by increasing the geometric angle of the conductive-island tip. To validate the experiments, the effects of mutual DEP interactions and electrothermally induced fluid flow on the dynamic behavior of particle motion for different island geometric configurations in the conductive-island-based microelectrode system were determined by numerical simulations. The simulation results are consistent with those of experiments. This indicates that different conductive island shapes change the distribution of DEP force and increase the electrothermally induced fluid flow to

  11. Thermal conductivity, electric resistivity, and Lorenz function for some transition metals measured by a direct electric heating technique

    International Nuclear Information System (INIS)

    Binkele, Ludolf

    1985-01-01

    The validity of the Wiedemann-Franz-Lorenz law in its standard form is disputed in the case of transition metals. However, normal behaviour could be demonstrated for the transition metals molybdenum, tantalum, and niobium by the application of an already tried and tested, and recently improved, modified Kohlrausch measuring method; that is, the high-temperature Lorenz number of these metals takes the Sommerfeld value, within measuring uncertainties of approx. 3%. In the case of tungsten, saturation was observed 16.7% above the Sommerfeld value. Even the Lorenz number of platinum seems to take on a saturation value at that level at temperatures above 1400 K. The lattice conductivity separated by various processes displays a temperature dependence describable by an exponential law for all the metals studied, in contrast to previous assumptions. (author)

  12. Ionic conductivity of metal oxides : an essential property for all-solid-state Lithium-ion batteries

    NARCIS (Netherlands)

    Chen, C.; Eichel, R.-A.; Notten, P.H.L.

    2017-01-01

    Essential progress has been made for adopting metal oxides (MeO) in various energy storage and energy conversion applications. Among these, utilizing MeO in Lithium-ions batteries (LIBs) seems to be one of the most promising applications. In particular, conductive Li-containing oxides or

  13. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  14. Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber.

    Science.gov (United States)

    Schiffres, Scott N; Malen, Jonathan A

    2011-06-01

    A novel 3ω thermal conductivity measurement technique called metal-coated 3ω is introduced for use with liquids, gases, powders, and aerogels. This technique employs a micron-scale metal-coated glass fiber as a heater/thermometer that is suspended within the sample. Metal-coated 3ω exceeds alternate 3ω based fluid sensing techniques in a number of key metrics enabling rapid measurements of small samples of materials with very low thermal effusivity (gases), using smaller temperature oscillations with lower parasitic conduction losses. Its advantages relative to existing fluid measurement techniques, including transient hot-wire, steady-state methods, and solid-wire 3ω are discussed. A generalized n-layer concentric cylindrical periodic heating solution that accounts for thermal boundary resistance is presented. Improved sensitivity to boundary conductance is recognized through this model. Metal-coated 3ω was successfully validated through a benchmark study of gases and liquids spanning two-orders of magnitude in thermal conductivity. © 2011 American Institute of Physics

  15. Fabrication of conductive metallized nanostructures from self-assembled amphiphilic triblock copolymer templates: Nanospheres, nanowires, nanorings

    International Nuclear Information System (INIS)

    Zhu Jintao; Jiang Wei

    2007-01-01

    Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au at Ag) core-shell nanostructures could be achieved by chemical metal deposition method

  16. Analysis of a rhenium-osmium solid-solution spike by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Richardson, J.M.; Dickin, A.P.; McNutt, R.H.; McAndrew, J.I.; Beneteau, S.B.

    1989-01-01

    The rhenium-osmium decay scheme ( 187 Re → 187 Os) offers a unique opportunity to investigate the genesis of, and directly date, ultramafic rock, sulphide and platinum ore deposits. Inductively coupled plasma mass spectrometry (ICP-MS) is a viable method for Os isotopic analysis as it provides the high temperatures necessary to ionise Os. The sample can be introduced into the ICP mass spectrometer either by conventional nebulisation or by distillation using an Os ''generator''. Generator-mode analysis is superior to nebulisation because (i) the total number of counts is two orders of magnitude higher for a given sample size and (ii) Os oxidises readily to volatile OsO 4 , which has a boiling-point lower than most Re compounds, so that Os can be efficiently separated from 187 Re. The importance of Os loss during sample preparation was minimised by combining the sample powder with a powdered Re-Os isotopic spike prior to any chemical treatment. The spike is in a nickel sulphide matrix and was made by a thioacetamide co-precipitation of Os, Re and Ni followed by a fire assay. The 190 Os/ 192 Os ratio in this preparation is 51.5 ± 0.9, the 187 Os 188 Os ratio is 0.063 ± 0.006 and the 185 Re/ 187 Re ratio is 17.04 - + 0.41. These values are within the error limits quoted by the Oak Ridge National Laboratory and Techsnabexport, the suppliers of the metallic spikes. Parameters that significantly influence the Os analyses include the oxidising agent and the run temperature. The oxidising agent H 5 IO 6 is preferred to H 2 O 2 or HNO 3 as it has the highest electrode potential, provides a prolonged, consistent reaction and is more stable when stored. Chilling the sample and the H 5 IO 6 , initially retards uncontrolled OsO 4 emission. Heat applied later in the run releases OsO 4 and helps maintain a high count rate. Thus, OsO 4 can be generated in a steady, controllable and reproducible manner. (author)

  17. Method of quantitative analysis of superconducting metal-conducting composite materials

    International Nuclear Information System (INIS)

    Bogomolov, V.N.; Zhuravlev, V.V.; Petranovskij, V.P.; Pimenov, V.A.

    1990-01-01

    Technique for quantitative analysis of superconducting metal-containing composite materials, SnO 2 -InSn, WO 3 -InW, Zn)-InZn in particular, has been developed. The method of determining metal content in a composite is based on the dependence of superconducting transition temperature on alloy composition. Sensitivity of temperature determination - 0.02K, error of analysis for InSn system - 0.5%

  18. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  19. Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites

    Science.gov (United States)

    Parkinson; Hawkesworth; Cohen

    1998-09-25

    Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.

  20. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures

    International Nuclear Information System (INIS)

    Mansoor, I; Liu, Y; Stoeber, B; Häfeli, U O

    2013-01-01

    Transdermal drug delivery using microneedles is a technique to potentially replace hypodermic needles for injection of many vaccines and drugs. Fabrication of hollow metallic microneedles so far has been associated with time-consuming steps that restrict batch production of these devices. Here, we are presenting a novel method for making metallic microneedles with any desired height, spacing, and lumen size. In our process, we use solvent casting to coat a mold, which contains an array of pillars, with a conductive polymer composite layer. The conductive layer is then used as a seed layer in a metal electrodeposition process. To characterize the process, the conductivity of the polymer composite with respect to different filler concentrations was investigated. In addition, plasma etching of the polymer was characterized. The electroplating process was also studied further to control the thickness of the microneedle array plate. The strength of the microneedle devices was evaluated through a series of compression tests, while their performance for transdermal drug delivery was tested by injection of 2.28 µm fluorescent microspheres into animal skin. The fabricated metallic microneedles seem appropriate for subcutaneous delivery of drugs and microspheres. (paper)

  1. Electrical conductivity dependence of thin metallic films of Au and Pd as a top electrode in capacitor applications

    International Nuclear Information System (INIS)

    Nazarpour, S.; Langenberg, E.; Jambois, O.; Ferrater, C.; Garcia-Cuenca, M.V.; Polo, M.C.; Varela, M.

    2009-01-01

    Electrical conductivity dependence of thin metallic films of Au and Pd over the different perovskites was investigated. It is found from electrical properties that crystallographic growth orientation of Au and Pd thin layers attained from X-ray diffraction results indicate the slop of current (I)-voltage (V) plots. Besides, surface morphology and topography was considered using Field Emission Scanning Electron Microscopy and Atomic Force Microscopy, respectively. Obtained results showed the Stranski-Krastanov growth of the Pd and Au. Indeed, diminishing of the root-mean-square roughness of Pd/BiMnO 3 /SrTiO 3 following by Au deposition should be concerned due to growth of Au onto the crack-like parts of the substrate. These crack-like parts appeared due to parasitic phases of the Bi-Mn-O system mainly Mn 3 O 4 (l 0 l) and Mn 3 O 4 (0 0 4 l). The different response in the electrical properties of heterostructures suggests that electrical conductance of the Au and Pd thin metallic films have the crystallographic orientation dependence. Furthermore, polycrystallinity of the thin metallic films are desired in electrode applications due to increase the conductivity of the metallic layers.

  2. Special features of the formation of high-conductivity phases of halides of alkali metals at superhigh pressures

    International Nuclear Information System (INIS)

    Babushkin, A.N.; Babushkina, G.V.

    1999-01-01

    The halides of alkali metals are the simplest crystals with the ionic nature of chemical bonds and are used widely as modelling materials in high-pressure physics. As a result of previous theoretical and experimental (optical, structural, electro-physical and shock-waves) investigations it was shown that these materials may be characterised by the overlapping of the valency and conduction bands and by the formation of groups of free charge carriers at pressures of the megabaric level. However, the authors know of no data on the direct investigations of the electrophysical properties of the halides of alkali metals at such high static pressures. The end of this investigation was to examine the temperature dependences of the electrical conductivity and thermal EMF of halides of alkali metals AX (A = Na, K, Rb, Cs, X = Cl, Br, I) in a wide temperature range at pressures from 10 to 50 GPa in order to reveal the general leisure since governing the change of their electronic structures, in particular, the transition to the state with the activation-type or metallic conductivity

  3. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    Science.gov (United States)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-03-01

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  4. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    International Nuclear Information System (INIS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-01-01

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain

  5. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-03-28

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  6. Voltammetry of osmium end-labeled oligodeoxynucleotides at carbon, mercury, and gold electrodes

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Ferreyra, N.; Ostatná, Veronika; Fojta, Miroslav; Rivas, G.; Paleček, Emil

    2007-01-01

    Roč. 19, č. 12 (2007), s. 1334-1338 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA203/06/1685; GA AV ČR(CZ) KAN400310651; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040702 Keywords : modification of DNA * osmium complexes * electroactive labels Subject RIV: BO - Biophysics Impact factor: 2.949, year: 2007

  7. End-labeling of peptide nucleic acid with osmium complex. Voltammetry at carbon and mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Trefulka, Mojmír; Fojta, Miroslav

    2009-01-01

    Roč. 11, č. 2 (2009), s. 359-362 ISSN 1388-2481 R&D Projects: GA AV ČR(CZ) KAN400310651; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : peptide nucleic acid end-labeling * osmium tetroxide complexes * electroactive labels Subject RIV: BO - Biophysics Impact factor: 4.243, year: 2009

  8. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  9. Metallic conductivity in a disordered charge-transfer salt derived from cis-BET-TTF

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, C. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Tarres, J. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Ribera, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Veciana, J. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Canadell, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Molins, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Mas, M. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Laukhin, V. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain)]|[Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Khimicheskoj Fiziki; Doublet, M.L. [Lab. de Structure et Dynamique (CNRS), Univ. de Montpellier 2 (France); Cowan, D.O. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Chemistry; Yang, S. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Chemistry

    1997-02-28

    The first example of a metallic charge-transfer salt derived from cis-bis(ethylenethio)-tetrathiafulvalene (BET-TTF) is reported. (BET-TTF){sub 2}SCN and (BET-TTF)SCN salts were obtained by electrocrystallization starting from trans-BET-TTF. X-ray crystal structure of the mixed-valence salt revealed that trans-cis isomerization occurs upon one electron oxidation. In spite of the structural disorder in both BET-TTF and the counterion, 2:1 salt is metallic down to 60 K and then resistance increases slowly down to 4 K. (orig.)

  10. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-01-01

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous

  11. Achieving Amphibious Superprotonic Conductivity in a CuI Metal-Organic Framework by Strategic Pyrazinium Salt Impregnation.

    Science.gov (United States)

    Khatua, Sajal; Bar, Arun Kumar; Sheikh, Javeed Ahmad; Clearfield, Abraham; Konar, Sanjit

    2018-01-19

    Treatment of a pyrazine (pz)-impregnated Cu I metal-organic framework (MOF) ([1⊃pz]) with HCl vapor renders an interstitial pyrazinium chloride salt-hybridized MOF ([1⊃pz⋅6 HCl]) that exhibits proton conductivity over 10 -2  S cm -1 both in anhydrous and under humid conditions. Framework [1⊃pz⋅6 HCl] features the highest anhydrous proton conductivity among the lesser-known examples of MOF-based materials exhibiting proton conductivity under both anhydrous and humid conditions. Moreover, [1⊃pz] and corresponding pyrazinium sulfate- and pyrazinium phosphate-hybridized MOFs also exhibit superprotonic conductivity over 10 -2  S cm -1 under humid conditions. The impregnated pyrazinium ions play a crucial role in protonic conductivity, which occurs through a Grotthuss mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Devices on Flexible Conducting Graphene Substrates

    OpenAIRE

    Wan, Chang Jin; Wang, Wei; Zhu, Li Qiang; Liu, Yang Hui; Feng, Ping; Liu, Zhao Ping; Shi, Yi; Wan, Qing

    2016-01-01

    Flexible metal oxide/graphene oxide hybrid multi-gate neuron transistors were fabricated on flexible graphene substrates. Dendritic integrations in both spatial and temporal modes were successfully emulated, and spatiotemporal correlated logics were obtained. A proof-of-principle visual system model for emulating lobula giant motion detector neuron was investigated. Our results are of great interest for flexible neuromorphic cognitive systems.

  13. Interfacial Structure and Photocatalytic Activity of Magnetron Sputtered TiO2 on Conducting Metal Substrates

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Mermoux, Michel

    2014-01-01

    The photocatalytic behavior of magnetron sputtered anatase TiO2 coatings on copper, nickel, and gold was investigated with the aim of understanding the effect of the metallic substrate and coating-substrate interface structure. Stoichiometry and nanoscale structure of the coating were investigated...

  14. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    Science.gov (United States)

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  15. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  16. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and {sup 187}Os/{sup 188}Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of {sup 187}Os/{sup 188}Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m{sup 2}/a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m{sup 2}/a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  17. Electronic properties of polyamide-PPy/metal junction and electrical conductivity of a typical sample at low temperatures

    International Nuclear Information System (INIS)

    Suenel, N.; Sedef, A.G.; Parlak, M.; Toppare, L.

    2005-01-01

    Electronic properties of junctions fabricated by polyamide-polypyrrole composite films polymerized with adjusted doping concentration and various metal contacts (In, Al, Au and Ag) were investigated. For the junctions giving good rectification I 0 , n and φ b were specified. Conductivity of polyamide-polypyrrole composite polymer was obtained as a function of temperature in the 70-320 K range and was found to obey the VRH model. In addition the Mott parameters were evaluated

  18. Electronic properties of polyamide-PPy/metal junction and electrical conductivity of a typical sample at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Suenel, N. [Gaziosmanpasa University, Physics Department, Tasliciftlik Kampasu, Tokat (Turkey)]. E-mail: nsunel@gop.edu.tr; Sedef, A.G. [Gaziosmanpasa University, Physics Department, Tasliciftlik Kampasu, Tokat (Turkey); Parlak, M. [Middle East Technical University, Physics Department, Ankara (Turkey); Toppare, L. [Middle East Technical University, Chemistry Department, Ankara (Turkey)

    2005-05-15

    Electronic properties of junctions fabricated by polyamide-polypyrrole composite films polymerized with adjusted doping concentration and various metal contacts (In, Al, Au and Ag) were investigated. For the junctions giving good rectification I{sub 0}, n and {phi}{sub b} were specified. Conductivity of polyamide-polypyrrole composite polymer was obtained as a function of temperature in the 70-320 K range and was found to obey the VRH model. In addition the Mott parameters were evaluated.

  19. Ceramic/Metal Composites with Positive Temperature Dependence of Thermal Conductivity

    International Nuclear Information System (INIS)

    Li Jianhui; Yu Qi; Sun Wei; Zhang Rui; Wang Ke; Li Jingfeng; Ichigozaki, Daisuke

    2013-01-01

    Most materials show decreasing thermal conductivity with increasing temperature, but an opposite temperature dependence of thermal conductivity is required for some industrial applications. The present work was conducted with a motivation to develop composite materials with a positive temperature dependence of thermal conductivity. ZrO 2 / stainless steel powders (304L) composite, with 3% stearic acid, was prepared by normal sintering under the protecting of Ar after mixing by mechanical ball milling technique. With the 304L content increasing from 10% to 20%, the thermal conductivity values increased. For all samples, the thermal conductivity in the temperature range of room temperature to 700 °C decreased with temperature below 300 °C, and then began to increase. The increasing thermal conductivity of the composites (within the high temperature range was attributed to the difference of the thermal conductivity and thermal expansion coefficient between ZrO 2 ceramic and 304L stainless steel powders. Two simple models were also used to estimate the thermal conductivity of the composites, which were in good agreement with the experiment results.

  20. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  1. Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Strieglerová, Lenka; Gebauer, Petr; Boček, Petr

    2011-01-01

    Roč. 32, č. 9 (2011), s. 1025-1032 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA ČR GAP206/10/1219; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electrophoresis * electromembrane extraction * heavy metal cations Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  2. Transient Magnetohydrodynamic Liquid-Metal Flows in a Rectangular Channel with a Moving Conducting Wall

    Science.gov (United States)

    1988-05-01

    use of liquid metals for current collectors in homopolar motors and generators has led to the design of machines of superior performance. The steady...In some applications of homopolar generators it becomes necessary not only to start and stop the machines but also to operate them under oscillating...conditions. This could be the case in an application where a homopolar generator behaves as an extremely high energy capacitor. Therefore, one is

  3. Electrochemically Smart Bimetallic Materials Featuring Group 11 Metals: In-situ Conductive Network Generation and Its Impact on Cell Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther [Stony Brook Univ., NY (United States)

    2016-11-30

    Our results for this program “Electrochemically smart bimetallic materials featuring Group 11 metals: in-situ conductive matrix generation and its impact on battery capacity, power and reversibility” have been highly successful: 1) we demonstrated material structures which generated in-situ conductive networks through electrochemical activation with increases in conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully designed synthetic methodology for direct control of material properties including crystallite size and surface area which showed significant impact on electrochemical behavior.

  4. Study of the conductivity of a metallic tube by analysing the damped fall of a magnet

    International Nuclear Information System (INIS)

    Iniguez, J; Raposo, V; Hernandez-Lopez, A; Flores, A G; Zazo, M

    2004-01-01

    The fall of a magnet through a hollow conducting tube is described. Although this experiment is well known, a detailed treatment by means of a circuit analysis allows us to relate the conductivity of the tube to the characteristic parameters of the experiment

  5. A study on nanocomposites made of a conducting polymer and metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Ahmed Khalil, Rania [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Abdelaziz Mahmoud Abdelaziz, Ramzy [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Strunkus, Thomas; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Conducting polymers offer a unique combination of properties that makes them attractive materials for many electronic applications. PEDOT:PSS is one of the most successful conductive materials which is considered to be highly stable and resisting degradation under typical ambient conditions. In this study, we have prepared two sets of conducting polymer nano-composites. The first set is composed of PEDOT:PSS doped with different aspect ratios of gold nanorod and the other one is PEDOT:PSS doped with different sizes of gold nanosphere. The chemical reduction method was used for preparing the nano-particles. Indeed, gold nanorods and nanosphere which exhibit tunable absorption as a function of their size and aspect ratio, respectively, have tuned the absorption coefficient for PEDOT: PSS. The nature of the dopant as well as the degree of doping has played a significant role in the improvement of the electrical conductivity of conducting polymer.

  6. Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Abdel Ghaffar, A.M.; Eid, M.

    2011-01-01

    The polyelectrolyte has been prepared as a potential proton exchanger polymer by grafting of acrylic acid/acrylamide and acrylic acid/acrylonitrile comonomer onto low density polyethylene film via gamma radiation. The influence of grafting percent on the electrical conductivity was studied. The resulting polymers were then characterized by evaluating their physico-chemical properties such as ion exchange capacity, and electrical conductivity as a function of grafting yield. The grafted films at different compositions was characterized by FTIR, TGA and SEM. The ion exchange capacity (IEC) of the grafted film at grafting % (191) and monomer concentration ratio 50:50 for (LDPE-g-AAc/AAm) was found to be more than that for (LDPE-g-AAc/AN). The electrical conductivity was found to be greatly affected by the comonomer composition where it increased as the degree of grafting increased for all grafted films. After alkaline treatment with 3% KOH, the electrical conductivity of the grafted films found to be increased. The presence of potassium as counter ion maximized the electrical conductivity of the grafted films. The electrical conductivity of Cu-membrane complexes was higher than that of both Co and Ni complexes. The electrical conductivity increases by increasing both Cu ions content and temperature

  7. Ruthenium and osmium carbonyl nitrosyl complexes: Matrix infrared spectra and density functional calculations for M(CO){sub 2}(NO){sub 2} and M(CO)(NO) (M = Ru, Os)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhenjun [Department of Chemistry, Tongji University, Shanghai 200092 (China); Wang, Xuefeng, E-mail: xfwang@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Laser-ablated ruthenium or osmium atom reactions with CO and NO mixtures in solid argon. Black-Right-Pointing-Pointer Metal carbonyl nitrosyls including M(CO)(NO) and 18-electron configuration M(CO){sub 2}(NO){sub 2} molecules (M = Ru, Os). Black-Right-Pointing-Pointer The observed absorption bands of reaction products are identified by isotopic substitution and DFT calculations. Black-Right-Pointing-Pointer The bonding and reaction mechanism are discussed in detail. -- Abstract: Laser-ablated ruthenium or osmium atom reactions with CO and NO mixtures in solid argon produce unsaturated metal carbonyl nitrosyls including M(CO)(NO) and 18-electron configuration M(CO){sub 2}(NO){sub 2} molecules (M = Ru, Os). The observed absorption bands of reaction products are identified by isotopic substitution, isotopic ratios and isotopic distributions ({sup 13}CO, {sup 15}NO, and mixtures). DFT (B3LYP and BP86) vibrational fundamental calculations reproduce observed frequencies and isotopic shifts very well. The bonding and reaction mechanism are discussed.

  8. High thermal conductivity in soft elastomers with elongated liquid metal inclusions

    OpenAIRE

    Bartlett, Michael D.; Kazem, Navid; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel

    2017-01-01

    Efficient thermal transport is critical for applications ranging from electronics and energy to advanced manufacturing and transportation; it is essential in emerging domains like wearable computing and soft robotics, which require thermally conductive materials that are also soft and stretchable. However, heat transport within soft materials is limited by the dynamics of phonon transport, which results in a trade-off between thermal conductivity and compliance. We overcome this by engineerin...

  9. Conductance fluctuations and distribution at metal-insulator transition induced by electric field in disordered chain

    International Nuclear Information System (INIS)

    Senouci, Khaled

    2000-08-01

    A simple Kronig-Penney model for 1D mesoscopic systems with δ peak potentials is used to study numerically the influence of a constant electric field on the conductance fluctuations and distribution at the transition. We found that the conductance probability distribution has a system-size independent form with large fluctuations in good agreement with the previous works in 2D and 3D systems. (author)

  10. Osmium and cobalt complexes incorporating facially coordinated N ...

    Indian Academy of Sciences (India)

    The ligands which bind the transition metal ion in a predictable way play ... was purified by thin-layer chromatography on silica gel. A green band ..... gands, L. −. , (X-ray structure). The unipositive charge of the complex cation, [(L)2Co]. +. , 7, was satisfied by one. ClO. −. 4 ion. These complexes are soluble in common ...

  11. Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    International Nuclear Information System (INIS)

    Long Yunze; Yin Zhihua; Hui Wen; Chen Zhaojia; Wan Meixiang

    2008-01-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I – V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction

    Science.gov (United States)

    Yang, Fan; Xu, Gang; Dou, Yibo; Wang, Bin; Zhang, Heng; Wu, Hui; Zhou, Wei; Li, Jian-Rong; Chen, Banglin

    2017-11-01

    The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal-organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (-SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its -SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10-1 S cm-1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature.

  13. Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials

    Science.gov (United States)

    Rodríguez-Cantó, Pedro J.; Martínez-Marco, Mariluz; Abargues, Rafael; Latorre-Garrido, Victor; Martínez-Pastor, Juan P.

    2013-03-01

    In this work, we present a novel patternable conducting nanocomposite containing gold nanoparticles. Here, the in-situ polymerization of 3T is carried out using HAuCl4 as oxidizing agent inside PMMA as host matrix. During the bake step, the gold salt is also reduced from Au(III) to Au(0) generating Au nanoparticles in the interpenetrating polymer network (IPN) system. We found that this novel multifunctional resist shows electrical conductivity and plasmonic properties as well as potential patterning capability provided by the host matrix. The resulting nanocomposite has been investigated by TEM and UV-Vis spectroscopy. Electrical characterization was also conducted for different concentration of 3T and Au(III) following a characteristic percolation behaviour. Conductivities values from 10-5 to 10 S/cm were successfully obtained depending on the IPN formulation. Moreover, The Au nanoparticles generated exhibited a localized surface plasmon resonance at around 520 nm. This synthetic approach is of potential application to modify the conductivity of numerous insulating polymers and synthesize Au nanoparticles preserving to some extent their physical and chemical properties. In addition, combination of optical properties (Plasmonics), electrical, and lithographic capability in the same material allows for the design of materials with novel functionalities and provides the basis for next generation devices.

  14. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    Science.gov (United States)

    Christen, David K.; He, Qing

    2001-01-01

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  15. Metallic conductivity transition of carbon nanotube yarns coated with silver particles

    International Nuclear Information System (INIS)

    Zhang, Daohong; Zhang, Yunhe; Miao, Menghe

    2014-01-01

    Dry spun carbon nanotube yarns made from vertically aligned multiwalled carbon nanotube forests possess high mechanical strength and behave like semiconductors with electrical conductivity of the order of 4 × 10 4 S m −1 . Coating a submicron-thick film of silver particle-filled polymer on the surface increased the electrical conductivity of the carbon nanotube yarn by 60-fold without significantly sacrificing its mechanical strength. The transitional characteristics of the silver-coated carbon nanotube yarn were investigated by varying the take-up ratio of the silver coating. A step change in conductivity was observed when the silver content in the coated yarn was between 7 and 10 wt% as a result of the formation of connected silver particle networks on the carbon nanotube yarn surface. (papers)

  16. Energy level alignment and quantum conductance of functionalized metal-molecule junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Strange, Mikkel; Markussen, Troels

    2013-01-01

    We study the effect of functional groups (CH3*4, OCH3, CH3, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density...... functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method...... predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close...

  17. The crossover between tunnel and hopping conductivity in granulated films of noble metals

    Science.gov (United States)

    Kavokin, Alexey; Kutrovskaya, Stella; Kucherik, Alexey; Osipov, Anton; Vartanyan, Tigran; Arakelyan, Sergey

    2017-11-01

    The conductivity of thin films composed by clusters of gold and silver nanoparticles has been studies in a wide range of temperatures. The switch from a temperature independence to an exponential thermal dependence of the conductivity manifests the crossover between the tunnel and thermally activated hopping regimes of the electronic transport at the temperature of 60 °C. The characteristic thermal activation energy that governs hopping of electrons between nanoparticles is estimated as 1.3 eV. We have achieved a good control of the composition and thicknesses of nano-cluster films by use of the laser ablation method in colloidal solutions.

  18. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    Energy Technology Data Exchange (ETDEWEB)

    MJ Lambert

    2005-11-18

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a

  19. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    International Nuclear Information System (INIS)

    MJ Lambert

    2005-01-01

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 (micro)m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a

  20. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode

    Energy Technology Data Exchange (ETDEWEB)

    Angelico, E.; Seiss, T. [Enrico Fermi Institute, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States); Adams, B. [Incom, Inc., 294 SouthBridge Rd, Charlton, Massachusetts 01507 (United States); Elagin, A.; Frisch, H.; Spieglan, E. [Enrico Fermi Institute, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States)

    2017-02-21

    We have designed and tested a robust 20×20 cm{sup 2} thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10 nm-thick NiCr film deposited on a 96% pure Al{sub 2}O{sub 3} 3 mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50 Ω 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20×20 cm{sup 2} array of 2-dimensional square ‘pads’ with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth.

  1. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Kazunari, E-mail: YAMAURA.Kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan)

    2016-04-15

    High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO{sub 3}, LiOsO{sub 3}, and Na{sub 2}OsO{sub 4}, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal–insulator transition in NaOsO{sub 3}, a ferroelectric-like transition in LiOsO{sub 3}, and high-temperature ferrimagnetism driven by a local structural distortion in Ca{sub 2}FeOsO{sub 6} may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices. - Graphical Abstract: Flux-grown crystals of NaOsO{sub 3} under high-pressure and high-temperature conditions in a belt-type apparatus. The crystal shows a magnetically driven metal–insulator transition at a temperature of 410 K. - Highlights: • Short review of high-pressure crystal growth of solid-state osmium oxides. • Wide variety of magnetic properties of solid-state osmium oxides. • Perovskite and related dense structures stabilized at 3–17 GPa.

  2. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-09-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

  3. High proton conductivity in cyanide-bridged metal-organic frameworks: understanding the role of water

    NARCIS (Netherlands)

    Gao, Y.; Broersen, R.; Hageman, W.; Yan, N.; Mittelmeijer-Hazeleger, M.; Rothenberg, G.; Tanase, S.

    2015-01-01

    We investigate and discuss the proton conductivity properties of the cyanide-bridged metal–organic framework (MOF) [Nd(mpca)2Nd(H2O)6Mo(CN)8]·nH2O (where mpca is 5-methyl-2-pyrazinecarboxylate). This MOF is one of an exciting class of cyanide-bridged materials that can combine porosity with

  4. Effect of alkali content on AC conductivity of borate glasses containing two transition metals

    International Nuclear Information System (INIS)

    Kashif, I.; Rahman, Samy A.; Soliman, A.A.; Ibrahim, E.M.; Abdel-Khalek, E.K.; Mostafa, A.G.; Sanad, A.M.

    2009-01-01

    Sodium borate glasses containing iron and molybdenum ions with the total concentration of transition ions constant and gradual substitution of sodium oxide (network modifier) by borate oxide (network former) was prepared. Densities, molar volume, DC and AC conductivities are measured. The trends of these properties are attributed to changes in the glass network structure. Their DC and AC conductivity increased with increasing NaO concentration. The increase of AC conductivity of sodium borate glasses is attributed to the chemical composition and the hopping mechanism of conduction. Measurements of the dielectric constant (ε) and dielectric loss (tan δ) as a function of frequency (50 Hz-100 kHz) and temperature (RT-600 K) indicate that the increase in dielectric constant and loss (ε and tan δ) values with increasing sodium ion content could be attributed to the assumption that Fe and Mo ions tend to assume network-forming position in the glass compositions studied. The variation of the value of frequency exponent s for all glass samples as the function of temperature at a definite frequency indicates that the value of s decreases with increasing the temperature which agrees with the correlated barrier-hopping (CBH) model.

  5. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  6. Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame.

    Science.gov (United States)

    Gray, Jennifer C; Habtemariam, Abraha; Winnig, Marcel; Meyerhof, Wolfgang; Sadler, Peter J

    2008-09-01

    The novel organometallic sandwich complexes [(eta(6)-p-cymene)Ru(eta(6)-aspartame)](OTf)(2) (1) (OTf = trifluoromethanesulfonate) and [(eta(6)-p-cymene)Os(eta(6)-aspartame)](OTf)(2) (2) incorporating the artificial sweetener aspartame have been synthesised and characterised. A number of properties of aspartame were found to be altered on binding to either metal. The pK(a) values of both the carboxyl and the amino groups of aspartame are lowered by between 0.35 and 0.57 pH units, causing partial deprotonation of the amino group at pH 7.4 (physiological pH). The rate of degradation of aspartame to 3,6-dioxo-5-phenylmethylpiperazine acetic acid (diketopiperazine) increased over threefold from 0.12 to 0.36 h(-1) for 1, and to 0.43 h(-1) for 2. Furthermore, the reduction potential of the ligand shifted from -1.133 to -0.619 V for 2. For the ruthenium complex 1 the process occurred in two steps, the first (at -0.38 V) within a biologically accessible range. This facilitates reactions with biological reductants such as ascorbate. Binding to and activation of the sweet taste receptor was not observed for these metal complexes up to concentrations of 1 mM. The factors which affect the ability of metal-bound aspartame to interact with the receptor site are discussed.

  7. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1.

    Science.gov (United States)

    Jeong, Nak Cheon; Samanta, Bappaditya; Lee, Chang Yeon; Farha, Omar K; Hupp, Joseph T

    2012-01-11

    HKUST-1, a metal-organic framework (MOF) material containing Cu(II)-paddlewheel-type nodes and 1,3,5-benzenetricarboxylate struts, features accessible Cu(II) sites to which solvent or other desired molecules can be intentionally coordinated. As part of a broader investigation of ionic conductivity in MOFs, we unexpectedly observed substantial proton conductivity with the "as synthesized" version of this material following sorption of methanol. Although HKUST-1 is neutral, coordinated water molecules are rendered sufficiently acidic by Cu(II) to contribute protons to pore-filling methanol molecules and thereby enhance the alternating-current conductivity. At ambient temperature, the chemical identities of the node-coordinated and pore-filling molecules can be independently varied, thus enabling the proton conductivity to be reversibly modulated. The proton conductivity of HKUST-1 was observed to increase by ~75-fold, for example, when node-coordinated acetonitrile molecules were replaced by water molecules. In contrast, the conductivity became almost immeasurably small when methanol was replaced by hexane as the pore-filling solvent. © 2011 American Chemical Society

  8. Electrospun Polyaniline-Based Composite Nanofibers: Tuning the Electrical Conductivity by Tailoring the Structure of Thiol-Protected Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Filippo Pierini

    2017-01-01

    Full Text Available Composite nanofibers made of a polyaniline-based polymer blend and different thiol-capped metal nanoparticles were prepared using ex situ synthesis and electrospinning technique. The effects of the nanoparticle composition and chemical structure on the electrical properties of the nanocomposites were investigated. This study confirmed that Brust’s procedure is an effective method for the synthesis of sub-10 nm silver, gold, and silver-gold alloy nanoparticles protected with different types of thiols. Electron microscopy results demonstrated that electrospinning is a valuable technique for the production of composite nanofibers with similar morphology and revealed that nanofillers are well-dispersed into the polymer matrix. X-ray diffraction tests proved the lack of a significant influence of the nanoparticle chemical structure on the polyaniline chain arrangement. However, the introduction of conductive nanofillers in the polymer matrix influences the charge transport noticeably improving electrical conductivity. The enhancement of electrical properties is mediated by the nanoparticle capping layer structure. The metal nanoparticle core composition is a key parameter, which exerted a significant influence on the conductivity of the nanocomposites. These results prove that the proposed method can be used to tune the electrical properties of nanocomposites.

  9. A comparative Study of C2-Symmetric Bis(aziridine) Ligands in Some Transition Metal-Mediated Asymmetric Transformations

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Johansson, Fredrik; Harden, Adrian

    1998-01-01

    A comparative study has been made of the performance of differently substituted Ca-symmetric bis(aziridine) ligands in a variety of metal-mediated asymmetric reactions. The metals studied were osmium (dihydroxylation), palladium (allylic alkylation) and copper (cyclopropanation and aziridination...

  10. Contrasts between the vibronic contributions in the tris-(2,2'-bipyridyl)osmium(II) emission spectrum and the implications of resonance-Raman parameters.

    Science.gov (United States)

    Ondongo, Onduru S; Endicott, John F

    2009-04-06

    The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.

  11. Predicting the Hydraulic Conductivity of Metallic Iron Filters: Modeling Gone Astray

    Directory of Open Access Journals (Sweden)

    Chicgoua Noubactep

    2016-04-01

    Full Text Available Since its introduction about 25 years ago, metallic iron (Fe0 has shown its potential as the key component of reactive filtration systems for contaminant removal in polluted waters. Technical applications of such systems can be enhanced by numerical simulation of a filter design to improve, e.g., the service time or the minimum permeability of a prospected system to warrant the required output water quality. This communication discusses the relevant input quantities into such a simulation model, illustrates the possible simplifications and identifies the lack of relevant thermodynamic and kinetic data. As a result, necessary steps are outlined that may improve the numerical simulation and, consequently, the technical design of Fe0 filters. Following a general overview on the key reactions in a Fe0 system, the importance of iron corrosion kinetics is illustrated. Iron corrosion kinetics, expressed as a rate constant kiron, determines both the removal rate of contaminants and the average permeability loss of the filter system. While the relevance of a reasonable estimate of kiron is thus obvious, information is scarce. As a conclusion, systematic experiments for the determination of kiron values are suggested to improve the database of this key input parameter to Fe0 filters.

  12. Voltammetric behavior of DNA modified with osmium tetroxide 2,2'-bipyridine at mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Havran, Luděk; Fojta, Miroslav; Paleček, Emil

    2004-01-01

    Roč. 63, 1-2 (2004), s. 239-243 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004108; GA AV ČR KJB4004302; GA ČR GA204/00/D049; GA ČR GA204/03/0566; GA AV ČR IBS5004107; GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z5004920 Keywords : chemical modification of DNA * osmium tetroxide complexes * cyclic voltammetry Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  13. "Multicolor" electrochemical labeling of DNA hybridization probes with osmium tetroxide complexes

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Kostečka, Pavel; Trefulka, Mojmír; Havran, Luděk; Paleček, Emil

    2007-01-01

    Roč. 79, č. 3 (2007), s. 1022-1029 ISSN 0003-2700 R&D Projects: GA AV ČR(CZ) IAA4004402; GA ČR(CZ) GA203/05/0043; GA ČR(CZ) GA203/04/1325; GA MPO(CZ) 1H-PK/42; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA labeling * osmium tetroxide complexes * DNA hybridization Subject RIV: BO - Biophysics Impact factor: 5.287, year: 2007

  14. Osmium tetroxide complexes as versatile tools for structure probing and electrochemical analysis of biopolymers

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Kostečka, Pavel; Pivoňková, Hana; Horáková Brázdilová, Petra; Havran, Luděk

    2011-01-01

    Roč. 7, č. 1 (2011), s. 35-50 ISSN 1573-4110 R&D Projects: GA AV ČR(CZ) IAA400040901; GA AV ČR(CZ) IAA400040903; GA ČR(CZ) GP203/08/P598; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : osmium complexes * DNA labelling * electrochemical analysis Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2011

  15. Electron mobility, conductivity, and superconductivity near the metal-insulator transition

    International Nuclear Information System (INIS)

    Fiory, A.T.; Hebard, A.F.

    1984-01-01

    The disorder parameter k/sub F/l for amorphous InO/sub x/ is measured by a novel application of the surface electric field effect and is varied by thermal annealing. The normal-state conductivity and superconducting T/sub c/ both vary as (k/sub F/l) -2 and critical disorder occurs at k/sub F/lroughly-equal3/sup 1/2/, as a result of Anderson localization in this low-carrier density material

  16. Vanishing Hall conductance in the phase-glass Bose metal at zero temperature

    Science.gov (United States)

    May-Mann, Julian; Phillips, Philip W.

    2018-01-01

    Motivated in part by numerical simulations [H. G. Katzgraber and A. P. Young, Phys. Rev. B 66, 224507 (2002), 10.1103/PhysRevB.66.224507; J. M. Kosterlitz and N. Akino, Phys. Rev. Lett. 81, 4672 (1998), 10.1103/PhysRevLett.81.4672; Phys. Rev. Lett. 81, 4672 (1998), 10.1103/PhysRevLett.81.4672] that reveal that the energy to create a defect in a gauge or phase glass scales as Lθ with θ power law as does the longitudinal conductance. This prediction can be verified experimentally by applying a ground plane to the 2D samples.

  17. Modes of interaction between nanostructured metal and a conducting mirror as a function of separation and incident polarization

    Science.gov (United States)

    Bonnie, F.; Arnold, M. D.; Smith, G. B.; Gentle, A. R.

    2013-09-01

    The optical resonances that occur in nanostructured metal layers are modulated in thin film stacks if the nanostructured layer is separated from a reflecting conducting layer by various thicknesses of thin dielectric. We have measured and modeled the optical response of interacting silver layers, with alumina spacer thickness ranging from a few nm to 50 nm, for s- and p-polarized incident light, and a range of incident angles. Standard thin film models, including standard effective medium models for the nanostructured layer, will break down for spacer thickness below a critical threshold. For example, with polarisation in the film plane and some nano-islands, it may occur at around 10 nm depending on spacer refractive index. Of particular interest here are novel effects observed with the onset of percolation in the nanolayer. Hot spot effects can be modified by nearby mirrors. Other modes to consider include (a) a two-particle mode involving a particle and its mirror image (b) A Fano resonance from hybridisation of localized and de-localised plasmon modes (c) a Babinet's core-(partial) shell particle with metal core-dielectric shell in metal (d) spacing dependent phase modulation (e) the impact of field gradients induced by the mirror at the nano-layer.

  18. Systematic study on the tunneling conductance in a normal-metal/px+y ± ipy-x-wave superconductor junction

    International Nuclear Information System (INIS)

    Jin Biao; Zhang Yinhan; Cheng Qiang

    2010-01-01

    The chiral p x+y ± ip y-x -wave state is currently considered to be a promising candidate state for Sr 2 RuO 4 in the light of microscopic theories. We theoretically investigate the tunneling conductance in a normal-metal/p x+y ± ip y-x -wave superconductor junction over a wide range of temperature and barrier strength. For a cylindrical Fermi surface with the magnitude of the radius R, the p x+y ± ip y-x -wave gap function exhibits two typical types of nodal structures when R = 1.0 and R=1/√2, respectively. It is found, in particular, that the line shapes of the conductance spectra for R∼1/√2 cases can qualitatively account for the existing in-plane tunneling experiments on Sr 2 RuO 4 .

  19. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  20. Active metal brazing of titanium to high-conductivity carbon-based sandwich structures

    International Nuclear Information System (INIS)

    Singh, M.; Morscher, Gregory N.; Shpargel, Tarah P.; Asthana, Rajiv

    2008-01-01

    Reactive brazing technology was developed and processing parameters were optimized for the bonding of titanium tubes, graphite foam, and high-conductivity carbon-carbon composite face sheets using the active braze Cusil-ABA paste and foils. The microstructure and composition of the joints, examined using scanning electron microscopy coupled with energy-dispersive spectroscopy, showed good bonding and braze penetration in all systems when braze paste was used. The hardness values of the brazed joints were consistent for the different specimen stacking configurations. Mechanical testing of Ti tube/foam/C-C composite structures both in tension and shear showed that failure always occurred in the foam material demonstrating that the brazed joint was sufficient for these types of sandwich structures

  1. Chirality-Discriminated Conductivity of Metal-Amino Acid Biocoordination Polymer Nanowires.

    Science.gov (United States)

    Zheng, Jianzhong; Wu, Yijin; Deng, Ke; He, Meng; He, Liangcan; Cao, Jing; Zhang, Xugang; Liu, Yaling; Li, Shunxing; Tang, Zhiyong

    2016-09-27

    Biocoordination polymer (BCP) nanowires are successfully constructed through self-assembly of chiral cysteine amino acids and Cd cations in solution. The varied chirality of cysteine is explored to demonstrate the difference of BCP nanowires in both morphology and structure. More interestingly and surprisingly, the electrical property measurement reveals that, although all Cd(II)/cysteine BCP nanowires behave as semiconductors, the conductivity of the Cd(II)/dl-cysteine nanowires is 4 times higher than that of the Cd(II)/l-cysteine or Cd(II)/d-cysteine ones. The origin of such chirality-discriminated characteristics registered in BCP nanowires is further elucidated by theoretical calculation. These findings demonstrate that the morphology, structure, and property of BCP nanostructures could be tuned by the chirality of the bridging ligands, which will shed light on the comprehension of chirality transcription as well as construction of chirality-regulated functional materials.

  2. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    International Nuclear Information System (INIS)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-01-01

    Highlights: •LaNiO 2 films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO 2 . •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO 2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO 2 is isostructural to SrCuO 2 , the parent compound of high-T c Sr 0.9 La 0.1 CuO 2 with T c = 44 K, and has 3d 9 configuration, which is very rare in oxides but common to high-T c copper oxides. The bulk synthesis of LaNiO 2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO 2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO 2 . The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures

  3. Plasmachemical synthesis and evaluation of the thermal conductivity of metal-oxide compounds "Molybdenum-uranium dioxide"

    Science.gov (United States)

    Kotelnikova, Alexandra A.; Karengin, Alexander G.; Mendoza, Orlando

    2018-03-01

    The article represents possibility to apply oxidative and reducing plasma for plasma-chemical synthesis of metal-oxide compounds «Mo‒UO2» from water-salt mixtures «molybdic acid‒uranyl nitrate» and «molybdic acid‒ uranyl acetate». The composition of water-salt mixture was calculated and the conditions ensuring plasma-chemical synthesis of «Mo‒UO2» compounds were determined. Calculations were carried out at atmospheric pressure over a wide range of temperatures (300-4000 K), with the use of various plasma coolants (air, hydrogen). The heat conductivity coefficients of metal-oxide compounds «Mo‒UO2» consisting of continuous component (molybdenum matrix) are calculated. Inclusions from ceramics in the form of uranium dioxide were ordered in the matrix. Particular attention is paid to methods for calculating the coefficients of thermal conductivity of these compounds with the use of different models. Calculated results were compared with the experimental data.

  4. A graphene solution to conductivity mismatch: spin injection from ferromagnetic metal/graphene tunnel contacts into silicon

    Science.gov (United States)

    van't Erve, Olaf

    2014-03-01

    New paradigms for spin-based devices, such as spin-FETs and reconfigurable logic, have been proposed and modeled. These devices rely on electron spin being injected, transported, manipulated and detected in a semiconductor channel. This work is the first demonstration on how a single layer of graphene can be used as a low resistance tunnel barrier solution for electrical spin injection into Silicon at room temperature. We will show that a FM metal / monolayer graphene contact serves as a spin-polarized tunnel barrier which successfully circumvents the classic metal / semiconductor conductivity mismatch issue for electrical spin injection. We demonstrate electrical injection and detection of spin accumulation in Si above room temperature, and show that the corresponding spin lifetimes correlate with the Si carrier concentration, confirming that the spin accumulation measured occurs in the Si and not in interface trap states. An ideal tunnel barrier should exhibit several key material characteristics: a uniform and planar habit with well-controlled thickness, minimal defect / trapped charge density, a low resistance-area product for minimal power consumption, and compatibility with both the FM metal and semiconductor, insuring minimal diffusion to/from the surrounding materials at temperatures required for device processing. Graphene, offers all of the above, while preserving spin injection properties, making it a compelling solution to the conductivity mismatch for spin injection into Si. Although Graphene is very conductive in plane, it exhibits poor conductivity perpendicular to the plane. Its sp2 bonding results in a highly uniform, defect free layer, which is chemically inert, thermally robust, and essentially impervious to diffusion. The use of a single monolayer of graphene at the Si interface provides a much lower RA product than any film of an oxide thick enough to prevent pinholes (1 nm). Our results identify a new route to low resistance-area product spin

  5. Thin sensing layer based on semi-conducting β-cyclodextrin rotaxane for toxic metals detection

    Energy Technology Data Exchange (ETDEWEB)

    Teka, S.; Gaied, A.; Jaballah, N. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Université de Monastir, Faculté des Sciences de Monastir, Bd. de l' Environnement, 5019 Monastir (Tunisia); Xiaonan, S. [Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baı̈ f, 75205 Paris Cedex 13 (France); Majdoub, M., E-mail: mustapha.majdoub@fsm.rnu.tn [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Université de Monastir, Faculté des Sciences de Monastir, Bd. de l' Environnement, 5019 Monastir (Tunisia)

    2016-02-15

    Highlights: • Microwave-assisted synthesis of rotaxane based on anthracene and β-cyclodextrin. • Morphological and optical characterization of thin solid film. • Elaboration of impedimetric gold/rotaxane sensor. • Investigation of the membrane sensitivity towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations. - Abstract: An impedimetric sensor based on a new semi-conducting rotaxane has been described for detection of toxic cations. The rotaxane, consists on a π-conjugated material encapsulated into β-cyclodextrin (β-CD); it has been synthesized via the Williamson reaction under microwaves irradiation. The supramolecular structure of the compound was confirmed by NMR and FT-IR spectroscopies. A thin solid film of the rotaxane was deposited by spin-coating to develop a new electrochemical sensor. The morphological properties of the organic membrane were evaluated using contact angle measurements and atomic force microscopy. The gold/rotaxane/solution interfaces were investigated by electrochemical impedance spectroscopy and the obtained data were fitted using an equivalent electrical circuit. The response of the gold/rotaxane membrane towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations was studied and the results showed a good sensitivity to the mercury cations.

  6. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  7. Non-metallic dopant modulation of conductivity in substoichiometric tantalum pentoxide: A first-principles study

    Science.gov (United States)

    Bondi, Robert J.; Fox, Brian P.; Marinella, Matthew J.

    2017-06-01

    We apply density-functional theory calculations to predict dopant modulation of electrical conductivity (σo) for seven dopants (C, Si, Ge, H, F, N, and B) sampled at 18 quantum molecular dynamics configurations of five independent insertion sites into two (high/low) baseline references of σo in amorphous Ta2O5, where each reference contains a single, neutral O vacancy center (VO0). From this statistical population (n = 1260), we analyze defect levels, physical structure, and valence charge distributions to characterize nanoscale modification of the atomistic structure in local dopant neighborhoods. C is the most effective dopant at lowering Ta2Ox σo, while also exhibiting an amphoteric doping behavior by either donating or accepting charge depending on the host oxide matrix. Both B and F robustly increase Ta2Ox σo, although F does so through elimination of Ta high charge outliers, while B insertion conversely creates high charge O outliers through favorable BO3 group formation, especially in the low σo reference. While N applications to dope and passivate oxides are prevalent, we found that N exacerbates the stochasticity of σo we sought to mitigate; sensitivity to the N insertion site and some propensity to form N-O bond chemistries appear responsible. We use direct first-principles predictions of σo to explore feasible Ta2O5 dopants to engineer improved oxides with lower variance and greater repeatability to advance the manufacturability of resistive memory technologies.

  8. Determination of gold osmium and ruthenium through iodine-azide reaction in presence of 2- or 6- mercaptopurine

    International Nuclear Information System (INIS)

    Matusiewicz, H.; Kurzawa, Z.

    1978-01-01

    The composition of osmium and ruthenium complexes with 6-mercaptopurine has been determined. The sensitivity of the method was enhanced due to a proper choice of the optimal time of the formation of these complexes and the time of equilibrium attainment in the presence of excess of azide. Also the gold complex with 2-mercaptopurine was investigated. (author)

  9. Osmium Isotope Compositions of Komatiite Sources Through Time

    Science.gov (United States)

    Walker, R. J.

    2001-12-01

    value of only +1.2 and a 186Os/188Os enrichment relative to the contemporary upper mantle of only +13 ppm. Greater isotopic enrichments could have been achieved by 2.7 Ga if either the inner core comprised >2.8% of the mass of the core by 2.7 Ga, or if Re and Os solid metal-liquid metal D's for core crystallization were greater that those applied in the initial calculation.

  10. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.

    Science.gov (United States)

    Feng, Jun; Sun, Xu; Wu, Changzheng; Peng, Lele; Lin, Chenwen; Hu, Shuanglin; Yang, Jinlong; Xie, Yi

    2011-11-09

    With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.

  11. Relativistic effects in iron-, ruthenium-, and osmium porphyrins

    International Nuclear Information System (INIS)

    Liao Mengsheng; Scheiner, Steve

    2002-01-01

    Nonrelativistic and relativistic DFT calculations are performed on four-coordinate metal porphyrins MP and their six-coordinate adducts MP(py) 2 and MP(py)(CO) (py=pyridine) with M=Fe, Ru, and Os. The electronic structures of the MPs are investigated by considering all possible low-lying states with different configurations of nd-electrons. FeP and OsP have a 3 A 2g ground state, while this state is nearly degenerate with 3 E g for RuP. Without relativistic corrections, the ground states of both RuP and OsP would be 3 E g . For the six-coordinate adducts with py and CO, the strong-field axial ligands raise the energy of the M d z 2 -orbital, thereby making the M II ion diamagnetic. The calculated redox properties of MP(py) 2 and MP(py)(CO) are in agreement with experiment. The difference between RuP(py)(CO) and OsP(py)(CO), in terms of site of oxidation, is due to relativistic effects

  12. Use of high-power diode lasers for hardening and thermal conduction welding of metals

    Science.gov (United States)

    Klocke, Fritz; Demmer, Axel; Zaboklicki, A.

    1997-08-01

    CO2 and Nd:YAG high power lasers have become established as machining tools in industrial manufacturing over the last few years. The most important advantages compared to conventional processing techniques lie in the absence of forces introduced by the laser into the workpiece and in the simple arid highly accurate control in terms ofpositioning and timing making the laser a universally applicable, wear-free and extremely flexible tool /1,2/. The laser can be utilised costeffectively in numerous manufacturing processes but there are also further applications for the laser which produce excellent results from a technical point of view, but are not justified in terms of cost. The extensive use of lasers, particularly in small companies and workshops, is hindered by two main reasons: the complexity and size ofthe laser source and plant and the high investment costs /3/. A new generation of lasers, the high power diode lasers (HDL), combines high performance with a compact design, making the laser a cheap and easy to use tool with many applications /3,4,5,6/. In the diode laser, the laser beam is generated by a microelectronic diode which transforms electrical energy directly into laser energy. Diode lasers with low power outputs have, for some time, been making their mark in our everyday lives: they are used in CD players, laser printers and scanners at cash tills. Modern telecommunications would be impossible without these lasers which enable information to be transmitted in the form oflight impulses through optical fibres. They can also be found in compact precision measurement instrumentation - range fmders, interferometers and pollutant analysis devices /3,6/. In the field of material processing, the first applications ofthe laser, such as for soldering, inscribing, surface hardening and plastic or heat conduction welding, will exceed the limits ofthe relatively low performance output currently available. The diode laser has a shorter wavelength than the CO2 and

  13. Effects of solid fission products forming dissolved oxide (Nd) and metallic precipitate (Ru) on the thermal conductivity of uranium base oxide fuel

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Yang, Jae-Ho; Kim, Jong-Hun; Rhee, Young-Woo; Kang, Ki-Won; Kim, Keon-Sik; Song, Kun-Woo

    2007-01-01

    The effects of solid fission products on the thermal conductivity of uranium base oxide nuclear fuel were experimentally investigated. Neodymium (Nd) and ruthenium (Ru) were added to represent the physical states of solid fission products such as 'dissolved oxide' and 'metallic precipitate', respectively. Thermal conductivity was determined on the basis of the thermal diffusivity, density and specific heat values. The effects of the additives on the thermal conductivity were quantified in the form of the thermal resistivity equation - the reciprocal of the phonon conduction equation - which was determined from the measured data. It is concluded that the thermal conductivity of the irradiated nuclear fuel is affected by both the 'dissolved oxide' and the 'metallic precipitate', however, the effects are in the opposite direction and the 'dissolved oxide' influences the thermal conductivity more significantly than that of the 'metallic precipitate'

  14. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    International Nuclear Information System (INIS)

    Ochterbeck, J.M.; Peterson, G.P.; Fletcher, L.S.

    1992-01-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2,000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silvercoated nickel substrates at all coating thicknesses

  15. Determination of the electrical characteristics of protective coatings and deposits on metals in media with low electrical conductivity

    International Nuclear Information System (INIS)

    Ovcharenko, V.I.; Koroleva, E.V.; Fedorova, A.N.; Sereda, G.A.

    1987-01-01

    This paper presents the results of a theoretical analysis and experimental determination of the electrical and associated protective characteristics of poorly conducting layers on metals, modeling both oxide and hydroxide deposits on the inner surfaces of the equipment as well as films of protective coatings. The analysis is performed using the linear low-frequency ac current (10 -3 -10 -6 Hz) method, which is based on the determination of the impedance Z, the admittance Y = 1/Z, the complex capacitance C = Y/j omega, where omega is the circular frequency of the alternating current, the complex dielectric constant epsilon, the tangent of the dielectric-loss angle tan δ and other quantities associated with them

  16. Indium tin oxide films prepared by atmospheric plasma annealing and their semiconductor-metal conductivity transition around room temperature

    International Nuclear Information System (INIS)

    Li Yali; Li Chunyang; He Deyan; Li Junshuai

    2009-01-01

    We report the synthesis of indium tin oxide (ITO) films using the atmospheric plasma annealing (APA) technique combined with the spin-coating method. The ITO film with a low resistivity of ∼4.6 x 10 -4 Ω cm and a high visible light transmittance, above 85%, was achieved. Hall measurement indicates that compared with the optimized ITO films deposited by magnetron sputtering, the above-mentioned ITO film has a higher carrier concentration of ∼1.21 x 10 21 cm -3 and a lower mobility of ∼11.4 cm 2 V -1 s -1 . More interestingly, these electrical characteristics result in the semiconductor-metal conductivity transition around room temperature for the ITO films prepared by APA.

  17. k-dependent spectrum and optical conductivity near metal-insulator transition in multi-orbital hubbard bands

    International Nuclear Information System (INIS)

    Miura, Oki; Fujiwara, Takeo

    2006-01-01

    We apply the dynamical mean field theory (DMFT) combined with the iterative perturbation theory (IPT) to the doubly degenerate e g and the triply degenerate f 2g bands on a simple cubic lattice and a body-centered cubic lattice and calculate the spectrum and optical conductivity in arbitrary electron occupation. The spectrum simultaneously shows the effects of multiplet structure together with the electron ionization and affinity levels of different electron occupations, coherent peaks at the Fermi energy in the metallic phase and an energy gap at an integer filling of electrons for sufficiently large Coulomb U. We also discuss the critical value of the Coulomb U for degenerate orbitals on a simple cubic lattice and a body-centered cubic lattice. (author)

  18. Improved conductivity of infinite-layer LaNiO{sub 2} thin films by metal organic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ai [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Manabe, Takaaki [National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan)

    2013-12-15

    Highlights: •LaNiO{sub 2} films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO{sub 2}. •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO{sub 2} thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO{sub 2} is isostructural to SrCuO{sub 2}, the parent compound of high-T{sub c} Sr{sub 0.9}La{sub 0.1}CuO{sub 2} with T{sub c} = 44 K, and has 3d{sup 9} configuration, which is very rare in oxides but common to high-T{sub c} copper oxides. The bulk synthesis of LaNiO{sub 2} is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO{sub 2} is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO{sub 2}. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  19. Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction and metal diffusion on sub-L* galaxy formation

    Science.gov (United States)

    Su, Kung-Yi; Hopkins, Philip F.; Hayward, Christopher C.; Faucher-Giguère, Claude-André; Kereš, Dušan; Ma, Xiangcheng; Robles, Victor H.

    2017-10-01

    Using high-resolution simulations with explicit treatment of stellar feedback physics based on the FIRE (Feedback In Realistic Environments) project, we study how galaxy formation and the interstellar medium (ISM) are affected by magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and sub-grid metal diffusion from unresolved turbulence. We consider controlled simulations of isolated (non-cosmological) galaxies but also a limited set of cosmological 'zoom-in' simulations. Although simulations have shown significant effects from these physics with weak or absent stellar feedback, the effects are much weaker than those of stellar feedback when the latter is modelled explicitly. The additional physics have no systematic effect on galactic star formation rates (SFRs). In contrast, removing stellar feedback leads to SFRs being overpredicted by factors of ˜10-100. Without feedback, neither galactic winds nor volume-filling hot-phase gas exist, and discs tend to runaway collapse to ultra-thin scaleheights with unphysically dense clumps congregating at the galactic centre. With stellar feedback, a multi-phase, turbulent medium with galactic fountains and winds is established. At currently achievable resolutions and for the investigated halo mass range 1010-1013 M⊙, the additional physics investigated here (magnetohydrodynamic, conduction, viscosity, metal diffusion) have only weak (˜10 per cent-level) effects on regulating SFR and altering the balance of phases, outflows or the energy in ISM turbulence, consistent with simple equipartition arguments. We conclude that galactic star formation and the ISM are primarily governed by a combination of turbulence, gravitational instabilities and feedback. We add the caveat that active galactic nucleus feedback is not included in the present work.

  20. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    Science.gov (United States)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  1. Potassium permanganate and tetraethylammonium chloride are a safe and effective substitute for osmium tetroxide in solid-phase fluorescent chemical cleavage of mismatch.

    OpenAIRE

    Roberts, E; Deeble, V J; Woods, C G; Taylor, G R

    1997-01-01

    Whilst chemical cleavage of mismatch (CCM) detects all point mutations in DNA, its widespread use has been hampered by the complex multistage methodology and the need for toxic chemicals, in particular osmium tetroxide. Here we show that osmium tetroxide can be replaced by potassium permanganate, giving the same spectrum of mutation detection, but with greater sensitivity. The use of potassium permanganate is compatible with solid phase capture and fluorescent detection, giving a safer method...

  2. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    Science.gov (United States)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  3. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  4. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  5. COERCIVE FORCE IN THE SYSTEM OF FERROMAGNETIC GRANULES FOR HALF METAL CrO2 WITH PERCOLATION CONDUCTIVITY

    Directory of Open Access Journals (Sweden)

    N. V. Dalakova

    2017-10-01

    Full Text Available Magnetic and magnetoresistive properties of several samples of compacted powders of ferromagnetic half-metal CrO2, consisting of needle-shaped or spherical nanoparticles coated with thin dielectric shells, were investigated in wide temperature range. The temperature dependence of the coercive force Hc(T is compared with the temperature dependence of the field of maximum of positive tunneling magnetoresistance Hp(T. The dependence of Hp(T was nonmonotonic one. It is found that in the low-temperature range (4.2 ÷ 70 K the ratio Hp ≈ Hc, expected for compacted ferromagnetic powders with particles of submicron sizes, does not fulfilled. It is assumed that the possible reason of the difference between Hp and Hc is the mismatch between the orientation of the global magnetization of the entire sample and the orientations of the magnetic moments in some part of granules that form the optimal conducting channels at low temperatures. Such a mismatch may be due to the multidomain granules are more prone to the formation of optimal conducting chains in the transport channels. That leads to a change in the mechanism of magnetization reversal in these channels and to violation of the ratio Hp ≈ Hc.

  6. High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2017-03-01

    Full Text Available Flexible MoO3/silver nanowire (AgNW/MoO3/TiO2/Epoxy electrodes with comparable performance to ITO were fabricated by a scalable solution-processed method with lamination assistance for transparent and conductive applications. Silver nanoparticle-based electrodes were also prepared for comparison. Using a simple spin-coating and lamination-assisted planarization method, a full solution-based approach allows preparation of AgNW-based composite electrodes at temperatures as low as 140 °C. The resulting flexible AgNW-based electrodes exhibit higher transmittance of 82% at 550 nm and lower sheet resistance about 12–15 Ω sq−1, in comparison with the values of 68% and 22–25 Ω sq−1 separately for AgNP based electrodes. Scanning electron microscopy (SEM and Atomic force microscopy (AFM reveals that the multi-stacked metal-oxide layers embedded with the AgNWs possess lower surface roughness (<15 nm. The AgNW/MoO3 composite network could enhance the charge transport and collection efficiency by broadening the lateral conduction range due to the built of an efficient charge transport network with long-sized nanowire. In consideration of the manufacturing cost, the lamination-assisted solution-processed method is cost-effective and scalable, which is desire for large-area fabrication. While in view of the materials cost and comparable performance, this AgNW-based transparent and conductive electrodes is potential as an alternative to ITO for various optoelectronic applications.

  7. DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cell-free media

    Czech Academy of Sciences Publication Activity Database

    Kostrhunová, Hana; Florian, Jakub; Nováková, Olga; Peacock, A.F.A.; Sadler, P.J.; Brabec, Viktor

    2008-01-01

    Roč. 51, č. 12 (2008), s. 3635-3643 ISSN 0022-2623 R&D Projects: GA MZd(CZ) NR8562; GA AV ČR(CZ) KAN200200651; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/06/1239 Grant - others:GA AV ČR(CZ) IAA400040803; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003 Program:IA; ME; OC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * osmium * cancer Subject RIV: BO - Biophysics Impact factor: 4.898, year: 2008

  8. The Kubo-Greenwood calculation of conductivity of the simple and non-simple liquid metals in a wide temperature range

    International Nuclear Information System (INIS)

    Sobolev, A N; Mirzoev, A A

    2008-01-01

    We calculated the temperature dependences of electroconductivity for the different metals, such as alkalis (caesium), transition metals (iron), and mercury by Kubo-Greenwood formula. Atomic models of 1000-4000 atoms were obtained by Shommers method using the data of diffractional experiments for the wide temperature range. The electronic structure and interaction parameters for supercells of 30-50 atoms were got by LMTO method. The recursion method was used for the calculation of DOS and diffusivity quotients. The lowering of the DOS at the Fermi level was carefully examined. The results obtained are in good agreement with other authors' in views on the nature of the metal-nonmetal transition in different liquid metals. The calculated DOS and conductivity for all metals match the experimental data well

  9. Conduction and rectification in NbO x - and NiO-based metal-insulator-metal diodes

    Energy Technology Data Exchange (ETDEWEB)

    Osgood, Richard M.; Giardini, Stephen; Carlson, Joel; Periasamy, Prakash; Guthrey, Harvey; O' Hayre, Ryan; Chin, Matthew; Nichols, Barbara; Dubey, Madan; Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy; Parilla, Philip; Berry, Joseph; Ginley, David

    2016-09-01

    Conduction and rectification in nanoantenna-coupled NbOx- and NiO-based metal-insulator-metal (MIM) diodes ('nanorectennas') are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current-voltage (I-V) curves, over 10 orders of magnitude in current density, from [NbOx(native)-Nb2O5]- and NiO-based samples with oxide thicknesses in the range of 5-36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I-V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I-V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I-V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I-V curves with our model, the barrier heights in Nb-(NbOx(native)-Nb2O5)-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbOx (native)-Nb2O5 dielectric properties improve, and the effective Pt-Nb2O5 barrier height increases as the oxide thickness increases. An observation of direct current of ~4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports. This measured direct current is compared to the prediction for rectified direct current

  10. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    Science.gov (United States)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-12-01

    Infinite-layer LaNiO2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO2 is isostructural to SrCuO2, the parent compound of high-Tc Sr0.9La0.1CuO2 with Tc = 44 K, and has 3d9 configuration, which is very rare in oxides but common to high-Tc copper oxides. The bulk synthesis of LaNiO2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO2. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  11. Diffuse Scattering of the Conduction Electrons of a Metallic Substrate by an Adsorbate: an Experimental Study Using Synchrotron Infrared Radiation

    International Nuclear Information System (INIS)

    Hein, M.; Otto, A.; Dumas, P.; Williams, G. P.

    1999-01-01

    Due to its intrinsic high brightness, high stability, and proportionality to the stored electron beam current, synchrotrons IR spectroscopy has revealed itself as an unique tool to experimentally test a physical phenomenon occurring at metallic interfaces, the theory for which was motivated by previous observations. Any adsorbate induces inelastic scattering of the conduction electrons, which causes a broadband IR reflectance change, and was predicted to induce a concomitant DC resistivity change. By choosing a well ordered single crystal thin film of Cu(111), we have checked that the DC resistivity change, and the asymptotic limit of the IR reflectance change are linearly dependent, but independent of the nature of the adsorbate. Coadsorption experiments which have been used to modify the induced density of states at the Fermi level, have further demonstrated that the friction coefficient, which is responsible for the elastic scattering phenomenon, is chemically specific. This article describes the use of synchrotron radiation as an absolute source and its application to the study of dynamics of adsorbates on surfaces

  12. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Harilal, Midhun; Vidyadharan, Baiju; Misnon, Izan Izwan; Anilkumar, Gopinathan M; Lowe, Adrian; Ismail, Jamil; Yusoff, Mashitah M; Jose, Rajan

    2017-03-29

    A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co 3 O 4 ), is developed by electrospinning technique. The CuO-Co 3 O 4 nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co 3 O 4 , and CuO-Co 3 O 4 composite nanowires, and their properties are compared. A high energy density of ∼44 Wh kg -1 at a power density of 14 kW kg -1 is achieved in CuO-Co 3 O 4 ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.

  13. The behavior of osmium and other siderophile elements during impacts: Insights from the Ries impact structure and central European tektites

    Czech Academy of Sciences Publication Activity Database

    Ackerman, Lukáš; Magna, T.; Žák, Karel; Skála, Roman; Jonášová, Šárka; Mizera, Jiří; Řanda, Zdeněk

    2017-01-01

    Roč. 210, 1 August (2017), s. 59-70 ISSN 0016-7037 R&D Projects: GA ČR GA13-22351S; GA MŠk LM2015056 Institutional support: RVO:67985831 ; RVO:61389005 Keywords : highly siderophile elements * meteoritic component * Osmium isotopes * Ries impact structure * tektite Subject RIV: DB - Geology ; Mineralogy; CB - Analytical Chemistry, Separation (UJF-V) OBOR OECD: Geology; Analytical chemistry (UJF-V) Impact factor: 4.609, year: 2016

  14. Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Szamocki, R.; Flexer, V. [INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Levin, L.; Forchiasin, F. [Micologia Experimental, Departamento de Biodiversidad y Biologia Experimental. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Calvo, E.J. [INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: calvo@qi.fcen.uba.ar

    2009-02-28

    Trametes trogii laccase has been studied as biocatalyst for the oxygen electro-reduction in three different systems: (i) soluble laccase was studied in solution; (ii) an enzyme monolayer was tethered to a gold surface by dithiobis N-succinimidyl propionate (DTSP), with a soluble osmium pyridine-bipyridine redox mediator in both cases. The third case (iii) consisted in the sequential immobilization of laccase and the osmium complex derivatized poly(allylamine) self-assembled layer-by-layer (LbL) on mercaptopropane sulfonate modified gold to produce an all integrated and wired enzymatic oxygen cathode. The polycation was the same osmium complex covalently bound to poly-(ally-lamine) backbone (PAH-Os), the polyanion was the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. The adsorption of laccase was studied by monitoring the mass uptake with a quartz crystal microbalance and the oxygen reduction electrocatalysis was studied by linear scan voltammetry. While for the three cases, oxygen electrocatalysis mediated by the osmium complex was observed, for tethered laccase direct electron transfer in the absence of redox mediator was also apparent but no electrocatalysis for the oxygen reduction was recorded in the absence of mediator in solution. For the fully integrated LbL self-assembled laccase and redox mediator (case iii) a catalytic reduction of oxygen could be recorded at different oxygen partial pressures and different electrolyte pH. The tolerance of the reaction to methanol and chloride was also investigated.

  15. Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator

    International Nuclear Information System (INIS)

    Szamocki, R.; Flexer, V.; Levin, L.; Forchiasin, F.; Calvo, E.J.

    2009-01-01

    Trametes trogii laccase has been studied as biocatalyst for the oxygen electro-reduction in three different systems: (i) soluble laccase was studied in solution; (ii) an enzyme monolayer was tethered to a gold surface by dithiobis N-succinimidyl propionate (DTSP), with a soluble osmium pyridine-bipyridine redox mediator in both cases. The third case (iii) consisted in the sequential immobilization of laccase and the osmium complex derivatized poly(allylamine) self-assembled layer-by-layer (LbL) on mercaptopropane sulfonate modified gold to produce an all integrated and wired enzymatic oxygen cathode. The polycation was the same osmium complex covalently bound to poly-(ally-lamine) backbone (PAH-Os), the polyanion was the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. The adsorption of laccase was studied by monitoring the mass uptake with a quartz crystal microbalance and the oxygen reduction electrocatalysis was studied by linear scan voltammetry. While for the three cases, oxygen electrocatalysis mediated by the osmium complex was observed, for tethered laccase direct electron transfer in the absence of redox mediator was also apparent but no electrocatalysis for the oxygen reduction was recorded in the absence of mediator in solution. For the fully integrated LbL self-assembled laccase and redox mediator (case iii) a catalytic reduction of oxygen could be recorded at different oxygen partial pressures and different electrolyte pH. The tolerance of the reaction to methanol and chloride was also investigated

  16. Osmium tetroxide, 2,2’-bipyridine: Electroactive marker for probing accessibility of tryptophan residues in proteins

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Billová, Sabina; Havran, Luděk; Pivoňková, Hana; Černocká, Hana; Horáková Brázdilová, Petra; Paleček, Emil

    2008-01-01

    Roč. 80, č. 12 (2008), s. 4598-4605 ISSN 0003-2700 R&D Projects: GA MŠk(CZ) LC06035; GA AV ČR(CZ) IAA4004402; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN400310651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : osmium tetroxide * chemical modification * tryptophan Subject RIV: BO - Biophysics Impact factor: 5.712, year: 2008

  17. Concentrator bifacial crystalline silicon solar cells with multi-wire metallization attached to TCO layers using transparent conductive polymers

    Science.gov (United States)

    Untila, Gennady; Chebotareva, Alla; Kost, Tatiana; Salazkin, Sergei; Shaposhnikova, Vera; Shvarts, Maxim

    2017-09-01

    Replacing expensive silver with inexpensive copper for the metallization of silicon wafer solar cells can lead to substantial reductions in material costs associated with cell production. A promising approach is the use of multi-wire design. This technology uses many wires in the place of busbars, and the copper wires are "soldered" during the low-temperature lamination process to the fingers (printed or plated) or to the transparent conductive oxide (TCO) layer, e.g. in the case of the α-Si/c-Si heterojunction cells. Here we describe a solar cell design in which wires are attached to TCO layers using transparent conductive polymer (TCP) films. To this end, we have synthesized a number of thermoplastics, poly(arylene ether ketone) copolymers (co-PAEKs), containing phthalide in their main chain. The fraction of phthalide-containing units in the copolymers was p = 3, 5, 15, and 50 mol %. With increasing p, the peak strain temperature of the co-PAEKs rises from 205 to 290 °C and their optical band gap and refractive index increase from 3.12 to 3.15 eV and from 1.6 to 1.614, respectively. The copolymers have a negligible absorption coefficient in the wavelength range 400- 1100 nm. When exposed to an excess pressure of 1 atm or above, co-PAEK films less than 30 µm in thickness undergo a transition from a dielectric to a conductive state. The resistivity (ρC) of wire/TCP/TCO (ITO = In2O3:Sn and IFO = In2O3:F) contacts ranges from 0.37 to 1.43 mΩ cm2. The polymer with the highest phthalide content (p = 50 mol %) has the lowest ρC. The average work of adhesion per unit area determined by pulling off the wires from the polymer surface depends on both the phthalide content of the co-PAEKs and their reduced viscosity, ranging from 14.3 to 43.5 N/cm. The highest value was obtained for the co-PAEK with p = 50 mol %. We have fabricated low-concentration bifacial IFO/(n+pp+)Cz-Si/ITO solar cells with a wire contact grid attached to IFO and ITO using a co-PAEK film. The

  18. New transparent metal-like bilayer composite films with highly conducting layers of {theta}-(BET-TTF){sub 2}Br.3H{sub 2}O nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Mas-Torrent, M.; Laukhina, E.; Rovira, C.; Veciana, J. [Campus Univ. de Bellaterra, Barcelona (Spain). Inst. de Ciencia de Materials; Tkacheva, V. [RAS, Chernogolovka (Russian Federation). Inst. of Problems of Chemical Physics; Zorina, L.; Khasanov, S. [RAS, Chernogolovka (Russian Federation). Inst. of Solid State Physics

    2001-08-01

    A novel conducting bilayer composite (BLC) film-a polycarbonate matrix with a conducting surface layer of a crystalline network of an organic conductor-is presented. A BLC film combines the high stability and physical properties of an organic conductor, in this case the molecular metal {theta}-(BET-TTF){sub 2}Br.3H{sub 2}O, with the flexibility, transparency, and low density of a polymer matrix. The determination of the optimal conditions for the preparation of the new film, which is extremely transparent and has metal-like transport properties down to liquid helium temperature, is described. (orig.)

  19. 78 FR 61384 - Silicon Metal From Russia; Notice of Commission Determination To Conduct a Full Five-year Review

    Science.gov (United States)

    2013-10-03

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-991 (Review)] Silicon Metal From Russia... whether revocation of the antidumping duty order on silicon metal from Russia would be likely to lead to continuation or recurrence of material injury within a reasonably foreseeable time. A schedule for the review...

  20. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...

  1. Atomic-Scale Origin of the Quasi-One-Dimensional Metallic Conductivity in Strontium Niobates with Perovskite-Related Layered Structures.

    Science.gov (United States)

    Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg

    2017-12-26

    The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.

  2. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    Science.gov (United States)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  3. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    International Nuclear Information System (INIS)

    Gniadek, Marianna; Donten, Mikolaj; Stojek, Zbigniew

    2010-01-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag + oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  4. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gniadek, Marianna [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Donten, Mikolaj, E-mail: donten@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Stojek, Zbigniew, E-mail: stojek@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland)

    2010-11-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag{sup +} oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  5. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  6. Effect of variable thermal conductivity and specific heat capacity on the calculation of the critical metal hydride thickness for Ti1.1CrMn

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2014-01-01

    model is applied to the metal hydride system, with Ti 1.1 CrMn as the absorbing alloy, to predict the weight fraction of absorbed hydrogen and solid bed temperat ure . Dependencies of thermal conductivity and specific heat capacity upon pressure and hydrogen content respectively , are accounted for...

  7. Osmium isotope anomalies in chondrites: Results for acid residues and related leachates

    Science.gov (United States)

    Yokoyama, Tetsuya; O'D. Alexander, Conel M.; Walker, Richard J.

    2010-03-01

    We have investigated Os isotope anomalies in acid residues enriched in insoluble organic matter (IOM) extracted from ten primitive chondrites, acid leachates and residues of these fractions, as well as acid leachates of bulk chondrites. Osmium isotopic compositions of bulk carbonaceous, ordinary and enstatite chondrites are also reported. Consistent with prior results, bulk chondrites have homogeneous Os isotope compositions for s-, r-, and p-process nuclides that are indistinguishable from terrestrial, at the current level of resolution. In contrast, nearly all the IOM-rich residues are enriched in s-process Os, evidently due to the preferential incorporation of s-process enriched presolar grains (most likely presolar SiC). Presolar silicate grains that formed in red giant branch (RGB) or asymptotic giant branch (AGB) stars are also likely hosts of additional s-process Os in chondrites. Consistent with one prior study, Os released by weak acid leaching of bulk chondrites is slightly to strongly enriched in r-process nuclides, of which the carrier may be fine-grained presolar silicates formed in supernovae or unidentified solar phases. Collectively, the different, chemically concentrated components in these meteorites are variably enriched in s-, r-, and possibly p-process Os, of which the individual carriers must have been produced in multiple stellar environments. The lack of evidence for Os isotopic heterogeneity among bulk chondrites contrasts with evidence for isotopic heterogeneities for various other elements at approximately the same levels of resolution (e.g., Cr, Mo, Ru, Ba, Sm, and Nd). One possible explanation for this is that the heterogeneities for some elements in bulk materials reflect selective removal of some types of presolar grains as a result of nebular processes, and that because of the strong chemical differences between Os and the other elements, the Os was not significantly affected. Another possible explanation is that late-stage injection

  8. cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339

    KAUST Repository

    Büchel, Gabriel E.

    2017-08-15

    The relationship between cis-trans isomerism and anticancer activity has been mainly addressed for square-planar metal complexes, in particular, for platinum(II), e.g., cis- and trans-[PtCl2(NH3)(2)], and a number of related compounds, of which, however, only cis-counterparts are in clinical use today. For octahedral metal complexes, this effect of geometrical isomerism on anticancer activity has not been investigated systematically, mainly because the relevant isomers are still unavailable. An example of such an octahedral complex is trans-[RuCl4(Hind)(2)](-), which is in clinical trials now as its indazolium (KP1019) or sodium salt (NKP1339), but the corresponding cis-isomers remain inaccessible. We report the synthesis of Na[cis-(OsCl4)-Cl-III(kappa N2-1H-ind)(2)] . (Na[1]) suggesting a route to the cis-isomer of NKP1339. The procedure involves heating (H(2)ind)[(OsCl5)-Cl-IV(kappa N1-2H-ind)] in a high boiling point organic solvent resulting in an Anderson rearrangement with the formation of cis-[(OsCl4)-Cl-IV(kappa N2-1H-ind)(2)] ([1]) in high yield. The transformation is accompanied by an indazole coordination mode switch from kappa N1 to kappa N2 and stabilization of the 1H-indazole tautomer. Fully reversible spectroelectrochemical reduction of [1] in acetonitrile at 0.46 V vs. NHE is accompanied by a change in electronic absorption bands indicating the formation of cis-[(OsCl4)-Cl-III(kappa N2-1H-ind)(2)](-) ([1](-)). Chemical reduction of [1] in methanol with NaBH4 followed by addition of nBu(4)NCl afforded the osmium(III) complex nBu(4)N[cis-(OsCl4)-Cl-III(kappa N2-1H-ind)(2)] (nBu(4)N [1]). A metathesis reaction of nBu(4)N[1] with an ion exchange resin led to the isolation of the water-soluble salt Na[1]. The X-ray diffraction crystal structure of [1] . Me2CO was determined and compared with that of trans-[(OsCl4)-Cl-IV(kappa N2-1H-ind)(2)] . 2Me(2)SO (2 . 2Me(2)SO), also prepared in this work. EPR spectroscopy was performed on the Os-III complexes and

  9. cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339

    KAUST Repository

    Bü chel, Gabriel E.; Kossatz, Susanne; Sadique, Ahmad; Rapta, Peter; Zalibera, Michal; Bucinsky, Lukas; Komorovsky, Stanislav; Telser, Joshua; Eppinger, Jö rg; Reiner, Thomas; Arion, Vladimir B.

    2017-01-01

    The relationship between cis-trans isomerism and anticancer activity has been mainly addressed for square-planar metal complexes, in particular, for platinum(II), e.g., cis- and trans-[PtCl2(NH3)(2)], and a number of related compounds, of which, however, only cis-counterparts are in clinical use today. For octahedral metal complexes, this effect of geometrical isomerism on anticancer activity has not been investigated systematically, mainly because the relevant isomers are still unavailable. An example of such an octahedral complex is trans-[RuCl4(Hind)(2)](-), which is in clinical trials now as its indazolium (KP1019) or sodium salt (NKP1339), but the corresponding cis-isomers remain inaccessible. We report the synthesis of Na[cis-(OsCl4)-Cl-III(kappa N2-1H-ind)(2)] . (Na[1]) suggesting a route to the cis-isomer of NKP1339. The procedure involves heating (H(2)ind)[(OsCl5)-Cl-IV(kappa N1-2H-ind)] in a high boiling point organic solvent resulting in an Anderson rearrangement with the formation of cis-[(OsCl4)-Cl-IV(kappa N2-1H-ind)(2)] ([1]) in high yield. The transformation is accompanied by an indazole coordination mode switch from kappa N1 to kappa N2 and stabilization of the 1H-indazole tautomer. Fully reversible spectroelectrochemical reduction of [1] in acetonitrile at 0.46 V vs. NHE is accompanied by a change in electronic absorption bands indicating the formation of cis-[(OsCl4)-Cl-III(kappa N2-1H-ind)(2)](-) ([1](-)). Chemical reduction of [1] in methanol with NaBH4 followed by addition of nBu(4)NCl afforded the osmium(III) complex nBu(4)N[cis-(OsCl4)-Cl-III(kappa N2-1H-ind)(2)] (nBu(4)N [1]). A metathesis reaction of nBu(4)N[1] with an ion exchange resin led to the isolation of the water-soluble salt Na[1]. The X-ray diffraction crystal structure of [1] . Me2CO was determined and compared with that of trans-[(OsCl4)-Cl-IV(kappa N2-1H-ind)(2)] . 2Me(2)SO (2 . 2Me(2)SO), also prepared in this work. EPR spectroscopy was performed on the Os-III complexes and

  10. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...... solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films...... for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω...

  11. Synthesis of a nano-silver metal ink for use in thick conductive film fabrication applied on a semiconductor package.

    Directory of Open Access Journals (Sweden)

    Lai Chin Yung

    Full Text Available The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID and light emitting diode (LED industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.

  12. Diazonium salt derivatives of osmium bipyridine complexes: Electrochemical grafting and characterisation of modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, David J. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Jenkins, Peter [School of Chemistry, National University of Ireland, Galway (Ireland); Polson, Matthew I.J. [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Baronian, Keith H.R. [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Downard, Alison J., E-mail: alison.downard@canterbury.ac.n [MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch (New Zealand)

    2011-02-01

    Osmium bipyridine complexes were directly grafted to carbon electrodes through electroreduction of the diazonium salts [Os(bpy-ph-N{sub 2}{sup +}){sub 3}](PF{sub 6}){sub 5} (1) and [Os(bpy-ph-N{sub 2}{sup +}){sub 2}Cl{sub 2}](PF{sub 6}){sub 2} (2). Growth of the films was not self-limiting as is usually found for grafting from diazonium salts. It appears that electron hopping through the bipyridine ligands of the immobilised complexes enables film growth to continue at a constant rate during grafting by potential cycling. The surface concentrations of deposited films were measured electrochemically and the film thicknesses were measured by depth-profiling using the atomic force microscope. Films up to 42 nm thick were prepared with no evidence for slowing of film growth. The grafted films exhibited high stability when repetitively cycled through the Os{sup 2+/3+} couple and electron transfer rate constants of 11.4 s{sup -1} and 35.4 s{sup -1} were measured in ACN and PBS, respectively, for the Os{sup 2+/3+} couple of the film grafted from 1.

  13. Diazonium salt derivatives of osmium bipyridine complexes: Electrochemical grafting and characterisation of modified surfaces

    International Nuclear Information System (INIS)

    Garrett, David J.; Jenkins, Peter; Polson, Matthew I.J.; Leech, Donal; Baronian, Keith H.R.; Downard, Alison J.

    2011-01-01

    Osmium bipyridine complexes were directly grafted to carbon electrodes through electroreduction of the diazonium salts [Os(bpy-ph-N 2 + ) 3 ](PF 6 ) 5 (1) and [Os(bpy-ph-N 2 + ) 2 Cl 2 ](PF 6 ) 2 (2). Growth of the films was not self-limiting as is usually found for grafting from diazonium salts. It appears that electron hopping through the bipyridine ligands of the immobilised complexes enables film growth to continue at a constant rate during grafting by potential cycling. The surface concentrations of deposited films were measured electrochemically and the film thicknesses were measured by depth-profiling using the atomic force microscope. Films up to 42 nm thick were prepared with no evidence for slowing of film growth. The grafted films exhibited high stability when repetitively cycled through the Os 2+/3+ couple and electron transfer rate constants of 11.4 s -1 and 35.4 s -1 were measured in ACN and PBS, respectively, for the Os 2+/3+ couple of the film grafted from 1.

  14. Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron

    Science.gov (United States)

    Hebbache, M.; Živković, D.

    Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.

  15. η6-Arene complexes of ruthenium and osmium with pendant donor functionalities

    KAUST Repository

    Reiner, Thomas

    2010-11-01

    Conversion of 4′-(2,5-dihydrophenyl)butanol or N-trifluoroacetyl-2,5- dihydrobenzylamine with MCl3·n H2O (M = Ru, Os) affords the corresponding dimeric η6-arene complexes in good to excellent yields. Under similar reaction conditions, the amine functionalized arene precursor 2,5-dihydrobenzylamine yields the corresponding Ru(II) complex. For osmium, HCl induced oxidation leads to formation of [OsCl6] 2- salts. However, under optimized reaction conditions, conversion of the precursor 2,5-dihydrobenzylamine chloride results in clean formation of η6-arene Os(II) complex. X-ray structures of [(η6- benzyl ammonium)(dmso)RuCl2] and (2,5-dihydrobenzyl ammonium) 4[OsCl6]2confirm the spectroscopic data. High stability towards air and acid as well as enhanced solubility in water is observed for all η6-arene complexes. © 2010 Elsevier B.V. All rights reserved.

  16. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu [Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093 (United States); Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-28

    Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases when the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.

  17. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Tae; Lopes, Pietro Papa; Park, Shin-Ae; Lee, A-Yeong; Lim, Jinkyu; Lee, Hyunjoo; Back, Seoin; Jung, Yousung; Danilovic, Nemanja; Stamenkovic, Vojislav; Erlebacher, Jonah; Snyder, Joshua; Markovic, Nenad M.

    2017-11-13

    The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factor of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.

  18. Conductivity Measurements of Alkali Metal Thiocyanates in Water-Methanol Mixtures; Mizu-metanoru kongoyoubai ni okeru arukari kinzoku chioshiansan`en no denki dendodo sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Eiji.; Horimoto, Sanaki. [Shinshu University, Nagano (Japan). Faculty of Science

    1999-03-10

    The counductivity of several alkali nmetal thiocyanates in water-methanol mixtures was measured at 25degreeC. the data were analyzed using Lee-Wheaton theory for symmetrical electroyers to cbtain ion association constant, K{sub A}, limiting molar sonductivity, {Lambda}{sub 0}, and limiting ionic molar conductivity, lamnda{sub 0}{+-}. In all the solvent systems, calculated{lambda}{sub 0}{sup +} values of the alkali metal ions increase in the order L{sub i}{sup +}metal ions and thiocyanate ion showed a minimum when the molar fraction of methanol was ca.0.4. The changes in {lambda}{sub 0}{+-} of these alkali metal ions and thiocyanate ion with the molar fraction of methanol agree with change in the viscosity of the solvent or the heat of mixing of wateer-methanol mixtures. These alkali metal thiocyanates from little or no ion aggregated in water and water-methanol mixtures. These alkali metal thiocyanates K{sub A}=15-24 dm{sup 3} mol{sub -1} in methanol. (author)

  19. Voltammetric behavior of osmium-labeled DNA at mercury meniscus-modified solid amalgam electrodes. Detecting DNA hybridization

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Fojta, Miroslav; Havran, Luděk; Heyrovský, Michael; Paleček, Emil

    2006-01-01

    Roč. 18, č. 2 (2006), s. 186-194 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA AV ČR IAA4004402; GA AV ČR KJB4004302; GA AV ČR IBS5004355 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : voltammetry * solid amalgam electrodes * DNA-osmium complex * hybridization * catalytic hydrogen evolution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  20. Microwave Assisted Synthesis of Osmium Electrocatalysts for the Oxygen Reduction Reaction in the Absence and Presence of Aqueous Methanol

    Directory of Open Access Journals (Sweden)

    Edgar Borja-Arco

    2011-01-01

    Full Text Available Osmium electrocatalysts for the oxygen reduction reaction (ORR were prepared by microwave irradiation of Os3(CO12 at different experimental conditions. The materials obtained were structurally characterized by FT-IR, micro-Raman spectroscopy and X-ray diffraction. Their chemical compositions were obtained by EDS. The electrocatalytic properties for the oxygen reduction reaction were evaluated by rotating disk electrode measurements in 0.5 mol L-1 H2SO4, in the absence and presence of aqueous methanol. The kinetic parameters, such as Tafel slope, exchange current density, and charge transfer coefficient are reported.

  1. Lifshitz transitions in RCo{sub 5} (R=Y,La) and in Osmium

    Energy Technology Data Exchange (ETDEWEB)

    Koudela, D.

    2007-02-20

    The aim of this thesis was to find Lifshitz transitions, which are topological changes of the Fermi surface. The materials under consideration had been YCo{sub 5} and LaCo{sub 5} and Osmium. In all cases the question arose, if the corresponding van Hove singularities are large enough to cause detectable anomalies in the elastic properties. To shift the van Hove singularities through the Fermi energy we used hydrostatic pressure, which is mimicked in the computations by decreasing the volume of the unit cell, where the ratio of the unit cell dimensions c/a is adjusted such that E{sub total}(V)=min{sub (c/a)}E{sub total}(V,c/a). In the case of YCo{sub 5} our calculations yield a first order Lifshitz transition. Here, an extraordinarily large peak in the spin-up part of the DOS, which is caused by a nearly dispersionless band in the hexagonal plane, crosses the Fermi level under a pressure of about 21 GPa. Thus, the spin-up 3d states become partly depopulated, which results in a drop of the total magnetic moment of 35%. Further, the transition results in a volume collapse of 1:4%. Though the volume collapse is isomorphic, it exhibits the following anisotropy: while the lattice constant in the hexagonal plane is almost smoothly contracting with increasing pressure, the lattice constant in c-direction collapses at the transition-pressure. Analogous calculations have been performed for the similar compound LaCo{sub 5}. Here as well we predict a first order Lifshitz transition, taking place at a pressure of about 23 GPa. Again we find a volume collapse under pres- sure together with a decrease of the magnetic moment. The relative volume change amounts to 1:3%. Like in YCo{sub 5}, the unit cell dimensions in the hexagonal plane are decreasing almost smoothly with pressure but in c-direction a jump occurs at the transition-pressure. Also the mechanism of the transition is the same than in YCo{sub 5}. For Osmium we find, that LDA reproduces the ground state volume very well

  2. Lifshitz transitions in RCo5 (R=Y, La) and in Osmium

    International Nuclear Information System (INIS)

    Koudela, D.

    2007-01-01

    The aim of this thesis was to find Lifshitz transitions, which are topological changes of the Fermi surface. The materials under consideration had been YCo 5 and LaCo 5 and Osmium. In all cases the question arose, if the corresponding van Hove singularities are large enough to cause detectable anomalies in the elastic properties. To shift the van Hove singularities through the Fermi energy we used hydrostatic pressure, which is mimicked in the computations by decreasing the volume of the unit cell, where the ratio of the unit cell dimensions c/a is adjusted such that E total (V)=min (c/a) E total (V,c/a). In the case of YCo 5 our calculations yield a first order Lifshitz transition. Here, an extraordinarily large peak in the spin-up part of the DOS, which is caused by a nearly dispersionless band in the hexagonal plane, crosses the Fermi level under a pressure of about 21 GPa. Thus, the spin-up 3d states become partly depopulated, which results in a drop of the total magnetic moment of 35%. Further, the transition results in a volume collapse of 1:4%. Though the volume collapse is isomorphic, it exhibits the following anisotropy: while the lattice constant in the hexagonal plane is almost smoothly contracting with increasing pressure, the lattice constant in c-direction collapses at the transition-pressure. Analogous calculations have been performed for the similar compound LaCo 5 . Here as well we predict a first order Lifshitz transition, taking place at a pressure of about 23 GPa. Again we find a volume collapse under pres- sure together with a decrease of the magnetic moment. The relative volume change amounts to 1:3%. Like in YCo 5 , the unit cell dimensions in the hexagonal plane are decreasing almost smoothly with pressure but in c-direction a jump occurs at the transition-pressure. Also the mechanism of the transition is the same than in YCo 5 . For Osmium we find, that LDA reproduces the ground state volume very well. Furthermore, we could detect three

  3. Development of the osmium-191 → iridium-191m radionuclide generator. Annual report

    International Nuclear Information System (INIS)

    Treves, S.; Packard, A.B.

    1985-01-01

    The use of /sup 191m/Ir in radionuclide angiography has been the subject of increasing interest in recent years. The 191 Os-/sup 191m/Ir generator that has been used for these studies suffers, however, from low /sup 191m/Ir yield (10%/ml) and higher than desirable 191 Os breakthrough (5 x 10 -3 %). We have recently developed a /sup 191m/Ir generator that has higher yield (25 to 30%/ml) and lower breakthrough ( -4 %) when eluted with an eluent (0.001 M oxalic acid/0.9% saline) that does not require buffering prior to injection. Studies within the last year have shown the eluate of this generator to be non-toxic at up to 100 times the expected human dose and work is in progress to obtain approval for human use of this system. While a significant improvement over past generator designs, the yield of this generator is still modest and the evaluation of new osmium complexes for use on the generator has continued. Clinical studies involving the use of /sup 191m/Ir for first-pass angiography in adults and children have continued. A comparison of ejection fractions measured in adults with both /sup 99m/Tc and /sup 191m/Ir has confirmed the feasibilty of /sup 191m/Ir for radionuclide angiography in both the left and right ventricles of adults. Studies in collaboration with Baylor Medical College have demonstrated the efficacy of /sup 191m/Ir in combination with the multi-wire gamma camera. 31 refs., 2 figs., 10 tabs

  4. Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity. Supporting Information

    Science.gov (United States)

    2015-04-28

    conductivity The Green- Kubo method uses the auto-correlation of equilibrium heat flux J to calculate the conductivity κ from the expression (2) where V...specific experiments are discussed here, specifically, sensitivity calculations of our measurements to the thermal conductivity of the TCNQ@Cu3(BTC)2...where x denotes κMOF, CMOF, hK,Al/MOF or hK,MOF/SiO2. This TDTR sensitivity, Sx, is calculated by ]ln[ )( )( ln )( x tV tV tS out in x

  5. Near-Field Nanoscopy of Metal-Insulator Phase Transitions Towards Synthesis of Novel Correlated Transition Metal Oxides and Their Interaction with Plasmon Resonances

    Science.gov (United States)

    2016-01-05

    metal and osmium (IV) oxide in the presence of stoichiometric amounts of magnesium oxide. The crystal structure was refined using powder X-ray...The blue octahedral represent [MO6]7-, the yellow circles are Li rich positions and the large green circles are magnesium rich positions material...M. Lazzeri, A. K. Geim, and C. Casiraghi, Raman Fingerprint of Aligned Graphene/H-Bn Superlattices, Nano Letters 13, 5242-5246 (2013). 13. Q. H

  6. Development of a Methodology for Conducting Hall Thruster EMI Tests in Metal Vacuum Chambers of Arbitrary Shape and Size

    Science.gov (United States)

    Gallimore, Alec D.

    2000-01-01

    While the closed-drift Hall thruster (CDT) offers significant improvement in performance over conventional chemical rockets and other advanced propulsion systems such as the arcjet, its potential impact on spacecraft communication signals must be carefully assessed before widespread use of this device can take place. To this end, many of the potentially unique issues that are associated with these thrusters center on its plume plasma characteristics and the its interaction with electromagnetic waves. Although a great deal of experiments have been made in characterizing the electromagnetic interference (EMI) potential of these thrusters, the interpretation of the resulting data is difficult because most of these measurements have been made in vacuum chambers with metal walls which reflect radio waves emanating from the thruster. This project developed a means of assessing the impact of metal vacuum chambers of arbitrary size or shape on EMI experiments, thereby allowing for test results to be interpreted properly. Chamber calibration techniques were developed and initially tested at RIAME using their vacuum chamber. Calibration experiments were to have been made at Tank 5 of NASA GRC and the 6 m by 9 m vacuum chamber at the University of Michigan to test the new procedure, however the subcontract to RIAME was cancelled by NASA memorandum on Feb. 26. 1999.

  7. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  8. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX2 (M = Mo, W and X = S, Se) using Time-Domain Thermoreflectance.

    Science.gov (United States)

    Jiang, Puqing; Qian, Xin; Gu, Xiaokun; Yang, Ronggui

    2017-09-01

    Transition metal dichalcogenides (TMDs) are a group of layered 2D semiconductors that have shown many intriguing electrical and optical properties. However, the thermal transport properties in TMDs are not well understood due to the challenges in characterizing anisotropic thermal conductivity. Here, a variable-spot-size time-domain thermoreflectance approach is developed to simultaneously measure both the in-plane and the through-plane thermal conductivity of four kinds of layered TMDs (MoS 2 , WS 2 , MoSe 2 , and WSe 2 ) over a wide temperature range, 80-300 K. Interestingly, it is found that both the through-plane thermal conductivity and the Al/TMD interface conductance depend on the modulation frequency of the pump beam for all these four compounds. The frequency-dependent thermal properties are attributed to the nonequilibrium thermal resistance between the different groups of phonons in the substrate. A two-channel thermal model is used to analyze the nonequilibrium phonon transport and to derive the intrinsic thermal conductivity at the thermal equilibrium limit. The measurements of the thermal conductivities of bulk TMDs serve as an important benchmark for understanding the thermal conductivity of single- and few-layer TMDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode

    Czech Academy of Sciences Publication Activity Database

    Němcová, Kateřina; Šebest, Peter; Havran, Luděk; Orság, Petr; Fojta, Miroslav; Pivoňková, Hana

    2014-01-01

    Roč. 406, č. 24 (2014), s. 5843-5852 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GAP301/11/2076; GA AV ČR(CZ) IAA400040901 Institutional support: RVO:68081707 Keywords : Electrochemical analysis * Labeled probes * Osmium complex Subject RIV: BO - Biophysics Impact factor: 3.436, year: 2014

  10. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  11. High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: Synthesis, characteristic and effect of anion

    Science.gov (United States)

    Chen, Hui; Han, Shu-Yan; Liu, Rui-Heng; Chen, Teng-Fei; Bi, Kai-Lun; Liang, Jian-Bo; Deng, Yu-Heng; Wan, Chong-Qing

    2018-02-01

    Incorporating ionic liquids (abbreviated as ILs) into porous metal-organic framework (MOF) to obtain ILs@MOF nanocomposites is documented as a feasible method to achieve new type of anhydrous proton conductor with high performance. We newly synthesized a series of ILs with different acid counter anions (R-SO3-) and their ILs@MOF hybrid materials, i.e. SA-EIMS@MIL-101, MSA-EIMS@MIL-101 and PTSA-EIMS@MIL-101 (SA = sulfate acid, MSA = methanesulfonate acid, PTSA = p-toluenesulfonate acid, EIMS = 1-(1-ethyl-3-imidazolium)propane-3-sulfonate). Such hybrid materials displayed as anhydrous proton conduction with long-term durability even heated at 150 °C open to air. σ value of SA-EIMS@MIL-101 is up to 1.89 × 10-3 S cm-1, being in the range of the most conductive MOF-based materials. MOF support exhibited favorable proton transport and long-term retention for ILs. Anion volumes of R-SO3- displayed significant effects on the proton conductivity of such hybrid ILs@MOF materials. The smaller the van der Waals volume of R-SO3- is, the higher the conductivity of ILs@MOF is. This work suggests that the combination of a variety of the incorporated ILs and a MOF framework would afford high proton transport and gives an idea to explore the safe, anhydrous, solid-state electrolyte for high temperature proton exchange membrane fuel cell.

  12. Manipulating magnetism and conductance of an adatom-molecule junction on a metal surface: An ab initio study

    DEFF Research Database (Denmark)

    Tao, Kun; Stepanyuk, V.S.; Bruno, P.

    2008-01-01

    The state of the art ab initio calculations reveal the effect of a scanning tunneling microscopy tip on magnetic properties and conductance of a benzene-adatom sandwich on Cu(001). We concentrate on a benzene-Co system interacting with a Cr tip. Our studies give a clear evidence that magnetism...

  13. A method of measuring the conductivity of air-sensitive substances in dependence on pressure (alkali metal anthracene addition compounds)

    International Nuclear Information System (INIS)

    Konrad Luehder, Konrad

    1996-01-01

    The conductivity of alkali anthracene addition compounds of the general formula M x (atc) with x=2.0 and = 1.5 was measured in dependence on pressure up to 400 MPa, shoving values in the range of 10 -8 S/cm. A suitable apparatus is described. (authors)

  14. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  15. Aryldiazo complexes. Syntheses and reactions of new complexes of osmium and ruthenium

    International Nuclear Information System (INIS)

    Haymore, B.L.; Ibers, J.A.

    1975-01-01

    Aryldiazo complexes, [M(CO) 2 (NNPh)(PPh 3 ) 2 ][PF 6 ](M = Os, Ru; Ph = C 6 H 5 ), were prepared by allowing diazonium salts to react with M(CO) 3 (PPh 3 ) 2 . Infrared spectra of the Ru complex suggest the presence of two isomers both in solution and in the solid state. These complexes react with a variety of coordinating anions (X - ), to form MX(CO) 2 (NNPh)(PPh 3 ) 2 . The osmium derivatives have ν(NN) near 1455 cm -1 , which is the lowest value yet reported for a nonbridging aryldiazo ligand. The first aryldiazo--hydrido complexes, MH(CO) 2 (NNPh)(PPh 3 ) 2 and MH(CO)(NNPh)(PPh 3 ) 2 , were prepared by deprotonation of the respective phenyldiazene complexes, MH(CO) 2 (HNNPh)(PPh 3 ) 2 + and MH(CO)(HNNPh)(PPh 3 ) 3 + . The compound OsCl 3 (NNPh)(PPh 3 ) 2 was also prepared. A large number of the foregoing complexes were synthesized with selective 2 H and 15 N labels. Infrared and NMR spectra show MX(CO) 2 (NNPh)(PPh 3 ) 2 and the analogous hydrido complex to be pseudooctahedral with trans phosphine ligands, cis carbonyl ligands, and a doubly bent phenyldiazenido (NNPh - ) ligand. Similarly, MH(CO)(NNPh)(PPh 3 ) 2 possesses a trigonal-bipyramidal geometry with trans phosphine ligands and an equatorial, singly bent phenyldiazoniumato (NNPh + ) ligand. Isotopic substitution of the diazo ligand shows that ν(NN) is often vibrationally coupled with phenyl vibrational modes and that two or three bands sometimes shift upon 15 N substitution. Vibrational coupling was also observed in the higher energy region (1850 to 1900 cm -1 ) in the compound RuCl 3 (NNC 6 D 5 )(PPh 3 ) 2 . The wide range in the values of ν(NN), RuCl 3 (NNPh)(PPh 3 ) 2 (1882 cm -1 ) vs. RuCl(CO) 2 (NNPh)(PPh 3 ) 2 (1462 cm -1 ), indicates that the N--N stretching frequencies are sensitive to the electronic and steric environment of the diazo ligand. The aryldiazo complexes are compared with analogous, isoelectronic nitrosyl complexes of Os and Ru

  16. Osmium isotope and highly siderophile element systematics of the lunar crust

    Science.gov (United States)

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  17. Evaluated phase diagrams of binary metal-tellurium systems of the D-block transition elements

    International Nuclear Information System (INIS)

    Chattopadhyay, G.; Bharadwaj, S.R.

    1989-01-01

    The binary phase diagrams of metal-tellurium systems for twenty seven d-block transition elements have been critically evaluated. Complete phase diagrams are presented for the elements, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, palladium, silver, lanthanum, platinum and gold, whereas, for scandium, titanium, vanadium, yttrium, zirconium, niobium, technitium, ruthenium, rhodium, hafnium, tantalum, tungsten , rhenium, osmium and iridium, the phase diagrams are incomplete and tentative. (author). 20 refs., 27 tabs., 27 figs

  18. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    Science.gov (United States)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  19. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    Science.gov (United States)

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Infrared and dc conductivity in metals with strong scattering: Nonclassical behavior from a generalized Boltzmann equation containing band-mixing effects

    International Nuclear Information System (INIS)

    Allen, P.B.; Chakraborty, B.

    1981-01-01

    Metals with high resistivity (approx.100 μΩ cm) seem to show weaker variation of resistivity (as a function of temperature and perhaps also static disorder) than predicted by semiclassical (Bloch-Boltzmann) theory (SBT). We argue that the effect is not closely related to Anderson localization, and therefore does not necessarily signify a failure of the independent collision approximation. Instead we propose a failure of the semiclassical acceleration and conduction approximations. A generalization of Boltzmann theory is made which includes quantum (interband) acceleration and conduction, as well as a complete treatment of interband-collision effects (within the independent-collision approximation). The interband terms enhance short-time response to E fields (because the theory satisfies the exact f-sum rule instead of the semiclassical approximation to it). This suggests that the additional conductivity, as expressed phenomenologically by the shunt resistor model, is explained by interband effects. The scattering operator is complex, its imaginary parts being related to energy-band renormalization caused by the disorder. Charge conservation is respected and thermal equilibrium is restored by the collision operator. The theory is formally solved for the leading corrections to SBT, which have the form of a shunt resistor model. At infrared frequencies, the conductivity mostly obeys the Drude law sigma(ω)approx.sigma(0)(1-iωtau) -1 , except for one term which goes as (1-iωtau) -2

  1. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    Science.gov (United States)

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Theoretical formulation of optical conductivity of La0.7Ca0.3MnO3 exhibiting paramagnetic insulator - ferromagnetic metal transition

    Science.gov (United States)

    Satiawati, L.; Majidi, M. A.

    2017-07-01

    A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ˜0.5 eV for up to ˜22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.

  3. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    International Nuclear Information System (INIS)

    Luo, Yang; Wen, Meimei; Kim, Chang Nyung; Yang, Shangjing

    2017-01-01

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  4. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yang; Wen, Meimei [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Kim, Chang Nyung, E-mail: cnkim@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Yang, Shangjing [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of)

    2017-04-15

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  5. Shrinkage Effects of the Conduction Zone in the Electrical Properties of Metal Oxide Nanocrystals: The Basis for Room Temperature Conductometric Gas Sensor

    Directory of Open Access Journals (Sweden)

    M. Manzanares

    2009-01-01

    Full Text Available The influence of charge localized at the surface of minute metal oxide nanocrystals was studied in WO3 and In2O3 nanostructures, which were obtained replicating mesoporous silica templates. Here, it is shown that the very high resistive states observed at room temperature and dark conditions were originated by the total shrinkage of the conductive zone in the inner part of these nanocrystals. On the contrary, at room temperature and under UV illumination, both photogenerated electron-hole pairs and empty surface states generated by photons diminished the negative charge accumulated at the surface, enlarging the conductive zone and, as a consequence, leading to a reduction of the electrical resistance. Under these conditions, empty surface states produced by UV light reacted with oxidizing gaseous molecules. The charge exchange associated to these reactions also affected the size of the inner conductive zone, and leaded to a new steady-state resistance. These chemical, physical and geometrical effects can be used for gas detection, and constitutes the basis for developing novel room temperature conductometric gas sensors responsive to oxidizing species.

  6. The Kubo-Greenwood spin-dependent electrical conductivity of 2D transition-metal dichalcogenides and group-IV materials: A Green's function study

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-04-01

    The spin-dependent electrical conductivity of counterparts of graphene, transition-metal dichalcogenides (TMDs) and group-IV nanosheets, have investigated by a magnetic exchange field (MEF)-induction to gain the electronic transport properties of charge carriers. We have implemented a k.p Hamiltonian model through the Kubo-Greenwood formalism in order to address the dynamical behavior of correlated Dirac fermions. Tuning the MEF enables one to control the effective mass of carriers in group-IV and TMDs, differently. We have found the Dirac-like points in a new quantum anomalous Hall (QAH) state at strong MEFs for both structures. For both cases, a broad peak in electrical conductivity originated from the scattering rate and entropy is observed. Spin degeneracy at some critical MEFs is another remarkable point. We have found that in the limit of zero or uniform MEFs with respect to the spin-orbit interaction, the large resulting electrical conductivity depends on the spin sub-bands in group-IV and MLDs. Featuring spin-dependent electronic transport properties, one can provide a new scenario for future possible applications.

  7. Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry.

    Science.gov (United States)

    Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing

    2017-10-01

    We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. On possibility of preparation of catalysts for ammonia synthesis based on cyanocomplexes of some d-metals

    International Nuclear Information System (INIS)

    Sergeeva, A.N.; Dovgej, V.V.; Pavlenko, L.I.; Zubritskaya, D.I.; Tkachenko, Zh.I.; Okorskaya, A.P.; Lyubchenko, Yu.A.

    1983-01-01

    The catalytic properties of the systems prepared on the basis of coordination cyanides of iron, ruthenium, osmium, rhenium, molydenum, vanadium and other d-metals in the ammonia synthesis reaction are studied. It has been found that thermal stability of catalytic systems containing vanadium and molybdenum is considerably higher than that of the industrial sample of similar type containing aluminium. The systems prepared on the basis of hexacyanoferrates, ruthenates and osmates can be referred to low-temperature type catalysts

  9. A systematic chemical separation for thermal neutron activation analysis of seven noble metals in rock

    International Nuclear Information System (INIS)

    Ayabe, Muneo

    1980-01-01

    A method for the systematic activation analysis of seven noble metals - ruthenium, silver, rhenium, osmium, iridium, platinum and gold - in rocks were developed and examined with radiotracers and irradiated rock samples. After the fusion of the irradiated rock sample with sodium hydroxide and sodium peroxide, 10% sodium sulfide solution is added and rhenium is extracted with pyridine-benzene mixture from 6N sodium hydroxide solution. From the hydroxide-sulfide precipitate fraction, ruthenium and osmium are distilled as tetroxides, silver is precipitated as chloride, gold is extracted with ethyl acetate, and iridium and platinum are extracted with diantipyrylmethane. Each fraction is purified and subjected to the γ-ray spectrometry. Chemical yields for the elements are more than 60%. Determination limits are given for the seven elements. (author)

  10. Effect of rhenium and osmium on mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Sokolov, M.A.

    2000-01-01

    The nuclear transmutation of tungsten to rhenium and osmium in a tungsten-containing steel irradiated in a fission or fusion reactor will change the chemical composition of the steel. To determine the possible consequences of such compositional changes on the mechanical properties, tensile and Charpy impact properties were measured on five 9Cr-2W-0.25V-0.07Ta-0.1C steels that contained different amounts of rhenium, osmium, and tungsten. The mechanical properties changes caused by these changes in composition were minor. Observations were also made on the effect of carbon concentration. The effect of carbon on tensile behavior was minor, but there was a large effect on Charpy properties. Several of the steels showed little effect of tempering temperature on the Charpy transition temperature, a behavior that was tentatively attributed to the low silicon and/or manganese concentration of the experimental steels

  11. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA

    Directory of Open Access Journals (Sweden)

    Artavazd Badalyan

    2014-11-01

    Full Text Available Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V (vs. Ag|AgCl, 1 M KCl. The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1 of benzaldehyde. The relative standard deviation in a series (n = 13 for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T and PaoABC in the osmium containing redox polymer.

  12. A simple osmium post-fixation paraffin-embedment technique to identify lipid accumulation in fish liver using medaka (Oryziaslatipes) eggs and eleutheroembryos as lipid rich models

    International Nuclear Information System (INIS)

    Mondon, J.A.; Howitt, J.; Tosiano, M.; Kwok, K.W.H.; Hinton, D.E.

    2011-01-01

    Highlights: → Hepatic lipidosis in fish liver is often misdiagnosed or overlooked. → Specific histological fat stains and cryostat sections are not commonly used. → Standard paraffin processing removes lipid leaving vacuoles of unknown origin. → Osmium post-fixed paraffin-embedment is a cost effective alternative. → Medaka trials show suitability for lipid visualization in tissues from egg to adult. - Abstract: Hepatic lipidosis is a non-specific biomarker of effect from pollution exposure in fish. Fatty liver is often misdiagnosed or overlooked in histological assessments due to the decreasing application of specific fat procedures and stains. For example, ethanol dehydration in standard paraffin processing removes lipids, leaving vacuoles of which the precise nature is unknown. Lipids can be identified using osmium post-fixation in semi-thin resin sections or transmission electron microscopy. However, both are expensive and technically demanding procedures, often not available for routine environmental risk assessment and monitoring programs. The current emphasis to reduce and refine animal toxicity testing, requires refinement of the suite of histopathological techniques currently available to maximize information gained from using fish for toxicity testing and as bio-indicators of environmental quality. This investigation has successfully modified an osmium post-fixation technique to conserve lipids in paraffin-embedded tissues using medaka (Oryzias latipes) eleutheroembryos and eggs (embryos) as lipid rich models.

  13. Voltage linearity modulation and polarity dependent conduction in metal-insulator-metal capacitors with atomic-layer-deposited Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} nano-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Zhang, David Wei; Jiang, Anquan; Ding, Shi-Jin, E-mail: sjding@fudan.edu.cn [State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433 (China)

    2015-07-07

    Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO{sub 2} layer to the nano-stack of Al{sub 2}O{sub 3}/ZrO{sub 2}. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to −75 ppm/V{sup 2} with increasing the thickness of SiO{sub 2} from zero to 4 nm, which is more powerful than increasing the thickness of ZrO{sub 2} in the Al{sub 2}O{sub 3}/ZrO{sub 2} stack. This is attributed to counteraction between the positive α for Al{sub 2}O{sub 3}/ZrO{sub 2} and the negative one for SiO{sub 2} in the MIM capacitors with Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO{sub 2} obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO{sub 2}, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors.

  14. K{sub 2}NaOsO{sub 5.5} and K{sub 3}NaOs{sub 2}O{sub 9}: The first osmium perovskites containing alkali cations at the 'A' site

    Energy Technology Data Exchange (ETDEWEB)

    Mogare, Kailash M.; Klein, Wilhelm [Stuttgart, Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Jansen, Martin, E-mail: M.Jansen@fkf.mpg.de [Stuttgart, Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2012-07-15

    K{sub 2}NaOsO{sub 5.5} and K{sub 3}NaOs{sub 2}O{sub 9} were obtained from solid-state reactions of potassium superoxide, sodium peroxide and osmium metal at elevated oxygen pressures. K{sub 2}NaOsO{sub 5.5} crystallizes as an oxygen-deficient cubic double perovskite in space group Fm3{sup Macron }m with a=8.4184(5) A and contains isolated OsO{sub 6} octahedra. K{sub 3}NaOs{sub 2}O{sub 9} crystallizes hexagonally in P6{sub 3}/mmc with a=5.9998(4) A and c=14.3053(14) A. K{sub 3}NaOs{sub 2}O{sub 9} consists of face sharing Os{sub 2}O{sub 9} pairs of octahedra. According to magnetic measurements K{sub 2}NaOsO{sub 5.5} is diamagnetic, whereas K{sub 3}NaOs{sub 2}O{sub 9} displays strong antiferromagnetic coupling (T{sub N}=140 K), indicating enhanced magnetic interactions within the octahedral pair. - Graphical abstract: High oxidation states of Os, obtained by high oxygen pressure synthesis, are accommodated in double and triple perovskite matrices. K{sub 3}NaOs{sub 2}O{sub 9} displays enhanced magnetic interactions. Highlights: Black-Right-Pointing-Pointer New osmates containing highly oxidized Os were obtained by high O{sub 2} pressure synthesis. Black-Right-Pointing-Pointer High oxidation states of Os are accommodated in double and triple perovskite matrices. Black-Right-Pointing-Pointer Both compounds represent the first Os perovskites with an alkali metal at the A site. Black-Right-Pointing-Pointer K{sub 3}NaOs{sub 2}O{sub 9} displays enhanced magnetic interactions within the octahedral pair.

  15. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Ru, Chunyu; Li, Zhenhua; Zhao, Chengji; Duan, Yuting; Zhuang, Zhuang; Bu, Fanzhe; Na, Hui

    2018-03-07

    Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH 2 -SO 3 H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH 2 of MNS and -SO 3 H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm -1 , which was much higher than those of the pristine membrane (0.145 S·cm -1 ) and recast Nafion (0.134 S·cm -1 ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm 2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.

  16. Evidence for a hopping mechanism in metal|single molecule|metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)2]2+(M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) in ionic liquid

    DEFF Research Database (Denmark)

    Chappell, Sarah; Brooke, Carly; Nichols, Richard John

    2016-01-01

    Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this...

  17. Osmium-191 → iridium-191m radionuclide generator: development and clinical application. Progress report, March 1, 1981-February 28, 1982

    International Nuclear Information System (INIS)

    Treves, S.; Cheng, C.

    1981-01-01

    A prototype osmium-191 (T 1/2 = 16 days) → iridium-191m (T 1/2 = 4.9 seconds) generator designed for first pass radionuclide angiography was developed in our laboratory (Os-191 → Ir-191m). Our generator had 14 to 20% Ir-191m yield and a 1 to 3 x 10 -3 % Os-191 breakthrough. Iridium-191m decays with emission of a 65 and a 129 keV photon in 50% and 25% abundance respectively. This radionuclide is advantageous for angiography since it provides higher photon flux and results in much lower radiation dose to the patient than Tc-99m. One objective of this research is to improve the Os-191 → Ir-191m generator for first pass radionuclide angiography at an increase in the Ir-191m yield and a decrease in the Os-191 breakthrough. In addition, we would like to develop an Os-191 → Ir-191m generator for continuous infusion which will be used for ECG gated blood pool ventriculography, venography, and arteriography. Another approach will be to develop a carrier free Os-191 → Ir-191m generator in combination with organic or inorganic exchangers. Iridium-191m from our current generator has been employed successfully in two patient studies for the quantitation left-to-right shunting and the measurement of right and left ventricular ejection fractions. These types of studies will be expanded and further evaluated

  18. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have...

  19. Synthesis, crystal structure, and ionic conductivity of a new layered metal phosphate, Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Chul; Kwak, Hyun-Jung [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of); Yoo, Chung-Yul [Advanced Materials & Devices Laboratory, Korea Institute of Energy Research, Daejeon 34129 (Korea, Republic of); Yun, Hoseop [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of); Kim, Seung-Joo, E-mail: sjookim@ajou.ac.kr [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of)

    2016-11-15

    A new layered metal phosphate, Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}, was synthesized in the form of either a single-crystal or polycrystalline powder using the molten hydroxide flux method or a solid-state reaction, respectively. Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} crystallizes to the P2{sub 1}/n (Z=4) monoclinic space group with lattice parameters a≈4.95 Å, b≈22.06 Å, c≈8.63 Å, and β≈91.5°. The structure is composed of stacked [LiSrAl(PO{sub 4}){sub 2}] layers alternating regularly with [LiSrPO{sub 4}] layers. In the [LiSrAl(PO{sub 4}){sub 2}] sublattice, the AlO{sub 6} octahedra and PO{sub 4} tetrahedra are tilted cooperatively to form an anionic, corrugated, two-dimensional [Al(PO{sub 4}){sub 2}]{sup 3−} framework that can be regarded as a “distorted-glaserite” structure. The [LiSrPO{sub 4}] sublattice is that of a layered block containing a six-membered ring formed from alternating linkages of LiO{sub 4} and PO{sub 4} tetrahedra. The six-membered rings show a boat-type arrangement with the up(U) or down(D) pointing sequence, UUDUUD. The interspace between the two sublattices generates a two-dimensional pathway for Li{sup +} ion conduction. The impedance measurement indicated that Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} had a moderate ion conductivity (σ≈1.30×10{sup −4} S cm{sup −1} at 667 K), with an activation energy E{sub a}≈1.02 eV. - Graphical abstract: Polyhedral view of Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}. Li{sup +} ions are represented by green spheres, Sr atoms by white spheres, AlO{sub 6} groups by octahedra, and PO{sub 4} groups by tetrahedra. - Highlights: • New compound Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} is reported. • The crystal structure is investigated by single-crystal XRD analysis. • The structure is formed by the alternate stacking of two different sublattices. • Correlation between the crystal structure and ionic conductivity is discussed.

  20. Synthesis, crystal structure, and ionic conductivity of a new layered metal phosphate, Li2Sr2Al(PO4)3

    International Nuclear Information System (INIS)

    Kim, Sung-Chul; Kwak, Hyun-Jung; Yoo, Chung-Yul; Yun, Hoseop; Kim, Seung-Joo

    2016-01-01

    A new layered metal phosphate, Li 2 Sr 2 Al(PO 4 ) 3 , was synthesized in the form of either a single-crystal or polycrystalline powder using the molten hydroxide flux method or a solid-state reaction, respectively. Li 2 Sr 2 Al(PO 4 ) 3 crystallizes to the P2 1 /n (Z=4) monoclinic space group with lattice parameters a≈4.95 Å, b≈22.06 Å, c≈8.63 Å, and β≈91.5°. The structure is composed of stacked [LiSrAl(PO 4 ) 2 ] layers alternating regularly with [LiSrPO 4 ] layers. In the [LiSrAl(PO 4 ) 2 ] sublattice, the AlO 6 octahedra and PO 4 tetrahedra are tilted cooperatively to form an anionic, corrugated, two-dimensional [Al(PO 4 ) 2 ] 3− framework that can be regarded as a “distorted-glaserite” structure. The [LiSrPO 4 ] sublattice is that of a layered block containing a six-membered ring formed from alternating linkages of LiO 4 and PO 4 tetrahedra. The six-membered rings show a boat-type arrangement with the up(U) or down(D) pointing sequence, UUDUUD. The interspace between the two sublattices generates a two-dimensional pathway for Li + ion conduction. The impedance measurement indicated that Li 2 Sr 2 Al(PO 4 ) 3 had a moderate ion conductivity (σ≈1.30×10 −4 S cm −1 at 667 K), with an activation energy E a ≈1.02 eV. - Graphical abstract: Polyhedral view of Li 2 Sr 2 Al(PO 4 ) 3 . Li + ions are represented by green spheres, Sr atoms by white spheres, AlO 6 groups by octahedra, and PO 4 groups by tetrahedra. - Highlights: • New compound Li 2 Sr 2 Al(PO 4 ) 3 is reported. • The crystal structure is investigated by single-crystal XRD analysis. • The structure is formed by the alternate stacking of two different sublattices. • Correlation between the crystal structure and ionic conductivity is discussed.

  1. A new probe of solvent accessibility of bound photosensitizers. 1. Ruthenium(II) and osmium(II) photosensitizers in sodium lauryl sulfate micelles

    International Nuclear Information System (INIS)

    Hauenstein, B.L. Jr.; Dressick, W.J.; Buell, S.L.; Demas, J.N.; DeGraff, B.A.

    1983-01-01

    A new method of measuring solvent accessibility of photosensitizers bound to organized media is presented. In particular, the solvent accessibility of a series of ruthenium(II) and osmium(II) photosensitizers bound to sodium lauryl sulfate micelles has been determined. The method takes advantage of the large solvent deuterium effect on the excited-state lifetimes of these complexes. The solvent accessibility of the bound complexes correlates with the hydrophobicity of the ligands. The potential application of this method to a variety of other systems is mentioned

  2. Photoreactions of ruthenium(II) and osmium(II) complexes with deoxyribonucleic acid (DNA).

    Science.gov (United States)

    Moucheron, C; Kirsch-De Mesmaeker, A; Kelly, J M

    1997-09-01

    The design of Ru(II) and Os(II) complexes which are photoreactive with deoxyribonucleic acid (DNA) represents one of the main targets for the development of novel molecular tools for the study of DNA and, in the future, for the production of new, metal-based, anti-tumor drugs. In this review, we explain how it is possible to make a complex photoreactive with nucleobases and nucleic acids. According to the photophysical behaviour of the Ru(II) compounds, two types of photochemistry are expected: (1) photosubstitution of a ligand by a nucleobase and another monodentate ligand, which takes place from the triplet, metal-centred (3MC) state; this state is populated thermally from the lowest lying triplet metal to ligand charge transfer (3MLCT) state; (2) photoreaction from the 3MLCT state, corresponding to photoredox processes with DNA bases. The two photoreactivities are in competition. By modulating appropriately the redox properties of the 3MLCT state, an electron transfer process from the base to the excited complex takes place, and is directly correlated with DNA cleavage or the formation of an adduct of the complex to DNA. In this adduct, guanine is linked by N2 to the alpha-position of a non-chelating nitrogen of the polyazaaromatic ligand without destruction of the complex. Different strategies are explained which increase the affinity of the complexes for DNA and direct the complex photoreactivity to sites of special DNA topology or targeted sequences of bases. Moreover, the replacement of the Ru(II) ion by the Os(II) ion in the photoreactive complexes leads to an increased specificity of photoreaction. Indeed, only one type of photoreactivity (from the 3MLCT state) is present for the Os(II) complexes because the 3MC state is too high in energy to be populated at room temperature.

  3. Osmium isotope perturbations during the Pliensbachian-Toarcian (Early Jurassic): Relationships between volcanism, weathering, and climate change

    Science.gov (United States)

    Percival, Lawrence; Cohen, Anthony; Davies, Marc; Dickson, Alexander; Jenkyns, Hugh; Hesselbo, Stephen; Mather, Tamsin; Xu, Weimu; Storm, Marisa

    2016-04-01

    The Mesozoic Era marked a time of greenhouse conditions on Earth, punctuated by a number of abrupt perturbations to the carbon cycle, such as Ocean Anoxic Events (OAEs). OAEs are typically marked in the stratigraphic record by the appearance of organic-rich shales, and excursions in carbon-isotope ratios registered in carbonates and organic matter. A range of geochemical evidence indicates changes to global temperatures, typically featuring abrupt warming possibly caused by CO2 emissions resulting from Large Igneous Province (LIP) volcanism. A warmer atmosphere is thought to have led to changes in the global hydrological cycle, which would likely have enhanced global weathering rates. The Toarcian OAE (T-OAE) is inferred, from osmium isotope ratios in organic-rich mudrocks from Yorkshire and western North America, to have been a time of such increased weathering rates. However, it is likely that the sediments at these locations were deposited in relatively hydrographically restricted environments, potentially more susceptible to the influence of local input; consequently, they may not offer the best representation of the global seawater Os-isotope composition at that time. In this study, we have measured the osmium isotope composition of siciliclastic mudrocks in a core from the Mochras borehole (Llanbedr Farm, Cardigan Bay Basin, Wales), which constitutes a sedimentary record for a fully open-marine seaway that connected Tethys to the Boreal ocean during the Toarcian. We analysed samples from strata including both the T-OAE and preceding Pliensbachian-Toarcian boundary (Pl-To), both of which record multiple geochemical excursions and records of elevated extinction amongst benthic fauna. We find that the latest Pliensbachian records seawater 187Os/188Os of ~0.35-0.4, rising to ~0.5 at the Pl-To boundary, before a further rise to ~0.7 during the T-OAE. We conclude that such increases in radiogenic Os flux to the ocean system resulted from enhanced continental

  4. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    International Nuclear Information System (INIS)

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-01-01

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO 4 ) solution. As a tissue-staining contrast agent, OsO 4 is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO 4 preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE -/- ) mice at 10 μm resolution. The results show that walls of coronary arteries as small as 45 μm in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO 4 and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  5. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    Science.gov (United States)

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  6. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan.

    Science.gov (United States)

    Verma, Roli; Gupta, Banshi D

    2015-01-01

    Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A stability comparison of redox-active layers produced by chemical coupling of an osmium redox complex to pre-functionalized gold and carbon electrodes

    International Nuclear Information System (INIS)

    Boland, Susan; Foster, Kevin; Leech, Donal

    2009-01-01

    The production of stable redox active layers on electrode surfaces is a key factor for the development of practical electronic and electrochemical devices. Here, we report on a comparison of the stability of redox layers formed by covalently coupling an osmium redox complex to pre-functionalized gold and graphite electrode surfaces. Pre-treatment of gold and graphite electrodes to provide surface carboxylic acid groups is achieved via classical thiolate self-assembled monolayer formation on gold surfaces and the electro-reduction of an in situ generated aryldiazonium salt from 4-aminobenzoic acid on gold, glassy carbon and graphite surfaces. These surfaces have been characterized by AFM and electrochemical blocking studies. The surface carboxylate is then used to tether an osmium complex, [Os(2,2'-bipyridyl) 2 (4-aminomethylpyridine)Cl]PF 6 , to provide a covalently bound redox active layer, E 0 '' of 0.29 V (vs. Ag/AgCl in phosphate buffer, pH 7.4), on the pre-treated electrodes. The aryldiazonium salt-treated carbon-based surfaces showed the greatest stability, represented by a decrease of <5% in the peak current for the Os(II/III) redox transition of the immobilized complex over a 3-day period, compared to a decrease of 19% and 14% for the aryldiazonium salt treated and thiolate treated gold surfaces, respectively, over the same period

  8. Synthesis and characterization of osmium carbonyl cluster compounds with molecular oxygen electroreduction capacity

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.H.; Ocampo, A.L.; Moreira-Acosta, J.; Sebastian, P.J. [CIE-UNAM Solar Energy Laboratory, Morelos (Mexico). Photovoltaic Systems Group, Solar-Hydrogen-Fuel Cell

    2001-12-01

    A transition metal cluster electrocatalyst based on Os{sub x}(CO){sub n} was synthesized by pyrolysis of Os{sub 3} (CO){sub 12} in 1,2-Dichlorobenzene (b.p.{approx_equal}180{sup o}C) under inert atmosphere (N{sub 2}). The electrocatalytic parameters of the oxygen reduction reaction (ORR) for an Os{sub x}(CO){sub n} catalyst were studied with a rotating disk electrode in 0.5 MH{sub 2}SO{sub 4} electrolyte. The diffusion coefficient and solubility of O{sub 2} in 0.5 MH{sub 2}SO{sub 4} were calculated. Koutecky-Levich analysis of the linear voltamperometry data showed that the reaction follows first-order kinetics and the value of the Koutecky-Levich slope indicates a multielectron charge transfer during the ORR. The value of the Tafel slope obtained from the mass transfer corrected Tafel plots is 131 mV/decade. The performance of the catalyst in a H{sub 2}/O{sub 2} PEM fuel cell cathode was evaluated and found to be nearly as good as that of Pt. (author)

  9. Hybrid conducting polymer materials incorporating poly-oxo-metalates for extraction of actinides; Materiaux polymeres conducteurs hybrides incorporant des polyoxometallates pour l'extraction d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Racimor, D

    2003-09-15

    The preparation and characterization of hybrid conducting polymers incorporating poly-oxo-metalates for extracting actinides is discussed. A study of the coordination of various lanthanide cations (Ce(III), Ce(IV), Nd(III)) by the mono-vacant poly-oxo-metalate {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} showed significant differences according to the cation.. Various {alpha}-A-[PW{sub 9}O{sub 34}(RPO){sub 2}]{sup 5-} hybrids were synthesized and their affinity for actinides or lanthanides was demonstrated through complexation. The first hybrid poly-oxo-metallic lanthanide complexes were then synthesized, as was the first hybrid functionalized with a pyrrole group. The electro-polymerization conditions of this pyrrole remain still to be optimized. Poly-pyrrole materials incorporating {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} or its neodymium or cerium complexes as doping agents proved to be the first conducting polymer incorporating poly-oxo-metalates capable of extracting plutonium from nitric acid. (author)

  10. Metallic and semi-conducting resistivity behaviour of La0.7Ca0.3- x K x MnO3 ( x = 0.05, 0.1) manganites

    Science.gov (United States)

    Varshney, Dinesh; Dodiya, Neha

    2015-12-01

    The temperature dependence of electrical resistivity, ρ, of ceramic La0.7Ca0.3- x K x MnO3 ( x = 0.05, 0.1) is investigated in metallic and semi-conducting phase. The metallic resistivity is attributed to be caused by electron-phonon, electron-electron and electron-magnon scattering. Substitutions affect average mass and ionic radii of A-site resulting in an increase in Debye temperature θ D attributed to hardening of lattice with K doping. The optical phonon modes shift gradually to lower mode frequencies leading to phonon softening. Estimated resistivity compared with reported metallic resistivity, accordingly ρ diff. = [ ρ exp. - { ρ 0 + ρ e-ph (= ρ ac + ρ op)}], infers electron-electron and electron-magnon dependence over most of the temperature range. Semi-conducting nature is discussed with variable range hopping and small polaron conduction model. The decrease in activation energies and increase in density of states at the Fermi level with enhanced Ca doping is consistently explained by cationic disorder and Mn valence.

  11. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  12. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  13. 9,10-phenanthrenesemiquinone radical complexes of ruthenium(III), osmium(III) and rhodium(III) and redox series.

    Science.gov (United States)

    Biswas, Manas Kumar; Patra, Sarat Chandra; Maity, Amarendra Nath; Ke, Shyue-Chu; Weyhermüller, Thomas; Ghosh, Prasanta

    2013-05-14

    Reactions of 9,10-phenanthrenequinone (PQ) in toluene with [M(II)(PPh3)3X2] at 298 K afford green complexes, trans-[M(PQ)(PPh3)2X2] (M = Ru, X = Cl, 1; M = Os, X = Br, 2) in moderate yields. Reaction of anhydrous RhCl3 with PQ and PPh3 in boiling ethanol affords the dark brown paramagnetic complex, cis-[Rh(PQ)(PPh3)2Cl2] (3) in good yields. Diffusion of iodine solution in n-hexane to the trans-[Os(PQ) (PPh3)2(CO)(Br)] solution in CH2Cl2 generates the crystals of trans-[Os(PQ)(PPh3)2(CO)(Br)](+)I3(-), (4(+))I3(-)), in lower yields. Single crystal X-ray structure determinations of 1·2toluene, 2·CH2Cl2 and 4(+)I3(-), UV-vis/NIR absorption spectra, EPR spectra of 3, electrochemical activities and DFT calculations on 1, 2, trans-[Ru(PQ)(PMe3)2Cl2] (1Me), trans-[Os(PQ)(PMe3)2Br2] (2Me), cis-[Rh(PQ)(PMe3)2Cl2] (3Me) and their oxidized and reduced analogues including trans-[Os(PQ)(PMe3)2(CO)(Br)](+) (4Me(+)) substantiated that 1-3 are the 9,10-phenanthrenesemiquinone radical (PQ(˙-)) complexes of ruthenium(III), osmium(III) and rhodium(III) and are defined as trans/cis-[M(III)(PQ(˙-))(PPh3)2X2] with a minor contribution of the resonance form trans/cis-[M(II)(PQ)(PPh3)2X2]. Two comparatively longer C-O (1.286(4) Å) and the shorter C-C lengths (1.415(7) Å) of the OO-chelate of 1·2toluene and 2·CH2Cl2 and the isotropic fluid solution EPR signal at g = 1.999 of 3 are consistent with the existence of the reduced PQ(˙-) ligand in 1-3 complexes. Anisotropic EPR spectra of the frozen glasses (g11 = g22 = 2.0046 and g33 = 1.9874) and solids (g11 = g22 = 2.005 and g33 = 1.987) instigate the contribution of the resonance form, cis-[Rh(II)(PQ)(PPh3)2Cl2] in 3. DFT calculations established that the closed shell singlet (CSS) solutions of 1Me and 2Me are unstable due to open shell singlet (OSS) perturbation. However, the broken symmetry (BS) (1,1) Ms = 0 solutions of 1Me and 2Me are respectively 22.6 and 24.2 kJ mole(-1) lower in energy and reproduced the experimental bond

  14. Development of a new osmium-191: Iridium-191m radionuclide generator: Final report

    International Nuclear Information System (INIS)

    Treves, S.; Packard, A.B.

    1986-01-01

    The use of iridium-191m (T/sub 1/2/ = 5s) for first-pass radionuclide angiography offers the potential advantages of lower patient radiation dose and the ability to obtain repeated studies without interference from the previously administered radioisotope. These potential advantages have been offset by the absence of satisfactory 191 Os-/sup 191m/Ir generators. The goal of this project was, therefore, the development of an 191 Os-/sup 191m/Ir generator that would be suitable for clinical use. This goal was first sought through modifications of an existing 191 Os-/sup 191m/Ir generator design (i.e., changes in the ion exchange material and eluent) but these changes did not lead to the required improvements. A new approach was then undertaken in which different chemical forms of the 191 Os parent were evaluated in prototype generators. The complex trans-dioxobisoxalatoosmate (VI) led to a generator with higher /sup 191m/Ir yield (25 to 30%/mL) and lower 191 Os breakthrough ( -4 %) with a more physiologically compatible eluent than had been previously achieved. Toxicity studies were conducted on the eluate and an IND subsequently obtained. While this is not a final solution to the problem of developing a clinically acceptable 191 Os-/sup 191m/Ir generator, the ''oxalate'' generator is the most significant improvement of the 191 Os-/sup 191m/Ir generator to date and will be used in an expanded program of clinical studies. 16 refs., 16 tabs

  15. Ionic conductivity of ZrF4-BaF2-MFsub(n) fluoride glasses (M : The group I--V metal elements)

    International Nuclear Information System (INIS)

    Kawamoto, Yoji; Nohara, Ichiro

    1985-01-01

    To glass transition temperature in argon atmosphere using the complex capacitance and complex impedance methods. The ionic conductivity of glasses, represented by log σ = log σ 0 - ΔE/2.303 kT, was nearly dependent only upon the activation energy. The polarizability of cation was found to be a dominant factor which governs activation energy. Thus, glasses with high meanpolarizability of glass-constituting cations exhibited high ionic conductivity, and the ZrF 4 -BaF 2 -CsF system was suggested to be a promising system that may provide a glass with higher fluoride-ion conduction. (author)

  16. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  17. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    Science.gov (United States)

    Long, Yun-Ze; Yin, Zhi-Hua; Hui, Wen; Chen, Zhao-Jia; Wan, Mei-Xiang

    2008-07-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I - V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory.

  18. Osmium(III) analogues of KP1019: Electrochemical and chemical synthesis, spectroscopic characterization, x-ray crystallography, hydrolytic stability, and antiproliferative activity

    KAUST Repository

    Kuhn, Paul-Steffen

    2014-10-20

    A one-electron reduction of osmium(IV) complexes trans-[OsIVCl4(Hazole)2], where Hazole = 1H-pyrazole ([1]0), 2H-indazole ([2]0), 1H-imidazole ([3]0), and 1H-benzimidazole ([4]0), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-OsIIICl4(Hazole)2], where cation = H2pz+ (H2pz[1]), H2ind+ (H2ind[2]), H2im+ (H2im[3]), Ph4P+ (Ph4P[3]), nBu4N+ (nBu4N[3]), H2bzim+ (H2bzim[4]), Ph4P+ (Ph4P[4]), and nBu4N+ (nBu4N[4]). All complexes were characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1]- and [4]- are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5′-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3]. (Chemical Equation Presented).

  19. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity.

    Science.gov (United States)

    Kuhn, Paul-Steffen; Büchel, Gabriel E; Jovanović, Katarina K; Filipović, Lana; Radulović, Siniša; Rapta, Peter; Arion, Vladimir B

    2014-10-20

    A one-electron reduction of osmium(IV) complexes trans-[Os(IV)Cl4(Hazole)2], where Hazole = 1H-pyrazole ([1](0)), 2H-indazole ([2](0)), 1H-imidazole ([3](0)), and 1H-benzimidazole ([4](0)), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-Os(III)Cl4(Hazole)2], where cation = H2pz(+) (H2pz[1]), H2ind(+) (H2ind[2]), H2im(+) (H2im[3]), Ph4P(+) (Ph4P[3]), nBu4N(+) (nBu4N[3]), H2bzim(+) (H2bzim[4]), Ph4P(+) (Ph4P[4]), and nBu4N(+) (nBu4N[4]). All complexes were characterized by elemental analysis, (1)H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1](-) and [4](-) are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5'-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3].

  20. Osmium(III) analogues of KP1019: Electrochemical and chemical synthesis, spectroscopic characterization, x-ray crystallography, hydrolytic stability, and antiproliferative activity

    KAUST Repository

    Kuhn, Paul-Steffen; Bü chel, Gabriel E.; Jovanović, Katarina K.; Filipović, Lana; Radulović, Siniša S.; Rapta, Peter; Arion, Vladimir B.

    2014-01-01

    A one-electron reduction of osmium(IV) complexes trans-[OsIVCl4(Hazole)2], where Hazole = 1H-pyrazole ([1]0), 2H-indazole ([2]0), 1H-imidazole ([3]0), and 1H-benzimidazole ([4]0), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-OsIIICl4(Hazole)2], where cation = H2pz+ (H2pz[1]), H2ind+ (H2ind[2]), H2im+ (H2im[3]), Ph4P+ (Ph4P[3]), nBu4N+ (nBu4N[3]), H2bzim+ (H2bzim[4]), Ph4P+ (Ph4P[4]), and nBu4N+ (nBu4N[4]). All complexes were characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1]- and [4]- are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5′-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3]. (Chemical Equation Presented).

  1. The influence of value of intensity of constant electric field on structure, thermal physic and conductivity nanocomposites epoxy resin-oxide metal

    International Nuclear Information System (INIS)

    Vilensky, V.O.; Demchenko, V.I.

    2009-01-01

    Influence of constant electric field on structure, specific thermal capacity, thermomechanical properties and electrical conduction nanocomposites on a basis epoxy resin and fillers Fe 2 O 3 , Al 2 O 3 is investigated. The received results show, that application of constant electric field gives the chance to influence level of perfection of crystal structure filler (Fe 2 O 3 ) in structure to a composite, thus the size of crystals decreases from 18.0 nm (for initial samples of composites) to 7.7 nm (for the composites generated under the influence of CEF). Nanocomposites generated in CEF characterization the higher values of a electrical conduction

  2. Prediction of U3SI2-Al burn-up and SiC/p-AI composition effects on its thermal conductivity using metal matrix composite (MMC) model containing progressive sub-dispersion

    International Nuclear Information System (INIS)

    Suwardi

    2000-01-01

    The model takes into account the evolution of constituent volume fraction. Sub-dispersion of disperse contains fission gas bubbles that increase with bum-up. The metal matrix could contain pore and void, a different type of disperse that vary wth time. The model is previously aimed to dispersion-nuclear fuel element. The model consists of a combination of different conductance constituent of both matrix and sub-matrix. Application is carried out to predict the fuel swelling effect on thermal conductivity of U 3 SI 2 -Al dispersion, and to volume fraction effect on conductivity of SiC-particulate reinforced AI matrix. The model shows that both fuel fraction and fission gas swelling decrease the thermal conductivity. During the start-up period of swelling the conductivity increases as aluminum pore close. then decreases most linearly. SiC/p-AI conductivity decreases most linearly with particulate volume fraction, attains 57.6% of pure AI at 50 % v/v. The author conclude that the model developed is applicable for more general MMC. (author)

  3. Higher osmium beryllide

    International Nuclear Information System (INIS)

    Matyushenko, N.N.; Verkhorobin, L.F.; Serykh, V.P.; Pugachev, N.S.

    1982-01-01

    Results of experimental determination of composition and crystal structure of new beryllide OsBe 12 are presented. The beryllide is observed to be in equilibrium with Os 2 Be 17 (in the range of 90-92% Be) and α-Be phase (in the range of 93-99% Be). The structure OsBe 12 is similar to structures of the known beryllides Os 2 Be 17 and Os 3 Be 17

  4. Conductance eigenchannels in nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel

    1997-01-01

    The electronic conductance of metal nanocontacts is analyzed in terms of eigenchannels for the transmission. The transmission through individual eigenchannels is calculated numerically for realistic models of gold point contacts based on molecular-dynamics simulation of the elongation of a contac...

  5. Conducting Polymers

    Indian Academy of Sciences (India)

    would exhibit electronic conductivity, their conductivities (of compressed pellets) were indeed measured by others, and were found to be .... Polyaniline. Polyphenylene. Polypheny lene- vinylene. Table 1. G!NeRAl I ARTICl! structure. Maximum conductivity Stem Stability. Processability. ~. 1.5 x 105. Reacts with Film not n air.

  6. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    Directory of Open Access Journals (Sweden)

    Guo-Dung John Su

    2012-08-01

    Full Text Available Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young’s modulus and Poisson’s ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

  7. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches.

    Science.gov (United States)

    Kireeva, Natalia; Pervov, Vladislav S

    2017-08-09

    The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable, toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization and enables a number of breakthrough technologies towards the development of new high power and energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electrochromic devices, etc. Currently, rational materials design is attracting significant attention, which has resulted in a strong demand for methodologies that can accelerate the design of materials with tailored properties; cheminformatics can be considered as an efficient tool in this respect. This study was focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in garnet structured oxides; (ii) development of quantitative models to elucidate composition-structure-Li ionic conductivity relationships, taking into account the experimental details of sample preparation; (iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual screening. Several candidate compounds have been recommended for synthesis as potential solid state electrolyte materials.

  8. Interpretation of anomalous optical conductivity in the ferromagnetic metallic state of La0.7Ca0.3MnO3 manganites

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Kaurav, N.; Singh, R.K.

    2006-01-01

    Observed frequency dependent optical response of La 0.7 Ca 0.3 MnO 3 has been analysed within the two- component scheme. One is the coherent free carrier excitations and the other is incoherent motion of carriers from one site to other leading to a polaron formation. The frequency dependent relaxation rates are expressed in terms of memory functions and the coherent carriers leads to a sharp peak at zero frequency and a long tail in the infrared region. The hopping of carriers from Mn to Mn and Mn to O site yields peak values around 0.4 and 4.0 e V in the optical conductivity centred at mid-infrared region. (author)

  9. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    spectra indicate that the red characteristic emission of TiO{sub 2}: Eu{sup 3+} due to electric dipole {sup 5}D{sub 0} {yields}{sup 7} F{sub 2} transition occurring after ultraviolet excitation is the strongest. The decay time of the phosphorescence after UV excitation with a Nd:YAG laser (355 nm, f=10Hz) is temperature dependent in the range from 200 C up to 400 C. Finally, it has been found that the lifetime show a significant dependency on europium concentration. The development of rutile phase of titanium dioxide films on stainless steel substrates as protective coatings were investigated. Generally the rutile phases of TiO{sub 2} thin films do not adhere well on stainless steel substrates. In order to improve the adhesion, stainless steel substrates were first coated with titanium films using cathodic vacuum arc deposition. Then these titanium coatings were partially transformed to the rutile phase of titanium dioxide by thermal oxidation. The presence of the rutile phase of titanium dioxide and metallic titanium were confirmed by XRD. Cavitation erosion was used for the first time to investigate the adhesion properties of these coatings. Cavitation erosion tests confirmed that rutile films with a Ti inter layer are well adherent to stainless steel substrates and protect the substrate from erosion. The total mass loss of the thermally oxidized samples of Ti coated stainless steel was found around 3.5 times lower than of the uncoated samples. (orig.)

  10. Reactivity of nitrido complexes of ruthenium(VI), osmium(VI), and manganese(V) bearing Schiff base and simple anionic ligands.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu

    2014-02-18

    Nitrido complexes (M≡N) may be key intermediates in chemical and biological nitrogen fixation and serve as useful reagents for nitrogenation of organic compounds. Osmium(VI) nitrido complexes bearing 2,2':6',2″-terpyridine (terpy), 2,2'-bipyridine (bpy), or hydrotris(1-pyrazolyl)borate anion (Tp) ligands are highly electrophilic: they can react with a variety of nucleophiles to generate novel osmium(IV)/(V) complexes. This Account describes our recent results studying the reactivity of nitridocomplexes of ruthenium(VI), osmium(VI), and manganese(V) that bear Schiff bases and other simple anionic ligands. We demonstrate that these nitrido complexes exhibit rich chemical reactivity. They react with various nucleophiles, activate C-H bonds, undergo N···N coupling, catalyze the oxidation of organic compounds, and show anticancer activities. Ruthenium(VI) nitrido complexes bearing Schiff base ligands, such as [Ru(VI)(N)(salchda)(CH3OH)](+) (salchda = N,N'-bis(salicylidene)o-cyclohexyldiamine dianion), are highly electrophilic. This complex reacts readily at ambient conditions with a variety of nucleophiles at rates that are much faster than similar reactions using Os(VI)≡N. This complex also carries out unique reactions, including the direct aziridination of alkenes, C-H bond activation of alkanes and C-N bond cleavage of anilines. The addition of ligands such as pyridine can enhance the reactivity of [Ru(VI)(N)(salchda)(CH3OH)](+). Therefore researchers can tune the reactivity of Ru≡N by adding a ligand L trans to nitride: L-Ru≡N. Moreover, the addition of various nucleophiles (Nu) to Ru(VI)≡N initially generate the ruthenium(IV) imido species Ru(IV)-N(Nu), a new class of hydrogen-atom transfer (HAT) reagents. Nucleophiles also readily add to coordinated Schiff base ligands in Os(VI)≡N and Ru(VI)≡N complexes. These additions are often stereospecific, suggesting that the nitrido ligand has a directing effect on the incoming nucleophile. M≡N is also

  11. The role of transparent conducting oxides in metal organic chemical vapour deposition of CdTe/CdS Photovoltaic solar cells

    International Nuclear Information System (INIS)

    Irvine, S.J.C.; Lamb, D.A.; Barrioz, V.; Clayton, A.J.; Brooks, W.S.M.; Rugen-Hankey, S.; Kartopu, G.

    2011-01-01

    A systematic study is made between the relationship of Cd 0.9 Zn 0.1 S/CdTe photovoltaic (PV) device properties for three different commercial transparent conducting oxide (TCO) materials and some experimental CdO to determine the role of the TCO in device performance. The resistance contribution from the TCO was measured after depositing the gold contact architectures directly onto the TCOs. These were compared with the Cd 0.9 Zn 0.1 S/CdTe device properties using the same contact arrangements. Series resistance for the commercial TCOs correlated with their sheet resistance and gave good agreement with the PV device series resistance for the indium tin oxide (ITO) and fluorine doped tin oxide (FTO) 15 Ω/Sq. superstrates. The devices on the thicker FTO 7 Ω/sq superstrates were dominated by a low shunt resistance, which was attributed to the rough surface morphology causing micro-shorts. The device layers on the CdO substrate delaminated but devices were successfully made for ultra-thin CdTe (0.8 μm thick) and compared favourably with the comparable device on ITO. From the measurements on these TCOs it was possible to deduce the back contact resistance and gave an average value of 2 Ω.cm 2 . The correlation of fill factor with series resistance has been compared with the predictions of a 1-D device model and shows excellent agreement. For high efficiency devices the combined series resistance from the TCO and back contact need to be less than 1 Ω.cm 2 .

  12. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  13. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  14. Conduct Disorder

    Science.gov (United States)

    ... objections runs away from home often truant from school Children who exhibit these behaviors should receive a comprehensive evaluation by an experience mental health professional. Many children with a conduct disorder may ...

  15. Carbynes and carbenes in coordination chemistry: A new class of pentaammine and tetraammine complexes of osmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, L.M.; Sabat, M.; Harman, W.D. (Univ. of Virginia, Charlottesville (United States))

    1993-02-17

    Since their discovery by Fischer and co-workers in 1973, the study of transition-metal carbyne complexes and their role in alkyne metathesis has rapidly developed into a mature field. Although carbyne complexes are known for a diverse set of early- and mid-transition metals, the vast majority of these complexes contain carbon or phosphine [pi]-acids, or bulky alkoxide ligands, which limit the coordination number. We wish to report the first example of a carbyne species, as well as several heteroatom-carbene derivatives, in which the metal fragment, Os[sup II](NH[sub 3])[sub 5], provides a classical octahedral coordination environment. The carbyne [Os(NH[sub 3])[sub 5]([equivalent to]CPh)](OTf)[sub 3] (2) is synthesized in two steps from Os(NH[sub 3])[sub 5](OTf)[sub 3] and benzaledhyde dimethyl acetal.

  16. Platinum-group elements and gold in base metal sulfides, platinum-group minerals, and Re-Os isotope compositions of the Uitkomst complex, South Africa

    Czech Academy of Sciences Publication Activity Database

    Trubač, Jakub; Ackerman, Lukáš; Gauert, Ch.; Ďurišová, Jana; Hrstka, Tomáš

    2018-01-01

    Roč. 113, č. 2 (2018), s. 439-461 ISSN 0361-0128 R&D Projects: GA ČR GA13-15390S Institutional support: RVO:67985831 Keywords : binary alloys * copper compounds * economic geology * gold * iridium * isotopes * ore deposits * osmium * palladium * platinum * platinum metals * pyrites * Rhenium * rhenium alloys * ruthenium * solid solutions * sulfur compounds * crustal materials * mass-balance calculations * massive sulfides * mineralized zone * monosulfide solid solutions * platinum group elements * platinum group elements (PGEs) * platinum group minerals Subject RIV: DB - Geology ; Mineralogy; AC - Archeology, Anthropology, Ethnology (ARUB-Q) OBOR OECD: Geology; Archaeology (ARUB-Q) Impact factor: 2.519, year: 2016

  17. Influence of pH adjustment agents on the biologic behavior of osmium-191 impurity in iridium-191m generator eluates

    International Nuclear Information System (INIS)

    Weininger, J.; Issachar, D.; Lubin, E.; Zabari, M.; Trumper, J.

    1990-01-01

    The influence of four pH adjustment agents on the biologic behavior of osmium-191 (191Os) impurity in 191Os/191mIr generator eluates was studied. Extended body clearance and biodistribution studies were performed in mice. The solutions to be injected were obtained by eluting generators with a 0.9% NaCl solution at pH 1. The pH of these eluates was adjusted to 5-9 with succinate, phosphate, lysine or NaOH solution. Our results demonstrate that the biologic behavior of these generator eluates is significantly dependent on the agent used for pH adjustment. Buffering with lysine leads to the best results: (a) the mice show no adverse reaction after injection of 150 human doses and the body clearance is very rapid and (b) more than 75% I.D. at 24 hr postinjection. Preliminary calculations based on these results suggest a significant decrease in the estimated patient radiation dose when lysine buffered 191Os/191mIr generator eluates are used for radionuclide angiography

  18. Conduct disorders

    NARCIS (Netherlands)

    Buitelaar, J.K.; Smeets, K.C.; Herpers, P.; Scheepers, F.; Glennon, J.; Rommelse, N.N.J.

    2013-01-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic

  19. Sodium conducting polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-01

    This section deals with the aspects of ionic conduction in general as well as specific experimental results obtained for sodium systems. The conductivity as a function of temperature and oxygen/metal ratio are given for the systems NaI, NaCF/sub 3/SO/sub 3/ and NaClO/sub 4/ plus polyethylene oxide. Attempts have been made to produce mixed phase solid electrolytes analogous to the lithium systems that have worked well. These consist of mixtures of polymer and a solid electrolyte. The addition of both nasicon and sodium beta alumina unexpectedly decreases the ionic conductivity in contrast to the lithium systems. Addition of the nonconducting silica AEROSIL in order to increase the internal surface area has the effect of retarding the phase transition at 60 deg. C, but does not enhance the conductivity. (author) 23 refs.

  20. Templated Dry Printing of Conductive Metal Nanoparticles

    Science.gov (United States)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  1. Os{sup 187}-isotope abundances in terrestrial and meteoritic osmium and an attempt to determine Re/Os-ages of iron meteorites; Anomalies dans l'abondance isotopique de l'osmium-187 dans l'osmium terrestre et meteoritique - Essai de determination de l'age des meteorites de fer au moyen du rapport Re/Os; Anomalii v rasprostranennosti izotopa osmiya-187 v zemnom i meteoritnom osmie i popytka opredeleniya vozrastov reniya/osmiya v zheleznykh meteoritakh; Anomalias en la abundancia isotopica del {sup 187}Os en el osmio terrestre y meteoritico. Ensayo para determinar la edad de los meteoritos de hierro por medio de la razon Re Os

    Energy Technology Data Exchange (ETDEWEB)

    Herr, W; Hoffmeister, W; Langhoff, J [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut) Mainz, Federal Republic of Germany (Germany); Geiss, J; Hirt, B; Houtermans, F G [Physikalisches Institut der Universitaet Bern (Switzerland)

    1962-01-15

    The isotopic composition of a large number of Os-samples from terrestrial platinum ores and from iron meteorites has been investigated by mass-spectrometry. The observed isotope-ratios Os{sup 187}:Os{sup 186} in Os/Ir-ores and in Os-samples, extracted quantitatively from iron meteorites, vary in limit from 0.88 to 1.41. These variations may be explained by the production of radiogenic Os following the decay of Re{sup 187}, a natural {beta}-emitter with the lowest known {beta}-energy. Neutron activation analysis proves that Re and Os are common trace elements in iron meteorites. As dating of these bodies by conventional methods suffers from enormous difficulties, the application of the Re/Os method has been studied. From our experiments a primordial Os{sup 187}:Os{sup 186} ratio is assumed and 'minimum ages' are discussed. They differ widely and are found presumably in the range from 3.7 to 5.6x10{sup 9} yr. (author) [French] Les auteurs ont etudie au moyen de la spectrometrie de masse la composition isotopique d'un grand nombre d'echantillons d'osmium provenant de minerais terrestres de platine et d'holosideres. Le rapport isotopique osmium-187/ osmium-186 observe dans l'osmiure d'iridium et dans les echantillons d'osmium extraits en quantite mesurable des holosideres varie entre 0,88 et 1,41. Ces variations peuvent etre expliquees par la production d'osmium radiogenicjue resultant de la desintegration du rhenium-187, emetteur naturel de rayonnements beta connu comme ayant la plus faible energie beta. L'analyse par activation des neutrons montre que le rhenium et l'osmium se trouvent communement a l'etat de traces dans les holosideres. Comme il est extremement difficile d'evaluer l'age de ces corps en recourant aux methodes classiques, les auteurs du memoire ont examine la possibilite d'utiliser le rapport Re/Os. Apres avoir assume de leurs experiences le rapport osmium-187/osmium-186, ils examinent la question des . Ceux-ci different sensiblement et

  2. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Nanostructured conductive polymeric materials

    Science.gov (United States)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  4. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Misuse of the words âplatinum,â âiridium,â... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium...

  5. Butylacrylate-nucleobase Conjugates as Targets for Two-step Redox Labeling of DNA with an Osmium Tetroxide Complex

    Czech Academy of Sciences Publication Activity Database

    Havranová-Vidláková, Pavlína; Špaček, Jan; Vítová, Lada; Hermanová, Monika; Daďová, Jitka; Raindlová, Veronika; Hocek, Michal; Fojta, Miroslav; Havran, Luděk

    2018-01-01

    Roč. 30, č. 2 (2018), s. 371-377 ISSN 1040-0397 R&D Projects: GA ČR GA15-08434S Grant - others:AV ČR(CZ) AP1501 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68081707 ; RVO:61388963 Keywords : terminal deoxynucleotidyl transferase * electrochemical detection Subject RIV: CG - Electrochemistry; CC - Organic Chemistry (UOCHB-X) OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis); Organic chemistry (UOCHB-X) Impact factor: 2.851, year: 2016

  6. Determination of isotopic ratios of osmium and ruthenium in meteorites by pretreatment and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Chinfang Chai; Yongzhong Liu; Xueying Mao

    1996-01-01

    The isotopic abundance ratios of 190 Os/ 184 Os and 96 Ru/ 102 Ru for the metal phases of the Jilin and Taonan stone meteorites were determined by pretreatment and radiochemical neutron activation analysis. All experimental factors affecting Os and Ru isotopic ratios were discussed, including sampling, standard, irradiation, separation and counting. The statistical errors of measurements for the 199 Os/ 184 Os ratio can be controlled within 1%. The experimental results indicate that the statistically significant anomalies of the 190 Os/ 184 Os and 96 Ru/ 102 Ru ratios have not been found relative to the terrestrial Os and Ru standards. (author). 6 refs., 1 fig., 5 tabs

  7. Universal mesoscopic conductance fluctuations

    International Nuclear Information System (INIS)

    Evangelou, S.N.

    1992-01-01

    The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)

  8. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  9. The role of nonmagnetic d{sup 0} vs. d{sup 10}B-type cations on the magnetic exchange interactions in osmium double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hai L., E-mail: Hai.Feng@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Yamaura, Kazunari [Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Jansen, Martin, E-mail: M.Jansen@fkf.mpg.de [Max Planck Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Max Planck Institute for Solid State Research, Stuttgart 70569 (Germany)

    2016-11-15

    Polycrystalline samples of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were synthesized by solid state reactions. They adopt the cubic double perovskite structures (space group, Fm-3m) with ordered B and Os arrangements. Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) show antiferromagnetic transitions at 93 K, 69 K, and 28 K, respectively. The Weiss-temperatures are −590 K for Ba{sub 2}ScOsO{sub 6}, −571 K for Ba{sub 2}YOsO{sub 6}, and −155 K for Ba{sub 2}InOsO{sub 6}. Sc{sup 3+} and Y{sup 3+} have the open-shell d{sup 0} electronic configuration, while In{sup 3+} has the closed-shell d{sup 10}. This indicates that a d{sup 0} B-type cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. Comparison of Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) to their Sr and Ca analogues shows that the structural distortions weaken the overall magnetic exchange interactions. - Graphical abstract: Magnetic properties of osmium double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. Comparison of Ba{sub 2}BOsO{sub 6}indicates that a d{sup 0} B-type cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. - Highlights: • Magnetic properties of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. • A d{sup 0}B-type cation induces stronger magnetic interactions than a d{sup 10}. • Structural distortions weaken the overall Os{sup 5+}-Os{sup 5+} magnetic interactions.

  10. Conduct disorders.

    Science.gov (United States)

    Buitelaar, Jan K; Smeets, Kirsten C; Herpers, Pierre; Scheepers, Floor; Glennon, Jeffrey; Rommelse, Nanda N J

    2013-02-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic and therapeutic approaches to CD in the light of the forthcoming DSM-5 definition. The diagnostic criteria for CD will remain unchanged in DSM-5, but the introduction of a specifier of CD with a callous-unemotional (CU) presentation is new. Linked to this, we discuss the pros and cons of various other ways to subtype aggression/CD symptoms. Existing guidelines for CD are, with few exceptions, already of a relatively older date and emphasize that clinical assessment should be systematic and comprehensive and based on a multi-informant approach. Non-medical psychosocial interventions are recommended as the first option for the treatment of CD. There is a role for medication in the treatment of comorbid syndromes and/or in case of insufficient response to psychosocial interventions and severe and dangerous aggressive and violent behaviours.

  11. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  12. Osmium Atoms and Os2 Molecules Move Faster on Selenium-Doped Compared to Sulfur-Doped Boronic Graphenic Surfaces.

    Science.gov (United States)

    Barry, Nicolas P E; Pitto-Barry, Anaïs; Tran, Johanna; Spencer, Simon E F; Johansen, Adam M; Sanchez, Ana M; Dove, Andrew P; O'Reilly, Rachel K; Deeth, Robert J; Beanland, Richard; Sadler, Peter J

    2015-07-28

    We deposited Os atoms on S- and Se-doped boronic graphenic surfaces by electron bombardment of micelles containing 16e complexes [Os(p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-diselenate/dithiolate)] encapsulated in a triblock copolymer. The surfaces were characterized by energy-dispersive X-ray (EDX) analysis and electron energy loss spectroscopy of energy filtered TEM (EFTEM). Os atoms moved ca. 26× faster on the B/Se surface compared to the B/S surface (233 ± 34 pm·s(-1) versus 8.9 ± 1.9 pm·s(-1)). Os atoms formed dimers with an average Os-Os distance of 0.284 ± 0.077 nm on the B/Se surface and 0.243 ± 0.059 nm on B/S, close to that in metallic Os. The Os2 molecules moved 0.83× and 0.65× more slowly than single Os atoms on B/S and B/Se surfaces, respectively, and again markedly faster (ca. 20×) on the B/Se surface (151 ± 45 pm·s(-1) versus 7.4 ± 2.8 pm·s(-1)). Os atom motion did not follow Brownian motion and appears to involve anchoring sites, probably S and Se atoms. The ability to control the atomic motion of metal atoms and molecules on surfaces has potential for exploitation in nanodevices of the future.

  13. Transparent conducting oxide nanotubes

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  14. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  15. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  16. Fluid conductivity sensor

    International Nuclear Information System (INIS)

    Miller, F. M.

    1985-01-01

    Apparatus for sensing the electrical conductivity of fluid which can be used to detonate an electro explosive device for operating a release mechanism for uncoupling a parachute canopy from its load upon landing in water. An operating network connected to an ignition capacitor and to a conductivity sensing circuit and connected in controlling relation to a semiconductor switch has a voltage independent portion which controls the time at which the semiconductor switch is closed to define a discharge path to detonate the electro explosive device independent of the rate of voltage rise on the ignition capacitor. The operating network also has a voltage dependent portion which when a voltage of predetermined magnitude is developed on the conductivity sensing circuit in response to fluid not having the predetermined condition of conductivity, the voltage dependent portion closes the semiconductor switch to define the discharge path when the energy level is insufficient to detonate the electro explosive device. A regulated current source is connected in relation to the conductivity sensing circuit and to the electrodes thereof in a manner placing the circuit voltage across the electrodes when the conductivity of the fluid is below a predetermined magnitude so that the sensing circuit does not respond thereto and placing the circuit voltage across the sensing circuit when the conductivity of the fluid is greater than a predetermined magnitude. The apparatus is operated from a battery, and the electrodes are of dissimilar metals so selected and connected relative to the polarity portions of the circuit to maximize utilization of the battery output voltage

  17. Profound Understanding of Effect of Transition Metal Dopant, Sintering Temperature, and pO2 on the Electrical and Optical Properties of Proton Conducting BaCe0.9Sm0.1O3-δ.

    Science.gov (United States)

    Handal, Hala T; Hassan, Azfar; Leeson, Ryan; Eloui, Sherif M; Fitzpatrick, Martin; Thangadurai, Venkataraman

    2016-01-19

    This study reports the effect of transition metal (TM) substitution on the electrical and optical properties of BaCe0.9Sm0.1O3-δ (BCS). Concentrations of 5-10 mol % of each of Fe and Co have been doped for the B-site of BCS by citric acid autocombustion method. Powder X-ray diffraction has revealed the formation of an orthorhombic perovskite-type structure. FTIR confirmed a distortion in the lattice upon TM-doping in BCS. Scanning electron microscopy (SEM) images of 1400 °C sintered samples have manifested a higher densification in BaCe0.8Sm0.1Co0.1O3-δ (BCSC10) with a grain size ∼11 μm compared to the parent compound BCS (∼2 μm). Thermogravimetric (TG) analysis showed a water uptake in case of BaCe0.85Sm0.1Co0.05O3-δ (BCSC5), while BaCe0.85Sm0.1Fe0.05O3-δ (BCSF5) did not show a noteworthy uptake of water. TG has also proved that the incorporation of Fe and Co in BCS did not improve the chemical stability in CO2 at elevated temperature. The band gap estimated using Kubelka-Munk model based on the diffuse reflectance data was found to be the lowest for BCSC5 (2.47 eV). However, it increases upon lowering oxygen partial pressure (pO2), which was interpreted by a band structure modifications. Among the samples investigated, BCSC10 sintered at 1400 °C showed the highest electrical conductivity of 0.02 S cm(-1) in air at 600 °C, while its proton mobility appears to be negligible under the investigated humidity atmosphere.

  18. Study on excitation of vibrational levels of osmium tetroxide molecule by the continuous CO2 laser radiation

    International Nuclear Information System (INIS)

    Kompanets, O.N.; Letokhov, V.S.; Minogin, V.G.

    1975-01-01

    The mechanism of nonlinear infrared absorption in OsO 4 has been studied using a single-frequence continuous-wave CO 2 laser (10.6 μ). Measured are relationships between the OsO 4 absorption coefficient and the laser radiation intensity, the week beam transmission through a cell filled with OsO 4 and the frequency of the intensity modulation of the strong beam which saturates the absorption. It is indicated that the thermal mechanism prevails in OsO 4 bleaching under pressure (>=) 1mm Hg. A strong infrared fluorescence observed and studied at 5.3 and 10.6 μ in the molecular OsO 4 in the field of the high-power CO 2 laser has supplied another proof of the conclusion. The thermal diffusion rate and the coefficient of thermal conductivity for OsO 4 vapours have been determined. It has been revealed that the hot bands represent a significant part in thermal mechanism of the laser radiation absorption by the molecule

  19. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  20. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  1. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  2. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  3. Superconductivity in bad metals

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described

  4. The application of the inductively coupled plasma system to the simultaneous determination of precious metals

    International Nuclear Information System (INIS)

    Watson, A.E.; Russell, G.M.; Middleton, H.R.; Davenport, F.F.

    1983-01-01

    This report describes the development of a spectrochemical technique using excitation by an inducticely coupled plasma (ICP) source for the simultaneous determination of the precious metals (defined here as gold, silver, and all the platinum-group metals except osmium) in a wide variety of samples from a plant for the extraction and refining of platinum metal. The limits of detection for the analytes were determined in various acid and salt media and, under the conditions used, ranged from 20 to 100ng/l. The analytes were determined in the presence of a thousandfold excess of each of the other precious metals used as a matrix element. Some severe interferences were noted but were ascribed to spectral-line overlap or to contamination of the matrix material. Various dissolution techniques, based upon standard procedures applied in the precious-metals industry, were used, depending on the particular type of material treated. The spectrometer was calibrated by the use of solutions containing the analytes, sodium chloride, and acid, with scandium as the internal standard. The accuracy and precision of the technique, established by the analysis of many samples of each type, were found to be satisfactory when close attention was paid to detail in the preparation of the analytical solution. The relative standard deviation of the method ranges from 0,005 to 0,05, depending on the element being determined

  5. The use of masking agents in the determination, by hydride generation and atomic-absorption spectrophotometry, of arsenic, antimony, selenium, tellurium, and bismuth in the presence of noble metals

    International Nuclear Information System (INIS)

    Kellerman, S.P.

    1982-01-01

    The effectiveness of thiosemicarbazide, tellurium, and potassium iodide as masking agents to eliminate interferences was assessed. Thiosemicarbazide was found to be effective in eliminating or reducing the interferences on arsenic, antimony, and bismuth, and tellurium reduced the interferences on selenium. The interferences on tellurium could not be eliminated. Arsenic, antimony, selenium, and bismuth were determined in metal sulphide concentrates that were spiked with the noble metals (defined here as gold plus all the platinum-group metals except osmium). The relative standard deviations for arsenic, antimony, bismuth, and selenium were 0,061, 0,017, 0,029, and 0,145 respectively. The values obtained for all the analytes agreed favourably with the preferred values for two in-house reference samples. The laboratory method is detailed in an appendix

  6. Quantum chaos and conductivity in disordered systems

    International Nuclear Information System (INIS)

    Suzuki, A.; Matsutani, S.

    2001-01-01

    The hopping conductivity in a disordered system which is composed of small (semi-) metallic granules is presented. Due to the irregular shape of each granule, the level statistics of a free electron in granule is expressed by a random matrix, and a formula for the temperature-dependent conductivity (TDC) is obtained for such a disordered system. This TDC shows an apparent metal-insulator transition and is in good agreement with experimental results for disordered carbons

  7. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    Science.gov (United States)

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  8. Paleogene Seawater Osmium Isotope Records

    Science.gov (United States)

    Rolewicz, Z.; Thomas, D. J.; Marcantonio, F.

    2012-12-01

    Paleoceanographic reconstructions of the Late Cretaceous and early Cenozoic require enhanced geographic coverage, particularly in the Pacific, in order to better constrain meridional variations in environmental conditions. The challenge with the existing inventory of Pacific deep-sea cores is that they consist almost exclusively of pelagic clay with little existing age control. Pelagic clay sequences are useful for reconstructions of dust accumulation and water mass composition, but accurate correlation of these records to other sites requires improved age control. Recent work indicates that seawater Os isotope analyses provide useful age control for red clay sequences. The residence time of Os in seawater is relatively long compared to oceanic mixing, therefore the global seawater 187Os/188Os composition is practically homogeneous. A growing body of Late Cretaceous and Cenozoic data has constrained the evolution of the seawater Os isotopic composition and this curve is now a viable stratigraphic tool, employed in dating layers of Fe-Mn crusts (e.g., Klemm et al., 2005). Ravizza (2007) also demonstrated that the seawater Os isotopic composition can be extracted reliably from pelagic red clay sediments by analyzing the leached oxide minerals. The drawback to using seawater Os isotope stratigraphy to date Paleogene age sediments is that the compilation of existing data has some significant temporal gaps, notably between ~38 and 55 Ma. To improve the temporal resolution of the seawater Os isotope curve, we present new data from Ocean Drilling Program (ODP) Site 865 in the equatorial Pacific. Site 865 has excellent biostratigraphic age control over the interval ~38-55Ma. Preliminary data indicate an increase in the seawater composition from 0.427 at 53.4 Ma to 0.499 by 43 Ma, consistent with the apparent trend in the few existing data points. We also analyzed the Os isotopic composition recorded by oxide minerals at Integrated Ocean Drilling Program (IODP) Site U1370 to construct an age model for this predominantly pelagic clay section. The 187Os/188Os values generally increase from 0.312 at 64.46 mbsf to 0.531 at 28.26 mbsf. The low value recorded at 64.46 likely reflects the Os isotope minimum recorded across the K/Pg boundary, while the uppermost value likely correlates to the E/O interval. Comparison of the Os-derived ages with a crude linearly interpolated sedimentation rate age model reveals variations in sediment accumulation rate between 0.86 and 1.5 m/Myr.

  9. Determination of osmium in molybdenites

    International Nuclear Information System (INIS)

    Schelhorn, H.; Geisler, M.

    1981-01-01

    Os has been determined in molybdenites by neutron activation analysis, measuring the 129.4 keV peak of the 191 Os spectrum after radiochemical separation. Os is removed directly as OsO 4 by distillation from the melt of an oxidizing acid or feebly basic fusion mixture

  10. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  11. Re-Os dating on pyrite and metal sources tracing in porphyry-type and neutral epithermal deposits: example of the Bolcana, Troita and Magura deposits, Apuseni Mountains, Romania

    International Nuclear Information System (INIS)

    Cardon, Olivier

    2007-01-01

    Many porphyry-type (Cu-Au) and neutral epithermal (Pb-Zn and Au ± Ag) ore deposits are encountered in the region of the Apuseni Mountains, located at the foot of the Carpathian chain in the Western Romania. These deposits are related to a Neogene andesitic volcanism. In order to demonstrate possible genetic relationships between the porphyry-type and neutral epithermal deposits, the Bolcana porphyry has been investigated since it is surrounded by a number of epithermal low-sulfidation veins with a Pb-Zn ± Au mineralisation. These veins are currently mined at the Troita and Magura sites. A structural analysis and a 3D modelling pf these deposits indicate that the geometry and orientation of fractures and mineralized vein are consistent both with direction of regional extension and with a NW-SE progression of the different andesitic intrusions. In order to establish precisely the temporal relationship between the different ore deposits, a Re-Os dating method has been developed and applied on pyrite which is ubiquitous in all of the deposits. This method enabled us to assign an age of 10.9 ± 1.9 Ma for the porphyry-hosted mineralization. The ages obtained for the epithermal systems are somewhat approximative as perturbations of the Re-Os system are observed for these environments. A fractionation of rhenium responsible for a significant enrichment in this element for the apical zone of the porphyry has been demonstrated. This enrichment is most probably related to a maximum boiling event, which may also explain a similar enrichment in arsenic for the pyrite in the same zone. The sources for the metals have been characterized at the district scale by combining two isotopic systems (Re-Os and Pb-Pb) on both pyrite and galena. The osmium data indicate that the Troita deposit has composition which is similar to that of the Bolcana porphyry. In contrast the results obtained for the Magura deposits indicate the Re-OS system has in this case been perturbed due to a

  12. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  13. Electrical conductivity of silicon carbide composites

    International Nuclear Information System (INIS)

    Scholz, R.; Greeff, J. de; Vinche, C.; Frias Rebelo, A.

    1997-01-01

    The electrical conductivity was measured on two SiC/SiC composite materials in the temperature range from room temperature up to 1000degC in order to estimate the magnitude of MHD effects in liquid metal blankets if SiC/SiC composites are used as structural materials. For both types of material, the electrical conductivity increased continuously with temperature. The conductivity values ranged from 350 (Ωm) -1 at room temperature to 550 (Ωm) -1 at 1000degC, indicating that the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blanket studies. (author)

  14. Robust conductance of dumbbell molecular junctions with fullerene anchoring groups

    DEFF Research Database (Denmark)

    Markussen, Troels; Settnes, Mikkel; Thygesen, Kristian Sommer

    2011-01-01

    The conductance of a molecular wire connected to metallic electrodes is known to be sensitive to the atomic structure of the molecule-metal contact. This contact is to a large extent determined by the anchoring group linking the molecular wire to the metal. It has been found experimentally that a...

  15. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  16. Bound values for Hall conductivity of heterogeneous medium under ...

    Indian Academy of Sciences (India)

    - ditions in inhomogeneous medium has been studied. It is shown that bound values for. Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect ...

  17. The coordination chemistry of dipyridylbenzene: N-deficient terpyridine or panacea for brightly luminescent metal complexes?

    Science.gov (United States)

    Williams, J A Gareth

    2009-06-01

    1,3-Di(2-pyridyl)benzene (dpybH) structurally resembles the widely-used ligand terpyridine (tpy), with which it is isoelectronic. In this critical review, following a brief overview of synthetic strategies for dpybH and derivatives, we survey the different types of complex that are possible with these ligands. Whilst metals such as ruthenium(ii), osmium(ii) and platinum(ii) give a terdentate N--C--N binding mode in which cyclometallation occurs at C(2), the ions iridium(iii), rhodium(iii) and palladium(ii) favour C(4) metallation. The latter process can be blocked by appropriate ligand modification, to allow the N--C--N mode to be accessed with these metal ions too. The luminescence properties of the complexes are discussed. A huge range of emission efficiencies are encountered amongst Ir(iii) complexes containing dpyb derivatives, according to the other ligands present. Trends can be rationalised with the aid of simple frontier-orbital considerations. The Pt(ii) complexes of dipyridylbenzenes are also intensely luminescent. Their application to contemporary organic light-emitting device (OLED) technology is discussed, including white light emitters exploiting excimer emission. Their potential as cell imaging agents amenable to time-resolved detection procedures on the microsecond timescale has also been demonstrated (118 references).

  18. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  19. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  20. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection

    KAUST Repository

    Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai; Wu, Hongjun; Wang, Peng

    2015-01-01

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide

  1. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  2. The Cryo-Thermochromatographic Separator (CTS) A new rapid separation and alpha-detection system for on-line chemical studies of highly volatile osmium and hassium (Z=108) tetroxides

    CERN Document Server

    Kirbach, U W; Gregorich, K E; Lee, D M; Ninov, V; Omtvedt, J P; Patin, J B; Seward, N K; Strellis, D A; Sudowe, R; Türler, A; Wilk, P A; Zielinski, P M; Hoffman, D C; Nitsche, H

    2002-01-01

    The Cryo-Thermochromatographic Separator (CTS) was designed and constructed for rapid, continuous on-line separation and simultaneous detection of highly volatile compounds of short-lived alpha-decaying isotopes of osmium and hassium (Hs, Z=108). A flowing carrier gas containing the volatile species is passed through a channel formed by two facing rows of 32 alpha-particle detectors, cooled to form a temperature gradient extending from 247 K at the channel entrance down to 176 K at the exit. The volatile species adsorb onto the SiO sub 2 -coated detector surfaces at a characteristic deposition temperature and are identified by their observed alpha-decay energies. The CTS was tested on-line with OsO sub 4 prepared from sup 1 sup 6 sup 9 sup - sup 1 sup 7 sup 3 Os isotopes produced in sup 1 sup 1 sup 8 sup , sup 1 sup 2 sup 0 Sn( sup 5 sup 6 Fe, 3,4,5n) reactions. An adsorption enthalpy for OsO sub 4 of -40.2+-1.5 kJ/mol on SiO sub 2 was deduced by comparing the measured deposition distribution with Monte Carlo...

  3. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  4. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC{sub 50} values of other test models

    Energy Technology Data Exchange (ETDEWEB)

    Khangarot, B.S., E-mail: bkhangarot@hotmail.com [Ecotoxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India); Das, Sangita [Ecotoxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2009-12-30

    The ostracod Cypris subglobosa Sowerby, 1840 static bioassay test on the basis of a 48 h of 50% of immobilization (EC{sub 50}) has been used to measure the toxicity of 36 metals and metalloids and 12 reference toxicants. Among the 36 metals and metalloids, osmium (Os) was found to be the most toxic in the test while boron (B), the least toxic. The EC{sub 50} values of this study revealed positive linear relationship with the established test models of cladoceran (Daphnia magna), sludge worm (Tubifex tubifex), chironomid larvae (Chironomus tentans), protozoan (Tetrahymena pyriformis), fathead minnow (Pimephales promelas), bluegill sunfish (Lepomis macrochirus), and aquatic macrophyte duckweed (Lemna minor). Correlation coefficients (r{sup 2}) for 17 physicochemical properties of metals or metal ions and EC{sub 50}s (as pM) were examined by linear regression analysis. The electronegativity, ionization potential, melting point, solubility product of metal sulfides (pK{sub sp}), softness parameter and some other physicochemical characteristics were significantly correlated with EC{sub 50}s of metals to C. subglobosa. The reproducibility of toxicity test was determined using 12 reference toxicants. The coefficient of variability of the EC{sub 50}s ranged from 6.95% to 55.37% and variability was comparable to that noticed for D. magna and other aquatic test models. The study demonstrated the need to include crustacean ostracods in a battery of biotests to detect the presence of hazardous chemicals in soils, sewage sludges, sediments and aquatic systems.

  5. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC50 values of other test models

    International Nuclear Information System (INIS)

    Khangarot, B.S.; Das, Sangita

    2009-01-01

    The ostracod Cypris subglobosa Sowerby, 1840 static bioassay test on the basis of a 48 h of 50% of immobilization (EC 50 ) has been used to measure the toxicity of 36 metals and metalloids and 12 reference toxicants. Among the 36 metals and metalloids, osmium (Os) was found to be the most toxic in the test while boron (B), the least toxic. The EC 50 values of this study revealed positive linear relationship with the established test models of cladoceran (Daphnia magna), sludge worm (Tubifex tubifex), chironomid larvae (Chironomus tentans), protozoan (Tetrahymena pyriformis), fathead minnow (Pimephales promelas), bluegill sunfish (Lepomis macrochirus), and aquatic macrophyte duckweed (Lemna minor). Correlation coefficients (r 2 ) for 17 physicochemical properties of metals or metal ions and EC 50 s (as pM) were examined by linear regression analysis. The electronegativity, ionization potential, melting point, solubility product of metal sulfides (pK sp ), softness parameter and some other physicochemical characteristics were significantly correlated with EC 50 s of metals to C. subglobosa. The reproducibility of toxicity test was determined using 12 reference toxicants. The coefficient of variability of the EC 50 s ranged from 6.95% to 55.37% and variability was comparable to that noticed for D. magna and other aquatic test models. The study demonstrated the need to include crustacean ostracods in a battery of biotests to detect the presence of hazardous chemicals in soils, sewage sludges, sediments and aquatic systems.

  6. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  7. Phase Composition and Long-Term Conductivity of Acceptor Doped Ce(PO3)4 and CeP2O7 with Variable P/Metal Ratio and of CeP2O7-KH2PO4 Composite

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hallinder, Jonathan; Lapina, Alberto

    2013-01-01

    The thermal evolution of the phase composition of CeP2O7 and Ce(PO3)4 with 10 mol% Y and Gd doping, respectively, was examined by in-situ powder X-ray diffraction and thermogravimetry with in-line mass spectroscopy. The phase composition depends critically on the P to metal ratio, the annealing...... temperature, humidity and time. CeP2O7 and Ce(PO3)4 were completely decomposed to CePO4 following a 1100 h long conductivity test at 155°C. The conductivity of 10 mol% Gd doped Ce(PO3)4 (synthesized with P:(Ce + Gd) = 5.0) reaches a value of 6.4·10−2 S·cm−1 at 150°C under wet conditions (pH2O = 0.2 atm...

  8. Thermal conductivity of multibarrier waste form components

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-01-01

    The multiple barrier concept of radioactive waste immobilization under investigation at Pacific Northwest Laboratory (PNL) uses composite waste forms which exhibit enhanced inertness through improvements in thermal stability, mechanical strength, and leachability by the use of coatings and metal matrices. Since excessive heat may be generated by radioactive decay of the waste, the thermal conductivity of the various barriers, and more importantly of the composite, becomes an important parameter in design criteria. This report presents results of thermal conductivity measurements on 21 various glass, ceramic, metal and composite materials used in multibarrier waste forms development

  9. Conducting compositions of matter

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  10. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    International Nuclear Information System (INIS)

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  11. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  12. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  13. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  14. Hybrid molecular materials based upon organic pi-electron donors and inorganic metal complexes. Conducting salts of bis(ethylenediseleno)tetrathiafulvalene (BEST) with the octahedral anions hexacyanoferrate(III) and nitroprusside

    CERN Document Server

    Clemente-Leon, M; Galan-Mascaros, J R; Giménez-Saiz, C; Gómez-García, C J; Fabre, J M; Mousdis, G A; Papavassiliou, G C

    2002-01-01

    The synthesis, structure and physical characterization of three new radical salts formed by the organic donor bis(ethylenediseleno)tetrathiafulvalene (BEDS-TTF or BEST) and the paramagnetic hexacyanoferrate(III) anion [Fe(CN) sub 6] sup 3 sup - or the photochromic nitroprusside anion [Fe(CN) sub 5 NO] sup 2 sup - are reported: (BEST) sub 4 [Fe(CN) sub 6] (1), (BEST) sub 3 [Fe(CN) sub 6] sub 2 centre dot H sub 2 O (2) and (BEST) sub 2 [Fe(CN) sub 5 NO] (3). Salts 1 and 3 show a layered structure with alternating organic (beta-type packing) and inorganic slabs. Salt 2 shows an original interpenetrated structure probably due to the unprecedented presence of (BEST) sup 2 sup + dications. The three salts are semiconductors although salt 1 exhibits a high room temperature conductivity and a semiconducting-semiconducting transition at ca. 150 K which has been attributed to a dimerization in the organic sublattice.

  15. Transparent conducting oxides and production thereof

    Science.gov (United States)

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  16. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  17. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  18. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  19. Single molecule conductance

    NARCIS (Netherlands)

    Willems, R.

    2008-01-01

    This thesis represents an excursion into the world of molecular electronics, i.e. the field of research trying to use individual (organic) molecules as electronic components; in this work various experimental methods have been explored to connect individual molecules to metallic contacts and

  20. High-pressure crystal growth and magnetic and electrical properties of the quasi-one dimensional osmium oxide Na2OsO4

    International Nuclear Information System (INIS)

    Shi, Y.G.; Guo, Y.F.; Yu, S.; Arai, M.; Belik, A.A.; Sato, A.; Yamaura, K.; Takayama-Muromachi, E.

    2010-01-01

    Na 2 OsO 4 crystals were grown by a NaCl flux method under high pressure. It crystallizes in the Ca 2 IrO 4 -type structure without having additional elements or metal vacancies, which are usually accommodated. It appears that Na 2 OsO 4 is a metal-stoichiometric Ca 2 IrO 4 -type compound never been synthesized to date. Na 2 OsO 4 has the octahedral environment of Os 6+ O 6 so that the electronic configuration is 5d 2 , suggesting the magnetic S=1 ground state. However, magnetization, electrical resistivity, and specific heat measurements indicated that the non-magnetic S=0 state is much likely for Na 2 OsO 4 than the S=1 state. Band structure calculations and the structure analysis found that the disagreement is probably due to the statically uniaxial compression of the OsO 6 octahedra, resulting in splitting of the t 2 g band. - Graphical abstract: Na 2 OsO 4 crystals were grown by a NaCl flux method under high pressure. It crystallizes in the Ca 2 IrO 4 -type structure comprising infinite Os 6+ O 6 octahedra (5d 2 ) chains. The crystal growth, the crystal structure, and the magnetic and electrical properties are reported.

  1. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  2. Determination of osmium concentrations and (187)Os/(188)Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO(4) into a multicollector inductively coupled plasma mass spectrometer.

    Science.gov (United States)

    Sen, Indra S; Peucker-Ehrenbrink, Bernhard

    2014-03-18

    The (187)Os/(188)Os ratio that is based on the β(-)-decay of (187)Re to (187)Os (t1/2 = 41.6 billion years) is widely used to investigate petroleum system processes. Despite its broad applicability to studies of hydrocarbon deposits worldwide, a suitable matrix-matched reference material for Os analysis does not exist. In this study, a method that enables Os isotope measurement of crude oil with in-line Os separation and purification from the sample matrix is proposed. The method to analyze Os concentration and (187)Os/(187)Os involves sample digestion under high pressure and high temperature using a high pressure asher (HPA-S, Anton Paar), sparging of volatile osmium tetroxide from the sample solution, and measurements using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). This methods significantly reduced the total procedural time compared to conventional Carius tube digestion followed by Os separation and purification using solvent extraction, microdistillation and N-TIMS analysis. The method yields Os concentration (28 ± 4 pg g(-1)) and (187)Os/(188)Os (1.62 ± 0.15) of commercially available crude oil reference material NIST 8505 (1 S.D., n = 6). The reference material NIST 8505 is homogeneous with respect to Os concentration at a test portion size of 0.2 g. Therefore, (187)Os/(188)Os composition and Os concentration of NIST 8505 can serve as a matrix-matched reference material for Os analysis. Data quality was assessed by repeated measurements of the USGS shale reference material SCo-1 (sample matrix similar to petroleum source rock) and the widely used Liquid Os Standard solution (LOsSt). The within-laboratory reproducibility of (187)Os/(188)Os for a 5 pg of LOsSt solution, analyzed with this method over a period of 12 months was ∼1.4% (1 S.D., n = 26), respectively.

  3. Electrocatalytic studies of osmium-ruthenium carbonyl cluster compounds for their application as methanol-tolerant cathodes for oxygen reduction reaction and carbon monoxide-tolerant anodes for hydrogen oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Arco, E.; Uribe-Godinez, J.; Castellanos, R.H. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Escobedo (Mexico); Altamirano-Gutierrez, A.; Jimenez-Sandoval, O. [Centro de Investigacion y de Estudios Avanzados del Inst. Politecnico Nacional, Querataro (Mexico)

    2006-07-01

    This paper provided details of an electrokinetic study of novel electrocatalytic materials capable of performing both the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR). Osmium-ruthenium carbonyl cluster compounds (Os{sub x}Ru{sub 3}(CO){sub n}) were synthesized by chemical condensation in non-polar organic solvents at different boiling points and refluxing temperatures. Three different non-polar organic solvents were used: (1) n-nonane; o-xylene; and 1,2-dichlorobenzene. The electrocatalysts were characterized by Fourier Transform Infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A rotating disk electrode technique was used to analyze the materials. Results of the analysis showed that the materials performed ORR in both the presence and absence of carbon monoxide (CO), and that electrocatalysts were not poisoned by the presence of CO. Cyclic voltamperometry for the disk electrodes showed that the electrochemical behaviour of the compounds in the acid electrolyte was similar in the presence or absence of methanol. The Tafel slope, exchange current density and the transfer coefficient were also investigated. The electrokinetic parameters for the ORR indicated that the materials with the highest electrocatalytic activity were synthesized in 1,2-dichlorobenzene. Electrocatalytic activity during HOR were prepared in n-nonane. It was concluded that the new materials are good candidates for use as both a cathode and an anode in proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). 7 refs., 2 tabs., 7 figs.

  4. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  5. A Study on Graphene—Metal Contact

    Directory of Open Access Journals (Sweden)

    Hongyu Yu

    2013-03-01

    Full Text Available The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. In this study, we review our recent study on the graphene–metal contact characteristics from the following viewpoints: (1 metal preparation method; (2 asymmetric conductance; (3 annealing effect; (4 interfaces impact.

  6. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    to binary metallic glasses. They are of interest since third element can modify the physical properties of binary metallic glasses and can also be used as a probe to study the host. ..... conducting nature in the present case. When we. Figure 6. Variation of transition temperature (TC) with valance (Z) of ternary metallic glasses.

  7. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  8. Graphene Conductance Uniformity Mapping

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter

    2012-01-01

    We demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements......, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times......, dominating the microscale conductance of the investigated graphene film....

  9. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  10. Complex conductivity of soils

    NARCIS (Netherlands)

    Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricus, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; Louw, P.G.B. de; Baaren, E.S. van; Dabekaussen, W.; Menkovic, A.; Gunnink, J.L.

    2017-01-01

    The complex conductivity of soils remains poorly known despite the growing importance of this method in hydrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including four peat samples) and one clean sand in the frequency range 0.1 Hz

  11. Conducting polymer hydrogels

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2017-01-01

    Roč. 71, č. 2 (2017), s. 269-291 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aerogel * conducting polymers * conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  12. Drude-Schwarzschild Metric and the Electrical Conductivity of Metals

    Directory of Open Access Journals (Sweden)

    Silva P. R.

    2014-07-01

    Full Text Available Starting from a string with a length equal to the electron mean free path and having a unit cell equal to the Compton length of the electron, we construct a Schwarzschild-like metric. We found that this metric has a surface horizon with radius equal to the electron mean free path and its Bekenstein-like entropy is proportional to the number of squared unit cells contained in this spherical surface. The Hawking temperature is inversely proportional to the perimeter of the maximum circle of this sphere. Also, interesting analogies on some features of the particle physics are examined.

  13. Charge dynamics in conducting polyaniline–metal oxalate composites

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5 ... Deputed on F.I.P. from Department of Chemistry, T.D.M.N.S. College, T. Kallikulam, Tirunelveli 627 113, India; Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli ... Please take note of this change.

  14. Conductivities from attractors

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany); Fernández, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík (Iceland); Goulart, Prieslei [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, São Paulo 01140-070, SP (Brazil); Witkowski, Piotr [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany)

    2017-03-28

    In the context of applications of the AdS/CFT correspondence to condensed matter physics, we compute conductivities for field theory duals of dyonic planar black holes in 3+1-dimensional Einstein-Maxwell-dilaton theories at zero temperature. We combine the near-horizon data obtained via Sen’s entropy function formalism with known expressions for conductivities. In this way we express the conductivities in terms of the extremal black hole charges. We apply our approach to three different examples for dilaton theories for which the background geometry is not known explicitly. For a constant scalar potential, the thermoelectric conductivity explicitly scales as α{sub xy}∼N{sup 3/2}, as expected. For the same model, our approach yields a finite result for the heat conductivity κ/T∝N{sup 3/2} even for T→0.

  15. Thermal conductivity of technetium

    International Nuclear Information System (INIS)

    Minato, K.; Serizawa, H.; Fukuda, K.

    1998-01-01

    The thermal diffusivity of technetium was measured on a disk sample of 5 mm in diameter and 1 mm in thickness by the laser flash method from room temperature to 1173 K, and the thermal conductivity was determined by the measured thermal diffusivity and density, and the reported specific heat capacity. The thermal diffusivity of technetium decreases with increasing temperature though it is almost constant above 600 K. The thermal conductivity of technetium shows a minimum around 400 K, above which the thermal conductivity increases with temperature. The electronic and phonon components of the thermal conductivity were evaluated approximately. The increase in the thermal conductivity of technetium with temperature is due to the increase in the electronic component. (orig.)

  16. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    Science.gov (United States)

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  17. Measurement of thermal conductance

    International Nuclear Information System (INIS)

    Kuchnir, M.

    1977-01-01

    The 6-m long, 45-kG, warm-iron superconducting magnets envisioned for the Energy Doubler stage of the Fermilab accelerator require stiff supports with minimized thermal conductances in order to keep the refrigeration power reasonable. The large number of supports involved in the system required a careful study of their heat conduction from the room temperature wall to the intercepting refrigeration at 20 0 K and to the liquid helium. For this purpose the thermal conductance of this support was measured by comparing it with the thermal conductance of a copper strap of known geometry. An association of steady-state thermal analysis and experimental thermal conductivity techniques forms the basis of this method. An important advantage is the automatic simulation of the 20 0 K refrigeration intercept by the copper strap, which simplifies the apparatus considerably. This relative resistance technique, which uses electrical analogy as a guideline, is applicable with no restrictions for materials with temperature-independent thermal conductivity. For other materials the results obtained are functions of the specific temperature interval involved in the measurements. A comprehensive review of the literature on thermal conductivity indicates that this approach has not been used before. A demonstration of its self-consistency is stressed here rather than results obtained for different supports

  18. Multivalent ion conducting solids

    Energy Technology Data Exchange (ETDEWEB)

    Imanaka, N. [Osaka Univ., Suita, Osaka (Japan). Dept. of Applied Chemistry

    2008-07-01

    Solid electrolytes possess important characteristics for industrial applications. Only a single ionic species can macroscopically migrate in these solids. This paper described a the new NASICON (M-Zr-Nb-P-O) type system, exhibiting an exceptionally high level of trivalent M3+ ion conductivity on polycrystalline solids. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ stabilized the NASICON phase and realized the M3+ ion conduction in the NASICON structure. It was concluded that the conductivities of the series are comparable to those of the practically applied solid electrolytes of oxide anion conductors of YSZ and CSZ. 3 refs., 2 figs.

  19. Conducting everyday life

    DEFF Research Database (Denmark)

    Juhl, Pernille

    , they are involved in preventive interventions. I conducted participatory observations with the children in their everyday life. Overall, the study stresses that even small children must be perceived as active participants who act upon and struggle with different conditions and meaning making processes across......In the paper I discuss how small children (0-4 year) develop through ‘conducting everyday life’ across contexts (Holzkamp 2013). I discuss how this process of conducting everyday life is essential when discussing the ‘good life for children’ from a child perspective. These issues are addressed...... contexts (home, day care, part-time foster family) and in relation to other co-participants....

  20. Electrically conductive material

    Science.gov (United States)

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  1. Conductive open frameworks

    Science.gov (United States)

    Yaghi, Omar M.; Wan, Shun; Doonan, Christian J.; Wang, Bo; Deng, Hexiang

    2018-05-22

    The disclosure relates generally to materials that comprise conductive covalent organic frameworks. The disclosure also relates to materials that are useful to store and separate gas molecules and sensors.

  2. Conductive polypropylene composites

    International Nuclear Information System (INIS)

    Koszkul, J.

    1997-01-01

    The results of studies on polypropylene composites with three sorts of Polish-made carbon blacks were presented. It was found that composite of 20% black content had properties of an electrically conducting material

  3. Complex conductivity of soils

    DEFF Research Database (Denmark)

    Revil, A.; Coperey, A.; Shao, Z.

    2017-01-01

    The complex conductivity of soil remains poorly known despite the growing importance of this method in hyrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including 4 peat samples) and one clean sand in the frequency range 0.1 Hertz...... to 45 kHz. The soil samples are saturated with 6 different NaCl brines with conductivities (0.031, 0.53, 1.15, 5.7, 14.7, and 22 S m-1, NaCl, 25°C) in order to determine their intrinsic formation factor and surface conductivity. This dataset is used to test the predictions of the dynamic Stern...

  4. P -type transparent conducting oxides

    International Nuclear Information System (INIS)

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-01-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n -type, such as Sn doped In 2 O 3 , Al doped ZnO, and F doped SnO 2 . However, the development of efficient p -type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2 p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2 p orbitals with close-shell Cu 3 d 10 orbitals. This work has sparked tremendous interest in designing p -TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p -TCOs, including Cu + -based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr 3+ -based oxides (3 d 3 ) and post-transition metal oxides with lone pair state (ns 2 ). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p -type conductivity and optical properties. Device applications based on p -TCOs for transparent p – n junctions will also be briefly discussed. (topical review)

  5. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles.

    Science.gov (United States)

    Ding, Lingling; Liu, Zhidong; Aggrey, Mike Okweesi; Li, Chunhua; Chen, Jing; Tong, Ling

    2015-01-01

    Along with the exuberant development of nanotechnology, a large number of nanoformulations or non materials are successfully applied in the clinics, biomedicine, cosmetics and industry. Despite some unique advantages of nanoformulations, there exist potentially worrying toxic effects, particularly those related to metal and metal-containing nanoparticles (NPs). Although various researches have been conducted to assess the metallic and metal-containing nanoparticles toxic effects, only little is known about the toxicity expressive types and evaluation, reasons and mechanisms, influencing factors and research methods of metal and metal-containing nanotoxicity. Therefore, it is of importance to acquire a better understanding of metal and metal-containing nanoparticles toxicity for medical application. This review presents a summary on the metal and metal-containing nanoparticles toxicity research progress consulting relevant literature.

  6. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  7. Therapy of metal poisoning

    International Nuclear Information System (INIS)

    Lindenbaum, A.

    1975-01-01

    The following studies were conducted: physical character of lead acetate and other toxic metal compounds as related to tissue distribution, toxicity, and therapeutic removal; interactions of monomeric plutonium with specific components of mouse liver and skeleton; metabolism and therapeutic decorporation of plutonium in mice and dogs; comparative studies of tissue distribution of plutonium isotopes; and microdistribution of monomeric and polymeric plutonium in beagle liver and bone

  8. Metal-in-metal localized surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G B; Earp, A A, E-mail: g.smith@uts.edu.au [Department of Physics and Advanced Materials and Institute of Nanoscale Technology, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2010-01-08

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  9. Metal-in-metal localized surface plasmon resonance

    Science.gov (United States)

    Smith, G. B.; Earp, A. A.

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  10. Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene.

    Science.gov (United States)

    Vollmer, Christian; Redel, Engelbert; Abu-Shandi, Khalid; Thomann, Ralf; Manyar, Haresh; Hardacre, Christopher; Janiak, Christoph

    2010-03-22

    Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (M-NPs) have been reproducibly obtained by facile, rapid (3 min), and energy-saving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal-carbonyl precursors [M(x)(CO)(y)] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF(4)]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180-250 degrees C, 6-12 h) of [M(x)(CO)(y)] in ILs. The MWI-obtained nanoparticles have a very small (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active and easily recyclable catalysts for the biphasic liquid-liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product) (mol Ru)(-1) h(-1) and 884 (mol product) (mol Rh)(-1) h(-1) and give almost quantitative conversion within 2 h at 10 bar H(2) and 90 degrees C. Catalyst poisoning experiments with CS(2) (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of Ru-NPs.

  11. Low thermal conductivity skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Fleurial, J P; Caillat, T; Borshchevsky, A

    1997-07-01

    Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

  12. Friction and Wear of Metals With a Single-Crystal Abrasive Grit of Silicon Carbide - Effect of Shear Strength of Metal

    National Research Council Canada - National Science Library

    Miyoshi, Kazuhisa

    1978-01-01

    An investigation was conducted to examine the removal and plastic deformation of metal as a function of the metal properties when the metal is in sliding contact with a single-crystal abrasive grit of silicon carbide...

  13. What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os).

    Science.gov (United States)

    Pandey, Krishna K

    2012-03-21

    Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of

  14. Biohydrometallurgical methods for metals recovery from waste materials

    OpenAIRE

    J. Willner; J. Kadukova; A. Fornalczyk; M. Saternus

    2015-01-01

    The article draws attention to recently conducted research of bacterial leaching of metals from various polymetallic waste. These wastes are the carriers of valuable metals: base metals, precious and platinum group metals (e.g. electronic waste, spent catalysts) or rare earth elements.

  15. Biohydrometallurgical methods for metals recovery from waste materials

    Directory of Open Access Journals (Sweden)

    J. Willner

    2015-01-01

    Full Text Available The article draws attention to recently conducted research of bacterial leaching of metals from various polymetallic waste. These wastes are the carriers of valuable metals: base metals, precious and platinum group metals (e.g. electronic waste, spent catalysts or rare earth elements.

  16. Optical characterization of metallic aerosols

    International Nuclear Information System (INIS)

    Sun Wenbo; Lin Bing

    2006-01-01

    Airborne metallic particulates from industry and urban sources are highly conducting aerosols. The characterization of these pollutant particles is important for environment monitoring and protection. Because these metallic particulates are highly reflective, their effect on local weather or regional radiation budget may also need to be studied. In this work, light scattering characteristics of these metallic aerosols are studied using exact solutions on perfectly conducting spherical and cylindrical particles. It is found that for perfectly conducting spheres and cylinders, when scattering angle is larger than ∼90 o the linear polarization degree of the scattered light is very close to zero. This light scattering characteristics of perfectly conducting particles is significantly different from that of other aerosols. When these perfectly conducting particles are immersed in an absorbing medium, this light scattering characteristics does not show significant change. Therefore, measuring the linear polarization of scattered lights at backward scattering angles can detect and distinguish metallic particulates from other aerosols. This result provides a great potential of metallic aerosol detection and monitoring for environmental protection

  17. Responsible conduct of research

    CERN Document Server

    Shamoo, Adil E

    2015-01-01

    Since the early 2000s, the field of Responsible Conduct of Research has become widely recognized as essential to scientific education, investigation, and training. At present, research institutions with public funding are expected to have some minimal training and education in RCR for their graduate students, fellows and trainees. These institutions also are expected to have a system in place for investigating and reporting misconduct in research or violations of regulations in research with human subjects, or in their applications to federal agencies for funding. Public scrutiny of the conduct of scientific researchers remains high. Media reports of misconduct scandals, biased research, violations of human research ethics rules, and moral controversies in research occur on a weekly basis. Since the 2009 publication of the 2nd edition of Shamoo and Resnik's Responsible Conduct of Research, there has been a vast expansion in the information, knowledge, methods, and diagnosis of problems related to RCR and the ...

  18. Quantized Majorana conductance

    Science.gov (United States)

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.

    2018-04-01

    Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  19. Method of imaging the electrical conductivity distribution of a subsurface

    Science.gov (United States)

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  20. Conductance calculations with a wavelet basis set

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel

    2003-01-01

    We present a method based on density functional theory (DFT) for calculating the conductance of a phase-coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated on the same footing taking their full atomic and electronic structure into account....... The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...