Oscillator strengths for neutral technetium
International Nuclear Information System (INIS)
Garstang, R.H.
1981-01-01
Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations
Large quantum dots with small oscillator strength
DEFF Research Database (Denmark)
Stobbe, Søren; Schlereth, T.W.; Höfling, S.
2010-01-01
We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....
Precision measurement of relative oscillator strengths
International Nuclear Information System (INIS)
Blackwell, D.E.; Ibbetson, P.A.; Petford, A.D.; Shallis, M.J.
1979-01-01
The accuracy of the Oxford method of comparing oscillator strengths has been improved by a factor of 10 to 0.5 per cent (0.002 dex) for low excitation lines. The improvements made to the apparatus are briefly described and its new performance discussed. A test for LTE in the furnace is also described. Relative oscillator strengths for 60 lines of Fe I with excitation potentials between 0.00 and 0.12 eV are given. Those with lambda > 320 nm have an accuracy of 0.5 per cent, and those with lambda < 320 nm have an accuracy of 1.0 per cent. Absolute values with an accuracy of 2.5 per cent for all lines are given. (author)
Moderately acurate oscillator strengths from NBS intensities
International Nuclear Information System (INIS)
Cowley, C.R.
1983-01-01
An earlier paper explored the calibration of NBS Monograph 145 intensity measurements for the purpose of obtaining useful oscillator strengths. In the present work we investigate the question of a single 'temperature' for the copper arc light sources. Statistical arguments support rejection of the null hypothesis of a single temperature. Evidence is found for a mild correction to the intensity scale, but there is no indication that the intensities drift with wave length. We reinforce earlier findings that very useful gf-values can be derived from Monograph 145 intensities for any spectrum in which there are enough accurate measurements for a calibration. For the present, it seems that such calibrations must be made individually for each spectrum, and the predictions should not be extrapolated beyond the calibration domains. A table lists interpolation coefficients for Fe I, Co I, Ni I, Ti I, Zr II, Y II, Nd II and U II. An improved formula is given to transform the Corliss-Tech Fe I oscillator strengths to the Oxford system. (author)
Measured oscillator strengths in singly ionized molybdenum
Mayo-García, R.; Aragón, C.; Aguilera, J. A.; Ortiz, M.
2015-11-01
In this article, 112 oscillator strengths from Mo II have been measured, 79 of which for the first time. The radiative parameters have been obtained by laser-induced breakdown spectroscopy (LIBS). The plasma is produced from a fused glass sample prepared from molybdenum oxide with a Mo atomic concentration of 0.1%. The plasma evolved in air at atmospheric pressure, and measurements were carried out with the following plasma parameters: an electron density of (2.5+/- 0.1)\\cdot {10}17 cm-3 and an electron temperature of 14,400+/- 200 K. In these conditions, a local thermodynamic equilibrium environment and an optically thin plasma were confirmed for the measurements. The relative intensities were placed on an absolute scale by combining branching fractions with the measured lifetimes and by comparing well-known lines using the plasma temperature. Comparisons were made to previously obtained experimental and theoretical values wherever possible.
Fine-structure energy levels, oscillator strengths and lifetimes of ...
Indian Academy of Sciences (India)
with the experimental results compiled in the NIST Data Base. Many new ... Keywords. Relativistic fine-structure levels; oscillator strengths; lifetimes. ... have calculated oscillator strengths and lifetimes using the Briet–Pauli R-Matrix ..... [2] The Opacity Project Team, The Opacity Project (Institute of Physics Publishing,. Bristol ...
Improved Ultraviolet and Infrared Oscillator Strengths for OH+
Hodges, James N.; Bittner, Dror M.; Bernath, Peter F.
2018-03-01
Molecular ions are key reaction intermediates in the interstellar medium. OH+ plays a central role in the formation of more complex chemical species and for estimating the cosmic ray ionization rate in astrophysical environments. Here, we use a recent analysis of a laboratory spectrum in conjunction with ab initio methods to calculate infrared and ultraviolet oscillator strengths. These new oscillator strengths include branch dependent intensity corrections, arising from the Herman–Wallis effect, that have not been included before. We estimate 10% total uncertainty in the UV and 6% total uncertainty in the IR for the oscillator strengths.
Catalogue of oscillator strengths for Ti II lines
International Nuclear Information System (INIS)
Savanov, I.S.; Huovelin, J.; Tuominen, I.
1990-01-01
We have revised the published values of oscillator strengths for ionized titanium. The zero point of gf-values has been established using the lifetime measurements of excited states of atoms. The data on the adopted oscillator strengths for 419 Ti II lines are compiled. Using the adopted gf-values and the analysis by Biemont for the titanium in the solar atmosphere determined from the Ti II lines and the HOLMU model, we obtained the abundance log A(Ti) = 4.96 ± 0.05
Fine-structure energy levels, oscillator strengths and lifetimes
Indian Academy of Sciences (India)
We have done relativistic calculations for the evaluation of energy levels, oscillator strengths, transition probabilities and lifetimes for Cr VIII ion. Use has been made of configuration interaction technique by including Briet–Pauli approximation. The energies of various levels from the ground state to excited levels of 3s3p6, ...
NLTE masking and the Kiev Fe I oscillator strengths
International Nuclear Information System (INIS)
Rutten, R.J.
1983-01-01
This contribution serves to advertise the empirical solar-spectrum determinations of the oscillator strengths of 860 Fe I lines by Gurtovenko and Kostik (1981), by showing that these Kiev data contain just the lines needed in cool-star abundance analyses, and by explaining why they are so good. (Auth.)
Oscillator strengths and radiative rates for transitions in neutral sulfur
International Nuclear Information System (INIS)
Deb, N.C.; Hibbert, A.
2008-01-01
We present accurate oscillator strengths and radiative rates for 2173 E1 transitions among the 120 levels belonging to 3s 2 3p 4 , 3s3p 5 , and 3s 2 3p 3 ( 4 S o , 2 D o , 2 P o )nl configurations where nl=4s,5s,6s,4p,5p,6p,3d,4d,4f,5f. A configuration interaction approach is employed through the standard CIV3 program. The 114 LS states included in the present calculation generate 250 fine-structure levels belonging to the above configurations below 100,000 cm -1 . However, results of only 120 fine-structure levels are presented due to the absence of experimental energy values for the remaining levels. Tabulations of oscillator strengths and radiative rates, and their comparison with other calculations, are presented in the first two tables. In a separate table the oscillator strengths and transition probabilities, in length and velocity gauges, are presented for 2173 E1 transitions, and are arranged in ascending order of wavelength
Weighted oscillator strengths and lifetimes for the S VII spectrum
International Nuclear Information System (INIS)
Borges, F.O.; Cavalcanti, G.H.; Trigueiros, A.G.; Jupen, C.
2004-01-01
The weighted oscillator strengths (gf) and the lifetimes presented in this work were carried out in a multiconfiguration Hartree-Fock relativistic approach. In this calculation, the electrostatic parameters were optimized by a least-squares procedure, in order to improve the adjustment to experimental energy levels. This method produces gf-values that are in better agreement with intensity observations and lifetime values that are closer to the experimental ones. In this work, we presented all the experimentally known electric dipole S VII spectral lines
Relativistic configuration interaction treatment of generalized oscillator strength for krypton
International Nuclear Information System (INIS)
Wang Huangchun; Qu Yizhi; Liu Chunhua
2007-01-01
A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717 eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions (K 2 in a.u.) of the minimum and maximum GOSs in the 4s 2 4p 6 →4s 2 4p 5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97. (authors)
Relativistic Configuration Interaction Treatment of Generalized Oscillator Strength for Krypton
Institute of Scientific and Technical Information of China (English)
WANG Huang-Chun; QU Yi-Zhi; LIU Chun-Hua
2007-01-01
A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions ( K2 in a.u.) of the minimum and maximum GOSs in the 4s24p6 → 4s24p5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].
Determination of absolute oscillator strengths for doubly-ionized vanadium
International Nuclear Information System (INIS)
Goly, A.
1978-01-01
Oscillator strengths of thirty V III lines in the wavelength region from 2300A to 2600A were determined by the emission method using a modified wallstabilized cascade are operating at atmospheric pressure in helium with traces of VOCl 3 -vapour. The plasma radiation was analyzed by using a high dispersion grating spectrograph (0.7 A/mm) and Kodak IIaO-plates. Conventional techniques of intensity measurement were employed. Under the physical conditions created the helium plasma was found more or less distant from LTE, but for singly- and doubly-ionized vanadium according to Drawin's criteria, a Boltzmann distribution of level population can be assumed (and has been proved for VII). Measuring a set of intensities of V II lines (with different energies of upper levels) and using gf-values, obtained previously in an argon-vanadium plasma in LTE, excitation temperatures were determined from slopes of Boltzmann plots. (orig.) 891 WL [de
International Nuclear Information System (INIS)
Tan Xiaofeng; Bernstein, Lawrence; Cami, Jan; Salama, Farid
2011-01-01
Vibronic bands of polycyclic aromatic hydrocarbons (PAHs) in the UV/visible range are often used to estimate the abundances of PAHs in the interstellar medium by comparing laboratory-measured spectra with astronomical observations. We investigate the errors introduced by associating theoretical electronic oscillator strengths with individual vibronic bands when estimating the abundances of interstellar PAHs. The vibronic oscillator strengths of the 0-0 bands of nine PAHs with two to seven benzene rings, spanning in the 2800-6700 A spectral range, have been calculated using the Franck-Condon approximation and compared to their electronic oscillator strengths. It is found that the use of calculated electronic oscillator strengths rather than the more physically relevant vibronic oscillator strengths underestimates interstellar abundances of the nine PAHs under study, on average by a factor of about 2.4. It is recommended that vibronic oscillator strengths should be systematically used to analyze the vibronic spectra of specific PAHs and to estimate their abundances in the interstellar medium. An empirical correcting factor is suggested for the cases where the vibronic oscillator strengths are unknown for more realistic estimation of interstellar PAH abundances.
Atomic structure calculation of energy levels and oscillator strengths in Ti ion, 2
International Nuclear Information System (INIS)
Ishii, Keishi
1983-10-01
Energy levels and oscillator strengths are calculated for 3s-3p and 3p-3d transition arrays in Ti X, isoelectronic to Al I. The energy levels are obtained by the Slater-Condon theory of atomic structure, including explicitly the strong configuration interactions. The results are presented both in numerical tables and in diagrams. In the tables, the observed data are included for comparison, where available. The calculated weighted oscillator strengths (gf-value) are also displayed in figures, where the weighted oscillator strengths are plotted as a function of wavelength. (author)
Generalized oscillator strength and its first derivative for helium in the optical limit
International Nuclear Information System (INIS)
Amusia, M.U.; Cherepkov, N.A.; Radojevic, V.; Zivanovic, D.
1976-01-01
Generalized oscillator strengths and their first derivatives for zero momentum transfer (i.e. in the optical limit) are calculated for the helium atom in the framework of the random phase approximation with exchange. (author)
Generalized oscillator strengths for some higher valence-shell excitations of krypton atom
Institute of Scientific and Technical Information of China (English)
2007-01-01
The valence-shell excitations of krypton atom have been investigated by fast electron impact with an angle-resolved electron-energy-loss spectrometer. The generalized oscillator strengths for some higher mixed valence-shell excitations in 4d, 4f, 5p, 5d, 6s, 6p, 7s ← 4p of krypton atom have been determined. Their profiles are discussed, and the generalized oscillator strengths for the electric monopole and quadrupole excitations in 5p ← 4p are compared with the calculations of Amusia et al. (Phys. Rev. A 67 022703 (2003)). The differences between the experimental results and theoretical calculations show that more studies are needed.
DEFF Research Database (Denmark)
Keiser, G. R.; Seren, H. R.; Strikwerda, Andrew C.
2014-01-01
The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists...... of a split ring resonator (SRR) array stacked above an array of closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in an increase of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field...
International Nuclear Information System (INIS)
Zhang, H.; Sampson, D.H.; Clark, R.E.H.; Mann, J.B.
1987-01-01
Collision strengths are given for the 88 possible fine-structure transitions between the ground level and the n = 3 and 4 levels in 20 neon-like ions with nuclear charge number Z in the range 18 ≤Z≤74. The results are given for the nine impact-electron energies in threshold units X = 1.0, 1.2, 1.5, 1.9, 2.5, 4.0, 6.0, 10.0, and 15.0. In addition, electric dipole oscillator strengths obtained by various methods are given. copyright 1987 Academic Press, Inc
Oscillator strengths and transition probabilities for the intercombination transitions in Fe XXII
International Nuclear Information System (INIS)
Glass, R.
1979-01-01
Oscillator strengths and transition probabilities are evaluated for the intercombination transitions between the 2s 2 2p, 2s 2p 2 and 2p 3 states of Fe XXII using configuration interaction wavefunctions. The fine-structure splittings have also been calculated. Some significant differences with previous calculations are obtained
DEFF Research Database (Denmark)
Sauer, Stephan P. A.; Pitzner-Frydendahl, Henrik Frank; Buse, Mogens
2015-01-01
methods, the original SOPPA method as well as SOPPA(CCSD) and RPA(D) in the calculation of vertical electronic excitation energies and oscillator strengths is investigated for a large benchmark set of 28 medium-size molecules with 139 singlet and 71 triplet excited states. The results are compared...
Quantum efficiency and oscillator strength of site-controlled InAs quantum dots
DEFF Research Database (Denmark)
Albert, F.; Stobbe, Søren; Schneider, C.
2010-01-01
We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled InAs quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...
Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots
DEFF Research Database (Denmark)
Albert, F.; Schneider, C.; Stobbe, Søren
2010-01-01
We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...
The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths
DEFF Research Database (Denmark)
Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens
1999-01-01
Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...
Generalized oscillator strengths for some higher valence-shell excitations of argon
International Nuclear Information System (INIS)
Zhu, Lin-Fan; Yuan, Hui; Jiang, Wei-Chun; Zhang, Fang-Xin; Yuan, Zhen-Sheng; Cheng, Hua-Dong; Xu, Ke-Zun
2007-01-01
The valence shell excitations of argon were investigated by an angle-resolved fast-electron energy-loss spectrometer at an incident electron energy of 2500 eV, and the transition multipolarities for the excitations of 3p→3d, 4d, 5s, and 5p were elucidated with the help of the calculated intermediate coupling coefficients using the COWAN code. The generalized oscillator strengths for the excitations to 3p 5 (3d,3d ' ), 3p 5 (5p,5p ' ), and 3p 5 (5s,4d) were measured, and the profiles of these generalized oscillator strength were analyzed. Furthermore, although the present experimental positions of the maxima for the electric-monopole and electric-quadrupole excitations in 3p→5p are in agreement with the theoretical calculations [Amusia et al., Phys. Rev. A 67, 022703 (2003)], the generalized oscillator strength profiles show obvious differences. In addition, the experimental generalized oscillator strength ratios for the electric-octupole transitions in 3p→3d are different from the theoretical prediction calculated by the COWAN code
International Nuclear Information System (INIS)
Brion, C.E.; Dyck, M.; Cooper, G.
2004-01-01
Full text: Absolute photoabsorption cross-sections (oscillator strengths) for the free molecules HCl, HBr and HI have been measured in the valence and selected in- ner shell regions. The experimental technique used for these studies is dipole (e,e) spectroscopy [1-3] which is not affected by line saturation effects (i.e. bandwidth interactions) which can complicate direct photoabsorption methods using the Beer- Lambert law. The dipole (e,e) method is also not subject to the effects of higher order radiation. In the dipole (e,e) method relative intensities obtained in fast (3 keV) for- ward scattered electron energy loss spectra are converted to relative dipole oscillator strengths (i.e. photoabsorption spectra) using the known Bethe-Born factors for the instrument as a function of photon energy (i.e. energy loss). The target pressure is constant at 10 - 5 torr, but it is not necessary to know the absolute target density. The absolute oscillator strength scale for HCl is determined from Bethe-Born converted, wide range dipole (e,e) spectra using the Thomas-Reiche-Kuhn (TRK) sum rule. For HBr and HI the absolute oscillator strength scales have been established using the S(-2) Sum Rule and literature values of the static dipole polarizability
Generalized oscillator strengths for the valence-shell excitations of argon
International Nuclear Information System (INIS)
Zhu Linfan; Cheng Huadong; Yuan Zhensheng; Liu Xiaojing; Sun Jianmin; Xu Kezun
2006-01-01
The generalized oscillator strengths for the valence-shell excitations to 3p 5 (4s,4s ' ) and 3p 5 (4p,4p ' ) of argon were measured by an angle-resolved fast-electron energy-loss spectrometer at an incident electron energy of 2500 eV. The transition multipolarities for these excitations were elucidated with the help of the calculated intermediate coupling coefficients using the COWAN code. The generalized oscillator strength profiles for the electric dipole excitations to 3p 5 (4s,4s ' ), the electric quadrupole and monopole excitations to 3p 5 (4p,4p ' ) were analyzed and their positions of the extrema were determined. Furthermore, the generalized oscillator strength of the electric quadrupole excitation in 3p→4p was determined and its profile is in general agreement with the theoretical calculations. However, the generalized oscillator strength profile of the electric monopole excitation in 3p→4p is different from the theoretical calculations
Fine-structure energy levels, oscillator strengths and transition probabilities in Ni XVI
International Nuclear Information System (INIS)
Deb, N.C.; Msezane, A.Z.
2001-01-01
Fine-structure energy levels relative to the ground state, oscillator strengths and transition probabilities for transitions among the lowest 40 fine-structure levels belonging to the configurations 3s 2 3p, 3s3p 2 , 3s 2 3d, 3p 3 and 3s3p3d of Ni XVI are calculated using a large scale CI in program CIV3 of Hibbert. Relativistic effects are included through the Breit-Pauli approximation via spin-orbit, spin-other-orbit, spin-spin, Darwin and mass correction terms. The existing discrepancies between the calculated and measured values for many of the relative energy positions are resolved in the present calculation which yields excellent agreement with measurement. Also, many of our oscillator strengths for allowed and intercombination transitions are in very good agreement with the recommended data by the National Institute of Standard and Technology (NIST). (orig.)
Oscillator strengths for highly ionized atomic systems. Final report, May 1, 1977-December 31, 1979
International Nuclear Information System (INIS)
Fischer, C.F.
1979-12-01
Oscillator strengths (or f-values) for resonance transitions in highly ionized atoms have assumed importance in fusion plasma research. Beam-foil spectroscopy has been able to deduce some of these values but present experimental limitations restrict its applicability. A theoretical study of trends along an isoelectronic sequence has provided an alternative approach. The Multi-configuration Hartree-Fock method (MCHF) is a general theoretical method for determining wavefunctions for atomic states from which oscillator strengths can be computed. A first-order theory has been shown to yield reliable f-values provided the ionization energy is predicted with reasonable accuracy and the transition matrix element is not sensitive to cancellation effects. General computer programs have been developed for this method and extended to include the dominant relativistic effects
Prediction of the oscillator strengths for the electric dipole transitions in Th II
Energy Technology Data Exchange (ETDEWEB)
Dembczynski, Jerzy [Institute of Control and Information Engineering, Faculty of Electrical Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan (Poland); Ruczkowski, Jaroslaw; Elantkowska, Magdalena [Laboratory of Quantum Engineering and Metrology, Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13B, 60-965 Poznan (Poland)
2014-07-01
In order to parametrize the oscillator strength, the matrix of angular coefficients of the possible transitions in multiconfiguration system were calculated. In the odd and even configuration systems, the fine structure eigenvectors for both parities were obtained, using our semiempirical method, which taken into account also the second order effects, resulting from the excitations from electronic closed shells to open shells and from open shells to empty shell. The correctness of the fine structure wave functions was verified by the comparison of calculated and experimental hyperfine structure constants for Th II available in the literature. The least square fit to experimental values for some transitions allow to obtain the values of radial parameters and predict the oscillator strengths values for all possible transitions from the levels under consideration. These calculations are necessary for the design of the nuclear frequency standard based on the thorium ion.
Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong
2017-12-01
The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.
Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.
2017-12-01
The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.
Laboratory oscillator strengths of Sc i in the near-infrared region for astrophysical applications
Pehlivan, A.; Nilsson, H.; Hartman, H.
2015-10-01
Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims: This paper investigates the spectrum of neutral scandium, Sc I, from laboratory measurements and improves the atomic data of Sc I lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc I lines connecting the levels with 4p and 4s configurations. Methods: We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f-values). Intensity-calibrated spectra with high spectral resolution were recorded with Fourier transform spectrometer from a hollow cathode discharge lamp. The spectra were used to derive accurate oscillator strengths and wavelengths for Sc I lines, with emphasis on the infrared region. Results: This project provides the first set of experimental Sc I lines in the near-infrared region for accurate spectral analysis of astronomical objects. We derived 63 log(gf) values for the lines between 5300 Å and 24 300 Å. The uncertainties in the f-values vary from 5% to 20%. The small uncertainties in our values allow for an increased accuracy in astrophysical abundance determinations.
Spectro web: oscillator strength measurements of atomic absorption lines in the sun and procyon
International Nuclear Information System (INIS)
Lobel, A
2008-01-01
We update the online SpectroWeb database of spectral standard reference stars with 1178 oscillator strength values of atomic absorption lines observed in the optical spectrum of the Sun and Procyon (α CMi A). The updated line oscillator strengths are measured with best fits to the disk-integrated KPNO-FTS spectrum of the Sun observed between 4000 A and 6800 A using state-of-the-art detailed spectral synthesis calculations. A subset of 660 line oscillator strengths is validated with synthetic spectrum calculations of Procyon observed with ESO-UVES between 4700 A and 6800 A. The new log(gf)-values in SpectroWeb are improvements upon the values offered in the online Vienna Atomic Line Database (VALD). We find for neutral iron-group elements, such as Fe I, Ni I, Cr I, and Ti I, a statistically significant over-estimation of the VALD log((gf)-values for weak absorption lines with normalized central line depths below 15 %. For abundant lighter elements (e.g. Mg I and Ca I) this trend is statistically not significantly detectable, with the exception of Si I for which the log(gf)-values of 60 weak and medium-strong lines are substantially decreased to best fit the observed spectra. The newly measured log(gf)-values are available in the SpectroWeb database at http://spectra.freeshell.org, which interactively displays the observed and computed stellar spectra, together with corresponding atomic line data.
International Nuclear Information System (INIS)
Sivaprasad, K.; Ganesh Sundara Raman, S.; Mastanaiah, P.; Madhusudhan Reddy, G.
2006-01-01
The aim of the present work is to study the effect of magnetic arc oscillation and current pulsing on the microstructure and high temperature tensile strength of alloy 718 tungsten inert gas weldments. The magnetic arc oscillation technique resulted in refined Laves phase with lesser interconnectivity. The full benefits of current pulsing in breaking the dendrites could not be realized in the present study due to relatively higher heat input used in the welding process. In the direct aged condition weldments prepared using magnetic arc oscillation technique exhibited higher tensile strength due to the presence of refined and lesser-interconnected Laves particles. In the solution treated and aged condition, magnetic arc oscillated weldments exhibited lower tensile strength compared with the weldments made without arc oscillation due to the presence of large amounts of finer δ needles
Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling
Energy Technology Data Exchange (ETDEWEB)
Thomas, Reshmi [School; Thomas, Anoop [School; Pullanchery, Saranya [School; Joseph, Linta [School; Somasundaran, Sanoop Mambully [School; Swathi, Rotti Srinivasamurthy [School; Gray, Stephen K. [Center; Thomas, K. George [School
2018-01-05
Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.
International Nuclear Information System (INIS)
Person, J.C.; Nicole, P.P.
1979-01-01
New measurements of photoabsorption give oscillator-strength values for the following gases and energy regions: O 2 , 7.34 to 11.79 eV; CO 2 , 7.34 to 11.77 eV; H 2 O, 6.62 to 11.80 eV; CH 3 CL, 6.14 to 11.25 eV; and CCl 4 , 6.14 to 11.49 eV. Comparisons are made with some values from the literature
Oscillator strengths and lifetimes for low-lying terms in the Al isoelectronic sequence
International Nuclear Information System (INIS)
Hjort-Jensen, M.; Aashamar, K.
1988-11-01
Using the Multiconfiguration Optimized Potential Model, calculations of oscillator strengths in the length, and velocity formulation for a large number of transitions in the Aluminium isoelectronic sequence from Si II through K VII, have been performed. The results have been used to determine the lifetimes of 14 low-lying excited terms along the sequence. Comparison is made with experiment and with other theory where results are available. The agreement between the obtained values and other theoretical results is generally good, although deviations do occur near level crossings. Some significant discrepancies between theory and experiment persist concerning lifetimes for S IV
Weighted oscillator strengths and lifetimes for the S IX and S X spectra
International Nuclear Information System (INIS)
Borges, F.O.; Cavalcanti, G.H.; Trigueiros, A.G.
2003-01-01
The weighted oscillator strengths (gf) and the lifetimes presented in this work were carried out in a multi configuration Hartree-Fock relativistic (HFR) approach. In this calculation, the electrostatic parameters were optimized by a least-squares procedure, in order to improve the adjustment to experimental energy levels. This method produces gf-values that are in better agreement with intensity observations and lifetime values that are closer to the experimental ones. In this work, we presented all the experimentally known electric dipole S IX and S X spectral lines
Evaluation of oscillator strength in colloidal CdSe/CdS dots-in-rods
Energy Technology Data Exchange (ETDEWEB)
Pisanello, Ferruccio [Universite Pierre et Marie Curie, Laboratoire Kastler Brossel, CNRS UMR8552, Ecole Normale Superieure, 4 place Jussieu, 75005 Paris (France); National Nanotechnology Laboratory of CNR/INFM, Scuola superiore ISUFI, Universita del Salento, 16 Via Arnesano, 73100 Lecce (Italy); Lemenager, Godefroy; Spinicelli, Piernicola; Amo, Alberto; Giacobino, Elisabeth; Bramati, Alberto [Universite Pierre et Marie Curie, Laboratoire Kastler Brossel, CNRS UMR8552, Ecole Normale Superieure, 4 place Jussieu, 75005 Paris (France); Martiradonna, Luigi [Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnolgy, Via Barsanti 1, Arnesano, 73010 Lecce (Italy); Fiore, Angela [National Nanotechnology Laboratory of CNR/INFM, Scuola superiore ISUFI, Universita del Salento, 16 Via Arnesano, 73100 Lecce (Italy); Cingolani, Roberto; De Vittorio, Massimo [National Nanotechnology Laboratory of CNR/INFM, Scuola superiore ISUFI, Universita del Salento, 16 Via Arnesano, 73100 Lecce (Italy); Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnolgy, Via Barsanti 1, Arnesano, 73010 Lecce (Italy)
2010-11-15
The oscillator strength in CdSe/CdS colloidal dot-in-rods is evaluated and assessed to be of {proportional_to}1.5. On the basis of this finding, the possibility to reach the strong coupling regime with photonic crystals nanocavities is discussed. In spite that carefully choosing the cavity parameters the strong coupling regime could be analytically achieved at room temperature, theoretical considerations show that the typical Rabi doublet cannot be resolved. The work draws also a viable strategy toward the observation of the strong coupling at cryogenic temperatures. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Uses of dipole oscillator strength sum rules in second order perturbation theory
International Nuclear Information System (INIS)
Struensee, M.C.
1984-01-01
Certain moments of the dipole oscillator strength distribution of atoms and molecules can be calculated from theory (using sum rules) or deduced from experiment. The present work describes the use of these moments to construct effective distributions which lead to bounds and estimates of physical properties of interest. Asymptotic analysis is then used to obtain the high energy behavior of the oscillator strength density and a previously unknown sum rule for atoms and molecules. A new type of effective distribution, which incorporates the information concerning the asymptotic behavior and the new sum rule, is suggested. This new type of distribution is used to calculate the logarithmic mean excitation energies for the ground states of atomic hydrogen, atomic helium and the negative hydrogen ion. The calculations for atomic helium and the negative hydrogen ion require the evaluation of certain ground state expectation values. These have been calculated using high accuracy wavefunctions containing the nonconventional terms shown by Fock to be necessary for a correct analytic expansion when both electrons are near the nucleus
International Nuclear Information System (INIS)
Deb, N C; Hibbert, A
2008-01-01
Accurate oscillator strengths and Einstein A-coefficients for some El and E2 transitions among 3d 6 , 3d 5 4s and 3d 5 4p levels of FeIII are presented and compared with other available results. The present results comprise by far the largest configuration interaction calculation for this astrophysically important ion, and include relativistic effects through the Breit-Pauli operator. The core-valence effects from a large number of 3d 6 and 3d 5 cores are carefully treated by optimising 4d, 4f, 5s, 5p, 5d, 5f and 6p orbitals either as a correction or as a correlation orbital while 1s, 2s, 2p, 3s, 3p and 3d Hartree-Fock functions are used. The 4s and 4p functions are optimised as spectroscopic orbitals. Fine-tuning of the ab initio energies was done through adjusting by a small amount some diagonal elements of the Hamiltonian matrix. It is found that for many of the relatively strong dipole transitions, our calculated oscillator strengths agree with available calculations, while for the weaker transitions our results often disagree with the previously determined results. We also present gA values for five E2 transitions for the multiplets 3d 6 5 DJ → 3d 5 ( 6 S)4s 5 S 2. The present results for these transitions show a 30-40% increase over the results previously published.
Oscillator strength of partially ionized high-Z atom on Hartree-Fock Slater model
International Nuclear Information System (INIS)
Nakamura, S.; Nishikawa, T.; Takabe, H.; Mima, K.
1991-01-01
The Hartree-Fock Slater (HFS) model has been solved for the partially ionized gold ions generated when an intense laser light is irradiated on a gold foil target. The resultant energy levels are compared with those obtained by a simple screened hydrogenic model with l-splitting effect (SHML). It is shown that the energy levels are poorly model by SHML as the ionization level becomes higher. The resultant wave functions are used to evaluate oscillator strength of important line radiations and compared with those obtained by a simple model using hydrogenic wave functions. Its demonstrated that oscillator strength of the 4p-4d and 4d-4f lines are well modeled by the simple method, while the 4-5 transitions such as 4f-5g, 4d-5f, 4p-5d, and 4f-5p forming the so-called N-band emission are poorly modeled and HFS results less strong line emissions. (author)
An alternative method for determination of oscillator strengths: The example of Sc II
International Nuclear Information System (INIS)
Ruczkowski, J.; Elantkowska, M.; Dembczyński, J.
2014-01-01
We describe our method for determining oscillator strengths and hyperfine structure splittings that is an alternative to the commonly used, purely theoretical calculations, or to the semi-empirical approach combined with theoretically calculated transition integrals. We have developed our own computer programs that allow us to determine all attributes of the structure of complex atoms starting from the measured frequencies emitted by the atoms. As an example, we present the results of the calculation of the structure, electric dipole transitions, and hyperfine splittings of Sc II. The angular coefficients of the transition matrix in pure SL coupling were found from straightforward Racah algebra. The transition matrix was transformed into the actual intermediate coupling by the fine structure eigenvectors obtained from the semi-empirical approach. The transition integrals were treated as free parameters in the least squares fit to experimental gf values. For most transitions, the experimental and the calculated gf-values are consistent with the accuracy claimed in the NIST compilation. - Highlights: • The method of simultaneous determination of all the attributes of atomic structure. • The semi-empirical method of parameterization of oscillator strengths. • Illustration of the method application for the example of Sc II data
Energy Technology Data Exchange (ETDEWEB)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions
Bouazza, Safa
2017-01-01
This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: 5s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.
International Nuclear Information System (INIS)
Bhattacharyya, S; Das, N R
2012-01-01
In this paper, we study the oscillator strength and cross-section for intersubband optical transition in an n-type semiconductor quantum ring of cylindrical symmetry in the presence of an electric field perpendicular to the plane of the ring. The analysis is done considering Kane-type band non-parabolicity of the semiconductor and assuming that the polarization of the incident radiation is along the axis of the ring. The results show that the oscillator strength decreases and the transition energy increases with the electric field. The assumption of a parabolic band leads to an overestimation of the oscillator strength. The effects of the electric field, band non-parabolicity and relaxation time on absorption cross-section for intersubband transition in a semiconductor quantum ring are also shown. (paper)
Generalized oscillator strengths for 5s, 5s', and 5p excitations of krypton
International Nuclear Information System (INIS)
Li Wenbin; Zhu Linfan; Yuan Zhensheng; Sun Jianmin; Cheng Huadong; Xu Kezun; Zhong Zhiping; Liu Xiaojing
2003-01-01
The absolute generalized oscillator strengths (GOSs) for 5s, 5s ' , 5p [5/2] 3,2 , 5p [3/2] 1,2 , and 5p [1/2] 0 transitions of krypton have been determined in a large K 2 region at a high electron-impact energy of 2500 eV. The positions of the minima and maxima of these GOSs have been determined. The present results show that the angular resolution and pressure effect have great influence on the position and the amplitude of the minimum for the GOS of 5s+5s ' transitions. When these effects are considered, the measured minimum position for the GOS of 5s+5s ' transitions is in excellent agreement with the calculation of Chen and Msezane [J. Phys. B 33, 5397 (2000)
Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2)
Energy Technology Data Exchange (ETDEWEB)
Schütz, Martin, E-mail: martin.schuetz@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)
2015-06-07
We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.
Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).
Schütz, Martin
2015-06-07
We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.
Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2)
International Nuclear Information System (INIS)
Schütz, Martin
2015-01-01
We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a
Double Differential Cross Sections and Generalized Oscillator Strength Distributions of Ammonia
International Nuclear Information System (INIS)
Yamamoto, Karin; Nogami, Keisuke; Hino, Yuta; Sakai, Yasuhiro
2011-01-01
The absolute double differential cross section (DDCS), the generalized oscillator strength distribution (GOSD), and the ionization efficiency of ammonia (NH 3 ) were investigated from the threshold to 40 eV under the condition of 200 and 400 eV incident electron energies and 6 and 8 degree scattering angles using electron energy-loss spectroscopy and electron- ion coincidence techniques. To determine the absolute values, we used a mixture of helium (He) and NH 3 and normalized the measured relative DDCS spectrum by the differential cross section for 2 1 P excitation of He. Our results are in close agreement with previous dipole (e, e) spectroscopy, although the incident electron energy is lower. The ionization efficiency curve obtained from coincidence measurements indicated the existence of doubly excited states that cause neutral dissociation.
Ge, Li; Zhao, Nan
2018-04-01
We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.
Directory of Open Access Journals (Sweden)
M. Soltanolkotabi
1998-04-01
Full Text Available Single-valence electron atoms are an important class of atoms. Their oscillator strengths are their important properties. Knowing the oscillator strengths one can easity calculate the transition probabilities of the spectral lines and hence the lifetimes of energy levels of most atoms. The oscillator strengths of the spectral lines of most atoms are not knoen with sufficient accuracy due to the experimental difficulties. The results of most measurements are subject to large inaccuracies due to uncertainties in vapor pressure data. A quick and simple theoretical method for calculation of atomic oscillator strength seems to be the Coulomb approximation of Bates and Damagaard. This method reveals some interesting properties that are generally confirmed by experimental results. In this paper, we have studied oscillator strengths and line strengths of the different allowed transitions in AgI and AuI using the Coulomb approximation. The log (λfg curves(λ, f and g are the wavelength of transition, oscillator strength and statistical weight of upper level, respectively versus the reciprocal of the principal quantum number of upper level, 1/n, show a linear behavior only for large values of the principal quantum number of lower level. The effect of change of total angular momentum,Δ J, in the curvature and slope of the plotted curves has been also investigated. The deviation of the curves from straight lines, which indicates failure of the Coulomb approximation is due to the exchange forces. In addition, the n3fg curves (n , the effective total quantum number of upper level have been plotted versus n for different allowed transitions in AgL and AuI. It has been found that f is proportional to 1/n and this proportionality is linear for large values of n . For some transitions, however, there is a significant deviation from the linear dependence for large values of n , which can be attributed to the signature of total angular momentum quantum
Confinement and correlation effects in the Xe-C{sub 60} generalized oscillator strengths
Energy Technology Data Exchange (ETDEWEB)
Amusia, M. Ya. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Chernysheva, L. V. [A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Dolmatov, V. K. [Department of Physics and Earth Science, University of North Alabama, Florence, Alabama 35632 (United States)
2011-12-15
The impact of both confinement and electron correlation on generalized oscillator strengths (GOS's) of endohedral atoms, A-C{sub 60}, is theoretically studied choosing the Xe-C{sub 60} 4d, 5s, and 5p fast electron impact ionization as the case study. Calculations are performed in the transferred to the atom energy region beyond the 4d threshold, {omega}=75-175 eV. The calculation methodology combines the plane-wave Born approximation, Hartree-Fock approximation, and random-phase approximation with exchange in the presence of the C{sub 60} confinement. The confinement is modeled by a spherical {delta}-function-like potential as well as by a square well potential to evaluate the effect of the finite thickness of the C{sub 60} cage on the Xe-C{sub 60} GOS's. Dramatic distortion of the 4d, 5p, and 5s GOS's by the confinement is demonstrated, compared to the free atom. Considerable contributions of multipolar transitions beyond dipole transitions in the calculated GOS's are revealed, in some instances. The vitality of accounting for electron correlation in calculation of the Xe-C{sub 60} 5s and 5p GOS's is shown.
International Nuclear Information System (INIS)
Backx, C.; Tol, R.R.; Wight, G.R.; Wiel, M.J. van der
1975-01-01
An approximate method is described for obtaining the derivative to K 2 of the generalized oscillator strength for keV electron scattering at zero momentum transfer, over a large range of energy losses. The measured data enable the reduction of the systematical uncertainty in the derivation of optical oscillator strengths to below 1%. Results are presented for He over the spectral range of 19 to 65 eV. The data for the derivation are in satisfactory agreement with earlier electron scattering results at lower impact energy and extend over a sufficient range to allow the application of a sum rule for this term of the generalized oscillator strength. (Auth.)
Leckrone, David S.; Sugar, Jack
1993-01-01
In 1983 the Atomic Spectroscopy Group at the University of Lund organized a conference at Lund the purpose of which was to establish a dialogue between scientists whose research made use of basic atomic data, and scientists whose research produced such data. The data in question include complete descriptions of atomic and ionic spectra, accurate transition wavelengths and relative intensities, energy levels, lifetimes, oscillator strengths, line shapes, and nuclear effects (hyperfine structure and isotope shifts). The "consumers" in urgent need of new or improved atomic data included astrophysicsts, laboratory plasma physicists, and spectrochemists. The synergism between these specialists and the theoretical and experimental atomic physicists resulted in a highly successful meeting, attended by approximately 70 people. The rapid advances foreseen at that time in all of these areas of observational, experimental and theoretical science stimulated planning for a second conference on this subject in 1986 at the University of Toledo, and subsequently a third meeting was held at the Royal Netherlands Academy of Arts and Sciences in Amsterdam in 1989. Again attendance at the latter two meetings totaled approximately 70 researchers. The participants in Amsterdam agreed to re-convene at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, in 1992, maintaining the frequency of these conferences at one every three years. The present Topical Issue of Physica Scripta consists of 31 invited reviews given at the Gaithersburg meeting. Extended abstracts of 63 poster papers from the meeting are being published in NIST Special Publication SP850. Approximately 170 scientists attended the Gaithersburg conference, representing a substantial growth in the size of meetings in this series. One session of the conference was devoted to an informal workshop, at which any participant could give a brief oral statement about his or her most immediate data need
DEFF Research Database (Denmark)
Hedegård, Erik Donovan
2017-01-01
considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...
Energy Technology Data Exchange (ETDEWEB)
Jiang, Jun, E-mail: phyjiang@yeah.net [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Cheng, Yongjun, E-mail: cyj83mail@gmail.com [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080 (China); Bromley, M.W.J., E-mail: brom@physics.uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4075 (Australia)
2015-01-15
Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.
International Nuclear Information System (INIS)
Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.
2015-01-01
Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C 6 , C 8 and C 10 atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations
International Nuclear Information System (INIS)
Vallee, O.; Ranson, P.; Chapelle, J.
1977-01-01
AI line broadening was studied from collisions between neutral argon atoms (3p 5 4p-3p 5 4s transitions) in a weakly ionised plasma jet (neutral atoms temperature T 0 approximately 4000K, electrons temperature Tsub(e) approximately 6000K, electronic density Nsub(e) 15 cm -3 , ionisation rate α -4 , and pressure range from 1 to 3 kg/cm 2 ). A satisfactory description of Van der Waals broadened lines is obtained by means of a Lennard-Jones potential. Measurement of line widths whose corresponding transitions occur on resonant levels, gives with relatively good accuracy the oscillator strength of the argon resonance lines [fr
International Nuclear Information System (INIS)
Amusia, M.Y.; Baltenkov, A.S.; Zhuravleva, G.I.
1995-01-01
It is demonstrated that the oscillator strength of resonant inner-shell excitation in a noble gas atom is considerably smaller than that in its alkali neighbor because in the latter case the effective charge acting upon excited electron is much bigger. With increase of the excitation's principal quantum number the difference between line intensities in noble gases and their alkali neighbors rapidly disappears. The calculations are performed in the Hartree-Fock approximation and with inclusion of rearrangement effects due to inner vacancy creation and its Auger decay. A paper has been submitted for publication
Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk
Oukerroum, A.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.; Sadoqi, M.; Long, G.
2018-01-01
In this paper, we report a study of the effect of a lateral electric field on a quantum-confined exciton in a thin PbS quantum disk. Our approach was performed in the framework of the effective mass theory and adiabatic approximation. The ground state energy and the stark shift were determined by using a variational method with an adequate trial wavefunction, by investigating a 2D oscillator strength under simultaneous consideration of the geometrical confinement and the electric field strength. Our results showed a strong dependence of the exciton binding and the Stark shift on the disk dimensions in both axial and longitudinal directions. On the other hand, our results also showed that the Stark shift’s dependence on the electric field is not purely quadratic but the linear contribution is also important and cannot be neglected, especially when the confinement gets weaker.
Continuum contributions to dipole oscillator-strength sum rules for hydrogen in finite basis sets
DEFF Research Database (Denmark)
Oddershede, Jens; Ogilvie, John F.; Sauer, Stephan P. A.
2017-01-01
Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases, but that the conver......Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases......, but that the convergence towards the final results with increasing excitation energies included in the sum over states is slower in the basis-set cases when we use the best basis. We argue also that this conclusion most likely holds also for larger atoms or molecules....
The energy levels and oscillator strength of a complex atom--Au50+ in a self-consistent potential
International Nuclear Information System (INIS)
Feng Rong; Zou Yu; Fang Quanyu
1998-01-01
The effects of free electrons in a plasma on a complex atom are discussed, here the authors are interested in the target ion--Au 50+ in inertia confined fusion (ICF). The results are compared with those in the case of hydrogenic ions. Accurate numerical solutions have been obtained for Schroedinger's equation through Debye screened Hartree-Fock-Slater self-consistent potential. Solutions have been computed for 28 eigenstates, 1s through n =3D 7, l =3D 6, yielding the energy eigenvalues for a wide range of Debye screening length Λ. As in the case of hydrogenic ions, under screening, all energy levels are shifted away from their unscreened values toward the continuum, that is, the ionization limits are shifted downward. Conclusions have been made that when Λ>5a 0 , that is, in the weak screening cases, Debye screening has little effect on oscillator strength, average orbital radius, transition matrix elements, etc., of Au 50+ . For each (n,l) eigenstate, there is a finite value of screening length Λ 0 (n,l), for which the energy becomes zero. When Λ is sufficiently small, level crossing appears at high n states. Optical oscillator strength for Au 50+ has also been calculated, the results are compared with those under unscreened potential
PLASMA DIAGNOSTIC POTENTIAL OF 2p4f IN N{sup +}—ACCURATE WAVELENGTHS AND OSCILLATOR STRENGTHS
Energy Technology Data Exchange (ETDEWEB)
Shen, Xiaozhi [School of Physics Science and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Li, Jiguang; Wang, Jianguo [Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Jönsson, Per, E-mail: Li_Jiguang@iapcm.ac.cn [Materials Science and Applied Mathematics, Malmö University, SE-20506 Malmö (Sweden)
2015-03-10
Radiative emission lines from nitrogen and its ions are often observed in nebula spectra, where the N{sup 2+} abundance can be inferred from lines of the 2p4f configuration. In addition, intensity ratios between lines of the 2p3p-2p3s and 2p4f-2p3d transition arrays can serve as temperature diagnostics. To aid abundance determinations and plasma diagnostics, wavelengths and oscillator strengths were calculated with high precision for electric dipole (E1) transitions from levels in the 2p4f configuration of N{sup +}. Electron correlation and relativistic effects, including the Breit interaction, were systematically taken into account within the framework of the multiconfiguration Dirac-Hartree-Fock method. Except for the 2p4f-2p4d transitions with quite large wavelengths and the two-electron-one-photon 2p4f-2s2p {sup 3} transitions, the uncertainties of the present calculations were controlled to within 3% and 5% for wavelengths and oscillator strengths, respectively. We also compared our results with other theoretical and experimental values when available. Discrepancies were found between our calculations and previous calculations due to the neglect of relativistic effects in the latter.
A anew determination of the B0anti B0 oscillation strength
International Nuclear Information System (INIS)
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Krueger, A.; Nau, A.; Nippe, A.; Reidenbach, M.; Schaefer, M.; Schroeder, H.; Schulz, H.D.; Sefkow, F.; Wurth, R.; Appuhn, R.D.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Toepfer, D.; Walther, A.; Wegener, D.; Britton, D.I.; Charlesworth, C.E.K.; Edwards, K.W.; Kapitza, H.; Krieger, P.; Kutschke, R.; MacFarlane, D.B.; Orr, R.S.; Patel, P.M.; Prentice, J.D.; Seidel, S.C.; Tsipolitis, G.; Tzamariudaki, K.; Van de Water, R.G.; Yoon, T.S.; Ressling, D.; Schael, S.; Schubert, K.R.; Strahl, K.; Waldi, R.; Weseler, S.; Childers, R.; Darden, C.W.
1992-01-01
Using the ARGUS detector at the e + e - storage ring DORIS II at DESY, a study of B 0 anti B 0 oscillations has been performed using three different techniques. Besides the standard dilepton method, charge correlations between D * mesons and one or two leptons have also been investigated. The mixing parameter r is determined to be (20.6±7.0)%. (orig.)
Distribution of radiation lifetime and oscillator strengths in atomic and ion spectra
Energy Technology Data Exchange (ETDEWEB)
Shabanova, L.N.; Gruzdev, P.F.; Verolajnen, Ya.F. (Leningradskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Fizicheskij Inst.)
1984-04-01
Analysis of present experimental and theoretical data on determination of radiation life time and forces of oscillators for disclosing general regularities inherent in radiation constants inside the atom, homologous atoms inside subgroups of atoms and ions of isoelectronic subsequences is conducted. Another purpose is to chose most reliable values of constants and to obtain extrapolation formulae for their determination on the base of the corresponding statistical processing data and revealed regularities. A hydrogen atom, isoelectronic series NaI-Ni18, isoelectronic series Ne, He, ZnI, CdI are considered. Systematics of radiation life time depending on the basic quantum number is presented. The force of oscillators f is considered on the example of an atomic system with one valent electron outside the locked shell - Li, Na, K, Rb, Cs. Distribution of force density of the oscillator df/dE is considered, here continuous spectrum near the threshold of ionization is regarded simultaneously with discrete spectrum. An interpolation formula for the number f for high members of atom series (n>=10) of alkaline metals is presented. Values of coefficients included in this formula are tabulated.
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhan-Bin, E-mail: chenzb008@qq.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Ma, Kun [School of Information Engineering, Huangshan University, Huangshan 245041 (China); Wang, Hong-Jian [Chongqing Key Laboratory for Design and Control of Manufacturing Equipment, Chongqing Technology and Business University, Chongqing 40067 (China); Wang, Kai, E-mail: wangkai@hbu.edu.cn [Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Liu, Xiao-Bin [Department of Physics, Tianshui Normal University, Tianshui 741001 (China); Zeng, Jiao-Long [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China)
2017-01-15
Detailed calculations using the multi-configuration Dirac–Fock (MCDF) method are carried out for the lowest 64 fine-structure levels of the 3s{sup 2}3p{sup 2}, 3s{sup 2}3p3d, 3s3p{sup 3}, 3s3p{sup 2}3d, 3s{sup 2}3d{sup 2}, and 3p{sup 4} configurations in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI. Energies, oscillator strengths, wavelengths, line strengths, and radiative electric dipole transition rates are given for all ions. A parallel calculation using the many-body perturbation theory (MBPT) method is also carried out to assess the present energy levels accuracy. Comparisons are performed between these two sets of energy levels, as well as with other available results, showing that they are in good agreement with each other within 0.5%. These high accuracy results can be used to the modeling and the interpretation of astrophysical objects and fusion plasmas. - Highlights: • Energy levels and E1 transition rates of Si-like ions are presented. • Breit interaction and Quantum Electrodynamics effects are discussed. • Present results should be useful in the astrophysical application and plasma modeling.
Xu, Long-Quan; Liu, Ya-Wei; Xu, Xin; Ni, Dong-Dong; Yang, Ke; Zhu, Lin-Fan
2017-07-01
The dipole (γ,γ) method, which is the inelastic X-ray scattering operated at a negligibly small momentum transfer, has been developed to determine the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. This new method is free from the line saturation effect, and its Bethe-Born conversion factor varies much more slowly with the excitation energy than that of the dipole (e, e) method. Thus the dipole (γ,γ) method provides a reliable approach to obtain the benchmark optical oscillator strengths of the valence-shell excitations for gaseous atoms and molecules. In this paper, we give a review of the dipole (γ,γ) method and some recent measurements of absolute optical oscillator strengths of gaseous atoms and molecules. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
International Nuclear Information System (INIS)
Bukietynska, K.; Mondry, A.; Osmeda, E.
1981-01-01
Stability constants and thermodynamic parameters of Nd 3+ , Ho 3+ and Er 3+ complexes with acetates, propionates, glycolates, lactates and α-hydroxyisobutyrates were determined by a spectroscopic method based upon the measurements of the variation of oscillator strengths of 'hypersensitive' 4f-4f-transitions. The sets of βsub (n) values at 21 0 C are in a good agreement with those found potentiometrically. The stability constants of the complexes evaluated at 5 different temperatures were used for the calculation of ΔG, ΔH, ΔS values. The evaluated thermodynamic parameters are in a satisfactory agreement with those found calorimetrically. The thermodynamic parameters calculated from two independent 'hypersensitive' transitions of the Er 3+ ion are also consistent. (author)
International Nuclear Information System (INIS)
Msezane, A.Z.; Felfli, Z.; Chen, Z.; Amusia, M.Ya.; Chernysheva, L. V.
2002-01-01
The recent experimental observation of the absolute generalized oscillator strength (GOS) for the Ar 3p-(4p,4p ' ) nondipole transition has been interpreted as a manifestation of quadrupole excitation [X. W. Fan and K. T. Leung, Phys. Rev. A 62, 062703 (2000)]. Contrary to the experimentalists' assignment, on the grounds of our random-phase-approximation with exchange (RPAE) calculation, we attribute the measured GOS to combined monopole, the dominant component, and quadrupole contributions. Our RPAE GOS's for the Ar dipole 3p-4s and 3p-3d,5s and the lowest nondipole transitions are compared with the measurements. The results could have significant implications for other similar transitions, previously interpreted as quadrupole excitation and for interpreting other discrete transitions
The calculation of oscillator strengths for the 5s21S0→5s5p1,3P1 transitions in Cd-like ions
International Nuclear Information System (INIS)
Li Guangyuan
1998-01-01
The screened hydrogenic model is employed to calculate the oscillator strength of the 5s 2 1 S 0 -5s5p 1 P 1 resonance transition in Cd-like ions (Z = 48 -74). The expression for the oscillator strength of the 5s 2 1 S 0 -5s5p 3 P1 is given, with the introduction of the correctional coefficient K and the mixing angle in jj-coupling. The results are compared with that of other authors, and some discussions are also given
Czech Academy of Sciences Publication Activity Database
Civiš, Svatopluk; Matulková, Irena; Cihelka, Jaroslav; Kubelík, Petr
2010-01-01
Roč. 82, č. 2 (2010), 022502 ISSN 1050-2947 R&D Projects: GA AV ČR IAA400400705; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * transitions * oscillator strengths Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 2.861, year: 2010
Mohanty, Jyotirmayee; Nau, Werner M
2004-01-01
The photophysical properties of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) were determined in 15 solvents, two supramolecular hosts (cucurbit[7]uril and beta-cyclodextrin) as well as in the gas phase. The oscillator strength and radiative decay rate of DBO as a function of refractive index i.e. polarizability have been analyzed. The oscillator strength increases by a factor of 10 upon going from the gas phase to the most polarizable carbon disulfide, while the corresponding radiative decay rates increase by a factor of 40. There is a good empirical correlation between the oscillator strength of the weakly allowed n,pi* transition of DBO and the reciprocal bulk polarizability, which can be employed to assess the polarizability of unknown microheterogeneous environments. A satisfactory correlation between the radiative decay rate and the square of the refractive index is also found, as previously documented for chromophores with allowed transitions. However, the correlation improves significantly when the oscillator strength is included in the correlation, which demonstrates the importance of this factor in the Strickler-Berg equation for chromophores with forbidden or weakly allowed transitions, for which the oscillator strength may be strongly solvent dependent. The radiative decay rate of DBO in two supramolecular assemblies has been determined, confirming the very low polarizability inside the cucurbituril cavity, in between perfluorohexane and the gas phase. The fluorescence quantum yield of DBO in the gas phase has been remeasured (5.1 +/- 0.5%) and was found to fall one full order of magnitude below a previously reported value.
Engel, D.; Klews, M.; Wunner, G.
2009-02-01
We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap
Oscillator strengths and transition probabilities from the Breit–Pauli R-matrix method: Ne IV
Energy Technology Data Exchange (ETDEWEB)
Nahar, Sultana N., E-mail: nahar@astronomy.ohio-state.edu
2014-09-15
The atomic parameters–oscillator strengths, line strengths, radiative decay rates (A), and lifetimes–for fine structure transitions of electric dipole (E1) type for the astrophysically abundant ion Ne IV are presented. The results include 868 fine structure levels with n≤ 10, l≤ 9, and 1/2≤J≤ 19/2 of even and odd parities, and the corresponding 83,767 E1 transitions. The calculations were carried out using the relativistic Breit–Pauli R-matrix method in the close coupling approximation. The transitions have been identified spectroscopically using an algorithm based on quantum defect analysis and other criteria. The calculated energies agree with the 103 observed and identified energies to within 3% or better for most of the levels. Some larger differences are also noted. The A-values show good to fair agreement with the very limited number of available transitions in the table compiled by NIST, but show very good agreement with the latest published multi-configuration Hartree–Fock calculations. The present transitions should be useful for diagnostics as well as for precise and complete spectral modeling in the soft X-ray to infra-red regions of astrophysical and laboratory plasmas. -- Highlights: •The first application of BPRM method for accurate E1 transitions in Ne IV is reported. •Amount of atomic data (n going up to 10) is complete for most practical applications. •The calculated energies are in very good agreement with most observed levels. •Very good agreement of A-values and lifetimes with other relativistic calculations. •The results should provide precise nebular abundances, chemical evolution etc.
International Nuclear Information System (INIS)
Migdalek, J.
1984-01-01
The lowest 4fsup(n)6s-4fsup(n)6p transitions are studied for the Eu(II) (n=7), Tb(II) (n=9), and Ho(II) (n=11) spectra, where the J 1 J coupling is an acceptable approximation. The relativistic radial integrals, required to evaluate the oscillator strengths and transition probabilities, are calculated with the model-potential method, which includes also core-polarization effects. The similarities observed in oscillator strengths for transitions with given ΔJ but different J values are discussed and explained. The computed oscillator strengths are compared with those obtained with the Coulomb approximation and it is found that the latter are only 11-12% lower. The core polarization influence on oscillator strengths is also investigated and the 19-21% decrease in oscillator strengths due to this effect is predicted. This result may, however, be overestimated because of some deficiencies in our procedure. (author)
International Nuclear Information System (INIS)
Savukov, I. M.; Filin, D. V.
2014-01-01
Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions
Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz
2017-11-01
Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.
Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Richter, P.; Kruk, J. W.; Demleitner, M.
2016-01-01
For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. New Krivvii oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTEmodel-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods. We calculated Krivvii oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high SN ultraviolet (UV)observations of the hot white dwarf RE 0503.
International Nuclear Information System (INIS)
Glushkov, A.V.; Kol'tsova, N.Yu.
1994-01-01
Equations of motion were solved by a modified method in a quasi-particle representation of the density functional taking into account the most important polarization effects, including the so-called 2p-2h two-particle-two-hole interactions. Based on these calculations, spectroscopic data on energies and oscillator strengths of the helium atom (the test computation), carbon monoxide, nitrogen molecule, and ethylene are presented that refine some previously reported experimental and theoretical results. It is shown that in some cases the inclusion of polarization corrections introduced by 2p-2h effects is of basic importance because it provides up to ∼30% contribution to the energies and oscillator strengths. 23 refs., 5 tabs
Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.
2018-02-01
Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.
Directory of Open Access Journals (Sweden)
Suhufa Alfarisa
2016-03-01
Full Text Available This research aims i to determine the density profile and calculate the ground state energy of a quantum dot in two dimensions (2D with a harmonic oscillator potential using orbital-free density functional theory, and ii to understand the effect of the harmonic oscillator potential strength on the electron density profiles in the quantum dot. This study determines the total energy functional of the quantum dot that is a functional of the density that depends only on spatial variables. The total energy functional consists of three terms. The first term is the kinetic energy functional, which is the Thomas–Fermi approximation in this case. The second term is the external potential. The harmonic oscillator potential is used in this study. The last term is the electron–electron interactions described by the Coulomb interaction. The functional is formally solved to obtain the electron density as a function of spatial variables. This equation cannot be solved analytically, and thus a numerical method is used to determine the profile of the electron density. Using the electron density profiles, the ground state energy of the quantum dot in 2D can be calculated. The ground state energies obtained are 2.464, 22.26, 90.1957, 252.437, and 496.658 au for 2, 6, 12, 20, and 56 electrons, respectively. The highest electron density is localized close to the middle of the quantum dot. The density profiles decrease with the increasing distance, and the lowest density is at the edge of the quantum dot. Generally, increasing the harmonic oscillator potential strength reduces the density profiles around the center of the quantum dot.
International Nuclear Information System (INIS)
Zeng Jiaolong; Jin Fengtao; Zhao Gang; Yuan Jianmin
2003-01-01
Accurate atomic data, such as fine structure energy levels and oscillator strengths of different ionization stages of iron ions, are important for astrophysical and laboratory plasmas. However, some important existing oscillator strengths for ions with an open 3d shell found in the literature might not be accurate enough for practical applications. As an example, the present paper checks the convergence behaviour of the energy levels and oscillator strengths of Fe VIII by systematically increasing the 3p n -3d n (n = 1, 2, 3 and 6) core-valence electron correlations using the multiconfiguration Hartree-Fock method. The results show that one should at least include up to 3p 3 -3d 3 core-valence electron correlations to obtain converged results. Large differences are found between the present oscillator strengths and other theoretical results in the literature for some strong transitions
Tchang-Brillet, Wad Lydia; Wyart, Jean-François; Zeippen, Claude
1996-01-01
The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas was held in Meudon, France, from August 28 to 31 1995. It was the fifth in a series started by the Atomic Spectroscopic Group at the University of Lund, Sweden, in 1983. Then followed the meetings in Toledo, USA, Amsterdam, The Nether- lands and Gaithersburg, USA, with a three year period. The original title of the series ended with "... for Astrophysics and Fusion Research" and became more general with the 4th colloquium in Gaithersburg. The purpose of the present meeting was, in line with tradition, to bring together "producers" and "users" of atomic data so as to ensure optimal coordination. Atomic physicists who study the structure of atoms and their radiative and collisional properties were invited to explain the development of their work, emphasizing the possibilities of producing precise transition wavelengths and relative line intensities. Astrophysicists and laboratory plasma physicists were invited to review their present research interests and the context in which atomic data are needed. The number of participants was about 70 for the first three meetings, then exploded to 170 at Gaithersburg. About 140 participants, coming from 13 countries, attended the colloquium in Meudon. This large gathering was partly due to a number of participants from Eastern Europe larger than in the past, and it certainly showed a steady interest for interdisciplinary exchanges between different communities of scientists. This volume includes all the invited papers given at the conference and, in the appendix, practical information on access to some databases. All invited speakers presented their talks aiming at good communication between scientists from different backgrounds. A separate bound volume containing extended abstracts of the poster papers has been published by the Publications de l'Observatoire de Paris, (Meudon 1996), under the responsibility of
Directory of Open Access Journals (Sweden)
Jieun Cho, Kyeongbong Lee, Minkyu Kim, Joohee Hahn, Wanhee Lee
2018-03-01
Full Text Available This study aimed to investigate the effect of double oscillation exercise combined with elastic band exercise on the strength and thickness ratio of the scapular stabilizing muscles in healthy young individuals. A total of 30 subjects (17 male, 13 female were randomly assigned to an elastic band exercise group (EBG (n = 15 or an elastic band plus double oscillation exercise group (EB-DOG (n = 15. A total of 28 subjects completed the experiment and evaluation. Patients in the EBG performed the elastic band exercise for shoulder flexion, extension, abduction, adduction, horizontal abduction/adduction, and internal/external rotation for 30 minutes/session, five times/week, for four weeks. Patients in the EB-DOG performed the elastic band exercise for 15 minutes and the double oscillation exercise in three planes of motion (frontal, sagittal, and transverse, using a Bodyblade® for 15 minutes/session, five times/week, for four weeks. Shoulder muscle strength was assessed using a manual muscle test device during maximal voluntary isometric contraction (MVIC, while the thicknesses of the scapular stabilizing muscles were assessed using rehabilitative ultrasound imaging both at rest and during MVIC. Both groups had significant effects on shoulder muscle strength, however, there was no significant difference between the two groups for change value of shoulder muscle strength (Bonferroni correction p < 0.005. Significant differences were observed in the group × time interactions for horizontal abduction, external rotation, and protraction. There was a statistically significant improvement in thickness ratio of LT and SA in the EB-DOG and no significant difference was founded in EBG (Bonferroni correction p < 0.006. In comparison between the two groups, EB-DOG showed a significant change in the thickness ratio of LT compared to EBG. In addition, significant differences were observed for the group × time interactions for the thickness ratio of the LT (F
Rauch, T.; Quinet, T.; Hoyer, D.; Werner, K.; Demleitner, M.; Kruk, J. W.
2016-01-01
For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To identify molybdenum lines in the ultraviolet (UV) spectra of the DA-type white dwarf G191B2B and the DO-type white dwarf RE 0503289 and, to determine their photospheric Mo abundances, reliable Mo iv-vii oscillator strengths are used. Methods: We newly calculated Mo iv-vii oscillator strengths to consider their radiative and collisional bound-bound transitions indetail in our NLTE stellar-atmosphere models for the analysis of Mo lines exhibited in high-resolution and high SN UV observations of RE 0503289.Results. We identified 12 Mo v and nine Mo vi lines in the UV spectrum of RE 0503289 and measured a photospheric Mo abundance of 1.2 3.0 104(mass fraction, 22 500 56 400 times the solar abundance). In addition, from the As v and Sn iv resonance lines,we measured mass fractions of arsenic (0.51.3 105, about 300 1200 times solar) and tin (1.33.2 104, about 14 300 35 200 times solar). For G191B2B, upper limits were determined for the abundances of Mo (5.3 107, 100 times solar) and, in addition, for Kr (1.1106, 10 times solar) and Xe (1.7107, 10 times solar). The arsenic abundance was determined (2.35.9 107, about 21 53 times solar). A new, registered German Astrophysical Virtual Observatory (GAVO) service, TOSS, has been constructed to provide weighted oscillator strengths and transition probabilities.Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Observed Mo v-vi line profiles in the UV spectrum of the white dwarf RE 0503289 were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed the photospheric Mo abundance in a white dwarf to be determined.
Rauch, T.; Werner, K.; Biemont, E.; Quinet, P.; Kruk, J. W.
2013-01-01
State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. Aims. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths in order to reproduce the observed spectrum. Methods. We newly calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV-VI spectrum exhibited in high-resolution and high-S/N FUV (FUSE) and UV (ORFEUS/BEFS, IUE) observations of RE 0503-289. Results. In the UV spectrum of RE 0503-289, we identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these lines are identified for the first time in any star. We can reproduce almost all Ge IV, GeV, and Ge VI lines in the observed spectrum of RE 0503-289 (T(sub eff) = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). The Ge IV/V/VI ionization equilibrium, that is a very sensitive T(sub eff) indicator, is reproduced well. Conclusions. Reliable measurements and calculations of atomic data are a
Xu, Junwei; Huang, Wenxiao; Li, Peiyun; Onken, Drew R; Dun, Chaochao; Guo, Yang; Ucer, Kamil B; Lu, Chang; Wang, Hongzhi; Geyer, Scott M; Williams, Richard T; Carroll, David L
2017-11-01
Solution-grown films of CsPbBr 3 nanocrystals imbedded in Cs 4 PbBr 6 are incorporated as the recombination layer in light-emitting diode (LED) structures. The kinetics at high carrier density of pure (extended) CsPbBr 3 and the nanoinclusion composite are measured and analyzed, indicating second-order kinetics in extended and mainly first-order kinetics in the confined CsPbBr 3 , respectively. Analysis of absorption strength of this all-perovskite, all-inorganic imbedded nanocrystal composite relative to pure CsPbBr 3 indicates enhanced oscillator strength consistent with earlier published attribution of the sub-nanosecond exciton radiative lifetime in nanoprecipitates of CsPbBr 3 in melt-grown CsBr host crystals and CsPbBr 3 evaporated films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFF Research Database (Denmark)
Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.
2009-01-01
We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states LDOS. The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS, ...... with the measured radiative rates. Our results are relevant for applications of CdSe quantum dots in spontaneous emission control and cavity quantum electrodynamics.......We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states LDOS. The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS......, allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots...
International Nuclear Information System (INIS)
Zilitis, V.A.
1989-01-01
Oscillator forces, f, of 4s-4p, 4p-5s, 3d-4p and 3d-4f transitions for 13 terms of the potassium isoelectric line (from K to U 73+ ) are calculated by the Dirac-Fock method. Nonmonotonous change in values f along the isoelectric line is detected in some cases. Radiation life times of levels 4p 1/2 , 4p 3/2 and 5s 1/2 are also calculated. Similar values, which can be approximated by formula τ≅ 5x10 -8 Z ef -3 .3 , where Z ef - the effective charge, are obtained for life times of these levels. Values obtained for f and τ are compared with data of other authors
International Nuclear Information System (INIS)
Hey, J D
2014-01-01
As a sequel to an earlier study (Hey 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125701), we consider further the application of the line strength formula derived by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 L291) to transitions arising from states of very high principal quantum number in hydrogenic atoms and ions (Rydberg–Rydberg transitions, n > 1000). It is shown how apparent difficulties associated with the use of recurrence relations, derived (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641) by the ladder operator technique of Infeld and Hull (1951 Rev. Mod. Phys. 23 21), may be eliminated by a very simple numerical device, whereby this method may readily be applied up to n ≈ 10 000. Beyond this range, programming of the method may entail greater care and complexity. The use of the numerically efficient McLean–Watson formula for such cases is again illustrated by the determination of radiative lifetimes and comparison of present results with those from an asymptotic formula. The question of the influence on the results of the omission or inclusion of fine structure is considered by comparison with calculations based on the standard Condon–Shortley line strength formula. Interest in this work on the radial matrix elements for large n and n′ is related to measurements of radio recombination lines from tenuous space plasmas, e.g. Stepkin et al (2007 Mon. Not. R. Astron. Soc. 374 852), Bell et al (2011 Astrophys. Space Sci. 333 377), to the calculation of electron impact broadening parameters for such spectra (Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) and comparison with other theoretical methods (Peach 2014 Adv. Space Res. in press), to the modelling of physical processes in H II regions (Roshi et al 2012 Astrophys. J. 749 49), and the evaluation bound–bound transitions from states of high n during primordial cosmological recombination (Grin and Hirata 2010 Phys. Rev. D 81 083005, Ali-Haïmoud and Hirata 2010 Phys. Rev. D 82 063521
International Nuclear Information System (INIS)
Inokuti, M.
1984-01-01
Consider the intensity of absorption of a photon (i.e., the photoabsorption cross section) as a function of photon energy E. Apart from some intensity related to pure nuclear motion and spins, the (electronic) absorption begins at several eV (i.e., in the visible region or the near ultraviolet region). It becomes stronger at tens of eV's (i.e., in the far ultraviolet), and gradually diminishes at higher E. However, the intensity enhances again as E becomes comparable to an inner-shell binding energy. This repeats throughout the x-ray region until E greatly exceeds the K-shell binding energy. I shall discuss the gross variation of the absorption intensity with E. This intensity, suitably normalized, is the oscillator-strength distribution df/dE
Singh, Nirpendra
2012-04-11
The isostructral Zintl compounds EuIn2X2 (X = P,As) are investigated within density functional theory. We employ the local spin density approximation with onsite interaction (LSDA + U) for varying U from 0 eV to 7 eV to model the Coulomb repulsion of the Eu 4f electrons. The LSDA + U optical conductivity disagrees with the experimental spectrum, while the simple LSDA is successful. Contrary to the expectation, it is found that EuIn2X2 (X = P,As) has a large oscillator strength for the f → d transitions in the low-energy range (below 1.5 eV) in which effects of the joint density of states play a key role. The materials show a sizeable magneto-optical Kerr effect.
Energy Technology Data Exchange (ETDEWEB)
Klump, K N; Lassettre, E N
1975-01-01
Generalized oscillator strengths have been determined for the 7.4 eV excitation in H/sub 2/O at initial electron kinetic energies from 300 to 600 eV and squared momentum changes (of the colliding electron) to 4.5 a.u. These data are employed, in an approximate formula developed by Lassettre and Dillon, to calculate the excitation energy of the lowest /sup 3/B/sub 1/ state of H/sub 2/O. The value obtained, 7.0 eV, is in good agreement with accurate quantum chemical calculations and with experiment. The estimated uncertainty, based on errors found for CO and He, is 0.1 eV. This is a plausible estimate, not an upper bound.
International Nuclear Information System (INIS)
Chen, Zhifan; Msezane, Alfred Z.; Amusia, M. Ya.
1999-01-01
We have investigated the generalized oscillator strength (GOS) for a transition of the type np→(n+1)s, where n is the principal quantum number of the outermost filled shell of the atomic ground state, using the random-phase approximation with exchange. We find that the influence of correlation and exchange effects on the position of the characteristic minimum in the GOS of Ar(n=3) is insignificant. Also, our first Born approximation predicts the position of the minimum accurately provided that accurate target wave functions are employed. Our results agree excellently with measurements and are expected to be applicable equally to the corresponding subshells of Ne(n=2), Kr(n=4), and Xe(n=5). (c) 1999 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhifan [Center for Theoretical Studies of Physical Systems, and Department of Physics, Clark Atlanta University, Atlanta, Georgia 30314 (United States); Msezane, Alfred Z. [Center for Theoretical Studies of Physical Systems, and Department of Physics, Clark Atlanta University, Atlanta, Georgia 30314 (United States); Amusia, M. Ya. [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, (Israel)
1999-12-01
We have investigated the generalized oscillator strength (GOS) for a transition of the type np{yields}(n+1)s, where n is the principal quantum number of the outermost filled shell of the atomic ground state, using the random-phase approximation with exchange. We find that the influence of correlation and exchange effects on the position of the characteristic minimum in the GOS of Ar(n=3) is insignificant. Also, our first Born approximation predicts the position of the minimum accurately provided that accurate target wave functions are employed. Our results agree excellently with measurements and are expected to be applicable equally to the corresponding subshells of Ne(n=2), Kr(n=4), and Xe(n=5). (c) 1999 The American Physical Society.
Singh, Nirpendra; Schwingenschlö gl, Udo
2012-01-01
The isostructral Zintl compounds EuIn2X2 (X = P,As) are investigated within density functional theory. We employ the local spin density approximation with onsite interaction (LSDA + U) for varying U from 0 eV to 7 eV to model the Coulomb repulsion of the Eu 4f electrons. The LSDA + U optical conductivity disagrees with the experimental spectrum, while the simple LSDA is successful. Contrary to the expectation, it is found that EuIn2X2 (X = P,As) has a large oscillator strength for the f → d transitions in the low-energy range (below 1.5 eV) in which effects of the joint density of states play a key role. The materials show a sizeable magneto-optical Kerr effect.
International Nuclear Information System (INIS)
Wong, T.C.; Lee, J.S.; Wellenstein, H.F.; Bonham, R.A.
1975-01-01
The absolute generalized oscillator strength for the dipole forbidden quadrupole allowed Lyman--Birge--Hopfield band a 1 Pi/subg/ reverse arrow X 1 Σ + /subg/ in molecular nitrogen at an energy loss of 9.35 eV is observed by electron impact spectroscopy using 25 keV electrons over the momentum transfer range 0.04less than or equal toK 2 less than or equal to10 a.u. The results agree in the zero angle (zero momentum transfer) limit with the previous observations of Skerbele and Lassettre, but are in disagreement with previous theoretical and experimental results for K 2 >0.5. (auth)
Energy Technology Data Exchange (ETDEWEB)
Fano, U; Kuper, D Zh
1972-01-01
A very detailed review is given of the latest achievements in experimental and theoretical research on the absorption spectra of atoms in the energy region from the lowest ionization threshold to several tens of keV (ultraviolet and x-ray region of the spectrum). The materials reviewed form a uniform point of view which facilitates the theoretical analysis of the data and make it possible to demonstrate the connection between various theoretical approaches. The first chapters examine the relationship between oscillator strengths and other atomic characteristics, and offer a brief review of contemporary experimental methods. Then the results of the experiments are carefully compared with calculations in mono-electron and multi-electron approaches, and the computations are analyzed in detail. The last chapters deal with two-electron transitions channel interactions. The book will be useful to senior students and scientists specializing in the area of spectroscopy. 253 references, 28 figures, 6 tables.
International Nuclear Information System (INIS)
Fawcett, B.C.
1989-01-01
Calculated weighted oscillator strengths are tabulated for spectral lines of Fe III, Fe IV, Fe V, and Fe VI. The lines belong to transition arrays 3d 6 -3d 5 4p and 3d 5 4s-3d 5 4p in Fe III, 3d 5 -3d 4 4p and 3d 4 4s-3d 4 4p in Fe IV, 3d 4 -3d 3 4p and 3d 3 4s-3d 3 4p in Fe V, and 3d 3 -3d 2 4p and 3d 2 4s-3d 2 4p in Fe VI. For the calculations, Slater parameters are optimized on the basis of minimizing the discrepancies between observed and computed wavelengths. Configuration interaction was included among the 3d n , 3d n-1 4s, 3d n-2 4s 2 , 3d n-1 4d, and 3d n-1 5s even configurations and among the 3d n-1 4p, 3d n-2 4s4p, and 3d n-1 5p odd configurations, with 3p 5 3d n+1 added for Fe VI. Calculated wavelengths are compared with observational data, and the compositions of energy levels are listed. This completes a series of similar computations for these complex configurations covering Fe I to Fe VI
International Nuclear Information System (INIS)
Gomis, L; Diedhiou, I; Tall, M S; Diallo, S; Diatta, C S; Niassy, B
2007-01-01
The quadrupole and monopole generalized oscillator strengths (GOS) as a function of momentum transfer are calculated for the 2p-3p and 2p-4p transitions of the neon atom using the analytical Hartree-Fock (HF) wavefunctions for the ground-state and the wavefunctions for the excited states which are obtained numerically from the modified HF Slater equation. Calculations are carried out by using the HF method and random phase approximation with exchange in the velocity formulation. The positions and the number of the extrema in the GOS have received particular attention in the evaluation. Our calculated monopole GOS of 2p-3p transition in velocity form reveals one maximum located between the experimental and theoretical results of other authors. The disagreement between our first maximum of the quadrupole GOS 2p-3p transition with the experimental and other theoretical ones is unimportant. The extrema of the monopole and quadrupole GOS of 2p-4p transition are given in this paper. The results of velocity form study also show that the electron correlation effects are important around the maxima and are found to influence the positions of the extrema insignificantly
Energy Technology Data Exchange (ETDEWEB)
Klump, K N; Lassettre, E N
1977-10-01
Generalized oscillator strengths, f, for the transition A/sup 1/B/sub 2u/ reverse arrow X/sup 1/A/sub 1g/ in benzene, determined by electron impact methods, are reported as a function of the momentum change. At scattering angles down to 2.5/sup 0/ helium was used as the comparison gas. Determinations are also reported at theta = 0/sup 0/ using mercury as the comparison gas. The oscillator strength curve has both a minimum and a maximum due to the superposition of electric dipole and octupole transitions. The band envelope is studied and is shown to remain unchanged in shape but is shifted by h nu/sub 6/ approximately 0.065 eV with increasing angle due to the shift from electric dipole to octupole scattering.
International Nuclear Information System (INIS)
Feng, R.; Cooper, G.; Burton, G.R.; Brion, C.E.; Avaldi, L.
1999-01-01
Absolute photoabsorption oscillator strengths (cross-sections) for the valence shell discrete and continuum regions of sulphur dioxide from 3.5 to 51 eV have been measured using high resolution (∼0.05 eV FWHM) dipole (e,e) spectroscopy. A wide-range spectrum, covering both the valence shell and the S 2p and 2s inner shells, has also been obtained from 5 to 260 eV at low resolution (∼1 eV FWHM), and this has been used to determine the absolute oscillator strength scale using valence shell TRK (i.e., S(0)) sum-rule normalization. The present measurements have been undertaken in order to investigate the recently discovered significant quantitative errors in our previously published low resolution dipole (e,e) work on sulphur dioxide (Cooper et al., Chem. Phys. 150 (1991) 237; 150 (1991) 251). These earlier measurements were also in poor agreement with other previously published direct photoabsorption measurements. We now report new absolute photoabsorption oscillator strengths using both high and low resolution dipole (e,e) spectroscopies. These new measurements cover a wider energy range and are much more consistent with the previously published direct photoabsorption measurements. The accuracy of our new measurements is confirmed by an S(-2) dipole sum-rule analysis which gives a static dipole polarizability for sulphur dioxide in excellent agreement (within 3.5%) with previously reported polarizability values. Other dipole sums S(u) (u=-1,-3 to -6,-8,-10) and logarithmic dipole sums L(u) (u=-1 to -6) are also determined from the presently reported absolute oscillator strength distributions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Rauch, T.; Quinet, P.; Knörzer, M.; Hoyer, D.; Werner, K.; Kruk, J. W.; Demleitner, M.
2017-10-01
Context. To analyze spectra of hot stars, advanced non-local thermodynamic equilibrium (NLTE) model-atmosphere techniques are mandatory. Reliable atomic data is crucial for the calculation of such model atmospheres. Aims: We aim to calculate new Sr iv-vii oscillator strengths to identify for the first time Sr spectral lines in hot white dwarf (WD) stars and to determine the photospheric Sr abundances. To measure the abundances of Se, Te, and I in hot WDs, we aim to compute new Se v, Te vi, and I vi oscillator strengths. Methods: To consider radiative and collisional bound-bound transitions of Se v, Sr iv - vii, Te vi, and I vi in our NLTE atmosphere models, we calculated oscillator strengths for these ions. Results: We newly identified four Se v, 23 Sr v, 1 Te vi, and three I vi lines in the ultraviolet (UV) spectrum of RE 0503-289. We measured a photospheric Sr abundance of 6.5+ 3.8-2.4× 10-4 (mass fraction, 9500-23 800 times solar). We determined the abundances of Se (1.6+ 0.9-0.6× 10-3, 8000-20 000), Te (2.5+ 1.5-0.9× 10-4, 11 000-28 000), and I (1.4+ 0.8-0.5× 10-5, 2700-6700). No Se, Sr, Te, and I line was found in the UV spectra of G191-B2B and we could determine only upper abundance limits of approximately 100 times solar. Conclusions: All identified Se v, Sr v, Te vi, and I vi lines in the UV spectrum of RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. Full Tables A.15 to A.21 are only available via the German Astrophysical Virtual Observatory (GAVO) service TOSS (http://dc.g-vo.org/TOSS).
Rauch, T.; Werner, K.; Quinet, P.; Kruk, Jeffrey Walter
2014-01-01
Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. Reliable Ba 5-7 oscillator strengths are used to identify Ba lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and to determine their photospheric Ba abundances. Methods. We newly calculated Ba v-vii oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Ba lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results. For the first time, we identified highly ionized Ba in the spectra of hot white dwarfs. We detected Ba vi and Ba vii lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE 0503-289. The Ba vi/Ba vii ionization equilibrium is well reproduced with the previously determined effective temperature of 70 000 K and surface gravity of log g=7.5. The Ba abundance is 3.5 +/- 0.5 × 10(exp-4) (mass fraction, about 23 000 times the solar value). In the FUSE spectrum of G191-B2B, we identified the strongest Ba vii line (at 993.41 Å) only, and determined a Ba abundance of 4.0 +/- 0.5 × 10(exp-6) (about 265 times solar). Conclusions. Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Ba vi-vii line profiles in two white dwarfs' (G191-B2B and RE 0503-289) far-ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed to determine the photospheric Ba abundance of these two stars precisely.
Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Demleitner, M.; Kruk, J. W.
2016-03-01
Context. For the spectral analysis of high-resolution and high signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To identify molybdenum lines in the ultraviolet (UV) spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and, to determine their photospheric Mo abundances, reliable Mo iv-vii oscillator strengths are used. Methods: We newly calculated Mo iv-vii oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Mo lines exhibited in high-resolution and high S/N UV observations of RE 0503-289. Results: We identified 12 Mo v and 9 Mo vi lines in the UV spectrum of RE 0503-289 and measured a photospheric Mo abundance of 1.2-3.0 × 10-4 (mass fraction, 22 500-56 400 times the solar abundance). In addition, from the As v and Sn iv resonance lines, we measured mass fractions of arsenic (0.5-1.3 × 10-5, about 300-1200 times solar) and tin (1.3-3.2 × 10-4, about 14 300-35 200 times solar). For G191-B2B, upper limits were determined for the abundances of Mo (5.3 × 10-7, 100 times solar) and, in addition, for Kr (1.1 × 10-6, 10 times solar) and Xe (1.7 × 10-7, 10 times solar). The arsenic abundance was determined (2.3-5.9 × 10-7, about 21-53 times solar). A new, registered German Astrophysical Virtual Observatory (GAVO) service, TOSS, has been constructed to provide weighted oscillator strengths and transition probabilities. Conclusions: Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Observed Mo v-vi line profiles in the UV spectrum of the white dwarf RE 0503-289 were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed the photospheric Mo
International Nuclear Information System (INIS)
McNeill, G.A.
1981-01-01
Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification
Lites, B.W.; Rutten, R.J.; Thomas, J.H.
1995-01-01
We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.
Energy Technology Data Exchange (ETDEWEB)
Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)
2006-07-15
The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.
Rauch, T.; Gamrath, S.; Quinet, P.; Löbling, L.; Hoyer, D.; Werner, K.; Kruk, J. W.; Demleitner, M.
2017-03-01
Context. For the spectral analysis of high-resolution and high-signal-to-noise spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To search for zirconium and xenon lines in the ultraviolet (UV) spectra of G191-B2B and RE 0503-289, new Zr iv-vii, Xe iv-v, and Xe vii oscillator strengths were calculated. This allows, for the first time, determination of the Zr abundance in white dwarf (WD) stars and improvement of the Xe abundance determinations. Methods: We calculated Zr iv-vii, Xe iv-v, and Xe vii oscillator strengths to consider radiative and collisional bound-bound transitions of Zr and Xe in our NLTE stellar-atmosphere models for the analysis of their lines exhibited in UV observations of the hot WDs G191-B2B and RE 0503-289. Results: We identified one new Zr iv, 14 new Zr v, and ten new Zr vi lines in the spectrum of RE 0503-289. Zr was detected for the first time in a WD. We measured a Zr abundance of -3.5 ± 0.2 (logarithmic mass fraction, approx. 11 500 times solar). We identified five new Xe vi lines and determined a Xe abundance of -3.9 ± 0.2 (approx. 7500 times solar). We determined a preliminary photospheric Al abundance of -4.3 ± 0.2 (solar) in RE 0503-289. In the spectra of G191-B2B, no Zr line was identified. The strongest Zr iv line (1598.948 Å) in our model gave an upper limit of -5.6 ± 0.3 (approx. 100 times solar). No Xe line was identified in the UV spectrum of G191-B2B and we confirmed the previously determined upper limit of -6.8 ± 0.3 (ten times solar). Conclusions: Precise measurements and calculations of atomic data are a prerequisite for advanced NLTE stellar-atmosphere modeling. Observed Zr iv-vi and Xe vi-vii line profiles in the UV spectrum of RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. Based on observations
Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.
2014-06-01
Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: Reliable Ba v-vii oscillator strengths are used to identify Ba lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and to determine their photospheric Ba abundances. Methods: We newly calculated Ba v-vii oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Ba lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results: For the first time, we identified highly ionized Ba in the spectra of hot white dwarfs. We detected Ba vi and Ba vii lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE 0503-289. The Ba vi/Ba vii ionization equilibrium is well reproduced with the previously determined effective temperature of 70 000 K and surface gravity of log g = 7.5. The Ba abundance is 3.5 ± 0.5 × 10-4 (mass fraction, about 23 000 times the solar value). In the FUSE spectrum of G191-B2B, we identified the strongest Ba vii line (at 993.41 Å) only, and determined a Ba abundance of 4.0 ± 0.5 × 10-6 (about 265 times solar). Conclusions: Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Ba vi-vii line profiles in two white dwarfs' (G191-B2B and RE 0503-289) far-ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed to determine the photospheric Ba abundance of these two stars precisely. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for
Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.
2014-04-01
Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191-B2B, 21 Zn iv lines were newly identified. Because of the lack of Zn iv data, transition probabilities of the isoelectronic Ge vi were adapted for a first, coarse determination of the photospheric Zn abundance. Aims: Reliable Zn iv and Zn v oscillator strengths are used to improve the Zn abundance determination and to identify more Zn lines in the spectra of G191-B2B and the DO-type white dwarf RE 0503-289. Methods: We performed new calculations of Zn iv and Zn v oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn iv - v spectrum exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results: In the UV spectrum of G191-B2B, we identify 31 Zn iv and 16 Zn v lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn = -5.52 ± 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn iv / Zn v ionization equilibrium, which is a very sensitive Teff indicator, is well reproduced with the previously determined and log g = 7.60 ± 0.05. In the spectrum of RE 0503-289, we identified 128 Zn v lines for the first time and determined log Zn = -3.57 ± 0.2 (155 times solar). Conclusions: Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn iv and Zn v line profiles in two white dwarf (G191-B2B and RE 0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to
Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.
2015-05-01
Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, advanced non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These atmospheres are strongly dependent on the reliability of the atomic data that are used to calculate them. Aims: Reliable Ga iv-vi oscillator strengths are used to identify Ga lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and to determine their photospheric Ga abundances. Methods: We newly calculated Ga iv-vi oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for analyzing of Ga lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results: We unambiguously detected 20 isolated and 6 blended (with lines of other species) Ga v lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE 0503-289. The identification of Ga iv and Ga vi lines is uncertain because they are weak and partly blended by other lines. The determined Ga abundance is 3.5 ± 0.5 × 10-5 (mass fraction, about 625 times the solar value). The Ga iv/Ga v ionization equilibrium, which is a very sensitive indicator for the effective temperature, is well reproduced in RE 0503-289. We identified the strongest Ga iv lines (at 1258.801, 1338.129 Å) in the HST/STIS spectrum of G191-B2B and measured a Ga abundance of 2.0 ± 0.5 × 10-6 (about 22 times solar). Conclusions: Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. The observed Ga iv-v line profiles in two white dwarf (G191-B2B and RE 0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed us to determine the photospheric Ga abundance in white dwarfs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space
Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Richter, P.; Kruk, J. W.; Demleitner, M.
2016-05-01
Context. For the spectral analysis of high-resolution and high signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: New Kr iv-vii oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTE model-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods: We calculated Kr iv-vii oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high S/N ultraviolet (UV) observations of the hot white dwarf RE 0503-289. Results: We reanalyzed the effective temperature and surface gravity and determined Teff = 70000 ± 2000 K and log (g/ cm s-2) = 7.5 ± 0.1. We newly identified ten Kr v lines and one Kr vi line in the spectrum of RE 0503-289. We measured a Kr abundance of -3.3 ± 0.3 (logarithmic mass fraction). We discovered that the interstellar absorption toward RE 0503-289 has a multi-velocity structure within a radial-velocity interval of -40 km s-1Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 165.H-0588 and 167.D-0407. Based on observations obtained at the German-Spanish Astronomical Center, Calar Alto, operated by the Max-Planck-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy.Tables A.9-A.12 are only available via the German
Indian Academy of Sciences (India)
IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.
Indian Academy of Sciences (India)
the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Oscillator strengths for highly ionized atomic systems
International Nuclear Information System (INIS)
Fischer, C.F.
1979-01-01
Evidence has been found recently that the cascade process may be more important in the analysis of beam-foil decay curves than anticipated. In order to assist the analysis of such data the multiconfiguration Hartree--Fock program (MCHF77) has been applied to the theoretical study of several transitions which are part of a cascade process for resonance transitions ]3p 2 , 3s 3d] 1 D - ]3p 3d, 3s 4f] 1 F and ]3s 3d] 3 D - ]3p 3d, 3s 4f] 3 F in the Mg sequence. For higher members of the sequence, MCHF77 was modified to include the relativistic effects which shift the energy of a configuration as a whole, and intermediate coupling calculations were performed. The 4s 4p 1 P - ]4p 2 , 4s 4d] 1 D transitions in the Zn I sequence were also examined. A strong interaction exists between 4p 2 and 4s 4d 1 D and it has been shown that much of the earlier experimental material concerning the 1 D terms are in error. Comparison with a few recent experimental investigations shows good agreement. Relatively few levels have been identified in Fe XIV. Because of the importance of the iron ions both in astrophysics and tokamak plasma research, a line list has been produced for levels with three electrons in the M shell. gf-values for allowed transitions and intercombination lines are tabulated. A list of publications is included
Chemotaxis and Actin Oscillations
Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir
Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.
Graf, Rudolf F
1996-01-01
This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing
One dimension harmonic oscillator
International Nuclear Information System (INIS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.
1977-01-01
The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr
Power oscillation damping controller
DEFF Research Database (Denmark)
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...
International Nuclear Information System (INIS)
Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.
1976-01-01
Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained
Oscillators - a simple introduction
DEFF Research Database (Denmark)
Lindberg, Erik
2013-01-01
Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...
DEFF Research Database (Denmark)
Lindberg, Erik
1997-01-01
In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....
Measuring Relative Coupling Strength in Circadian Systems.
Schmal, Christoph; Herzog, Erik D; Herzel, Hanspeter
2018-02-01
Modern imaging techniques allow the monitoring of circadian rhythms of single cells. Coupling between these single cellular circadian oscillators can generate coherent periodic signals on the tissue level that subsequently orchestrate physiological outputs. The strength of coupling in such systems of oscillators is often unclear. In particular, effects on coupling strength by varying cell densities, by knockouts, and by inhibitor applications are debated. In this study, we suggest to quantify the relative coupling strength via analyzing period, phase, and amplitude distributions in ensembles of individual circadian oscillators. Simulations of different oscillator networks show that period and phase distributions become narrower with increasing coupling strength. Moreover, amplitudes can increase due to resonance effects. Variances of periods and phases decay monotonically with coupling strength, and can serve therefore as measures of relative coupling strength. Our theoretical predictions are confirmed by studying recently published experimental data from PERIOD2 expression in slices of the suprachiasmatic nucleus during and after the application of tetrodotoxin (TTX). On analyzing the corresponding period, phase, and amplitude distributions, we can show that treatment with TTX can be associated with a reduced coupling strength in the system of coupled oscillators. Analysis of an oscillator network derived directly from the data confirms our conclusions. We suggest that our approach is also applicable to quantify coupling in fibroblast cultures and hepatocyte networks, and for social synchronization of circadian rhythmicity in rodents, flies, and bees.
Circuit oscillations in odor perception and memory.
Kay, Leslie M
2014-01-01
Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.
Climate Prediction Center (CPC) Madden-Julian Oscillation (MJO) Index
National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) Madden Julian Oscillation index (MJO) is a dataset that allows evaluation of the strength and phase of the MJO during the dataset...
poincare surface analysis of two coupled quintic oscillators in a ...
African Journals Online (AJOL)
DJFLEX
We have investigated the chaotic dynamics of two coupled quintic oscillators in a single well potential as the energy of the oscillator increases, keeping the coupling strength constant. The degree of chaoticity does not increase monotonously with the energy as regular regions reappear within chaotic seas as the energy ...
Poincare surface analysis of two coupled quintic oscillators in a ...
African Journals Online (AJOL)
We have investigated the chaotic dynamics of two coupled quintic oscillators in a single well potential as the energy of the oscillator increases, keeping the coupling strength constant. The degree of chaoticity does not increase monotonously with the energy as regular regions reappear within chaotic seas as the energy ...
Nonlinear resonance in Duffing oscillator with fixed and integrative ...
Indian Academy of Sciences (India)
We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Dufﬁng oscillator with two types of time-delayed feedbacks, namely, ﬁxed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the ...
Ma, Hongbin
2015-01-01
This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation, theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary factors affecting oscillating motions and heat transfer, neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes. The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...
Rayleigh-type parametric chemical oscillation
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Condensate oscillations in a Penrose tiling lattice
Akdeniz, Z.; Vignolo, P.
2017-07-01
We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.
Suppression and revival of oscillation in indirectly coupled limit cycle oscillators
International Nuclear Information System (INIS)
Sharma, P.R.; Kamal, N.K.; Verma, U.K.; Suresh, K.; Thamilmaran, K.; Shrimali, M.D.
2016-01-01
Highlights: • The phenomena of suppression and revival of oscillations are studied in indirectly coupled nonlinear oscillators. • The decay parameter and a feedback factor play a crucial role in emergent dynamical behavior of oscillators. • The critical curves for different dynamical regions are obtained analytically using linear stability analysis. • Electronic circuit experiments demonstrate these emergent dynamical states. - Abstract: We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.
1981-03-01
Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to
Neutrino oscillations in matter
International Nuclear Information System (INIS)
Mikheyev, S.P.; Smirnov, A.Yu.
1986-01-01
In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)
The colpitts oscillator family
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, A.
A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...
Pair creation and plasma oscillations
International Nuclear Information System (INIS)
Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.
2000-01-01
We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses
A parametric study of strength reduction factors for elasto-plastic ...
Indian Academy of Sciences (India)
A parametric study of strength reduction factors for elasto-plastic oscillators ... motion duration, earthquake magnitude, geological site conditions, and epicentral distance in case of (non-degrading) elasto-plastic oscillators. ... Sadhana | News.
Nature's Autonomous Oscillators
Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.
2012-01-01
Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.
The vertical oscillations of coupled magnets
International Nuclear Information System (INIS)
Li Kewei; Lin Jiahuang; Kang Zi Yang; Liang, Samuel Yee Wei; Juan, Jeremias Wong Say
2011-01-01
The International Young Physicists' Tournament (IYPT) is a worldwide, annual competition for high school students. This paper is adapted from the winning solution to Problem 14, Magnetic Spring, as presented in the final round of the 23rd IYPT in Vienna, Austria. Two magnets were arranged on top of each other on a common axis. One was fixed, while the other could move vertically. Various parameters of interest were investigated, including the effective gravitational acceleration, the strength, size, mass and geometry of the magnets, and damping of the oscillations. Despite its simplicity, this setup yielded a number of interesting and unexpected relations. The first stage of the investigation was concerned only with the undamped oscillations of small amplitudes, and the period of small amplitude oscillations was found to be dependent only on the eighth root of important magnet properties such as its strength and mass. The second stage sought to investigate more general oscillations. A numerical model which took into account magnet size, magnet geometry and damping effects was developed to model the general oscillations. Air resistance and friction were found to be significant sources of damping, while eddy currents were negligible.
Dysrhythmias of the respiratory oscillator
Paydarfar, David; Buerkel, Daniel M.
1995-03-01
Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne
2012-10-06
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
Phase locking between Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1990-01-01
We report observations of phase-locking phenomena between two Josephson soliton (fluxon) oscillators biased in self-resonant modes. The locking strength was measured as a function of bias conditions. A frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. Two coupled...... perturbed sine-Gordon equations were derived from an equivalent circuit consisting of inductively coupled, nonlinear, lossy transmission lines. These equations were solved numerically to find the locking regions. Good qualitative agreement was found between the experimental results and the calculations...
Chaotic Motion of Nonlinearly Coupled Quintic Oscillators | Adeloye ...
African Journals Online (AJOL)
With a fixed energy, we investigate the motion of two nonlinearly coupled quintic oscillators for various values of the coupling strength with the aid of the Poincare surface of section. It is observed that chaotic motion sets in for coupling strength as low as 0.001. The degree of chaoticity generally increases as the coupling ...
Kato, Shoji
2016-01-01
This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...
Oscillations in stellar atmospheres
International Nuclear Information System (INIS)
Costa, A.; Ringuelet, A.E.; Fontenla, J.M.
1989-01-01
Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs
Mutual phase-locking of planar nano-oscillators
Directory of Open Access Journals (Sweden)
K. Y. Xu
2014-06-01
Full Text Available Characteristics of phase-locking between Gunn effect-based planar nano-oscillators are studied using an ensemble Monte Carlo (EMC method. Directly connecting two oscillators in close proximity, e.g. with a channel distance of 200 nm, only results in incoherent oscillations. In order to achieve in-phase oscillations, additional considerations must be taken into account. Two coupling paths are shown to exist between oscillators. One coupling path results in synchronization and the other results in anti-phase locking. The coupling strength through these two paths can be adjusted by changing the connections between oscillators. When two identical oscillators are in the anti-phase locking regime, fundamental components of oscillations are cancelled. The resulting output consists of purely second harmonic oscillations with a frequency of about 0.66 THz. This type of second harmonic generation is desired for higher frequency applications since no additional filter system is required. This transient phase-locking process is further analyzed using Adler's theory. The locking range is extracted, and a criterion for the channel length difference required for realizing phased arrays is obtained. This work should aid in designing nano-oscillator arrays for high power applications and developing directional transmitters for wireless communications.
The Oscillator Principle of Nature
DEFF Research Database (Denmark)
Lindberg, Erik
2012-01-01
Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...
Oscillating systems with cointegrated phase processes
DEFF Research Database (Denmark)
Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne
2017-01-01
We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network...... that resembles biological processes. In particular we study a network of Winfree oscillators, for which we present a statistical analysis of various simulated networks, where we conclude on the coupling structure: the direction of feedback in the phase processes and proportional coupling strength between...... individual components of the system. We show that we can correctly classify the network structure for such a system by cointegration analysis, for various types of coupling, including uni-/bi-directional and all-to-all coupling. Finally, we analyze a set of EEG recordings and discuss the current...
International Nuclear Information System (INIS)
Rodrigues, R. de Lima
2007-01-01
In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)
DEFF Research Database (Denmark)
Hjorth, Poul G.
2008-01-01
We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....
Synchronization of hyperchaotic oscillators
DEFF Research Database (Denmark)
Tamasevicius, A.; Cenys, A.; Mykolaitis, G.
1997-01-01
Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....
Pattern recognition with simple oscillating circuits
International Nuclear Information System (INIS)
Hoelzel, R W; Krischer, K
2011-01-01
Neural network devices that inherently possess parallel computing capabilities are generally difficult to construct because of the large number of neuron-neuron connections. However, there exists a theoretical approach (Hoppensteadt and Izhikevich 1999 Phys. Rev. Lett. 82 2983) that forgoes the individual connections and uses only a global coupling: systems of weakly coupled oscillators with a time-dependent global coupling are capable of performing pattern recognition in an associative manner similar to Hopfield networks. The information is stored in the phase shifts of the individual oscillators. However, to date, even the feasibility of controlling phase shifts with this kind of coupling has not yet been established experimentally. We present an experimental realization of this neural network device. It consists of eight sinusoidal electrical van der Pol oscillators that are globally coupled through a variable resistor with the electric potential as the coupling variable. We estimate an effective value of the phase coupling strength in our experiment. For that, we derive a general approach that allows one to compare different experimental realizations with each other as well as with phase equation models. We demonstrate that individual phase shifts of oscillators can be experimentally controlled by a weak global coupling. Furthermore, supplied with a distorted input image, the oscillating network can indeed recognize the correct image out of a set of predefined patterns. It can therefore be used as the processing unit of an associative memory device.
Transition from amplitude to oscillation death in a network of oscillators
International Nuclear Information System (INIS)
Nandan, Mauparna; Hens, C. R.; Dana, Syamal K.; Pal, Pinaki
2014-01-01
We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics
Transition from amplitude to oscillation death in a network of oscillators
Energy Technology Data Exchange (ETDEWEB)
Nandan, Mauparna [Dr. B. C. Roy Engineering College, Durgapur 713206 (India); Department of Mathematics, National Institute of Technology, Durgapur 713209 (India); Hens, C. R.; Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Pal, Pinaki [Department of Mathematics, National Institute of Technology, Durgapur 713209 (India)
2014-12-01
We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.
Observation of Quasichanneling Oscillations
International Nuclear Information System (INIS)
Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.
2017-01-01
Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.
LSND neutrino oscillation results
International Nuclear Information System (INIS)
Louis, W.C.
1996-01-01
In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations
International Nuclear Information System (INIS)
Kayser, Boris
2014-01-01
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures
Energy Technology Data Exchange (ETDEWEB)
Kayser, Boris [Fermilab (United States)
2014-07-01
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.
International Nuclear Information System (INIS)
Agaisse, R.; Leguen, R.; Ombredane, D.
1960-01-01
The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented
Basin stability measure of different steady states in coupled oscillators
Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-04-01
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.
The chimera state in colloidal phase oscillators with hydrodynamic interaction
Hamilton, Evelyn; Bruot, Nicolas; Cicuta, Pietro
2017-12-01
The chimera state is the incongruous situation where coherent and incoherent populations coexist in sets of identical oscillators. Using driven non-linear oscillators interacting purely through hydrodynamic forces at low Reynolds number, previously studied as a simple model of motile cilia supporting waves, we find concurrent incoherent and synchronised subsets in small arrays. The chimeras seen in simulation display a "breathing" aspect, reminiscent of uniformly interacting phase oscillators. In contrast to other systems where chimera has been observed, this system has a well-defined interaction metric, and we know that the emergent dynamics inherit the symmetry of the underlying Oseen tensor eigenmodes. The chimera state can thus be connected to a superposition of eigenstates, whilst considering the mean interaction strength within and across subsystems allows us to make a connection to more generic (and abstract) chimeras in populations of Kuramoto phase oscillators. From this work, we expect the chimera state to emerge in experimental observations of oscillators coupled through hydrodynamic forces.
OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION
Energy Technology Data Exchange (ETDEWEB)
Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)
2017-01-10
We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.
Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators
Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2018-03-01
We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.
Again on neutrino oscillations
International Nuclear Information System (INIS)
Bilenky, S.M.; Pontecorvo, B.
1976-01-01
The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent
International Nuclear Information System (INIS)
Belblidia, L.A.; Bratianu, C.
1979-01-01
Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)
Oscillators and operational amplifiers
Lindberg, Erik
2005-01-01
A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.
Energy Technology Data Exchange (ETDEWEB)
Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)
1981-09-01
A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.
Case for neutrino oscillations
International Nuclear Information System (INIS)
Ramond, P.
1982-01-01
The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations
Howe, Lauren C; Krosnick, Jon A
2017-01-03
Attitude strength has been the focus of a huge volume of research in psychology and related sciences for decades. The insights offered by this literature have tremendous value for understanding attitude functioning and structure and for the effective application of the attitude concept in applied settings. This is the first Annual Review of Psychology article on the topic, and it offers a review of theory and evidence regarding one of the most researched strength-related attitude features: attitude importance. Personal importance is attached to an attitude when the attitude is perceived to be relevant to self-interest, social identification with reference groups or reference individuals, and values. Attaching personal importance to an attitude causes crystallizing of attitudes (via enhanced resistance to change), effortful gathering and processing of relevant information, accumulation of a large store of well-organized relevant information in long-term memory, enhanced attitude extremity and accessibility, enhanced attitude impact on the regulation of interpersonal attraction, energizing of emotional reactions, and enhanced impact of attitudes on behavioral intentions and action. Thus, important attitudes are real and consequential psychological forces, and their study offers opportunities for addressing behavioral change.
Automated Detection of Oscillating Regions in the Solar Atmosphere
Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.
2010-01-01
Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.
Electromagnetic damping of neutron star oscillations
International Nuclear Information System (INIS)
McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.
1984-01-01
Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr
International Nuclear Information System (INIS)
Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.
1997-01-01
We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)
International Nuclear Information System (INIS)
Hoeye, Gudrun Kristine
1999-01-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Energy Technology Data Exchange (ETDEWEB)
Hoeye, Gudrun Kristine
1999-07-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Oscillating acoustic streaming jet
International Nuclear Information System (INIS)
Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul
2014-01-01
The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.
Brownian parametric oscillators
Zerbe, Christine; Jung, Peter; Hänggi, Peter
1994-05-01
We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).
Friedel oscillations in graphene
DEFF Research Database (Denmark)
Lawlor, J. A.; Power, S. R.; Ferreira, M.S.
2013-01-01
Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...
Proprioceptive evoked gamma oscillations
DEFF Research Database (Denmark)
Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.
2007-01-01
A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.
Oscillators from nonlinear realizations
Kozyrev, N.; Krivonos, S.
2018-02-01
We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.
Oscillation Baselining and Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
2017-03-27
PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).
Dynamics of microbubble oscillators with delay coupling
Heckman, C. R.; Sah, S. M.; Rand, R. H.
2010-10-01
We investigate the stability of the in-phase mode in a system of two delay-coupled bubble oscillators. The bubble oscillator model is based on a 1956 paper by Keller and Kolodner. Delay coupling is due to the time it takes for a signal to travel from one bubble to another through the liquid medium that surrounds them. Using techniques from the theory of differential-delay equations as well as perturbation theory, we show that the equilibrium of the in-phase mode can be made unstable if the delay is long enough and if the coupling strength is large enough, resulting in a Hopf bifurcation. We then employ Lindstedt's method to compute the amplitude of the limit cycle as a function of the time delay. This work is motivated by medical applications involving noninvasive localized drug delivery via microbubbles.
Neutrino oscillations in strong magnetic fields
International Nuclear Information System (INIS)
Likhachev, G.G.; Studenikin, A.I.
1994-07-01
Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs
How adaptation shapes spike rate oscillations in recurrent neuronal networks
Directory of Open Access Journals (Sweden)
Moritz eAugustin
2013-02-01
Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.
From excitability to oscillations
DEFF Research Database (Denmark)
Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.
2013-01-01
One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow dif...
Neutrino oscillation experiments
International Nuclear Information System (INIS)
Camilleri, L.
1996-01-01
Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs
Jones, R. T.
1976-01-01
For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.
Nonlinearity in oscillating bridges
Directory of Open Access Journals (Sweden)
Filippo Gazzola
2013-09-01
Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.
Integrated optoelectronic oscillator.
Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming
2018-04-30
With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.
The variational spiked oscillator
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Ullah, N.
1992-08-01
A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)
Neutrino oscillation experiments
Energy Technology Data Exchange (ETDEWEB)
Camilleri, L [European Organization for Nuclear Research, Geneva (Switzerland)
1996-11-01
Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.
Synchronization in chains of light-controlled oscillators
International Nuclear Information System (INIS)
Avila, G M RamIrez; Guisset, J L; Deneubourg, J L
2005-01-01
Using light-controlled oscillators (LCOs) and a mathematical model of them introduced in [1], we have analyzed a population of LCOs arranged in chains with nonperiodic (linear configuration) and periodic (ring configuration) boundary conditions in which we have solved numerically the corresponding equations for a broad interval of coupling strength values and for chains between 2 and 25 LCOs. We have considered three different situations, viz. identical LCOs, identical LCOs with simplifications (LCOs considered as integrate-and-fire (IF) oscillators), and finally nonidentical LCOs. We study synchronization under two criteria: the first takes into account the simultaneity of flashing events (phase difference criterion), and the second considers period-locking as a criterion for synchronization. For each case, we have identified regions of synchronization in the plane coupling strength versus number of oscillators. We observe different behaviors depending on the values of these variables
Dynamics of chaotic oscillations in mutually coupled microchip lasers
Uchida, A; Kinugawa, S; Yoshimori, S
2003-01-01
We have numerically and experimentally investigated the dynamics of mutually coupled microchip lasers. Chaotic oscillations are observed in the vicinity of the boundary of the injection-locking range when the coupling strength and the difference of the optical frequencies are varied. Synchronization of chaos is always achieved under the condition to generate chaos.
Pluijm, van der R.; Vermeltfoort, A.Th.
1992-01-01
Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial
Anharmonic oscillator and Bogoliubov transformation
International Nuclear Information System (INIS)
Pattnayak, G.C.; Torasia, S.; Rath, B.
1990-01-01
The anharmonic oscillator occupies a cornerstone in many problems in physics. It was observed that none of the authors have tested Bogoliubov transformation to study anharmonic oscillator. The groundstate energy of the anharmonic oscillator is studied using Bogoliubov transformation and the results presented. (author)
Bimodal oscillations in nephron autoregulation
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik
2002-01-01
The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...
Observation and analysis of oscillations in linear accelerators
International Nuclear Information System (INIS)
Seeman, J.T.
1991-11-01
This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations
Energy Technology Data Exchange (ETDEWEB)
Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)
1961-12-15
The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.
Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators
Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei
2018-03-01
Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.
Pattern formation in arrays of chemical oscillators
Indian Academy of Sciences (India)
Chemical oscillators; phase flip; oscillation death. PACS No. 05.45 .... array oscillate (with varying amplitudes and frequencies), while the others experience oscillation death .... Barring the boundary cells, one observes near phase flip and near ...
Entanglement in neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)
2009-03-15
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Nonlinear (Anharmonic Casimir Oscillator
Directory of Open Access Journals (Sweden)
Habibollah Razmi
2011-01-01
Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.
Entanglement in neutrino oscillations
International Nuclear Information System (INIS)
Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.
2009-01-01
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
Discrete repulsive oscillator wavefunctions
International Nuclear Information System (INIS)
Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo
2009-01-01
For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.
Neutrino Masses and Oscillations
CERN. Geneva. Audiovisual Unit; Treille, Daniel
2002-01-01
This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.
Oscillations in quasineutral plasmas
International Nuclear Information System (INIS)
Grenier, E.
1996-01-01
The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs
Density oscillations within hadrons
International Nuclear Information System (INIS)
Arnold, R.; Barshay, S.
1976-01-01
In models of extended hadrons, in which small bits of matter carrying charge and effective mass exist confined within a medium, oscillations in the matter density may occur. A way of investigating this possibility experimentally in high-energy hadron-hadron elastic diffraction scattering is suggested, and the effect is illustrated by examining some existing data which might be relevant to the question [fr
Fogli, Gianluigi
2005-06-01
We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.
International Nuclear Information System (INIS)
Wang, C M; Lei, X L
2014-01-01
We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)
Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms
Kallunki, J.; Riehokainen, A.
2012-10-01
In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.
Optimal estimation of the optomechanical coupling strength
Bernád, József Zsolt; Sanavio, Claudio; Xuereb, André
2018-06-01
We apply the formalism of quantum estimation theory to obtain information about the value of the nonlinear optomechanical coupling strength. In particular, we discuss the minimum mean-square error estimator and a quantum Cramér-Rao-type inequality for the estimation of the coupling strength. Our estimation strategy reveals some cases where quantum statistical inference is inconclusive and merely results in the reinforcement of prior expectations. We show that these situations also involve the highest expected information losses. We demonstrate that interaction times on the order of one time period of mechanical oscillations are the most suitable for our estimation scenario, and compare situations involving different photon and phonon excitations.
Oscillator representation and generalized van der Waals Hamiltonians
International Nuclear Information System (INIS)
Dinejkhan, M.
1996-01-01
The method called the oscillator representation is extended to calculate the energy spectrum of bound state described by axially symmetrical potentials in the parabolic system coordinates. In particular, the method is applied to calculate the energy of the ground and excited states of the hydrogen atom in the uniform electric field and van der Waals field. The method gives the perturbation formulas for the analytic spectrum of the hydrogen atom in the generalized van der Waals field and defined oscillator strengths for transitions from the ground state to the perturbed manifold n=10, m=0. 14 refs., 1 fig
Quasioptical Josephson oscillator
International Nuclear Information System (INIS)
Wengler, M.J.; Pance, A.; Liu, B.
1991-01-01
This paper discusses the authors' work with large 2-dimensional arrays of Josephson junctions for submillimeter power generation. The basic design of the Quasioptical Josephson Oscillator (QJO) is presented. The reasons for each design decision are discussed. Superconducting devices have not yet been fabricated, but scale models and computer simulations have been done. A method for characterizing array rf coupling structures is described, and initial results with this method are presented. Microwave scale models of the radiation structure are built and a series of measurements are made with a network analyzer
Modeling microtubule oscillations
DEFF Research Database (Denmark)
Jobs, E.; Wolf, D.E.; Flyvbjerg, H.
1997-01-01
Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....
Oscillations in nonlinear systems
Hale, Jack K
2015-01-01
By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa
Neutrino oscillations at LAMPF
International Nuclear Information System (INIS)
Carlini, R.; Choi, C.; Donohue, J.
1985-01-01
Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF
Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich
1966-01-01
Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-
Solar and stellar oscillations
International Nuclear Information System (INIS)
Fossat, E.
1981-01-01
We try to explain in simple words what a stellar oscillation is, what kind of restoring forces and excitation mechanisms can be responsible for its occurence, what kind of questions the theoretician asks to the observer and what kind of tools the latter is using to look for the answers. A selected review of the most striking results obtained in the last few years in solar seismology and the present status of their consequences on solar models is presented. A brief discussion on the expected extension towards stellar seismology will end the paper. A selected bibliography on theory as well as observations and recent papers is also included. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Chandra, J; Scott, A C
1983-01-01
Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.
Neutrino oscillations in the Kerr-Newman spacetime
International Nuclear Information System (INIS)
Ren Jun; Zhang Chengmin
2010-01-01
The mass neutrino oscillation in the Kerr-Newman (K-N) spacetime is studied in the plane θ = θ 0 , and general equations of the oscillation phases are given. The effect of the rotation and electric charge on the phase is presented. Then, we consider three special cases. (1) The neutrinos travel along the geodesics with angular momentum L = aE in the equatorial plane. (2) The neutrinos travel along the geodesics with L = 0 in the equatorial plane. (3) The neutrinos travel along the radial geodesics in the direction θ = 0. Finally, we calculate the proper oscillation length in the K-N spacetime. The effect of the gravitational field on the oscillation length is embodied in the gravitational red shift factor. When the neutrino travels out of the gravitational field, a blue shift of the oscillation length takes place. We discuss the variation of the oscillation length influenced by the gravitational field strength, the rotation a 2 and charge Q.
Universal quantum entanglement between an oscillator and continuous fields
International Nuclear Information System (INIS)
Miao Haixing; Danilishin, Stefan; Chen Yanbei
2010-01-01
Quantum entanglement has been actively sought in optomechanical and electromechanical systems. The simplest system is a mechanical oscillator interacting with a coherent optical field, while the oscillator also suffers from thermal decoherence. With a rigorous functional analysis, we develop a mathematical framework for treating quantum entanglement that involves infinite degrees of freedom. We show that the quantum entanglement is always present between the oscillator and continuous optical field--even when the environmental temperature is high and the oscillator is highly classical. Such a universal entanglement is also shown to be able to survive more than one mechanical oscillation period if the characteristic frequency of the optomechanical interaction is larger than that of the thermal noise. In addition, we introduce effective optical modes that are ordered by the entanglement strength to better understand the entanglement structure, analogously to the energy spectrum of an atomic system. In particular, we derive the optical mode that is maximally entangled with the mechanical oscillator, which will be useful for future quantum computing and encoding information into mechanical degrees of freedom.
Brain Oscillations, Hypnosis, and Hypnotizability.
Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin
2015-01-01
This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.
Bounded-oscillation Pushdown Automata
Directory of Open Access Journals (Sweden)
Pierre Ganty
2016-09-01
Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.
Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors
Directory of Open Access Journals (Sweden)
J. W. Horng
2011-09-01
Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.
Stable And Oscillating Acoustic Levitation
Barmatz, Martin B.; Garrett, Steven L.
1988-01-01
Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.
Isotropic oscillator: spheroidal wave functions
International Nuclear Information System (INIS)
Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.
1985-01-01
Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states
Neutrino oscillations. Theory and experiment
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
2001-01-01
Theoretical schemes on neutrino oscillations are considered. The experimental data on neutrino oscillations obtained in the Super-Kamiokande (Japan) and SNO (Canada) experiments are given. Comparison of these data with the predictions obtained in the theoretical schemes is done. Conclusion is made that the experimental data confirm only the scheme with transitions (oscillations) between aromatic ν e -, ν μ -, ν τ - neutrinos with maximal angle mixings. (author)
International Nuclear Information System (INIS)
Zhang, P.; Lee, K.H.; Lee, C.H.
2017-01-01
A magnetorheological fluid (MRF) performs differently under different magnetic field strength. This study examined the fretting friction and wear characteristics of MRFs under a range of magnetic field strengths and oscillation frequencies. The fretting friction and wear behaviors of MRF are investigated using a fretting friction and wear tester. The surfaces of specimen are examined by optical microscopy and 3D surface profilometer before and after the tests and wear surface profiles, the wear volume loss and wear coefficient for each magnetic field strength are evaluated. The results show that the friction and wear properties of MRF change according to the magnetic field strength and oscillation frequency. - Highlights: • Fretting friction and wear characteristics of MRF is examined. • The friction coefficients increased with increasing magnetic field strength. • The coefficient of friction decreased with increasing oscillation frequency. • Wear volume and coefficient become worse with increasing magnetic field strength.
Synchronization of three electrochemical oscillators: From local to global coupling
Liu, Yifan; Sebek, Michael; Mori, Fumito; Kiss, István Z.
2018-04-01
We investigate the formation of synchronization patterns in an oscillatory nickel electrodissolution system in a network obtained by superimposing local and global coupling with three electrodes. We explored the behavior through numerical simulations using kinetic ordinary differential equations, Kuramoto type phase models, and experiments, in which the local to global coupling could be tuned by cross resistances between the three nickel wires. At intermediate coupling strength with predominant global coupling, two of the three oscillators, whose natural frequencies are closer, can synchronize. By adding even a relatively small amount of local coupling (about 9%-25%), a spatially organized partially synchronized state can occur where one of the two synchronized elements is in the center. A formula was derived for predicting the critical coupling strength at which full synchronization will occur independent of the permutation of the natural frequencies of the oscillators over the network. The formula correctly predicts the variation of the critical coupling strength as a function of the global coupling fraction, e.g., with local coupling the critical coupling strength is about twice than that required with global coupling. The results show the importance of the topology of the network on the synchronization properties in a simple three-oscillator setup and could provide guidelines for decrypting coupling topology from identification of synchronization patterns.
The Wien Bridge Oscillator Family
DEFF Research Database (Denmark)
Lindberg, Erik
2006-01-01
A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic of the ampli......A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...
Unstable oscillators based hyperchaotic circuit
DEFF Research Database (Denmark)
Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.
1999-01-01
A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...
Heat exchanger with oscillating flow
Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)
1993-01-01
Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.
DEFF Research Database (Denmark)
Ledertoug, Mette Marie
In the Ph.D-project ͚Strengths-based Learning - Children͛s character strengths as a means to their learning potential͛ 750 Danish children have assessed ͚The Strength Compass͛ in order to identify their strengths and to create awareness of strengths. This was followed by a strengths......-based intervention program in order to explore the strengths. Finally different methods to apply the strength in everyday life at school were applied. The paper presentation will show the results for strengths display for children aged 6-16 in different categories: Different age groups: Are the same strengths...... present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...
Reactor oscillator - I - III, Part I
International Nuclear Information System (INIS)
Lolic, B.
1961-12-01
Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction
Perturbation theory for arbitrary coupling strength?
Mahapatra, Bimal P.; Pradhan, Noubihary
2018-03-01
We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.
Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating
Heterogeneity of time delays determines synchronization of coupled oscillators.
Petkoski, Spase; Spiegler, Andreas; Proix, Timothée; Aram, Parham; Temprado, Jean-Jacques; Jirsa, Viktor K
2016-07-01
Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations.
Control of coupled oscillator networks with application to microgrid technologies.
Skardal, Per Sebastian; Arenas, Alex
2015-08-01
The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.
Controllability in tunable chains of coupled harmonic oscillators
Buchmann, L. F.; Mølmer, K.; Petrosyan, D.
2018-04-01
We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N -1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most 3 N (N -1 )/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.
Controllability in tunable chains of coupled harmonic oscillators
DEFF Research Database (Denmark)
Buchmann, Lukas Filip; Mølmer, Klaus; Petrosyan, David
2018-01-01
We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N −1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach...... any desired Gaussian state requires at most 3 N ( N −1)/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can...... be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides....
Control of coupled oscillator networks with application to microgrid technologies
Arenas, Alex
The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable syn- chronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.
Controllability in tunable chains of coupled harmonic oscillators
DEFF Research Database (Denmark)
Buchmann, Lukas Filip; Mølmer, Klaus; Petrosyan, David
2018-01-01
any desired Gaussian state requires at most 3 N ( N −1)/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can......We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N −1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach...... be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides....
Patterns of interval correlations in neural oscillators with adaptation
Directory of Open Access Journals (Sweden)
Tilo eSchwalger
2013-11-01
Full Text Available Neural firing is often subject to negative feedback by adaptationcurrents. These currents can induce strong correlations among the timeintervals between spikes. Here we study analytically the intervalcorrelations of a broad class of noisy neural oscillators withspike-triggered adaptation of arbitrary strength and time scale. Ourweak-noise theory provides a general relation between the correlationsand the phase-response curve (PRC of the oscillator, provesanti-correlations between neighboring intervals for adapting neuronswith type I PRC and identifies a single order parameter thatdetermines the qualitative pattern of correlations. Monotonicallydecaying or oscillating correlation structures can be related toqualitatively different voltage traces after spiking, which can beexplained by the phase plane geometry. At high firing rates, thelong-term variability of the spike train associated with thecumulative interval correlations becomes small, independent of modeldetails. Our results are verified by comparison with stochasticsimulations of the exponential, leaky, and generalizedintegrate-and-fire models with adaptation.
Damping of Coherent oscillations
Vos, L
1996-01-01
Damping of coherent oscillations by feedback is straightforward in principle. It has been a vital ingredient for the safe operation of accelerators since a long time. The increasing dimensions and beam intensities of the new generation of hadron colliders impose unprecedented demands on the performance of future systems. The arguments leading to the specification of a transverse feedback system for the CERN SPS in its role as LHC injector and the LHC collider itself are developped to illustrate this. The preservation of the transverse emittance is the guiding principle during this exercise keeping in mind the hostile environment which comprises: transverse impedance bent on developping coupled bunch instabilities, injection errors, unwanted transverse excitation, unavoidable tune spreads and noise in the damping loop.
Convection and stellar oscillations
DEFF Research Database (Denmark)
Aarslev, Magnus Johan
2017-01-01
for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...
Photospheric oscillations. Pt. 1
International Nuclear Information System (INIS)
Fossat, E.; Ricort, G.
1975-01-01
Intensity fluctuations in the wings of the Fraunhofer line Na D 1 5896 have been recorded for about two hundred hours at the focus of the Nice coude refractor, using a sodium optical resonance device. Because of the large beam aperture available, records have been made on circular apertures from 22'' up to 32' diameter (the whole sun). The principal results from the analysis of these date are: As shown by White and Cha, the five-minute oscillation has a gaussian random character with a mean lifetime of about 20 min. Its two-dimensional spatial power spectrum is roughly gaussian for every temporal frequency between 2 and 6 MHz. The width of this gaussian spectrum is near 5 x 10 -5 km -1 (i.e. π = 20,000 km). (orig./BJ) [de
Coronal Waves and Oscillations
Directory of Open Access Journals (Sweden)
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
Hyperchaos in coupled Colpitts oscillators
DEFF Research Database (Denmark)
Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas
2003-01-01
The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...
Stochastic and Chaotic Relaxation Oscillations
Grasman, J.; Roerdink, J.B.T.M.
1988-01-01
For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Augmenting cognition by neuronal oscillations
Horschig, J.M.; Zumer, J.; Bahramisharif, A.
2014-01-01
Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both
Oscillating universe with quintom matter
International Nuclear Information System (INIS)
Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin
2008-01-01
In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing
Directory of Open Access Journals (Sweden)
Y. Abedini
2000-06-01
Full Text Available This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth. We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.
Synchronization of hyperchaotic oscillators via single unidirectional chaotic-coupling
International Nuclear Information System (INIS)
Zou Yanli; Zhu Jie; Chen Guanrong; Luo Xiaoshu
2005-01-01
In this paper, synchronization of two hyperchaotic oscillators via a single variable's unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism
Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F
2015-01-01
Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940
DEFF Research Database (Denmark)
Ledertoug, Mette Marie
of agreement/disagreement. Also the child/teacher is asked whether the actual strength is important and if he or she has the possibilities to apply the strength in the school. In a PhDproject ‘Strengths-based Learning - Children’s Character Strengths as Means to their Learning Potential’ 750 Danish children......Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... Psychological Publishing Company. ‘The Strength Compass’ is a computer/Ipad based qualitative tool to identify the strengths of a child by a self-survey or a teacher’s survey. It is designed as a visual analogue scale with a statement of the strength in which the child/teacher may declare the degree...
Quantum oscillations in insulators with neutral Fermi surfaces
Sodemann, Inti; Chowdhury, Debanjan; Senthil, T.
2018-02-01
We develop a theory of quantum oscillations in insulators with an emergent Fermi sea of neutral fermions minimally coupled to an emergent U(1 ) gauge field. As pointed out by Motrunich [Phys. Rev. B 73, 155115 (2006), 10.1103/PhysRevB.73.155115], in the presence of a physical magnetic field the emergent magnetic field develops a nonzero value leading to Landau quantization for the neutral fermions. We focus on the magnetic field and temperature dependence of the analog of the de Haas-van Alphen effect in two and three dimensions. At temperatures above the effective cyclotron energy, the magnetization oscillations behave similarly to those of an ordinary metal, albeit in a field of a strength that differs from the physical magnetic field. At low temperatures, the oscillations evolve into a series of phase transitions. We provide analytical expressions for the amplitude and period of the oscillations in both of these regimes and simple extrapolations that capture well their crossover. We also describe oscillations in the electrical resistivity of these systems that are expected to be superimposed with the activated temperature behavior characteristic of their insulating nature and discuss suitable experimental conditions for the observation of these effects in mixed-valence insulators and triangular lattice organic materials.
Seizure Dynamics of Coupled Oscillators with Epileptor Field Model
Zhang, Honghui; Xiao, Pengcheng
The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.
A theory of generalized Bloch oscillations
International Nuclear Information System (INIS)
Duggen, Lars; Lassen, Benny; Lew Yan Voon, L C; Willatzen, Morten
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics. (paper)
Lai, Yi Ming
2013-07-09
We study ensembles of globally coupled, nonidentical phase oscillators subject to correlated noise, and we identify several important factors that cause noise and coupling to synchronize or desynchronize a system. By introducing noise in various ways, we find an estimate for the onset of synchrony of a system in terms of the coupling strength, noise strength, and width of the frequency distribution of its natural oscillations. We also demonstrate that noise alone can be sufficient to synchronize nonidentical oscillators. However, this synchrony depends on the first Fourier mode of a phase-sensitivity function, through which we introduce common noise into the system. We show that higher Fourier modes can cause desynchronization due to clustering effects, and that this can reinforce clustering caused by different forms of coupling. Finally, we discuss the effects of noise on an ensemble in which antiferromagnetic coupling causes oscillators to form two clusters in the absence of noise. © 2013 American Physical Society.
Aging transition in systems of oscillators with global distributed-delay coupling.
Rahman, B; Blyuss, K B; Kyrychko, Y N
2017-09-01
We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.
Electron plasma oscillations in the Venus foreshock
Crawford, G. K.; Strangeway, R. J.; Russell, C. T.
1990-01-01
Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.
Electron plasma oscillations in the Venus foreshock
International Nuclear Information System (INIS)
Crawford, G.K.; Strangeway, R.J.; Russell, C.T.
1990-01-01
Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations
Role of Frontal Alpha Oscillations in Creativity
Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio
2015-01-01
Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062
Neutrino oscillation: status and outlooks
International Nuclear Information System (INIS)
Nedelec, P.
1994-01-01
Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs
Synchronous Oscillations in Microtubule Polymerization
Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.
1987-08-01
Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.
Optimal Control Strategy Search Using a Simplest 3-D PWR Xenon Oscillation Simulator
International Nuclear Information System (INIS)
Yoichiro, Shimazu
2004-01-01
Power spatial oscillations due to the transient xenon spatial distribution are well known as xenon oscillation in large PWRs. When the reactor size becomes larger than the current design, then even radial oscillations can be also divergent. Even if the radial oscillation is convergent, when some control rods malfunction occurs, it is necessary to suppress the oscillation in as short time as possible. In such cases, optimal control strategy is required. Generally speaking the optimality search based on the modern control theory requires a lot of calculation for the evaluation of state variables. In the case of control rod malfunctions the xenon oscillation could be three dimensional. In such case, direct core calculations would be inevitable. From this point of view a very simple model, only four point reactor model, has been developed and verified. In this paper, an example of a procedure and the results for optimal control strategy search are presented. It is shown that we have only one optimal strategy within a half cycle of the oscillation with fixed control strength. It is also shown that a 3-D xenon oscillation introduced by a control rod malfunction can not be controlled by only one control step as can be done for axial oscillations. They might be quite strong limitations to the operators. Thus it is recommended that a strategy generator, which is quick in analyzing and easy to use, might be installed in a monitoring system or operator guiding system. (author)
Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.
Samonds, Jason M; Bonds, A B
2005-01-01
Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N(2)O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.
Rabi oscillation between states of a coupled harmonic oscillator
International Nuclear Information System (INIS)
Park, Tae Jun
2003-01-01
Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves
Oscillations in Mathematical Biology
1983-01-01
The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...
Principal oscillation patterns
International Nuclear Information System (INIS)
Storch, H. von; Buerger, G.; Storch, J.S. von
1993-01-01
The Principal Oscillation Pattern (POP) analysis is a technique which is used to simultaneously infer the characteristic patterns and time scales of a vector time series. The POPs may be seen as the normal modes of a linearized system whose system matrix is estimated from data. The concept of POP analysis is reviewed. Examples are used to illustrate the potential of the POP technique. The best defined POPs of tropospheric day-to-day variability coincide with the most unstable modes derived from linearized theory. POPs can be derived even from a space-time subset of data. POPs are successful in identifying two independent modes with similar time scales in the same data set. The POP method can also produce forecasts which may potentially be used as a reference for other forecast models. The conventional POP analysis technique has been generalized in various ways. In the cyclostationary POP analysis, the estimated system matrix is allowed to vary deterministically with an externally forced cycle. In the complex POP analysis not only the state of the system but also its ''momentum'' is modeled. Associated correlation patterns are a useful tool to describe the appearance of a signal previously identified by a POP analysis in other parameters. (orig.)
Magnetic-Field Dependence of Raman Coupling Strength in Ultracold "4"0K Atomic Fermi Gas
International Nuclear Information System (INIS)
Huang Liang-Hui; Wang Peng-Jun; Meng Zeng-Ming; Peng Peng; Chen Liang-Chao; Li Dong-Hao; Zhang Jing
2016-01-01
We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of "4"0K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction. (paper)
Phase correlation and clustering of a nearest neighbour coupled oscillators system
International Nuclear Information System (INIS)
EI-Nashar, Hassan F.
2002-09-01
We investigated the phases in a system of nearest neighbour coupled oscillators before complete synchronization in frequency occurs. We found that when oscillators under the influence of coupling form a cluster of the same time-average frequency, their phases start to correlate. An order parameter, which measures this correlation, starts to grow at this stage until it reaches maximum. This means that a time-average phase locked state is reached between the oscillators inside the cluster of the same time- average frequency. At this strength the cluster attracts individual oscillators or a cluster to join in. We also observe that clustering in averaged frequencies orders the phases of the oscillators. This behavior is found at all the transition points studied. (author)
Phase correlation and clustering of a nearest neighbour coupled oscillators system
Ei-Nashar, H F
2002-01-01
We investigated the phases in a system of nearest neighbour coupled oscillators before complete synchronization in frequency occurs. We found that when oscillators under the influence of coupling form a cluster of the same time-average frequency, their phases start to correlate. An order parameter, which measures this correlation, starts to grow at this stage until it reaches maximum. This means that a time-average phase locked state is reached between the oscillators inside the cluster of the same time- average frequency. At this strength the cluster attracts individual oscillators or a cluster to join in. We also observe that clustering in averaged frequencies orders the phases of the oscillators. This behavior is found at all the transition points studied.
Murayama, Shogo; Kinugawa, Hikaru; Tokuda, Isao T.; Gotoda, Hiroshi
2018-02-01
We present an experimental study on the characterization of dynamic behavior of flow velocity field during thermoacoustic combustion oscillations in a turbulent confined combustor from the viewpoints of statistical complexity and complex-network theory, involving detection of a precursor of thermoacoustic combustion oscillations. The multiscale complexity-entropy causality plane clearly shows the possible presence of two dynamics, noisy periodic oscillations and noisy chaos, in the shear layer regions (1) between the outer recirculation region in the dump plate and a recirculation flow in the wake of the centerbody and (2) between the outer recirculation region in the dump plate and a vortex breakdown bubble away from the centerbody. The vertex strength in the turbulence network and the community structure of the vorticity field can identify the vortical interactions during thermoacoustic combustion oscillations. Sequential horizontal visibility graph motifs are useful for capturing a precursor of themoacoustic combustion oscillations.
The Duffing oscillator with damping
DEFF Research Database (Denmark)
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Electronically tunable RC sinusoidal oscillators
International Nuclear Information System (INIS)
Florescu, Valeriu
2008-01-01
This paper presents two types of active configurations for realizing electronically tunable RC sinusoidal oscillators. The type-1 network employs two grounded scaled resistances KR 1 and KR 2 , where K is scaling factor. The frequency of oscillation W 0 is controlled conveniently by adjusting K, since W 0 appears in the form W 0 =1/K √ R 1 C 1 R 2 C 2 . For realizing the scaled resistances, an active configuration is proposed, which realizes KR 1 =R 1 /(1+f(V B )), where f(V B ) denotes a function of a controlling voltage V B . Thus the frequency tuning can be effected by controlling a voltage V B . The type-2 oscillator uses two periodically switched conductances. It is shown that the tuning of oscillation frequency can be done by varying the pulse width-to-period ratio (t/T) of the periodically switched conductances. (author)
Thermoelastic Loss in Microscale Oscillators
National Research Council Canada - National Science Library
Houston, B. H; Photiadis, D. M; Marcus, M. H; Bucaro, J. A; Liu, Xiao; Vignola, J. F
2001-01-01
...) and nanoelectromechanical (NEMS) oscillators. The theory defines a flexural modal participation factor, the fraction of potential energy stored in flexure, and approximates the internal friction by assuming the energy loss to occur solely via...
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Transient voltage oscillations in coils
International Nuclear Information System (INIS)
Chowdhuri, P.
1985-01-01
Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated
Modelling solar-like oscillators
Energy Technology Data Exchange (ETDEWEB)
Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be
2008-10-15
The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
DEFF Research Database (Denmark)
Ledertoug, Mette Marie
-being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.
2009-06-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Some comparison of two fractional oscillators
International Nuclear Information System (INIS)
Kang Yonggang; Zhang Xiu'e
2010-01-01
The other form of fractional oscillator equation comparing to the widely discussed one is ushered in. The properties of vibration of two fractional oscillators are discussed under the influence of different initial conditions. The interpretation of the characteristics of the fractional oscillators using different method is illustrated. Based on two fractional oscillator equations, two linked bodies and the continuous system are studied.
Magnetically Coupled Magnet-Spring Oscillators
Donoso, G.; Ladera, C. L.; Martin, P.
2010-01-01
A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.; Salama, Khaled N.
2009-01-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
On the mechanism of oscillations in neutrophils
DEFF Research Database (Denmark)
Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke
2010-01-01
We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...
Reactor oscillator - I - III, Part I; Reaktorski oscilator - I-III, I Deo
Energy Technology Data Exchange (ETDEWEB)
Lolic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)
1961-12-15
Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction.
Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction
International Nuclear Information System (INIS)
Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar
2016-01-01
Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.
Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction
Energy Technology Data Exchange (ETDEWEB)
Bera, Bidesh K., E-mail: bideshbera18@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Hens, Chittaranjan, E-mail: chittaranjanhens@gmail.com [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Ghosh, Dibakar, E-mail: dibakar@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)
2016-07-15
Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.
Free Oscillations of the Facula Node at the Stage of Slow Dissipation
Solov'ev, A. A.; Kirichek, E. A.; Efremov, V. I.
2017-12-01
A solar faculae having an appearance of quite long-lived magnetic nodes can perform (as well as sunspots, chromospheric filaments, coronal loops) free oscillations, i.e., they can oscillate about the stable equilibrium position as a single whole, changing quasi-periodically magnetic field averaged over the section with periods from 1 to 4 hours. Kolotkov et al. (2017) described the case in which the average magnetic field strength of the facula node considerably decreased during observations of SDO magnetograms (13 hours), and, at the same time, its oscillations acquired a specific character: the fundamental mode of free oscillations of the facula considerably increased in amplitude (by approximately two times), while the period of oscillations increased by three times. At the end of the process, the system dissipated. In this work, we present the exact solution of the equation of small-amplitude oscillations of the system with a time-variable rigidity, describing the oscillation behavior at which the elasticity of the system decreases with time, while the period and amplitude of oscillations grow.
Slow oscillation amplitudes and up-state lengths relate to memory improvement.
Directory of Open Access Journals (Sweden)
Dominik P J Heib
Full Text Available There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks.
Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.
Campbell, S; Wang, D
1996-01-01
A network of Wilson-Cowan (WC) oscillators is constructed, and its emergent properties of synchronization and desynchronization are investigated by both computer simulation and formal analysis. The network is a 2D matrix, where each oscillator is coupled only to its neighbors. We show analytically that a chain of locally coupled oscillators (the piecewise linear approximation to the WC oscillator) synchronizes, and we present a technique to rapidly entrain finite numbers of oscillators. The coupling strengths change on a fast time scale based on a Hebbian rule. A global separator is introduced which receives input from and sends feedback to each oscillator in the matrix. The global separator is used to desynchronize different oscillator groups. Unlike many other models, the properties of this network emerge from local connections that preserve spatial relationships among components and are critical for encoding Gestalt principles of feature grouping. The ability to synchronize and desynchronize oscillator groups within this network offers a promising approach for pattern segmentation and figure/ground segregation based on oscillatory correlation.
Flashing oscillation in pool water
International Nuclear Information System (INIS)
Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya
1996-01-01
This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis
Neutrino oscillations at proton accelerators
International Nuclear Information System (INIS)
Michael, Douglas
2002-01-01
Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments
Neutrino Oscillations at Proton Accelerators
Michael, Douglas
2002-12-01
Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.
Collective signaling behavior in a networked-oscillator model
Liu, Z.-H.; Hui, P. M.
2007-09-01
We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.
Institute of Scientific and Technical Information of China (English)
维拉
1996-01-01
Mort had an absolutely terrible day at the office.Everythingthat could go wrong did go wrong.As he walked home he could beheard muttering strange words to himself:“Oh,give me strength,give me strength.”Mort isn’t asking for the kind of strength thatbuilds strong muscles:he’s asking for the courage or ability to
Restoration of oscillation in network of oscillators in presence of direct and indirect interactions
Energy Technology Data Exchange (ETDEWEB)
Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)
2016-10-23
The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.
Nonstationary oscillations in gyrotrons revisited
International Nuclear Information System (INIS)
Dumbrajs, O.; Kalis, H.
2015-01-01
Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper
Prediction of pilot induced oscillations
Directory of Open Access Journals (Sweden)
Valentin PANĂ
2011-03-01
Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.
Magnetically insulated transmission line oscillator
Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.
1987-05-19
A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.
He, Yong
2017-06-23
We utilize the surface plasmon field of a metal nanoparticle (MNP) to show strain-mediated coupling in a quantum dot-mechanical resonator hybrid system including a quantum dot (QD) embedded within a conical nanowire (NW) and a MNP in the presence of an external field. Based on the numerical solutions of the master equation, we find that a slow oscillation, originating from the strain-mediated coupling between the QD and the NW, appears in the time evolution of the plasmon field enhancement. The results show that the period (about [Formula: see text]) of the slow oscillation is equal to that of the mechanical resonator of NW, which suggests that the time-resolved measurement of the plasmon field enhancement can be easily achieved based on the current experimental conditions. Its amplitude increases with the increasing strain-mediated coupling strength, and under certain conditions there is a linear relationship between them. The slow oscillation of the plasmon field enhancement provides valuable tools for measurements of the mechanical frequency and the strain-mediated coupling strength.
Spontaneous oscillations in microfluidic networks
Case, Daniel; Angilella, Jean-Regis; Motter, Adilson
2017-11-01
Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.
Oscillating liquid flow ICF Reactor
International Nuclear Information System (INIS)
Petzoldt, R.W.
1990-01-01
Oscillating liquid flow in a falling molten salt inertial confinement fusion reactor is predicted to rapidly clear driver beam paths of residual liquid droplets. Oscillating flow will also provide adequate neutron and x-ray protection for the reactor structure with a short (2-m) fall distance permitting an 8 Hz repetition rate. A reactor chamber configuration is presented with specific features to clear the entire heavy-ion beam path of splashed molten salt. The structural components, including the structure between beam ports, are shielded. 3 refs., 12 figs
Neutrino oscillation measurements with reactors
Energy Technology Data Exchange (ETDEWEB)
McKeown, R.D. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)
2010-11-01
Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided important information on the neutrino masses and the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.
ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations
DEFF Research Database (Denmark)
la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner
2007-01-01
discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...
TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR
DEFF Research Database (Denmark)
Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis
2007-01-01
A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...
Anisotropic Concrete Compressive Strength
DEFF Research Database (Denmark)
Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao
2017-01-01
When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...
International Nuclear Information System (INIS)
1977-01-01
A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)
International Nuclear Information System (INIS)
Bergqvist, I.
1976-01-01
Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)
Interviewing to Understand Strengths
Hass, Michael R.
2018-01-01
Interviewing clients about their strengths is an important part of developing a complete understanding of their lives and has several advantages over simply focusing on problems and pathology. Prerequisites for skillfully interviewing for strengths include the communication skills that emerge from a stance of not knowing, developing a vocabulary…
Dirac bound states of anharmonic oscillator in external fields
International Nuclear Information System (INIS)
Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.
2014-01-01
We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method
Instantons and Borel resummability for the perturbed supersymmetric anharmonic oscillator
International Nuclear Information System (INIS)
Verbaarschot, J.J.M.; West, P.
1991-01-01
In this paper we give an analytical derivation of the large-order behavior of the perturbation series for both the ground state and the excited states of the supersymmetric anharmonic oscillator and of the anharmonic oscillator obtained from the supersymmetric case by varying the strength of the fermion coupling. The results which are obtained with the help of instanton calculus coincide with those obtained numerically in previous work. The large-order perturbation series of the ground state vanishes in the supersymmetric case, whereas away from the supersymmetric point the perturbation series diverges factorially. The perturbation series of the excited states diverges factorially both at the supersymmetric point and away from this point
Partially coherent twisted states in arrays of coupled phase oscillators
Energy Technology Data Exchange (ETDEWEB)
Omel' chenko, Oleh E.; Wolfrum, Matthias [Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin (Germany); Laing, Carlo R. [INMS, Massey University, Private Bag 102-904 NSMC, Auckland (New Zealand)
2014-06-15
We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.
Partially coherent twisted states in arrays of coupled phase oscillators
International Nuclear Information System (INIS)
Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.
2014-01-01
We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system
Differential entrainment of neuroelectric delta oscillations in developmental dyslexia.
Directory of Open Access Journals (Sweden)
Fruzsina Soltész
Full Text Available Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language, has been associated with behavioural entrainment deficits. It has been proposed that the phonological 'deficit' that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, 'temporal sampling theory'. Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz, relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, 'phase locking' and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time for control participants only.
Neutrino masses and neutrino oscillations
Di Lella, L
2000-01-01
These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).
Harmonic oscillator in Snyder space
Indian Academy of Sciences (India)
The harmonic oscillator in Snyder space is investigated in its classical and quantum versions. The classical trajectory is obtained and the semiclassical quantization from the phase space trajectories is discussed. An effective cut-off to high frequencies is found. The quantum version is developed and an equivalent usual ...
Compressible flow in fluidic oscillators
Graff, Emilio; Hirsch, Damian; Gharib, Mory
2013-11-01
We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.
Ellipsoidal basis for isotropic oscillator
International Nuclear Information System (INIS)
Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.
1994-01-01
The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)
The relativistic harmonic oscillator reconsidered
International Nuclear Information System (INIS)
Hofsaess, T.
1978-01-01
The bound states of scalar quarks interacting through a scalar harmonic oscillator are investigated. In the presence of this interaction the dressed quark propagator differs substantially from the free one. This leads to a Bethe Salpeter equation which does not allow for any stable bound states of positive mass. (orig.) [de
Inverse problem of solar oscillations
International Nuclear Information System (INIS)
Sekii, T.; Shibahashi, H.
1987-01-01
The authors present some preliminary results of numerical simulation to infer the sound velocity distribution in the solar interior from the oscillation data of the Sun as the inverse problem. They analyze the acoustic potential itself by taking account of some factors other than the sound velocity, and infer the sound velocity distribution in the deep interior of the Sun
Sum rules for neutrino oscillations
International Nuclear Information System (INIS)
Kobzarev, I.Yu.; Martemyanov, B.V.; Okun, L.B.; Schepkin, M.G.
1981-01-01
Sum rules for neutrino oscillations are obtained. The derivation of the general form of the s matrix for two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) (where lsub(i)sup(-)e, μ, tau, ... are initial leptons with flavor i and lsub(k)sup(+-) is final lepton) is presented. The consideration of two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) gives the possibility to take into account neutrino masses and to obtain the expressions for the oscillating cross sections. In the case of Dirac and left-handed Majorana neutrino is obtained the sum rule for the quantities 1/Vsub(K)σ(lsub(i)sup(-)→lsub(K)sup(+-)), (where Vsub(K) is a velocity of lsub(K)). In the left-handed Majorana neutrino case there is an additional antineutrino admixture leading to lsub(i)sup(-)→lsub(K)sup(+) process. Both components (neutrino and antineutrino) oscillate independently. The sums Σsub(K)1/Vsub(k)σ(lsub(i)sup(-) - lsub(K)sup(+-) then oscillate due to the presence of left-handed antineutrinos and right-handed neutrinos which do not take part in weak interactions. If right-handed currents are added sum rules analogous to considered above may be obtained. All conclusions are valid in the general case when CP is not conserved [ru
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.
Low-Vibration Oscillating Compressor
Studer, P. A.
1984-01-01
Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.
Matter effects in neutrino oscillations
International Nuclear Information System (INIS)
Dass, G.V.
1989-01-01
After a review of the relevant aspects of neutrino oscillations for propagation in vacuum and in material media, this paper discuss the Mikheyev-Smirnov-Wolfenstein mechanism and its application to a solution of the solar neutrino puzzle. The elementary level of the talk is suitable to people not working in neutrino physics
Mesino oscillation in MFV SUSY
Energy Technology Data Exchange (ETDEWEB)
Berger, Joshua [Cornell University, Department of Physics, LEPP, Ithaca, NY (United States); SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Csaki, Csaba; Grossman, Yuval; Heidenreich, Ben [Cornell University, Department of Physics, LEPP, Ithaca, NY (United States)
2013-04-15
R-parity violating supersymmetry in a Minimal Flavor Violation paradigm can produce same-sign dilepton signals via direct sbottom-LSP pair production. Such signals arise when the sbottom hadronizes and the resulting mesino oscillates into an antimesino. The first bounds on the sbottom mass are placed in this scenario using current LHC results. (orig.)
Chimera States in Neural Oscillators
Bahar, Sonya; Glaze, Tera
2014-03-01
Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.
Deplazes, G.; Lückge, A.; Stuut, J.-B.; Pätzold, J.; Kuhlmann, H.; Husson, D.; Fant, M.; Haug, G.H.
2014-01-01
The Dansgaard-Oeschger oscillations and Heinrich events described in North Atlantic sediments and Greenland ice are expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. Given the strength of this teleconnection, we seek to reconstruct its range of
Time-dependent Thomas-Fermi approach to nuclear monopole oscillations
International Nuclear Information System (INIS)
Pi, M.; Barranco, M.; Nemeth, J.; Ngo, C.; Tomasi, E.
1985-10-01
A Time-dependent Thomas-Fermi (TDTF) method has been used to study nuclear monopole oscillations and in particular, the semiclassical strength function S(E). An analysis of the S(E) moments, obtained by suitable integrations, shows that these results are in good agreement with data previously obtained from static Thomas-Fermi calculations
Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E
2013-09-01
Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Generalized oscillator systems and their parabosonic interpretation
Energy Technology Data Exchange (ETDEWEB)
Macfarlane, A J [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics
1994-12-31
The Fock space description of various bosonic oscillator systems are carried out. All descriptions are based on a single creation - annihilation pair. Special attention is paid to the q-deformed Calogero-Vasiliev oscillator. 23 refs.
Analytic Neutrino Oscillation Probabilities in Matter: Revisited
Energy Technology Data Exchange (ETDEWEB)
Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT
2018-01-02
We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.
Characterizing brain oscillations in cognition and disease
Jiang, H.
2016-01-01
It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed
Chaotic weak chimeras and their persistence in coupled populations of phase oscillators
International Nuclear Information System (INIS)
Bick, Christian; Ashwin, Peter
2016-01-01
Nontrivial collective behavior may emerge from the interactive dynamics of many oscillatory units. Chimera states are chaotic patterns of spatially localized coherent and incoherent oscillations. The recently-introduced notion of a weak chimera gives a rigorously testable characterization of chimera states for finite-dimensional phase oscillator networks. In this paper we give some persistence results for dynamically invariant sets under perturbations and apply them to coupled populations of phase oscillators with generalized coupling. In contrast to the weak chimeras with nonpositive maximal Lyapunov exponents constructed so far, we show that weak chimeras that are chaotic can exist in the limit of vanishing coupling between coupled populations of phase oscillators. We present numerical evidence that positive Lyapunov exponents can persist for a positive measure set of this inter-population coupling strength. (paper)
Effect of full converter wind turbines on inter-area oscillation of power systems
DEFF Research Database (Denmark)
Askari, Hanieh Hajizadeh; Hashemi Toghroljerdi, Seyedmostafa; Eriksson, Robert
2015-01-01
By increasing in the penetration level of wind turbines, the influence of these new added generation units on the power system oscillations specifically inter-area oscillations has to be thoroughly investigated. In this paper, the impact of increasing in the penetration of full rate converter wind...... turbines (FRC-WTs) on the inter-area oscillations of power system is examined. In order to have a comprehensive evaluation of the effects of FRC-WT on the inter-area oscillations, different scenarios associated with the wind power penetration levels, wind farm locations, strength of interconnection line......, and different operating conditions of synchronous generators are investigated. The synchronous generators, exciter systems and power system stabilizers (PSSs) as well as the FRC-WT grid-side converter and its related controllers are modelled in detail in Matlab in order to evaluate the effects of FRC...
Self-organisation of random oscillators with Lévy stable distributions
Moradi, Sara; Anderson, Johan
2017-08-01
A novel possibility of self-organized behaviour of stochastically driven oscillators is presented. It is shown that synchronization by Lévy stable processes is significantly more efficient than that by oscillators with Gaussian statistics. The impact of outlier events from the tail of the distribution function was examined by artificially introducing a few additional oscillators with very strong coupling strengths and it is found that remarkably even one such rare and extreme event may govern the long term behaviour of the coupled system. In addition to the multiplicative noise component, we have investigated the impact of an external additive Lévy distributed noise component on the synchronisation properties of the oscillators.
Synchrotron oscillation effects on an rf-solenoid spin resonance
Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.
2012-12-01
New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.
Two particle states, lepton mixing and oscillations
Kachelriess, M; Schönert, S
2000-01-01
Discussions of lepton mixing and oscillations consider generally only flavor oscillations of neutrinos and neglect the accompanying charged leptons. In cases of experimental interest like pion or nuclear beta decay an oscillation pattern is expected indeed only for neutrinos if only one of the two produced particles is observed. We argue that flavor oscillations of neutrinos without detecting the accompanying lepton is a peculiarity of the two-particle states $|l\
A theory of generalized Bloch oscillations
DEFF Research Database (Denmark)
Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....
Pile oscillator ROB-1, cooperation NPY
Energy Technology Data Exchange (ETDEWEB)
Petrovic, M; Markovic, V; Obradovic, D; Kocic, A; Velickovic, LJ; Jovanovic, S [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)
1965-11-15
The present paper explains the purpose of the work on reactor kinetics and separately deals with the region for which the ROB-1 reactor oscillator is constructed. The theoretical part concerns the basic principles on which the oscillator operates. the paper also discusses the details of the oscillator, the procedure for preparation and measurement, and analyzes the source of errors. In addition several examples of the use of oscillator are given. (author)
Nonlinear analysis of ring oscillator circuits
Ge, Xiaoqing
2010-06-01
Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.
Comparison of Methods for Oscillation Detection
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Trangbæk, Klaus
2006-01-01
This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...... using process knowledge. The tested methods show potential for detecting the oscillations, however, transient components in the signals cause false detections as well, motivating usage of models in order to remove the expected signals behavior....
Pile oscillator ROB-1, cooperation NPY
International Nuclear Information System (INIS)
Petrovic, M.; Markovic, V.; Obradovic, D.; Kocic, A.; Velickovic, LJ.; Jovanovic, S.
1965-11-01
The present paper explains the purpose of the work on reactor kinetics and separately deals with the region for which the ROB-1 reactor oscillator is constructed. The theoretical part concerns the basic principles on which the oscillator operates. the paper also discusses the details of the oscillator, the procedure for preparation and measurement, and analyzes the source of errors. In addition several examples of the use of oscillator are given. (author)
Nonlinear analysis of ring oscillator circuits
Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.
2010-01-01
Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.
A 20-day period standing oscillation in the northern winter stratosphere
Directory of Open Access Journals (Sweden)
K. Hocke
2013-04-01
Full Text Available Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.
NOx Emission Reduction by Oscillating Combustion
Energy Technology Data Exchange (ETDEWEB)
None
2005-09-01
This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.
Neutrino oscillations: present status and outlook
International Nuclear Information System (INIS)
Schwetz, T.
2005-01-01
In this talk the present status of neutrino oscillations is reviewed, based on a global analysis of world neutrino oscillation data from solar, atmospheric, reactor, and accelerator neutrino experiments. Furthermore, I discuss the expected improvements in the determination of neutrino parameters by future oscillation experiments within a timescale of 10 years. (author)
Neutrino oscillations in the early universe
International Nuclear Information System (INIS)
Enqvist, K.
1990-01-01
The oscillations of electron neutrinos into inert neutrinos may have resonant behaviour in the heat bath of the early Universe. It is shown that any initial neutrino asymmetry will be washed away by the oscillations. Neutrino oscillations would affect also primordial helium production, which implies stringent limits on the neutrino mixing parameters. (orig.)
The supersymmetric Pegg-Barnett oscillator
International Nuclear Information System (INIS)
Shen, Jian Qi
2005-01-01
The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons
Three flavour oscillation interpretation of neutrino data
Indian Academy of Sciences (India)
To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.
Bipolaron assisted Bloch-like oscillations in organic lattices
International Nuclear Information System (INIS)
Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo
2017-01-01
The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.
Bipolaron assisted Bloch-like oscillations in organic lattices
Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo
2017-06-01
The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.
Bipolaron assisted Bloch-like oscillations in organic lattices
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, Luiz Antonio, E-mail: ribeirojr@unb.br [International Center for Condensed Matter Physics, University of Brasília, P.O. Box 04531, 70.919-970, Brasília, DF (Brazil); University of Brasília, UnB Faculty of Planaltina, 73.345-010, Planaltina, DF (Brazil); Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo [Institute of Physics, University of Brasília, 70.919-970, Brasília (Brazil)
2017-06-15
The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.
Slow oscillations orchestrating fast oscillations and memory consolidation.
Mölle, Matthias; Born, Jan
2011-01-01
Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.
Measuring neutrino oscillation parameters using $\
Energy Technology Data Exchange (ETDEWEB)
Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)
2011-01-01
MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δm_{atm}^{2} and sin^{2} 2θ_{atm}). The oscillation signal consists of an energy-dependent deficit of v_{μ} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the v_{μ}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the v_{μ}-disappearance analysis, incorporating this new estimator were: Δm^{2} = 2.32_{-0.08}^{+0.12} x 10^{-3} eV^{2}, sin ^{2} 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$_{μ} beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36_{-0.40}^{+0.46}(stat.) ± 0.06(syst.)) x 10^{-3}eV^{2}, sin^{2} 2$\\bar{θ}$ = 0.86_{-0.12}^{_0}
Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators
Talukdar, Abdul Hafiz Ibne
2012-07-28
Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.
Shepelev, I. A.; Vadivasova, T. E.; Bukh, A. V.; Strelkova, G. I.; Anishchenko, V. S.
2017-04-01
We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh-Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied.
Accelerator studies of neutrino oscillations
Ereditato, A
2000-01-01
The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...
Oscillators that sync and swarm.
O'Keeffe, Kevin P; Hong, Hyunsuk; Strogatz, Steven H
2017-11-15
Synchronization occurs in many natural and technological systems, from cardiac pacemaker cells to coupled lasers. In the synchronized state, the individual cells or lasers coordinate the timing of their oscillations, but they do not move through space. A complementary form of self-organization occurs among swarming insects, flocking birds, or schooling fish; now the individuals move through space, but without conspicuously altering their internal states. Here we explore systems in which both synchronization and swarming occur together. Specifically, we consider oscillators whose phase dynamics and spatial dynamics are coupled. We call them swarmalators, to highlight their dual character. A case study of a generalized Kuramoto model predicts five collective states as possible long-term modes of organization. These states may be observable in groups of sperm, Japanese tree frogs, colloidal suspensions of magnetic particles, and other biological and physical systems in which self-assembly and synchronization interact.
Experimental studies of neutrino oscillations
Kajita, Takaaki
2016-01-01
The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.
Torsional oscillations of the sun
International Nuclear Information System (INIS)
Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)
1985-01-01
The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references
Cubication of conservative nonlinear oscillators
International Nuclear Information System (INIS)
Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.
Coding of Information in Limit Cycle Oscillators
Schleimer, Jan-Hendrik; Stemmler, Martin
2009-12-01
Starting from a general description of noisy limit cycle oscillators, we derive from the Fokker-Planck equations the linear response of the instantaneous oscillator frequency to a time-varying external force. We consider the time series of zero crossings of the oscillator’s phase and compute the mutual information between it and the driving force. A direct link is established between the phase response curve summarizing the oscillator dynamics and the ability of a limit cycle oscillator, such as a heart cell or neuron, to encode information in the timing of peaks in the oscillation.
Quantum oscillations of conductivity in bismuth wires
International Nuclear Information System (INIS)
Condrea, Elena
2011-01-01
Measurements of the resistance of bismuth nanowires with several diameters and different quality reveal oscillations on the dependence of resistance under uniaxial strain at T = 4.2 K. Amplitude of oscillations is significant (38 %) at helium temperature and becomes smearing at T = 77 K. Observed oscillations originate from quantum size effect. A simple evaluation of period of oscillations allows us to identify the groups of carriers involved in transport. Calculated periods of 42.2 and 25.9 nm satisfy approximately the ratio 2:1 for two experimentally observed sets of oscillations from light and heavy electrons.
Memristor-based reactance-less oscillator
Zidan, Mohammed A.
2012-10-02
The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.
Low-frequency oscillations in Hall thrusters
International Nuclear Information System (INIS)
Wei Li-Qiu; Han Liang; Yu Da-Ren; Guo Ning
2015-01-01
In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. (review)
Memristor-based reactance-less oscillator
Zidan, Mohammed A.; Omran, Hesham; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.
Harmonic oscillator on a lattice
International Nuclear Information System (INIS)
Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.
1983-01-01
The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)
Multipartite entanglement in neutrino oscillations
International Nuclear Information System (INIS)
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2009-01-01
Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.
Multipartite entanglement in neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.
Invariants of collective neutrino oscillations
International Nuclear Information System (INIS)
Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka; Yoshida, Takashi
2011-01-01
We consider the flavor evolution of a dense neutrino gas by taking into account both vacuum oscillations and self-interactions of neutrinos. We examine the system from a many-body perspective as well as from the point of view of an effective one-body description formulated in terms of the neutrino polarization vectors. We show that, in the single angle approximation, both the many-body picture and the effective one-particle picture possess several constants of motion. We write down these constants of motion explicitly in terms of the neutrino isospin operators for the many-body case and in terms of the polarization vectors for the effective one-body case. The existence of these constants of motion is a direct consequence of the fact that the collective neutrino oscillation Hamiltonian belongs to the class of Gaudin Hamiltonians. This class of Hamiltonians also includes the (reduced) BCS pairing Hamiltonian describing superconductivity. We point out the similarity between the collective neutrino oscillation Hamiltonian and the BCS pairing Hamiltonian. The constants of motion manifest the exact solvability of the system. Borrowing the well established techniques of calculating the exact BCS spectrum, we present exact eigenstates and eigenvalues of both the many-body and the effective one-particle Hamiltonians describing the collective neutrino oscillations. For the effective one-body case, we show that spectral splits of neutrinos can be understood in terms of the adiabatic evolution of some quasiparticle degrees of freedom from a high-density region where they coincide with flavor eigenstates to the vacuum where they coincide with mass eigenstates. We write down the most general consistency equations which should be satisfied by the effective one-body eigenstates and show that they reduce to the spectral split consistency equations for the appropriate initial conditions.
Oscillations and Waves in Sunspots
Directory of Open Access Journals (Sweden)
Elena Khomenko
2015-11-01
Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.
Automatic oscillator frequency control system
Smith, S. F. (Inventor)
1985-01-01
A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.
Micro-machined resonator oscillator
Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.
1994-01-01
A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.
Drifting oscillations in axion monodromy
Energy Technology Data Exchange (ETDEWEB)
Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)
2017-10-01
We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.
Neutrino Oscillation Experiment at JHF
2002-01-01
T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...
Superconducting low-noise oscillator
International Nuclear Information System (INIS)
Riebman, L.
1992-01-01
This patent describes a cryogenic oscillator having low phase noise and low noise. It comprises resonant circuit means formed of superconducting material for generating a signal at a desired frequency; linear amplifier means electrically connected to the resonant circuit means at first and second locations thereon; limiter means electrically connected to the resonant circuit means at a third location thereon; and buffer amplifier means for applying the signal generated by the resonant circuit means to a load and electrically connected to the resonant circuit means at a fourth location thereon. This patent also describes a method of minimizing phase noise and 1/f noise in an oscillator circuit of the type having a resonant circuit driving a load and at least a linear amplifier connected to the resonant circuit defining a closed loop having a loop gain greater than unity, and having a limiter for stabilizing the oscillator. It comprises connecting between the resonant circuit and the load a buffer amplifier and connecting the linear amplifier and the buffer amplifier to the resonant circuit
Boltzmann map for quantum oscillators
International Nuclear Information System (INIS)
Streater, R.F.
1987-01-01
The authors define a map tau on the space of quasifree states of the CCR or CAR of more than one harmonic oscillator which increases entropy except at fixed points of tau. The map tau is the composition of a double stochastic map T*, and the quasifree reduction Q. Under mixing conditions on T, iterates of tau take any initial state to the Gibbs states, provided that the oscillator frequencies are mutually rational. They give an example of a system with three degrees of freedom with energies omega 1 , omega 2 , and omega 3 mutually irrational, but obeying a relation n 1 omega 1 + n 2 omega 2 = n 3 omega 3 , n/sub i/epsilon Z. The iterated Boltzmann map converges from an initial state rho to independent Gibbs states of the three oscillators at betas (inverse temperatures) β 1 , β 2 , β 3 obeying the equation n 1 omega 1 β 1 + n 2 omega 3 β 1 number. The equilibrium state can be rewritten as a grand canonical state. They show that for two, three, or four fermions we can get the usual rate equations as a special case
Neutrino Oscillations:. a Phenomenological Approach
Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.; Rotunno, A. M.; Montanino, D.
We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.
Drifting oscillations in axion monodromy
International Nuclear Information System (INIS)
Flauger, Raphael; Westphal, Alexander
2014-12-01
We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.
Nonlinearity induced synchronization enhancement in mechanical oscillators
Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.
2018-05-08
An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.
Nonlocal synchronization in nearest neighbour coupled oscillators
International Nuclear Information System (INIS)
El-Nashar, H.F.; Elgazzar, A.S.; Cerdeira, H.A.
2002-02-01
We investigate a system of nearest neighbour coupled oscillators. We show that the nonlocal frequency synchronization, that might appear in such a system, occurs as a consequence of the nearest neighbour coupling. The power spectra of nonadjacent oscillators shows that there is no complete coincidence between all frequency peaks of the oscillators in the nonlocal cluster, while the peaks for neighbouring oscillators approximately coincide even if they are not yet in a cluster. It is shown that nonadjacent oscillators closer in frequencies, share slow modes with their adjacent oscillators which are neighbours in space. It is also shown that when a direct coupling between non-neighbours oscillators is introduced explicitly, the peaks of the spectra of the frequencies of those non-neighbours coincide. (author)
Theoretical predictions for alpha particle spectroscopic strengths
International Nuclear Information System (INIS)
Draayer, J.P.
1975-01-01
Multinucleon transfers induced in heavy-ion reactions of the type ( 6 Li,d) furnish a selective probe with which to study the interplay between rotational and clustering phenomena so characteristic of the structure of the light sd-shell nuclei. For these nuclei, theoretical predictions for inter-band as well as intra-band transfer strengths can be made using recently tabulated results for angular momentum dependent SU 3 inclusion R 3 relative spectroscopic strengths and angular momentum independent SU 6 inclusion SU 3 coefficients of fractional parentage. The pure SU 3 (oscillator)-SU 4 (supermultiplet) symmetry limit agrees well with results obtained using available eigenfunctions determined in large shell model calculations. In particular, the scalar nature of a transferred ''alpha''-cluster insures that the effect of spatial symmetry admixtures in the initial and final states of the target and residual nuclei are minimized. Sum rule quantities provide a measure of the probable effects of symmetry breaking. Strength variations within a band are expected; transfers to core excited states are often favored. Results extracted from exact finite range DWBA analyses of ( 6 Li,d) data on 16 , 18 O, 20 , 21 , 22 Ne, 24 , 25 Mg show some anomalies in our understanding of the structure and/or reaction mechanisms. (18 figures) (U.S.)
Chimera states in two-dimensional networks of locally coupled oscillators
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera
Probings through proton decay and n-n-bar oscillations
International Nuclear Information System (INIS)
Pati, J.C.; Strathdee, J.
1980-11-01
Violation of baryon, lepton and in general fermion number is central to the hypothesis of quark lepton unification in a gauge context. Three of its characteristic signatures are proton decay, n-n-bar oscillation and neutrinoless double β decay. In 1974 and 1975 it was shown that within maximal gauging the proton may decay via four alternative modes (i.e. proton → one or three leptons or anti-leptons) satisfying ΔF = -2, 0, -4 and -6, some of which may coexist; the deuteron may decay into pions and neutrinoless double β decay occur in the context of spontaneous gauge symmetry breaking. It is now observed that n-n-bar oscillations (which are related to deuteron decays into protons) can coexist with proton decay especially of ΔF = -4 variety (p → e + π 0 ) and both these processes may possess measurable strength so as to be amenable to forthcoming searches. We exhibit alternative routes for spontaneous breakdown of the maximal one-family symmetry SU(16) and show that the coexistence of alternative proton decay modes (even with n-n-bar oscillations) does not pose any conflict with cosmological generation of baryon excess. Spontaneous rather than explicit violation of B, L and F plays an essential role in the realization of these features. (author)
Probings through proton decay and n-anti n oscillations
International Nuclear Information System (INIS)
Pati, J.C.; Strathdee, J.
1981-01-01
Violation of baryon, lepton and in general fermion number is central to the hypothesis of quark-lepton unification in a gauge context. Three of its characteristic signatures are proton decay, n-anti n oscillation and neutrinoless double β decay. In 1974 and 1975 it was shown that within maximal gauging the proton may decay via four alternative modes (i.e. proton → one or three leptons or antileptons) satisfying ΔF = -2, 0, -4 and -6, some of which may coexist; the deuteron may decay into pions and neutrinoless double β decay occur in the context of spontaneous gauge symmetry breaking. It is now observed that n-anti n oscillations (which are related to deuteron decays into pions) can coexist with proton decay especially of ΔF= -4 variety (p → e + π 0 ) and both these processes may possess measurable strength so as to be amenable to forthcoming searches. We exhibit alternative routes for spontaneous breakdown of the maximal one-family symmetry SU(16) and show that the coexistence of alternative proton decay modes (even with n-anti n oscillations) does not pose any conflict with cosmological generation of baryon excess. Spontaneous rather than explicit violation of B, L and F plays an essential role in the realization of these features. (orig.)
Strength of Fibrous Composites
Huang, Zheng-Ming
2012-01-01
"Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.
Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX
2010-08-31
High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.
DEFF Research Database (Denmark)
Frederiksen, Henrik; Gaist, David; Petersen, Hans Christian
2002-01-01
in life is a major problem in terms of prevalence, morbidity, functional limitations, and quality of life. It is therefore of interest to find a phenotype reflecting physical functioning which has a relatively high heritability and which can be measured in large samples. Hand grip strength is known......-55%). A powerful design to detect genes associated with a phenotype is obtained using the extreme discordant and concordant sib pairs, of whom 28 and 77 dizygotic twin pairs, respectively, were found in this study. Hence grip strength is a suitable phenotype for identifying genetic variants of importance to mid...
Bursting oscillations, bifurcation and synchronization in neuronal systems
Energy Technology Data Exchange (ETDEWEB)
Wang Haixia [School of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang Qingyun, E-mail: drwangqy@gmail.com [Department of Dynamics and Control, Beihang University, Beijing 100191 (China); Lu Qishao [Department of Dynamics and Control, Beihang University, Beijing 100191 (China)
2011-08-15
Highlights: > We investigate bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. > Two types of fast-slow bursters are analyzed in detail. > We show the properties of some crucial bifurcation points. > Synchronization transition and the neural excitability are explored in the coupled bursters. - Abstract: This paper investigates bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. It is shown that for some appropriate parameters, the modified Morris-Lecar neuron can exhibit two types of fast-slow bursters, that is 'circle/fold cycle' bursting and 'subHopf/homoclinic' bursting with class 1 and class 2 neural excitability, which have different neuro-computational properties. By means of the analysis of fast-slow dynamics and phase plane, we explore bifurcation mechanisms associated with the two types of bursters. Furthermore, the properties of some crucial bifurcation points, which can determine the type of the burster, are studied by the stability and bifurcation theory. In addition, we investigate the influence of the coupling strength on synchronization transition and the neural excitability in two electrically coupled bursters with the same bursting type. More interestingly, the multi-time-scale synchronization transition phenomenon is found as the coupling strength varies.
Neutrino-oscillation search with cosmic-ray neutrinos
International Nuclear Information System (INIS)
Ayres, D.S.; Cortez, B.; Gaisser, T.K.; Mann, A.K.; Shrock, R.E.; Sulak, L.R.
1984-01-01
A sensitive search for neutrino oscillations involving ν/sub e/, ν/sub μ/, and ν/sub tau/ may be provided by measurements of the ratio of the total interaction rates of upward- and downward-going cosmic-ray neutrinos within a massive (approx.10 kton) detector. Assuming mixing between all pairs of ν/sub e/, ν/sub μ/, and ν/sub tau/, the experiment is capable of observing time-averaged probabilities /sub t/ and /sub t/ of magnitude set by mixing strengths corresponding to, e.g., the d- to s-quark mixing strength, and of reaching the limit Δm/sub i/j 2 equivalentVertical Barm/sub i/ 2 -m/sub j/ 2 Vertical Barroughly-equal10 -4 eV 2 , where m/sub i/, and m/sub j/ are neutrino mass eigenstates, and P/sub e/tau and P/sub mutau/ are the probabilities for ν/sub e/ and ν/sub μ/, respectively, to oscillate into ν/sub tau/ after traversing a distance Lroughly-equal diameter of the Earth. Possible ambiguities may be resolved through comparison of the ratios N/sub e//N/sub μ/ for the upward- and downward-going neutrinos
Separation control with fluidic oscillators in water
Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.
2017-08-01
The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.
International Nuclear Information System (INIS)
Zhu Yun; Zheng Zhi-Gang; Yang Jun-Zhong
2013-01-01
Dynamics of a one-dimensional array of non-locally coupled Kuramoto phase oscillators with an external potential is studied. A four-cluster chimera state is observed for the moderate strength of the external potential. Different from the clustered chimera states studied before, the instantaneous frequencies of the oscillators in a synchronized cluster are different in the presence of the external potential. As the strength of the external potential increases, a bifurcation from the two-cluster chimera state to the four-cluster chimera states can be found. These phenomena are well predicted analytically with the help of the Ott—Antonsen ansatz. (general)
International Nuclear Information System (INIS)
Wang Peng-Fei; Xu Zhong-Bin; Ruan Xiao-Dong; Fu Xin
2015-01-01
The Hong–Strogatz (HS) model of globally coupled phase oscillators with attractive and repulsive interactions reflects the fact that each individual (oscillator) has its own attitude (attractive or repulsive) to the same environment (mean field). Previous studies on HS model focused mainly on the stable states on Ott–Antonsen (OA) manifold. In this paper, the eigenvalues of the Jacobi matrix of each fixed point in HS model are explicitly derived, with the aim to understand the local dynamics around each fixed point. Phase transitions are described according to relative population and coupling strength. Besides, the dynamics off OA manifold is studied. (paper)
From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid.
Hung, Chen-Lung; Gurarie, Victor; Chin, Cheng
2013-09-13
Predicting the dynamics of many-body systems far from equilibrium is a challenging theoretical problem. A long-predicted phenomenon in hydrodynamic nonequilibrium systems is the occurrence of Sakharov oscillations, which manifest in the anisotropy of the cosmic microwave background and the large-scale correlations of galaxies. Here, we report the observation of Sakharov oscillations in the density fluctuations of a quenched atomic superfluid through a systematic study in both space and time domains and with tunable interaction strengths. Our work suggests a different approach to the study of nonequilibrium dynamics of quantum many-body systems and the exploration of their analogs in cosmology and astrophysics.
Generating macroscopic chaos in a network of globally coupled phase oscillators
So, Paul; Barreto, Ernest
2011-01-01
We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case. PMID:21974662
Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces
International Nuclear Information System (INIS)
Oyewumi, K.A.; Bangudu, E.A.
2003-01-01
Some aspects of the N-dimensional isotropic harmonic plus inverse quadratic potential were discussed. The hyperradial equation for isotropic harmonic oscillator plus inverse quadratic potential is solved by transformation into the confluent hypergeometric equation to obtain the normalized hyperradial solution. Together with the hyperangular solutions (hyperspherical harmonics), these form the complete energy eigenfunctions of the N-dimensional isotropic harmonic oscillator plus inverse quadratic potential and the energy eigenvalues are also obtained. These are dimensionally dependent. The dependence of radial solution on the dimensions or potential strength and the degeneracy of the energy levels are discussed. (author)
Synchronisation in coupled quantum Hamiltonian superconducting oscillator via a control potential
International Nuclear Information System (INIS)
Al-Khawaja, Sameer
2009-01-01
This paper presents chaos synchronisation in a SQUID device mutually coupled to a resonant LC classical circuit. Via the Hamiltonian of the coupled quantum-classical system and by means of a 'control potential' in the form of a double-well, measure synchronisation has been found to exist. A transition from quasi-periodic to chaotically synchronised orbits in the phase space has been observed, as the strength of coupling is increased between both oscillators. The system reaches a non-synchronised state if the choice of the control potential were to render both oscillators non-identical.
Clusters in nonsmooth oscillator networks
Nicks, Rachel; Chambon, Lucie; Coombes, Stephen
2018-03-01
For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in
Power oscillations in BWR reactors
International Nuclear Information System (INIS)
Espinosa P, G.
2002-01-01
One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)
Probe tests microweld strength
1965-01-01
Probe is developed to test strength of soldered, brazed or microwelded joints. It consists of a spring which may be adjusted to the desired test pressure by means of a threaded probe head, and an indicator lamp. Device may be used for electronic equipment testing.
Modeling of Coupled Chaotic Oscillators
International Nuclear Information System (INIS)
Lai, Y.; Grebogi, C.
1999-01-01
Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. copyright 1999 The American Physical Society
Magnus approximation in neutrino oscillations
International Nuclear Information System (INIS)
Acero, Mario A; Aguilar-Arevalo, Alexis A; D'Olivo, J C
2011-01-01
Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.
Waves and Oscillations in Plasmas
Pecseli, Hans L
2012-01-01
The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d
Wave Physics Oscillations - Solitons - Chaos
Nettel, Stephen
2009-01-01
This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.
Directory of Open Access Journals (Sweden)
Arvind eKumar
2011-10-01
Full Text Available Movement disorders in Parkinson's disease (PD are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep brain stimulation (DBS. These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behaviour under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.
Energy Technology Data Exchange (ETDEWEB)
Emenheiser, Jeffrey [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Chapman, Airlie; Mesbahi, Mehran [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Pósfai, Márton [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Crutchfield, James P. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); D' Souza, Raissa M. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States)
2016-09-15
Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.
Coupled oscillators with parity-time symmetry
Energy Technology Data Exchange (ETDEWEB)
Tsoy, Eduard N., E-mail: etsoy@uzsci.net
2017-02-05
Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.
Phase noise and frequency stability in oscillators
Rubiola, Enrico
2009-01-01
Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...
Driven, autoresonant three-oscillator interactions
International Nuclear Information System (INIS)
Yaakobi, O.; Friedland, L.; Henis, Z.
2007-01-01
An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate
Lepton asymmetry and neutrino oscillations interplay
Energy Technology Data Exchange (ETDEWEB)
Kirilova, Daniela, E-mail: dani@astro.bas.bg [Bulgarian Academy of Sciences, Institute of Astronomy and NAO (Bulgaria)
2013-03-15
We discuss the interplay between lepton asymmetry L and {nu} oscillations in the early Universe. Neutrino oscillations may suppress or enhance previously existing L. On the other hand L is capable to suppress or enhance neutrino oscillations. The mechanism of L enhancement in MSW resonant {nu} oscillations in the early Universe is numerically analyzed. L cosmological effects through {nu} oscillations are discussed. We discuss how L may change the cosmological BBN constraints on neutrino and show that BBN model with {nu}{sub e}{r_reversible}{nu}{sub s} oscillations is extremely sensitive to L - it allows to obtain the most stringent constraints on L value. We discuss also the cosmological role of active-sterile {nu} mixing and L in connection with the indications about additional relativistic density in the early Universe, pointed out by BBN, CMB and LSS data and the analysis of global {nu} data.
A Survey on Forced Oscillations in Power System
Ghorbaniparvar, Mohammadreza
2016-01-01
Oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations caught many attentions. Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system ...
Phase-locked Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1991-01-01
Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...
Chimera States in Mechanical Oscillator Networks
Martens, Erik Andreas; Thutupalli, Shashi; Fourrière, Antoine; Hallatschek, Oskar
2013-01-01
The synchronization of coupled oscillators is a fascinating manifestation of self-organization that nature uses to orchestrate essential processes of life, such as the beating of the heart. Although it was long thought that synchrony and disorder were mutually exclusive steady states for a network of identical oscillators, numerous theoretical studies in recent years have revealed the intriguing possibility of “chimera states,” in which the symmetry of the oscillator population is broken into...
Oscillations of neutral B mesons systems
Boucrot, J.
1999-01-01
The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is
Recent Progress in Silicon Mems Oscillators
2008-12-01
MEMS oscillator. As shown, a MEMS resonator is connected to an IC. The reference oscillator, which is basically a transimpedance amplifier ...small size), and (3) DC bias voltage required to operate the resonators. As a result, instead of Colpitts or Pierce architecture, a transimpedence ... amplifier is typically used for sustain the oscillation. The frequency of the resonators is determined by both material properties and geometry of
Cyanohydrin reactions enhance glycolytic oscillations in yeast
DEFF Research Database (Denmark)
Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian
2015-01-01
Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....
Electrochemical Oscillation of Vanadium Ions in Anolyte
Directory of Open Access Journals (Sweden)
Hao Peng
2017-08-01
Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.
Cardiogenic oscillation induced ventilator autotriggering
Directory of Open Access Journals (Sweden)
Narender Kaloria
2015-01-01
Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.
Energy measurements from betatron oscillations
International Nuclear Information System (INIS)
Himel, T.; Thompson, K.
1989-03-01
In the Stanford Linear Collider the electron beam is accelerated from 1--50 GeV in a distance of 3 km. The energy is measured and corrected at the end with an energy feedback loop. There are no bends within the linear accelerator itself, so no intermediate energy measurements are made. Errors in the energy profile due to mis-phasing of the rf, or due to calibration errors in the klystrons' rf outputs are difficult to detect. As the total betatron phase advance down the accelerator is about 30 /times/ 2π, an energy error of a few percent can cause a large error in the total phase advance. This in turn degrades the performance of auto-steering programs. We have developed a diagnostic program which generates and measures several betatron oscillations in the accelerator. It then analyzes this oscillation, looking for frequency changes which indicate energy errors. One can then compensate for or correct these energy errors. 6 refs., 1 fig
Stochastic Kuramoto oscillators with discrete phase states
Jörg, David J.
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Stochastic Kuramoto oscillators with discrete phase states.
Jörg, David J
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Optimal parameters uncoupling vibration modes of oscillators
Le, K. C.; Pieper, A.
2017-07-01
This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.
Neuromorphic computing with nanoscale spintronic oscillators.
Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie
2017-07-26
Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.
Introduction to classical and quantum harmonic oscillators
Bloch, Sylvan C
2013-01-01
From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con
Theory of a quantum anharmonic oscillator
International Nuclear Information System (INIS)
Carusotto, S.
1988-01-01
The time evolution of a quantum single-quartic anharmonic oscillator is considered. The study is carried on in operational form by use of the raising and lowering operators of the oscillator. The equation of motion is solved by application of a new integration method based on iteration techniques, and the rigorous solutions that describe the time development of the displacement and momentum operators of the oscillator are obtained. These operators are presented as a Laplace transform and a subsequent inverse Laplace transform of suitable functionals. Finally, the results are employed to describe the time evolution of a quasiclassical anharmonic oscillator
Waves and oscillations in nature an introduction
Narayanan, A Satya
2015-01-01
Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,
Oscillations of Difference Equations with Several Oscillating Coefficients
Directory of Open Access Journals (Sweden)
L. Berezansky
2014-01-01
Full Text Available We study the oscillatory behavior of the solutions of the difference equation Δx(n+∑i=1mpi(nx(τi(n=0,n∈N0[∇xn-∑i=1mpinxσin=0, n∈N] where (pi(n, 1≤i≤m are real sequences with oscillating terms, τi(n[σi(n], 1≤i≤m are general retarded (advanced arguments, and Δ[∇] denotes the forward (backward difference operator Δx(n=x(n+1-x(n[∇x(n=x(n-x(n-1]. Examples illustrating the results are also given.
de Levie, Robert
1999-04-01
The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.
Corium crust strength measurements
Energy Technology Data Exchange (ETDEWEB)
Lomperski, S. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: lomperski@anl.gov; Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: farmer@anl.gov
2009-11-15
Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.
Strength capability while kneeling.
Haslegrave, C M; Tracy, M F; Corlett, E N
1997-12-01
Work sometimes has to be carried out kneeling, particularly where jobs are performed in confined spaces as is common for miners, aircraft baggage handlers and maintenance workers. In order to assess the risks in performing forceful tasks under such conditions, data is needed on strength capabilities of kneeling subjects. A study was undertaken to measure isometric strength in single-handed exertions for male subjects and to investigate the effects on this of task layout factors (direction of force exertion, reach distance, height of the workpiece and orientation relative to the subject's sagittal plane). The data has been tabulated to show the degree to which strength may be reduced in different situations and analysis of the task factors showed their influence to be complex with direction of exertion and reach distance having the greatest effect. The results also suggest that exertions are weaker when subjects are kneeling on two knees than when kneeling on one knee, although this needs to be confirmed by direct experimental comparison.
High-frequency plasma oscillations
Energy Technology Data Exchange (ETDEWEB)
Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)
1958-07-01
It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.
Optimal oscillation-center transformations
International Nuclear Information System (INIS)
Dewar, R.L.
1984-08-01
A variational principle is proposed for defining that canonical transformation, continuously connected with the identity transformation, which minimizes the residual, coordinate-dependent part of the new Hamiltonian. The principle is based on minimization of the mean-square generalized force. The transformation reduces to the action-angle transformation in that part of the phase space of an integrable system where the orbit topology is that of the unperturbed system, or on primary KAM surfaces. General arguments in favor of this definition are given, based on Galilean invariance, decay of the Fourier spectrum, and its ability to include external fields or inhomogeneous systems. The optimal oscillation-center transformation for the physical pendulum, or particle in a sinusoidal potential, is constructed
Oscillating water column structural model
Energy Technology Data Exchange (ETDEWEB)
Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.
Decay ratio for third order Brownian oscillators
International Nuclear Information System (INIS)
Konno, H.; Kanemoto, S.
1998-01-01
We have obtained the analytical expressions of the decay ratios for two types of third order Brownian oscillators which are generalizations of the second order Brownian oscillator driven by the Gaussian-white noise. The resulting expressions will provide us useful baseline information for more complicated practical problems and their applications
Electromagnetic Radiation Originating from Unstable Electron Oscillations
DEFF Research Database (Denmark)
Juul Rasmussen, Jens; Pécseli, Hans
1975-01-01
Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function.......Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function....
Synchronization of indirectly coupled Lorenz oscillators
Indian Academy of Sciences (India)
Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...
Dependence of synchronization frequency of Kuramoto oscillators ...
Indian Academy of Sciences (India)
Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronization. In this article, we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that synchronization frequency of oscillators in a completely connected ...
Neutrino oscillations and neutrino-electron scattering
International Nuclear Information System (INIS)
Kayser, B.; Rosen, S.P.
1980-10-01
Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments
Discontinuous Spirals of Stable Periodic Oscillations
DEFF Research Database (Denmark)
Sack, Achim; Freire, Joana G.; Lindberg, Erik
2013-01-01
We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...
Parametric resonance in neutrino oscillations in matter
Indian Academy of Sciences (India)
Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...
Compensation of oscillation coupling induced by solenoids
International Nuclear Information System (INIS)
Zelinskij, A.Yu.; Karnaukhov, I.M.; Shcherbakov, A.A.
1988-01-01
Methods for construction of various schemes of oscillation coupling compensation, induced by solenoids in charged particle storage rings, are described. Peculiarities of magnetic structure, enabling to localize oscillation coupling in wide energy range are discussed. Results of calculation of compensation schemes for design of NR-2000 storage ring spin rotation are presented
Accelerator-based neutrino oscillation searches
International Nuclear Information System (INIS)
Whitehouse, D.; Rameika, G.
1993-01-01
This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but the authors believe a substantial consensus emerged
Phase Multistability in Coupled Oscillator Systems
DEFF Research Database (Denmark)
Mosekilde, Erik; Postnov, D.E.; Sosnovtseva, Olga
2003-01-01
along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase multistability, the paper examines a variety of phase-locked patterns. In particular we demonstrate the nested structure of synchronization regions for oscillations with multicrest wave forms...
Oscillating and rotating sine-Gordon system
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1986-01-01
The interaction between a 2π kink and the background or vacuum is investigated in the pure sine-Gordon system. For an oscillating background (i.e., the k=0 part of the phonon spectrum) the 2π kink oscillates, while for increasing or decreasing vacuum two phenomena have been observed, depending...
Umbral oscillations as a probe of sunspot
International Nuclear Information System (INIS)
Abdelatif, T.E.H.
1985-01-01
The interaction of the solar five-minute oscillations with a sunspot is thoroughly explored, both on observational and theoretical grounds. Simple theoretical models are developed in order to understand the observations of umbral oscillations. Observations made at the National Solar Observatory detected both the three-minute and five-minute umbral oscillations at photospheric heights. The three-minute oscillations were found to have a kinetic energy density six times higher in the photosphere than in the chromosphere and to be concentrated in the central part of the umbra, supporting the photospheric resonance theory for the three-minute umbral oscillations. The five-minute oscillations are attenuated in the umbra, which appears to act as a filter in selecting some of the peaks in the power spectrum of five-minute oscillations in the surrounding photosphere. The k-omega power spectrum of the umbral oscillations shows a shift of power to longer wavelengths. Theoretical models of the transmission of acoustic waves into a magnetic region explain both observed effects
Babaie, M.; Staszewski, R.B.
2013-01-01
An oscillator topology demonstrating an improved phase noise performance is proposed in this paper. It exploits the time-variant phase noise model with insights into the phase noise conversion mechanisms. The proposed oscillator is based on enforcing a pseudo-square voltage waveform around the LC
Oscillator clustering in a resource distribution chain
DEFF Research Database (Denmark)
Postnov, D.; Sosnovtseva, Olga; Mosekilde, Erik
2005-01-01
separate the inherent dynamics of the individual oscillator from the properties of the coupling network. Illustrated by examples from microbiological population dynamics, renal physiology, and electronic oscillator theory, we show how competition for primary resources in a resource distribution chain leads...
Mass and oscillations of Dirac neutrinos
International Nuclear Information System (INIS)
Collot, J.
1989-01-01
In the most economical extension of the standard model, we have presented the theory of massive Dirac neutrinos. We have particularly emphasized that, in this model, a complete analogy between quarks and leptons can be erected and predicts neutrino flavor oscillations. We have reviewed the last experimental results concerning kinetic neutrino mass experiments and neutrino oscillation investigations
A simple approach to nonlinear oscillators
International Nuclear Information System (INIS)
Ren Zhongfu; He Jihuan
2009-01-01
A very simple and effective approach to nonlinear oscillators is suggested. Anyone with basic knowledge of advanced calculus can apply the method to finding approximately the amplitude-frequency relationship of a nonlinear oscillator. Some examples are given to illustrate its extremely simple solution procedure and an acceptable accuracy of the obtained solutions.
Experimental observation of shear thickening oscillation
DEFF Research Database (Denmark)
Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko
2013-01-01
We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...
Experiments with elasto-plastic oscillator
DEFF Research Database (Denmark)
Randrup-thomsen, Søren; Ditlevsen, Ove Dalager
1996-01-01
Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...
Experiments with elasto-plastic oscillator
DEFF Research Database (Denmark)
Randrup-Thomsen, S.; Ditlevsen, Ove Dalager
1999-01-01
Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...
Strengths only or strengths and relative weaknesses? A preliminary study.
Rust, Teri; Diessner, Rhett; Reade, Lindsay
2009-10-01
Does working on developing character strengths and relative character weaknesses cause lower life satisfaction than working on developing character strengths only? The present study provides a preliminary answer. After 76 college students completed the Values in Action Inventory of Strengths (C. Peterson & M. E. P. Seligman, 2004), the authors randomly assigned them to work on 2 character strengths or on 1 character strength and 1 relative weakness. Combined, these groups showed significant gains on the Satisfaction With Life Scale (E. Diener, R. A. Emmons, R. J. Larsen, & S. Griffin, 1985), compared with a 32-student no-treatment group. However, there was no significant difference in gain scores between the 2-strengths group and the 1-character-strength-and-1-relative-character-weakness group. The authors discuss how focusing on relative character weaknesses (along with strengths) does not diminish-and may assist in increasing-life satisfaction.
Atmospheric neutrino oscillations for earth tomography
International Nuclear Information System (INIS)
Winter, Walter
2016-01-01
Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.
Self oscillating PWM modulators, a topological comparison
DEFF Research Database (Denmark)
Poulsen, Søren; Andersen, Michael Andreas E.
2004-01-01
or fs/ð range respectively, where fs is the switching frequency of the converter. For some applications this will require unacceptable high switching frequency to achieve enough control loop bandwidth for the desired dynamic performance. With self oscillating modulators, the open loop bandwidth is equal...... to fs which makes this type of modulators an excellent choice for a wide range of applications. Self oscillating PWM modulators can be made in a number of ways, either as voltage or current mode modulators, and the self oscillating behavior can be achieved either by using hysteresis control...... or by shaping the open loop function of the modulator so its gain and phase response causes a closed loop natural oscillation. The two main types of self oscillating modulators have many similarities, but differences in dynamic performance and linearity are present. The work presented is related to the author...
New neutrino oscillation results from NOVA
CERN. Geneva
2018-01-01
Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses. The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...
Chemical sensor with oscillating cantilevered probe
Adams, Jesse D
2013-02-05
The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.
Improved memristor-based relaxation oscillator
Mosad, Ahmed G.
2013-09-01
This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.
A novel optogenetically tunable frequency modulating oscillator.
Directory of Open Access Journals (Sweden)
Tarun Mahajan
Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
A universal order parameter for synchrony in networks of limit cycle oscillators
Schröder, Malte; Timme, Marc; Witthaut, Dirk
2017-07-01
We analyze the properties of order parameters measuring synchronization and phase locking in complex oscillator networks. First, we review network order parameters previously introduced and reveal several shortcomings: none of the introduced order parameters capture all transitions from incoherence over phase locking to full synchrony for arbitrary, finite networks. We then introduce an alternative, universal order parameter that accurately tracks the degree of partial phase locking and synchronization, adapting the traditional definition to account for the network topology and its influence on the phase coherence of the oscillators. We rigorously prove that this order parameter is strictly monotonously increasing with the coupling strength in the phase locked state, directly reflecting the dynamic stability of the network. Furthermore, it indicates the onset of full phase locking by a diverging slope at the critical coupling strength. The order parameter may find applications across systems where different types of synchrony are possible, including biological networks and power grids.
Are the North Atlantic oscillation and the southern oscillation related in any time-scale?
Energy Technology Data Exchange (ETDEWEB)
Garcia, R.; Ribera, P.; Hernandez, E. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Fisicas; Gimenoo, L. [Fac. Ciencias, Univ. Vigo, Ourense (Spain)
2000-02-01
The north Atlantic oscillation (NAO) and the southern oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6-8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6-8 years' oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6-8 years that represents about 20% of the SO variance and about 25% of the NAO variance. (orig.)
Strength Training: For Overall Fitness
Healthy Lifestyle Fitness Strength training is an important part of an overall fitness program. Here's what strength training can do for ... is a key component of overall health and fitness for everyone. Lean muscle mass naturally diminishes with ...
Dynamic synchronization of a time-evolving optical network of chaotic oscillators.
Cohen, Adam B; Ravoori, Bhargava; Sorrentino, Francesco; Murphy, Thomas E; Ott, Edward; Roy, Rajarshi
2010-12-01
We present and experimentally demonstrate a technique for achieving and maintaining a global state of identical synchrony of an arbitrary network of chaotic oscillators even when the coupling strengths are unknown and time-varying. At each node an adaptive synchronization algorithm dynamically estimates the current strength of the net coupling signal to that node. We experimentally demonstrate this scheme in a network of three bidirectionally coupled chaotic optoelectronic feedback loops and we present numerical simulations showing its application in larger networks. The stability of the synchronous state for arbitrary coupling topologies is analyzed via a master stability function approach. © 2010 American Institute of Physics.
Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha
2009-05-25
We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.
International Nuclear Information System (INIS)
Bondarenko, Vladimir E.; Cymbalyuk, Gennady S.; Patel, Girish; DeWeerth, Stephen P.; Calabrese, Ronald L.
2004-01-01
Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks. An oscillatory system of two mutually inhibitory neuronal units is a ubiquitous network module found in nervous systems and is called a half-center oscillator. Previously we created a half-center oscillator of two identical oscillatory silicon (analog Very Large Scale Integration) neurons and developed a mathematical model describing its dynamics. In the mathematical model, we have shown that an in-phase limit cycle becomes unstable through a subcritical torus bifurcation. However, the existence of this torus bifurcation in experimental silicon two-neuron system was not rigorously demonstrated or investigated. Here we demonstrate the torus predicted by the model for the silicon implementation of a half-center oscillator using complex time series analysis, including bifurcation diagrams, mapping techniques, correlation functions, amplitude spectra, and correlation dimensions, and we investigate how the properties of the quasiperiodic oscillations depend on the strengths of coupling between the silicon neurons. The potential advantages and disadvantages of quasiperiodic oscillations (torus) for biological neural systems and artificial neural networks are discussed
International Nuclear Information System (INIS)
Wang, De-hua
2017-01-01
Highlights: • The photodetachment of H − in an oscillating electric field has been studied using the time-dependent closed orbit theory. • An analytical formula for calculating the photodetachement cross section has been put forward. • Our study provides a clear physical picture for the photodetachment of negative ion in an oscillating electric filed. • Our work is useful in guiding the experimental research for the photodetachment dynamics in the time-dependent field. - Abstract: Using the time-dependent closed orbit theory, we study the photodetachment of H − ion in a time-dependent electric field. The photodetachment cross section is specifically studied in the presence of a static electric field plus an oscillating electric field. We find that the photodetachment of negative ion in the time-dependent electric field becomes much more complicated than the case in a static electric field. The oscillating electric field can weaken the photodetachment cross section greatly when the strength of the oscillating electric field is less than the static electric field. However, as the strength of the oscillating electric field is larger than the static electric field, four types of closed orbits are identified for the detached electron, which makes the oscillating amplitude in the photodetachment cross section gets increased again. The connection between the detached electron’s closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the understanding of the connections between quantum and classical description for the time-dependent Hamiltonian systems and may guide the future experimental research for the photodetachment dynamics in the time-dependent electric field.
Scaling Laws in the Transient Dynamics of Firefly-like Oscillators
International Nuclear Information System (INIS)
Rubido, N; Cabeza, C; Marti, A; Ramirez Avila, G M
2011-01-01
Fireflies constitute a paradigm of pulse-coupled oscillators. In order to tackle the problems related to synchronisation transients of pulse-coupled oscillators, a Light-Controlled Oscillator (LCO) model is presented. A single LCO constitutes a one-dimensional relaxation oscillator described by two distinct time-scales meant to mimic fireflies in the sense that: it is capable of emitting light in a pulse-like fashion and detect the emitted by others in order to adjust its oscillation. We present dynamical results for two interacting LCOs in the torus for all possible coupling configurations. Transient times to the synchronous limit cycle are obtained experimentally and numerically as a function of initial conditions and coupling strengths. Scaling laws are found based on dimensional analysis and critical exponents calculated, thus, global dynamic is restricted. Furthermore, an analytical orthogonal transformation that allows to calculate Floquet multipliers directly from the time series is presented. As a consequence, local dynamics is also fully characterized. This transformation can be easily extended to a system with an arbitrary number of interacting LCOs.
Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators
Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkatesan, A.; Lakshmanan, M.
2018-06-01
A complex collective emerging behavior characterized by coexisting coherent and incoherent domains is termed as a chimera state. We bring out the existence of a new type of chimera in a nonlocally coupled ensemble of identical oscillators driven by a common dynamic environment. The latter facilitates the onset of phase-flip bifurcation/transitions among the coupled oscillators of the ensemble, while the nonlocal coupling induces a partial asynchronization among the out-of-phase synchronized oscillators at this onset. This leads to the manifestation of coexisting out-of-phase synchronized coherent domains interspersed by asynchronous incoherent domains elucidating the existence of a different type of chimera state. In addition to this, a rich variety of other collective behaviors such as clusters with phase-flip transition, conventional chimera, solitary state and complete synchronized state which have been reported using different coupling architectures are found to be induced by the employed couplings for appropriate coupling strengths. The robustness of the resulting dynamics is demonstrated in ensembles of two paradigmatic models, namely Rössler oscillators and Stuart-Landau oscillators.
Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors
Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.
2018-05-01
We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.
Multivariate Time Series Decomposition into Oscillation Components.
Matsuda, Takeru; Komaki, Fumiyasu
2017-08-01
Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.
Introduction to Classical and Quantum Harmonic Oscillators
International Nuclear Information System (INIS)
Latal, H
1997-01-01
As the title aptly states, this book deals with harmonic oscillators of various kinds, from classical mechanical and electrical oscillations up to quantum oscillations. It is written in a lively language, and occasional interspersed anecdotes make the reading of an otherwise mathematically oriented text quite a pleasure. Although the author claims to have written an 'elementary introduction', it is certainly necessary to have a good deal of previous knowledge in physics (mechanics, electrodynamics, quantum theory), electrical engineering and, of course, mathematics in order to follow the general line of his arguments. The book begins with a thorough treatment of classical oscillators (free, damped, forced) that is followed by an elaboration on Fourier analysis. Lagrange and Hamilton formalisms are then introduced before the problem of coupled oscillations is attacked. A chapter on statistical perspectives leads over to the final discussion of quantum oscillations. With the book comes a diskette containing a number of worksheets (Microsoft Excel) that can be used by the reader for instant visualization to get a better qualitative and quantitative understanding of the material. To the reviewer it seems difficult to pinpoint exactly the range of prospective readership of the book. It can certainly not be intended as a textbook for students, but rather as a reference book for teachers of physics or researchers, who want to look up one or other aspect of harmonic oscillations, for which purpose the diskette represents a very valuable tool. (book review)
Monsoon oscillations regulate fertility of the Red Sea
Raitsos, Dionysios E.
2015-02-16
Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.
Quantum synchronization of a driven self-sustained oscillator.
Walter, Stefan; Nunnenkamp, Andreas; Bruder, Christoph
2014-03-07
Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.
Monsoon oscillations regulate fertility of the Red Sea
Raitsos, Dionysios E.; Yi, Xing; Platt, Trevor; Racault, Marie-Fanny; Brewin, Robert J. W.; Pradhan, Yaswant; Papadopoulos, Vassilis P.; Sathyendranath, Shubha; Hoteit, Ibrahim
2015-01-01
Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.
Quasi-relativistic fermions and dynamical flavour oscillations
Alexandre, Jean; Mavromatos, Nick E.
2014-01-01
We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.
Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation
Horvath, Viktor; Epstein, Irving R.
2018-04-01
Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.
Anyons, deformed oscillator algebras and projectors
International Nuclear Information System (INIS)
Engquist, Johan
2009-01-01
We initiate an algebraic approach to the many-anyon problem based on deformed oscillator algebras. The formalism utilizes a generalization of the deformed Heisenberg algebras underlying the operator solution of the Calogero problem. We define a many-body Hamiltonian and an angular momentum operator which are relevant for a linearized analysis in the statistical parameter ν. There exists a unique ground state and, in spite of the presence of defect lines, the anyonic weight lattices are completely connected by the application of the oscillators of the algebra. This is achieved by supplementing the oscillator algebra with a certain projector algebra.
Oscillations in glycolysis in Saccharomyces cerevisiae
DEFF Research Database (Denmark)
Kloster, Antonina; Olsen, Lars Folke
2012-01-01
also decreases by stimulating the ATPase activity, e.g. by FCCP or Amphotericin B. Thus, ATPase activity strongly affects the glycolytic oscillations. We discuss these data in relation to a simple autocatalytic model of glycolysis which can reproduce the experimental data and explain the role...... of membrane-bound ATPases . In addition we also studied a recent detailed model of glycolysis and found that, although thismodel faithfully reproduces the oscillations of glycolytic intermediates observed experimentally, it is not able to explain the role of ATPase activity on the oscillations....
Topological phase in two flavor neutrino oscillations
International Nuclear Information System (INIS)
Mehta, Poonam
2009-01-01
We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between nonorthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.
Oscillators - an approach for a better understanding
DEFF Research Database (Denmark)
Lindberg, Erik
2003-01-01
The aim of this tutorial is to provide an electronic engineer knowledge and insight for a better understanding of the mechanisms behind the behaviour of electronic oscillators. A linear oscillator is a mathematical fiction which can only be used as a starting point for the design of a real...... oscillator based on the Barkhausen criteria. Statements in textbooks and papers saying that the nonlinearities are bringing back the poles to the imaginary axis are wrong. The concept of "frozen eigenvalues" is introduced by means of piece-wise-linear modelling of the nonlinear components which are necessary...
Color oscillations and measuring the quark charge
International Nuclear Information System (INIS)
Lipkin, H.J.
1979-01-01
Color oscillations analogous to neutrino oscillations but with very high frequency are shown to be present in hadron states below color threshold. Experiments to distinguish between fractionally charged and integrally charged quark models both below and above color threshold are discussed. The instantaneous quark charge is shown to be measurable only in very fast processes determined by the high energy behavior of transition amplitudes well above color threshold. Results from the naive parton model for deep inelastic processes which indicate that real charges of quarks and gluons can be measured are shown to be in error because of neglect of color oscillations and interference terms. (author)
Quantum electronics maser amplifiers and oscillators
Fain, V M; Sanders, J H
2013-01-01
Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma
Microwave oscillator with 'whispering gallery' resonator
International Nuclear Information System (INIS)
Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.
2010-01-01
It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.
Torsional oscillations of strange stars
Directory of Open Access Journals (Sweden)
Mannarelli Massimo
2014-01-01
Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.