WorldWideScience

Sample records for oscillation enso phenomena

  1. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    Science.gov (United States)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (features. The observational data sets of the Southern Oscillation Index (SOI), North Pacific Index Anomaly, and ENSO Sea Surface Temperature Anomaly, as well as a theoretical model all confirm the existence of long-term and short-term climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data

  2. Asymptotic solving method for sea-air coupled oscillator ENSO model

    International Nuclear Information System (INIS)

    Zhou Xian-Chun; Yao Jing-Sun; Mo Jia-Qi

    2012-01-01

    The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere-ocean oscillator of the ENSO. (general)

  3. ENSO events are induced by the Global Atmosphere Oscillation

    Science.gov (United States)

    Serykh, Ilya; Byshev, Vladimir; Neiman, Victor; Romanov, Juri

    2014-05-01

    The large-scale anomalies in the planetary fields of the principal hydro-meteorological characteristics were found to appear prior the beginning and during the main phase of the El Niño - Southern Oscillation (ENSO) phenomenon in the Pacific Ocean. The anomalies were interpreted as manifestation of the interannual Global Atmosphere Oscillation (GAO) in dynamics of the modern climatic system. The key feature of the GAO baric structure is a large-scale positive anomaly in tropical area (30N-30S, 50W-170E) surrounded by negative anomaly bending its outer boundaries. Eventually, such reconstruction of the atmospheric pressure field over tropical zone as a consequence of the GAO leads to Walker circulation cell reversal which is immediately followed by the next El Niño process starting. Spatio-temporal structure of the anomalous hydro-meteorological fields developing under impact of the GAO was analyzed using the monthly-mean atmospheric pressure data at sea level (HadSLP2) and near-surface temperature (CRUTEM4) prepared by GB Met Office Hadley Centre for period of 1948-2012, also we used wind data from US NCEP/NCAR reanalysis for the same period. Due to the presence of feed-forwards and feedbacks in the climate dynamics, the large-scale anomalies of characteristics appearing after the GAO cause their back effect on the system of interaction of the ocean-atmosphere-land. This is the secondary impact which can be implemented either by direct exchange of properties between the adjacent areas (this is seen most explicitly in the Indo-Pacific Region), or owing to teleconnections between the concrete climatic subsystems in different parts of the Earth. It is apparently that the secondary, or indirect, GAO impact spreading through the system of general atmospheric circulation has a certain phase shift in different areas, which depends first on the distance from the respective climatic anomalies, in particular, from the most intensive of them, appearing in the equatorial

  4. Investigation of oscillating airfoil shock phenomena

    OpenAIRE

    Giordano , Daniel; Fleeter , Sanford

    1992-01-01

    Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...

  5. The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models

    Science.gov (United States)

    Chen, Shangfeng; Chen, Wen; Yu, Bin

    2017-05-01

    This study examines the influence of boreal spring Arctic Oscillation (AO) on the subsequent winter El Niño-Southern Oscillation (ENSO) using 15 climate model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show that, out of the 15 CMIP5 models, CCSM4 and CNRM-CM5 can well reproduce the significant AO-ENSO connection. These two models capture the observed spring AO related anomalous cyclone (anticyclone) over the subtropical western-central North Pacific, and westerly (easterly) winds over the tropical western-central Pacific. In contrast, the spring AO-related anomalous circulation over the subtropical North Pacific is insignificant in the other 13 models, and the simulations in these models cannot capture the significant influence of the spring AO on ENSO. Further analyses indicate that the performance of the CMIP5 simulations in reproducing the AO-ENSO connection is related to the ability in simulating the spring North Pacific synoptic eddy intensity and the spring AO's Pacific component. Strong synoptic-scale eddy intensity results in a strong synoptic eddy feedback on the mean flow, leading to strong cyclonic circulation anomalies over the subtropical North Pacific, which contributes to a significant AO-ENSO connection. In addition, a strong spring AO's Pacific component and associated easterly wind anomalies to its south may provide more favorable conditions for the development of spring AO-related cyclonic circulation anomalies over the subtropical North Pacific.

  6. Analytical Formulation of Equatorial Standing Wave Phenomena: Application to QBO and ENSO

    Science.gov (United States)

    Pukite, P. R.

    2016-12-01

    Key equatorial climate phenomena such as QBO and ENSO have never been adequately explained as deterministic processes. This in spite of recent research showing growing evidence of predictable behavior. This study applies the fundamental Laplace tidal equations with simplifying assumptions along the equator — i.e. no Coriolis force and a small angle approximation. To connect the analytical Sturm-Liouville results to observations, a first-order forcing consistent with a seasonally aliased Draconic or nodal lunar period (27.21d aliased into 2.36y) is applied. This has a plausible rationale as it ties a latitudinal forcing cycle via a cross-product to the longitudinal terms in the Laplace formulation. The fitted results match the features of QBO both qualitatively and quantitatively; adding second-order terms due to other seasonally aliased lunar periods provides finer detail while remaining consistent with the physical model. Further, running symbolic regression machine learning experiments on the data provided a validation to the approach, as it discovered the same analytical form and fitted values as the first principles Laplace model. These results conflict with Lindzen's QBO model, in that his original formulation fell short of making the lunar connection, even though Lindzen himself asserted "it is unlikely that lunar periods could be produced by anything other than the lunar tidal potential".By applying a similar analytical approach to ENSO, we find that the tidal equations need to be replaced with a Mathieu-equation formulation consistent with describing a sloshing process in the thermocline depth. Adapting the hydrodynamic math of sloshing, we find a biennial modulation coupled with angular momentum forcing variations matching the Chandler wobble gives an impressive match over the measured ENSO range of 1880 until the present. Lunar tidal periods and an additional triaxial nutation of 14 year period provide additional fidelity. The caveat is a phase

  7. Influences of the ENSO, oscillation Madden-Julian, waves of the east, hurricanes and moon phases on the diurnal cycle of precipitation at the tropical Andes of Colombia

    International Nuclear Information System (INIS)

    Poveda, German; Mesa, Oscar; Agudelo, Paula; Alvarez, Juan; Arias, Paola; Moreno, Hernan; Salazar, Luis; Toro, Vladimir; Vieira, Sara

    2002-01-01

    We study the effects of large-scale ocean-atmospheric, astronomic phenomena on the diurnal cycle of precipitation at the tropical Andes of Colombia. Such phenomena include both phases of El Nino/Southern Oscillation (ENSO), namely El Nino and La Nina, the intra seasonal Madden-Julian oscillation, tropical easterly waves (4-8 days), moon phases and hurricanes over the Atlantic and eastern pacific oceans. We found a clear-cut effect of both ENSO phases: El Nino is associated with a diminished rainfall diurnal cycle, and La Nina intensifies it. Thus, ENSO modulates precipitation in Colombia at timescales ranging from hours to decades. We identified a close association with different phases of the Madden-Julian oscillation, as the diurnal cycle is intensified (larger amplitude) during its westerly phase, but it gets decreased during its easterly phase. For both ENSO and the Madden-Julian oscillation we identified a clear-cut influence on the amplitude of the diurnal cycle, yet the phase is conserved for the most part. Tropical easterly waves appear to affect the diurnal cycle, but no clear overall signal is pervasive throughout the region. We al so found a significant statistical association with hurricanes occurring over the northeastern pacific ocean with the diurnal cycle of precipitation at rain gages located over the eastern slope of the eastern range of the Colombian Andes. Rainfall at all the remaining slopes of the Andes is statistically associated with hurricanes occurring at the tropical north Atlantic and the Caribbean Sea. Moon phases are not statistically associated with the diurnal cycle and daily total rainfall

  8. The natural oscillation of two types of ENSO events based on analyses of CMIP5 model control runs

    Science.gov (United States)

    Xu, Kang; Su, Jingzhi; Zhu, Congwen

    2014-07-01

    The eastern- and central-Pacific El Niño-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.

  9. Decadal modulation of the ENSO-East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation

    Science.gov (United States)

    Geng, Xin; Zhang, Wenjun; Stuecker, Malte F.; Liu, Peng; Jin, Fei-Fei; Tan, Guirong

    2017-10-01

    This work investigates the decadal modulation of the El Niño-Southern Oscillation (ENSO)-East Asian winter monsoon (EAWM) relationship by the Atlantic Multidecadal Oscillation (AMO). A stable ENSO-EAWM relationship is found during the positive AMO phase but not during the negative phase. While the impact of El Niño events on the EAWM does not depend on the AMO phase, a different picture is observed for La Niña events. The La Niña boreal winter season coincides with a strengthened EAWM during a positive AMO phase and a weakened EAWM during a negative AMO phase. We suggest that the AMO's modulating effect mainly comprises two pathways that influence ENSO's impact on the EAWM. On one hand, when La Niña coincides with a positive AMO, the warm SST anomalies over the western North Pacific (WNP) are amplified both in intensity and spatial extent, which favors strengthened WNP cyclonic anomalies and an enhanced EAWM. During La Niña with a negative AMO, only very weak SST anomalies occur over the WNP with reduced WNP cyclonic anomalies that are confined to the tropics, thus having little effect on the EAWM. On the other hand, an eastward-propagating Rossby wavetrain across the mid-high latitudes of Eurasia during a warm AMO phase strengthens the Siberian high and thus leads to a strengthened EAWM, while during a cold AMO phase the Siberian high is weakened, leading to a reduced EAWM. In contrast, El Niño and its associated atmospheric responses are relatively strong and stable, independent of the AMO phase. These results carry important implications to the seasonal-to-interannual predictability associated with ENSO.

  10. Interdecadal Change in the Relationship Between the North Pacific Oscillation and the Pacific Meridional Mode and Its Impact on ENSO

    Science.gov (United States)

    Shin, So-Jung; An, Soon-Il

    2018-02-01

    Two leading but independent modes of Northern Pacific atmospheric circulation: the North Pacific Oscillation (NPO) and the Pacific Meridional Mode (PMM), are known external triggers of the El Niño-Southern Oscillation (ENSO) by the sequential migration of sea surface temperature (SST) anomalies into the tropics possibly by means of wind-evaporation-SST (WES) feedbacks. Because of the similar roles of NPO and PMM, most previous studies have explored them with no separation. Here, we investigate their independent and combined effects in triggering ENSO, and find that when the NPO and PMM occur simultaneously during spring, ENSO or ENSO-like SST anomalies are generated during the following winter; whereas when either the NPO or PMM occur alone, ENSO events rarely occur. Furthermore, the relationship between NPO and PMM shows noticeable interdecadal variability, which is related to decadal changes in the mean upper-level jet stream over the North Pacific. Changes in the upper-level jet stream modify the location of the center of the Aleutian Low, which plays a role in bridging the NPO and PMM processes, especially when it migrates to the southwest. The period when NPO and PMM are well correlated coincides somewhat with the active ENSO period, and vice versa, indicating that a more efficient trigger due to combined NPO-PMM processes results in a higher variation of ENSO. Finally, analysis of the coupled model control simulations strongly supports our observational analysis results.

  11. Analysis of El Niño-Southern Oscillation Phenomena's Effect on the Gross Domestic Product of Western Pacific Nations

    Science.gov (United States)

    O'Connell, M.; Lewis, A.; Mezzafonte, D.

    2014-12-01

    El Niño Southern Oscillation (ENSO) is a climatological phenomenon that occurs in the tropical Pacific Ocean which has a direct influence on the climate of western Pacific nations. This study evaluated the meteorological effects of ENSO on the economies of Indonesia and the Philippines. It was hypothesized that decreased precipitation in the western Tropical Pacific region during El Niño events causes decreases in agricultural production in the region resulting in a negative effect on a nation's Gross Domestic Product (GDP). Furthermore, during La Niña events, when precipitation increases, an increase in the nation's agricultural GDP and overall GDP is expected. Annual GDP data were obtained from the World Bank and the Bank of Indonesia for 1960-2012. Sea surface temperatures (SST) data, in the Niño 3.4 region, were obtained from the National Oceanic and Atmospheric Administration (NOAA) National Climate Data Center. Data of the agricultural and total GDP of Indonesia and the Philippines had inconclusive correlations with ENSO signal data. By examining data between smaller time segments of the overall 1960-2012 timeframe, more conclusive results could not be discerned. Indonesia's quarterly non-oil GDP for 2000-2009 was independently correlated with ENSO providing better insight on the variables' relationship during discrete ENSO phenomena. The results provided strong correlation coefficients of 0.831 and 0.624 in support of the antithesis as well as -0.421 in support of the hypothesis. An economic anomaly known as the East Asian Financial Crisis may have been the cause of the unexpected correlations however more data is needed to be certain. Overall, the results demonstrated weak to moderate correlations between studied variables. However, more data is needed to reach substantial conclusions.

  12. Decadal Monsoon-ENSO Relationships Reexamined

    Science.gov (United States)

    Yun, Kyung-Sook; Timmermann, Axel

    2018-02-01

    The strength of the El Niño-Southern Oscillation (ENSO)-Indian summer monsoon rainfall (ISMR) relationship shows considerable decadal fluctuations, which have been previously linked to low-frequency climatic processes such as shifts in ENSO's center of action or the Atlantic Multidecadal Oscillation. However, random variability can also cause similar variations in the relationship between climate phenomena. Here we propose a statistical test to determine whether the observed time-evolving correlations between ENSO and ISMR are different from those expected from a simple stochastic null hypothesis model. The analysis focuses on the time evolution of moving correlations, their expected variance, and probabilities for rapid transitions. The results indicate that the time evolution of the observed running correlation between these climate modes is indistinguishable from a system in which the ISMR signal can be expressed as a stochastically perturbed ENSO signal. This challenges previous deterministic interpretations. Our results are further corroborated by the analysis of climate model simulations.

  13. Effect of Modulation of ENSO by Decadal and Multidecadal Ocean-Atmospheric Oscillations on Continental US Streamflows

    Science.gov (United States)

    Singh, S.; Abebe, A.; Srivastava, P.; Chaubey, I.

    2017-12-01

    Evaluation of the influences of individual and coupled oceanic-atmospheric oscillations on streamflow at a regional scale in the United States is the focus of this study. The main climatic oscillations considered in this study are: El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North Atlantic Oscillation (NAO). Unimpacted or minimally impacted by water management streamflow data from the Model Parameter Estimation Experiment (MOPEX) were used in this study. Two robust and novel non-parametric tests, namely, the rank based partial least square (PLS) and the Joint Rank Fit (JRFit) procedures were used to identify the individual and coupled effect of oscillations on streamflow across continental U.S. (CONUS), respectively. Moreover, the interactive effects of ENSO with decadal and multidecadal cycles were tested and quantified using the JRFit interaction test. The analysis of ENSO indicated higher streamflows during La Niña phase compared to the El Niño phase in Northwest, Northeast and the lower part of Ohio Valley while the opposite occurs for rest of the climatic regions in US. Two distinct climate regions (Northwest and Southeast) were identified from the PDO analysis where PDO negative phase results in increased streamflow than PDO positive phase. Consistent negative and positive correlated regions around the CONUS were identified for AMO and NAO, respectively. The interaction test of ENSO with decadal and multidecadal oscillations showed that El Niño is modulated by the negative phase of PDO and NAO, and the positive phase of AMO, respectively, in the Upper Midwest. However, La Niña is modulated by the positive phase of AMO and PDO in Ohio Valley and Northeast while in Southeast and the South it is modulated by AMO negative phase. Results of this study will assist water managers to understand the streamflow change patterns across the CONUS at decadal and multi-decadal time scales. The

  14. Analysis of graphic representation ability in oscillation phenomena

    Science.gov (United States)

    Dewi, A. R. C.; Putra, N. M. D.; Susilo

    2018-03-01

    This study aims to investigates how the ability of students to representation graphs of linear function and harmonic function in understanding of oscillation phenomena. Method of this research used mix methods with concurrent embedded design. The subjects were 35 students of class X MIA 3 SMA 1 Bae Kudus. Data collection through giving essays and interviews that lead to the ability to read and draw graphs in material of Hooke's law and oscillation characteristics. The results of study showed that most of the students had difficulty in drawing graph of linear function and harmonic function of deviation with time. Students’ difficulties in drawing the graph of linear function is the difficulty of analyzing the variable data needed in graph making, confusing the placement of variable data on the coordinate axis, the difficulty of determining the scale interval on each coordinate, and the variation of how to connect the dots forming the graph. Students’ difficulties in representing the graph of harmonic function is to determine the time interval of sine harmonic function, the difficulty to determine the initial deviation point of the drawing, the difficulty of finding the deviation equation of the case of oscillation characteristics and the confusion to different among the maximum deviation (amplitude) with the length of the spring caused the load.Complexity of the characteristic attributes of the oscillation phenomena graphs, students tend to show less well the ability of graphical representation of harmonic functions than the performance of the graphical representation of linear functions.

  15. NOAA Climate Prediction Center (CPC) El Nino-Southern Oscillation (ENSO) Diagnostics Discussion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ENSO Diagnostics Discussion (EDD) is issued by NOAA Climate Prediction Center each month on the Thursday between the 5th and 11th with few exceptions (major...

  16. El Niño Southern Oscillation (ENSO and global warming

    Directory of Open Access Journals (Sweden)

    B. Nyenzi

    2006-01-01

    Full Text Available It is widely accepted by the international scientific community that human activities have increased atmospheric concentrations of greenhouse gases (GHG and aerosols since the pre-industrial era. This increase has contributed to most of the warming (0.6±0.2°C observed over the 20th century, land areas warming more than the oceans, with the 1990s very likely to be the warmest decade of the 20th century (IPCC, 2001. How this warming influences the occurrence, severity and frequency of ENSO episodes remains highly uncertain. The IPCC (2001 assessment of the scientific literature found insufficient evidence to suggest any direct attribution between increase in ENSO events that occurred in the last 20 to 30 years of the 20th century and global warming (IPCC, 2001. However, assessments carried out since then (e.g. IPCC Fourth Assessment Report (AR4, in preparations suggest El Niño events have become more frequent, persistent and intense during the last 20 to 30 years compared to the previous 100 years. Attribution to global warming, however, remains highly uncertain. Efforts to simulate and model past, present and future behaviour of ENSO under a warming world due to enhanced GHG concentrations produce conflicting results. Since substantial internally-generated variability of ENSO behaviour on multi-decadal to century timescales occurs in long, unforced atmospheric-oceanic general circulation model (AOGCM simulations, the attribution of past and future changes in ENSO amplitude and frequency to external forcing like GHG concentrations cannot be made with certainty. Such attribution would require extensive use of ensemble climate experiments or long experiments with stabilised GHG forcing. Although there are now better ENSO simulations in AOGCM, further model improvements are needed to simulate a more realistic Pacific climatology and seasonal cycle of the key modes influencing the climate of the region, as well as more realistic ENSO variability

  17. Numerical Study on Interdecadal Modulations of ENSO-related Spring Rainfall over South China by the Pacific Decadal Oscillation

    Science.gov (United States)

    MAO, J.; WU, X.

    2017-12-01

    The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958-2013 (1920-2013). The interannual variations of the first two leading EOF modes are linked with the El Niño-Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO-ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northwards to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO-ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest-northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.

  18. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    Science.gov (United States)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  19. The Relationship between El nino Southern Oscillation (ENSO) Phenomenon and Seasonal Precipitation Variability in Eastern Kenya with Special Reference to Katumani: Its Implication to Crop Production

    International Nuclear Information System (INIS)

    Kitheka, S.K

    1999-01-01

    Climatic variability has been defined as a major limitation to agricultural production in semi arid Kenya. The major difficulty to both farmers and research community, has been the inability to to predict seasonal rainfall prior to the season onset. Although several researches have attempted and made advances in predicting rainfall amount, solutions to the problem have not been achieved. This study has examined and related rainfall at Katumani with the El Nino-Southern Oscillation (ENSO) phenomenon. Rainfall variations during different phases of ENSO were established. Some advances in the early prediction of March-May and October -January rains for, both, the warm and cold phases of ENSO have been made. Crop production is closely related to the rainfall and therefore a need for revision of agronomic recommendation to tie them with rainfall variation

  20. Relationships between the Antarctic oscillation, the Madden-Julian oscillation, and ENSO, and consequences for rainfall analysis

    CSIR Research Space (South Africa)

    Pohl, B

    2010-01-01

    Full Text Available range, it is not unambiguously related to the global-scale Madden–Julian oscillation (MJO) activity, with in particular no coherent phase relationship with the MJO index. Moreover, in the high southern latitudes, the MJO-associated anomaly fields do...

  1. Pengaruh ENSO (El Niño and Southern Oscillation terhadap transpor massa air laut di Selat Malaka

    Directory of Open Access Journals (Sweden)

    Muhammad

    2012-04-01

    Full Text Available Abstrak. Penelitian ini mengkaji pengaruh ENSO (El Niño and Southern Oscillation di Selat Malaka dengan memakai indek osilasi selatan Samudera Pasifik dalam menentukan kondisi Normal, El Niño dan La Nina sebagai analisis transpor massa air laut, elevasi muka laut dan densitas laut. Metode penelitian menggunakan persamaan Navier-Stokes dengan gaya pembangkit pasang surut, angin dari National Centers for Environmental Prediction (NCEP Tahun 1980-2007, Salinitas (Levitus dan Boyer, 1994a dan Temperatur (Levitus dan Boyer, 1994b. Persamaan gerak air laut tersebut dimodelkan dengan model Hamburg Shelf Ocean Model (HAMSOM. Hasil-hasil menunjukkan bahwa transpor di bagian barat laut Selat Malaka pergerakannya melemah dan transpor di bagian tenggara pergerakannya menguat dibandingkan pada kondisi tahun Normal dan La Nina. Sedangkan elevasi muka air di Selat Malaka pada kondisi tahun El Niño lebih rendah dibandingkan pada kondisi Normal dan La Nina. Selanjutnya densitas permukaan laut di Selat Malaka pada kondisi tahun Normal, El Niño dan La Nina berkisar 18,5 s/d 20,5 kg/m3. Densitas laut lapisan 30-50 m di Selat Malaka pada kondisi tahun Normal, El Niño dan La Nina berkisar 19 s/d 21 kg/m3. Densitas permukaan laut dan densitas laut kedalaman 30-50 m di bagian tenggara Selat Malaka pada kondisi El Niño lebih besar dibandingkan pada tahun Normal maupun tahun La Nina.

  2. Phase-locking phenomena and excitation of damped and driven nonlinear oscillators

    DEFF Research Database (Denmark)

    Shagalov, A.G.; Juul Rasmussen, Jens; Naulin, Volker

    2009-01-01

    Resonant phase-locking phenomena ('autoresonance') in the van der Pol Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi-stable...

  3. Multi-scale linkages of winter drought variability to ENSO and the Arctic Oscillation: A case study in Shaanxi, North China

    Science.gov (United States)

    Liu, Zhiyong; Zhang, Xin; Fang, Ruihong

    2018-02-01

    Understanding the potential connections between climate indices such as the El Niño-Southern Oscillation (ENSO) and Arctic Oscillation (AO) and drought variability will be beneficial for making reasonable predictions or assumptions about future regional droughts, and provide valuable information to improve water resources planning and design for specific regions of interest. This study is to examine the multi-scale relationships between winter drought variability over Shaanxi (North China) and both ENSO and AO during the period 1960-2009. To accomplish this, we first estimated winter dryness/wetness conditions over Shaanxi based on the self-calibrating Palmer drought severity index (PDSI). Then, we identified the spatiotemporal variability of winter dryness/wetness conditions in the study area by using the empirical orthogonal function (EOF). Two primary sub-regions of winter dryness/wetness conditions across Shaanxi were identified. We further examined the periodical oscillations of dryness/wetness conditions and the multi-scale relationships between dryness/wetness conditions and both ENSO and AO in winter using wavelet analysis. The results indicate that there are inverse multi-scale relations between winter dryness/wetness conditions and ENSO (according to the wavelet coherence) for most of the study area. Moreover, positive multi-scale relations between winter dryness/wetness conditions and AO are mainly observed. The results could be beneficial for making reasonable predictions or assumptions about future regional droughts and provide valuable information to improve water resources planning and design within this study area. In addition to the current study area, this study may also offer a useful reference for other regions worldwide with similar climate conditions.

  4. Targeted Energy Transfer Phenomena in Vibro-Impact Oscillators

    International Nuclear Information System (INIS)

    Lee, Young S.; McFarland, D. Michael; Bergman, Lawrence A.; Nucera, Francesco; Vakakis, Alexander F.

    2008-01-01

    We study targeted energy transfer (TET) in a coupled oscillator, consisting of a single-degree-of-freedom primary linear oscillator coupled to a vibro-impact nonlinear energy sink (VI NES). For this purpose, we first compute the VI periodic orbits of the underlying hamiltonian VI system, and construct the corresponding frequency-energy plot (FEP). Then, considering inelastic impacts and viscous dissipation, we examine VI damped transitions on the FEP to identify a TET phenomenon by exciting a VI impulsive orbit, which is the most efficient mechanism for TET. Not only can the VI TET involve passive absorption and local dissipation of significant portions of the energy from the primary systems, but it occurs at sufficiently fast time scales. This renders VI NESs suitable for applications, like seismic mitigation, where shock elimination in the early, highly energetic regime of the motion is a critical requirement

  5. Proxy Records of the Indonesian Low and the El Ni{tilde n}o-Southern Oscillation (ENSO) from Stable Isotope Measurements of Indonesian Reef Corals

    Energy Technology Data Exchange (ETDEWEB)

    Moore, M.D.

    1995-12-31

    The Earth`s largest atmospheric convective center is the Indonesian Low. It generates the Australasian monsoon, drives the zonal tropospheric Walker Circulation, and is implicated in the genesis of the El Nino-Southern Oscillation (ENSO). The long-term variability of the Indonesian Low is poorly characterized, yet such information is crucial for evaluating whether changes in the strength and frequency of ENSO events are a possible manifestation of global warming. Stable oxygen isotope ratios ({delta}{sup 18}O) in shallow-water reef coral skeletons track topical convective activity over hundreds of years because the input of isotopically-depleted rainwater dilutes seawater {delta}{sup 18}O. Corals also impose a temperature-dependent fractionation on {delta}{sup 18}O, but where annual rainfall is high and sea surface temperature (SST) variability is low the freshwater flux effect dominates.

  6. Are population dynamics of shorebirds affected by El Niño/Southern Oscillation (ENSO) while on their non-breeding grounds in Ecuador?

    Science.gov (United States)

    O'Hara, Patrick D.; Haase, Ben J. M.; Elner, Robert W.; Smith, Barry D.; Kenyon, Jamie K.

    2007-08-01

    Declines in avian populations are a global concern, particularly for species that migrate between Arctic-temperate and tropical locations. Long-term population studies offer opportunities to detect and document ecological effects attributable to long-term climatic cycles such as the El Niño/Southern Oscillation (ENSO). In this study, we report possible population-level effects of such climatic cycles on shorebird species that use two non-breeding season sites in Ecuador (Santa Elena peninsula area, near La Libertad). During our 9-year study period (1991/1992-1999/2000), there was a particularly strong ENSO warm phase event during 1997/1998. Population trend data for three species of shorebird, Western Sandpipers ( Calidris mauri), Semipalmated Sandpipers ( C. pusilla), and Least Sandpipers ( C. minutilla), indicated abundances generally declined during the 1990s, but there was an increase in the proportion of first-year birds and their abundance in the years following the 1997/1998 ENSO warm phase. There was some support for variation in apparent survivorship associated with the onset of the ENSO warm phase event in our population models, based on capture-mark-recapture data. Following the 1997/1998 ENSO event onset, individuals for all three species were significantly lighter during the non-breeding season ( F1,3789 = 6.6, p = 0.01). Least-squares mean mass (controlling for size, sex and day of capture) for first-year birds dropped significantly more than for adults following ENSO (first-year mass loss = 0.69 ± 0.12 g; adult mass loss = 0.34 ± 0.11 g, F1,3789 = 5.31, p = 0.021), and least-squares mean mass dropped most during the period when sandpipers prepare for northward migration by gaining mass and moulting into breeding plumage. Least Sandpipers may have declined the most in mean mass following ENSO (0.76 ± 0.19 g), whereas Semipalmated Sandpipers were 0.52 ± 0.12 g lighter, and Western Sandpipers 0.40 ± 0.13 g lighter, but overall variation among

  7. Climate Prediction Center: ENSO Diagnostic Discussion

    Science.gov (United States)

    Organization Search Go Search the CPC Go Expert Assessments ENSO Diagnostic Discussion Archive About Us Our Assessments > ENSO Diagnostic Discussion El Niño/Southern Oscillation (ENSO) Diagnostic Discussion PDF : English Version Spanish Version Adobe PDF Reader (Click icon for Adobe PDF Reader) Word: English Version

  8. Excitation and damping of transversal oscillation in coronal loops by wake phenomena

    Directory of Open Access Journals (Sweden)

    A abedini

    2018-02-01

    Full Text Available Transversal oscillation of coronal loops that are interpreted as signatures of magneto hydrodynamics (MHD waves are observed frequently in active region corona loops. The amplitude of this oscillation has been found to be strongly attenuated. The damping of transverse oscillation may be produced by the dissipation mechanism and the wake of the traveling disturbance. The damping of transversal loop oscillations with wake phenomena is not related to any dissipation mechanism. Also, these kinds of coronal loop oscillations are not related to the kink mode, although this mode can be occurred after the attenuation process by the energy of the wave packet deposited in the loop.  In this paper the excitation and damping of transversal coronal loop oscillations with wake of traveling wave packet is discussed in detail, both theoretically and observationally. Here, the transversal coronal loop oscillations is modeled with a one dimensional simple line-tied. The dynamics of the loop and the coronal is governed by the Klein–Gordon differential equation. A localized disturbance that can be generated by nearby flare produces a perturbation that undergoes dispersion as it propagates toward the loop. As a consequence, the amplitudes of oscillates decay with time roughly t-1/2 at the external cutoff frequency. These observed data on 2016-Dec-4 by Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO observations data, consisting of 560 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of excitation and damping of transverse oscillations of coronal loop that is situated near a flare. In this analyzed signatures of transverse oscillations that are damped rapidly were found, with periods in the range of P=18.5-23.85 minutes. Furthermore, oscillation of loop segments attenuate with time roughly as t-α that average values of α for 4 different loops change form 0.65-0.80. The magnitude values of α are in

  9. Some considerations about mixing, oscillation phenomena and CP violation of different mass eigenstates

    International Nuclear Information System (INIS)

    Malace, Simona; Lucaci-Timoce, Angela; Lazanu, I.

    2003-01-01

    In the last twenty years there have been made many experimental and theoretical efforts to measure and verify the prediction of the Standard Model, as well as to put in evidence small deviation from these values. In the present paper, we discuss some aspects of possible regularities of the formalism of mixing and oscillation phenomena of the mass eigenstates in particle physics and possible consequences of hidden proprieties of the systems. In the literature representations of lepton flavour mixing with different parametrisation are used for three generations of leptons and quarks. Although these are mathematically equivalent, only one of them are likely to describe the underlying physics in a more transparent way, and particularly convenient in the analysis of experimental data or is able to establish a concordance with these ones. Flavour permutational symmetry of the mixing matrix, 'maximal democracy' and maximal CP violation give a simple and efficient way to understand the essential characteristics of the phenomena, with a minimum number of parameters. The deviations of the experimental data of these predicted values represent a simple clue to study phenomenologically the breaking of symmetries. The interplay of gravitation and linear superposition of different mass eigenstates, and their consequences on the oscillation clocks, phases and the physical observability are also briefly discussed. (authors)

  10. Contribution of tropical instability waves to ENSO irregularity

    Science.gov (United States)

    Holmes, Ryan M.; McGregor, Shayne; Santoso, Agus; England, Matthew H.

    2018-05-01

    Tropical instability waves (TIWs) are a major source of internally-generated oceanic variability in the equatorial Pacific Ocean. These non-linear phenomena play an important role in the sea surface temperature (SST) budget in a region critical for low-frequency modes of variability such as the El Niño-Southern Oscillation (ENSO). However, the direct contribution of TIW-driven stochastic variability to ENSO has received little attention. Here, we investigate the influence of TIWs on ENSO using a 1/4° ocean model coupled to a simple atmosphere. The use of a simple atmosphere removes complex intrinsic atmospheric variability while allowing the dominant mode of air-sea coupling to be represented as a statistical relationship between SST and wind stress anomalies. Using this hybrid coupled model, we perform a suite of coupled ensemble forecast experiments initiated with wind bursts in the western Pacific, where individual ensemble members differ only due to internal oceanic variability. We find that TIWs can induce a spread in the forecast amplitude of the Niño 3 SST anomaly 6-months after a given sequence of WWBs of approximately ± 45% the size of the ensemble mean anomaly. Further, when various estimates of stochastic atmospheric forcing are added, oceanic internal variability is found to contribute between about 20% and 70% of the ensemble forecast spread, with the remainder attributable to the atmospheric variability. While the oceanic contribution to ENSO stochastic forcing requires further quantification beyond the idealized approach used here, our results nevertheless suggest that TIWs may impact ENSO irregularity and predictability. This has implications for ENSO representation in low-resolution coupled models.

  11. The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation

    Science.gov (United States)

    Stiegler, C.; Meijide, A.; June, T.; Knohl, A.

    2016-12-01

    Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia. However, despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as El Niño-Southern Oscillation (ENSO) on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event on greenhouse gas exchange and surface energy budget. Measurements are in operation since July 2013 and we assess continuously turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. The full surface energy budget is completed by measurements of radiative components, ground heat fluxes, and soil thermal and hydrological properties. The study is part of a large interdisciplinary project focussing on the ecological and socioeconomic functions of lowland rainforest transformation systems (EFForTS). During the ENSO event, the area experienced a strong drought with decreasing soil moisture and increasing air and surface temperatures. During the peak in September and October 2015, hundreds of fires in the area resulted in strong smoke production decreasing incoming solar radiation and increasing the diffuse fraction. Compared to regular years, the carbon uptake of the oil palm plantation decreased during the ENSO event. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the Bowen-ratio. Overall, the ENSO event resulted in a major anomaly of exchange processes between the oil palm plantation and the atmosphere.

  12. The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation

    Science.gov (United States)

    Stiegler, Christian; Meijide, Ana; June, Tania; Knohl, Alexander

    2017-04-01

    The 2015-2016 El Niño-Southern Oscillation (ENSO) event was one of the strongest observed in the last 20 years. Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia but despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as ENSO on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event and severe forest fires on greenhouse gas exchange and surface energy budget. Continuous measurements are in operation since July 2013 and we assess turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. In the beginning of the ENSO event, the area experienced a strong drought with decreasing soil moisture, increasing air and surface temperatures, and strong atmospheric vapour pressure deficit. During the peak of the drought from August to October 2015, hundreds of forest fires in the area resulted in strong smoke production, decreasing incoming solar radiation by 35% compared to pre-ENSO values and diffuse radiation became almost the sole shortwave radiation flux. During the beginning of the drought, carbon uptake of the oil palm plantation was around 2.1 gC m-2 d-1 and initially increased by 50% due to clear-sky conditions and high incoming photosynthetically active radiation (PAR) but increasing density of smoke turned the oil palm plantation into a source of carbon. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the midday Bowen-ratio from 0.17 to 0.40. Strong smoke

  13. ENSO and interdecadal climate variability over the last century documented by geochemical records of two coral cores from the South West Pacific

    Directory of Open Access Journals (Sweden)

    T. Ourbak

    2006-01-01

    Full Text Available The south west Pacific is affected by climatic phenomena such as ENSO (El Niño Southern Oscillation or the PDO (Pacific Decadal Oscillation. Near-monthly resolution calibrations of Sr/Ca, U/Ca and δ18Oc were made on corals taken from New Caledonia and Wallis Island. These geochemical variations could be linked to SST (sea surface temperature and SSS (sea surface salinity variations over the last two decades, itselves dependent on ENSO occurrences. On the other hand, near-half-yearly resolution over the last century smoothes seasonal and interannual climate signals, but emphasizes low frequency climate variability.

  14. The influence of El Niño-Southern Oscillation (ENSO) cycles on wave-driven sea-floor sediment mobility along the central California continental margin

    Science.gov (United States)

    Storlazzi, Curt D.; Reid, Jane A.

    2010-01-01

    Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.

  15. Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2008-01-01

    This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions

  16. Different impacts of mega-ENSO and conventional ENSO on the Indian summer rainfall: developing phase

    Science.gov (United States)

    Zhang, Lei; Wu, Zhiwei; Zhou, Yefan

    2016-04-01

    Mega-El Niño-Southern Oscillation (ENSO), a boarder version of conventional ENSO, is found to be a main driving force of Northern Hemisphere summer monsoon rainfall including the Indian summer rainfall (ISR). The simultaneous impacts of "pure" mega-ENSO and "pure" conventional ENSO events on the ISR in its developing summer remains unclear. This study examines the different linkages between mega-ENSO-ISR and conventional ENSO-ISR. During the developing summer of mega-El Niño, negative rainfall anomalies are seen over the northeastern Indian subcontinent, while the anomalous rainfall pattern is almost the opposite for mega-La Niña; as for the conventional ENSO, the approximate "linear opposite" phenomenon vanishes. Furthermore, the global zonal wave trains anomalous are found at mid-latitude zones, with a local triple circulation pattern over the central-east Eurasia during mega-ENSO events, which might be an explanation of corresponding rainfall response over the Indian Peninsula. Among 106-year historical run (1900-2005) of 9 state-of-the-art models from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), HadGEM2-ES performs a promising skill in simulating the anomalous circulation pattern over mid-latitude and central-east Eurasia while CanESM2 cannot. Probably, it is the models' ability of capturing the mega-ENSO-ISR linkage and the characteristic of mega-ENSO that make the difference.

  17. A 600 k.y. record of El Niño-Southern Oscillation (ENSO): Evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe

    Science.gov (United States)

    Lenz, Olaf K.; Wilde, Volker; Riegel, Walter; Harms, Franz-Juergen

    2010-07-01

    The El Niño-Southern Oscillation (ENSO) is a globally important factor in today's climate dynamics. Annually laminated oil shales from the maar lake of Messel (Germany) provide high-resolution sedimentological and paleoenvironmental data of a time interval of ˜600 k.y. during the Eocene greenhouse phase. Individual laminae consist of a light spring and summer algal layer (Tetraedron minimum layer) and a dark winter layer composed of terrigenous background sediment. Four sections were selected from the core of the Messel 2001 well in order to count varves and to measure total varve thickness and the thickess of light and dark laminae. Spectral analyses were done in order to detect possible cyclic fluctuations in varve thickness. Fluctuations are significant in the quasi-biennial (2.1-2.5 yr) and low-frequency band (2.8-3.5 yr, 4.9-5.6 yr), thus showing that algal growth as well as the background sedimentation were controlled by ENSO effects at least over a time interval of 600 k.y. This confirms the existence of a previously postulated robust Eocene ENSO. Significant peaks within a quasi-decadal (10-11 yr), interdecadal (17-26 yr), and multidecadal band (˜52 yr, ˜82 yr) show either the enduring influence of more or less cyclic instabilities or the influence of solar cycles.

  18. Evaluation of the effects of ENSO teleconnection on climatic parameters fluctuations in Khorasan Province I.R. of Iran

    International Nuclear Information System (INIS)

    Ehteramian, Kourosh; Shahabfar, Alireza; Gharaei, Sohrab M.; Jamali, Javad B.

    2004-01-01

    The long term forecasting and monitoring of climatological parameters depends on identification of all effective factors, which are affects on this phenomena. One of these parameters is the weather signal. These signals are determinable and specific pattern and occurs in the distinguished regions in the world, but it's effects are world wide. One of the famous signals is ENSO phenomenon, which have two phases. In this paper with using annual and seasonal correlations between southern oscillation index (SOI) and precipitation and temperature data the effective amounts of ENSO phases on the differences of these factors was studied in the all regions of Khorasan province in Iran, then for more comprehensive study the classification maps in relation of ENSO and variability of precipitation and temperature were drown. It was concluded that the mentioned parameters in the whole of the province especially in central and north strip have shown significant action to ENSO, in other word the average of precipitation and temperature correlation indices are negative annually and seasonally, it means when SOI amounts are increased the precipitation and temperature in Khorasan will be decreased. With regard to increasing the above weather parameters in all regions of Khorasan at the time of ENSO negative phases (El Nino condition) variations of precipitation and temperature could be related to the changes of the pattern of occurrence this phenomenon (ENSO) due to climatic change around the world. (Author)

  19. Oscillator phenomena in the solar atmosphere and radiation modulation in microwaves

    International Nuclear Information System (INIS)

    Vaz, A.M.Z.

    1983-05-01

    An overview of the principal known descriptions of oscillations in the solar atmosphere at different ranges of periods was developed. Particular attention was given to oscillations with time scale of seconds, associated to active regions or bursts. 1.5 quasi-periodic oscillations were detected by the first time at more than one microwave frequency simultaneously (22 GHz and 44 GHz), with high sensitivity and high time resolution, superimposed on a burst on Dec. 15, 1980. An advance phase of 0,3s between the oscillations in the frequencies of 22 GHz and 44 GHz was discovered. The proposed mechanism to explain such oscillations is based on oscillations of the magnetic field at the source. These oscillations modulate the gyro-synchrotron emission from high energy electrons trapped in the magnetic structure. The phase difference is attributed to the influence of the optical thickness of the gyro-synchrotron emission at 22 GHz. (Author) [pt

  20. The ENSO Impact on Predicting World Cocoa Prices

    OpenAIRE

    Ubilava, David; Helmers, Claes Gustav

    2011-01-01

    Cocoa beans are produced in equatorial and sub-equatorial regions of West Africa, Southeast Asia and South America. These are also the regions most affected by El Nino Southern Oscillation (ENSO) -- a climatic anomaly affecting temperature and precipitation in many parts of the world. Thus, ENSO, has a potential of affecting cocoa production and, subsequently, prices on the world market. This study investigates the benefits of using a measure of ENSO variable in world cocoa price forecasting ...

  1. Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands

    Science.gov (United States)

    Bedoya-Soto, Juan Mauricio; Poveda, Germán; Trenberth, Kevin E.; Vélez-Upegui, Jorge Julián

    2018-03-01

    During 2009-2011, Colombia experienced extreme hydroclimatic events associated with the extreme phases of El Niño-Southern Oscillation (ENSO). Here, we study the dynamics of diverse land-atmosphere phenomena involved in such anomalous events at continental, regional, and local scales. Standardized anomalies of precipitation, 2-m temperature, total column water (TCW), volumetric soil water (VSW), temperature at 925 hPa, surface sensible heat (SSH), latent heat (SLH), evaporation (EVP), and liquid water equivalent thickness (LWET) are analyzed to assess atmosphere-land controls and relationships over tropical South America (TropSA) during 1986-2013 (long term) and 2009-2011 (ENSO extreme phases). An assessment of the interannual covariability between precipitation and 2-m temperature is performed using singular value decomposition (SVD) to identify the dominant spatiotemporal modes of hydroclimatic variability over the region's largest river basins (Amazon, Orinoco, Tocantins, Magdalena-Cauca, and Essequibo). ENSO, its evolution in time, and strong and consistent spatial structures emerge as the dominant mode of variability. In situ anomalies during both extreme phases of ENSO 2009-2011 over the Magdalena-Cauca River basins are linked at the continental scale. The ENSO-driven hydroclimatic effects extend from the diurnal cycle to interannual timescales, as reflected in temperature data from tropical glaciers and the rain-snow boundary in the highest peaks of the Central Andes of Colombia to river levels along the Caribbean lowlands of the Magdalena-Cauca River basin.

  2. Oscillation phenomena and operating limits of the closed two-phase thermosyphon

    International Nuclear Information System (INIS)

    Fukano, T.; Kadoguchi, K.; Tien, C.L.

    1986-01-01

    In a vertical thermosyphon an up-going vapor flow prevents a liquid film from flowing downward and causes flooding if the heat input exceeds a certain value. Then the evaporator wall partially dries out. The wall temperature in the evaporator and the system pressure are measured and their post-dryout behavior is classified into three types: (1) the periodic oscillation, and transient variations going asymptotically to (2) the higher and (3) the lower than the initial system pressure setting. The occurrence of the first type, periodic oscillation, is limited to when the amount of working fluid, methanol, is about one-third of the evaporator volume. To explain these changes in the system pressure and wall temperature a physical model, based on the alternating flooding and deflooding concept is proposed. In this work the effect of the tube diameter, amount of working fluid, and system pressure on these oscillations and the flow and heat transfer characteristics during the oscillations are also experimentally investigated

  3. Homotopic mapping solution of an oscillator for the El Niño/La Niña-southern oscillation

    International Nuclear Information System (INIS)

    Xian-Chun, Zhou; Yi-Hua, Lin; Wan-Tao, Lin; Jia-Qi, Mo

    2009-01-01

    This paper considers a class of oscillator for the El Niño/La Niña-southern oscillation (ENSO) model. By using the homotopic mapping method, it obtains approximations of the solution for the ENSO model. (general)

  4. Three-Dimensional Dirac Oscillator with Minimal Length: Novel Phenomena for Quantized Energy

    Directory of Open Access Journals (Sweden)

    Malika Betrouche

    2013-01-01

    Full Text Available We study quantum features of the Dirac oscillator under the condition that the position and the momentum operators obey generalized commutationrelations that lead to the appearance of minimal length with the order of the Planck length, ∆xmin=ℏ3β+β′, where β and β′ are two positive small parameters. Wave functions of the system and the corresponding energy spectrum are derived rigorously. The presence of the minimal length accompanies a quadratic dependence of the energy spectrum on quantum number n, implying the property of hard confinement of the system. It is shown that the infinite degeneracy of energy levels appearing in the usual Dirac oscillator is vanished by the presence of the minimal length so long as β≠0. Not only in the nonrelativistic limit but also in the limit of the standard case (β=β′=0, our results reduce to well known usual ones.

  5. Quantum coherence phenomena in semiconductor quantum dots: quantum interference, decoherence and Rabi oscillation

    International Nuclear Information System (INIS)

    Htoon, H.; Shih, C.K.; Takagahara, T.

    2003-01-01

    We performed extensive studies on quantum decoherence processes of excitons trapped in the various excited states of SAQDs. Energy level structure and dephasing times of excited states were first determined by conducting photoluminescence excitation spectroscopy and wave-packet interferometry on a large number of individual SAQDs. This large statistical basis allows us to extract the correlation between the energy level structure and dephasing times. The major decoherence mechanisms and their active regime were identified from this correlation. A significant suppression of decoherence was also observed in some of the energetically isolated excited states, providing an experimental evidence for the theoretical prediction, known as 'phonon bottleneck effect'. Furthermore, we observed the direct experimental evidence of Rabi oscillation in these excited states with long decoherence times. In addition, a new type of quantum interference (QI) phenomenon was discovered in the wave-packet interferometry experiments performed in the strong excitation regime where the non-linear effects of Rabi oscillation become important. Detailed theoretical investigations attribute this phenomenon to the coherent dynamics resulting from the interplay of Rabi oscillation and QI

  6. A non-stationary relationship between global climate phenomena and human plague incidence in Madagascar.

    Science.gov (United States)

    Kreppel, Katharina S; Caminade, Cyril; Telfer, Sandra; Rajerison, Minoarison; Rahalison, Lila; Morse, Andy; Baylis, Matthew

    2014-10-01

    Plague, a zoonosis caused by Yersinia pestis, is found in Asia and the Americas, but predominantly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. Plague's occurrence is affected by local climate factors which in turn are influenced by large-scale climate phenomena such as the El Niño Southern Oscillation (ENSO). The effects of ENSO on regional climate are often enhanced or reduced by a second large-scale climate phenomenon, the Indian Ocean Dipole (IOD). It is known that ENSO and the IOD interact as drivers of disease. Yet the impacts of these phenomena in driving plague dynamics via their effect on regional climate, and specifically contributing to the foci of transmission on Madagascar, are unknown. Here we present the first analysis of the effects of ENSO and IOD on plague in Madagascar. We use a forty-eight year monthly time-series of reported human plague cases from 1960 to 2008. Using wavelet analysis, we show that over the last fifty years there have been complex non-stationary associations between ENSO/IOD and the dynamics of plague in Madagascar. We demonstrate that ENSO and IOD influence temperature in Madagascar and that temperature and plague cycles are associated. The effects on plague appear to be mediated more by temperature, but precipitation also undoubtedly influences plague in Madagascar. Our results confirm a relationship between plague anomalies and an increase in the intensity of ENSO events and precipitation. This work widens the understanding of how climate factors acting over different temporal scales can combine to drive local disease dynamics. Given the association of increasing ENSO strength and plague anomalies in Madagascar it may in future be possible to forecast plague outbreaks in Madagascar. The study gives insight into the complex and changing relationship between climate factors and plague in Madagascar.

  7. A non-stationary relationship between global climate phenomena and human plague incidence in Madagascar.

    Directory of Open Access Journals (Sweden)

    Katharina S Kreppel

    2014-10-01

    Full Text Available Plague, a zoonosis caused by Yersinia pestis, is found in Asia and the Americas, but predominantly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. Plague's occurrence is affected by local climate factors which in turn are influenced by large-scale climate phenomena such as the El Niño Southern Oscillation (ENSO. The effects of ENSO on regional climate are often enhanced or reduced by a second large-scale climate phenomenon, the Indian Ocean Dipole (IOD. It is known that ENSO and the IOD interact as drivers of disease. Yet the impacts of these phenomena in driving plague dynamics via their effect on regional climate, and specifically contributing to the foci of transmission on Madagascar, are unknown. Here we present the first analysis of the effects of ENSO and IOD on plague in Madagascar.We use a forty-eight year monthly time-series of reported human plague cases from 1960 to 2008. Using wavelet analysis, we show that over the last fifty years there have been complex non-stationary associations between ENSO/IOD and the dynamics of plague in Madagascar. We demonstrate that ENSO and IOD influence temperature in Madagascar and that temperature and plague cycles are associated. The effects on plague appear to be mediated more by temperature, but precipitation also undoubtedly influences plague in Madagascar. Our results confirm a relationship between plague anomalies and an increase in the intensity of ENSO events and precipitation.This work widens the understanding of how climate factors acting over different temporal scales can combine to drive local disease dynamics. Given the association of increasing ENSO strength and plague anomalies in Madagascar it may in future be possible to forecast plague outbreaks in Madagascar. The study gives insight into the complex and changing relationship between climate factors and plague in Madagascar.

  8. Neutrino mass and oscillation angle phenomena within the asymmetric left-right models

    International Nuclear Information System (INIS)

    Boyarkin, O.; Rein, D.

    1994-07-01

    The light and heavy Majorana neutrinos which appear naturally in SU(2) L x SU(2) R x U(1) B-L model are investigated. The exact solutions are presented for the system of two neutrinos with multipole moments propagating through magnetic and matter fields. The cross section of the reaction e - e - → W - k W - n calculated and its dependence on the mass of the right-handed neutrino and the oscillation angle is investigated. The process e + e - → W + k W - n is also included in our analysis. (author). 26 refs, 9 figs

  9. ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing

    Science.gov (United States)

    Yeh, Sang-Wook; Cai, Wenju; Min, Seung-Ki; McPhaden, Michael J.; Dommenget, Dietmar; Dewitte, Boris; Collins, Matthew; Ashok, Karumuri; An, Soon-Il; Yim, Bo-Young; Kug, Jong-Seong

    2018-03-01

    El Niño and Southern Oscillation (ENSO) is the most prominent year-to-year climate fluctuation on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) sea surface temperature (SST) conditions in the tropical Pacific. ENSO exerts its impacts on remote regions of the globe through atmospheric teleconnections, affecting extreme weather events worldwide. However, these teleconnections are inherently nonlinear and sensitive to ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are modulated by variability in the oceanic and atmopsheric mean state outside the tropics and by land and sea ice extent. The character of ENSO as well as the ocean mean state have changed since the 1990s, which might be due to either natural variability or anthropogenic forcing, or their combined influences. This has resulted in changes in ENSO atmospheric teleconnections in terms of precipitation and temperature in various parts of the globe. In addition, changes in ENSO teleconnection patterns have affected their predictability and the statistics of extreme events. However, the short observational record does not allow us to clearly distinguish which changes are robust and which are not. Climate models suggest that ENSO teleconnections will change because the mean atmospheric circulation will change due to anthropogenic forcing in the 21st century, which is independent of whether ENSO properties change or not. However, future ENSO teleconnection changes do not currently show strong intermodel agreement from region to region, highlighting the importance of identifying factors that affect uncertainty in future model projections.

  10. Is ENSO related to 2015 Easter Star Capsized on the Yangtze River of China?

    Science.gov (United States)

    Xie, P.

    2015-12-01

    Natural disasters have profound effects on community security and economic damage of China's Hubei province. In June 1st, 2015, a cruise ship, Easter Star, capsized on Yangtze River in Hubei province with 442 died. What reason gives rise to such strong convection causing ship sunk? Based on the wind disasters of Hubei province happened in 1963-2015, this study analyzes their features bytime-series regression, and correlates them to global El Niño/Southern Oscillation (ENSO) events. The compared results demonstrated that the wind disasters shown an increasing tendency. There are two peaks corresponding to the strongest ENSO peaks during the past 50 years; each peak lasts two-three years. The facts demonstrated an essential linear relation between the ENSO phenomena and wind disasters in Hubei province. 2015 Easter Star capsized happened at current El Niño event in 2014-2015. We also observed that the historical wind disasters appeared in seasonal variation. Over 90% events concentrated in spring and summer; very few events happened in autumn and winter. Moreover, the disasters depend on the geographic conditions. Most disasters concentrated in four zones, named as Xingshan-Baokang, Xuanen, Wufeng-Yichang, Jingzhou-Gongan, in which Xingshan and Changyang are the two most density of zones. Yangtze River provides an air flowing conduct for strong convective winds. It can be concluded that the strong convection causing 2015 Easter Star capsized is related to current global ENSO phenomenon.Keywords: ENSO, wind disaster, time-series regression analysis, Easter Star, Yangtze River, Hubei Province,

  11. Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles

    Directory of Open Access Journals (Sweden)

    Michael A. Persinger

    2015-09-01

    Full Text Available The ~1.5 × 10−20 J which is considered a universal quantity and is associated with the movement of protons in water also relates to the ratio of the magnetic moment of a proton divided by its unit charge, multiplied by viscosity and applied over the O-H distance. There is quantitative evidence that thixotropy, the “spontaneous” increased viscosity in water when undisturbed, originates from the transformation of virtual particles or vacuum oscillations to real states through conversion of Casimir-magnetic energies that involve the frequency of the neutral hydrogen line and the upper bound threshold value for intergalactic magnetic fields. The results indicate that ½ of a single electron orbit is real (particle and the other ½ is virtual (wave. The matter equivalent per s for virtual-to-real states for electrons in 1 mL of water with a neutral pH is consistent with the numbers of protons (H+ and the measured range of molecules in the coherent domains for both width and duration of growth and is similar to widths of intergalactic dust grains from which planets and stars may condense. The de Broglie momentum for the lower boundary of the width of coherent domains multiplied by the fine structure velocity of an electron is concurrent with the quantum when one proton is being removed from another and when the upper boundary of the rest mass of a photon is transformed by the product of velocities for putative “entanglement” and light. Theoretical and experimental results indicate that components of thixotropy, such as specific domains of intercalated water molecules, could display excess correlations over very large distances. Because the energies of the universal quantity and water converge it may be a special conduit for discrete transformations from virtual to real states.

  12. Impacto de los eventos de El Niño Southern oscillation (ENSO sobre la leishmaniosis cutánea en Sucre, Venezuela, a través del uso de información satelital, 1994 - 2003

    Directory of Open Access Journals (Sweden)

    Gilberto Cabaniel S

    2005-03-01

    Full Text Available Objetivos: Describir los posibles impactos de El Niño Southern Oscillation (ENSO sobre la leishmaniosis cutánea (LC en Sucre, Venezuela en el período 1994-2003. Materiales y Métodos: La data climática se obtuvo de sistemas remotos y fue clasificada de acuerdo con la National Oceanographic and Atmospheric Administration (NOAA en periodos El Niño, Neutral o La Niña, usando el Southern Oscillation Index (SOI como indicador de variabilidad. Los datos de LC fueron obtenidos de la Gerencia de Saneamiento Ambiental en Sucre. Se realizaron comparaciones de las variaciones anuales y desviaciones de las tendencias medias, entre la incidencia de LC y variabilidad climática, así como modelos de regresión. Resultados: Se registraron entre 1994 -2003 en Sucre 2212 casos de LC. Se observaron tres fases importantes de El Niño: 1994-1995, 1997-1998 y 2001-2003, la más relevante correspondió a 1997-1998, que fue seguido de un periodo frío y lluvioso en 1999 (La Niña. Durante 1999/2000, se registraron 360 casos de LC en Sucre, con importante variabilidad intraanual, se observó un incremento en 66,7% de los casos de LC (F=10,06, p=0,0051 asociado a la presencia de La Niña débil (poco frío y lluvioso. Los modelos mostraron que a mayores valores del SOI menor incidencia de LC (r 2 =0,3308, p=0,0504. El incremento sobre la tendencia media de las precipitaciones se asoció con incrementos sobre las tendencias de la LC durante 1994-2003 (p=0,0358. Conclusiones: Estos datos reflejan la importancia del ENSO sobre la incidencia de la LC, abriendo una nueva línea de investigación con posible impacto en la predicción y monitoreo con relevancia en salud pública.

  13. Where was ENSO strongest?

    Science.gov (United States)

    Cane, M. A.; Chen, D.; Kaplan, A.

    2008-12-01

    Mark A. Cane, Dake Chen, Alexey Kaplan The description of this session begins: "Historical SST records suggest that for the past three decades, ENSO has been anomalously strong" and goes on to ask why. In this talk we dispute this interpretation of the historical record from within the historical record. In particular, we suggest that the most "anomalously strong" period in the historical ENSO record is the late nineteenth century. This claim requires a discussion of how we measure "ENSO strength". We also speculate on possible reasons for the strength of ENSO in this earlier period. Finally, we consult the models, and in reiteration of the collective conclusion of all speakers at this session, find that the riddles the models provide are inelegant and disobliging, lacking the cryptic wisdom of the classical oracles.

  14. ENSO Dynamics and Trends, AN Alternate View

    Science.gov (United States)

    Rojo Hernandez, J. D.; Lall, U.; Mesa, O. J.

    2017-12-01

    El Niño - Southern Oscillation (ENSO) is the most important inter-annual climate fluctuation on a planetary level with great effects on the hydrological cycle, agriculture, ecosystems, health and society. This work demonstrates the use of the Non-Homogeneus hidden Markov Models (NHMM) to characterize ENSO using a set of discrete states with variable transition probabilities matrix using the data of sea surface temperature anomalies (SSTA) of the Kaplan Extended SST v2 between 120E -90W, 15N-15S from Jan-1856 to Dec-2016. ENSO spatial patterns, their temporal distribution, the transition probabilities between patterns and their temporal evolution are the main results of the NHHMM applied to ENSO. The five "hidden" states found appear to represent the different "Flavors" described in the literature: the Canonical El Niño, Central El Niño, a Neutral state, Central La Niña and the Canonical Niña. Using the whole record length of the SSTA it was possible to identify trends in the dynamic system, with a decrease in the probability of occurrence of the cold events and a significant increase of the warm events, in particular of Central El Niño events whose probability of occurrence has increased Dramatically since 1960 coupled with increases in global temperature.

  15. Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.

    Science.gov (United States)

    Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei

    2017-07-20

    This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.

  16. Influences of the ENSO event on the rainfall of dry Sudan

    International Development Research Centre (IDRC) Digital Library (Canada)

    One third of the world's population live in places where medium to high water stress is compounded by pollution, climate change, inefficient management approaches and governance issues. This study detects the El Nino Southern Oscillation (ENSO) events and signals, and the influences of the different ENSO stages in the ...

  17. Reduced herbivory during simulated ENSO rainy events increases native herbaceous plants in semiarid Chile

    NARCIS (Netherlands)

    Manrique, R.; Gutierrez, J.R.; Holmgren, M.; Squeo, F.A.

    2007-01-01

    El Niño Southern Oscillation (ENSO) events have profound consequences for the dynamics of terrestrial ecosystems. Since increased climate variability is expected to favour the invasive success of exotic species, we conducted a field experiment to study the effects that simulated rainy ENSO events in

  18. A synthesis of ENSO effects on drylands in Australia, North America and South America

    NARCIS (Netherlands)

    Holmgren, M.; Stapp, P.; Dickman, C.; Gracia, C.; Graham, S.

    2005-01-01

    Fundamentally, El Niño Southern Oscillation (ENSO) is a climatic and oceanographic phenomenon, but it has profound effects on terrestrial ecosystems. Although the ecological effects of ENSO are becoming increasingly known from a wide range of terrestrial ecosystems (Holmgren et al., 2001), their

  19. ENSO related decadal scale climate variability from the Indo-Pacific Warm Pool

    NARCIS (Netherlands)

    Brijker, J.M.; Jung, S.J.A.; Ganssen, G.M.; Bickert, T.; Kroon, D.

    2006-01-01

    The El Niño-Southern Oscillation (ENSO) is a climatic phenomenon that affects socio-economical welfare in vast areas in the world. A continuous record of Holocene ENSO related climate variability of the Indo-Pacific Warm pool (IPWP) is constructed on the basis of stable oxygen isotopes in shells of

  20. Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections?

    Digital Repository Service at National Institute of Oceanography (India)

    Dayan, H.; Izumo, T.; Vialard, J.; Lengaigne, M.; Masson, S

    This paper aims at identifying oceanic regions outside the tropical Pacific, which may influence the El Ni�o Southern Oscillation (ENSO) through interannual modulation of equatorial Pacific winds An Atmospheric General Circulation Model (AGCM) 7...

  1. Balances de glaciares y clima en Bolivia y Perú: impacto de los eventos ENSO

    Directory of Open Access Journals (Sweden)

    1995-01-01

    sensiblemente y esto afecta el término ablación del balance de masa. Se verifica en estas series de 20 años que todos los años ENSO estén asociados a balances negativos. Durante la mayoría de los eventos ENSO, en el sur de Perú y en Bolivia, se produce una reducción de las precipitaciones, lo que contribuye a acentuar el efecto ENSO sobre los balances. Estos acontecimientos tienen una influencia importante sobre la evolución actual de los glaciares andinos, caracterizada por un retroceso rápido. GLACIER BALANCE AND CLIMATE IN BOLIVIA AND PERU: EFFECTS OF ENSO EVENTS. Mass balance of Zongo Glacier (Cordillera Real, Bolivia was reconstructed by using hydrological data. Moreover, the “linear model” (Llliboutry was applied on the balance measurements from Yanamarey and Uruashraju ablation zone (Cordillera Blanca, Peru. Compared with temperature and precipitation data from reliable meteorological stations, these 15-20 yr time series of glacier balances allow us to point out temperature as the principal factor controlling mass balance evolution. Temperature variability strongly depends on ENSO (El Niño Southern Oscillation events: a clear positive deviation of maxima and minima is generally observed during these events, which strongly increases the ablation. Consequently, a systematical negative mass balance is associated with ENSO events. In Southern Peru and in Bolivia, this tendance is enhanced by a frequent decrease in the precipitation, which modifies the accumulation term at high altitude. So, it is demonstrated that ENSO phenomena closely control the glacier mass balance variability and have a great influence in the rapid glacier retreat observed in this area of Tropical Andes.

  2. ENSO Related Interannual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel J.

    2018-01-01

    It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, lightning data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed lightning deviations from year to year at each location.

  3. Perturbation method of studying the EI Niño oscillation with two parameters by using the delay sea-air oscillator model

    International Nuclear Information System (INIS)

    Du Zeng-Ji; Lin Wan-Tao; Mo Jia-Qi

    2012-01-01

    The EI Niño-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean-atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation using the ENSO model. Based on a class of the oscillator of the ENSO model, a approximate solution of the corresponding problem is studied employing the perturbation method

  4. Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation.

    Science.gov (United States)

    Krauskopf, Bernd; Sieber, Jan

    2014-09-08

    Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO.

  5. Interdecadal variations of ENSO around 1999/2000

    Science.gov (United States)

    Hu, Zeng-Zhen; Kumar, Arun; Huang, Bohua; Zhu, Jieshun; Ren, Hong-Li

    2017-02-01

    This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the corresponding changes in the characteristics of the El Niño-Southern Oscillation (ENSO). Compared with 1979-1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shortening of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm anomaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradient, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an increase in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible connections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also discussed.

  6. ENSO Related Inter-Annual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel

    2018-01-01

    The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS). Lightning data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases

  7. Revisiting Cholera-Climate Teleconnections in the Native Homeland: ENSO and other Extremes through the Regional Hydroclimatic Drivers

    Science.gov (United States)

    Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.

    2014-12-01

    Cholera is a global disease, with significantly large outbreaks occurring since the 1990s, notably in Sub-Saharan Africa and South Asia and recently in Haiti, in the Caribbean. Critical knowledge gaps remain in the understanding of the annual recurrence in endemic areas and the nature of epidemic outbreaks, especially those that follow extreme hydroclimatic events. Teleconnections with large-scale climate phenomena affecting regional scale hydroclimatic drivers of cholera dynamics remain largely unexplained. For centuries, the Bengal delta region has been strongly influenced by the asymmetric availability of water in the rivers Ganges and the Brahmaputra. As these two major rivers are known to have strong contrasting affects on local cholera dynamics in the region, we argue that the role of El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), or other phenomena needs to be interpreted in the context of the seasonal role of individual rivers and subsequent impact on local environmental processes, not as a teleconnection having a remote and unified effect. We present a modified hypothesis that the influences of large-scale climate phenomena such as ENSO and IOD on Bengal cholera can be explicitly identified and incorporated through regional scale hydroclimatic drivers. Here, we provide an analytical review of the literature addressing cholera and climate linkages and present hypotheses, based on recent evidence, and quantification on the role of regional scale hydroclimatic drivers of cholera. We argue that the seasonal changes in precipitation and temperature, and resulting river discharge in the GBM basin region during ENSO and IOD events have a dominant combined effect on the endemic persistence and the epidemic vulnerability to cholera outbreaks in spring and fall seasons, respectively, that is stronger than the effect of localized hydrological and socio-economic sensitivities in Bangladesh. In addition, systematic identification of underlying seasonal

  8. Volcanic Tephra ejected in south eastern Asia is the sole cause of all historic ENSO events. This natural aerosol plume has been intensified by an anthropogenic plume in the same region in recent decades which has intensified some ENSO events and altered the Southern Oscillation Index characteristics

    Science.gov (United States)

    Potts, K. A.

    2017-12-01

    ENSO events are the most significant perturbation of the climate system. Previous attempts to link ENSO with volcanic eruptions typically failed because only large eruptions across the globe which eject tephra into the stratosphere were considered. I analyse all volcanic eruptions in South Eastern (SE) Asia (10ºS to 10ºN and from 90ºE to 160ºE) the most volcanically active area in the world with over 23% of all eruptions in the Global Volcanism Program database occurring here and with 5 volcanoes stated to have erupted nearly continuously for 30 years. SE Asia is also the region where the convective arm of the thermally direct Walker Circulation occurs driven by the intense equatorial solar radiation which creates the high surface temperature. The volcanic tephra plume intercepts some of the solar radiation by absorption/reflection which cools the surface and heats the atmosphere creating a temperature inversion compared to periods without the plume. This reduces convection and causes the Walker Cell and Trade Winds to weaken. This reduced wind speed causes the central Pacific Ocean to warm which creates convection there which further weakens the Walker Cell. With the reduced wind stress the western Pacific warm pool migrates east. This creates an ENSO event which continues until the tephra plume reduces, typically when the SE Asian monsoon commences, and convection is re-established over SE Asia and the Pacific warm pool migrates back to the west. Correlations of SE Asian tephra and the ENSO indices are typically over 0.80 at p indices. If two events A and B correlate 5 options are available: 1. A causes B; 2. B causes A; 3. C, another event, causes A &B simultaneously; 4. It's a coincidence; and 5. The relationship is complex with feedback. The volcanic correlations only allow options 1 or 4 as ENSO cannot cause volcanoes to erupt and are backed up by several independent satellite datasets. I conclude volcanic and anthropogenic aerosols over SE Asia are the

  9. Influence of macroclimatic phenomena on the annual cycle of the Colombian hydrology: lineal quantification, not lineal and probabilistic percentiles

    International Nuclear Information System (INIS)

    Poveda, German; Velez, Jaime I; Mesa, Oscar; Hoyos, Carlos D; Mejia, J Freddy; Barco, Olga J; Correa, Paula L

    2002-01-01

    We study the influence of macroclimatic phenomena on the Colombian hydrology monthly, annual and interannual variability. The degree of linear dependency that exists between several indices of el Nino south oscillation (ENSO) phenomena, other phenomena such as the North Atlantic Oscillation NAO), the pacific decadal oscillation (PDO), etc., is quantified. We estimate quarterly cross-correlations between climatic variables and continuous series (over 30 years) of precipitation and run off, distributed all over Colombia. For nonlinear analysis we used the wavelets methodology. In general, we estimated positive and statistically significant simultaneous correlations of around 0.6 and 0.65 between the sol, and also for lags of one and two quarters. Correlations with the pacific decadal oscillation (PDO) indicate negative significant correlations (although smaller than - 0,5). We observed positive correlations around 0,5 between the south Atlantic temperature and trimesters JJA and SON precipitation. We estimate frequencies histograms of discharge series to quantify the impact of ENSO on the mean floods in Colombia

  10. Disturbed solution of the El Niño-southern oscillation sea—air delayed oscillator

    International Nuclear Information System (INIS)

    Xie Feng; Lin Wan-Tao; Lin Yi-Hua; Mo Jia-Qi

    2011-01-01

    A class of delayed oscillators of El Niño-southern oscillation (ENSO) models is considered. Using the delayed theory, the perturbed theory and other methods, the asymptotic expansions of the solutions for ENSO models are obtained and the asymptotic behaviour of solution of corresponding problem is studied. (general)

  11. Change of ENSO characteristics in response to global warming

    Science.gov (United States)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    the frequency of ENSO events greatly increases due to global warming, and many more extreme El Niño and La Niña events appear under the El Niño-like and the La Niña-like background warmings, respectively. This study reconciles the phenomena and mechanisms of different characteristics of ENSO changes in observations and models.

  12. Vegetation anomalies associated with the ENSO phenomenon in the Cauca river valley, Colombia

    Directory of Open Access Journals (Sweden)

    J. M. Valencia

    2017-12-01

    Full Text Available The main factors affecting the production and yield of sugarcane are variety, agronomic management, soil type and climate, of which the first three there is some control, while the climate is one factor of which you cannot have any control, therefore, it should be monitored. Colombia, being located in the equatorial pacific, is affected by two atmospheric oceanic phenomena known as “El Niño” and “La Niña”, which make up the climatic phenomenon of ENSO (El Niño-Southern Oscillation and affect the quantity and the number of days with rainfall and influences the production of sugarcane. The objective of this work is to identify spatially and temporally the zones with greater and lower impact of the ENSO phenomenon in the cultivation of sugarcane in Colombia through the use of the Standard Vegetation Index (SVI and the Rainfall Anomally Index (RAI using EVI/MODIS images and precipitation data from meteorological stations on a quarterly basis for the period 2000-2015. A similar trend was found between both indices in the “El Niño” and “Neutral” seasons, while in the “La Niña” season the RAI tended to rise while the SVI decreased when the RAI was very high, this tendency being much more marked in areas with floods caused by the overflow of the main rivers. In addition, a comparison was made between the SVI index and a productivity anomaly index (IAP, finding a direct correlation between both (R2 = 0.4, p<0.001. This work showed that through the use of vegetation indexes, a temporal analysis of the impact of climate on an agricultural crop can be carried out, especially with ENSO conditions.

  13. Physical model of lean suppression pressure oscillation phenomena: steam condensation in the light water reactor pressure suppression system (PSS)

    International Nuclear Information System (INIS)

    McCauley, E.W.; Holman, G.S.; Aust, E.; Schwan, H.; Vollbrandt, J.

    1980-01-01

    Using the results of large scale multivent tests conducted by GKSS, a physical model of chugging is developed. The unique combination of accurate digital data and cinematic data has provided the derivation of a detailed, quantified correlation between the dynamic physical variables and the associated two-phase thermo-hydraulic phenomena occurring during lean suppression (chugging) phases of the loss-of-coolant accident in a boiling water reactor pressure suppression system

  14. Reduced ENSO Variability at the LGM Revealed by an Isotope-Enabled Earth System Model

    Science.gov (United States)

    Zhu, Jiang; Liu, Zhengyu; Brady, Esther; Otto-Bliesner, Bette; Zhang, Jiaxu; Noone, David; Tomas, Robert; Nusbaumer, Jesse; Wong, Tony; Jahn, Alexandra; hide

    2017-01-01

    Studying the El Nino Southern Oscillation (ENSO) in the past can help us better understand its dynamics and improve its future projections. However, both paleoclimate reconstructions and model simulations of ENSO strength at the Last Glacial Maximum (LGM; 21 ka B.P.) have led to contradicting results. Here we perform model simulations using the recently developed water isotope-enabled Community Earth System Model (iCESM). For the first time, model-simulated oxygen isotopes are directly compared with those from ENSO reconstructions using the individual foraminifera analysis (IFA). We find that the LGM ENSO is most likely weaker comparing with the preindustrial. The iCESM suggests that total variance of the IFA records may only reflect changes in the annual cycle instead of ENSO variability as previously assumed. Furthermore, the interpretation of subsurface IFA records can be substantially complicated by the habitat depth of thermocline-dwelling foraminifera and their vertical migration with a temporally varying thermocline.

  15. ENSO variations and drought occurrence in Indonesia and the Philippines

    Science.gov (United States)

    Harger, J. R. E.

    The "El Nino-Southern Oscillation" (ENSO) consists of a sympathetic movement involving the Pacific ocean and associated atmosphere in an essentially chaotic manner along the equator. The system oscillates between extremes of the so-called "warm events" usually lasting 1 or 2 yr and involving movement of warm sea water from the western Pacific along the equator to impact on the west coast of the American continent and "cold events" associated with easterly trade-wind-induced flows of colder water from the eastern Pacific towards the west. Information drawn from meteorological records in southeast Asia clearly indicates that each event is unique in terms of the signature which it imposes on the rainfall and temperature from location to location. Nevertheless, a strong underlying pattern within the context of each event, itself apparently initiated or molded by the character of the preceding years, can be detected. This pattern permits relatively circumscribed predictions of forward conditions (drought intensity) for 2-3 yr, to be made once the event "locks in" for the duration of the warm event and at least 1 yr beyond. The character of the intervening non-ENSO years can also be projected but in a more tenuous, though fairly regular manner. When the non-ENSO years leading up to a warm event are scored in terms of the extent to which they depart from the secular warming trend for the warmest month using data from Jakarta and Semarang on the north coast of Java, the cumulative temperature deviations signal the character of the upcoming ENSO event. This signal does not, however, allow an exact determination to be made with respect to whether or not an ENSO event will occur in the next year. For the available historical instrumental data, all markedly upward-moving traces eventually delivered a hot dry season in east Indonesia. This sort of tendency within non-ENSO blocks can thus serve as a caution in the sense that a very hot ENSO event is likely in the offing. The

  16. DMS role in ENSO cycle in the tropics: DMS Role in ENSO Cycle in Tropics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Now at Department of Earth System Science, University of California, Irvine California USA; Cameron-Smith, Philip [Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore California USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Ghan, Steven J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Liu, Ying [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Elliott, Scott [Climate Ocean Sea Ice Modeling, Los Alamos National Laboratory, Los Alamos New Mexico USA; Yang, Yang [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Lou, Sijia [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Lamjiri, Maryam A. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Manizza, Manfredi [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA

    2016-11-16

    We examined the multiyear mean and variability of dimethyl sulfide (DMS) and its relationship to sulfate aerosols, as well as cloud microphysical and radiative properties. We conducted a 150 year simulation using preindustrial conditions produced by the Community Earth System Model embedded with a dynamic DMS module. The model simulated the mean spatial distribution of DMS emissions and burden, as well as sulfur budgets associated with DMS, SO2, H2SO4, and sulfate that were generally similar to available observations and inventories for a variety of regions. Changes in simulated sea-to-air DMS emissions and associated atmospheric abundance, along with associated aerosols and cloud and radiative properties, were consistently dominated by El Niño–Southern Oscillation (ENSO) cycle in the tropical Pacific region. Simulated DMS, aerosols, and clouds showed a weak positive feedback on sea surface temperature. This feedback suggests a link among DMS, aerosols, clouds, and climate on interannual timescales. The variability of DMS emissions associated with ENSO was primarily caused by a higher variation in wind speed during La Niña events. The simulation results also suggest that variations in DMS emissions increase the frequency of La Niña events but do not alter ENSO variability in terms of the standard deviation of the Niño 3 sea surface temperature anomalies.

  17. Fossil Coral Records of ENSO during the Last Glacial Period

    Science.gov (United States)

    Partin, J. W.; Taylor, F. W.; Shen, C. C.; Edwards, R. L.; Quinn, T. M.; DiNezro, P.

    2017-12-01

    Only a handful of paleoclimate records exist that can resolve interannual changes, and hence El Nino/Southern Oscillation (ENSO) variability, during the last glacial period, a time of altered mean climate. The few existing data suggest reduced ENSO variability compared to the Holocene, possibly due to a weaker zonal sea surface temperature gradient across the tropical Pacific and/or a deeper thermocline in the eastern tropical Pacific. Our goal is to add crucial data to this extremely limited subset using sub-annually resolved fossil corals that grew during this time period to reconstruct ENSO. We seek to recover fossil corals from Vanuatu, SW Pacific (16°S, 167°E) with the objective of using coral δ18O to reconstruct changes in the ENSO during and near the Last Glacial Maximum (LGM). Modern δ18O coral records from Vanuatu show a high degree of skill in capturing ENSO variability, making it a suitable site for reconstructing ENSO variability. We have custom designed and are building a drill system that can rapidly core many 0-25 m holes resulting in much more meters of penetration than achieved by previous land-based reef drilling. As the new drill system is extremely portable and can be quickly relocated by workers without landing craft or vehicles, it is time and cost efficient. Because the proposed drilling sites have uplifted extremely fast, 7 mm/year, the LGM shoreline has been raised from 120-140 m depth to within a depth range of 10 below to 20 m above present sea level. This enables all the drilling to be within the time range of interest ( 15-25 ka). A last advantage is that the LGM corals either are still submersed in seawater or emerged only within the last 2000 years at the uplift rate of 7 mm/yr. This greatly reduces the chances of disruption of the original climate signal because sea water is less diagenetically damaging than meteoric water in the mixed, phreatic, or vadose zones. LGM coral records will enable us to compare the proxy variability

  18. Interhemispheric temperature difference as a predictor of boreal winter ENSO

    Science.gov (United States)

    Piskozub, Jacek; Gutowska, Dorota

    2013-04-01

    winter ENSO variability. In, fact, we did not expect a high value for a phenomenon which is a self-regulated ocean-atmosphere oscillation with timing partly triggered by stochastic atmospheric forcing, especially as we predict ENSO with (semi)global parameters. It is possible that further research may identify smaller regions of both hemispheres which temperature differences explain a larger part of ENSO variability. However in our opinion, the importance of this result is that it may not only improve ENSO prediction but also help in better understanding of ENSO variability in different time scales.

  19. The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall

    Science.gov (United States)

    Giannini, A.; Saravanan, R.; Chang, P.

    A comparison of rainfall variability in the semi-arid Brazilian Nordeste in observations and in two sets of model simulations leads to the conclusion that the evolving interaction between Tropical Atlantic Variability (TAV) and the El Niño-Southern Oscillation (ENSO) phenomenon can explain two puzzling features of ENSO's impact on the Nordeste: (1) the event-to-event unpredictability of ENSO's impact; (2) the greater impact of cold rather than warm ENSO events during the past 50 years. The explanation is in the `preconditioning' role of Tropical Atlantic Variability. When, in seasons prior to the mature phase of ENSO, the tropical Atlantic happens to be evolving consistently with the development expected of the ENSO teleconnection, ENSO and TAV add up to force large anomalies in Nordeste rainfall. When it happens to be evolving in opposition to the canonical development of ENSO, then the net outcome is less obvious, but also less anomalous. The more frequent occurrence of tropical Atlantic conditions consistent with those that develop during a cold ENSO event, i.e. of a negative meridional sea surface temperature gradient, explains the weaker warm ENSO and stronger cold ENSO anomalies in Nordeste rainfall of the latter part of the twentieth century. Close monitoring of the evolution of the tropical Atlantic in seasons prior to the mature phase of ENSO should lead to an enhanced forecast potential.

  20. Changes in Sea Salt Emissions Enhance ENSO Variability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Russell, Lynn M.; Lou, Sijia; Lamjiri, Maryam A.; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2016-11-15

    Two 150-year pre-industrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Niño–Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Niño events compared to those during La Niña events. These changes in AOD further increase (decrease) radiative fluxes into the atmosphere by +0.2 W m-2 (-0.4 W m-2) over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2–0.4 K over the tropical eastern (western) Pacific Ocean during El Niño compared to La Niña events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase, of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Niño and La Niña events, which is a result of heating anomalies. Due to variations in sea salt emissions, the convective precipitation is enhanced by 0.6–1.2 mm day-1 over the tropical central-eastern Pacific Ocean and weakened by 0.9–1.5 mm day-1 over the Maritime Continent during El Niño compared to La Niña events, enhancing the precipitation variability over the tropical Pacific.

  1. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  2. Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations

    Science.gov (United States)

    Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll

    2017-08-01

    The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.

  3. How are streamflow responses to the El Nino Southern Oscillation affected by watershed characteristics?

    Science.gov (United States)

    Rice, Joshua S.; Emanuel, Ryan E.

    2017-05-01

    Understanding the factors that influence how global climate phenomena, such as the El-Nino Southern Oscillation (ENSO), affect streamflow behavior is an important area of research in the hydrologic sciences. While large-scale patterns in ENSO-streamflow relationships have been thoroughly studied, and are relatively well-understood, information is scarce concerning factors that affect variation in ENSO responses from one watershed to another. To this end, we examined relationships between variability in ENSO activity and streamflow for 2731 watersheds across the conterminous U.S. from 1970 to 2014 using a novel approach to account for the intermediary role of precipitation. We applied an ensemble of regression techniques to describe relationships between variability in ENSO activity and streamflow as a function of watershed characteristics including: hydroclimate, topography, geomorphology, geographic location, land cover, soil characteristics, bedrock geology, and anthropogenic influences. We found that variability in watershed scale ENSO-streamflow relationships was strongly related to factors including: precipitation timing and phase, forest cover, and interactions between watershed topography and geomorphology. These, and other influential factors, share in common the ability to affect the partitioning and movement of water within watersheds. Our results demonstrate that the conceptualization of watersheds as signal filters for hydroclimate inputs, commonly applied to short-term rainfall-runoff responses, also applies to long-term hydrologic responses to sources of recurrent climate variability. These results also show that watershed processes, which are typically studied at relatively fine spatial scales, are also critical for understanding continental scale hydrologic responses to global climate.

  4. The homotopic method of travelling wave solution for El Niño tropic sea–air coupled oscillator

    International Nuclear Information System (INIS)

    Mo Jiaqi; Lin Wantao

    2008-01-01

    The EI Niño and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea–air interactions. In this paper, an asymptotic method of solving nonlinear equations for the ENSO model is proposed. And based on a class of oscillator of the ENSO model and by employing the method of homotopic mapping, the approximate solution of equations for the corresponding ENSO model is studied. It is proved from the results that homotopic method can be used for analysing the sea surface temperature anomaly in the equatorial Pacific of the sea–air oscillator for the ENSO model

  5. An exploratory modeling study on bio-physical processes associated with ENSO

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Park, Young-Gyu

    2014-05-01

    Variability of marine phytoplankton associated with El Niño-Southern Oscillation (ENSO) and potential biological feedbacks onto ENSO are investigated by performing coupled ocean/biogeochemical model experiments forced by realistic surface winds from 1951 to 2010. The ocean model used in this study is the MOM4, which is coupled to a biogeochemical model, called TOPAZ (Tracers in the Ocean with Allometric Zooplankton). In general, it is shown that MOM4-TOPAZ mimics the observed main features of phytoplankton variability associated with ENSO. By comparing the actively coupled MOM4-TOPAZ experiment with the ocean model experiments using prescribed chlorophyll concentrations, potential impacts of phytoplankton on ENSO are evaluated. We found that chlorophyll generally increases mean sea surface temperature (SST) and decreases subsurface temperature by altering the penetration of solar radiation. However, as the chlorophyll concentration increases, the equatorial Pacific SST decreases due to the enhanced upwelling of the cooler subsurface water with shoaling of mixed layer and thermocline. The presence of chlorophyll generally intensifies ENSO amplitude by changing the ocean basic state. On the other hand, interactively varying chlorophyll associated with the ENSO tends to reduce ENSO amplitude. Therefore, the two biological effects on SST are competing against each other regarding the SST variance in the equatorial Pacific.

  6. ENSO-based probabilistic forecasts of March-May U.S. tornado and hail activity

    Science.gov (United States)

    Lepore, Chiara; Tippett, Michael K.; Allen, John T.

    2017-09-01

    Extended logistic regression is used to predict March-May severe convective storm (SCS) activity based on the preceding December-February (DJF) El Niño-Southern Oscillation (ENSO) state. The spatially resolved probabilistic forecasts are verified against U.S. tornado counts, hail events, and two environmental indices for severe convection. The cross-validated skill is positive for roughly a quarter of the U.S. Overall, indices are predicted with more skill than are storm reports, and hail events are predicted with more skill than tornado counts. Skill is higher in the cool phase of ENSO (La Niña like) when overall SCS activity is higher. SCS forecasts based on the predicted DJF ENSO state from coupled dynamical models initialized in October of the previous year extend the lead time with only a modest reduction in skill compared to forecasts based on the observed DJF ENSO state.

  7. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    Science.gov (United States)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  8. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna

    Science.gov (United States)

    Piovesan, Mônica; Specht, Alexandre; Carneiro, Eduardo; Paula-Moraes, Silvana Vieira; Casagrande, Mirna Martins

    2018-03-01

    The identification of factors responsible for the population dynamics is fundamental for pest management, since losses can reach 18% of annual production. Besides regular seasonal environmental factors and crop managements, additional supra-annual meteorological phenomena can also affect population dynamics, although its relevance has been rarely investigated. Among crop pests, Spodoptera stands out due to its worldwide distribution, high degree of polyphagy, thus causing damages in several crops in the world. Aiming to distinguish the relevance of different factors shaping population dynamics of Spodoptera in an ecosystem constituted of dry and rainy seasons, the current study used circular statistics to identify phenological patterns and test if its population fluctuation is driven by El Niño-Southern Oscillation (ENSO) effect, seasonal meteorological parameters, and/or host plant availability. Samplings were done in an intercropping system, in the Brazilian Savanna, during the new moon cycles between July/2013 and June/2016. Species were recorded all year round, but demonstrated differently non-uniform distribution, being concentrated in different seasons of the year. Population fluctuations were mostly affected by the ENSO intensity, despite the contrasting seasonal meteorological variation or host plant availability in a 400-m radius. Studies involving the observation of supra-annual phenomena, although rare, reach similar conclusions in relation to Neotropical insect fauna. Therefore, it is paramount to have long-term sampling studies to obtain a more precise response of the pest populations towards the agroecosystem conditions.

  9. Air-temperature variations and ENSO effects in Indonesia, the Philippines and El Salvador. ENSO patterns and changes from 1866-1993

    Science.gov (United States)

    Harger, J. R. E.

    The major features in development of the "El Nino-Southern Oscillation" (ENSO) involve oscillation of the Pacific ocean-atmosphere in an essentially unpredictable (chaotic) fashion. The system moves between extremes of the so-called "warm events" lasting one or two years and involving movement of warm sea water from the western Pacific along the equator to impact on the west coast of the American continent and "cold-events" associated with easterly trade-wind-induced flows of colder water from the eastern Pacific towards the west. Historical data indicate that ENSO years as experienced by the Island of Java are either much warmer than non-ENSO years or only slightly, if at all, warmer than normal (non-ENSO) years. Hot-dry years within the ENSO warm event cycle are almost always followed by cooler wet years and vice versa. This pattern also extends to include the year immediately following the terminal year of an ENSO warm event set. The initial year of an ENSO warm event set may be either hot with a long dry season or relatively cool (nearer to the temperature of a non-ENSO year) and having a short dry season. In recent years, since 1950, of the 9 ENSO warm events, the initial year tends to have been hot and dry for 6 (1951, 1957, 1963, 1972, 1982, 1991) and neutral or cool and wet for 3 (1968, 1976, 1986). An area of 88,000 ha burned in 1991 (Jakarta Post 30 November 1991) largely in Kalimantan in association with the 1991-1992 ENSO event, an extensive pall of smoke developed over Kalimantan, Singapore and Malaysia during September-October of 1991. Surface vegetation-based fires continued to burn in East Kalimantan as of 29 April 1992 and extended into the 1992 dry season, in response to the ENSO conditions carrying forward from 1991. The increasing annual trend in air-temperature exhibited by the mean monthly values over the period 1866-1993, for the Jakarta and the Semarang data taken together is 1.64°C (0.0132°C per year from 25.771 to 27.409°C). The major

  10. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific.

    Science.gov (United States)

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-12-18

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other.

  11. ENSO impacts on flood risk at the global scale

    Science.gov (United States)

    Ward, Philip; Dettinger, Michael; Jongman, Brenden; Kummu, Matti; Winsemius, Hessel

    2014-05-01

    We present the impacts of El Niño Southern Oscillation (ENSO) on society and the economy, via relationships between ENSO and the hydrological cycle. We also discuss ways in which this knowledge can be used in disaster risk management and risk reduction. This contribution provides the most recent results of an ongoing 4-year collaborative research initiative to assess and map the impacts of large scale interannual climate variability on flood hazard and risk at the global scale. We have examined anomalies in flood risk between ENSO phases, whereby flood risk is expressed in terms of indicators such as: annual expected damage; annual expected affected population; annual expected affected Gross Domestic Product (GDP). We show that large anomalies in flood risk occur during El Niño or La Niña years in basins covering large parts of the Earth's surface. These anomalies reach statistical significance river basins covering almost two-thirds of the Earth's surface. Particularly strong anomalies exist in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially La Niña anomalies), and parts of South America. We relate these anomalies to possible causal relationships between ENSO and flood hazard, using both modelled and observed data on flood occurrence and extremity. The implications for flood risk management are many-fold. In those regions where disaster risk is strongly influenced by ENSO, the potential predictably of ENSO could be used to develop probabilistic flood risk projections with lead times up to several seasons. Such data could be used by the insurance industry in managing risk portfolios and by multinational companies for assessing the robustness of their supply chains to potential flood-related interruptions. Seasonal forecasts of ENSO influence of peak flows could also allow for improved flood early warning and regulation by dam operators, which could also reduce overall risks

  12. Solar cycle modulation of ENSO variability

    Science.gov (United States)

    Kodera, Kunihiko; Thiéblemont, Rémi

    2016-04-01

    Inspired by the work of Labitzke and van Loon on solar/QBO modulation in the stratosphere, Barnett (1989) conducted an investigation on the relationship between the the biannual component of the sea surface temperature (SST) in the equatorial eastern Pacific and the solar activity. He found that the amplitude of biannual component of the SST (BO) is modulated by the 11-year solar cycle: the amplitude of the BO is large during a period of low solar activity, but small during high solar activity. More than 25-years or two solar cycle has passed since his finding, but the relationship still holds. In order to get an insight into the mechanism of the solar modulation of the El Niño Southern Oscillation (ENSO), here we have revisited this problem. Solar cycle modulation of the BO in the tropical SST is discernible since the end of the 19th centuries, but the amplitude modulation is particularly clear after 1960's. The composite analysis of the SST based on the amplitude of the BO during 1958-2012, indicates that the amplitude of BO is larger when the equatorial Pacific temperature anomalies are high in the central Pacific, but low in the eastern Pacific. Central Pacific anomalies extend to the northern hemisphere, while those in the central Pacific spread toward the southern hemisphere. In short, this anomalous SST pattern is similar to the El Niño modoki. In this connection, it should be noted that the solar signal in the tropical SST also exhibits a similar pattern. This suggests that the modulation of the ENSO variability by the solar cycle originates through a modulation of the El Niño Modoki rather than the canonical El Nino.

  13. Correlations between El Niño Southern Oscillation and changes in Nearctic-Neotropic migrant condition in Central America

    Science.gov (United States)

    J.D. Wolfe; C.J. Ralph

    2009-01-01

    Climatic changes induced by the El Niño–Southern Oscillation (ENSO) commonly influence biological systems; however, climatic variability and multitrophic interactions within tropical latitudes remain poorly understood. We examined relationships between migrant condition and ENSO during spring migration in Costa Rica. Our study is based on correlating an ENSO index with...

  14. Impact of 1990-'95 ENSO/WEPO event on Indian monsoon rainfall

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The negative phase of the 1990-'95 El Nino-Southern Oscillation (ENSO) and the associated Warming of the Equatorial Pacific Ocean (WEPO) was the longest observed in the 113 years of its recorded history, compared to its normal duration of 1 to 2...

  15. The 1950-1998 warm ENSO events and regional implications to ...

    African Journals Online (AJOL)

    1998 seasonal El Niño/Southern Oscillation (ENSO) is investigated in 502 rivers gauged in 9 countries of the Southern African region. We found some evidence of possible links between available surface water resources in terms of mean annual ...

  16. A possible explanation for the divergent projection of ENSO amplitude change under global warming

    Science.gov (United States)

    Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.

  17. Do ENSO and Coastal Development Enhance Coastal Burial of Terrestrial Carbon?

    Science.gov (United States)

    Macreadie, Peter I; Rolph, Timothy C; Boyd, Ron; Schröder-Adams, Claudia J; Skilbeck, Charles G

    2015-01-01

    Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensification--both of which are predicted to increase over the coming century--can enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial-marine carbon connectivity into global carbon budgets.

  18. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability

    Science.gov (United States)

    Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook

    2018-06-01

    El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.

  19. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    Science.gov (United States)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  20. On the role of ozone feedback in the ENSO amplitude response under global warming

    Science.gov (United States)

    Nowack, P. J.; Braesicke, P.; Abraham, N. L.; Pyle, J. A.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific is of key importance to global climate and weather. However, climate models still disagree on the ENSO's response under climate change. Here we show that typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations (i.e. standard abrupt 4xCO2). We mainly explain this effect by the lapse rate adjustment of the tropical troposphere to ozone changes in the upper troposphere and lower stratosphere (UTLS) under 4xCO2. The ozone-induced lapse rate changes modify the Walker circulation response to the CO2 forcing and consequently tropical Pacific surface temperature gradients. Therefore, not including ozone feedbacks increases the number of extreme ENSO events in our model. In addition, we demonstrate that even if ozone changes in the tropical UTLS are included in the simulations, the neglect of the ozone response in the middle-upper stratosphere still leads to significantly larger ENSO amplitudes (compared to simulations run with a fully interactive atmospheric chemistry scheme). Climate modeling studies of the ENSO often neglect changes in ozone. Our results imply that this could affect the inter-model spread found in ENSO projections and, more generally, surface climate change simulations. We discuss the additional complexity in quantifying such ozone-related effects that arises from the apparent model dependency of chemistry-climate feedbacks and, possibly, their range of surface climate impacts. In conclusion, we highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability. Reference: Nowack PJ, Braesicke P, Abraham NL, and Pyle JA (2017), On the role of ozone feedback in the ENSO amplitude response under global warming, Geophys. Res. Lett. 44, 3858-3866, doi:10.1002/2016GL072418.

  1. ENSO, IOD and Indian Summer Monsoon in NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Samir; Chaudhari, H.S.; Saha, Subodh K.; Dhakate, Ashish; Yadav, R.K.; Salunke, Kiran; Mahapatra, S.; Rao, Suryachandra A. [Indian Institute of Tropical Meteorology, Pashan, Pune (India)

    2012-11-15

    El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Indian Summer Monsoon rainfall features are explored statistically and dynamically using National Centers for Environment Prediction (NCEP) Climate Forecast System (CFSv1) freerun in relation to observations. The 100 years of freerun provides a sufficiently long homogeneous data set to find out the mean state, periodicity, coherence among these climatic events and also the influence of ENSO and IOD on the Indian monsoon. Differences in the occurrence of seasonal precipitation between the observations and CFS freerun are examined as a coupled ocean-atmosphere system. CFS simulated ENSO and IOD patterns and their associated tropical Walker and regional Hadley circulation in pure ENSO (PEN), pure IOD (PIO) and coexisting ENSO-IOD (PEI) events have some similarity to the observations. PEN composites are much closer to the observation as compared to PIO and PEI composites, which suggest a better ENSO prediction and its associated teleconnections as compared to IOD and combined phenomenon. Similar to the observation, the model simulation also show that the decrease in the Indian summer monsoon rainfall during ENSO phases is associated with a descending motion of anomalous Walker circulation and the increase in the Indian summer monsoon rainfall during IOD phase is associated with the ascending branch of anomalous regional Hadley circulation. During co-existing ENSO and IOD years, however, the fate of Indian summer monsoon is dictated by the combined influence of both of them. The shift in the anomalous descending and ascending branches of the Walker and Hadley circulation may be somewhat attributed to the cold (warm) bias over eastern (western) equatorial Indian Ocean basin, respectively in the model. This study will be useful for identifying some of the limitations of the CFS model and consequently it will be helpful in improving the model to unravel the realistic coupled ocean-atmosphere interactions

  2. The ENSO-pandemic influenza connection: coincident or causal?

    Science.gov (United States)

    Shaman, J. L.; Lipsitch, M.

    2011-12-01

    The El Niño-Southern Oscillation (ENSO) is a coupled ocean-atmosphere system in the tropical Pacific, which affects weather conditions, including temperatures, precipitation, winds and storm activity, across the planet. ENSO has two extreme phases marked by either warmer (El Niño) or cooler (La Niña) than average sea surface temperatures in the central equatorial Pacific. We find that the 4 most recent human influenza pandemics (1918, 1957, 1968, 2009), all of which were first identified in boreal spring or summer, were preceded by La Niña conditions in the equatorial Pacific. Changes in ENSO have been shown to alter the migration, stopover time, fitness and interspecies mixing of migratory birds, and consequently likely affect their mixing with domestic animals. We hypothesize that La Niña conditions bring divergent influenza subtypes together in some parts of the world and favor the reassortment of influenza through simultaneous multiple infection of individual hosts and the generation of novel pandemic strains. We propose approaches to test this hypothesis using influenza population genetics, virus prevalence in various host species, and avian migration patterns.

  3. ENSO activity during the last climate cycle using Individual Foraminifera Analysis

    Science.gov (United States)

    Leduc, G.; Vidal, L.; Thirumalai, K.

    2017-12-01

    The El Niño / Southern Oscillation (ENSO) is the principal mode of interannual climate variability and affects key climate parameters such as low-latitude rainfall variability. Recent climate modeling experiments tend to suggest an increase in the frequency of both El Niño and La Niña events in the future, but these results remain model-dependent and require to be validated by paleodata-model comparisons. Fossil corals indicate that the ENSO variance during the 20th century is particularly high as compared to other time periods of the Holocene. Beyond the Holocene, however, little is known on past ENSO changes, which makes difficult to test paleoclimate model simulations that are used to study the ENSO sensitivity to various types of forcings. We have expanded an Individual Foraminifera Analysis (IFA) dataset using the thermocline-dwelling N. dutertrei on a marine core collected in the Panama Basin (Leduc et al., 2009), that has proven to be a skillful way to reconstruct the ENSO (Thirumalai et al., 2013). Our new IFA dataset comprehensively covers the Holocene, allowing to verify how the IFA method compares with ENSO reconstructions using corals. The dataset then extends back in time to Marine Isotope Stage 6 (MIS), with a special focus the last deglaciation and Termination II (MIS5/6) time windows, as well as key time periods to tests the sensitivity of ENSO to ice volume and orbital parameters. The new dataset confirms variable ENSO activity during the Holocene and weaker activity during LGM than during the Holocene, as a recent isotope-enabled climate model simulations of the LGM suggests (Zhu et al., 2017). Such pattern is reproduced for the Termination II. Leduc, G., L. Vidal, O. Cartapanis, and E. Bard (2009), Modes of eastern equatorial Pacific thermocline variability: Implications for ENSO dynamics over the last glacial period, Paleoceanography, 24, PA3202, doi:10.1029/2008PA001701. Thirumalai, K., J. W. Partin, C. S. Jackson, and T. M. Quinn (2013

  4. The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO-IOD relationships in a global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Terray, Pascal; Kamala, Kakitha; Masson, Sebastien; Madec, Gurvan [Universite Pierre et Marie Curie, LOCEAN/IPSL, CNRS/IRD/UPMC/MNHN, Paris Cedex 05 (France); Sahai, A.K. [Indian Institute of Tropical Meteorology, Pune (India); Luo, Jing-Jia; Yamagata, Toshio [RIGC, Yokohama (Japan)

    2012-08-15

    The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Nino-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24 h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM-ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2 h SST coupling is implemented in the CGCM, the ISM-ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Nino event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model's El Nino which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM-ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum

  5. Trans-Pacific ENSO teleconnections pose a correlated risk to global agriculture

    Science.gov (United States)

    Anderson, W. B.; Seager, R.; Cane, M. A.; Baethgen, W.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability, particularly in the Pacific Basin. ENSO life-cycles tend to evolve over multiple years, as do the associated trans-Pacific ENSO teleconnections. This analysis, however, represents the first attempt to characterize the structure of the risk posed by ENSO to wheat, maize and soybean production across the Pacific Basin. Our results indicate that most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the midlatitudes that spans the Pacific Basin. This teleconnection directly links the soybean and maize growing seasons of the US, Mexico and China. It also connects the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US. While the prospect of ENSO forcing simultaneous droughts in major food producing regions seems disastrous, there may be a silver lining from the perspective of global food security: trans-Pacific ENSO teleconnections to yields are often offsetting between major producing regions in the eastern and western portions of the Pacific Basin. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in China, Mexico and northeast Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Finally, we investigate how trade networks interact with this structure of ENSO

  6. A metric for quantifying El Niño pattern diversity with implications for ENSO-mean state interaction

    Science.gov (United States)

    Lemmon, Danielle E.; Karnauskas, Kristopher B.

    2018-04-01

    Recent research on the El Niño-Southern Oscillation (ENSO) phenomenon increasingly reveals the highly complex and diverse nature of ENSO variability. A method of quantifying ENSO spatial pattern uniqueness and diversity is presented, which enables (1) formally distinguishing between unique and "canonical" El Niño events, (2) testing whether historical model simulations aptly capture ENSO diversity by comparing with instrumental observations, (3) projecting future ENSO diversity using future model simulations, (4) understanding the dynamics that give rise to ENSO diversity, and (5) analyzing the associated diversity of ENSO-related atmospheric teleconnection patterns. Here we develop a framework for measuring El Niño spatial SST pattern uniqueness and diversity for a given set of El Niño events using two indices, the El Niño Pattern Uniqueness (EPU) index and El Niño Pattern Diversity (EPD) index, respectively. By applying this framework to instrumental records, we independently confirm a recent regime shift in El Niño pattern diversity with an increase in unique El Niño event sea surface temperature patterns. However, the same regime shift is not observed in historical CMIP5 model simulations; moreover, a comparison between historical and future CMIP5 model scenarios shows no robust change in future ENSO diversity. Finally, we support recent work that asserts a link between the background cooling of the eastern tropical Pacific and changes in ENSO diversity. This robust link between an eastern Pacific cooling mode and ENSO diversity is observed not only in instrumental reconstructions and reanalysis, but also in historical and future CMIP5 model simulations.

  7. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific

    OpenAIRE

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2005-01-01

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance...

  8. Climate Prediction Center - The ENSO Cycle

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > El Niño/La Niña > The ENSO Cycle ENSO Cycle Banner Climate for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College

  9. La pluviométrie au Pérou pendant les phases ENSO et LNSO

    Directory of Open Access Journals (Sweden)

    1998-01-01

    Full Text Available Les données mensuelles (1960-1990 de précipitations de 21 stations situées dans les trois domaines physiques du Pérou (côte, Andes et plaine amazonienne sont analysées lors des phases ENSO et LNSO de l’Oscillation Australe du Pacifique. Ce n’est qu’à Piura, dans la région côtière du Nord, que les excédents sont significatifs en phase ENSO (test de Kolmogorov-Smirnov mais les volumes précipités sont très différents d’un événement à l’autre. Ailleurs, n’apparaît pas de différence significative entre les pluies des phases ENSO (ou LNSO et celles des périodes normales. Toutefois, la pluviométrie est souvent déficitaire dans les Andes en phase ENSO en période LNSO, elle est également déficitaire au Sud des Andes, mais plus souvent excédentaire au Nord. Dans la plaine amazonienne, la variabilité spatio-temporelle est trop importante lors des deux phases pour que soit esquissé un comportement général. LA PLUVIOMETRÍA EN EL PERÚ DURANTE LAS FASES ENSO Y LNSO. Los datos mensuales (1960-1990 de precipitación de 21 estaciones ubicadas en la Costa, la Sierra y la Selva de Perú son estudiados durante las fases ENSO y LNSO de la Oscilación del Sur del Pacífico. Las lluvias de Piura, en el norte de la Costa, son las únicas que presentan excesos significativos (test de Kolmogorov-Smirnov durante la fase ENSO pero los volúmenes cambian mucho de un evento a otro. No hay, en otros lugares, diferencia significativa entre las lluvias de las fases ENSO (o LNSO y las lluvias de años normales. Pero, muchas veces, la pluviosidad es deficitaria en los Andes durante los ENSO durante los eventos LNSO, las lluvias son también deficitarias en los Andes del Sur, pero más veces hay excesos en el Norte. En la Selva Amazónica, la variabilidad espacio-temporal es demasiado grande para dibujar un comportamiento general. RAINFALL IN PERU DURING THE ENSO AND LNSO PHASES. Monthly rainfall data (1960-1990 taken from 21 stations in three

  10. Linear dynamical modes as new variables for data-driven ENSO forecast

    Science.gov (United States)

    Gavrilov, Andrey; Seleznev, Aleksei; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen

    2018-05-01

    A new data-driven model for analysis and prediction of spatially distributed time series is proposed. The model is based on a linear dynamical mode (LDM) decomposition of the observed data which is derived from a recently developed nonlinear dimensionality reduction approach. The key point of this approach is its ability to take into account simple dynamical properties of the observed system by means of revealing the system's dominant time scales. The LDMs are used as new variables for empirical construction of a nonlinear stochastic evolution operator. The method is applied to the sea surface temperature anomaly field in the tropical belt where the El Nino Southern Oscillation (ENSO) is the main mode of variability. The advantage of LDMs versus traditionally used empirical orthogonal function decomposition is demonstrated for this data. Specifically, it is shown that the new model has a competitive ENSO forecast skill in comparison with the other existing ENSO models.

  11. Tropical cyclone prediction skills - MJO and ENSO dependence in S2S data sets

    Science.gov (United States)

    Lee, C. Y.; Camargo, S.; Vitart, F.; Sobel, A. H.; Tippett, M.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO) are two important climate controls on tropical cyclone (TC) activity. The seasonal prediction skill of dynamical models is determined in large part by their accurate representations of the ENSO-TC relationship. Regarding intraseasonal TC variability, observations suggest MJO to be the primary control. Given the ongoing effort to develop dynamical seasonal-to-subseasonal (S2S) TC predictions, it is important to examine whether the global models, running on S2S timescales, are able to reproduce these known ENSO-TC and MJO-TC relationships, and how this ability affects forecasting skill. Results from the S2S project (from F. Vitart) suggest that global models have skill in predicting MJO phase with up to two weeks of lead time (four weeks for ECMWF). Meanwhile, our results show that, qualitatively speaking, the MJO-TC relationship in storm genesis is reasonably captured, with some models (e.g., ECMWF, BoM, NCEP, MetFr) performing better than the others. However, we also find that model skill in predicting basin-wide genesis and accumulated cyclone energy (ACE) are mainly due to the models' ability to capture the climatological seasonality. Removing the seasonality significantly reduces the models' skill; even the best model (ECMWF) in the most reliable basin (western north Pacific and Atlantic) has very little skill (close to 0.1 in Brier skill score for genesis and close to 0 in rank probability skill score for ACE). This brings up the question: do any factors contribute to intraseasonal TC prediction skill other than seasonality? Is the low skill, after removing the seasonality, due to poor MJO and ENSO simulations, or to poor representation of other ENSO-TC or MJO-TC relationships, such as ENSO's impact on the storm tracks? We will quantitatively discuss the dependence of the TC prediction skill on ENSO and MJO, focusing on Western North Pacific and Atlantic, where we have sufficient

  12. ENSO's non-stationary and non-Gaussian character: the role of climate shifts

    Science.gov (United States)

    Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.

    2009-07-01

    El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all

  13. A synthesis of ENSO effects on drylands in Australia, North America and South America

    Directory of Open Access Journals (Sweden)

    M. Holmgren

    2006-01-01

    Full Text Available Fundamentally, El Niño Southern Oscillation (ENSO is a climatic and oceanographic phenomenon, but it has profound effects on terrestrial ecosystems. Although the ecological effects of ENSO are becoming increasingly known from a wide range of terrestrial ecosystems (Holmgren et al., 2001, their impacts have been more intensively studied in arid and semiarid systems. In this brief communication, we summarize the main conclusions of a recent symposium on the effects of ENSO in these ecosystems, which was convened as part of the First Alexander von Humboldt International Conference on the El Niño Phenomenon and its Global Impact, in Guayaquil, Ecuador, from 16–20 May 2005. Participants in the symposium shared results and perspectives from research conducted in North and South America and Australia, regions where the ecological effects of ENSO have been studied in depth. Although the reports covered a wide array of organisms and ecological systems (Fig. 1, a recurring theme was the strong increase in rainfall associated with ENSO events in dry ecosystems (during the El Niño phase of the oscillation in the Americas and the La Niña phase in Australia. Because inter-annual variability in precipitation is such a strong determinant of productivity in arid and semiarid ecosystems, increased ENSO rainfall is crucial for plant recruitment, productivity and diversity in these ecosystems. Several long-term studies show that this pulse in primary productivity causes a subsequent increase in herbivores, followed by an increase in carnivores, with consequences for changes in ecosystem structure and functioning that can be quite complex.

  14. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  15. ENSO surface shortwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2008-09-01

    Full Text Available We have studied the spatial and temporal variation of the downward shortwave radiation (DSR at the surface of the Earth during ENSO events for a 21-year period over the tropical and subtropical Pacific Ocean (40° S–40° N, 90° E–75° W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database, reanalysis data from NCEP/NCAR for the key atmospheric and surface input parameters, and aerosol parameters from GADS (acronyms explained in main text. A clear anti-correlation was found between the downward shortwave radiation anomaly (DSR-A time-series, in the region 7° S–5° N 160° E–160° W located west of the Niño-3.4 region, and the Niño-3.4 index time-series. In this region where the highest in absolute value DSR anomalies are observed, the mean DSR anomaly values range from −45 Wm−2 during El Niño episodes to +40 Wm−2 during La Niña events. Within the Niño-3.4 region no significant DSR anomalies are observed during the cold ENSO phase in contrast to the warm ENSO phase. A high correlation was also found over the western Pacific (10° S–5° N, 120–140° E, where the mean DSR anomaly values range from +20 Wm−2 to −20 Wm−2 during El Niño and La Niña episodes, respectively. There is also convincing evidence that the time series of the mean downward shortwave radiation anomaly in the off-equatorial western Pacific region 7–15° N 150–170° E, precedes the Niño-3.4 index time-series by about 7 months and the pattern of this anomaly is indicative of ENSO operating through the mechanism of the western Pacific oscillator. Thus, the downward shortwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to assess whether or not El Niño or La Niña conditions prevail.

  16. Coastal upwelling along the southwest coast of India – ENSO modulation

    Directory of Open Access Journals (Sweden)

    K. Muni Krishna

    2008-06-01

    Full Text Available An index of El Niño Southern Oscillation (ENSO in the Pacific during pre monsoon season is shown to account for a significant part of the variability of coastal Sea Surface Temperature (SST anomalies measured a few months later within the wind driven southwest coast of India coastal upwelling region 7° N–14° N. This teleconnection is thought to result from an atmospheric bridge between the Pacific and north Indian Oceans, leading to warm (cold ENSO events being associated with relaxation (intensification of the Indian trade winds and of the wind-induced coastal upwelling. This ENSO related modulation of the wind-driven coastal upwelling appears to contribute to the connection observed at the basin-scale between ENSO and SST in the Arabian Sea. The ability to use this teleconnection to give warning of large changes in the southwest coast of India coastal upwelling few months in advance is successfully tested using data from 1998 and 1999 ENSO events.

  17. Source of low frequency modulation of ENSO amplitude in a CGCM

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung-Kwon [Chonbuk National University, Division of Science Education/Institute of Science Education, Jeonju (Korea); Yeh, Sang-Wook [Korea Ocean Research and Development Institute, Ansan (Korea); Dewitte, Boris [Laboratoire d' Etude en Geophysique et Oceanographie Spatiale, Toulouse (France); Jhun, Jong-Ghap [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea); Kang, In-Sik [Seoul National University, Climate Environment System Research Center (CES), Seoul (Korea)

    2007-07-15

    We study the relationship between changes in equatorial stratification and low frequency El Nino/Southern Oscillation (ENSO) amplitude modulation in a coupled general circulation model (CGCM) that uses an anomaly coupling strategy to prevent climate drifts in the mean state. The stratification is intensified at upper levels in the western and central equatorial Pacific during periods of high ENSO amplitude. Furthermore, changes in equatorial stratification are connected with subsurface temperature anomalies originating from the central south tropical Pacific. The correlation analysis of ocean temperature anomalies against an index for the ENSO modulation supports the hypothesis of the existence of an oceanic ''tunnel'' that connects the south tropical Pacific to the equatorial wave guide. Further analysis of the wind stress projection coefficient onto the oceanic baroclinic modes suggests that the low frequency modulation of ENSO amplitude is associated with a significant contribution of higher-order modes in the western and central equatorial Pacific. In the light of these results, we suggest that, in the CGCM, change in the baroclinic mode energy distribution associated with low frequency ENSO amplitude modulation have its source in the central south tropical Pacific. (orig.)

  18. Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun; Hu, Zeng-Zhen [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States)

    2012-08-15

    The evolution of El Nino-Southern Oscillation (ENSO) variability can be characterized by various ocean-atmosphere feedbacks, for example, the influence of ENSO related sea surface temperature (SST) variability on the low-level wind and surface heat fluxes in the equatorial tropical Pacific, which in turn affects the evolution of the SST. An analysis of these feedbacks requires physically consistent observational data sets. Availability of various reanalysis data sets produced during the last 15 years provides such an opportunity. A consolidated estimate of ocean surface fluxes based on multiple reanalyses also helps understand biases in ENSO predictions and simulations from climate models. In this paper, the intensity and the spatial structure of ocean-atmosphere feedback terms (precipitation, surface wind stress, and ocean surface heat flux) associated with ENSO are evaluated for six different reanalysis products. The analysis provides an estimate for the feedback terms that could be used for model validation studies. The analysis includes the robustness of the estimate across different reanalyses. Results show that one of the ''coupled'' reanalysis among the six investigated is closer to the ensemble mean of the results, suggesting that the coupled data assimilation may have the potential to better capture the overall atmosphere-ocean feedback processes associated with ENSO than the uncoupled ones. (orig.)

  19. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  20. Identification of symmetric and asymmetric responses in seasonal streamflow globally to ENSO phase

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip J.; Block, Paul

    2018-04-01

    The phase of the El Niño Southern Oscillation (ENSO) has large-ranging effects on streamflow and hydrologic conditions globally. While many studies have evaluated this relationship through correlation analysis between annual streamflow and ENSO indices, an assessment of potential asymmetric relationships between ENSO and streamflow is lacking. Here, we evaluate seasonal variations in streamflow by ENSO phase to identify asymmetric (AR) and symmetric (SR) spatial pattern responses globally and further corroborate with local precipitation and hydrological condition. The AR and SR patterns between seasonal precipitation and streamflow are identified at many locations for the first time. Our results identify strong SR patterns in particular regions including northwestern and southern US, northeastern and southeastern South America, northeastern and southern Africa, southwestern Europe, and central-south Russia. The seasonally lagged anomalous streamflow patterns are also identified and attributed to snowmelt, soil moisture, and/or cumulative hydrological processes across river basins. These findings may be useful in water resources management and natural hazards planning by better characterizing the propensity of flood or drought conditions by ENSO phase.

  1. On the role of ozone feedback in the ENSO amplitude response under global warming.

    Science.gov (United States)

    Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A

    2017-04-28

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.

  2. A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

    Directory of Open Access Journals (Sweden)

    Belén Rodríguez-Fonseca

    2016-06-01

    Full Text Available The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years and modeling projects (e.g., CMIP permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.

  3. Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO

    Science.gov (United States)

    Manatsa, Desmond; Mushore, Terrence; Lenouo, Andre

    2017-01-01

    The provision of timely and reliable climate information on which to base management decisions remains a critical component in drought planning for southern Africa. In this observational study, we have not only proposed a forecasting scheme which caters for timeliness and reliability but improved relevance of the climate information by using a novel drought index called the standardised precipitation evapotranspiration index (SPEI), instead of the traditional precipitation only based index, the standardised precipitation index (SPI). The SPEI which includes temperature and other climatic factors in its construction has a more robust connection to ENSO than the SPI. Consequently, the developed ENSO-SPEI prediction scheme can provide quantitative information about the spatial extent and severity of predicted drought conditions in a way that reflects more closely the level of risk in the global warming context of the sub region. However, it is established that the ENSO significant regional impact is restricted only to the period December-March, implying a revisit to the traditional ENSO-based forecast scheme which essentially divides the rainfall season into the two periods, October to December and January to March. Although the prediction of ENSO events has increased with the refinement of numerical models, this work has demonstrated that the prediction of drought impacts related to ENSO is also a reality based only on observations. A large temporal lag is observed between the development of ENSO phenomena (typically in May of the previous year) and the identification of regional SPEI defined drought conditions. It has been shown that using the Southern Africa Regional Climate Outlook Forum's (SARCOF) traditional 3-month averaged Nino 3.4 SST index (June to August) as a predictor does not have an added advantage over using only the May SST index values. In this regard, the extended lead time and improved skill demonstrated in this study could immensely benefit

  4. The interdecadal changes of south pacific sea surface temperature in the mid-1990s and their connections with ENSO

    Science.gov (United States)

    Li, Gang; Li, Chongyin; Tan, Yanke; Bai, Tao

    2014-01-01

    The characteristic changes of South Pacific sea surface temperature anomalies (SSTAs) for the period January 1979 to December 2011, during which the 1990s Pacific pan-decadal variability (PDV) interdecadal regime shifts occurred, were examined. Empirical Orthogonal Function (EOF) analysis was applied to the monthly mean SSTA for two sub-periods: January 1979 to December 1994 (P1) and January 1996 to December 2011 (P2). Both the spatial and temporal features of the leading EOF mode for P1 and P2 showed a remarkable difference. The spatial structure of the leading EOF changed from a tripolar pattern for P1 (EOF-P1) to a dipole-like pattern for P2 (EOF-P2). Besides, EOF-P1 (EOF-P2) had significant spectral peaks at 4.6 yr (2.7 yr). EOF-P2 not only had a closer association with El Niño-Southern Oscillation (ENSO), but also showed a faster response to ENSO than EOF-P1 based on their lead-lag relationships with ENSO. During the development of ENSO, the South Pacific SSTA associated with ENSO for both P1 and P2 showed a significant eastward propagation. However, after the peak of ENSO, EOF-P1 showed a stronger persistence than EOF-P2, which still showed eastward propagation. The variability of the SSTA associated with the whole process of ENSO evolution during P1 and the SSTA associated with the development of ENSO during P2 support the existence of ocean-to-atmosphere forcing, but the SSTA associated with the decay of ENSO shows the phenomenon of atmosphere-to-ocean forcing.

  5. Paranormal phenomena

    Science.gov (United States)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  6. The complex influence of ENSO on droughts in Ecuador

    KAUST Repository

    Vicente-Serrano, S. M.

    2016-03-26

    In this study, we analyzed the influence of El Niño–Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965–2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Niño 3.4 and El Niño 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical velocity) on different time-scales of drought severity were investigated. The results showed a very complex influence of ENSO on drought behavior across Ecuador, with two regional patterns in the evolution of droughts: (1) the Andean chain with no changes in drought severity, and (2) the Western plains with less severe and frequent droughts. We also detected that drought variability in the Andes mountains is explained by the El Niño 3.4 index [sea surface temperature (SST) anomalies in the central Pacific], whereas the Western plains are much more driven by El Niño 1 + 2 index (SST anomalies in the eastern Pacific). Moreover, it was also observed that El Niño and La Niña phases enhance droughts in the Andes and Western plains regions, respectively. The results of this work could be crucial for predicting and monitoring drought variability and intensity in Ecuador. © 2016 Springer-Verlag Berlin Heidelberg

  7. Impacts of a Pinatubo-size volcanic eruption on ENSO

    KAUST Repository

    Predybaylo, Evgeniya

    2017-01-16

    Observations and model simulations of the climate responses to strong explosive low-latitude volcanic eruptions suggest a significant increase in the likelihood of El Niño during the eruption and posteruption years, though model results have been inconclusive and have varied in magnitude and even sign. In this study, we test how this spread of responses depends on the initial phase of El Niño-Southern Oscillation (ENSO) in the eruption year and on the eruption\\'s seasonal timing. We employ the Geophysical Fluid Dynamics Laboratory CM2.1 global coupled general circulation model to investigate the impact of the Pinatubo 1991 eruption, assuming that in 1991 ENSO would otherwise be in central or eastern Pacific El Niño, La Niña, or neutral phases. We obtain statistically significant El Niño responses in a year after the eruption for all cases except La Niña, which shows no response in the eastern equatorial Pacific. The eruption has a weaker impact on eastern Pacific El Niños than on central Pacific El Niños. We find that the ocean dynamical thermostat and (to a lesser extent) wind changes due to land-ocean temperature gradients are the main feedbacks affecting El Niño development after the eruption. The El Niño responses to eruptions occurring in summer are more pronounced than for winter and spring eruptions. That the climate response depends on eruption season and initial ENSO phase may help to reconcile apparent inconsistencies among previous studies.

  8. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate*

    Energy Technology Data Exchange (ETDEWEB)

    Bonfils, Céline J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-12-01

    The El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. Most climate models project an increase in the frequency of extreme El Niño events under increased greenhouse-gas (GHG) forcing. However, it is unclear how other aspects of ENSO and ENSO-driven teleconnections will evolve in the future. Here, we identify in 20th century sea-surface temperature (SST) observations a time-invariant ENSO-like (ENSOL) pattern that is largely uncontaminated by GHG forcing. We use this pattern to investigate the future precipitation (P) response to ENSO-like SST anomalies. Models that better capture observed ENSOL characteristics produce P teleconnection patterns that are in better accord with observations and more stationary in the 21st century. We decompose the future P response to ENSOL into the sum of three terms: (1) the change in P mean state, (2) the historical P response to ENSOL, and (3) a future enhancement in the P response to ENSOL. In many regions, this last term can aggravate the P extremes associated with ENSO variability. This simple decomposition allows us to identify regions likely to experience ENSOL-induced P changes that are without precedent in the current climate.

  9. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  10. An Ensemble Approach to Understanding the ENSO Response to Climate Change

    Science.gov (United States)

    Stevenson, S.; Capotondi, A.; Fasullo, J.; Otto-Bliesner, B. L.

    2017-12-01

    The dynamics of the El Nino/Southern Oscillation (ENSO) are known to be sensitive to changes in background climate conditions, as well as atmosphere/ocean feedbacks. However, the degree to which shifts in ENSO characteristics can be robustly attributed to external climate forcings remains unknown. Efforts to assess these changes in a multi-model framework are subject to uncertainties due to both differing model physics and internal ENSO variability. New community ensembles created at the National Center for Atmospheric Research and the NOAA Geophysical Fluid Dynamics Laboratory are ideally suited to addressing this problem, providing many realizations of the climate of the 850-2100 period with a combination of both natural and anthropogenic climate forcing factors. Here we analyze the impacts of external forcing on El Nino and La Nina evolution using four sets of simulations: the CESM Last Millennium Ensemble (CESM-LME), which covers the 850-2005 period and provides long-term context for forced responses; the Large Ensemble (CESM-LE), which includes 20th century and 21st century (RCP8.5) projections; the Medium Ensemble (CESM-ME), which is composed of 21st century RCP4.5 projections; and a large ensemble with the GFDL ESM2M, which includes 20th century and RCP8.5 projections. In the CESM, ENSO variance increases slightly over the 20th century in all ensembles, with the effects becoming much larger during the 21st. The slower increase in variance over the 20th century is shown to arise from compensating influences from greenhouse gas (GHG) and anthropogenic aerosol emissions, which give way to GHG-dominated effects by 2100. However, the 21st century variance increase is not robust: CESM and the ESM2M differ drastically in their ENSO projections. The mechanisms for these inter-model differences are discussed, as are the implications for the design of future multi-model ENSO projection experiments.

  11. ENSO-driven nutrient variability recorded by central equatorial Pacific corals

    Science.gov (United States)

    LaVigne, M.; Nurhati, I. S.; Cobb, K. M.; McGregor, H. V.; Sinclair, D. J.; Sherrell, R. M.

    2012-12-01

    Recent evidence for shifts in global ocean primary productivity suggests that surface ocean nutrient availability is a key link between global climate and ocean carbon cycling. Time-series records from satellite, in situ buoy sensors, and bottle sampling have documented the impact of the El Niño Southern Oscillation (ENSO) on equatorial Pacific hydrography and broad changes in biogeochemistry since the late 1990's, however, data are sparse prior to this. Here we use a new paleoceanographic nutrient proxy, coral P/Ca, to explore the impact of ENSO on nutrient availability in the central equatorial Pacific at higher-resolution than available from in situ nutrient data. Corals from Christmas (157°W 2°N) and Fanning (159°W 4°N) Islands recorded a well-documented decrease in equatorial upwelling as a ~40% decrease in P/Ca during the 1997-98 ENSO cycle, validating the application of this proxy to Pacific Porites corals. We compare the biogeochemical shifts observed through the 1997-98 event with two pre-TOGA-TAO ENSO cycles (1982-83 and 1986-87) reconstructed from a longer Christmas Island core. All three corals revealed ~30-40% P/Ca depletions during ENSO warming as a result of decreased regional wind stress, thermocline depth, and equatorial upwelling velocity. However, at the termination of each El Niño event, surface nutrients did not return to pre-ENSO levels for ~4-12 months after, SST as a result of increased biological draw down of surface nutrients. These records demonstrate the utility of high-resolution coral nutrient archives for understanding the impact of tropical Pacific climate on the nutrient and carbon cycling of this key region.

  12. ENSO Effect on East Asian Tropical Cyclone Landfall via Changes in Tracks and Genesis in a Statistical Model

    Science.gov (United States)

    Yonekura, Emmi; Hall, Timothy M.

    2014-01-01

    Improvements on a statistical tropical cyclone (TC) track model in the western North Pacific Ocean are described. The goal of the model is to study the effect of El Nino-Southern Oscillation (ENSO) on East Asian TC landfall. The model is based on the International Best-Track Archive for Climate Stewardship (IBTrACS) database of TC observations for 1945-2007 and employs local regression of TC formation rates and track increments on the Nino-3.4 index and seasonally varying climate parameters. The main improvements are the inclusion of ENSO dependence in the track propagation and accounting for seasonality in both genesis and tracks. A comparison of simulations of the 1945-2007 period with observations concludes that the model updates improve the skill of this model in simulating TCs. Changes in TC genesis and tracks are analyzed separately and cumulatively in simulations of stationary extreme ENSO states. ENSO effects on regional (100-km scale) landfall are attributed to changes in genesis and tracks. The effect of ENSO on genesis is predominantly a shift in genesis location from the southeast in El Nino years to the northwest in La Nina years, resulting in higher landfall rates for the East Asian coast during La Nina. The effect of ENSO on track propagation varies seasonally and spatially. In the peak activity season (July-October), there are significant changes in mean tracks with ENSO. Landfall-rate changes from genesis- and track-ENSO effects in the Philippines cancel out, while coastal segments of Vietnam, China, the Korean Peninsula, and Japan show enhanced La Nina-year increases.

  13. The multidecadal variations of the interannual relationship between the East Asian summer monsoon and ENSO in a coupled model

    Science.gov (United States)

    Liu, Bo; Huang, Gang; Hu, Kaiming; Wu, Renguang; Gong, Hainan; Wang, Pengfei; Zhao, Guijie

    2017-10-01

    This study investigates the multidecadal variations of the interannual relationship between the East Asian summer monsoon (EASM) and El Niño-Southern Oscillation (ENSO) in 1000-year simulation of a coupled climate model. The interannual relationship between ENSO and EASM has experienced pronounced changes throughout the 1000-year simulation. During the periods with significant ENSO-EASM relationship, the ENSO-related circulation anomalies show a Pacific-Japan (PJ)-like pattern with significant wave-activity flux propagating from the tropics to the north in lower troposphere and from the mid-latitudes to the south in upper troposphere. The resultant ENSO-related precipitation anomalies are more (less) than normal over the East Asia (western North Pacific) in the decaying summers of El Niño events. In contrast, the circulation and precipitation anomalies are weak over East Asia-western North Pacific during the periods with weak ENSO-EASM relationship. Based on the energy conversion analysis, the related anomalies achieve barotropic and baroclinic energy from the mean flow during the periods with strong ENSO-EASM relationship. On the contrary, during the low-correlation periods, the energy conversion is too weak to form the link between the tropics and mid-latitudes. The main reason for the multidecadal variations of ENSO-EASM relationship is the amplitude discrepancy of SST anomalies over the Indo-western Pacific Ocean which, in turn, leads to the intensity difference of the western North Pacific anomalous anticyclone (WPAC) and related climate anomalies.

  14. Das El Niño/Southern Oscillation-Phänomen / The El Niño/Southern Oscillation Phenomenon

    OpenAIRE

    Latif, Mojib

    2006-01-01

    Zusammenfassung Das El Niño/Southern Oscillation (ENSO)-Phänomen ist die stärkste kurzfristige natürliche Klimaschwankung auf Zeitskalen von einigen Monaten bis zu mehreren Jahren. Obwohl ENSO seinen Ursprung im äquatorialen Pazifik hat, wirkt es sich dennoch auf das globale Klima aus. ENSO resultiert aus der Wechselwirkung zwischen Ozean und Atmosphäre und ist einige Monate im voraus vorhersagbar. Es besteht die Möglichkeit, dass der anthropogene Klimawandel die ENSO-Statistik...

  15. Evaluation of the impact of ENSO on precipitation extremes in southern Brazil considering the ODP phases

    Science.gov (United States)

    Firpo, M. A.; Sansigolo, C. A.

    2011-12-01

    One of the most important modes of interannual variability from ocean-atmosphere system is the El Niño/Southern Oscillation - ENSO. The Brazil southern region belongs to the Southeast of South America, where there is a strong signal of ENSO, especially over the precipitation. This phenomenon can be modulated by low frequency climate patterns, especially the dominant pattern of North Pacific, called Pacific Decadal Oscillation (PDO). Attempting to better understand these interactions, the objective of this study was to investigate the seasonal impact of ENSO events over the Southern Brazil precipitation, taking into account the PDO phases. The dataset used in this study, consist of monthly precipitation records of six well distributed stations from southern Brazil (Rio Grande do Sul state). From these series it was calculated a unique index, which was categorized in three classes, in order to obtain the extremes: very below normal precipitation (below the percentile 10), normal precipitation (between percentile 10 and 90) and very above normal precipitation (above the percentile 90). To characterize the ENSO events, it was applied the Trenberth (1997) criteria in the index proposed by Bunge and Clarke (2009), which corrects the inconsistencies between the conventional SST index for Niño 3.4 region and the Southern Oscillation Index before 1950, going beyond the incoherence for decadal scale. For PDO, it was used the index proposed by Mantua et al. (1997). Contingency tables were constructed to analyze the seasonal, simultaneous, and 3, 6, 9 and 12 months lagged relationships between ENSO events (El Niño, neutral, La Niña), and extreme precipitation anomalies (categories), also considering the PDO phases during the 1913-1999 period. Moreover, a wavelet analysis was used to check the coherency and phase among these 3 times series during the 1913-2006 period. The Contingency Tables analysis showed that, generally, there were more positive (negative) precipitation

  16. Homoclinic phenomena in the gravitational collapse

    International Nuclear Information System (INIS)

    Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.

    1984-01-01

    A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt

  17. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Key topic / Outstanding know-how and sustainable innovations. Technical session: Reactor physics, thermo and fluid dynamics. Neutron flux oscillations phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany). Abt. Kuehlkreislauf

    2018-01-15

    The Technical Session about Neutron Flux Oscillation Phenomena was chaired by Joachim Herb (Gesellschaft fuer Anlagen und Reaktorsicherheit (GRS) GmbH) and well attended by approx. 50 listeners. It comprised of three keynotes and two technical presentations. The main topics were the significant changes of the neutron flux noise levels in different German and foreign pressurized water reactors (PWRs). For about ten years an increase in neutron noise levels has been observed in German PWRs. During the following five years the noise levels have been decreasing again. In principle, a correlation of the neutron noise levels to the use of certain fuel element types was observed and the phenomenon of neutron flux oscillations had been known since decades. Nevertheless, no self-consistent physical theory exists so far, which can explain the observed changes and the absolute levels of the observed neutron flux noise levels. Therefore, safety authorities, technical support organizations (TSO), utilities as well as research organizations showed increased interest in this topic during the last years. The results of the corresponding work as well as an outlook into soon-starting research projects were given in this session.

  18. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific.

    Science.gov (United States)

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2006-03-22

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian-zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response.

  19. Effect of AMOC collapse on ENSO in a high resolution general circulation model

    Science.gov (United States)

    Williamson, Mark S.; Collins, Mat; Drijfhout, Sybren S.; Kahana, Ron; Mecking, Jennifer V.; Lenton, Timothy M.

    2018-04-01

    We look at changes in the El Niño Southern Oscillation (ENSO) in a high-resolution eddy-permitting climate model experiment in which the Atlantic Meridional Circulation (AMOC) is switched off using freshwater hosing. The ENSO mode is shifted eastward and its period becomes longer and more regular when the AMOC is off. The eastward shift can be attributed to an anomalous eastern Ekman transport in the mean equatorial Pacific ocean state. Convergence of this transport deepens the thermocline in the eastern tropical Pacific and increases the temperature anomaly relaxation time, causing increased ENSO period. The anomalous Ekman transport is caused by a surface northerly wind anomaly in response to the meridional sea surface temperature dipole that results from switching the AMOC off. In contrast to a previous study with an earlier version of the model, which showed an increase in ENSO amplitude in an AMOC off experiment, here the amplitude remains the same as in the AMOC on control state. We attribute this difference to variations in the response of decreased stochastic forcing in the different models, which competes with the reduced damping of temperature anomalies. In the new high-resolution model, these effects approximately cancel resulting in no change in amplitude.

  20. Waves of El Nino-southern Oscillation and Influenza Pandemics

    Directory of Open Access Journals (Sweden)

    Olusegun Steven Ayodele Oluwole

    2016-04-01

    Full Text Available Influenza pandemics have occurred at irregular intervals for over 500 years, unlike seasonal influenza epidemics which occur annually. Although the risk factors are known, the basis for the timing of influenza pandemic waves are unknown. Coherence of peaks of El Niño and influenza pandemic in 2009–2010, however, suggests that both waves are coupled. This study was done to determine the relation of influenza pandemics to the peaks and waveforms of El Niño southern oscillation (ENSO. ENSO cycles from 1871–2015 which had El Niño phases were windowed from Multivariate El Niño Index. Influenza pandemic peaks were mapped to ENSO monthly time series. ENSO waveforms were compared graphically, and fitted to nonstationary cosinor models. Second order polynomial regression model was fitted to the peak and duration of El Niño. Agglomerative hierarchical cluster of ENSO waveforms was performed. All influenza pandemic peaks mapped to El Niño peaks, with lags of 0–5 months. ENSO waveforms during influenza pandemics share parameters of oscillation. Nonstationary cosinor models showed that ENSO cycles are complex waves. There was second order polynomial relationship between peak and duration of El Niños, p < 0.0001. ENSO waveforms clustered into four distinct groups. ENSO waveforms during influenza pandemics of 1889–1900, 1957–1958, and 1968–1969 linked closely. ENSO indices were significantly high from 7–16 months after onset of cycles, p < 0.0001. Surveillance for El Niño events to forecast periods of maximal transmission and survival of influenza A viruses is, therefore, crucial for public health control strategies.

  1. REDEFINING ENSO EPISODES BASED ON CHANGED CLIMATE REFERENCES

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-yan; ZHAI Pan-mao; REN Fu-min

    2005-01-01

    Through studying changes in ENSO indices relative to change of climate reference from 1961~1990 to 1971~2000, the study generated new standards to define ENSO episodes and their intensities. Then according to the new climate references and new index standards, ENSO episodes and their intensities for the period 1951 -2003 have been classified. Finally, an analysis has been performed comparing the new characteristics with the old ones for ENSO period, peak values and intensities.

  2. Comparison of Forced ENSO-Like Hydrological Expressions in Simulations of the Preindustrial and Mid-Holocene

    Science.gov (United States)

    Lewis, Sophie C.; LeGrande, Allegra N.; Schmidt, Gavin A.; Kelley, Maxwell

    2014-01-01

    Using the water isotope- and vapor source distribution (VSD) tracer-enabled Goddard Institute for Space Studies ModelE-R, we examine changing El Nino-Southern Oscillation (ENSO)-like expressions in the hydrological cycle in a suite of model experiments. We apply strong surface temperature anomalies associated with composite observed El Nino and La Nina events as surface boundary conditions to preindustrial and mid-Holocene model experiments in order to investigate ENSO-like expressions in the hydrological cycle under varying boundary conditions. We find distinct simulated hydrological anomalies associated with El Nino-like ("ENSOWARM") and La Nina-like ("ENSOCOOL") conditions, and the region-specific VSD tracers show hydrological differences across the Pacific basin between El Nino-like and La Nina-like events. The application of ENSOCOOL forcings does not produce climatological anomalies that represent the equal but opposite impacts of the ENSOWARM experiment, as the isotopic anomalies associated with ENSOWARM conditions are generally stronger than with ENSOCOOL and the spatial patterns of change distinct. Also, when the same ENSO-like surface temperature anomalies are imposed on the mid-Holocene, the hydrological response is muted, relative to the preindustrial. Mid-Holocene changes in moisture sources to the analyzed regions across the Pacific reveal potentially complex relationships between ENSO-like conditions and boundary conditions. Given the complex impacts of ENSO-like conditions on various aspects of the hydrological cycle, we suggest that proxy record insights into paleo-ENSO variability are most likely to be robust when synthesized from a network of many spatially diverse archives, which can account for the potential nonstationarity of ENSO teleconnections under different boundary conditions.

  3. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa

    Science.gov (United States)

    Endris, Hussen Seid; Lennard, Christopher; Hewitson, Bruce; Dosio, Alessandro; Nikulin, Grigory; Artan, Guleid A.

    2018-05-01

    This study examines the projected changes in the characteristics of the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) in terms of mean state, intensity and frequency, and associated rainfall anomalies over eastern Africa. Two regional climate models driven by the same four global climate models (GCMs) and the corresponding GCM simulations are used to investigate projected changes in teleconnection patterns and East African rainfall. The period 1976-2005 is taken as the reference for present climate and the far-future climate (2070-2099) under Representative Concentration Pathway 8.5 (RCP8.5) is analyzed for projected change. Analyses of projections based on GCMs indicate an El Niño-like (positive IOD-like) warming pattern over the tropical Pacific (Indian) Ocean. However, large uncertainties remain in the projected future changes in ENSO/IOD frequency and intensity with some GCMs show increase of ENSO/IOD frequency and intensity, and others a decrease or no/small change. Projected changes in mean rainfall over eastern Africa based on the GCM and RCM data indicate a decrease in rainfall over most parts of the region during JJAS and MAM seasons, and an increase in rainfall over equatorial and southern part of the region during OND, with the greatest changes in equatorial region. During ENSO and IOD years, important changes in the strength of the teleconnections are found. During JJAS, when ENSO is an important driver of rainfall variability over the region, both GCM and RCM projections show an enhanced La Niña-related rainfall anomaly compared to the present period. Although the long rains (MAM) have little association with ENSO in the reference period, both GCMs and RCMs project stronger ENSO teleconnections in the future. On the other hand, during the short rains (OND), a dipole future change in rainfall teleconnection associated with ENSO and IOD is found, with a stronger ENSO/IOD related rainfall anomaly over the eastern part of the domain

  4. A New ENSO Index Derived from Satellite Measurements of Column Ozone

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Oman, L. D.; Bhartia, P. K.

    2010-01-01

    Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.

  5. An ENSO beginning in the year 2000?

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    Several models have been developed over the last few decades to predict the advent of new ENSO events several months in advance of the actual event. None of the models have predicted a warm event beginning by the year 2000. Positive SST anomalies...

  6. On the physical causes of ENSO events and the ITCZ's extreme latitudinal displacements

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-08-01

    We predict the maximum latitudinal shifts of the Inter-Tropical convergence zone (ITCZ) over land masses due to variations in the surface or near-surface temperature fields. We also predict the mean locations of the ITCZ over oceans during northern hemisphere (NH) and southern hemisphere (SH) summers. All our predictions are shown to agree well with observations. Finally, on the basis of the association between the latitudinal location of the eastern pacific portion of the ITCZ and El Nino-Southern Oscillation (ENSO) events as well as some previous related work (Njau, 1985a; 1985b; 1986; 1987; 1988), we suggest possible physical causes of the ENSO events. (author). 39 refs, 1 fig., 2 tabs

  7. O impacto do ENSO e do dipolo do Atlântico no nordeste do Brasil

    Directory of Open Access Journals (Sweden)

    1998-01-01

    íos, conduciendo a lluvias torrenciales con inundaciones en el Sudeste y Sur de Brasil. IMPACT OF ENSO AND ATLANTIC DIPOLE IN NORTH-EASTERN BRAZIL. A brief review of the El Niño/Southern Oscillation and Atlantic Dipole phenomena has been made with relation to their impacts on Brazil, especially in the northern North-east Brazil (NEB. Anomalies in rainfall are mainly caused by the SST variations in the tropical Atlantic and equatorial Pacific oceans. The atmospheric tropical response is shown as changes in the meridional (Hadley and zonal circulation (Walker with anomalous subsidence in the drought years and accelerated vertical motion during the years with excess rainfall. In the extra-tropical latitudes, blocking phenomenon associated with a train of Rossby waves from the Pacific changes the magnitude and trajectory of the jet streams in both hemispheres, also changing the trajectory and intensity of the cold front systems, leading to torrential rains with floods in Southeast and South of Brazil.

  8. Reforecasting the ENSO Events in the Past Fifty-Seven Years (1958-2014)

    Science.gov (United States)

    Huang, B.; Shin, C. S.; Shukla, J.; Marx, L.; Balmaseda, M.; Halder, S.; Dirmeyer, P.; Kinter, J. L.

    2016-12-01

    A set of ensemble seasonal reforecasts for 1958-2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), initialized with observation-based ocean, atmosphere, land and sea ice reanalyses, including the Eu­ropean Centre for Medium-Range Weather Forecasts (ECMWF) global ocean reanalysis version 4, the ERA-40 atmospheric reanalysis, the NCEP CFS Reanalysis for atmosphere, land and sea ice, and the NASA Global Land Data Assimilation System reanalysis version 2.0 for land. The purpose is to examine a long and continuous seasonal reforecast dataset from a modern seasonal forecast system to be used by the research community. In comparison with other current reforecasts, this dataset allows us to evaluate the degree to which El Niño and Southern Oscillation (ENSO) events can be predicted, using a larger sample of events. Furthermore, we can directly compare the predictability of the ENSO events in 1960s-70s with the more widely studied ENSO events occurring since the 1980s to examine the state-of-the-art seasonal forecast system's capability at different phases of global climate change and multidecadal variability. A major concern is whether the seasonal reforecasts before 1979 have useful skill when there were fewer ocean observations. Our preliminary examination of the reforecasts shows that, although the reforecasts have lower skill in predicting the SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the ENSO onset and development for 1958-1978 is comparable to that for 1979-2014. The skill of the earlier predictions declines faster in the ENSO decaying phase because the reforecasts initialized after the summer season persistently predict lingering wind and SST anomalies in the eastern equatorial Pacific during the decaying phase of several major ENSO events in the 1960s-70s. Since the 1980s, the reforecasts initialized in fall overestimate the peak SST

  9. Tailoring wheat management to ENSO phases for increased wheat production in Paraguay

    Directory of Open Access Journals (Sweden)

    Melissa A. Ramirez-Rodrigues

    2014-01-01

    Full Text Available Reported regional wheat yields in Paraguay vary from 1 to 3 t/ha from year to year, but appear not to be correlated with El Niño-Southern Oscillation (ENSO phases. Historical weather data from two locations in representative wheat-growing regions of Paraguay, Encarnación-Itapúa and Ciudad del Este-Alto Paraná combined with crop modeling, were analyzed to optimize nitrogen (N fertilizer application rates according to the ENSO phase of a growing season. The ENSO phase of a growing season was defined based on the average of the sea surface temperature (SST anomalies in the Eastern Equatorial Pacific region for the period June–October using the El Niño region 3.0 index (Niño 3.0. Simulated average yields in Alto Paraná were higher in the drier and cooler La Niña wheat-growing seasons (average of 3.5 t/ha compared to the other phases (average of 3.2 t/ha and in Itapúa, in Neutral seasons (average of 3.8 t/ha compared to the other phases (average of 3.7 t/ha. Accordingly, optimal N fertilizer applications ranged between 20 and 60 kg N/ha between phases depending on the sowing date, soil type and initial amount of soil water content. Applying an ENSO or General Circulation Model (GCM-based forecast for ENSO-season-type specific N fertilizer applications resulted in benefits of >100 US$/ha when compared with current farmers’ practice of consistently low N fertilizer applications in Paraguay. When N management based on forecasts was compared with optimized N application without forecast, the benefits of the forecast was only up to 8 US$/ha. The ENSO-persistence-based forecast showed higher values than the GCM-based forecasts with two lead-times but lower skill. Using climate information can significantly increase current wheat yields and gross margins in Paraguay by tailoring N fertilizer applications to the Niño 3.0-defined ENSO phases, which can be forecasted with moderate skill at the beginning of the growing season.

  10. ENSO Diversity Changes Due To Global Warming In CESM-LE

    Science.gov (United States)

    Carreric, A.; Dewitte, B.; Guemas, V.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) is predicted to be modified due to global warming based on the CMIP3 and CMIP5 data bases. In particular the frequency of occurrence of extreme Eastern Pacific El Niño events is to double in the future in response to the increase in green-house gazes. Such forecast relies however on state-of-the-art models that still present mean state biases and do not simulate realistically key features of El Niño events such as its diversity which is related to the existence of at least two types of El Niño events, the Eastern Pacific (EP) El Nino and the Central Pacific (CP) El Niño events. Here we take advantage of the Community Earth System Model (CESM) Large Ensemble (LE) that provides 35 realizations of the climate of the 1920-2100 period with a combination of both natural and anthropogenic climate forcing factors, to explore on the one hand methods to detect changes in ENSO statistics and on the other hand to investigate changes in thermodynamical processes associated to the increase oceanic stratification owed to global warming. The CESM simulates realistically many aspects of the ENSO diversity, in particular the non-linear evolution of the phase space of the first two EOF modes of Sea Surface Temperature (SST) anomalies in the tropical Pacific. Based on indices accounting for the two ENSO regimes used in the literature, we show that, although there is no statistically significant (i.e. confidence level > 95%) changes in the occurrence of El Niño types from the present to the future climate, the estimate of the changes is sensitive to the definition of ENSO indices that is used. CESM simulates in particular an increase occurrence of extreme El Niño events that can vary by 28% from one method to the other. It is shown that the seasonal evolution of EP El Niño events is modified from the present to the future climate, with in particular a larger occurrence of events taking place in Austral summer in the warmer climate

  11. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years

    Science.gov (United States)

    Ouyang, R.; Liu, W.; Fu, G.; Liu, C.; Hu, L.; Wang, H.

    2014-09-01

    This paper investigates the single and combined impacts of El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) on precipitation and streamflow in China over the last century. Results indicate that the precipitation and streamflow overall decrease during El Niño/PDO warm phase periods and increase during La Niña/PDO cool phase periods in the majority of China, although there are regional and seasonal differences. Precipitation and streamflow in the Yellow River basin, Yangtze River basin and Pearl River basin are more significantly influenced by El Niño and La Niña events than is precipitation and streamflow in the Songhua River basin, especially in October and November. Moreover, significant influence of ENSO on streamflow in the Yangtze River mainly occurs in summer and autumn while in the Pearl River influence primarily occurs in the winter and spring. The precipitation and streamflow are relatively greater in the warm PDO phase in the Songhua River basin and several parts of the Yellow River basin and relatively less in the Pearl River basin and most parts of Northwest China compared to those in the cool PDO phase, though there is little significance detected by Wilcoxon signed-rank test. When considering the combined influence of ENSO and PDO, the responses of precipitation/streamflow are shown to be opposite in northern China and southern China, with ENSO-related precipitation/streamflow enhanced in northern China and decreased in southern China during the warm PDO phases, and enhanced in southern China and decreased in northern China during the cool PDO phases. It is hoped that this study will be beneficial for understanding the precipitation/streamflow responses to the changing climate and will correspondingly provide valuable reference for water resources prediction and management across China.

  12. Distribution of black flies (Diptera: Simuliidae) along an elevational gradient in the Andes Mountains of Colombia during the El Niño Southern Oscillation.

    Science.gov (United States)

    Mantilla, Juan S; Moncada, Ligia I; Matta, Nubia E; Adler, Peter H

    2018-07-01

    Vector ecology is a key factor in understanding the transmission of disease agents, with each species having an optimal range of environmental requirements. Scarce data, however, are available for how interactions of local and broad-scale climate phenomena, such as seasonality and the El Niño Southern Oscillation (ENSO), affect simuliids. We, therefore, conducted an exploratory study to examine distribution patterns of species of Simuliidae along an elevational gradient of the Otún River in the Colombian Andes, encompassing four ecoregions. Larval and pupal simuliids were sampled at 52 sites ranging from 1800 to 4750 m above sea level in dry and wet seasons and during the La Niña phase (2011-2012) and the El Niño phase (2015-2016) of the ENSO; physicochemical measurements were taken during the El Niño phase. Twenty-seven species in two genera (Gigantodax and Simulium) were collected. Species richness and occurrence in each ecoregion were influenced by elevation, seasonality, and primarily the warm El Niño and cool La Niña phases of the ENSO. The degree of change differed among ecoregions and was related to physicochemical factors, mainly with stream discharge. Some putative simuliid vectors of Leucocytozoon, such as G. misitu and S. muiscorum, markedly changed in distribution and occurrence, potentially influencing parasite transmission. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Present El Niño-ENSO events and past Super-ENSO events

    Directory of Open Access Journals (Sweden)

    1993-01-01

    Full Text Available LES ÉVÉNEMENTS ENSO ACTUELS ET LES ANCIENS ÉVÉNEMENTS SUPER-ENSO. Les événements ENSO actuels et les anciens événements Super-ENSO représentent la redistribution d’énergie et de masse dans le système terrestre, due à l’échange de momentum angulaire entre la Terre “solide” et l’hydrosphère. Les événements El Niño-ENSO actuels montrent une corrélation claire avec des décélérations interannuelles de la vitesse de rotation de la Terre: la durée du jour (LOD augmente. Bien qu’il soit généralement considéré que ces changements de rotation sont causés par l’échange de momentum angulaire avec l’atmosphère, nous démontrons ici qu’une grande partie, peut-être la majeure partie, des variations du LOD sont causées en réalité par l’échange du momentum angulaire entre la terre “solide” et l’hydrosphère dans un systéme couplé de régénération. Ce mécanisme agit aussi sur des échelles de temps qui vont de la décennie au siècle, provoquant des événements Super-ENSO. Plusieurs de ces événements ont été identifiés au cours de l’Holocène. Un événement de plus grande envergure a eu lieu à l’ère médiévale. Au cours de la période qui va de 13.5 à 9.5 Ka, les changements importants peuvent représenter des événements Mega-ENSO. Au cours des âges glaciaires, avec une vitesse de rotation plus grande, il est probable que les événements ENSO-El Niño furent absents. Dans les enregistrements du passé, de courte durée, les empreintes d’événements Super-ENSO doivent étre beaucoup plus fréquents que ceux de véritables ENSO interannuels, simplement parce que ces derniers sont trop brefs et généralement trop légers. ACTUALES EVENTOS EL NIÑO-ENSO Y ANTIGUOS EVENTOS SUPER-ENSO. Los actuales eventos ENSO y los antiguos eventos Super-ENSO representan la redistribución de energía y masa en el sistema terrestre, debido al intercambio de momento angular entre la Tierra “sólida” y la

  14. Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    Science.gov (United States)

    Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun

    2012-01-01

    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.

  15. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  16. Role of the upper ocean structure in the response of ENSO-like SST variability to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea); Dewitte, Boris [Laboratoire d' Etude en Geophysique et Oceanographie Spatiale, Toulouse (France); Yim, Bo Young; Noh, Yign [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea)

    2010-08-15

    The response of El Nino and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO{sub 2} concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Nino-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO

  17. Relationship between annual precipitation variability and ENSO in Southern California for the Common Era (last 2,000 years)

    Science.gov (United States)

    DU, X.; Hendy, I. L.; Hinnov, L.; Brown, E. T.; Schimmelmann, A.; Pak, D. K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has a major influence on Southern California's hydroclimate as demonstrated by both historical observations and model simulations. Santa Barbara Basin (SBB) off Southern California preserves a unique varved (i.e. annually laminated) marine sedimentary archive of modern and Holocene hydroclimate variability, notably including the transition from the regionally dry Medieval Climate Anomaly (MCA) to the wetter Little Ice Age (LIA). Here we present sub-annually resolved scanning XRF elemental counts for the last 2,000 years in SBB from core SPR0901-03KC. Titanium (associated with silicate minerals) is delivered more efficiently to SBB sediments during times of enhanced river flow and in the Mediterranean climate of Southern California, river flow only occurs after precipitation. The Ti record suggests that the precipitation frequency was reduced during the MCA except for a pluvial episode at CE 1075-1121, but increased during the LIA. Time series analysis of Ti counts indicates ENSO variability robustly increased during the intervals CE 450-520, 650-720, 980-1150, 1380-1550 and 1720-1750, and experienced relatively quiescent intervals between CE 50-150, 250-400, 550-650, 750-950, 1150-1280 and 1580-1620. Generally the LIA in Southern California is characterized by more active ENSO variability with long periodicities (4-7 yr) and multi-decadal variability (54 yr). MCA drought episodes were associated with less active ENSO. Active ENSO variability in Southern California during the last 2,000 years coincided with reconstructed southward migration of the Intertropical Convergence Zone (ITCZ) suggesting the ITCZ may play a role in the waxing and waning of ENSO teleconnections between the central Pacific and the west coast of North America.

  18. Spatiotemporal Variance of Global Horizontal Moisture Transport and the Influence of Strong ENSO Events Using ERA-Interim Reanalysis

    Science.gov (United States)

    Kutta, E. J.; Hubbart, J. A.; Svoma, B. M.; Eichler, T. P.; Lupo, A. R.

    2016-12-01

    El Nino-Southern Oscillation (ENSO) is well documented as a leading source of seasonal to inter-annual variations in global weather and climate. Strong ENSO events have been shown to alter the location and magnitude of Hadley and Walker circulations that maintain equilibrium at tropical latitudes and regulate moisture transport into mid-latitude storm tracks. Broad impacts associated with ENSO events include anomalous regional precipitation (ARP) and temperature patterns and subsequent impacts to socioeconomic and human health systems. Potential socioeconomic and human health impacts range from regional changes in water resources and agricultural productivity to local storm water management, particularly in rapidly urbanizing watersheds. Evidence is mounting to suggest that anthropogenic climate change will increase the frequency of heavy precipitation events, which compounds impacts of ARP patterns associated with strong El Nino events. Therefore, the need exists to identify common regional patterns of spatiotemporal variance of horizontal moisture flux (HMF) during months (Oct-Feb) associated with the peak intensity (Oceanic Nino Index [ONI]) of the three strongest El Nino (ONI > µ + 2σ) and La Nina (ONI hourly resolution before taking the density weighted vertical average. Long term means (LTM; 1979-2015) were quantified and the influence of strong ENSO events was assessed by quantifying deviations from the LTM for each respective covariance property during months associated with the selected ENSO events. Results reveal regions of statistically significant (CI = 0.05) differences from the LTM for the vertically integrated HMF and each covariance quantity. Broader implications of this work include potential for improved seasonal precipitation forecasts at regional scales and subsequent improvements to local water resource management. There is potential for future work objectively comparing these results with output from Earth System Models to improve

  19. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    Science.gov (United States)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  20. The Influence of ENSO to the Rainfall Variability in North Sumatra Province

    Science.gov (United States)

    Irwandi, H.; Pusparini, N.; Ariantono, J. Y.; Kurniawan, R.; Tari, C. A.; Sudrajat, A.

    2018-04-01

    The El Niño Southern Oscillation (ENSO) is a global phenomenon that affects the variability of rainfall in North Sumatra. The influence of ENSO will be different for each region. This review will analyse the influence of ENSO activity on seasonal and annual rainfall variability. In this research, North Sumatra Province will be divided into 4 (four) regions based on topographical conditions, such as: East Coast (EC), East Slope (ES), Mountains (MT), and West Coast (WC). The method used was statistical and descriptive analysis. Data used in this research were rainfall data from 15 stations / climate observation posts which spread in North Sumatera region and also anomaly data of Nino 3.4 region from period 1981-2016. The results showed that the active El Niño had an effect on the decreasing the rainfall during the period of DJF, JJA and SON in East Coast, East Slope, and Mountains with the decreasing of average percentage of annual rainfall up to 7%. On the contrary, the active La Nina had an effect on the addition of rainfall during the period DJF and JJA in the East Coast and Mountains with the increasing of average percentage of annual rainfall up to 6%.

  1. Mesoscale Convective Complexes (MCCs) over the Indonesian Maritime Continent during the ENSO events

    Science.gov (United States)

    Trismidianto; Satyawardhana, H.

    2018-05-01

    This study analyzed the mesoscale convective complexes (MCCs) over the Indonesian Maritime Continent (IMC) during the El Niño/Southern Oscillation (ENSO) events for the the15-year period from 2001 to 2015. The MCCs identified by infrared satellite imagery that obtained from the Himawari generation satellite data. This study has reported that the frequencies of the MCC occurrences at the El Niño and La Niña were higher than that of neutral conditions during DJF. Peak of MCC occurrences during DJF at La Niña and neutral condition is in February, while El Niño is in January. ENSO strongly affects the occurrence of MCC during the DJF season. The existences of the MCC were also accompanied by increased rainfall intensity at the locations of the MCC occurrences for all ENSO events. During JJA seasons, the MCC occurrences are always found during neutral conditions, El Niño and La Niña in Indian Ocean. MCC occurring during the JJA season on El Niño and neutral conditions averaged much longer than during the DJF season. In contrast, MCCs occurring in La Niña conditions during the JJA season are more rapidly extinct than during the DJF. It indicates that the influence of MCC during La Niña during the DJF season is stronger than during the JJA season.

  2. Cyclic Markov chains with an application to an intermediate ENSO model

    Directory of Open Access Journals (Sweden)

    R. A. Pasmanter

    2003-01-01

    Full Text Available We develop the theory of cyclic Markov chains and apply it to the El Niño-Southern Oscillation (ENSO predictability problem. At the core of Markov chain modelling is a partition of the state space such that the transition rates between different state space cells can be computed and used most efficiently. We apply a partition technique, which divides the state space into multidimensional cells containing an equal number of data points. This partition leads to mathematical properties of the transition matrices which can be exploited further such as to establish connections with the dynamical theory of unstable periodic orbits. We introduce the concept of most and least predictable states. The data basis of our analysis consists of a multicentury-long data set obtained from an intermediate coupled atmosphere-ocean model of the tropical Pacific. This cyclostationary Markov chain approach captures the spring barrier in ENSO predictability and gives insight also into the dependence of ENSO predictability on the climatic state.

  3. Effects of ocean initial perturbation on developing phase of ENSO in a coupled seasonal prediction model

    Science.gov (United States)

    Lee, Hyun-Chul; Kumar, Arun; Wang, Wanqiu

    2018-03-01

    Coupled prediction systems for seasonal and inter-annual variability in the tropical Pacific are initialized from ocean analyses. In ocean initial states, small scale perturbations are inevitably smoothed or distorted by the observational limits and data assimilation procedures, which tends to induce potential ocean initial errors for the El Nino-Southern Oscillation (ENSO) prediction. Here, the evolution and effects of ocean initial errors from the small scale perturbation on the developing phase of ENSO are investigated by an ensemble of coupled model predictions. Results show that the ocean initial errors at the thermocline in the western tropical Pacific grow rapidly to project on the first mode of equatorial Kelvin wave and propagate to the east along the thermocline. In boreal spring when the surface buoyancy flux weakens in the eastern tropical Pacific, the subsurface errors influence sea surface temperature variability and would account for the seasonal dependence of prediction skill in the NINO3 region. It is concluded that the ENSO prediction in the eastern tropical Pacific after boreal spring can be improved by increasing the observational accuracy of subsurface ocean initial states in the western tropical Pacific.

  4. Analysis of the Effects of ENSO and Atmospheric Rivers on Precipitation in Los Angeles County

    Science.gov (United States)

    Santacruz, A.; Lamb, K.

    2017-12-01

    The Winter 2016-2017 season in California was marked by substantial amounts of precipitation; this resulted in critically-low reservoirs filling up and the removal of most of California from drought status. The year prior was characterized by one of the strongest El Nino-Southern Oscillation (ENSO) events, though it did not produce nearly enough precipitation as the 2016-2017 season. The major contributors to the increased rainfall during the 2016-2017 season were climactic phenomenon known as atmospheric rivers (ARs), which transport water vapor through the atmosphere in narrow bands, and are known to produce extreme rain events. Determining the exact timing, landfall areas, and total precipitation amounts of ARs is currently of great interest; a recent study showed that extreme weather events are likely to increase in California in the coming years, which motivates research into how phenomenon such as ENSO and ARs play a role. Using long-term daily rain gauge data provided by the Los Angeles County Department of Public Works, we compute the precipitation volume and storm count for various locations in Los Angeles County and identify anomalies. These data will then be compared with the occurrence and intensity of AR and ENSO events by using NOAA's NOI and ESRL AR data. The results can be used to provide a better grasp of extreme climactic patterns and their effects on the amount of precipitation in the region.

  5. Impact of atmospheric model resolution on simulation of ENSO feedback processes: a coupled model study

    Science.gov (United States)

    Hua, Lijuan; Chen, Lin; Rong, Xinyao; Su, Jingzhi; Wang, Lu; Li, Tim; Yu, Yongqiang

    2018-03-01

    This study examines El Niño-Southern Oscillation (ENSO)-related air-sea feedback processes in a coupled general circulation model (CGCM) to gauge model errors and pin down their sources in ENSO simulation. Three horizontal resolutions of the atmospheric component (T42, T63 and T106) of the CGCM are used to investigate how the simulated ENSO behaviors are affected by the resolution. We find that air-sea feedback processes in the three experiments mainly differ in terms of both thermodynamic and dynamic feedbacks. We also find that these processes are simulated more reasonably in the highest resolution version than in the other two lower resolution versions. The difference in the thermodynamic feedback arises from the difference in the shortwave-radiation (SW) feedback. Due to the severely (mildly) excessive cold tongue in the lower (higher) resolution version, the SW feedback is severely (mildly) underestimated. The main difference in the dynamic feedback processes lies in the thermocline feedback and the zonal-advection feedback, both of which are caused by the difference in the anomalous thermocline response to anomalous zonal wind stress. The difference in representing the anomalous thermocline response is attributed to the difference in meridional structure of zonal wind stress anomaly in the three simulations, which is linked to meridional resolution.

  6. An MJO-Mediated Mechanism to Explain ENSO and IOD Impacts on East African Short Rains

    Science.gov (United States)

    Zaitchik, B. F.; Berhane, F.; Gnanadesikan, A.

    2015-12-01

    Previous studies have found that the El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) have significant impacts on rainfall over East Africa (EA) during the short rains (Oct-Dec). However, not all ENSO and IOD events are associated with significant precipitation anomalies over EA. Our analysis shows that the IOD and ENSO influence EA rainfall by modifying the MJO. Composite analysis of rainfall and outgoing longwave radiation data show that the MJO over the Indian Ocean (phases 2 and 3 of the Wheeler and Hendon index) is associated with significant increase in precipitation over EA during El Niño. In La Niña and non-ENSO years, the MJO over the Indian Ocean has very weak impacts on EA convection and precipitation. Although previous studies have found that El Niño / La Niña events are associated with anomalous wetness/dryness over EA, the associations are not evident in the absence of the MJO. Similarly, the IOD exhibits strong associations with EA precipitation when there is MJO activity over the Indian Ocean. During the positive phase of the IOD, the MJO over the Indian Ocean has impacts that extend to EA. In the absence of the MJO, however, the IOD shows weak associations with EA precipitation. Furthermore, there are more MJO days in the Indian Ocean during El Niño and positive IOD events, which implies stronger impacts on EA. During La Niña events more MJO days are observed in the Pacific Ocean, favoring subsidence over the western Indian Ocean and dry anomalies over EA. These observations suggest two critical MJO-related questions that must be addressed in order to explain EA short rain variability typically attributed to ENSO or IOD: first, how do ENSO and IOD modify background conditions in a way that causes Indian Ocean MJO activity to be more strongly connected to EA under El Niño and IOD positive conditions, and second, why is it that El Niño and IOD positive states slow MJO propagation over the Indian Ocean and speed it over

  7. Influence of ENSO on coastal flood hazard and exposure at the global-scale

    Science.gov (United States)

    Muis, S.; Haigh, I. D.; Guimarães Nobre, G.; Aerts, J.; Ward, P.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the dominant signal of interannual climate variability. The unusually warm (El Niño) and cold (La Niña) oceanic and atmospheric conditions in the tropical Pacific drives interannual variability in both mean and extreme sea levels, which in turn may influence the probabilities and impacts of coastal flooding. We assess the influence of ENSO on coastal flood hazard and exposure using daily timeseries from the Global Time and Surge Reanalysis (GTSR) dataset (Muis et al., 2016). As the GTSR timeseries do not include steric effects (i.e. density differences), we improve the GTSR timeseries by adding steric sea levels. Evaluation against observed sea levels shows that the including steric sea levels leads to a much better representation of the seasonal and interannual variability. We show that sea level anomalies occur during ENSO years with higher sea levels during La Niña in the South-Atlantic, Indian Ocean and the West Pacific, whereas sea levels are lower in the east Pacific. The pattern is generally inversed for El Niño. We also find an effect of ENSO in the number of people exposed to coastal flooding. Although the effect is minor at the global-scale, it may be important for flood risk management to consider at the national or sub national levels. Previous studies at the global-scale have used tide gauge observation to assess the influence of ENSO on extreme sea levels. The advantage of our approach over observations is that GTSR provides a consistent dataset with a full global coverage for the period 1979-2014. This allows us to assess ENSO's influence on sea level extremes anywhere in the world. Furthermore, it enables us to also calculate the impacts of extreme sea levels in terms of coastal flooding and exposed population. ReferencesMuis et al (2016) A global reanalysis of storm surges and extreme sea levels. Nature Communications.7:11969. doi:10.1038/ncomms11969.

  8. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale

    Science.gov (United States)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity

  9. Biennial-Aligned Lunisolar-Forcing of ENSO: Implications for Simplified Climate Models

    Science.gov (United States)

    Pukite, P. R.

    2017-12-01

    By solving Laplace's tidal equations along the equatorial Pacific thermocline, assuming a delayed-differential effective gravity forcing due to a combined lunar+solar (lunisolar) stimulus, we are able to precisely match ENSO periodic variations over wide intervals. The underlying pattern is difficult to decode by conventional means such as spectral analysis, which is why it has remained hidden for so long, despite the excellent agreement in the time-domain. What occurs is that a non-linear seasonal modulation with monthly and fortnightly lunar impulses along with a biennially-aligned "see-saw" is enough to cause a physical aliasing and thus multiple folding in the frequency spectrum. So, instead of a conventional spectral tidal decomposition, we opted for a time-domain cross-validating approach to calibrate the amplitude and phasing of the lunisolar cycles. As the lunar forcing consists of three fundamental periods (draconic, anomalistic, synodic), we used the measured Earth's length-of-day (LOD) decomposed and resolved at a monthly time-scale [1] to align the amplitude and phase precisely. Even slight variations from the known values of the long-period tides will degrade the fit, so a high-resolution calibration is possible. Moreover, a narrow training segment from 1880-1920 using NINO34/SOI data is adequate to extrapolate the cycles of the past 100 years (see attached figure). To further understand the biennial impact of a yearly differential-delay, we were able to also decompose using difference equations the historical sea-level-height readings at Sydney harbor to clearly expose the ENSO behavior. Finally, the ENSO lunisolar model was validated by back-extrapolating to Unified ENSO coral proxy (UEP) records dating to 1650. The quasi-biennial oscillation (QBO) behavior of equatorial stratospheric winds derives following a similar pattern to ENSO via the tidal equations, but with an emphasis on draconic forcing. This improvement in ENSO and QBO understanding has

  10. The influence of El Niño-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario

    Science.gov (United States)

    Fer, Istem; Tietjen, Britta; Jeltsch, Florian; Wolff, Christian

    2017-09-01

    The El Niño-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.

  11. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  12. Influence of Mean State Changes on the Structure of ENSO in a Tropical Coupled GCM.

    Science.gov (United States)

    Codron, Francis; Vintzileos, Augustin; Sadourny, Robert

    2001-03-01

    This study examines the response of the climate simulated by the Institut Pierre Simon Laplace tropical Pacific coupled general circulation model to two changes in parameterization: an improved coupling scheme at the coast, and the introduction of a saturation mixing ratio limiter in the water vapor advection scheme, which improves the rainfall distribution over and around orography. The main effect of these modifications is the suppression of spurious upwelling off the South American coast in Northern Hemisphere summer. Coupled feedbacks then extend this warming over the whole basin in an El Niño-like structure, with a maximum at the equator and in the eastern part of the basin. The mean precipitation pattern widens and moves equatorward as the trade winds weaken.This warmer mean state leads to a doubling of the standard deviation of interannual SST anomalies, and to a longer ENSO period. The structure of the ENSO cycle also shifts from westward propagation in the original simulation to a standing oscillation. The simulation of El Niño thus improves when compared to recent observed events. The study of ENSO spatial structure and lagged correlations shows that these changes of El Niño characteristics are caused by both the increase of amplitude and the modification of the spatial structure of the wind stress response to SST anomalies.These results show that both the mean state and variability of the tropical ocean can be very sensitive to biases or forcings, even geographically localized. They may also give some insight into the mechanisms responsible for the changes in ENSO characteristics due to decadal variability or climate change.

  13. Atmosphere-Ocean Variations in the Indo-Pacific Sector during ENSO Episodes.

    Science.gov (United States)

    Lau, Ngar-Cheung; Nath, Mary Jo

    2003-01-01

    The influences of El Niño-Southern Oscillation (ENSO) events on air-sea interaction in the Indian-western Pacific (IWP) Oceans have been investigated using a general circulation model. Observed monthly sea surface temperature (SST) variations in the deep tropical eastern/central Pacific (DTEP) have been inserted in the lower boundary of this model through the 1950-99 period. At all maritime grid points outside of DTEP, the model atmosphere has been coupled with an oceanic mixed layer model with variable depth. Altogether 16 independent model runs have been conducted.Composite analysis of selected ENSO episodes illustrates that the prescribed SST anomalies in DTEP affect the surface atmospheric circulation and precipitation patterns in IWP through displacements of the near-equatorial Walker circulation and generation of Rossby wave modes in the subtropics. Such atmospheric responses modulate the surface fluxes as well as the oceanic mixed layer depth, and thereby establish a well-defined SST anomaly pattern in the IWP sector several months after the peak in ENSO forcing in DTEP. In most parts of the IWP region, the net SST tendency induced by atmospheric changes has the same polarity as the local composite SST anomaly, thus indicating that the atmospheric forcing acts to reinforce the underlying SST signal.By analyzing the output from a suite of auxiliary experiments, it is demonstrated that the SST perturbations in IWP (which are primarily generated by ENSO-related atmospheric changes) can, in turn, exert notable influences on the atmospheric conditions over that region. This feedback mechanism also plays an important role in the eastward migration of the subtropical anticyclones over the western Pacific in both hemispheres.

  14. Impacts of ENSO on air-sea oxygen exchange: Observations and mechanisms

    Science.gov (United States)

    Eddebbar, Yassir A.; Long, Matthew C.; Resplandy, Laure; Rödenbeck, Christian; Rodgers, Keith B.; Manizza, Manfredi; Keeling, Ralph F.

    2017-05-01

    Models and observations of atmospheric potential oxygen (APO ≃ O2 + 1.1 * CO2) are used to investigate the influence of El Niño-Southern Oscillation (ENSO) on air-sea O2 exchange. An atmospheric transport inversion of APO data from the Scripps flask network shows significant interannual variability in tropical APO fluxes that is positively correlated with the Niño3.4 index, indicating anomalous ocean outgassing of APO during El Niño. Hindcast simulations of the Community Earth System Model (CESM) and the Institut Pierre-Simon Laplace model show similar APO sensitivity to ENSO, differing from the Geophysical Fluid Dynamics Laboratory model, which shows an opposite APO response. In all models, O2 accounts for most APO flux variations. Detailed analysis in CESM shows that the O2 response is driven primarily by ENSO modulation of the source and rate of equatorial upwelling, which moderates the intensity of O2 uptake due to vertical transport of low-O2 waters. These upwelling changes dominate over counteracting effects of biological productivity and thermally driven O2 exchange. During El Niño, shallower and weaker upwelling leads to anomalous O2 outgassing, whereas deeper and intensified upwelling during La Niña drives enhanced O2 uptake. This response is strongly localized along the central and eastern equatorial Pacific, leading to an equatorial zonal dipole in atmospheric anomalies of APO. This dipole is further intensified by ENSO-related changes in winds, reconciling apparently conflicting APO observations in the tropical Pacific. These findings suggest a substantial and complex response of the oceanic O2 cycle to climate variability that is significantly (>50%) underestimated in magnitude by ocean models.

  15. Possible influence of the ENSO phenomenon on the pathoecology of diphyllobothriasis and anisakiasis in ancient Chinchorro populations

    Directory of Open Access Journals (Sweden)

    Bernardo T Arriaza

    2010-02-01

    Full Text Available Current clinical data show a clear relationship between the zoonosis rates of Diphyllobothrium pacificum and Anisakis caused by the El Niño Southern Oscillations (ENSO phenomenon along the Chilean coast. These parasites are endemic to the region and have a specific habitat distribution. D. pacificum prefers the warmer waters in the northern coast, while Anisakis prefers the colder waters of Southern Chile. The ENSO phenomenon causes a drastic inversion in the seawater temperatures in this region, modifying both the cool nutrient-rich seawater and the local ecology. This causes a latitudinal shift in marine parasite distribution and prevalence, as well as drastic environmental changes. The abundance of human mummies and archaeological coastal sites in the Atacama Desert provides an excellent model to test the ENSO impact on antiquity. We review the clinical and archaeological literature debating to what extent these parasites affected the health of the Chinchorros, the earliest settlers of this region. We hypothesise the Chinchorro and their descendants were affected by this natural and cyclical ENSO phenomenon and should therefore present fluctuating rates of D. pacificum and Anisakis infestations.

  16. Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO

    Science.gov (United States)

    Hu, Chundi; Zhang, Chengyang; Yang, Song; Chen, Dake; He, Shengping

    2017-11-01

    During the recent decades of satellite era, more tropical cyclogenesis locations (TCLs) were observed over the northwestern part of the western North Pacific (WNP), relative to the southeastern part, during the boreal autumn. This increase in TCLs over the northwestern WNP is largely attributed to the synergy of shifting El Niño-Southern Oscillation (ENSO) and the 1998 Pacific climate regime shift. Both central Pacific (CP) La Niña and CP El Niño have occurred more frequently since 1998, with only one eastern Pacific El Niño observed in autumn 2015. The change in the mean longitude of TCLs is closely linked to the ENSO diversity, whereas the change in the mean latitude is dominated by the warming of the WNP induced by an interdecadal tendency of CP La Niña-like events. The physical mechanisms responsible for this shifting ENSO-TCL linkage can be potentially explained by the tacit-and-mutual configurations between tropical upper-tropospheric trough and monsoon trough, on both interannual and interdecadal timescales, which is mainly due to the ENSO-related large-scale environment changes in ocean and atmosphere that modulate the WNP TCL.

  17. Hydrological cycle effects on the aquatic community in a Neotropical stream of the Andean piedmont during the 2007-2010 ENSO events.

    Science.gov (United States)

    Ríos-Pulgarín, M I; Barletta, M; Mancera-Rodriguez, N J

    2016-07-01

    The seasonal and interannual changes in the fish, macroinvertebrates and phycoperiphyton assemblages of the Guarinó River were examined in relation to the physical and chemical environmental changes associated with the hydrological cycle and the El Niño-Niña/Southern Oscillation (ENSO) between 2007 and 2010. Four samplings (in dry and rainy seasons) were performed per year. Environmental variables (temperature, pH, conductivity, turbidity, oxygen, total nitrogen, orthophosphate, depth and flow rate) were measured. The temporal patterns of the taxonomic compositions for the three assemblages and the functional composition of fish and macroinvertebrate assemblages with respect to environmental variables were examined through canonical discriminant analysis, multidimensional scaling and multiple correlations. The presence and abundance of fishes, macroinvertebrates and algae species were regulated by environmental variables associated with extreme hydrological events, which derived from the natural torrential regimen of the basin and larger-scale phenomena, such as El Niño and La Niña. Fish abundance and richness were significantly correlated with algal density and pH, the macroinvertebrate density was negatively related to the flow rate and the richness was positively correlated with algal density. The algae richness was positively correlated with pH and negatively correlated with the flow rate and nitrogen. The algal density was positively correlated with pH and temperature and negatively correlated with river flow. The phycoperiphyton assemblage exhibited more direct responses in its density and richness to the hydrological changes (r(2) = 0·743 and 0·800, respectively). In functional terms, the El Niño phenomenon was defined by a greater abundance of omnivorous and insectivorous fishes, as well as filter feeders, scrapers and macroinvertebrate predators. During La Niña, a greater abundance of benthic fishes (both detritivorous and insectivorous) and

  18. Comparative Study of the Effects of ENSO Phenomenon (El Niño, La Niña on Temperature and Precipitation of Mashhad

    Directory of Open Access Journals (Sweden)

    vajiheh mohammadi sabet

    2017-03-01

    Full Text Available Introduction: The Southern Oscillation is a large scale phenomenon that changes the Normal oscillating air pressure on both sides of the Pacific Ocean. It disrupted the normal conditions and the patterns of temperature and precipitation change in the nearby region and other regions of the world. This phenomenon is caused by changing the water slope in the Pacific Ocean between Peru (northwestern South America and Northern Australia (about Indonesia and Malaysia. ENSO phenomenon is formed of Elnino (warm state and La Niña (cold state. There is high pressure system in the East and low pressure system in the West Pacific Ocean in normal conditions (Walker cycle. The trade winds blow from East to West with high intensity. ENSO start when the trade winds and temperature and pressure balance on both sides of the PacificOcean change. High pressure will form in the west and low pressure will form in the East. As a result, west will have high and east will have low rainfall. Temperature will change at these two locations. Enso longs about 6 to 18 months. This research investigated the impact of ENSO on monthly precipitation and temperature of Mashhad.The results showed that temperature and rainfall have a good relation with ENSO.This relation occurs in 0-5 month lag. Materials and Methods: The severity of ENSO phenomenon is known by an index which is called ENSO index. The index is the anomaly of sea surface temperature in the Pacific. The long-term temperature and precipitation data of Mashhad selected and analyzed. The Rainfall has no trend but temperature has trend. The trend of temperature modeled by MARS regression and trend was removed.The rainfall data changed to standard and temperature changed to anomaly for comparison with ENSO index. The 2016 annual and monthly temperature of Mashhad is not available. The 2016 Annual temperature was forecasted by ARMA (1,1 model. Then this forecast disaggregated to monthly temperature. For each period of

  19. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements

    Science.gov (United States)

    Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.

    2018-03-01

    We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.

  20. Interdecadal modulation of the relationship between ENSO, IPO and precipitation: insights from tree rings in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Ingo [School of Resources, Environment and Society, Australian National University, Canberra, ACT (Australia); Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Climate Dynamics and Landscape Evolution, Potsdam (Germany); Weidner, Kathrin [Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Climate Dynamics and Landscape Evolution, Potsdam (Germany); Forschungszentrum Juelich GmbH, Institute for Chemistry and Dynamics of the Geosphere, Juelich (Germany); Helle, Gerhard [Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Climate Dynamics and Landscape Evolution, Potsdam (Germany); Vos, Heinz [Forschungszentrum Juelich GmbH, Institute for Chemistry and Dynamics of the Geosphere, Juelich (Germany); Lindesay, Janette; Banks, John C.G. [School of Resources, Environment and Society, Australian National University, Canberra, ACT (Australia)

    2009-07-15

    Australian climate-proxy reconstructions based on tree rings from tropical and subtropical forests have not been achieved so far due to the rarity of species producing anatomically distinct annual growth rings. Our study identifies the Australian Red Cedar (Toona ciliata) as one of the most promising tree species for tree-ring research in Australasia because this species exhibits distinct annual tree rings, a prerequisite for high quality tropical dendroclimatology. Based on these preliminary studies, we were able, for the first time in subtropical and tropical Australia, to develop a statistically robust, precisely dated and annually resolved chronology back to AD1854. We show that the variability in ring widths of T. ciliata is mainly dependent on annual precipitation. The developed proxy data series contains both high- and low-frequency climate signals which can be associated with the El Nino Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). A comparison of different data sets (Brisbane precipitation, tree rings, coral luminescence record from the Great Barrier Reef, ENSO and IPO) revealed non-stationary correlation patterns throughout the twentieth century but little instability between the new tree-ring chronology and Brisbane precipitation. (orig.)

  1. Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index

    Science.gov (United States)

    Chen, Shangfeng; Wu, Renguang

    2018-01-01

    This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.

  2. Evidences linking ENSO and coral growth in the Southwestern-South Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Evangelista, H. [LARAMG, Laboratorio de Radioecologia e Mudancas Globais/DBB/UERJ. Pav. HLC, Subsolo, Maracana, RJ (Brazil); Godiva, D. [LARAMG, Laboratorio de Radioecologia e Mudancas Globais/DBB/UERJ. Pav. HLC, Subsolo, Maracana, RJ (Brazil); Universidade Federal Fluminense, Outeiro Sao Joao Batista, s/n, Centro, Departamento de Geoquimica Ambiental, Niteroi, RJ (Brazil); Sifeddine, A. [IRD, Institut de Recherche Pour le Developpement, UR055 Paleotropique, Bondy (France); Universidade Federal Fluminense, Outeiro Sao Joao Batista, s/n, Centro, Departamento de Geoquimica Ambiental, Niteroi, RJ (Brazil); Leao, Z.M.A.N.; Kikuchi, R.K.P. [UFBA/Instituto de Geociencias. Rua Barao de Geremoabo, s/n, Federacao, Salvador, BA (Brazil); Rigozo, N.R. [LARAMG, Laboratorio de Radioecologia e Mudancas Globais/DBB/UERJ. Pav. HLC, Subsolo, Maracana, RJ (Brazil); FAETEC, Faculdade de Educacao e Tecnologia Thereza Porto Marques, Jacarei, SP (Brazil); Segal, B. [UFRJ/Museu Nacional/Setor de Celenterologia/Departamento de Invertebrados, Quinta da Boa Vista s/n, Sao Cristovao, RJ (Brazil); Ambrizzi, T. [USP/Department of Atmospheric Sciences, Sao Paulo, SP (Brazil); Kampel, M. [INPE/Divisao de Sensoriamento Remoto, Sao Paulo, SP (Brazil); Cornec, F. le [Universidade Federal Fluminense, Outeiro Sao Joao Batista, s/n, Centro, Departamento de Geoquimica Ambiental, Niteroi, RJ (Brazil)

    2007-12-15

    Physical and biological changes in the marine environment, induced by oceanic-atmospheric processes, can be imprinted in massive coral skeletons. Herein, we present an evidence of potential El Nino impacts at the Southwestern South Atlantic Ocean (SWSA) inferred from the sclerochronology of the reef coral Favia leptophylla. The application of spectral analysis (wavelet decomposition and the iterative regression) to coral growth length and to meteorological-oceanographic parameters (air temperature, sea surface temperature and precipitation) as well as to Southern Oscillation Index (SOI) and solar irradiation indicated a major significant inverse relationship between SOI and coral growth length at the 4-8 years frequency band. We propose here that coral growth length from the SWSA could be affected by El Nino Southern Oscillation (ENSO) events through an ''atmospheric bridge'', in contrast to its direct effect at the Pacific Ocean, related to the increase in sea surface temperature. (orig.)

  3. El ciclo anual de la hidrología de Colombia en relación con el ENSO y la NAO

    Directory of Open Access Journals (Sweden)

    1998-01-01

    Full Text Available INFLUENCE DE L’ENSO ET DE LA NAO SUR LE CYCLE ANNUEL DE L’HYDROLOGIE DE COLOMBIE. On évalue l’impact de El Niño-Oscillation du Sud (ENSO et de l’Oscillation de l’Atlantique Nord (NAO sur le cycle annuel hydrologique colombien. Les résultats du Projet de Réanalyse Climatologique NCEP/NCAR ont été utilisés pour identifier les mécanismes de la circulation atmosphérique qui interviennent dans cette région au cours des phases extrêmes de l’ENSO. En particulier, l’affaiblissement du courant jet inférieur d’ouest, qui se propage du Pacifique vers l’intérieur de la Colombie, est l’un des principaux mécanismes de circulation susceptible de nous aider à expliquer les anomalies hydrologiques en situation El Niño. Les résultats confirment l’importance de l’influence de l’ENSO et de la NAO sur les précipitations et les débits de Colombie, en particulier au cours des trimestres de septembre-octobre-novembre et de décembre-janvier-février. Se cuantifica la dependencia del ciclo anual de la hidroclimatología de Colombia con respecto del fenómeno El Niño-Oscilación del Sur (ENSO y la Oscilación del Atlántico Norte (NAO. Se usan los resultados del Proyecto de Reanálisis Climático de NCEP/NCAR para identificar los mecanismos de la circulación involucrados en las anomalías climáticas en la región de Suramérica tropical durante las fases extremas del ENSO (El Niño y La Niña. De particular importancia, el debilitamiento, durante El Niño, de la corriente de chorro superficial del oeste que penetra desde el Océano Pacífico hacia el interior de Colombia es un mecanismo de la circulación que coadyuva para explicar las anomalías hidrológicas. Los resultados confirman la fuerte influencia del ENSO y la NAO sobre las lluvias y los caudales de Colombia, en particular durante los trimestres septiembre-octubre-noviembre y diciembre-enero-febrero. THE ANNUAL CYCLE OF THE HYDROLOGY IN COLOMBIA IN RELATION TO THE ENSO AND NAO

  4. Effects of climate oscillations on wildland fire potential in the continental United States

    Science.gov (United States)

    Shelby A. Mason; Peter E. Hamlington; Benjamin D. Hamlington; W. Matt Jolly; Chad M. Hoffman

    2017-01-01

    The effects of climate oscillations on spatial and temporal variations in wildland fire potential in the continental U.S. are examined from 1979 to 2015 using cyclostationary empirical orthogonal functions (CSEOFs). The CSEOF analysis isolates effects associated with the modulated annual cycle and the El Niño–Southern Oscillation (ENSO). The results show that, in early...

  5. Simulation of Relationship between ENSO and winter precipitation over Western Himalayas: Application of Regional climate model (RegT-Band)

    Science.gov (United States)

    Tiwari, P. R.; Mohanty, U. C.; Dey, S.; Acharaya, N.; Sinha, P.

    2012-12-01

    Precipitation over the Western Himalayas region during winter is mainly associated with the passage of midlatitude synoptic systems known as western disturbances (WDs). Recently, many observational and modeling studies reported that the relationship of the Indian southwest monsoon rainfall with El Niño- Southern Oscillation (ENSO) has weakened since around 1980. But, in contrast, only very few observational studies are reported so far to examine the relationship between ENSO and the winter precipitation over the Western Himalayas region from December to February (DJF). But there is a huge gap of modeling this phenomenon. So keeping in view of the absence of modeling studies, an attempt is made to simulate the relationship between wintertime precipitations associated with large scale global forcing of ENSO over the Western Himalayas. In the present study, RegT-Band, a tropical band version of the regional climate model RegCM4 is integrated for a set of 5 El Niño (1986-87, 1991-92, 1997-98, 2002-03, 2009-10) and 4 La Niña (1984-85, 1988-89, 1999-2000, 2007-08) years with the observed sea-surface temperature and lateral boundary condition. The domain extends from 50° S to 50° N and covers the entire tropics at a grid spacing of about 45 km, i.e. it includes lateral boundary forcing only at the southern and northern boundaries. The performance evaluation of the model in capturing the large scale fields followed by ENSO response with wintertime precipitation over the Western Himalayas region has been carried out by using National Center for Environmental Prediction (NCEP)-Department of Energy (DOE) reanalysis 2 (NNRP2) data (2.5° x 2.5°) and Aphrodite precipitation data (0.25° x 0.25°). The model is able to delineate the mean circulation associated with ENSO over the region during DJF reasonably well and shows strong southwesterly to northwesterly wind flow, which is there in verification analysis also. The vertical structure of the low as well as upper level

  6. El Nino/Southern Oscillation response to global warming.

    Science.gov (United States)

    Latif, M; Keenlyside, N S

    2009-12-08

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO(2), accelerating global warming.

  7. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño

    Science.gov (United States)

    Santoso, Agus; Mcphaden, Michael J.; Cai, Wenju

    2017-12-01

    The year 2015 was special for climate scientists, particularly for the El Niño Southern Oscillation (ENSO) research community, as a major El Niño finally materialized after a long pause since the 1997/1998 extreme El Niño. It was scientifically exciting since, due to the short observational record, our knowledge of an extreme El Niño has been based only on the 1982/1983 and 1997/1998 events. The 2015/2016 El Niño was marked by many environmental disasters that are consistent with what is expected for an extreme El Niño. Considering the dramatic impacts of extreme El Niño, and the risk of a potential increase in frequency of ENSO extremes under greenhouse warming, it is timely to evaluate how the recent event fits into our understanding of ENSO extremes. Here we provide a review of ENSO, its nature and dynamics, and through analysis of various observed key variables, we outline the processes that characterize its extremes. The 2015/2016 El Niño brings a useful perspective into the state of understanding of these events and highlights areas for future research. While the 2015/2016 El Niño is characteristically distinct from the 1982/1983 and 1997/1998 events, it still can be considered as the first extreme El Niño of the 21st century. Its extremity can be attributed in part to unusually warm condition in 2014 and to long-term background warming. In effect, this study provides a list of physically meaningful indices that are straightforward to compute for identifying and tracking extreme ENSO events in observations and climate models.

  8. Salinity anomaly as a trigger for ENSO events.

    Science.gov (United States)

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  9. ENSO-Type Signals Recorded in the Late Cretaceous Laminated Sediments of Songliao Basin, Northeast China

    Science.gov (United States)

    Yu, E.; Wang, C.; Hinnov, L. A.; Wu, H.

    2014-12-01

    The quasi-periodic, ca. 2-7 year El Niño Southern Oscillation (ENSO) phenomenon globally influences the inter-annual variability of temperature and precipitation. Global warming may increase the frequency of extreme ENSO events. Although the Cretaceous plate tectonic configuration was different from today, the sedimentary record suggests that ENSO-type oscillations had existed at the time of Cretaceous greenhouse conditions. Cored Cretaceous lacustrine sediments from the Songliao Basin in Northeast China (SK-1 cores from the International Continental Drilling Program) potentially offer a partially varved record of Cretaceous paleoclimate. Fourteen polished thin sections from the depth interval 1096.12-1096.53 m with an age of 84.4 Ma were analyzed by optical and scanning electron microscopy (SEM). ImageJ software was applied to extract gray scale curves from optical images at pixel resolution. We tracked minimum values of the gray scale curves to estimate the thickness of each lamina. Five sedimentary structures were recognized: flaser bedding, wavy bedding, lenticular bedding, horizontal bedding, and massive layers. The mean layer thicknesses with different sedimentary structures range from 116 to 162mm, very close to the mean sedimentation rate estimated for this sampled interval, 135mm/year, indicating that the layers bounded by pure clay lamina with the minimum gray values are varves. SEM images indicate that a varve is composed, in succession, of one lamina rich in coarse silt, one lamina rich in fine silt, one clay-rich lamina with some silt, and one clay-rich lamina. This suggests that a Cretaceous year featured four distinct depositional seasons, two of which were rainy and the others were lacking precipitation. Spectral analysis of extended intervals of the tuned gray scale curve indicates the presence of inter-annual periodicities of 2.2-2.7 yr, 3.5-6.1 year, and 10.1-14.5 year consistent with those of modern ENSO cycles and solar cycles, as well as

  10. Variability modes of precipitation along a Central Mediterranean area and their relations with ENSO, NAO, and other climatic patterns

    Science.gov (United States)

    Kalimeris, Anastasios; Ranieri, Ezio; Founda, Dimitra; Norrant, Caroline

    2017-12-01

    This study analyses a century-long set of precipitation time series in the Central Mediterranean (encompassing the Greek Ionian and the Italian Puglia regions) and investigates the statistically significant modes of the interannual precipitation variability using efficient methods of spectral decomposition. The statistical relations and the possible physical couplings between the detected modes and the global or hemispheric patterns of climatic variability (the El Niño Southern Oscillation or ENSO, the North Atlantic Oscillation or NAO, the East Atlantic or EA, the Scandinavian or SCAND, and others) were examined in the time-frequency domain and low-order synchronization events were sought. Significant modes of precipitation variability were detected in the Taranto Gulf and the southern part of the Greek Ionian region at the sub-decadal scales (mostly driven by the SCAND pattern) and particularly at the decadal and quasi-decadal scales, where strong relations found with the ENSO activity (under complex implications of EA and NAO) prior to the 1930s or after the early-1970s. The precipitation variations in the Adriatic stations of Puglia are dominated by significant bi-decadal modes which found to be coherent with the ENSO activity and also weakly related with the Atlantic Ocean sea surface temperature intrinsic variability. Additionally, important discontinuities characterize the evolution of precipitation in certain stations of the Taranto Gulf and the Greek Ionian region during the early-1960s and particularly during the early-1970s, followed by significant reductions in the mean annual precipitation. These discontinuities seem to be associated with regional effects of NAO and SCAND, probably combined with the impact of the 1970s climatic shift in the Pacific and the ENSO variability.

  11. What do we need to know to predict ENSO? Student-centered learning in a Master course in Climate Physics

    Science.gov (United States)

    Lübbecke, Joke; Glessmer, Mirjam

    2017-04-01

    An important learning outcome of a Master of Sciences program is to empower students to understand which information they need, how they can gain the required knowledge and skills, and how to apply those to solve a given scientific problem. In designing a class on the El-Nino-Southern-Oscillation (ENSO) for students in the Climate Physics program at Kiel University, Germany, we have implemented various active learning strategies to meet this goal. The course is guided by an overarching question, embedded in a short story: What would we need to know to successfully predict ENSO? The students identify desired learning outcomes and collaboratively construct a concept map which then serves as a structure for the 12 weeks of the course, where each individual topic is situated in the larger context of the students' own concept map. Each learning outcome of the course is therefore directly motivated by a need to know expressed by the students themselves. During each session, students are actively involved in the learning process. They work individually or in small groups, for example testing different index definitions, analyzing data sets, setting up simple numerical models and planning and constructing hands-on experiments to demonstrate physical processes involved in the formation of El Niño events. The instructor's role is to provide the necessary background information and guide the students where it is needed. Insights are shared between groups as students present their findings to each other and combine the information, for example by cooperatively constructing a world map displaying the impacts of ENSO or by exchanging experts on different ENSO oscillator theories between groups. Development of this course was supported by the PerLe Fonds for teaching innovations at Kiel University. A preliminary evaluation has been very positive with students in particular appreciating their active involvement in the class.

  12. The association between El Niño/Southern Oscillation events and typhoons in the Marshall Islands.

    Science.gov (United States)

    Spennemann, D H; Marschner, I C

    1995-09-01

    An analysis of the historic record of typhoons in the Marshall Islands has identified a significant association between the occurrence of the El Niño/Southern Oscillation phenomenon (ENSO) and the occurrence of typhoons in the Marshall Islands. Whilst typhoons normally occur further to the east, the warming of the ocean waters around the Marshall Islands, as part of the ENSO phenomenon, generates typhoons further to the west. The results suggest that typhoons are 2.6 times more likely to occur during ENSO years, with a 71 per cent chance of a typhoon striking during an ENSO year, and only a 26 per cent chance of one happening during a non-ENSO year. This has implications for planning and public safety, which the relevant authorities may wish to take note of.

  13. Dynamics of the Indian monsoon and ENSO relationships in the SINTEX global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Terray, P. [LODYC, Paris (France); Universite Paris 7, Paris (France); Guilyardi, E. [LSCE, Gif-sur-Yvette (France); CGAM, Reading (United Kingdom); Fischer, A.S. [LODYC, Paris (France); Delecluse, P. [LODYC, Paris (France); LSCE, Gif-sur-Yvette (France)

    2005-02-01

    This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Nino-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. Despite some problems in simulation of the annual cycle and the Southern Oscillation, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Nino34 time series shows enhanced power in the 2-4 year band, as compared to the 2-8 year range for observations during the 1950-2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Nino34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These

  14. Impact of global warming on ENSO phase change

    Directory of Open Access Journals (Sweden)

    W. Cabos Narvaez

    2006-01-01

    Full Text Available We compare the physical mechanisms involved in the generation and decay of ENSO events in a control (present day conditions and Scenario (Is92a, IPCC 1996 simulations performed with the coupled ocean-atmosphere GCM ECHAM4-OPYC3. A clustering technique which objectively discriminates common features in the evolution of the Tropical Pacific Heat Content anomalies leading to the peak of ENSO events allows us to group into a few classes the ENSO events occurring in 240 years of data in the control and scenario runs. In both simulations, the composites of the groups show differences in the generation and development of ENSO. We present the changes in the statistics of the groups and explore the possible mechanisms involved.

  15. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region

    Science.gov (United States)

    Cai, Zhongyin; Tian, Lide; Bowen, Gabriel J.

    2017-10-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  16. Precipitation and ice core isotopes from the Asian Summer Monsoon region reflect coherent ENSO variability

    Science.gov (United States)

    Cai, Z.; Tian, L.; Bowen, G. J.

    2017-12-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  17. Massive bleaching of coral reefs induced by the 2010 ENSO, Puerto Cabello, Venezuela.

    Science.gov (United States)

    del Mónaco, Carlos; Haiek, Gerard; Narciso, Samuel; Galindo, Miguel

    2012-06-01

    El Niño Southern Oscillation (ENSO) has generated global coral massive bleaching. The aim of this work was to evaluate the massive bleaching of coral reefs in Puerto Cabello, Venezuela derived from ENSO 2010. We evaluated the bleaching of reefs at five localities both at three and five meter depth. The coral cover and densities of colonies were estimated. We recorded living coral cover, number and diameter of bleached and non-bleached colonies of each coral species. The colonies were classified according to the proportion of bleached area. Satellite images (Modis Scar) were analyzed for chlorophyll-a concentration and temperature in August, September, October and November from 2008-2010. Precipitation, wind speed and air temperature information was evaluated in meteorological data for 2009 and 2010. A total of 58.3% of colonies, belonging to 11 hexacoral species, were affected and the greatest responses were observed in Colpophyllia natans, Montastraea annularis and Montastraeafaveolata. The most affected localities were closer to the mainland and had a bleached proportion up to 62.73+/-36.55%, with the highest proportion of affected colonies, whereas the farthest locality showed 20.25+/-14.00% bleached and the smallest proportion. The salinity in situ varied between 30 and 33ppm and high levels of turbidity were observed. According to the satellite images, in 2010 the surface water temperature reached 31 degree C in August, September and October, and resulted higher than those registered in 2008 and 2009. Regionally, chlorophyll values were higher in 2010 than in 2008 and 2009. The meteorological data indicated that precipitation in November 2010 was three times higher than in November 2009. Massive coral bleaching occurred due to a three month period of high temperatures followed by one month of intense ENSO-associated precipitation. However, this latter factor was likely the trigger because of the bleaching gradient observed.

  18. Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values

    Science.gov (United States)

    Konopka, Paul; Ploeger, Felix; Tao, Mengchu; Riese, Martin

    2016-10-01

    Based on simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the period 1979-2013, with model transport driven by the ECMWF ERA-Interim reanalysis, we discuss the impact of the El Niño Southern Oscillation (ENSO) on the variability of the dynamics, water vapor, ozone, and mean age of air (AoA) in the tropical lower stratosphere during boreal winter. Our zonally resolved analysis at the 390 K potential temperature level reveals that not only (deseasonalized) ENSO-related temperature anomalies are confined to the tropical Pacific (180-300°E) but also anomalous wave propagation and breaking, as quantified in terms of the Eliassen-Palm (EP) flux divergence, with strongest local contribution during the La Niña phase. This anomaly is coherent with respective anomalies of water vapor (±0.5 ppmv) and ozone (±100 ppbv) derived from CLaMS being in excellent agreement with the Aura Microwave Limb Sounder observations. Thus, during El Niño a more zonally symmetric wave forcing drives a deep branch of the Brewer-Dobson (BD) circulation. During La Niña this forcing increases at lower levels (≈390 K) over the tropical Pacific, likely influencing the shallow branch of the BD circulation. In agreement with previous studies, wet (dry) and young (old) tape recorder anomalies propagate upward in the subsequent months following El Niño (La Niña). Using CLaMS, these anomalies are found to be around +0.3 (-0.2) ppmv and -4 (+4) months for water vapor and AoA, respectively. The AoA ENSO anomaly is more strongly affected by the residual circulation (≈2/3) than by eddy mixing (≈1/3).

  19. Tropospheric Column Ozone Response to ENSO in GEOS-5 Assimilation of OMI and MLS Ozone Data

    Science.gov (United States)

    Olsen, Mark A.; Wargan, Krzysztof; Pawson, Steven

    2016-01-01

    We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone observations to investigate the magnitude and spatial distribution of the El Nino Southern Oscillation (ENSO) influence on tropospheric column ozone (TCO) into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Nino 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Nino 3.4 index is statistically significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations where the associated vertical transport is consistent with the sign of the sensitivity. Also, ENSO related changes to the mean tropopause height can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the 9- year assimilation are representative of the longer term. This investigation brings insight to several seemingly disparate prior studies of the El Nino influence on tropospheric ozone in the middle latitudes.

  20. A study of Solar-Enso correlation with southern Brazil tree ring index (1955- 1991)

    Science.gov (United States)

    Rigozo, N.; Nordemann, D.; Vieira, L.; Echer, E.

    The effects of solar activity and El Niño-Southern Oscillation on tree growth in Southern Brazil were studied by correlation analysis. Trees for this study were native Araucaria (Araucaria Angustifolia)from four locations in Rio Grande do Sul State, in Southern Brazil: Canela (29o18`S, 50o51`W, 790 m asl), Nova Petropolis (29o2`S, 51o10`W, 579 m asl), Sao Francisco de Paula (29o25`S, 50o24`W, 930 m asl) and Sao Martinho da Serra (29o30`S, 53o53`W, 484 m asl). From these four sites, an average tree ring Index for this region was derived, for the period 1955-1991. Linear correlations were made on annual and 10 year running averages of this tree ring Index, of sunspot number Rz and SOI. For annual averages, the correlation coefficients were low, and the multiple regression between tree ring and SOI and Rz indicates that 20% of the variance in tree rings was explained by solar activity and ENSO variability. However, when the 10 year running averages correlations were made, the coefficient correlations were much higher. A clear anticorrelation is observed between SOI and Index (r=-0.81) whereas Rz and Index show a positive correlation (r=0.67). The multiple regression of 10 year running averages indicates that 76% of the variance in tree ring INdex was explained by solar activity and ENSO. These results indicate that the effects of solar activity and ENSO on tree rings are better seen on long timescales.

  1. The Anticipation of the ENSO: What Resonantly Forced Baroclinic Waves Can Teach Us (Part II

    Directory of Open Access Journals (Sweden)

    Jean-Louis Pinault

    2018-06-01

    Full Text Available The purpose of the paper is to take advantage of recent work on the study of resonantly forced baroclinic waves in the tropical Pacific to significantly reduce systematic and random forecasting errors resulting from the current statistical models intended to predict El Niño. Their major drawback is that sea surface temperature (SST, which is widely used, is very difficult to decipher because of the extreme complexity of exchanges at the ocean-atmosphere interface. In contrast, El Niño-Southern Oscillation (ENSO forecasting can be performed between 7 and 8 months in advance precisely and very simply from (1 the subsurface water temperature at particular locations and (2 the time lag of the events (their expected date of occurrence compared to a regular 4-year cycle. Discrimination of precursor signals from objective criteria prevents the anticipation of wrong events, as occurred in 2012 and 2014. The amplitude of the events, their date of appearance, as well as their potential impact on the involved regions are estimated. Three types of ENSO events characterize their climate impact according to whether they are (1 unlagged or weakly lagged, (2 strongly lagged, or (3 out of phase with the annual quasi-stationary wave (QSW (Central Pacific El Niño events. This substantial progress is based on the analysis of baroclinic QSWs in the tropical basin and the resulting genesis of ENSO events. As for cold events, the amplification of La Niña can be seen a few months before the maturation phase of an El Niño event, as occurred in 1998 and 2016.

  2. ENSO influence on the interannual variability of the Red Sea convergence zone and associated rainfall

    KAUST Repository

    Dasari, Hari Prasad

    2017-07-18

    The Red Sea convergence zone (RSCZ) is formed by opposite surface winds blowing from northwest to southeast directions at around 18°-19°N between October and January. A reverse-oriented, low-level monsoon trough at 850hPa, known as the Red Sea trough (RST), transfers moisture from the southern Red Sea to RSCZ. The positions of the RSCZ and RST and the intensity of the RST have been identified as important factors in modulating weather and climatic conditions across the Middle East. Here, we investigate the influence of the El Niño southern oscillation (ENSO) on the interannual variability of RSCZ, RST, and regional rainfall during winter months. Our results indicate that El Niño (warm ENSO phase) favours a shift of the RSCZ to the north and a strengthening of the RST in the same direction. Conversely, during November and December of La Niña periods (cold ENSO phase), the RSCZ shift to the south and the RST strengthens in the same direction. During El Niño periods, southeasterly wind speeds increase (20-30%) over the southern Red Sea and northwesterly wind speeds decrease (10-15%) over the northern Red Sea. Noticeable increases in the number of rainy days and the intensity of rain events are observed during El Niño phases. These increases are associated with colder than normal air intrusion at lower levels from the north combined with warm air intrusion from the south over the RSCZ. Our analysis suggests that during El Niño winters, warmer sea surface temperatures and higher convective instability over the Red Sea favour local storms conditions and increase rainfall over the Red Sea and adjoining regions.

  3. An Ocean Biology-induced Negative Feedback on ENSO in the Tropical Pacific Climate System

    Science.gov (United States)

    Zhang, R. H.

    2016-02-01

    Biological conditions in the tropical Pacific Ocean (e.g., phytoplankton biomass) are strongly regulated by physical changes associated with the El Niño-Southern Oscillation (ENSO). The existence and variation of phytoplankton biomass, in turn, act to modulate the vertical penetration of the incoming sunlight in the upper ocean, presenting an ocean biology-induced heating (OBH) effect on the climate system. Previously, a penetration depth of solar radiation in the upper ocean (Hp) is defined to describe the related bio-climate connections. Parameterized in terms of its relationship with the sea surface temperature (SST) in the tropical Pacific, an empirical model for interannual Hp variability has been derived from remotely sensed ocean color data, which is incorporated into a hybrid coupled model (HCM) to represent OBH effects. In this paper, various HCM experiments are performed to demonstrate the bio-feedback onto ENSO, including a climatological Hp run (in which Hp is prescribed as seasonally varying only), interannual Hp runs (with different intensities of interannually varying OBH effects), and a run in which the sign of the OBH effect is artificially reversed. Significant modulating impacts on interannual variability are found in the HCM, characterized by a negative feedback between ocean biology and the climate system in the tropical Pacific: the stronger the OBH feedback, the weaker the interannual variability. Processes involved in the feedback are analyzed; it is illustrated that the SST is modulated indirectly by ocean dynamical processes induced by OBH. The significance and implication of the OBH effects are discussed for their roles in ENSO variability and model biases in the tropical Pacific.

  4. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia

    Science.gov (United States)

    Villafuerte, Marcelino, II; Matsumoto, Jun

    2014-05-01

    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  5. Tropospheric column ozone response to ENSO in GEOS-5 assimilation of OMI and MLS ozone data

    Directory of Open Access Journals (Sweden)

    M. A. Olsen

    2016-06-01

    Full Text Available We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS ozone observations to investigate the magnitude and spatial distribution of the El Niño Southern Oscillation (ENSO influence on tropospheric column ozone (TCO into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Niño 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Niño 3.4 index is statistically significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations where the associated vertical transport is consistent with the sign of the sensitivity. Also, ENSO related changes to the mean tropopause height can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the 9-year assimilation are representative of the longer term. This investigation brings insight to several seemingly disparate prior studies of the El Niño influence on tropospheric ozone in the middle latitudes.

  6. Investigation of hydrological variability in the Korean Peninsula with the ENSO teleconnections

    Directory of Open Access Journals (Sweden)

    S. Yoon

    2016-10-01

    Full Text Available This study analyzes nonlinear behavior links with atmospheric teleconnections between hydrologic variables and climate indices using statistical models during warm season (June to September over the Korean Peninsula (KP. The ocean-related major climate factor, which is the El Niño-Southern Oscillation (ENSO was used to analyze the atmospheric teleconnections by principal component analysis (PCA and a singular spectrum analysis (SSA. The nonlinear lag time correlations between climate indices and hydrologic variables are calculated by Mutual Information (MI technique. The nonlinear correlation coefficients (CCs by MI were higher than linear CCs, and ENSO shows a few months of lag time correlation. The warm season hydrologic variables in KP shows a significant increasing tendency during the warm pool (WP, and the cold tongue (CT El Niño decaying years shows a significant decreasing tendency, while the La Niña year shows slightly above normal conditions, respectively. A better understanding of the relationship between climate indices and streamflow, and their local impacts can help to prepare for the river discharge management by water managers and scientists. Furthermore, these results provide useful data for policy makers and end-users to support long-range water resources prediction and water-related policy.

  7. The influence of ENSO on an oceanic eddy pair in the South China Sea

    Science.gov (United States)

    Chu, Xiaoqing; Dong, Changming; Qi, Yiquan

    2017-03-01

    An eddy pair off the Vietnam coast is one of the most important features of the summertime South China Sea circulation. Its variability is of interest due to its profound impact on regional climate, ecosystems, biological processes, and fisheries. This study examines the influence of the El Niño-Southern Oscillation (ENSO), a basin-scale climatic mode, on the interannual variability of this regional eddy pair using satellite observational data and historical hydrographic measurements. Over the last three decades, the eddy pair strengthened in 1994 and 2002, and weakened in 2006, 2007, and 2008. It was absent in 1988, 1995, 1998, and 2010, coinciding with strong El Nino-to-La Nina transitions. Composite analyses showed that the strong transition events of ENSO led to radical changes in the summer monsoon, through the forcing of a unique sea surface temperature anomaly structure over the tropical Indo-Pacific basin. With weaker zonal wind, a more northward wind direction, and the disappearance of a pair of positive and negative wind stress curls, the eastward current jet turns northward along the Vietnam coast and the eddy pair disappears.

  8. El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting

    Directory of Open Access Journals (Sweden)

    A. Lü

    2011-04-01

    Full Text Available This research explores the rainfall-El Niño-Southern Oscillation (ENSO and runoff-ENSO relationships and examines the potential for water resource forecasting using these relationships. The Southern Oscillation Index (SOI, Niño1.2, Niño3, Niño4, and Niño3.4 were selected as ENSO indicators for cross-correlation analyses of precipitation and runoff. There was a significant correlation (95% confidence level between precipitation and ENSO indicators during three periods: January, March, and from September to November. In addition, monthly streamflow and monthly ENSO indictors were significantly correlated during three periods: from January to March, June, and from October to December (OND, with lag periods between one and twelve months. Because ENSO events can be accurately predicted one to two years in advance using physical modeling of the coupled ocean-atmosphere system, the lead time for forecasting runoff using ENSO indicators in the Headwaters Region of the Yellow River could extend from one to 36 months. Therefore, ENSO may have potential as a powerful forecasting tool for water resources in the headwater regions of Yellow River.

  9. Impacts of Forest to Urban Land Conversion and ENSO Phase on Water Quality of a Public Water Supply Reservoir

    Directory of Open Access Journals (Sweden)

    Emile Elias

    2016-01-01

    Full Text Available We used coupled watershed and reservoir models to evaluate the impacts of deforestation and l Niño Southern Oscillation (ENSO phase on drinking water quality. Source water total organic carbon (TOC is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs. The Environmental Fluid Dynamics Code (EFDC reservoir model is used to evaluate the difference between daily pre- and post- urbanization nutrients and TOC concentration. Post-disturbance (future reservoir total nitrogen (TN, total phosphorus (TP, TOC and chlorophyll-a concentrations were found to be higher than pre-urbanization (base concentrations (p < 0.05. Predicted future median TOC concentration was 1.1 mg·L−1 (41% higher than base TOC concentration at the source water intake. Simulations show that prior to urbanization, additional water treatment was necessary on 47% of the days between May and October. However, following simulated urbanization, additional drinking water treatment might be continuously necessary between May and October. One of six ENSO indices is weakly negatively correlated with the measured reservoir TOC indicating there may be higher TOC concentrations in times of lower streamflow (La Niña. There is a positive significant correlation between simulated TN and TP concentrations with ENSO suggesting higher concentrations during El Niño.

  10. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  11. Asian Summer Monsoon Rainfall associated with ENSO and its Predictability

    Science.gov (United States)

    Shin, C. S.; Huang, B.; Zhu, J.; Marx, L.; Kinter, J. L.; Shukla, J.

    2015-12-01

    The leading modes of the Asian summer monsoon (ASM) rainfall variability and their seasonal predictability are investigated using the CFSv2 hindcasts initialized from multiple ocean analyses over the period of 1979-2008 and observation-based analyses. It is shown that the two leading empirical orthogonal function (EOF) modes of the observed ASM rainfall anomalies, which together account for about 34% of total variance, largely correspond to the ASM responses to the ENSO influences during the summers of the developing and decaying years of a Pacific anomalous event, respectively. These two ASM modes are then designated as the contemporary and delayed ENSO responses, respectively. It is demonstrated that the CFSv2 is capable of predicting these two dominant ASM modes up to the lead of 5 months. More importantly, the predictability of the ASM rainfall are much higher with respect to the delayed ENSO mode than the contemporary one, with the predicted principal component time series of the former maintaining high correlation skill and small ensemble spread with all lead months whereas the latter shows significant degradation in both measures with lead-time. A composite analysis for the ASM rainfall anomalies of all warm ENSO events in this period substantiates the finding that the ASM is more predictable following an ENSO event. The enhanced predictability mainly comes from the evolution of the warm SST anomalies over the Indian Ocean in the spring of the ENSO maturing phases and the persistence of the anomalous high sea surface pressure over the western Pacific in the subsequent summer, which the hindcasts are able to capture reasonably well. The results also show that the ensemble initialization with multiple ocean analyses improves the CFSv2's prediction skill of both ENSO and ASM rainfall. In fact, the skills of the ensemble mean hindcasts initialized from the four different ocean analyses are always equivalent to the best ones initialized from any individual ocean

  12. An idealized study of the impact of extratropical climate change on El Nino-Southern Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiong [Chinese Academy of Sciences, LASG, Institute of Atmospheric Science, Beijing (China); Yang, Haijun [Peking University, Department of Atmospheric Science and Laboratory for Severe Storm and Flood Disasters, Beijing (China); Zhong, Yafang [University of Wisconsin-Madison, Center for Climatic Research and Department of Atmospheric and Oceanic Sciences, Madison, WI (United States); Wang, Dongxiao [Chinese Academy of Sciences, Laboratory of Tropical Marine Environmental Dynamics, Guangzhou (China); South China Sea Institute of Oceanology, Guangzhou (China)

    2005-12-01

    Extratropical impacts on the tropical El Nino-Southern Oscillation (ENSO) are studied in a coupled climate model. Idealized experiments show that the remote impact of the extratropics on the equatorial thermocline through oceanic tunnel can substantially modulate the ENSO in both magnitude and frequency. First of all, an extratropical warming can be conveyed to the equator by the mean subduction current, resulting in a warming of the equatorial thermocline. Second, the extratropical warming can weaken the Hadley cells, which in turn slow down the mean shallow meridional overturning circulations in the upper Pacific, reducing the equatorward cold water supply and the equatorial upwelling. These oceanic dynamic processes would weaken the stratification of the equatorial thermocline and retard a buildup (purge) of excess heat content along the equator, and finally result in a weaker and longer ENSO cycle. This study highlights a nonlocal mechanism in which ENSO behavior is related to the extratropical climate conditions. (orig.)

  13. Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America

    Science.gov (United States)

    Münnich, M.; Neelin, J. D.

    2005-11-01

    In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.

  14. Gamma oscillations: precise temporal coordination without a metronome.

    Science.gov (United States)

    Nikolić, Danko; Fries, Pascal; Singer, Wolf

    2013-02-01

    Gamma oscillations in the brain should not be conceptualized as a sine wave with constant oscillation frequency. Rather, these oscillations serve to concentrate neuronal discharges to particular phases of the oscillation cycle and thereby provide the substrate for various, functionally relevant synchronization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Using Remote Sensing Products to Identify Marine Association Patterns in Factors Relating to ENSO in the Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Cunjin Xue

    2017-01-01

    Full Text Available El Niño–Southern Oscillation (ENSO and its relationships with marine environmental parameters comprise a very complicated and interrelated system. Traditional spatiotemporal techniques face great challenges in dealing with which, how, and where the marine environmental parameters in different zones help to drive, and respond to, ENSO events. Remote sensing products covering a 15-year period from 1998 to 2012 were used to quantitatively explore these patterns in the Pacific Ocean (PO by a prevail quantitative association rule mining algorithm, that is, a priori, within a mining framework. The marine environmental parameters considered were monthly anomaly of sea surface chlorophyll-a (CHLA, monthly anomaly of sea surface temperature (SSTA, monthly anomaly of sea level anomaly (SLAA, monthly anomaly of sea surface precipitation (SSPA, and monthly anomaly of sea surface wind speed (WSA. Four significant discoveries are found, namely: (1 Association patterns among marine environmental parameters and ENSO events were found primarily in five sub-regions of the PO: the western PO, the central and eastern tropical PO, the middle of the northern subtropical PO, offshore of the California coast, and the southern PO; (2 In the western and the middle and east of the equatorial PO, the association patterns are more complicated than other regions; (3 The following factors were found to be predicators of and responses to La Niña events: abnormal decrease of SLAA and WSA in the east of the equatorial PO, abnormal decrease of SSPA and WSA in the middle of the equatorial PO, abnormal decrease of SSTA in the eastern and central tropical PO, and abnormal increase of SLAA in the western PO; (4 Only abnormal decrease of CHLA in the middle of the equatorial PO was found to be a predicator of and response to El Niño events. These findings will help to improve our abilities to identify the marine association patterns in factors relating to ENSO events.

  16. Modulation of the SSTA decadal variation on ENSO events and relationships of SSTA With LOD,SOI, etc

    Science.gov (United States)

    Liao, D. C.; Zhou, Y. H.; Liao, X. H.

    2007-01-01

    Interannual and decadal components of the length of day (LOD), Southern Oscillation Index (SOI) and Sea Surface Temperature anomaly (SSTA) in Nino regions are extracted by band-pass filtering, and used for research of the modulation of the SSTA on the ENSO events. Results show that besides the interannual components, the decadal components in SSTA have strong impacts on monitoring and representing of the ENSO events. When the ENSO events are strong, the modulation of the decadal components of the SSTA tends to prolong the life-time of the events and enlarge the extreme anomalies of the SST, while the ENSO events, which are so weak that they can not be detected by the interannual components of the SSTA, can also be detected with the help of the modulation of the SSTA decadal components. The study further draws attention to the relationships of the SSTA interannual and decadal components with those of LOD, SOI, both of the sea level pressure anomalies (SLPA) and the trade wind anomalies (TWA) in tropic Pacific, and also with those of the axial components of the atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). Results of the squared coherence and coherent phases among them reveal close connections with the SSTA and almost all of the parameters mentioned above on the interannual time scales, while on the decadal time scale significant connections are among the SSTA and SOI, SLPA, TWA, ?3w and ?3w+v as well, and slight weaker connections between the SSTA and LOD, ?3pib and ?3bp

  17. How well do climate models simulate atmospheric teleconnctions over the North Pacific and East Asia associated with ENSO?

    Science.gov (United States)

    Kim, Sunyong; Son, Hye-Young; Kug, Jong-Seong

    2017-02-01

    During the El Niño and La Niña mature phase, atmospheric teleconnections over the North Pacific and East Asia vary considerably on sub-seasonal time scales, and are strongly phase-locked to the sub-seasonal evolution. In this study, we investigate how well climate models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate the sub-seasonal evolution of teleconnections over the North Pacific and East Asia associated with El Niño-Southern Oscillation (ENSO). In the observations, there is a prominent anticyclone anomaly over the Kuroshio extension region (i.e. Kuroshio anticyclone), which significantly affects East Asian climate in the early winter (November-December) of El Niño years. However, in January, the Kuroshio anticyclone suddenly disappears, and a cyclonic flow dominates over the North Pacific. It is found here that the CMIP5 models simulate the overall extratropical teleconnection patterns, but they fail to reproduce some of these sub-seasonally-varying features in atmospheric circulation. For example, the models tend to simulate a weaker Kuroshio anticyclone in the early winter during El Niño phases, and fail to capture the abrupt decay of the Kuroshio anticyclone in the late winter. We demonstrate here that these systematic errors in ENSO teleconnection can be explained by systematic errors in tropical precipitation associated with ENSO. That is, negative precipitation anomalies over the western North Pacific (WNP) are too weak in the models compared to that in the observations, and their amplitude tends to be strengthened from December to the following January, while they are weakened in the observations. In addition, analyses on the inter-model diversity strongly support that relative magnitudes of WNP and central Pacific precipitation anomalies are critical for determining sub-seasonal evolution of ENSO teleconnections over the North Pacific and East Asia.

  18. Wavelet analysis of interannual LOD, AAM, and ENSO: 1997-98 El Niño and 1998-99 La Niña signals

    Science.gov (United States)

    Zhou, Y. H.; Zheng, D. W.; Liao, X. H.

    2001-05-01

    On the basis of the data series of the length of day (LOD), the atmospheric angular momentum (AAM) and the Southern Oscillation Index (SOI) for January 1970-June 1999, the relationship among Interannual LOD, AAM, and the EL Niño/Southern Oscillation (ENSO) is analyzed by the wavelet transform method. The results suggest that they have similar time-varying spectral structures. The signals of 1997-98 El Niño and 1998-99 La Niña events can be detected from the LOD or AAM data.

  19. Role of tropical Indian and Atlantic Oceans variability on ENSO

    Science.gov (United States)

    Prodhomme, Chloé; Terray, Pascal; Masson, Sebastien; Boschat, Ghyslaine

    2014-05-01

    There are strong evidences of an interaction between tropical Indian, Atlantic and Pacific Oceans. Nevertheless, these interactions remain deeply controversial. While some authors claim the tropical Indian and Atlantic oceans only play a passive role with respect to ENSO, others suggest a driving role for these two basins on ENSO. The mecanisms underlying these relations are not fully understood and, in the Indian Ocean, the possible role of both modes of tropical variability (the Indian Ocean Dipole (IOD) and the Indian Ocean Basin mode (IOB)) remain unclear. To better quantify and understand how the variability of the tropical Indian and Atlantic Oceans impact ENSO variability, we performed two sensitivity experiments using the SINTEX-F2 coupled model. For each experiment, we suppressed the variability of SST and the air-sea coupling in either the tropical Indian Ocean or tropical Atlantic Ocean by applying a strong nudging of the SST to the observed SST climatology. In both experiments, the ENSO periodicity increases. In the Atlantic experiment, our understanding of this increased periodicity is drastically limited by the strongly biased mean state in this region. Conversely, in the Indian Ocean experiment, the increase of ENSO periodicity is related to the absence of the IOB following the El Niño peak, which leads to a decrease of westerly winds in the western Pacific during late winter and spring after the peak. These weaker westerlies hinders the transition to a La Niña phase and thus increase the duration and periodicity of the event.

  20. A High-Resolution ENSO-Driven Rainfall Record Derived From an Exceptionally Fast Growing Stalagmite From Niue Island (South Pacific)

    Science.gov (United States)

    Troy, S.; Aharon, P.; Lambert, W. J.

    2012-12-01

    El Niño-Southern Oscillation's (ENSO) dominant control over the present global climate and its unpredictable response to a global warming makes the study of paleo-ENSO important. So far corals, spanning the Tropical Pacific Ocean, are the most commonly used geological archives of paleo-ENSO. This is because corals typically exhibit high growth rates (>1 cm/yr), and reproduce reliably surface water temperatures at sub-annual resolution. However there are limitations to coral archives because their time span is relatively brief (in the order of centuries), thus far making a long and continuous ENSO record difficult to achieve. On the other hand stalagmites from island settings can offer long and continuous records of ENSO-driven rainfall. Niue Island caves offer an unusual opportunity to investigate ENSO-driven paleo-rainfall because the island is isolated from other large land masses, making it untainted by continental climate artifacts, and its geographical location is within the Tropical Pacific "rain pool" (South Pacific Convergence Zone; SPCZ) that makes the rainfall variability particularly sensitive to the ENSO phase switches. We present here a δ18O and δ13C time series from a stalagmite sampled on Niue Island (19°00' S, 169°50' W) that exhibits exceptionally high growth rates (~1.2 mm/yr) thus affording a resolution comparable to corals but for much longer time spans. A precise chronology, dating back to several millennia, was achieved by U/Th dating of the stalagmite. The stalagmite was sampled using a Computer Automated Mill (CAM) at 300 μm increments in order to receive sub-annual resolution (every 3 months) and calcite powders of 50-100 μg weight were analyzed for δ18O and δ13C using a Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS). The isotope time series contains variable shifts at seasonal, inter-annual, and inter-decadal periodicities. The δ13C and δ18O yield ranges of -3.0 to -13.0 (‰ VPDB) and -3.2 to -6.2 (‰ VPDB

  1. Sensitivity of North American agriculture to ENSO-based climate scenarios and their socio-economic consequences: Modeling in an integrated assessment framework

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, N.J.; Izaurralde, R.C.; Brown, R.A.; Sands, R.D. [Pacific Northwest National Lab., Richland, WA (United States); Legler, D. [Florida State Univ., Tallahassee, FL (United States). Center for Ocean Atmosphere Prediction Studies; Srinivasan, R. [Texas A and M Univ., College Station, TX (United States). Blacklands Research Center; Tiscareno-Lopez, M.

    1997-09-01

    A group of Canadian, US and Mexican natural resource specialists, organized by the Pacific Northwest National Laboratory (PNNL) under its North American Energy, Environment and Economy (NA3E) Program, has applied a simulation modeling approach to estimating the impact of ENSO-driven climatic variations on the productivity of major crops grown in the three countries. Methodological development is described and results of the simulations presented in this report. EPIC (the Erosion Productivity Impact Calculator) was the agro-ecosystem model selected-for this study. EPIC uses a daily time step to simulate crop growth and yield, water use, runoff and soil erosion among other variables. The model was applied to a set of so-called representative farms parameterized through a specially-assembled Geographic Information System (GIS) to reflect the soils, topography, crop management and weather typical of the regions represented. Fifty one representative farms were developed for Canada, 66 for the US and 23 for Mexico. El Nino-Southern Oscillation (ENSO) scenarios for the EPIC simulations were created using the historic record of sea-surface temperature (SST) prevailing in the eastern tropical Pacific for the period October 1--September 30. Each year between 1960 and 1989 was thus assigned to an ENSO category or state. The ENSO states were defined as El Nino (EN, SST warmer than the long-term mean), Strong El Nino (SEN, much warmer), El Viejo (EV, cooler) and Neutral (within {+-}0.5 C of the long-term mean). Monthly means of temperature and precipitation were then calculated at each farm for the period 1960--1989 and the differences (or anomalies) between the means in Neutral years and EN, SEN and EV years determined. The average monthly anomalies for each ENSO state were then used to create new monthly statistics for each farm and ENSO-state combination. The adjusted monthly statistics characteristic of each ENSO state were then used to drive a stochastic-weather simulator

  2. Interaction between Tropical Atlantic Variability and El Niño-Southern Oscillation.

    Science.gov (United States)

    Saravanan, R.; Chang, Ping

    2000-07-01

    The interaction between tropical Atlantic variability and El Niño-Southern Oscillation (ENSO) is investigated using three ensembles of atmospheric general circulation model integrations. The integrations are forced by specifying observed sea surface temperature (SST) variability over a forcing domain. The forcing domain is the global ocean for the first ensemble, limited to the tropical ocean for the second ensemble, and further limited to the tropical Atlantic region for the third ensemble. The ensemble integrations show that extratropical SST anomalies have little impact on tropical variability, but the effect of ENSO is pervasive in the Tropics. Consistent with previous studies, the most significant influence of ENSO is found during the boreal spring season and is associated with an anomalous Walker circulation. Two important aspects of ENSO's influence on tropical Atlantic variability are noted. First, the ENSO signal contributes significantly to the `dipole' correlation structure between tropical Atlantic SST and rainfall in the Nordeste Brazil region. In the absence of the ENSO signal, the correlations are dominated by SST variability in the southern tropical Atlantic, resulting in less of a dipole structure. Second, the remote influence of ENSO also contributes to positive correlations between SST anomalies and downward surface heat flux in the tropical Atlantic during the boreal spring season. However, even when ENSO forcing is absent, the model integrations provide evidence for a positive surface heat flux feedback in the deep Tropics, which is analyzed in a companion study by Chang et al. The analysis of model simulations shows that interannual atmospheric variability in the tropical Pacific-Atlantic system is dominated by the interaction between two distinct sources of tropical heating: (i) an equatorial heat source in the eastern Pacific associated with ENSO and (ii) an off-equatorial heat source associated with SST anomalies near the Caribbean

  3. Eventos de tiempo severo inducidos por el ENSO en la temporada invernal cubana

    Directory of Open Access Journals (Sweden)

    1998-01-01

    THE CUBAN WINTER SEASON. The Cuban winter season frames the dry season of the year in the country, in which, differently from summer tropical systems, severe weather phenomena are hardly on record. However, in winter seasons under ENSO influence, meteorological systems are anomalously activated in latitudes farther south than normal. Severe weather events lasting from 24 to 48 hours are then relatively frequent and accounts for the formation of severe squall lines, intense rains, tornadoes, hail and coastal floods. These events cause death and great destruction, mainly in agriculture and the sugar cane industry. Climatologists recognize ENSO as the major cause of interannual climatic variability on the Planet. From this point of view, they describe and forecast ENSO seasonal effects as positive or negative deviations from normal meteorological variables such as precipitation and temperature. Nevertheless, a more detailed approach can only be achieved from the study of ENSO inducing synoptic systems, which cause severe weather. This becomes entirely necessary to design an Early Warning System for the interests of Civil Defense and economy. In the present paper the role of Subtropical Jet Stream is identified as the prime cause for the formation of severe weather events in Cuba. Besides, from the study of winter seasons with moderate or strong ENSO presence since 1957-58 through 1996-97, several synoptic patterns were obtained from surface and upper air charts, as well as their association with ENSO inducing severe weather events. Examples of impact of these events in the Country are shown. Using these techniques, an early forecast system used by Civil Defense was created.

  4. On the unstable ENSO-Western North Pacific Monsoon relation during the 20th Century

    Science.gov (United States)

    Vega Martín, Inmaculada; Gallego Puyol, David; Ribera Rodriguez, Pedro; Gómez Delgado, Francisco de Paula; Peña-Ortiz, Cristina

    2017-04-01

    The concept of the Western North Pacific Summer Monsoon (WNPSM) appeared for the first time in 1987. Unlike the Indian Summer Monsoon and the East Asian summer monsoon, the WNPSM is an oceanic monsoon driven essentially by the meridional gradient of sea surface temperature. Its circulation is characterized by a northwest-southeast oriented monsoon trough with intense precipitation and low-level southwesterlies and upper-tropospheric easterlies in the region [100°-130° E, 5°-15°N]. Although this monsoon is mainly oceanic, it modulates the precipitation of densely populated areas such as the Philippines. To date, the WNPSM has been quantified by the so-called Western North Pacific Monsoon Index (WNPMI), an index based on wind anomalies over large domains of the Western Pacific. The requirement of continuous observed wind over remote oceanic areas to compute the WNPMI has limited its availability to the 1949-2014 period. In this work we have extended the index by almost 100 years by using historical observations of wind direction taken aboard ships. Our Western North Pacific Directional Index (WNPDI), is defined as the sum of the persistence of the low-level westerly winds in [5°-15°N, 100°-130°E] and easterly winds in [20°-30°N, 110°-140°E]. The new WNPDI index is highly correlated to the existent WNPMI for the concurrent period (1948-2014). (r=+0.88, p<0.01), indicating that the new approach based in the use of wind direction alone (a variable that can be considered instrumental even before the 20th Century), captures most of the monsoonal signal. Previous studies found that, during the second part of the 20th Century the WNPSM exhibited two basic characteristics: first a large interannual variability and second, a significant relation between the WNPSM and the El Niño/Southern Oscillation (ENSO) in a way in which a strong (weak) WNPSM tends to occur during the El Niño (La Niña) developing year or/and La Niña (El Niño) decaying year. The analysis of

  5. Antagonistic Phenomena in Network Dynamics

    Science.gov (United States)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  6. Tracking ENSO with tropical trees: Progress in stable isotope dendroclimatology

    Science.gov (United States)

    Evans, M. N.; Poussart, P. F.; Saleska, S. R.; Schrag, D. P.

    2002-12-01

    The terrestrial tropics remain an important gap in the growing proxy network used to characterize past ENSO behavior. Here we describe a strategy for development of proxy estimates of paleo-ENSO, via proxy rainfall estimates derived from stable isotope (δ18O) measurements made on tropical trees. The approach applies a new model of oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brand, 1996) to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. The promise and pitfalls of the approach are illustrated in pilot datasets from the US, Costa Rica, Brazil, and Peru, which show isotopic cycles of 4-6 per mil, and interannual anomalies of up to 8 per mil. Together with the mature ENSO proxies (corals, extratropical tree-rings, varved sediments, and ice cores), replicated and well-dated stable isotope chronologies from tropical trees may eventually improve our understanding of ENSO history over the past several hundred years.

  7. Understanding ENSO dynamics through the exploration of past climates

    International Nuclear Information System (INIS)

    Phipps, Steven J; Brown, Jaclyn N

    2010-01-01

    The palaeoclimate record shows that significant changes in ENSO characteristics took place during the Holocene. Exploring these changes, using both data and models, provides a means of understanding ENSO dynamics. Previous modelling studies have suggested a mechanism whereby changes in the Earth's orbital geometry explain the strengthening of ENSO over the Holocene. Decreasing summer insolation over the Asian landmass resulted in a weakening of the Asian monsoon system. This led to a weakening of the easterly trade winds in the western Pacific, creating conditions more favourable for El Nino development. To explore this hypothesised forcing mechanism, we use a climate system model to conduct a suite of simulations of the climate of the past 8,000 years. In the early Holocene, we find that the Asian summer monsoon system is intensified, resulting in an amplification of the easterly trade winds in the western Pacific. The stronger trade winds represent a barrier to the eastward propagation of westerly wind bursts, therefore inhibiting the onset of El Nino events. The fundamental behaviour of ENSO remains unchanged, with the major change over the Holocene being the influence of the background state of the Pacific on the susceptibility of the ocean to the initiation of El Nino events.

  8. The complex influence of ENSO on droughts in Ecuador

    KAUST Repository

    Vicente-Serrano, S. M.; Aguilar, E.; Martí nez, R.; Martí n-Herná ndez, N.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; El Kenawy, Ahmed M.; Tomá s-Burguera, M.; Moran-Tejeda, E.; Ló pez-Moreno, J. I.; Revuelto, J.; Beguerí a, S.; Nieto, J. J.; Drumond, A.; Gimeno, L.; Nieto, R.

    2016-01-01

    of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Niño 3.4 and El Niño 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical

  9. Tree-ring analysis of winter climate variability and ENSO in Mediterranean California

    International Nuclear Information System (INIS)

    Woodhouse, C.A.; Univ. of Colorado, Boulder

    2006-01-01

    The feasibility of using tree-ring data as a proxy for regional precipitation and ENSO events in the Mediterranean region of California is explored. A transect of moisture-sensitive tree-ring sites, extending from southwestern to north-central California, documents regional patterns of winter precipitation and replicates the regional response to ENSO events in the 20. century. Proxy records of ENSO were used with the tree-ring data to examine precipitation/ENSO patterns in the 18. and 19. centuries. Results suggest some temporal and spatial variability in the regional precipitation response to ENSO over the last three centuries

  10. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh.

    Science.gov (United States)

    Banu, Shahera; Guo, Yuming; Hu, Wenbiao; Dale, Pat; Mackenzie, John S; Mengersen, Kerrie; Tong, Shilu

    2015-11-05

    Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects.

  11. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... such dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  12. Strong influence of El Niño Southern Oscillation on flood risk around the world

    NARCIS (Netherlands)

    Ward, P.J.; Jongman, B.; Kummu, M.S.; Dettinger, M.D.; Sperna Weiland, F.C.; Winsemius, H.C.

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts,

  13. The El Niño Southern Oscillation index and wildfire prediction in British Columbia

    NARCIS (Netherlands)

    Xu, Zhen; Kooten, van G.C.

    2014-01-01

    This study investigates the potential to predict monthly wildfires and area burned in British Columbia's interior using El Niño Southern Oscillation (ENSO). The zero-inflated negative binomial (ZINB) and the generalized Pareto (GP) distributions are used, respectively, to account for uncertainty in

  14. Reconstruction of El Niño - Southern oscillation variability during the Holocene

    NARCIS (Netherlands)

    Donders, T.H.

    2005-01-01

    The El Niño – Southern Oscillation (ENSO) in the tropical Pacific constitutes the largest source of global climate variability on interannual timescales. Every 2-7 year the El Niño phenomenon causes altered Pacific circulation, leading to widespread droughts and floods. However, the exact mechanisms

  15. Strategic adaptation of nitrogen management for el nino southern oscillation-induced winter wheat system

    Science.gov (United States)

    The rainfall anomaly (RA) associated with El Niño-Southern Oscillation (ENSO) has various unwanted impacts on agricultural system globally. The loss of inorganic nitrogen (N) depending on extreme wet or dry conditions is a major concern. The main objective of this study was to adapt site-specific N ...

  16. The Solar and Southern Oscillation Components in the Satellite Altimetry Data

    DEFF Research Database (Denmark)

    Howard, Daniel; Shaviv, Nir J.; Svensmark, Henrik

    2015-01-01

    altimetry data can be explained as the combined effect of both the solar forcing and the El Niño-Southern Oscillation (ENSO). The phase of the solar component can be used to derive the different steric and eustatic contributions. We find that the peak to peak radiative forcing associated with the solar...

  17. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation

    NARCIS (Netherlands)

    Chen, Yang; Morton, Douglas C.; Andela, Niels; Van Der Werf, Guido R.; Giglio, Louis; Randerson, James T.

    2017-01-01

    The El Niño/Southern Oscillation (ENSO) has a pronounced influence on year-to-year variations in climate 1 . The response of fires to this forcing 2 is complex and has not been evaluated systematically across different continents. Here we use satellite data to create a climatology of burned-area and

  18. El Niño/Southern Oscillation response to global warming

    Science.gov (United States)

    Latif, M.; Keenlyside, N. S.

    2009-01-01

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO2, accelerating global warming. PMID:19060210

  19. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    Science.gov (United States)

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  20. Teleconnections in Groundwater of U.S. Principal Aquifers to the Non-Stationarity of ENSO, NAO, PDO, and AMO

    Science.gov (United States)

    Gurdak, J. J.; Kuss, A. M.

    2012-12-01

    Groundwater will play an important role in society's adaptation to climate variability and change. Therefore, it is particularly important to detect and quantify teleconnections in groundwater with non-stationarity in climate variability on interannual to multidecadal timescales because of the tangible and near-term implications for water-resource management. Interannual to multidecadal climate variability partially controls precipitation distribution in space and time, drought frequency and severity, snowmelt runoff, streamflow, and other hydrologic processes that profoundly affects surface-water resources. However, the effects of interannual to multidecadal climate variability on recharge rates and mechanisms and other subsurface hydrologic processes that affect groundwater quantity and quality are largely unknown in most aquifers of the United States (U.S.) and other regions of the world. Here we use singular spectrum analysis (SSA), wavelet coherence analysis, and lag correlation to quantify the effects of the El Niño Southern Oscillation (ENSO) (2-7 year cycle), North Atlantic Oscillation (NAO) (3-6 year cycle), Pacific Decadal Oscillation (PDO) (10-25 year cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 year cycle) on precipitation, groundwater levels, simulated groundwater pumping, and climate varying recharge rates across the regionally extensive Central Valley (52,000 km2), Basin and Range (700,000 km2), High Plains (450,000 km2), and North Atlantic Coastal Plain (130,000 km2) Principal Aquifers (PAs) of the U.S. The results indicate that precipitation, recharge, and groundwater levels are partially affected by interannual to multidecadal climate variability and groundwater-level fluctuations are not solely a function of temporal patterns in pumping. ENSO and PDO have a greater control than NAO and AMO on variability in precipitation and groundwater levels across the U.S., particularly in the western and central PAs. At many locations, recharge

  1. Southern Hemisphere Extratropical Cyclones and their Relationship with ENSO in springtime

    Science.gov (United States)

    Reboita, M. S.; Ambrizzi, T.; Da Rocha, R.

    2013-05-01

    Extratropical cyclones occurrence is associated with the teleconnection mechanisms that produce climate variability. Among these mechanisms we have El Niño-Southern Oscillation (ENSO). Some works have indicated that during the ENSO positive phase there are more cyclogenetic conditions in some parts of the globe as the southwest of South Atlantic Ocean. Therefore, the purpose of this study is to verify if the extratropical cyclones number and location are altered in the different ENSO phases in the austral spring over the Southern Hemisphere (SH). The Melbourne University automatic tracking scheme was used to determine the cyclone climatology from 1980 to 2012. All cyclones that appear with lifetime higher or equal to 24 hours in the sea level pressure data from National Centers for Environment Prediction reanalysis I were included in the climatology. El Niño (EN), La Niña (LN) and Neutral (N) years were identified through the Oceanic Niño Index (ONI) from Climate Prediction Center/NOAA. The average number of cyclones in the spring over the SH is similar in the EN (200), N (184) and LN (197) episodes. By latitude bands, during EN episodes the cyclones occurrence reduces in 16% between 70-60 degrees and increases in ~15% between 80-70 and 50-40 degrees. On the other hand, during the LN episodes, the cyclones are 17% more frequent in 50-60 degrees and 22% less frequent in 30-20 degrees. One more detailed analysis of the cyclones trajectory density (that is a statistic product of the tracking algorithm) shows that in the South Atlantic Ocean, near the southeast of South America, the number of cyclones in EN years is higher than in the neutral period and lower than in the LN years. In the Indian Ocean, the EN year is characterized by a cyclones reduction in the west and east sector, near the continents. In the Pacific Ocean, the region southward the New Zealand presents more cyclones occurrence in EN years.

  2. Precipitation in Santa Barbara, CA on varying timescales and the relationships with the El Niño Southern Oscillation, the Madden-Julian Oscillation, and atmospheric rivers

    Science.gov (United States)

    Harris, S. M.; Carvalho, L. V.; Jones, C.

    2013-12-01

    This study aimed to understand the patterns and variations of extreme precipitation events that occur in Santa Barbara County and determine the relationships with various phenomena that affect the region. Santa Barbara, CA is an area with complex topography that is disposed to numerous hazard events including landslides and flooding, particularly during the region's rainy season (Nov.-Apr.). These incidents are especially frequent in the seasons after fire-events, another hazard common to the region. In addition, Santa Barbara is affected by several tropical phenomena that influence precipitation on varying timescales including the El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and atmospheric rivers (ARs). It is well known that ENSO and the MJO influence storms that occur in southern California through processes such as the modulation of the upper level jet and the low level moisture flux. ARs have been revealed to be responsible for the movement of large quantities of water vapor from tropical areas to the midlatitudes and have been linked to high-intensity storms throughout the western coast of North America. We examined rainy season (Nov.-Apr.) precipitation within Santa Barbara County using hourly rainfall data spanning approximately forty years (~1971-2010) from seven, local, rain gauge stations. The distributions as well as totals of precipitation on varying timescales (hourly, daily, seasonal, and yearly) were defined for specified intensities of rainfall based upon the 75th, 90th, 95th, and 99th percentiles. Persistence, expressed as the number of consecutive hours (or days) including intense precipitation defined according to the percentiles, was investigated on the hourly and daily timescales. In addition, specified storm episodes identified in this study were examined with data from the Tropical Rainfall Measurement Mission in order to assess the spatial features of high-intensity storms. Results from this analysis will be

  3. Oscillating and rotating sine-Gordon system

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1986-01-01

    The interaction between a 2π kink and the background or vacuum is investigated in the pure sine-Gordon system. For an oscillating background (i.e., the k=0 part of the phonon spectrum) the 2π kink oscillates, while for increasing or decreasing vacuum two phenomena have been observed, depending...

  4. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  5. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  6. Asymptotic solution for the El Niño time delay sea—air oscillator model

    International Nuclear Information System (INIS)

    Mo Jia-Qi; Lin Wan-Tao; Lin Yi-Hua

    2011-01-01

    A sea—air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Niño-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities. (general)

  7. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia

    Science.gov (United States)

    Poveda, GermáN.; Jaramillo, Alvaro; Gil, Marta MaríA.; Quiceno, Natalia; Mantilla, Ricardo I.

    2001-08-01

    An analysis of hydrologic variability in Colombia shows different seasonal effects associated with El Niño/Southern Oscillation (ENSO) phenomenon. Spectral and cross-correlation analyses are developed between climatic indices of the tropical Pacific Ocean and the annual cycle of Colombia's hydrology: precipitation, river flows, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Our findings indicate stronger anomalies during December-February and weaker during March-May. The effects of ENSO are stronger for streamflow than for precipitation, owing to concomitant effects on soil moisture and evapotranspiration. We studied time variability of 10-day average volumetric soil moisture, collected at the tropical Andes of central Colombia at depths of 20 and 40 cm, in coffee growing areas characterized by shading vegetation ("shaded coffee"), forest, and sunlit coffee. The annual and interannual variability of soil moisture are highly intertwined for the period 1997-1999, during strong El Niño and La Niña events. Soil moisture exhibited greater negative anomalies during 1997-1998 El Niño, being strongest during the two dry seasons that normally occur in central Colombia. Soil moisture deficits were more drastic at zones covered by sunlit coffee than at those covered by forest and shaded coffee. Soil moisture responds to wetter than normal precipitation conditions during La Niña 1998-1999, reaching maximum levels throughout that period. The probability density function of soil moisture records is highly skewed and exhibits different kinds of multimodality depending upon land cover type. NDVI exhibits strong negative anomalies throughout the year during El Niños, in particular during September-November (year 0) and June-August (year 0). The strong negative relation between NDVI and El Niño has enormous implications for carbon, water, and energy budgets over the region, including the tropical Andes and Amazon River basin.

  8. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  9. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  10. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  11. ENSO impact on hydrology in Peru

    Science.gov (United States)

    Lavado-Casimiro, W. S.; Felipe, O.; Silvestre, E.; Bourrel, L.

    2013-04-01

    The El Niño and La Niña impacts on the hydrology of Peru were assessed based on discharge data (1968-2006) of 20 river catchments distributed over three drainage regions in Peru: 14 in the Pacific Coast (PC), 3 in the Lake Titicaca (TL) region, and 3 in the Amazonas (AM). To classify the El Niño and La Niña events, we used the Southern Oscillation Index (SOI) based on hydrological years (September to August). Using the SOI values, the events were re-classified as strong El Niño (SEN), moderate El Niño (MEN), normal years (N), moderate La Niña (MLN) and strong La Niña (SLN). On average during the SEN years, sharp increases occurred in the discharges in the north central area of the PC and decreases in the remaining discharge stations that were analyzed, while in the years of MEN events, these changes show different responses than those of the SEN. During the years classified as La Niña, positive changes are mostly observed in the majority of the stations in the rivers located in the center of Peru's Pacific Coast. Another important result of this work is that the Ilave River (south of the Titicaca watershed) shows higher positive (negative) impacts during La Niña (El Niño) years, a fact that is not clearly seen in the rivers of the northern part of the Titicaca watershed (Ramis and Huancane rivers).

  12. Changes in ENSO amplitude under climate warming and cooling

    Science.gov (United States)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  13. Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar; Kucharski, Fred; Azharuddin, Syed

    2017-01-01

    ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last few decades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (‘SPEEDY’). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air–sea coupling is also required for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of ENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant

  14. Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2017-03-09

    ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last few decades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (‘SPEEDY’). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air–sea coupling is also required for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of ENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant

  15. ENSO signals on sea-surface salinity in the eastern tropical pacific ocean

    Directory of Open Access Journals (Sweden)

    1998-01-01

    types collected in the tropical Pacific are analyzed to assess the regional impacts of past (1972-1996 El Niño Southern Oscillation (ENSO events. Focus is made on the regional changes in sea-surface temperature and salinity. Commercial vessels were recently equipped with automated thermosalinographs which allows to monitor the location of salinity front along the Panama-Tahiti line, separating the Panama Gulf from the South Pacific water masses. The latitudinal change of the salinity front is well correlated with the latitudinal change of the ITCZ. Salinity distribution gives additional information on El-Niño development. How future real time SSS data might provide interesting information on the development of ENSO phenomenon in the eastern tropical Pacific area will be discussed.

  16. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  17. Water table depth fluctuations during ENSO phenomenon on different tropical peat swamp forest land covers in Katingan, Indonesia

    Science.gov (United States)

    Rossita, A.; Witono, A.; Darusman, T.; Lestari, D. P.; Risdiyanto, I.

    2018-03-01

    As it is the main role to maintain hydrological function, peatland has been a limelight since drainage construction for agriculture evolved. Drainage construction will decrease water table depth (WTD) and result in CO2 emission release to the atmosphere. Regardless of human intervention, WTD fluctuations can be affected by seasonal climate and climate variability, foremost El Niño Southern Oscillation (ENSO). This study aims to determine the correlation between rainfall in Katingan and ENSO index, analyze the pattern of WTD fluctuation of open area and forest area in 2015 (during very strong El Niño) and 2016 (during weak La Niña), calculate the WTD trendline slope during the dry season, and rainfall and WTD correlation. The result showed that open area has a sharper slope of decreasing or increasing WTD when entering the dry, compared to the forest area. Also, it is found that very strong El Niño in 2015 generated a pattern of more extreme decreasing WTD during the dry season than weak La Niña in 2016.

  18. Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall.

    Science.gov (United States)

    Preethi, B; Sabin, T P; Adedoyin, J A; Ashok, K

    2015-11-16

    The study diagnoses the relative impacts of the four known tropical Indo-Pacific drivers, namely, El Niño Southern Oscillation (ENSO), ENSO Modoki, Indian Ocean Dipole (IOD), and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability. The canonical El Niño and El Niño Modoki are in general associated with anomalous reduction (enhancement) of rainfall in southern (northern) hemispheric regions during March-May season. However, both the El Niño flavours anomalously reduce the northern hemispheric rainfall during June-September. Interestingly, during boreal spring and summer, in many regions, the Indian Ocean drivers have influences opposite to those from tropical Pacific drivers. On the other hand, during the October-December season, the canonical El Niño and/or positive IOD are associated with an anomalous enhancement of rainfall in the Eastern Africa, while the El Niño Modoki events are associated with an opposite impact. In addition to the Walker circulation changes, the Indo-Pacific drivers influence the African rainfall through modulating jet streams. During boreal summer, the El Niño Modoki and canonical El Niño (positive IOD) tend to weaken (strengthen) the tropical easterly jet, and result in strengthening (weakening) and southward shift of African easterly jet. This anomalously reduces (enhances) rainfall in the tropical north, including Sahelian Africa.

  19. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model.

    Science.gov (United States)

    Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun

    2017-12-07

    The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.

  20. Chemical Oscillations

    Indian Academy of Sciences (India)

    IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.

  1. Chemical Oscillations

    Indian Academy of Sciences (India)

    the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.

  2. Paleoclimate Records from New Zealand Maar Lakes, Insights into ENSO Teleconnections and Climatic Events in the South (West) Pacific.

    Science.gov (United States)

    Shulmeister, J.; Nobes, D. C.; Striewski, B.

    2008-05-01

    The maar craters of the New Zealand Auckland Volcanic Field (36.5°S, 174.5°E) contain some of the highest resolution late-Quaternary paleoclimate records in the Southern Hemisphere. Here we integrate laminae count results from recent drilling in the Hopua Crater with existing records from the nearby Onepoto Crater (Pepper et al., 2004). In total these records cover many thousands of years between the onset of the last glaciation maximum and the early mid-Holocene. The cores are strongly laminated. Individual laminae in both craters are very fine (sub-mm to mm scale) and form couplets which comprise a darker mineralogenic rich layer and a lighter diatomaceous layer. In places these couplets are annual, and may reflect seasonal algal blooms, but in other sections of the record, notably through the late-Glacial and Holocene, the couplets are deposited at inter-annual time scales. Spectral analyses of couplet thickness counts using a fast Fourier transform (FFT) with 64 to 256-year running windows, and a 50 per cent overlap indicate strong spectral power during the LGM and markedly weaker power during both the deglaciation and early Holocene. In fact there is no spectral strength for most of these periods. Three brief (centennial duration) events punctuate this extended period of low spectral power. These occur at c. 16 ka, c. 14.8 ka and during the early Holocene. They display spectral power in the 5-7yr ENSO window and also at longer time intervals that may be consistent with the Pacific Decadal Oscillation. We infer the local switching on (or up) of ENSO and PDO teleconnections and suspect these are embedded in circum-polar circulation changes. In addition to these spectral power episodes, there is a general increase in the number of couplet cycles per century between the deglaciation and the early mid-Holocene. This matches observations from Equador and Peru and suggests that trans-Pacific ENSO responses are in phase between western tropical South America and New

  3. El Niño-Southern Oscillation effect on quasi-biennial oscillations of temperature diurnal tides in the mesosphere and lower thermosphere

    Science.gov (United States)

    Sun, Yang-Yi; Liu, Huixin; Miyoshi, Yasunobu; Liu, Libo; Chang, Loren C.

    2018-05-01

    In this study, we evaluate the El Niño-Southern Oscillation (ENSO) signals in the two dominant temperature diurnal tides, diurnal westward wavenumber 1 (DW1) and diurnal eastward wavenumber 3 (DE3) on the quasi-biennial oscillation (QBO) scale (18-34 months) from 50 to 100 km altitudes. The tides are derived from the 21-year (January 1996-February 2017) Ground-to-Topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) temperature simulations and 15-year (February 2002-February 2017) Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature observations. The results show that ENSO warm phases shorten the period ( 2 years) of the QBO in DW1 amplitude near the equator and DE3 amplitude at low latitudes of the Northern Hemisphere. In contrast, the QBO period lengthens ( 2.5 years) during the ENSO neutral and cold phases. Correlation analysis shows the long-lasting effect of ENSO on the tidal QBO in the mesosphere and lower thermosphere.[Figure not available: see fulltext.

  4. Role of the Indian Ocean on the southern oscillation, atmospheric circulation indices and monsoon rainfall over India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Wells, N.C.

    Oscillation and ENSO is also examined. Indian monsoon rainfall is strongly and positively correlated with the SST of November month (0.77; statistically significant at 99% level) of the preceding calendar year. Monsoon indices (M1, U200) are strongly...

  5. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  6. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  7. Nonequilibrium Phenomena in Plasmas

    CERN Document Server

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  8. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  9. Seasonal to Interannual Variability of Satellite-Based Precipitation Estimates in the Pacific Ocean Associated with ENSO from 1998 to 2014

    Directory of Open Access Journals (Sweden)

    Xueyan Hou

    2016-10-01

    Full Text Available Based on a widely used satellite precipitation product (TRMM Multi-satellite Precipitation Analysis 3B43, we analyzed the spatiotemporal variability of precipitation over the Pacific Ocean for 1998–2014 at seasonal and interannual timescales, separately, using the conventional empirical orthogonal function (EOF and investigated the seasonal patterns associated with El Niño–Southern Oscillation (ENSO cycles using season-reliant empirical orthogonal function (SEOF analysis. Lagged correlation analysis was also applied to derive the lead/lag correlations of the first two SEOF modes for precipitation with Pacific Decadal Oscillation (PDO and two types of El Niño, i.e., central Pacific (CP El Niño and eastern Pacific (EP El Niño. We found that: (1 The first two seasonal EOF modes for precipitation represent the annual cycle of precipitation variations for the Pacific Ocean and the first interannual EOF mode shows the spatiotemporal variability associated with ENSO; (2 The first SEOF mode for precipitation is simultaneously associated with the development of El Niño and most likely coincides with CP El Niño. The second SEOF mode lagged behind ENSO by one year and is associated with post-El Niño years. PDO modulates precipitation variability significantly only when ENSO occurs by strengthening and prolonging the impacts of ENSO; (3 Seasonally evolving patterns of the first two SEOF modes represent the consecutive precipitation patterns associated with the entire development of EP El Niño and the following recovery year. The most significant variation occurs over the tropical Pacific, especially in the Intertropical Convergence Zone (ITCZ and South Pacific Convergence Zone (SPCZ; (4 Dry conditions in the western basin of the warm pool and wet conditions along the ITCZ and SPCZ bands during the mature phase of El Niño are associated with warm sea surface temperatures in the central tropical Pacific, and a subtropical anticyclone dominating

  10. Microplankton biomass and diversity in the Vietnamese upwelling area during SW monsoon under normal conditions and after an ENSO event

    DEFF Research Database (Denmark)

    Loick-Wilde, Natalie; Bombar, Deniz; Doan, Hai Nhu

    2017-01-01

    to show how climatological-driven changes can have a significant influence on the distribution of microplankton communities and their biomass via its impact on nutrient concentrations in the water column. The first summer in July 2003 followed a weak El-Nino Southern Oscillation (ENSO) event...... (10–20 µm) prevailed ubiquitously during reduced upwelling. During normal upwelling, the diatom Rhizosolenia sp. dominated the cell-carbon biomass in the silicate poor upwelling waters. Trichodesmium erythraeum dominated in the Mekong-influenced and nutrient depleted offshore waters, where it co......Investigating microplankton biomass and diversity under different climatological conditions is key to the understanding of cascading effects of climate change on nutrient cycles and biological productivity. Here we have used data collected during two contrasting summers along the coast of Viet Nam...

  11. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  12. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  13. Interfacial transport phenomena

    CERN Document Server

    Slattery, John C; Oh, Eun-Suok

    2007-01-01

    Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale.

  14. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  15. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  16. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshov, Y.; Qi, L. [Australian Bureau of Meteorology, Melbourne, VIC (Australia). National Climate Centre; Chane Ming, F.; Chouaibou, I.; Hoareau, C. [UMR CNRS-Meteo-France-Univ. de la Reunion, La Reunion (France). Lab. de l' Atmosphere et des Cyclones; Roux, F. [Paul Sabatier Univ., CNRS, Toulouse (France). Lab. d' Aerologie

    2009-07-01

    Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC) archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Nino-Southern Oscillation (ENSO) phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs), relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Nina events compared to El Nino events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Nina seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western) part of the basin as well as for the northeast (southwest) shift of points of cyclogenesis during El Nino (La Nina) events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables. (orig.)

  17. ENSO Weather and Coral Bleaching on the Great Barrier Reef, Australia

    Science.gov (United States)

    McGowan, Hamish; Theobald, Alison

    2017-10-01

    The most devastating mass coral bleaching has occurred during El Niño events, with bleaching reported to be a direct result of increased sea surface temperatures (SSTs). However, El Niño itself does not cause SSTs to rise in all regions that experience bleaching. Nor is the upper ocean warming trend of 0.11°C per decade since 1971, attributed to global warming, sufficient alone to exceed the thermal tolerance of corals. Here we show that weather patterns during El Niño that result in reduced cloud cover, higher than average air temperatures and higher than average atmospheric pressures, play a crucial role in determining the extent and location of coral bleaching on the world's largest coral reef system, the World Heritage Great Barrier Reef (GBR), Australia. Accordingly, synoptic-scale weather patterns and local atmosphere-ocean feedbacks related to El Niño-Southern Oscillation (ENSO) and not large-scale SST warming due to El Niño alone and/or global warming are often the cause of coral bleaching on the GBR.

  18. The large-scale ENSO event, the El Niño and other important regional features

    Directory of Open Access Journals (Sweden)

    1993-01-01

    Full Text Available L'EVENEMENT ENSO A GRANDE ECHELLE, EL NIÑO ET AUTRES CARACTERISTIQUES REGIONALES IMPORTANTES. En ce qui concerne cette activité, on a ramassé - et on continue de le faire - une information coordonnée et améliorée. Cependant, les informations année après année sur les changements climatiques en lien avec l’Oscillation du Sud (SO sont limitées de façon primaire à la période comprise entre l’année 622 et nos jours. La fluctuation océano-atmosphérique récurrente et à grande échelle, El Niño/ Oscillation du Sud (ENSO, qui se présente sous les basses latitudes depuis l’Afrique orientale vers l’est jusqu’aux Amériques, se manifeste en gros comme une «balançoire» dans les conditions océano-atmosphériques entre la zone de l’Océan Indien tropical et celles de l’Océan Pacifique tropical. L’ENSO est en lien avec une phase de bas indice de la SO et est associé, du côté occidental de la «balançoire», à une sécheresse en Australie occidentale et septentrionale, une sècheresse par l’est de la mousson en Indonésie, une pluie déficiente de la mousson-est d’été en Inde et une pluie déficiente de la mousson d’été dans la montagne éthiopienne (qui débouche sur une faible contribution au système du Nil. Par opposition, du côté oriental de la «balançoire», celle-ci est en lien avec El Niño, avec des températures superficielles de la mer (TSM anormalement hautes, des pluies au-dessus de la normale dans le Pacifique équatorial central et oriental et des pluies anormalement fortes dans le Chili sub-tropical. Le haut indice (phase anti-Niño de la SO est en lien, du côté occidental de la «balançoire», avec des pluies anormalement fortes en Australe orientale et septentrionale, des pluies de mousson de l’est anormalement fortes en Indonésie, des pluies de mousson d’été au-dessus de la normale en Inde, et une quantité d’eau anormalement grande qui se déverse dans le Nil, suite aux pluies de

  19. Shifting patterns of ENSO variability from a 492-year South Pacific coral core

    Science.gov (United States)

    Tangri, N.; Linsley, B. K.; Mucciarone, D.; Dunbar, R. B.

    2017-12-01

    Anticipating the impacts of ENSO in a changing climate requires detailed reconstructions of changes in its timing, amplitude, and spatial pattern, as well as attempts to attribute those changes to external forcing or internal variability. A continuous coral δ18O record from American Samoa, in the tropical South Pacific, sheds light on almost five centuries of these changes. We find evidence of internally-driven 50-100 year cycles with broad peaks of high variability punctuated by short transitions of low variability. We see a long, slow trend towards more frequent ENSO events, punctuated by sharp decreases in frequency; the 20th century in particular shows a strong trend towards higher-frequency ENSO. Due to the unique location of American Samoa with respect to ENSO sea surface temperature (SST) anomalies, we infer changes in the spatial pattern of ENSO. American Samoa currently lies on the ENSO 3.4 nodal line - the boomerang shape that separates waters warmed by El Niño from those that cool. Closer examination reveals that SST around American Samoa displays opposing responses to Eastern and Central Pacific ENSO events. However, this has not always been the case; in the late 19th and early 20th century, SST responded similarly to both flavors of ENSO. We interpret this to mean a geographic narrowing towards the equator of the eastern Pacific El Niño SST anomaly pattern in the first half of the 20th century.

  20. Imavere Sawmill is Stora Ensos Jewel in the Region / Seppo Vainio ; interv. Toivo Tänavsuu

    Index Scriptorium Estoniae

    Vainio, Seppo

    2004-01-01

    Skandinaavia metsanduskontserni Stora Enso Timberi tegevuse juht Baltikumis vastab küsimustele, mis puudutavad Eesti suurima metsatööstuse Sylvesteri ostu 2003. aastal, Baltikumi üksuste osa Stora Enso tegevuses, Imavere saeveski valimist aasta välisinvestoriks. Vt. samas: Imavere saeveski eile ja täna. Tabel: "Välisinvestor 2004" nominendid

  1. Variation characteristics and influences of climate factors on aridity index and its association with AO and ENSO in northern China from 1961 to 2012

    Science.gov (United States)

    Zhang, Kexin; Qian, Xiaoqing; Liu, Puxing; Xu, Yihong; Cao, Liguo; Hao, Yongpei; Dai, Shengpei

    2017-10-01

    Analyses of the variation characteristics for aridity index (AI) can further enhance the understanding of climate change and have effect on hydrology and agriculture. In this paper, based on the data of 283 standard meteorological stations, the temporal-spatial variations and the influences of climate factors on AI were investigated and the relationship between AI and two climate indices (the Arctic Oscillation (AO); El Nino-Southern Oscillation (ENSO)) were also assessed in northern China (NC) during the period from 1961 to 2012. The results revealed that the annual mean AI decreased at the rate of -0.031 per decade in the past 52 years and the trend was statistically significant at the 0.01 level. The Mann-Kendall (M-K) test presented that the percentages of stations with positive trends and negative trends for AI were 10 and 81.9 % (22.6 % statistically significant), respectively. Spatially, in the western part of 100° E, the extremely dry area declined and the climate tended to become wet obviously. In the eastern part of 100° E, dry area moved toward the east and the south, which resulted in the enhancement of semiarid area and the shrinkage of subhumid area. The contributions of sunshine duration and precipitation to the decline of AI are more than those of other meteorological variables in NC. Moreover, the average temperature has risen significantly and AI decreased in NC, which indicated the existence of "paradox." Relationship between climate indices (AO and ENSO) and AI demonstrated that the influence of ENSO on AI overweight the AO on AI in NC.

  2. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  3. SEPARATION PHENOMENA LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Ikaro Daniel de Carvalho Barreto

    2014-03-01

    Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

  4. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  5. Rabi oscillations in bidimensional photonic crystals

    International Nuclear Information System (INIS)

    Centeno, E.; Felbacq, D.

    2000-01-01

    We theoretically and numerically investigate transient phenomena in finite two-dimensional photonic crystals doped by single-mode microcavities. We show that for antisymmetric defect modes, there are Rabi oscillations between the microcavities. We develop a spectral analysis which permits us to compute the Rabi frequencies of these oscillations as well as the Q factor of the microcavities. We present a method allowing the computation of the coupling factor between localized modes

  6. Anti-synchronization of chaotic oscillators

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai

    2003-01-01

    We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation

  7. Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - II. El Nino Southern Oscillation and North Atlantic Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Seung-Ki; Hense, Andreas [Univ. of Bonn (Germany). Meteorological Inst.; Legutke, Stephanie [Max Planck Inst. for Meteorology, Hamburg (Germany); Kwon, Won-Tae [Meteorological Research Inst., Seoul (Korea, Republic of)

    2005-08-01

    A 1000-yr control simulation (CTL) performed with the atmosphere-ocean global climate model ECHO-G is analysed with regard to the El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), the two major natural climatic variabilities, in comparison with observations and other model simulations. The ENSO-related sea surface temperature climate and its seasonal cycle in the tropical Pacific and a single Intertropical Convergence Zone in the eastern tropical Pacific are simulated reasonably, and the ENSO phase-locking to the annual cycle and the subsurface ocean behaviour related to equatorial wave dynamics are also reproduced well. The simulated amplitude of the ENSO signal is however too large and its occurrence is too regular and frequent. Also, the observed westward propagation of zonal wind stress over the equatorial Pacific is not captured by the model. Nevertheless, the ENSO-related teleconnection patterns of near-surface temperature (T2m), precipitation (PCP) and mean sea level pressure (MSLP) are reproduced realistically. The NAO index, defined as the MSLP difference between Gibraltar and Iceland, has a 'white' noise spectrum similar to that of the detrended index obtained from observed data. The correlation and regression patterns of T2m, PCP and MSLP with the NAO index are also successfully simulated. However, the model overestimates the warming over the North Pacific in the high index phase of the NAO, a feature it shares with other coupled models. This might be associated with an enhanced Atlantic/Pacific teleconnection, which is hardly seen in the observations. A detection analysis of the NAO index shows that the observed recent 4060 yr trend cannot be explained by the model's internal variability while the recent 2030 yr trend occurs with a more than 1% chance in ECHO-G CTL.

  8. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  9. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  10. Massive bleaching of coral reefs induced by the 2010 ENSO, Puerto Cabello, Venezuela

    Directory of Open Access Journals (Sweden)

    Carlos del Mónaco

    2012-06-01

    Full Text Available El Niño Southern Oscillation (ENSO has generated global coral massive bleaching. The aim of this work was to evaluate the massive bleaching of coral reefs in Puerto Cabello, Venezuela derived from ENSO 2010. We evaluated the bleaching of reefs at five localities both at three and five meter depth. The coral cover and densities of colonies were estimated. We recorded living coral cover, number and diameter of bleached and nonbleached colonies of each coral species. The colonies were classified according to the proportion of bleached area. Satellite images (Modis Scar were analyzed for chlorophyll-a concentration and temperature in August, September, October and November from 2008-2010. Precipitation, wind speed and air temperature information was evaluated in meteorological data for 2009 and 2010. A total of 58.3% of colonies, belonging to 11 hexacoral species, were affected and the greatest responses were observed in Colpophyllia natans, Montastraea annularis and Montastraea faveolata. The most affected localities were closer to the mainland and had a bleached proportion up to 62.73±36.55%, with the highest proportion of affected colonies, whereas the farthest locality showed 20.25±14.00% bleached and the smallest proportion. The salinity in situ varied between 30 and 33ppm and high levels of turbidity were observed. According to the satellite images, in 2010 the surface water temperatura reached 31ºC in August, September and October, and resulted higher than those registered in 2008 and 2009. Regionally, chlorophyll values were higher in 2010 than in 2008 and 2009. The meteorological data indicated that precipitation in November 2010 was three times higher than in November 2009. Massive coral bleaching occurred due to a three month period of high temperatures followed by one month of intense ENSO-associated precipitation. However, this latter factor was likely the trigger because of the bleaching gradient observed. Rev. Biol. Trop. 60 (2

  11. Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models

    Science.gov (United States)

    Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.

    2018-04-01

    Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are

  12. Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots

    Science.gov (United States)

    Poveda, Germán; Álvarez, Diana M.; Rueda, Óscar A.

    2011-06-01

    The hydro-climatic variability of the Colombian Andes associated with El Niño-Southern Oscillation (ENSO) is reviewed using records of rainfall, river discharges, soil moisture, and a vegetation index (NDVI) as a surrogate for evapotranspiration. Anomalies in the components of the surface water balance during both phases of ENSO are quantified in terms of their sign, timing, and magnitude. During El Niño (La Niña), the region experiences negative (positive) anomalies in rainfall, river discharges (average and extremes), soil moisture, and NDVI. ENSO's effects are phase-locked to the seasonal cycle, being stronger during December-February, and weaker during March-May. Besides, rainfall and river discharges anomalies show that the ENSO signal exhibits a westerly wave-like propagation, being stronger (weaker) and earlier (later) over the western (eastern) Andes. Soil moisture anomalies are land-cover type dependant, but overall they are enhanced by ENSO, showing very low values during El Niño (mainly during dry seasons), but saturation values during La Niña. A suite of large-scale and regional mechanisms cooperating at the ocean-atmosphere-land system are reviewed to explaining the identified hydro-climatic anomalies. This review contributes to an understanding of the hydro-climatic framework of a region identified as the most critical hotspot for biodiversity on Earth, and constitutes a wake-up call for scientists and policy-makers alike, to take actions and mobilize resources and minds to prevent the further destruction of the region's valuable hydrologic and biodiversity resources and ecosystems. It also sheds lights towards the implementation of strategies and adaptation plans to coping with threats from global environmental change.

  13. Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, German; Alvarez, Diana M. [Universidad Nacional de Colombia, School of Geosciences and Environment, Medellin (Colombia); Rueda, Oscar A. [Universidad Nacional de Colombia, School of Geosciences and Environment, Medellin (Colombia); Grupo HTM, Medellin (Colombia)

    2011-06-15

    The hydro-climatic variability of the Colombian Andes associated with El Nino-Southern Oscillation (ENSO) is reviewed using records of rainfall, river discharges, soil moisture, and a vegetation index (NDVI) as a surrogate for evapotranspiration. Anomalies in the components of the surface water balance during both phases of ENSO are quantified in terms of their sign, timing, and magnitude. During El Nino (La Nina), the region experiences negative (positive) anomalies in rainfall, river discharges (average and extremes), soil moisture, and NDVI. ENSO's effects are phase-locked to the seasonal cycle, being stronger during December-February, and weaker during March-May. Besides, rainfall and river discharges anomalies show that the ENSO signal exhibits a westerly wave-like propagation, being stronger (weaker) and earlier (later) over the western (eastern) Andes. Soil moisture anomalies are land-cover type dependant, but overall they are enhanced by ENSO, showing very low values during El Nino (mainly during dry seasons), but saturation values during La Nina. A suite of large-scale and regional mechanisms cooperating at the ocean-atmosphere-land system are reviewed to explaining the identified hydro-climatic anomalies. This review contributes to an understanding of the hydro-climatic framework of a region identified as the most critical hotspot for biodiversity on Earth, and constitutes a wake-up call for scientists and policy-makers alike, to take actions and mobilize resources and minds to prevent the further destruction of the region's valuable hydrologic and biodiversity resources and ecosystems. It also sheds lights towards the implementation of strategies and adaptation plans to coping with threats from global environmental change. (orig.)

  14. Climate, ENSO and 'Black Swans' over the Last Millennium

    Science.gov (United States)

    Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.

    2014-12-01

    Tropical rainfall patterns influence the lives of billions of people both north and south of the Equator. Evidence of major ENSO events such as droughts is often recorded in the oxygen isotopic ratios and aerosol concentrations in tropical ice cores. Here we examine unusual events recorded in three ice cores, two (Quelccaya and Coropuna) in the Southern Hemisphere on the Peruvian Altiplano and the third (Dasuopu) located 22,000 km away on the southern edge of the Tibetan Plateau at the top of the Himalayas. These records suggest that the unique lower and middle tropospheric air flow over chloride (Cl-) and fluoride (F-) enriched areas upwind of the sites during ENSO events leads to enhanced deposition of these species on these glaciers. Linkages are demonstrated between ice-core chemistry and drought indicators, changes in lake levels, and ENSO and monsoon indices. Two unusual events, in the late 18th and mid-14th Centuries, are marked by abnormally high concentrations of F- and Cl- in at least two of the ice core records. All three records document a drought from 1789 to 1800 CE in which increases in these anionic concentrations reflect the abundance of continental atmospheric dust derived from arid regions upwind of the core sites. The earlier event, apparent only in the Quelccaya and Dasuopu ice cores, begins abruptly in 1343 and tapers off by 1375. The interaction between high frequency El Niños and low frequency shifts in the inter-tropical convergence zone may have resulted in these unusually severe and extended droughts. These "Black Swan" events correspond to historically documented, devastating population disruptions that were in part climate related. The 1789 to 1800 CE event was concurrent with the Doji Bara famine resulting from extended droughts that led to over 600,000 deaths in central India by 1792. Similarly extensive climate disruptions are documented in Central and South America. The mid-14th Century drought is concomitant with major monsoon

  15. The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event

    Science.gov (United States)

    Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.

    2016-02-01

    In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.

  16. Chaotic phenomena in plasmas

    International Nuclear Information System (INIS)

    Kawai, Y.

    1991-08-01

    It has recently been recognized that the research on various aspects of chaotic dynamics grows rapidly as one of some areas in nonlinear science. On the other hands, the plasma has long been called a treasure-house of nonlinear phenomena, so it is easy to imagine that the plasma is abundant in chaotic phenomena. In fact, the research on plasma chaos is going on, such as the research on the stochastic magnetic field and the chaotic orbit in the toroidal helical system, as well as the research in other experiments. To review the present status of the research on plasma chaos and to make clear the basic common physics, a working group was organized in 1990 as a collaboration research of National Institute for Fusion Science. This is the report on its activity in 1990, with a stress on experimental data obtained in basic plasma experiments and RFP, and on the relaxed theories and computer simulations. (author)

  17. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  18. Wolf-Rayet phenomena

    International Nuclear Information System (INIS)

    Conti, P.S.

    1982-01-01

    The author reviews in broad terms the concept of Wolf-Rayet (W-R) phenomena, outlines what we currently know about the properties of stars showing such phenomena and indicates the directions in which future work is leading. He begins by listing the characteristics of W-R spectra and then considers the following specific problems: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions; the mass loss rates; the existence of very luminous and possibly very massive W-R stars. He discusses briefly our current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R stars. (Auth.)

  19. Flashing oscillation in pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya

    1996-01-01

    This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis

  20. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  1. Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system

    Science.gov (United States)

    Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.

    2014-04-01

    This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a

  2. Influence of ENSO on Regional Indian Summer Monsoon Precipitation—Local Atmospheric Influences or Remote Influence from Pacific

    Directory of Open Access Journals (Sweden)

    Indrani Roy

    2016-02-01

    Full Text Available Using CMIP5 model outputs in different El Niño-Southern Oscillation (ENSO phases, this work investigates the indicator that could be used as an Index to characterise regional Indian Summer Monsoon (ISM precipitation. Dividing the Indian subcontinent into five arbitrarily chosen regions, viz. Central North East (CNE (18°N–31°N, 86°E–75°E, Hilly (H (28°N–38°N, 85°E–70°E, North West (NW (21°N–31°N, 79°E–67°E, North East (NE (21°N–31°N, 86°E–97°E and Southern India (S (18°N–7°N, 73°E–85°E, local wind field and remote influences from the tropical Pacific are considered to improve understanding of regional monsoon rainfall. Results are also compared with observations/reanalysis data to pinpoint areas of shortcomings and agreements. Model results suggest that regional wind velocity, viz. meridional wind component (V at 850 mb level (V850 and zonal component at 200 mb (U200 and 850 mb (U850 can yield better estimation of local precipitation in regions CNE, H and NW, agreeing well with earlier proposed monsoon Indices. Such observations are independent of different subcategories of ENSO phases and models show good correspondence with observations. Analyses with V at 200 mb (V200 indicate circulation of the upper branch of Hadley cells in regions CNE and S, though suggest the best agreement among models in comparison with other fields, but there are some deviations from observations, indicating a missing mechanism in the models. Using models, this study identified the best parameter in different regions that could be used for the regional monsoon Index, irrespective of various ENSO subcategories; for CNE it is the U200, for H it is U200 and U850, and for NW it is U850. The current analysis, however, fails to indicate anything clearly about the NE region. When focusing on the remote influence from the eastern Pacific region, it is found that atmospheric contribution to regional ISM precipitation fails to indicate

  3. Initialization and Predictability of a Coupled ENSO Forecast Model

    Science.gov (United States)

    Chen, Dake; Zebiak, Stephen E.; Cane, Mark A.; Busalacchi, Antonio J.

    1997-01-01

    The skill of a coupled ocean-atmosphere model in predicting ENSO has recently been improved using a new initialization procedure in which initial conditions are obtained from the coupled model, nudged toward observations of wind stress. The previous procedure involved direct insertion of wind stress observations, ignoring model feedback from ocean to atmosphere. The success of the new scheme is attributed to its explicit consideration of ocean-atmosphere coupling and the associated reduction of "initialization shock" and random noise. The so-called spring predictability barrier is eliminated, suggesting that such a barrier is not intrinsic to the real climate system. Initial attempts to generalize the nudging procedure to include SST were not successful; possible explanations are offered. In all experiments forecast skill is found to be much higher for the 1980s than for the 1970s and 1990s, suggesting decadal variations in predictability.

  4. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  5. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  6. Roles of tropical SST patterns during two types of ENSO in modulating wintertime rainfall over southern China

    Science.gov (United States)

    Xu, Kang; Huang, Qing-Lan; Tam, Chi-Yung; Wang, Weiqiang; Chen, Sheng; Zhu, Congwen

    2018-03-01

    The impacts of the eastern-Pacific (EP) and central-Pacific (CP) El Niño-Southern Oscillation (ENSO) on the southern China wintertime rainfall (SCWR) have been investigated. Results show that wintertime rainfall over most stations in southern China is enhanced (suppressed) during the EP (CP) El Niño, which are attributed to different atmospheric responses in the western North Pacific (WNP) and South China Sea (SCS) during two types of ENSO. When EP El Niño occurs, an anomalous low-level anticyclone is present over WNP/the Philippines region, resulting in stronger-than-normal southwesterlies over SCS. Such a wind branch acts to suppress East Asian winter monsoon (EAWM) and enhance moisture supply, implying surplus SCWR. During CP El Niño, however, anomalous sinking and low-level anticyclonic flow are found to cover a broad region in SCS. These circulation features are associated with moisture divergence over the northern part of SCS and suppressed SCWR. General circulation model experiments have also been conducted to study influence of various tropical sea surface temperature (SST) patterns on the EAWM atmospheric circulation. For EP El Niño, formation of anomalous low-level WNP anticyclone is jointly attributed to positive/negative SST anomalies (SSTA) over the central-to-eastern/ western equatorial Pacific. However, both positive and negative CP Niño-related-SSTA, located respectively over the central Pacific and WNP/SCS, offset each other and contribute a weak but broad-scale anticyclone centered at SCS. These results suggest that, besides the vital role of SST warming, SST cooling over SCS/WNP during two types of El Niño should be considered carefully for understanding the El Niño-EAWM relationship.

  7. Strong influence of El Niño Southern Oscillation on flood risk around the world

    Science.gov (United States)

    Ward, Philip J.; Jongman, B; Kummu, M.; Dettinger, Mike; Sperna Weiland, F.C; Winsemius, H.C

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions.

  8. Strong influence of El Niño Southern Oscillation on flood risk around the world

    Science.gov (United States)

    Ward, Philip J.; Jongman, Brenden; Kummu, Matti; Dettinger, Michael D.; Sperna Weiland, Frederiek C.; Winsemius, Hessel C.

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions. PMID:25331867

  9. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  10. Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation

    Science.gov (United States)

    Zhu, Qiuan; Peng, Changhui; Ciais, Philippe; Jiang, Hong; Liu, Jinxun; Bousquet, Philippe; Li, Shiqin; Chang, Jie; Fang, Xiuqin; Zhou, Xiaolu; Chen, Huai; Liu, Shirong; Lin, Guanghui; Gong, Peng; Wang, Meng; Wang, Han; Xiang, Wenhua; Chen, Jing

    2017-01-01

    Methane (CH4) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH4 emissions. Decreased wetland CH4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process-based model of global wetland CH4 emissions to investigate the impacts of the ENSO on CH4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8-month time lag was detected between tropical wetland CH4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.

  11. Unsteady phenomena in the edge tone

    International Nuclear Information System (INIS)

    Paal, G.; Vaik, I.

    2007-01-01

    Despite its geometrical simplicity, the edge tone displays a remarkably complex behaviour. A plane jet oscillates around the wedge-shaped object with a relatively stable frequency and under certain circumstances emits an audible tone. This configuration plays a central role in the sound production of several wind instruments but occurs in industrial situations too. The flow exhibits various interesting nonlinear phenomena reported in the literature which are not entirely explained. In this paper, detailed high precision numerical simulations of the flow are reported under various conditions. Several phenomena are reproduced in agreement with the literature such as the existence of 'stages', the dependence of oscillation frequency on the outflow velocity and the orifice-edge distance within one stage, the pressure distribution on the edge surface, etc. A criterion for the appropriate time step for constant accuracy has been derived. The location of force action is surprisingly stable; it remains in a very narrow region of the wedge surface independently of the Reynolds number and the orifice-edge distance but it is much further behind the edge tip than reported in the literature. The various stages can coexist in different ways: jumping back and forth between stages or being superposed on each other. Regardless of the form, the first stage continues to be dominant even when the second and third stage appears. The question of disturbance propagation velocity and disturbance wavelength is also investigated. The development of higher harmonics of a single stage along the orifice-edge tip distance is presented

  12. Sensitivity of Sahelian Precipitation to Desert Dust under ENSO variability: a regional modeling study

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.

    2016-12-01

    Mineral dust is estimated to comprise over half the total global aerosol burden, with a majority coming from the Sahara and Sahel region. Bounded by the Sahara Desert to the north and the Sahelian Savannah to the south, the Sahel experiences high interannual rainfall variability and a short rainy season during the boreal summer months. Observation-based data for the past three decades indicates a reduced dust emission trend, together with an increase in greening and surface roughness within the Sahel. Climate models used to study regional precipitation changes due to Saharan dust yield varied results, both in sign convention and magnitude. Inconsistency of model estimates drives future climate projections for the region that are highly varied and uncertain. We use the NASA-Unified Weather Research and Forecasting (NU-WRF) model to quantify the interaction and feedback between desert dust aerosol and Sahelian precipitation. Using nested domains at fine spatial resolution we resolve changes to mesoscale atmospheric circulation patterns due to dust, for representative phases of El Niño-Southern Oscillation (ENSO). The NU-WRF regional earth system model offers both advanced land surface data and resolvable detail of the mechanisms of the impact of Saharan dust. Results are compared to our previous work assessed over the Western Sahel using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc global climate model, and to other previous regional climate model studies. This prompts further research to help explain the dust-precipitation relationship and recent North African dust emission trends. This presentation will offer a quantitative analysis of differences in radiation budget, energy and moisture fluxes, and atmospheric dynamics due to desert dust aerosol over the Sahel.

  13. Contrasting biogeochemical responses of ENSO induced upwelling variability in the Humboldt Current System

    Science.gov (United States)

    Franco, Ana C.; Gruber, Nicolas; Münnich, Matthias

    2017-04-01

    The Humboldt Current System (HCS) is one of the most productive ecosystems in the world. This high productivity is supported by a large input of nutrients from the subsurface layers to the surface due to year-round upwelling. However, upwelling also supplies waters with low pH and low aragonite saturation state potentially affecting many organisms, especially those that calcify. The influence, extent and source of upwelled water vary substantially on interannual timescales in association with the El Niño/Southern Oscillation (ENSO) phenomenon, generating natural contrasting responses on the biogeochemistry of this system. Here we analyze these responses using an eddy resolving, basin-scale ocean model that covers the whole Pacific Ocean with high resolution (4 km) on the west coast of South America. We performed a simulation of the last 30 years (hindcast simulation) that allows us to investigate the influence of at least eight El Niño episodes and eight La Niña episodes on productivity variations and changes in oxygen concentration and aragonite saturation state. An absolute change in surface omega aragonite of almost 2 units, as well as an absolute change of the aragonite saturation depth of 200 m result from the change of an El Niño phase to a La Niña phase. This variability is on the same order of magnitude as the projected change in the aragonite saturation state in a centennial timescale. During La Niña events, a lower aragonite saturation state values and reduced oxygen concentration in the surface layer are a direct consequence of enhanced upwelling and increased net primary productivity. The opposite is true during El Niño events, where high values of omega aragonite occur in concordance with extraordinarily low net primary productivity values.

  14. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO

    Directory of Open Access Journals (Sweden)

    Y. Kuleshov

    2009-06-01

    Full Text Available Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Niño-Southern Oscillation (ENSO phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs, relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Niña events compared to El Niño events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Niña seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western part of the basin as well as for the northeast (southwest shift of points of cyclogenesis during El Niño (La Niña events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables.

  15. Large-scale shifts in phytoplankton groups in the Equatorial Pacific during ENSO cycles

    Directory of Open Access Journals (Sweden)

    I. Masotti

    2011-03-01

    Full Text Available The El Niño Southern Oscillation (ENSO drives important changes in the marine productivity of the Equatorial Pacific, in particular during major El Niño/La Niña transitions. Changes in environmental conditions associated with these climatic events also likely impact phytoplankton composition. In this work, the distribution of four major phytoplankton groups (nanoeucaryotes, Prochlorococcus, Synechococcus, and diatoms was examined between 1996 and 2007 by applying the PHYSAT algorithm to the ocean color data archive from the Ocean Color and Temperature Sensor (OCTS and Sea-viewing Wide Field-of-view Sensor (SeaWiFS. Coincident with the decrease in chlorophyll concentrations, a large-scale shift in the phytoplankton composition of the Equatorial Pacific, that was characterized by a decrease in Synechococcus and an increase in nanoeucaryote dominance, was observed during the early stages of both the strong El Niño of 1997 and the moderate El Niño of 2006. A significant increase in diatoms dominance was observed in the Equatorial Pacific during the 1998 La Niña and was associated with elevated marine productivity. An analysis of the environmental variables using a coupled physical-biogeochemical model (NEMO-PISCES suggests that the Synechococcus dominance decrease during the two El Niño events was associated with an abrupt decline in nutrient availability (−0.9 to −2.5 μM NO3 month−1. Alternatively, increased nutrient availability (3 μM NO3 month−1 during the 1998 La Niña resulted in Equatorial Pacific dominance diatom increase. Despite these phytoplankton community shifts, the mean composition is restored after a few months, which suggests resilience in community structure.

  16. Impacts of high-latitude volcanic eruptions on ENSO and AMOC.

    Science.gov (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S

    2015-11-10

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  17. Nonlinear resonance in Duffing oscillator with fixed and integrative ...

    Indian Academy of Sciences (India)

    We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the ...

  18. Oscillator circuits frontiers in design, analysis and applications

    CERN Document Server

    2016-01-01

    This book surveys recent developments in the design, analysis and applications of oscillator circuit design. It highlights developments in the analysis of synchronization and wave phenomena, new analytical and design methods and their application, and novel engineering applications of oscillator circuits.

  19. Nonlinear resonance in Duffing oscillator with fixed and integrative ...

    Indian Academy of Sciences (India)

    2012-03-02

    Mar 2, 2012 ... Abstract. We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter α and the ...

  20. Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis.

    Science.gov (United States)

    Gutierrez, Luciano

    2017-01-01

    Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries-the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan-plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market.

  1. Truly neutral microobjects and oscillations in particle physics

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1982-01-01

    Oscillation phenomena between different states of neutral elementary particles are discussed. The known kaon oscillation and the proposed neutrino, neutron and other kinds of oscillations are analysed. The proper bound states of neutral objects (neutrinos, neutrons, hydrogen atoms) are investigated in the case of small and strong violation of CP symmetry. Consequences concerning the observable masses and quantum numbers of such neutral objects are drawn. (D.Gy.)

  2. Quantification of natural phenomena

    International Nuclear Information System (INIS)

    Botero Alvarez, Javier

    1997-01-01

    The science is like a great spider's web in which unexpected connections appear and therefore it is frequently difficult to already know the consequences of new theories on those existent. The physics is a clear example of this. The Newton mechanics laws describe the physical phenomena observable accurately by means of our organs of the senses or by means of observation teams not very sophisticated. After their formulation at the beginning of the XVIII Century, these laws were recognized in the scientific world as a mathematical model of the nature. Together with the electrodynamics law, developed in the XIX century, and the thermodynamic one constitutes what we call the classic physics. The state of maturity of the classic physics at the end of last century it was such that some scientists believed that the physics was arriving to its end obtaining a complete description of the physical phenomena. The spider's web of the knowledge was supposed finished, or at least very near its termination. It ended up saying, in arrogant form, that if the initial conditions of the universe were known, we could determine the state of the same one in any future moment. Two phenomena related with the light would prove in firm form that mistaken that they were, creating unexpected connections in the great spider's web of the knowledge and knocking down part of her. The thermal radiation of the bodies and the fact that the light spreads to constant speed in the hole, without having an absolute system of reference with regard to which this speed is measured, they constituted the decisive factors in the construction of a new physics. The development of sophisticated of measure teams gave access to more precise information and it opened the microscopic world to the observation and confirmation of existent theories

  3. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  4. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  5. Random phenomena; Phenomenes aleatoires

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)

    1963-07-01

    This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.

  6. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  7. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  8. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    International Nuclear Information System (INIS)

    Bouchard, A.M.

    1994-01-01

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices

  9. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  10. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  11. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    Science.gov (United States)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  12. Isotopic changes due to convective moistening of the lower troposphere associated with variations in the ENSO and IOD from 2005 to 2006

    Directory of Open Access Journals (Sweden)

    Jeonghoon Lee

    2015-04-01

    Full Text Available We use the tropospheric emission spectrometer measurements of the isotopic composition of water vapour (δD in the lower troposphere to examine how changes in the distribution of convection and precipitation control water vapour amount and its isotope over the Indian Ocean. Measurements of the outgoing longwave radiation and vertical velocity from NCEP/NCAR Reanalysis and cloud ice water content from the Microwave Limb Sounder show distinct variations in convection due to a phase shift of both El Niño – Southern Oscillation (ENSO and Indian Ocean Dipole (IOD. These variations in convection are associated with changes in precipitation and water amount over the Western Indian Ocean (WIO and Eastern Indian Ocean (EIO, depending on the phases of ENSO and/or the IOD. Over the EIO in 2006, induced by the interplay of both positive ENSO and IOD, it is drier and less isotopically depleted due to less frequent and/or weaker deep convective activity and subsequent precipitation compared to 2005. By contrast, over the WIO in 2006, an increase in water vapour and precipitation but little isotopic fractionation in water vapour of clear sky compared to 2005 is likely associated with an increase in both enhanced deep and shallow convection, caused by the positive IOD. Therefore, paleoarchives of water isotopes near Africa will be more difficult to relate to a single process because changes in convective activity result in changes in precipitation but do not have a significant impact on the isotopic composition of the source vapour based on this case analysis.

  13. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

    Science.gov (United States)

    Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing

    2018-01-01

    The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

  14. Inter-decadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: Special emphasis on decay phase of El Niño

    Science.gov (United States)

    Chowdary, J. S.; Parekh, Anant; Gnanaseelan, C.; Sreenivas, P.

    2014-01-01

    Inter-decadal modulation of El Niño-Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) is investigated in the coupled general circulation model Climate Forecast System (CFS) using a hundred year integration. The model is able to capture the periodicity of El Niño variability, which is similar to that of the observations. The maximum TIO/north Indian Ocean (NIO) SST warming (during spring following the decay phase of El Niño) associated with El Niño is well captured by the model. Detailed analysis reveals that the surface heat flux variations mainly contribute to the El Niño forced TIO SST variations both in observations and model. However, spring warming is nearly stationary throughout the model integration period, indicating poor inter-decadal El Niño teleconnections. The observations on the other hand displayed maximum SST warming with strong seasonality from epoch to epoch. The model El Niño decay delayed by more than two seasons, results in persistent TIO/NIO SST warming through the following December unlike in the observations. The ocean wave adjustments and persistent westerly wind anomalies over the equatorial Pacific are responsible for late decay of El Niño in the model. Consistent late decay of El Niño, throughout the model integration period (low variance), is mainly responsible for the poor inter-decadal ENSO teleconnections to TIO/NIO. This study deciphers that the model needs to produce El Niño decay phase variability correctly to obtain decadal-modulations in ENSO teleconnection.

  15. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  16. Effects of hurricanes and climate oscillations on annual variation in reproduction in wet forest, Puerto Rico.

    Science.gov (United States)

    Zimmerman, Jess K; Hogan, James Aaron; Nytch, Christopher J; Bithorn, John E

    2018-06-01

    Interannual changes in global climate and weather disturbances may influence reproduction in tropical forests. Phenomena such as the El Niño Southern Oscillation (ENSO) are known to produce interannual variation in reproduction, as do severe storms such as hurricanes. Using stationary trap-based phenology data collected fortnightly from 1993 to 2014 from a hurricane-affected (1989 Hugo, 1998 Georges) subtropical wet forest in northeastern Puerto Rico, we conducted a time series analysis of flowering and seed production. We addressed (1) the degree to which interannual variation in flower and seed production was influenced by global climate drivers and time since hurricane disturbance, and (2) how long-term trends in reproduction varied with plant lifeform. The seasonally de-trended number of species in flower fluctuated over time while the number of species producing seed exhibited a declining trend, one that was particularly evident during the second half of the study period. Lagged El Niño indices and time series hurricane disturbance jointly influenced the trends in numbers of flowering and fruiting species, suggesting complex global influences on tropical forest reproduction with variable periodicities. Lag times affecting flowering tended to be longer than those affecting fruiting. Long-term patterns of reproduction in individual lifeforms paralleled the community-wide patterns, with most groups of lifeform exhibiting a long-term decline in seed but not flower production. Exceptions were found for hemiepiphytes, small trees, and lianas whose seed reproduction increased and then declined over time. There was no long-term increase in flower production as reported in other Neotropical sites. © 2018 by the Ecological Society of America.

  17. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  18. Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation

    Science.gov (United States)

    Aryal, Yog N.; Villarini, Gabriele; Zhang, Wei; Vecchi, Gabriel A.

    2018-04-01

    The aim of this study is to examine the contribution of North Atlantic tropical cyclones (TCs) to flooding and heavy rainfall across the continental United States. Analyses highlight the spatial variability in these hazards, their temporal changes in terms of frequency and magnitude, and their connection to large-scale climate, in particular to the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO). We use long-term stream and rain gage measurements, and our analyses are based on annual maxima (AMs) and peaks-over-threshold (POTs). TCs contribute to ∼20-30% of AMs and POTs over Florida and coastal areas of the eastern United States, and the contribution decreases as we move inland. We do not detect statistically significant trends in the magnitude or frequency of TC floods. Regarding the role of climate, NAO and ENSO do not play a large role in controlling the frequency and magnitude of TC flooding. The connection between heavy rainfall and TCs is comparable to what observed in terms of flooding. Unlike flooding, NAO plays a significant role in TC-related extreme rainfall along the U.S. East Coast, while ENSO is most strongly linked to the TC precipitation in Texas.

  19. Using transfer functions to quantify El Niño Southern Oscillation dynamics in data and models.

    Science.gov (United States)

    MacMartin, Douglas G; Tziperman, Eli

    2014-09-08

    Transfer function tools commonly used in engineering control analysis can be used to better understand the dynamics of El Niño Southern Oscillation (ENSO), compare data with models and identify systematic model errors. The transfer function describes the frequency-dependent input-output relationship between any pair of causally related variables, and can be estimated from time series. This can be used first to assess whether the underlying relationship is or is not frequency dependent, and if so, to diagnose the underlying differential equations that relate the variables, and hence describe the dynamics of individual subsystem processes relevant to ENSO. Estimating process parameters allows the identification of compensating model errors that may lead to a seemingly realistic simulation in spite of incorrect model physics. This tool is applied here to the TAO array ocean data, the GFDL-CM2.1 and CCSM4 general circulation models, and to the Cane-Zebiak ENSO model. The delayed oscillator description is used to motivate a few relevant processes involved in the dynamics, although any other ENSO mechanism could be used instead. We identify several differences in the processes between the models and data that may be useful for model improvement. The transfer function methodology is also useful in understanding the dynamics and evaluating models of other climate processes.

  20. El Niño-Southern oscillation variability from the late cretaceous marca shale of California

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E.S.; Weedon, Graham P.; Barron, John A.

    2012-01-01

    Changes in the possible behavior of El Niño–Southern Oscillation (ENSO) with global warming have provoked interest in records of ENSO from past “greenhouse” climate states. The latest Cretaceous laminated Marca Shale of California permits a seasonal-scale reconstruction of water column flux events and hence interannual paleoclimate variability. The annual flux cycle resembles that of the modern Gulf of California with diatoms characteristic of spring upwelling blooms followed by silt and clay, and is consistent with the existence of a paleo–North American Monsoon that brought input of terrigenous sediment during summer storms and precipitation runoff. Variation is also indicated in the extent of water column oxygenation by differences in lamina preservation. Time series analysis of interannual variability in terrigenous sediment and diatom flux and in the degree of bioturbation indicates strong periodicities in the quasi-biennial (2.1–2.8 yr) and low-frequency (4.1–6.3 yr) bands both characteristic of ENSO forcing, as well as decadal frequencies. This evidence for robust Late Cretaceous ENSO variability does not support the theory of a “permanent El Niño,” in the sense of a continual El Niño–like state, in periods of warmer climate.

  1. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  2. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  3. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  4. Foot morphometric phenomena.

    Science.gov (United States)

    Agić, Ante

    2007-06-01

    Knowledge of the foot morphometry is important for proper foot structure and function. Foot structure as a vital part of human body is important for many reasons. The foot anthropometric and morphology phenomena are analyzed together with hidden biomechanical descriptors in order to fully characterize foot functionality. For Croatian student population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot morphometric descriptors are influenced by many factors, such as life style, climate, and things of great importance in human society. Dominant descriptors related to fit and comfort are determined by the use 3D foot shape and advanced foot biomechanics. Some practical recommendations and conclusions for medical, sportswear and footwear practice are highlighted.

  5. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  6. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  7. Verification of an ENSO-Based Long-Range Prediction of Anomalous Weather Conditions During the Vancouver 2010 Olympics and Paralympics

    Science.gov (United States)

    Mo, Ruping; Joe, Paul I.; Doyle, Chris; Whitfield, Paul H.

    2014-01-01

    A brief review of the anomalous weather conditions during the Vancouver 2010 Winter Olympic and Paralympic Games and the efforts to predict these anomalies based on some preceding El Niño-Southern Oscillation (ENSO) signals are presented. It is shown that the Olympic Games were held under extraordinarily warm conditions in February 2010, with monthly mean temperature anomalies of +2.2 °C in Vancouver and +2.8 °C in Whistler, ranking respectively as the highest and the second highest in the past 30 years (1981-2010). The warm conditions continued, but became less anomalous, in March 2010 for the Paralympic Games. While the precipitation amounts in the area remained near normal through this winter, the lack of snow due to warm conditions created numerous media headlines and practical problems for the alpine competitions. A statistical model was developed on the premise that February and March temperatures in the Vancouver area could be predicted using an ENSO signal with considerable lead time. This model successfully predicted the warmer-than-normal, lower-snowfall conditions for the Vancouver 2010 Winter Olympics and Paralympics.

  8. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  9. Suppression and revival of oscillation in indirectly coupled limit cycle oscillators

    International Nuclear Information System (INIS)

    Sharma, P.R.; Kamal, N.K.; Verma, U.K.; Suresh, K.; Thamilmaran, K.; Shrimali, M.D.

    2016-01-01

    Highlights: • The phenomena of suppression and revival of oscillations are studied in indirectly coupled nonlinear oscillators. • The decay parameter and a feedback factor play a crucial role in emergent dynamical behavior of oscillators. • The critical curves for different dynamical regions are obtained analytically using linear stability analysis. • Electronic circuit experiments demonstrate these emergent dynamical states. - Abstract: We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.

  10. Potential role of resurfacing Subtropical Underwater in ENSO evolution

    Science.gov (United States)

    Qu, T.; Chi, J.

    2017-12-01

    Results from a model of the Estimating the Circulation and Climate of the Ocean (ECCO) have shown that the resurfacing of high salinity Subtropical Underwater contributes to the sea surface salinity variability in the equatorial Pacific. On interannual time scale, this contribution can account for as much as 25% of the surface freshwater flux anomalies and is believed to play a role in ENSO evolution. Having these results in mind, this study investigates the surface salinity budget and its primary controls in the equatorial Pacific using ECCO output for the period 1993-2016. Particular attention is paid to 2014/2015 and 2015/2016. Preliminary analyses of the model results suggest that enhanced subsurface processes and in particular enhanced entrainment of Subtropical Underwater are primarily responsible for the positive sea surface salinity anomalies in the central equatorial Pacific during 2014/2015, which represents an opposite phase of El Niño. These subsurface processes weakened during 2015/2016, diretly contributing to the development of the 2015/2016 El Niño. The mechanisms controlling these subsurface processes are discussed.

  11. Association of Taiwan’s Rainfall Patterns with Large-Scale Oceanic and Atmospheric Phenomena

    Directory of Open Access Journals (Sweden)

    Yi-Chun Kuo

    2016-01-01

    Full Text Available A 50-year (1960–2009 monthly rainfall gridded dataset produced by the Taiwan Climate Change Projection and Information Platform Project was presented in this study. The gridded data (5 × 5 km displayed influence of topography on spatial variability of rainfall, and the results of the empirical orthogonal functions (EOFs analysis revealed the patterns associated with the large-scale sea surface temperature variability over Pacific. The first mode (65% revealed the annual peaks of large rainfall in the southwestern mountainous area, which is associated with southwest monsoons and typhoons during summertime. The second temporal EOF mode (16% revealed the rainfall variance associated with the monsoon and its interaction with the slopes of the mountain range. This pattern is the major contributor to spatial variance of rainfall in Taiwan, as indicated by the first mode (40% of spatial variance EOF analysis. The second temporal EOF mode correlated with the El Niño Southern Oscillation (ENSO. In particular, during the autumn of the La Niña years following the strong El Niño years, the time-varying amplitude was substantially greater than that of normal years. The third temporal EOF mode (7% revealed a north-south out-of-phase rainfall pattern, the slowly evolving variations of which were in phase with the Pacific Decadal Oscillation. Because of Taiwan’s geographic location and the effect of local terrestrial structures, climate variability related to ENSO differed markedly from other regions in East Asia.

  12. RELAP5-3D code validation for RBMK phenomena

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1999-01-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena

  13. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  14. Arcjet cathode phenomena

    Science.gov (United States)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  15. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  16. The Child's Tantrum: El Nino. The Origin of the El Nino-Southern Oscillation

    Science.gov (United States)

    Picault, Joel; Hackert, Eric; Busalacchi, Antonio; Murtugudde, Ragu; Lagerloef, Gary

    2000-01-01

    In 1997, a child's tantrums caught the world's attention. These tantrums took the form not of crying and foot stamping, but of droughts and floods. Obviously, this was no ordinary child. It was, in fact, The Child, or El Nino, as it was, named in the late 1800s by South American observers, who noted that its timing coincided with the Christmas holiday. El Nino is a reversal in sea surface temperature (SST) distributions that occurs once every few years in the tropical Pacific. When it coincides with a cyclical shift in air pressure, known as the Southern Oscillation, normal weather patterns are drastically altered. The combined phenomenon is known as El Nino-Southern Oscillation (ENSO). Although ENSO is a regular phenomenon, it was unusually strong in 1997. It produced heavy rainfall and floods in California and bestowed spring-like temperatures on the Midwest during the winter. These drastic changes in normal weather patterns captured the public imagination, from news reports to jokes on late-night talk shows. Naturally, people wanted to. know as much, about El Nino as possible. Fortunately, scientists had at their disposal new satellites and ocean sensors that provided an unprecedented level of information. Consequently, not only was the 1997 ENSO the strongest in recent memory, but it was also the most thoroughly studied. Prominent groups such as the NASA Seasonalto-Interannual Prediction Project (NSIPP) combined numerous aspects of climate modeling into a single, predictive endeavor.

  17. Sub-seasonal prediction of significant wave heights over the Western Pacific and Indian Oceans, part II: The impact of ENSO and MJO

    Science.gov (United States)

    Shukla, Ravi P.; Kinter, James L.; Shin, Chul-Su

    2018-03-01

    This study evaluates the effect of El Niño and the Southern Oscillation (ENSO) and Madden Julian Oscillation (MJO) events on 14-day mean significant wave height (SWH) at 3 weeks lead time (Wk34) over the Western Pacific and Indian Oceans using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2). The WAVEWATCH-3 (WW3) model is forced with daily 10m-winds predicted by a modified version of CFSv2 that is initialized with multiple ocean analyses in both January and May for 1979-2008. A significant anomaly correlation of predicted and observed SWH anomalies (SWHA) at Wk34 lead-time is found over portions of the domain, including the central western Pacific, South China Sea (SCS), Bay of Bengal (BOB) and southern Indian Ocean (IO) in January cases, and over BOB, equatorial western Pacific, the Maritime Continent and southern IO in May cases. The model successfully predicts almost all the important features of the observed composite SWHA during El Niño events in January, including negative SWHA in the central IO where westerly wind anomalies act on an easterly mean state, and positive SWHA over the southern Ocean (SO) where westerly wind anomalies act on a westerly mean state. The model successfully predicts the sign and magnitude of SWHA at Wk34 lead-time in May over the BOB and SCS in composites of combined phases-2-3 and phases-6-7 of MJO. The observed leading mode of SWHA in May and the third mode of SWHA in January are influenced by the combined effects of ENSO and MJO. Based on spatial and temporal correlations, the spatial patterns of SWHA in the model at Wk34 in both January and May are in good agreement with the observations over the equatorial western Pacific, equatorial and southern IO, and SO.

  18. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  19. Haters Phenomena in Social Media

    OpenAIRE

    Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul

    2016-01-01

    Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...

  20. Harmonic oscillations, chaos and synchronization in systems consisting of Van der Pol oscillator coupled to a linear oscillator

    International Nuclear Information System (INIS)

    Woafo, P.

    1999-12-01

    This paper deals with the dynamics of a model describing systems consisting of the classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. Both the forced and autonomous cases are considered. Harmonic response is investigated along with its stability boundaries. Condition for quenching phenomena in the autonomous case is derived. Neimark bifurcation is observed and it is found that our model shows period doubling and period-m sudden transitions to chaos. Synchronization of two and more systems in their chaotic regime is presented. (author)

  1. Emergence of dynamical order synchronization phenomena in complex systems

    CERN Document Server

    Manrubia, Susanna C; Zanette, Damián H

    2004-01-01

    Synchronization processes bring about dynamical order and lead tospontaneous development of structural organization in complex systemsof various origins, from chemical oscillators and biological cells tohuman societies and the brain. This book provides a review and adetailed theoretical analysis of synchronization phenomena in complexsystems with different architectures, composed of elements withperiodic or chaotic individual dynamics. Special attention is paid tostatistical concepts, such as nonequilibrium phase transitions, orderparameters and dynamical glasses.

  2. An Analysis of the Energetics of Tropical and Extra-Tropical Regions for Warm ENSO Composite Episodes

    Directory of Open Access Journals (Sweden)

    Zayra Christine Sátyro

    Full Text Available Abstract This study focuses on the quantification and evaluation of the effects of ENSO (El Niño Southern Oscillation warm phases, using a composite of five intense El Niño episodes between 1979 – 2011 on the Energetic Lorenz Cycle for four distinct regions around the globe: 80° S – 5° N (region 1, 50° S – 5° N (region 2, 30° S – 5° N (region 3, and 30° S – 30° N (region 4, using Data from NCEP reanalysis-II. Briefly, the results showed that zonal terms of potential energy and kinetic energy were intensified, except for region 1, where zonal kinetic energy weakened. Through the analysis of the period in which higher energy production is observed, a strong communication between the available zonal potential and the zonal kinetic energy reservoirs can be identified. This communication weakened the modes linked to eddies of potential energy and kinetic energy, as well as in the other two baroclinic conversions terms. Furthermore, the results indicate that for all the regions, the system itself works to regain its stable condition.

  3. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  4. Indo-Pacific ENSO modes in a double-basin Zebiak-Cane model

    Science.gov (United States)

    Wieners, Claudia; de Ruijter, Will; Dijkstra, Henk

    2016-04-01

    We study Indo-Pacific interactions on ENSO timescales in a double-basin version of the Zebiak-Cane ENSO model, employing both time integrations and bifurcation analysis (continuation methods). The model contains two oceans (the Indian and Pacific Ocean) separated by a meridional wall. Interaction between the basins is possible via the atmosphere overlaying both basins. We focus on the effect of the Indian Ocean (both its mean state and its variability) on ENSO stability. In addition, inspired by analysis of observational data (Wieners et al, Coherent tropical Indo-Pacific interannual climate variability, in review), we investigate the effect of state-dependent atmospheric noise. Preliminary results include the following: 1) The background state of the Indian Ocean stabilises the Pacific ENSO (i.e. the Hopf bifurcation is shifted to higher values of the SST-atmosphere coupling), 2) the West Pacific cooling (warming) co-occurring with El Niño (La Niña) is essential to simulate the phase relations between Pacific and Indian SST anomalies, 3) a non-linear atmosphere is needed to simulate the effect of the Indian Ocean variability onto the Pacific ENSO that is suggested by observations.

  5. Interannual sea level variability in the Pearl River Estuary and its response to El Niño-Southern Oscillation

    Science.gov (United States)

    Wang, Linlin; Li, Qiang; Mao, Xian-zhong; Bi, Hongsheng; Yin, Peng

    2018-03-01

    The South China coast, especially the Pearl River Estuary (PRE) region, is prosperous and densely populated, but vulnerable to sea level changes. Sea level anomalies (SLA) during 1954-2012 from tide gauge station data and regional SLAs during 1993-2012 from satellite altimetry are analyzed and compare to the El Niño-Southern Oscillation (ENSO). Results show that sea level declines during El Niño events and rises during La Niña. Sea level in the PRE responds to ENSO with 3-month lag. The ENSO can cause sea level in the PRE to fluctuate from -8.70 to 8.11 cm. Sea level cycles of 3 and 5 years are related to ENSO. The ENSO mechanism affecting sea level in the PRE was analyzed by identifying dominant regional and local forces. Weak/strong SLAs in most El Niño/La Niña events may be attributed to less/more seawater transport driven by anomalously weak/strong north winds and local anomalously high/low sea level pressure. Wind-driven coastal current is the predominant factor. It generated coastal seawater volume transport along a 160 km wide cross section to decrease by 21.07% in a typical El Niño period (January 2010) and increase by 44.03% in a typical La Niña period (January 2011) as compared to an ENSO neutral situation (January 2013). Results of sea level rise and its potential mechanism provide insight for disaster protection during extreme El Niño/La Niña events.

  6. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    Science.gov (United States)

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  7. Influence of El Niño Southern Oscillation on global hydropower production

    Science.gov (United States)

    Ng, Jia Yi; Turner, Sean; Galelli, Stefano

    2016-04-01

    Hydropower contributes significantly to meeting the world's energy demand, accounting for at least 16% of total electrical output. Its role as a mature and cost competitive renewable energy source is expected to become increasingly important as the world transits to a low-carbon economy. A key component of hydropower production is runoff, which is highly dependent on precipitation and other climate variables. As such, it becomes critical to understand how the drivers of climate variability impact hydropower production. One globally-important driver is the El Niño Southern Oscillation (ENSO). While it is known that ENSO influences hydrological processes, the potential value of its associated teleconnection in design related tasks has yet to be explored at the global scale. Our work seeks to characterize the impact of ENSO on global hydropower production so as to quantify the potential for increased production brought about by incorporating climate information within reservoir operating models. We study over 1,500 hydropower reservoirs - representing more than half the world's hydropower capacity. A historical monthly reservoir inflow time series is assigned to each reservoir from a 0.5 degree gridded global runoff dataset. Reservoir operating rules are designed using stochastic dynamic programming, and storage dynamics are simulated to assess performance under the climate conditions of the 20th century. Results show that hydropower reservoirs in the United States, Brazil, Argentina, Australia, and Eastern China are strongly influenced by ENSO episodes. Statistically significant lag correlations between ENSO indicators and hydropower production demonstrate predictive skill with lead times up to several months. Our work highlights the potential for using these indicators to increase the contribution of existing hydropower plants to global energy supplies.

  8. Phase locking between Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1990-01-01

    We report observations of phase-locking phenomena between two Josephson soliton (fluxon) oscillators biased in self-resonant modes. The locking strength was measured as a function of bias conditions. A frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. Two coupled...... perturbed sine-Gordon equations were derived from an equivalent circuit consisting of inductively coupled, nonlinear, lossy transmission lines. These equations were solved numerically to find the locking regions. Good qualitative agreement was found between the experimental results and the calculations...

  9. WATER HAMMER OSCILLATIONS IN THE IRRIGATION FACILITIES

    Science.gov (United States)

    Kurata, Kouichi; Sasaki, Katsuhito; Makihata, Toshiaki

    In case a gate installed at the end of discharge conduit is vibrating during discharge, or an air valve is vibrating during water-filling operation into the conduit pipe between main gate and auxiliary gate, and vibration period tv is larger than tc (water hammer propagation time) that is equivalent to the phenomenon of slow closure, there is a possibility that water hammer oscillation in the discharge conduit could be induced. In this paper, by using two case examples, vibration phenomena transmitted to each part are analyzed, on the basis of water pressure fluctuation and pressure wave propagation due to occurrence of water hammer oscillation.

  10. Non-stationary influence of El Niño-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula.

    Science.gov (United States)

    Rozas, Vicente; García-González, Ignacio

    2012-09-01

    The properties of El Niño-Southern Oscillation (ENSO), such as period, amplitude, and teleconnection strength to extratropical regions, have changed since the mid-1970s. ENSO affects the regional climatic regime in SW Europe, thus tree performance in the Iberian Peninsula could be affected by recent ENSO dynamics. We established four Quercus robur chronologies of earlywood and latewood widths in the NW Iberian Peninsula. The relationship between tree growth and the Southern Oscillation Index (SOI), the atmospheric expression of ENSO, showed that only latewood growth was correlated negatively with the SOI of the previous summer-autumn-winter. This relationship was non-stationary, with significant correlations only during the period 1952-1980; and also non-linear, with enhanced latewood growth only in La Niña years, i.e. years with a negative SOI index for the previous autumn. Non-linear relationship between latewood and SOI indicates an asymmetric influence of ENSO on tree performance, biassed towards negative SOI phases. During La Niña years, climate in the study area was warmer and wetter than during positive years, but only for 1952-1980. Winter temperatures became the most limiting factor for latewood growth since 1980, when mean regional temperatures increased by 1°C in comparison to previous periods. As a result, higher winter respiration rates, and the extension of the growing season, would probably cause an additional consumption of stored carbohydrates. The influence of ENSO and winter temperatures proved to be of great importance for tree growth, even at lower altitudes and under mild Atlantic climate in the NW Iberian Peninsula.

  11. Modelling of density limit phenomena in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae-I.

    2001-01-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)

  12. Modelling of density limit phenomena in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.

    2000-03-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)

  13. Rhythmic components in renal autoregulation: Nonlinear modulation phenomena

    International Nuclear Information System (INIS)

    Pavlov, A.N.; Sosnovtseva, O.V.; Pavlova, O.N.; Mosekilde, E.; Holstein-Rathlou, N.-H.

    2009-01-01

    Autoregulation of nephron blood flow involves two oscillatory processes: the tubular-flow sensitive tubuloglomerular feedback (TGF) mechanism and the blood-pressure sensitive myogenic mechanism. Both act to regulate the diameter of the afferent arteriole, which carries blood to the nephron. In this paper, we apply wavelet analysis to time series of the proximal tubular pressure obtained from normotensive and hypertensive rats to study how the TGF-mediated oscillations modulate both the frequency and the amplitude of the myogenic oscillations. The tubular pressure oscillations are nearly periodic for normotensive rats, but irregular (or chaotic) for rats with hypertension. Modulation phenomena are clearly observed in both types of rats, but the effect is stronger in those with hypertension.

  14. Simulations of Biomechanical Phenomena

    Science.gov (United States)

    Gonzalez, Jose Cruz

    Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for

  15. Respuestas del clima de América del Sur a las fases de ENSO

    Directory of Open Access Journals (Sweden)

    1998-01-01

    impulsions de El Niño. Les régions du centre du Brésil semblent aussi ne pas dépendre du phénomène. Durant les années classées comme normales, on n’observe pas de dépendance des contrôles climatiques qui agissent au cours des phases extrêmes de l’Oscillation du Sud. Ceci montre que l’on doit approfondir l’étude des autres causes de variation de la circulation tropicale responsables des anomalies de précipitation. Las fases altas de ENSO, El Niño (EN, y las fases bajas, Anti-Niño (AN, se relacionan diferentemente con los regímenes de lluvias en América del Sur. Para establecer el carácter de estas relaciones, se ha analizado la precipitación anual de estaciones típicas, considerando tres subpoblaciones: totales anuales de años EN, totales de años AN, y el resto o años “normales”. Precediendo a veranos australes con fenómenos EN, la precipitación invernal en Chile Central y los Andes de Argentina es abundante. Durante los veranos con episodios EN en el Pacífico tropical, suelen afectar sequías el Noreste de Brasil especialmente en el otoño o verano precedente. De diciembre a marzo de años EN, llueve copiosamente a lo largo de la costa oeste de América del Sur comprendida entre la Bahía de Tumaco y Pacasmayo. En el interior de la Sierra y el Altiplano peruano boliviano tienen lugar sequías. En las tierras bajas de Bolivia, Paraguay, y el sureste de Brasil hay fuertes lluvias anormales durante el verano y otoño austral. En medio del otoño hay precipitaciones intensas en las tierras bajas del Río de la Plata y el sur de Brasil. El segmento norte y la cuenca inferior del Amazonas tienen menos pluviosidad durante EN y niveles mayores durante AN. La cuenca interior del Amazonas reacciona inversamente, ya que tiene pluviosidad excesiva durante algunos EN. Las regiones de Venezuela y Colombia bajo la influencia del Caribe y el Atlántico experimentan anomalías negativas de lluvias durante EN y alta pluviosidad en AN. Algunas regiones de la

  16. Introductory lectures on critical phenomena

    International Nuclear Information System (INIS)

    Khajehpour, M.R.H.

    1988-09-01

    After a presentation of classical models for phase transitions and critical phenomena (Van der Waals theory, Weiss theory of ferromagnetism) and theoretical models (Ising model, XY model, Heisenberg model, spherical model) the Landau theory of critical and multicritical points and some single applications of renormalization group method in static critical phenomena are presented. 115 refs, figs and tabs

  17. PRONOSTICANDO EL ÍNDICE ENSO VARIOS PASOS EN ADELANTE MEDIANTE TÉCNICAS DE MODELAMIENTO NO LINEAL FORECASTING ENSO SEVERAL STEPS AHEAD THROUGH NONLINEAR MODELING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Giovanni Salini Calderón

    2010-12-01

    Full Text Available Se indica cómo manejar una gran base de datos consistente de series temporales no lineales, aplicando distintas técnicas de modelamiento no lineal a estas series. Aunque no existen guías explícitas de manipulación de series temporales no lineales en la profusa bibliografía actual, existen diferentes enfoques que pueden ser tomados en cuenta. Para ello se estudió una base de datos mensual correspondiente a datos del Fenómeno del Niño (ENSO, entre los años 1866 y 2006. Se explica cómo debe manipularse esta base de datos que poseen características de no linealidad, la cual será usada para hacer pronósticos varios pasos en adelante. Se aplicaron dos test estándar: Información Mutua Promedio (AMI y Falsos Vecinos más Cercanos (FNN. Se obtuvo el espaciamiento óptimo de los datos, así como el número de datos hacia atrás necesarios para pronosticar valores hacia el futuro. Luego, se diseñaron varios modelos de redes neuronales artificiales (RNA, con diferentes reglas de aprendizajes, funciones de transferencia, elementos de procesamiento (o neuronas en la capa escondida, etc., que permitieron hacer pronóstico de hasta 20 pasos en adelante. Las mejores redes correspondieron a aquellas que poseían como regla de aprendizaje la Regla Delta y la Regla Extendida, con función de transferencia sigmoide y tangente hiperbólica. El tipo de RNA usada fue una de multicapas alimentada hacia adelante y entrenada mediante la técnica de propagación hacia atrás. Se probaron redes con una, dos capas ocultas y sin ninguna capa. El mejor modelo que se obtuvo resultó ser uno consistente de una capa oculta.We indicate how to handle a large database consisting of nonlinear time series, applying different nonlinear modelling techniques to this kind of times series. Nowadays in the current references there is no explicit guide of how to manipulate data from nonlinear time series; however, there are approaches that can be taken account. To this end

  18. Self-induced free surface oscillations caused by water jet

    International Nuclear Information System (INIS)

    Fukaya, M.; Madarame, H.; Okamoto, K.; Iida, M.; Someya, S.

    1995-01-01

    The interaction between the high speed flow and the free surfaces could induced surface oscillations. Recently, some kinds of self-induced free surface oscillations caused by water jet were discovered, e.g., a self-induced sloshing, 'Jet-Flutter' and a self-induced manometer oscillation. These oscillations have many different characteristics with each other. In this study, the similarities and differences of these oscillations are examined, and the geometrical effects on the phenomena are experimentally investigated. The self-induced sloshing and the Jet-Flutter have different dimensionless traveling times, which suggests a difference in the energy supply mechanism. When the distance between the inlet and the outlet is small in a vessel, the self-induced manometer oscillation could occur in the multi-free-surface system. (author)

  19. Reactor Neutrino Oscillations: KamLAND and KASKA

    International Nuclear Information System (INIS)

    Suekane, F.

    2006-01-01

    Nuclear reactors generate a huge number of low energy ν-bar e 's. The reactor neutrinos have been used to study properties of neutrinos since its discovery a half century ago. Recently, KamLAND group finally discovered reactor neutrino oscillation with average baseline 180 km. According to the 3 flavor scheme of standard theory and measured oscillation parameters so far, the reactor neutrino is expected to perform another type of small oscillation at a baseline 1.8 km. KASKA experiment is a project to detect this small oscillation and to measure the last neutrino mixing angle θ 13 by using the world most powerful reactor complex, Kashiwazaki-Kariwa nuclear power station. In this proceedings, phenomena of neutrino oscillation and the two reactor oscillation experiments, KamLAND and KASKA, are introduced

  20. Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno

    Directory of Open Access Journals (Sweden)

    1998-01-01

    Full Text Available INFLUENCE DU PHÉNOMÈNE ENSO SUR LES PRÉCIPITATIONS NEIGEUSES DANS LE CENTRE DU CHILI ANDIN AU COURS DE L’HIVER AUSTRAL. On analyse l’influence du phénomène El Niño/Oscillation du Sud (ENSO sur les précipitations nivales dans les Andes du Chili central au cours de l’hiver. Pour cela, on a utilisé l’information obtenue sur des sites spécifiques (routes de neige situées entre 30° et 38° S et les anomalies de Température de Surface de la Mer (TSM du bloc Niño 3, comme indicateur de l’importance des événements chauds ou froids dans le Pacifique équatorial central. Au nord de 35°S, l’accumulation de neige tend à être supérieure à la normale quand l’anomalie moyenne de TSM dépasse +1°C au cours de la période mai-août. Dans ce même secteur, on enregistre une précipitation inférieure à la normale les hivers caractérisés par une anomalie de TSM inférieure à -0,5°C. Dans la zone située au sud de 35° S, l’influence du phénomène ENSO sur l’accumulation de neige n’est plus significative. Se analiza la influencia del fenómeno El Niño/Oscilación del Sur (ENSO sobre la precipitación nival en los Andes de Chile central durante el invierno. Para esto, se utiliza información de rutas de nieve localizadas entre 30° y 38° S, y de anomalías de temperatura superficial del mar (TSM en la región Niño 3 como un indicador de la magnitud de los eventos cálidos y fríos en el Pacífico ecuatorial central. En la región al norte de 35° S, la acumulación de nieve durante el invierno tiende a ser superior a lo normal cuando la magnitud de la anomalía media de TSM en el periodo mayo-agosto supera +1,0° C. En este mismo sector se verifica que durante los inviernos caracterizados por una anomalía de TSM inferior a -0,5° C, suele registrarse una precipitación nival inferior a lo normal. En el sector al sur de los 35° S, la influencia del fenómeno ENSO sobre la acumulación de nieve durante el invierno no es

  1. Mean-state SST Response to global warming caused by the ENSO Nonlinearity

    Science.gov (United States)

    Kohyama, T.; Hartmann, D. L.

    2017-12-01

    The majority of the models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) exhibit El Niño-like trends under global warming. GFDL-ESM2M, however, is an exception that exhibits a La Niña-like response with strengthened trade winds. Our previous studies have shown that this La Niña-like trend could be a physically consistent warming response, and we proposed the Nonlinear ENSO Warming Suppression (NEWS) mechanism to explain this La Niña-like response to global warming. The most important necessary condition of NEWS is the ENSO skewness (El Niños are stronger than La Niñas). Most CMIP5 models do not reproduce the observed ENSO skewness, while GFDL-ESM2M exhibits the realistic ENSO skewness, which suggests that, despite being in the minority, the La Niña-like trend of GFDL-ESM2M could be a plausible equatorial Pacific response to warming. In this study, we introduce another interesting outlier, MIROC5, which reproduces the observed skewness, yet exhibits an El Niño-like response. By decomposing the source of the ENSO nonlinearity into the following three components: "SST anomalies modulate winds", "winds excite oceanic waves", and "oceanic waves modulate the subsurface temperature", we show that the large inter-model spread of the third component appears to explain the most important cause of the poor reproducibility of the ENSO nonlinearity in CMIP5 models. It is concluded that the change in the response of subsurface temperature to oceanic waves is the primary explanation for the different warming response of GFDL-ESM2M and MIROC5. Our analyses suggest that the difference of the warming response are caused by difference in the climatological thermal stratification. This study may shed new light on the fundamental question of why observed ENSO has a strong skewness and on the implications of this skewed ENSO for the mean-state sea surface temperature response to global warming.

  2. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    Science.gov (United States)

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel.

  3. ENSO surface longwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2007-01-01

    Full Text Available We have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net over a 21-year period in the tropical and subtropical Pacific Ocean (40 S–40 N, 90 E–75 W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text, for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15–0 S, 105–130 E. There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3–4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm−2 during El Niño episodes to −20 Wm−2 during La Niña events, while over the western Pacific (15–0 S, 105–130 E these values range from −15 Wm−2 to +10 Wm−2, respectively. The long- term average (1984–2004 distribution of the net downwelling longwave radiation at the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm−2 south of the equator in the central Pacific (7–0 S, 160–120 W for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the

  4. ENSO modulation of seasonal rainfall and extremes in Indonesia

    Science.gov (United States)

    Supari; Tangang, Fredolin; Salimun, Ester; Aldrian, Edvin; Sopaheluwakan, Ardhasena; Juneng, Liew

    2017-12-01

    This paper provides a detailed description of how ENSO events affect seasonal and extreme precipitation over Indonesia. Daily precipitation data from 97 stations across Indonesia covering the period from 1981 to 2012 were used to investigate the effects of El Niño and La Niña on extreme precipitation characteristics including intensity, frequency and duration, as defined based on a subset of the Expert Team on Climate Change Detection and Indices (ETCCDI). Although anomalous signals in these three indices were consistent with those of total rainfall, anomalies in the duration of extremes [i.e., consecutive dry days (CDD) and consecutive wet days (CWD)] were much more robust. El Niño impacts were particularly prominent during June-July-August (JJA) and September-October-November (SON), when anomalously dry conditions were experienced throughout the country. However, from SON, a wet anomaly appeared over northern Sumatra, later expanding eastward during December-January-February (DJF) and March-April-May (MAM), creating contrasting conditions of wet in the west and dry in the east. We attribute this apparent eastward expansion of a wet anomaly during El Niño progression to the equatorial convergence of two anti-cyclonic circulations, one residing north of the equator and the other south of the equator. These anti-cyclonic circulations strengthen and weaken according to seasonal changes and their coupling with regional seas, hence shaping moisture transport and convergence. During La Niña events, the eastward expansion of an opposite (i.e., dry) anomaly was also present but less prominent than that of El Niño. We attribute this to differences in regional ocean—atmosphere coupling, which result in the contrasting seasonal evolution of the two corresponding anomalous cyclonic circulations and in turn suggests the strong nonlinearity of El Niño and La Niña responses over the Maritime Continent. Based on the seasonal behaviour of anomalous CDD and CWD, we

  5. Toward Understanding Astrophysical Phenomena

    Science.gov (United States)

    Luan, Jing

    2015-06-01

    I hope to resume working on fast radio bursts (FRBs) in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints. The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central ms pulsar. The two orbits are highly hierarchical, namely Porb,1 " Porb,2, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, e1/ e2, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, e1 " e2 for the parallel mode, while e 1 " e2 for the anti-parallel one. We show that the former precesses ˜10 times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially e1 oscillate on ˜103yr timescale. Detectable changes would occur within ˜1y. We demonstrate that the anti-parallel mode gets damped ˜10 4 times faster than its parallel brother by any dissipative process diminishing e1. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter (Q) to be ˜106, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers

  6. Fractional Bateman—Feshbach Tikochinsky Oscillator

    Science.gov (United States)

    Dumitru, Baleanu; Jihad, H. Asad; Ivo, Petras

    2014-02-01

    In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the fractional Lagrangian and Hamiltonian of the complex Bateman—Feshbach Tikochinsky oscillator. The numerical analysis of the corresponding fractional Euler-Lagrange equations is given within the Grünwald—Letnikov approach, which is power series expansion of the generating function.

  7. Fractional Bateman—Feshbach Tikochinsky Oscillator

    International Nuclear Information System (INIS)

    Baleanu, Dumitru; Asad, Jihad H.; Petras Ivo

    2014-01-01

    In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the fractional Lagrangian and Hamiltonian of the complex Bateman—Feshbach Tikochinsky oscillator. The numerical analysis of the corresponding fractional Euler-Lagrange equations is given within the Grünwald—Letnikov approach, which is power series expansion of the generating function. (physics of elementary particles and fields)

  8. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea

    Science.gov (United States)

    Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian

    2018-05-01

    Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).

  9. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  10. Kinetic effects on magnetohydrodynamic phenomena

    International Nuclear Information System (INIS)

    Naito, Hiroshi; Matsumoto, Taro

    2001-01-01

    Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)

  11. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  12. Satellite gravimetry observation of Antarctic snow accumulation related to ENSO

    OpenAIRE

    Ingo Sasgen; Henryk Dobslaw; Z. Martinec; Maik Thomas

    2010-01-01

    Interannual ice-mass variations along the Antarctic Peninsula (AP) and in the Amundsen Sea Sector (AS) are obtained for the years 2002 until 2009 using satellite data of the Gravity Recovery and Climate Experiment, that correlate well (r ≈ 0.7) with accumulation variations based on the net precipitation from the European Centre for Medium Range Weather Forecasts. Moreover, mass signals for AP and AS are anti-correlated in time (r ≈ − 0.4) and contain El Niño Southern Oscillation signatures re...

  13. Micro transport phenomena during boiling

    CERN Document Server

    Peng, Xiaofeng

    2011-01-01

    "Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.

  14. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos; Sun, Zhonghao

    2017-01-01

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration

  15. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  16. Neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Mikheyev, S.P.; Smirnov, A.Yu.

    1986-01-01

    In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)

  17. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  18. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.

    Science.gov (United States)

    O'Keeffe, Kevin P; Krapivsky, P L; Strogatz, Steven H

    2015-08-07

    We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.

  19. Mixed-Mode Oscillations in Complex-Plasma Instabilities

    International Nuclear Information System (INIS)

    Mikikian, Maxime; Cavarroc, Marjorie; Coueedel, Lenaiec; Tessier, Yves; Boufendi, Laiefa

    2008-01-01

    Instabilities in dusty plasmas are frequent phenomena. We show that some instabilities can be described by mixed-mode oscillations often encountered in chemical systems or neuronal dynamics and studied through dynamical system theories. The time evolution of these instabilities is studied through the change in the associated waveform. Frequency and interspike interval are analyzed and compared to results obtained in other scientific fields concerned by mixed-mode oscillations

  20. Renormalization group and critical phenomena

    International Nuclear Information System (INIS)

    Ji Qing

    2004-01-01

    The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)

  1. Time Series Decomposition into Oscillation Components and Phase Estimation.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  2. ENSO-induced inter-annual sea level variability in the Singapore strait

    Digital Repository Service at National Institute of Oceanography (India)

    Soumya, M.; Vethamony, P.; Tkalich, P.

    Sea level data from four tide gauge stations in the SS (Tanjong Pagar, Sultan Shoal, Sembawang and Raffles Lighthouse) for the period 1970-2012 were extracted to study the ENSO-induced interannual sea level variability Sea level during this period...

  3. Tree Carbohydrate Dynamics Across a Rainfall Gradient in Panama During the 2016 ENSO

    Science.gov (United States)

    Dickman, L. T.; Xu, C.; Behar, H.; McDowell, N.

    2017-12-01

    Non-structural carbohydrates (NSC) provide a measure of the carbon supply available to support respiration, growth, and defense. Support for a role of carbon starvation - or depletion of NSC stores - in drought induced tree mortality is varied without consensus for the tropics. The 2016 ENSO drought provided a unique opportunity to capture drought impacts on tropical forest carbohydrate dynamics. To quantify these impacts, we collected monthly NSC samples across a rainfall gradient in Panama for the duration of the ENSO. We observed high variability in foliar NSC among species within sites. Foliage contained very little starch, indicating that total NSC dynamics are driven by soluble sugars. Foliar NSC depletion did not progress with drought duration as predicted, but showed little variation over course of the ENSO. Foliar NSC did, however, increase with rainfall, suggesting NSC depletion may occur with longer-term drought. These results suggest that, while short-term droughts like the 2016 ENSO may not have a significant impact on carbon dynamics, we may observe greater impacts as drought progresses over longer timescales. These results will be used to evaluate whether the current implementation of carbon starvation in climate models are capturing observed trends in tropical forest carbon allocation and mortality, and to tune model parameters for improved predictive capability.

  4. Equatorial Precession Drove Mid-Latitude Changes in ENSO-Scale Variation in the Earliest Miocene

    Science.gov (United States)

    Fox, B.; D'Andrea, W. J.; Lee, D. E.; Wilson, G. S.

    2014-12-01

    Foulden Maar is an annually laminated lacustrine diatomite deposit from the South Island of New Zealand. The deposit was laid down over ~100 kyr of the latest Oligocene and earliest Miocene, during the peak and deglaciation phase of the Mi-1 Antarctic glaciation event. At this time, New Zealand was located at approximately the same latitude as today (~45°S). Evidence from organic geochemical proxies (δD, δ13C) and physical properties (density, colour) indicates the presence of an 11-kyr cycle at the site. Although it is known that 11-kyr insolation (half-precession) cycles occur between the Tropics, this cycle is rarely seen in sedimentary archives deposited outside the immediate vicinity of the Equator. Records from Foulden Maar correlate well with the amplitude and phase of the modelled equatorial half-precession cycle for the earliest Miocene. High-resolution (50 µm) colour intensity measurements and lamina thickness measurements both indicate the presence of significant ENSO-like (2-8 year) variation in the Foulden Maar sediments. Early results from targeted lamina thickness measurements suggest that ENSO-band variation is modulated by the 11-kyr cycle, with power in the ENSO band increasing during periods of increased insolation at the Equator. This implies that equatorial half-precession had a significant effect on ENSO-like variation in the early Miocene, and that this effect was felt as far afield as the mid-latitudes of the Southern Hemisphere.

  5. Tree establishment along an ENSO experimental gradient in the Atacama desert

    NARCIS (Netherlands)

    Squeo, F.A.; Holmgren, M.; Jimenez, L.; Alban, L.; Reyes, J.; Gutierrez, J.R.

    2007-01-01

    Questions: (1) What are the roles of regional climate and plant growth rate for seedling establishment during ENSO rainy pulses along the western coast of South America? (2) What is the water threshold for tree seedling establishment in these arid ecosystems? Location: Atacama Desert, western South

  6. Corporate social responsibility as a business strategy: Stora Enso-WWF partnership project

    NARCIS (Netherlands)

    Tysiachniouk, M.S.

    2009-01-01

    The paper analyzes the strategic partnership between transnational corporation Stora-Enso and international nongovernmental organization NGO WWF as a business strategy that helps the company to adopt its business to the turbulent environment of the economy in transition. In this paper I draw from

  7. ENSO shifts and their link to Southern Africa surface air temperature in summer

    Science.gov (United States)

    Manatsa, D.; Mukwada, G.; Makaba, L.

    2018-05-01

    ENSO has been known to influence the trends of summer warming over Southern Africa. In this work, we used observational and reanalysis data to analyze the relationship between ENSO and maximum surface air temperature (SATmax) trends during the three epochs created by the ENSO phase shifts around 1977 and 1997 for the period 1960 to 2014. We observed that while ENSO and cloud cover remains the dominant factor controlling SATmax variability, the first two epochs had the predominant La Niña (El Niño)-like events connected to robust positive (negative) trends in cloud fraction. However, this established relationship reversed in the post-1997 La Niña-like dominated epoch which coincided with a falling cloud cover trend. It is established that this deviation from the previously established link within the previous epochs could be due to the post-1998 era in which SATmin was suppressed while SATmax was enhanced. The resulting increase in diurnal temperature range (DTR) could have discouraged the formation of low-level clouds which have relatively more extensive areal coverage and hence allowing more solar energy to reach the surface to boost daytime SATmax. It is noted that these relationships are more pronounced from December to March.

  8. Impact of ENSO events on the Kruger National Park’s vegetation

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2011-01-01

    Full Text Available the Kruger National Park shows the strong relationship between the ENSO episodes (droughts during El Niño and high rainfall during La Niña episodes), rainfall, grass production and satellite time-series data of vegetation activity. El Niño conditions have...

  9. Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model

    Science.gov (United States)

    Zhu, Jieshun; Kumar, Arun

    2018-01-01

    Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.

  10. Assessing probabilistic predictions of ENSO phase and intensity from the North American Multimodel Ensemble

    Science.gov (United States)

    Tippett, Michael K.; Ranganathan, Meghana; L'Heureux, Michelle; Barnston, Anthony G.; DelSole, Timothy

    2017-05-01

    Here we examine the skill of three, five, and seven-category monthly ENSO probability forecasts (1982-2015) from single and multi-model ensemble integrations of the North American Multimodel Ensemble (NMME) project. Three-category forecasts are typical and provide probabilities for the ENSO phase (El Niño, La Niña or neutral). Additional forecast categories indicate the likelihood of ENSO conditions being weak, moderate or strong. The level of skill observed for differing numbers of forecast categories can help to determine the appropriate degree of forecast precision. However, the dependence of the skill score itself on the number of forecast categories must be taken into account. For reliable forecasts with same quality, the ranked probability skill score (RPSS) is fairly insensitive to the number of categories, while the logarithmic skill score (LSS) is an information measure and increases as categories are added. The ignorance skill score decreases to zero as forecast categories are added, regardless of skill level. For all models, forecast formats and skill scores, the northern spring predictability barrier explains much of the dependence of skill on target month and forecast lead. RPSS values for monthly ENSO forecasts show little dependence on the number of categories. However, the LSS of multimodel ensemble forecasts with five and seven categories show statistically significant advantages over the three-category forecasts for the targets and leads that are least affected by the spring predictability barrier. These findings indicate that current prediction systems are capable of providing more detailed probabilistic forecasts of ENSO phase and amplitude than are typically provided.

  11. ENSO-Based Index Insurance: Approach and Peru Flood Risk Management Application

    Science.gov (United States)

    Khalil, A. F.; Kwon, H.; Lall, U.; Miranda, M. J.; Skees, J. R.

    2006-12-01

    Index insurance has recently been advocated as a useful risk transfer tool for disaster management situations where rapid fiscal relief is desirable, and where estimating insured losses may be difficult, time consuming, or subject to manipulation and falsification. For climate related hazards, a rainfall or temperature index may be proposed. However, rainfall may be highly spatially variable relative to the gauge network, and in many locations data are inadequate to develop an index due to short time-series and the spatial dispersion of stations. In such cases, it may be helpful to consider a climate proxy index as a regional rainfall index. This is particularly useful if a long record is available for the climate index through an independent source and it is well correlated with the regional rainfall hazard. Here, ENSO related climate indices are explored for use as a proxy to extreme rainfall in one of the departments of Peru -- Piura. The ENSO index insurance product may be purchased by banks or microfinance institutions (MFIs) to aid agricultural damage relief in Peru. Crop losses in the region are highly correlated with floods, but are difficult to assess directly. Beyond agriculture, many other sectors suffer as well. Basic infrastructure is destroyed during the most severe events. This disrupts trade for many micro-enterprises. The reliability and quality of the local rainfall data is variable. Averaging the financial risk across the region is desirable. Some issues with the implementation of the proxy ENSO index are identified and discussed. Specifically, we explore (a) the reliability of the index at different levels of probability of exceedance of maximum seasonal rainfall; (b) the potential for clustering of payoffs; (c) the potential that the index could be predicted with some lead time prior to the flood season; and (d) evidence for climate change or non-stationarity in the flood exceedance probability from the long ENSO record. Finally, prospects for

  12. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  13. Comments on microscopic mechanics, generalizations of classical mechanics and Planck's oscillators

    International Nuclear Information System (INIS)

    Yussouff, M.

    1983-05-01

    The new microscopic mechanics removes the dichotomy of physics into classical and quantum phenomena. Its physical picture and connections with generalizations of classical mechanics are discussed. It gives a new meaning to Bohr's frequency relation and Planck's oscillators. (author)

  14. Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model

    Science.gov (United States)

    Turi, Giuliana; Alexander, Michael; Lovenduski, Nicole S.; Capotondi, Antonietta; Scott, James; Stock, Charles; Dunne, John; John, Jasmin; Jacox, Michael

    2018-02-01

    Coastal upwelling systems, such as the California Current System (CalCS), naturally experience a wide range of O2 concentrations and pH values due to the seasonality of upwelling. Nonetheless, changes in the El Niño-Southern Oscillation (ENSO) have been shown to measurably affect the biogeochemical and physical properties of coastal upwelling regions. In this study, we use a novel, high-resolution global climate model (GFDL-ESM2.6) to investigate the influence of warm and cold ENSO events on variations in the O2 concentration and the pH of the CalCS coastal waters. An assessment of the CalCS response to six El Niño and seven La Niña events in ESM2.6 reveals significant variations in the response between events. However, these variations overlay a consistent physical and biogeochemical (O2 and pH) response in the composite mean. Focusing on the mean response, our results demonstrate that O2 and pH are affected rather differently in the euphotic zone above ˜ 100 m. The strongest O2 response reaches up to several hundreds of kilometers offshore, whereas the pH signal occurs only within a ˜ 100 km wide band along the coast. By splitting the changes in O2 and pH into individual physical and biogeochemical components that are affected by ENSO variability, we found that O2 variability in the surface ocean is primarily driven by changes in surface temperature that affect the O2 solubility. In contrast, surface pH changes are predominantly driven by changes in dissolved inorganic carbon (DIC), which in turn is affected by upwelling, explaining the confined nature of the pH signal close to the coast. Below ˜ 100 m, we find conditions with anomalously low O2 and pH, and by extension also anomalously low aragonite saturation, during La Niña. This result is consistent with findings from previous studies and highlights the stress that the CalCS ecosystem could periodically undergo in addition to impacts due to climate change.

  15. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    Science.gov (United States)

    Pervez, M. S.; Henebry, G. M.

    2014-02-01

    We evaluated the spatial and temporal responses of precipitation in the basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean (IO) dipole modes using observed precipitation records at 43 stations across the Ganges and Brahmaputra basins from 1982 to 2010. Daily observed precipitation records were extracted from Global Surface Summary of the Day dataset and spatial and monthly anomalies were computed. The anomalies were averaged for the years influenced by climate modes combinations. Occurrences of El Niño alone significantly reduced (60% and 88% of baseline in the Ganges and Brahmaputra basins, respectively) precipitation during the monsoon months in the northwestern and central Ganges basin and across the Brahmaputra basin. In contrast, co-occurrence of La Niña and a positive IO dipole mode significantly enhanced (135% and 160% of baseline, respectively) precipitation across both basins. During the co-occurrence of neutral phases in both climate modes (occurring 13 out of 28 yr), precipitation remained below average to average in the agriculturally extensive areas of Haryana, Uttar Pradesh, Bihar, eastern Nepal, and the Rajshahi district in Bangladesh in the Ganges basin and northern Bangladesh, Meghalaya, Assam, and Arunachal Pradesh in the Brahmaputra basin. This pattern implies that a regular water deficit is likely in these areas with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Major flooding and drought occurred as a consequence of the interactive effects of the ENSO and IO dipole modes, with the sole exception of extreme precipitation and flooding during El Niño events. This observational analysis will facilitate well informed decision making in minimizing natural hazard risks and climate impacts on agriculture, and supports development of strategies ensuring optimized use of water resources in best management practice under changing climate.

  16. Midwest agriculture and ENSO: A comparison of AVHRR NDVI3g data and crop yields in the United States Corn Belt from 1982 to 2014

    Science.gov (United States)

    Glennie, Erin; Anyamba, Assaf

    2018-06-01

    A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) data were compared to National Agricultural Statistics Service (NASS) corn yield data in the United States Corn Belt from 1982 to 2014. The main objectives of the comparison were to assess 1) the consistency of regional Corn Belt responses to El Niño/Southern Oscillation (ENSO) teleconnection signals, and 2) the reliability of using NDVI as an indicator of crop yield. Regional NDVI values were used to model a seasonal curve and to define the growing season - May to October. Seasonal conditions in each county were represented by NDVI and land surface temperature (LST) composites, and corn yield was represented by average annual bushels produced per acre. Correlation analysis between the NDVI, LST, corn yield, and equatorial Pacific sea surface temperature anomalies revealed patterns in land surface dynamics and corn yield, as well as typical impacts of ENSO episodes. It was observed from the study that growing seasons coincident with La Niña events were consistently warmer, but El Niño events did not consistently impact NDVI, temperature, or corn yield data. Moreover, the El Niño and La Niña composite images suggest that impacts vary spatially across the Corn Belt. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be attributed to soy crops and other background interference. The overall correlation between the total growing season NDVI anomaly and detrended corn yield was 0.61(p = 0.00013), though the strength of the relationship varies across the Corn Belt.

  17. ENSO, nest predation risk, food abundance, and male status fail to explain annual variations in the apparent survival rate of a migratory songbird.

    Directory of Open Access Journals (Sweden)

    Alizée Vernouillet

    Full Text Available Adult mortality can be a major driver of population decline in species whose productivity is relatively low. Yet, little is known about the factors influencing adult survival rates in migratory bird species, nor do we know much about the longer-term effects of habitat disturbance on the fitness of individuals. The Ovenbird (Seiurus aurocapilla is one of the vertebrate species most sensitive to forest management, yet it is still common and widespread. We monitored the fate of 330 colour-banded Ovenbird males in four pairs of 25-ha plots during 9 successive breeding seasons. One plot of each pair was treated through selection harvesting (30-40% basal area removed during the first winter. We tested the following hypotheses: (1 higher physiological costs in harvested plots as a result of lower food abundance will reduce apparent survival rate (ASR relative to controls; (2 lower ASR following years with low nest survival and higher probability of renesting; (3 fluctuations in ASR reflecting El Niño Southern Oscillation (ENSO; and (4 higher ASR in returning males than in recruits (unbanded immigrants owing to greater site familiarity in the former. We tested the relative importance of these hypotheses, or combinations thereof, by generating 23 models explaining variation in ASR. The year-dependent model received the most support, showing a 41% decrease in ASR from 2007 to 2014. The important year-to-year variation we observed in ASR (Σw(i = 0.99 was not explained by variation in nest predation risk nor by ENSO. There was also little evidence for an effect of selection harvesting on ASR of Ovenbird males, despite a slight reduction in lifespan relative to males from control plots (2.7 vs 2.9 years. An avenue worth exploring to explain this intriguing pattern would be to determine whether conditions at migratory stopover sites or in the wintering area of our focal population have gradually worsened over the past decade.

  18. Re-evaluating the resource potential of lomas fog oasis environments for Preceramic hunter-gatherers under past ENSO modes on the south coast of Peru

    Science.gov (United States)

    Beresford-Jones, David; Pullen, Alexander G.; Whaley, Oliver Q.; Moat, Justin; Chauca, George; Cadwallader, Lauren; Arce, Susana; Orellana, Alfonso; Alarcón, Carmela; Gorriti, Manuel; Maita, Patricia K.; Sturt, Fraser; Dupeyron, Agathe; Huaman, Oliver; Lane, Kevin J.; French, Charles

    2015-12-01

    Lomas - ephemeral seasonal oases sustained by ocean fogs - were critical to ancient human ecology on the desert Pacific coast of Peru: one of humanity's few independent hearths of agriculture and "pristine" civilisation. The role of climate change since the Late Pleistocene in determining productivity and extent of past lomas ecosystems has been much debated. Here we reassess the resource potential of the poorly studied lomas of the south coast of Peru during the long Middle Pre-ceramic period (c. 8000-4500 BP): a period critical in the transition to agriculture, the onset of modern El Niño Southern Oscillation ('ENSO') conditions, and eustatic sea-level rise and stabilisation and beach progradation. Our method combines vegetation survey and herbarium collection with archaeological survey and excavation to make inferences about both Preceramic hunter-gatherer ecology and the changed palaeoenvironments in which it took place. Our analysis of newly discovered archaeological sites - and their resource context - show how lomas formations defined human ecology until the end of the Middle Preceramic Period, thereby corroborating recent reconstructions of ENSO history based on other data. Together, these suggest that a five millennia period of significantly colder seas on the south coast induced conditions of abundance and seasonal predictability in lomas and maritime ecosystems, that enabled Middle Preceramic hunter-gatherers to reduce mobility by settling in strategic locations at the confluence of multiple eco-zones at the river estuaries. Here the foundations of agriculture lay in a Broad Spectrum Revolution that unfolded, not through population pressure in deteriorating environments, but rather as an outcome of resource abundance.

  19. High-frequency plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)

    1958-07-01

    It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.

  20. Nonlinear transient waves in coupled phase oscillators with inertia.

    Science.gov (United States)

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  1. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  2. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  3. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  4. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  5. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  6. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  7. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  8. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  9. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  10. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  11. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    J. C. Currie

    2013-10-01

    Full Text Available The Indian Ocean Dipole (IOD and the El Niño/Southern Oscillation (ENSO are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries

  12. Basin stability measure of different steady states in coupled oscillators

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  13. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  14. Analysis of Roanoke Region Weather Patterns Under Global Teleconnections

    OpenAIRE

    LaRocque, Eric John

    2006-01-01

    This work attempts to relate global teleconnections, through physical phenomena such as the El Nino-Southern Oscillation (ENSO), Artic Oscillation (AO), North Atlantic Oscillation (NAO), and the Pacific North American (PNA) pattern to synoptic-scale weather patterns and precipitation in the Roanoke, Virginia region. The first chapter describes the behavior of the El Nino-Southern Oscillation (ENSO) by implementing non-homogeneous and homogeneous Markov Chain models on a monthly time series o...

  15. Synchronization of an ensemble of oscillators regulated by their spatial movement.

    Science.gov (United States)

    Sarkar, Sumantra; Parmananda, P

    2010-12-01

    Synchronization for a collection of oscillators residing in a finite two dimensional plane is explored. The coupling between any two oscillators in this array is unidirectional, viz., master-slave configuration. Initially the oscillators are distributed randomly in space and their autonomous time-periods follow a Gaussian distribution. The duty cycles of these oscillators, which work under an on-off scenario, are normally distributed as well. It is realized that random hopping of oscillators is a necessary condition for observing global synchronization in this ensemble of oscillators. Global synchronization in the context of the present work is defined as the state in which all the oscillators are rendered identical. Furthermore, there exists an optimal amplitude of random hopping for which the attainment of this global synchronization is the fastest. The present work is deemed to be of relevance to the synchronization phenomena exhibited by pulse coupled oscillators such as a collection of fireflies. © 2010 American Institute of Physics.

  16. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  17. Radiation phenomena of plasma waves, 1

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1978-06-01

    The fundamental radiation theories on radiation phenomena of plasma waves are presented. As the fundamental concepts of propagating waves, phase, group and ray velocities are explained, and phase velocity surface, group velocity surface, ray velocity surface and refractive index surface are considered. These concepts are important in anisotropic plasma. Fundamental equations for electron plasma waves in a fluid model and fundamental equations for ion plasma waves can be expressed with the above mentioned concepts. Kuehl derived the formulas for general radiation fields of electromagnetic and electrostatic waves which are radiated from an arbitrary current source. Fundamental equations for kinetic model are the Vlasov equation and Maxwell equations. By investigating electromagnetic radiation in cold anisotropic plasma, Kuehl found the important behavior that the fields radiated from a source become very large in certain directions for some ranges of plasma parameters. The fact is the so-called high frequency resonance cone. A fundamental formula for quasi-static radiation from an oscillating point source in warm anisotropic plasma includes the near field of electromagnetic mode and the field of electrostatic mode, which are radiated from the source. This paper presents the formula in a generalized form. (Kato, T.)

  18. Condensation phenomena in a turbine blade passage

    International Nuclear Information System (INIS)

    Skillings, S.A.

    1989-02-01

    The mechanisms associated with the formation and growth of water droplets in the large low-pressure (LP) turbines used for electrical power generation are poorly understood and recent measurements have indicated that an unusually high loss is associated with the initial nucleation of these droplets. In order to gain an insight into the phenomena which arise in the turbine situation, some experiments were performed to investigate the behaviour of condensing steam flows in a blade passage. This study has revealed the fundamental significance of droplet nucleation in modifying the single-phase flow structure and results are presented which show the change in shock wave pattern when inlet superheat and outlet Mach number are varied. The trailing-edge shock wave structure appears considerably more robust towards variation of inlet superheat than purely one-dimensional considerations may suggest and the inadequacies of adopting a one-dimensional theory to analyse multi-dimensional condensing flows are demonstrated. Over a certain range of outlet Mach numbers an oscillating shock wave will establish in the throat region of the blade passage and this has been shown to interact strongly with droplet nucleation, resulting in a considerably increased mean droplet size. The possible implications of these results for turbine performance are also discussed. (author)

  19. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  20. Discovery potential for new phenomena

    International Nuclear Information System (INIS)

    Godfrey, S.; Price, L.E.

    1997-03-01

    The authors examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. The authors first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. They then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales

  1. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  2. Measuring and characterizing beat phenomena with a smartphone

    Science.gov (United States)

    Osorio, M.; Pereyra, C. J.; Gau, D. L.; Laguarda, A.

    2018-03-01

    Nowadays, smartphones are in everyone’s life. Apart from being excellent tools for work and communication, they can also be used to perform several measurements of simple physical magnitudes, serving as a mobile and inexpensive laboratory, ideal for use physics lectures in high schools or universities. In this article, we use a smartphone to analyse the acoustic beat phenomena by using a simple experimental setup, which can complement lessons in the classroom. The beats were created by the superposition of the waves generated by two tuning forks, with their natural frequencies previously characterized using different applications. After the characterization, we recorded the beats and analysed the oscillations in time and frequency.

  3. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    Science.gov (United States)

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  4. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator

    International Nuclear Information System (INIS)

    Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.

    2004-01-01

    Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed

  5. Analyzing Elevator Oscillation with the Smartphone Acceleration Sensors

    Science.gov (United States)

    Kuhn, Jochen; Vogt, Patrik; Müller, Andreas

    2014-01-01

    It has often been reported in this column that smartphones are very suitable tools for exploring the physical properties of everyday phenomena. A very good example of this is an elevator ride. In addition to the acceleration processes, oscillations of the cabin are interesting. The present work responds to the second aspect.

  6. ENSO Simulation in CGCMs and the Associated Errors in Atmospheric Response

    International Nuclear Information System (INIS)

    AchutaRao, K.; Sperber, K.R.

    2000-01-01

    Tropical Pacific variability, and specifically the simulation of ENSO in coupled ocean-atmosphere general circulation models (CGCMs) has previously been assessed in many studies (McCreary and Anderson[1991], Neelin et al.[1992], Mechoso et al.[1995], Latif et al.[2000], and Davey et al.[2000]). These studies have concentrated on SST variations in the tropical Pacific, and discussions of the atmospheric response have been limited to east-west movements of the convergence zone. In this paper we discuss the large-scale atmospheric response to simulated ENSO events. Control simulations from 17 global CGCMs from CMIP (Meehl et al.[2000]) are studied. The web site http:// www-pcmdi.llnl.gov/cmip/modeldoc provides documentation of the configurations of the models

  7. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  8. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  9. Coral based-ENSO/IOD related climate variability in Indonesia: a review

    Science.gov (United States)

    Yudawati Cahyarini, Sri; Henrizan, Marfasran

    2018-02-01

    Indonesia is located in the prominent site to study climate variability as it lies between Pacific and Indian Ocean. It has consequences to the regional climate in Indonesia that its climate variability is influenced by the climate events in the Pacific oceans (e.g. ENSO) and in the Indian ocean (e.g. IOD), and monsoon as well as Indonesian Throughflow (ITF). Northwestern monsoon causes rainfall in the region of Indonesia, while reversely Southwestern monsoon causes dry season around Indonesia. The ENSO warm phase called El Nino causes several droughts in Indonesian region, reversely the La Nina causes flooding in some regions in Indonesia. However, the impact of ENSO in Indonesia is different from one place to the others. Having better understanding on the climate phenomenon and its impact to the region requires long time series climate data. Paleoclimate study which provides climate data back into hundreds to thousands even to million years overcome this requirement. Coral Sr/Ca can provide information on past sea surface temperature (SST) and paired Sr/Ca and δ18O may be used to reconstruct variations in the precipitation balance (salinity) at monthly to annual interannual resolution. Several climate studies based on coral geochemical records in Indonesia show that coral Sr/Ca and δ18O from Indonesian records SST and salinity respectively. Coral Sr/Ca from inshore Seribu islands complex shows more air temperature rather than SST. Modern coral from Timor shows the impact of ENSO and IOD to the saliniy and SST is different at Timor sea. This result should be taken into account when interpreting Paleoclimate records over Indonesia. Timor coral also shows more pronounced low frequency SST variability compared to the SST reanalysis (model). The longer data of low frequency variability will improve the understanding of warming trend in this climatically important region.

  10. Corporate social responsibility as a business strategy: Stora Enso-WWF partnership project

    OpenAIRE

    Tysiachniouk, M.S.

    2009-01-01

    The paper analyzes the strategic partnership between transnational corporation Stora-Enso and international nongovernmental organization NGO WWF as a business strategy that helps the company to adopt its business to the turbulent environment of the economy in transition. In this paper I draw from the theory of institutional sociology to explain complex interaction between transnational actors and actors in localities that jointly form a governance generating network in order to implement the ...

  11. Oceanic Channel of the IOD-ENSO teleconnection over the Indo-Pacific Ocean

    Science.gov (United States)

    Yuan, Dongliang; Wang, Jing; Zhao, Xia; Zhou, Hui; Xu, Tengfei; Xu, Peng

    2017-04-01

    The lag correlations of observations and model simulated data that participate the Coupled Model Intercomparison Project phase-5 (CMIP5) are used to study the precursory teleconnection between the Indian Ocean Dipole (IOD) and the Pacific ENSO one year later through the Indonesian seas. The results suggest that Indonesian Throughflow (ITF) play an important role in the IOD-ENSO teleconnection. Numerical simulations using a hierarchy of ocean models and climate coupled models have shown that the interannual sea level depressions in the southeastern Indian Ocean during IOD force enhanced ITF to transport warm water of the Pacific warm pool to the Indian Ocean, producing cold subsurface temperature anomalies, which propagate to the eastern equatorial Pacific and induce significant coupled ocean-atmosphere evolution. The teleconnection is found to have decadal variability. Similar decadal variability has also been identified in the historical simulations of the CMIP5 models. The dynamics of the inter-basin teleconnection during the positive phases of the decadal variability are diagnosed to be the interannual variations of the ITF associated with the Indian Ocean Dipole (IOD). During the negative phases, the thermocline in the eastern equatorial Pacific is anomalously deeper so that the sea surface temperature anomalies in the cold tongue are not sensitive to the thermocline depth changes. The IOD-ENSO teleconnection is found not affected significantly by the anthropogenic forcing.

  12. Do our reconstructions of ENSO have too much low-frequency variability?

    Science.gov (United States)

    Loope, G. R.; Overpeck, J. T.

    2017-12-01

    Reconstructing the spectrum of Pacific SST variability has proven to be difficult both because of complications with proxy systems such as tree rings and the relatively small number of records from the tropical Pacific. We show that the small number of long coral δ18O and Sr/Ca records has caused a bias towards having too much low-frequency variability in PCR, CPS, and RegEM reconstructions of Pacific variability. This occurs because the individual coral records used in the reconstructions have redder spectra than the shared signal (e.g. ENSO). This causes some of the unshared, low-frequency signal from local climate, salinity and possibly coral biology to bleed into the reconstruction. With enough chronologies in a reconstruction, this unshared noise cancels out but the problem is exacerbated in our longest reconstructions where fewer records are available. Coral proxies tend to have more low-frequency variability than SST observations so this problem is smaller but can still be seen in pseudoproxy experiments using observations and reanalysis data. The identification of this low-frequency bias in coral reconstructions helps bring the spectra of ENSO reconstructions back into line with both models and observations. Although our analysis is mostly constrained to the 20th century due to lack of sufficient data, we expect that as more long chronologies are developed, the low-frequency signal in ENSO reconstructions will be greatly reduced.

  13. Characterization of extreme flood and drought events in Singapore and investigation of their relationships with ENSO

    Science.gov (United States)

    Li, Xin; Babovic, Vladan

    2016-04-01

    Flood and drought are hydrologic extreme events that have significant impact on human and natural systems. Characterization of flood and drought in terms of their start, duration and strength, and investigation of the impact of natural climate variability (i.e., ENSO) and anthropogenic climate change on them can help decision makers to facilitate adaptions to mitigate potential enormous economic costs. To date, numerous studies in this area have been conducted, however, they are primarily focused on extra-tropical regions. Therefore, this study presented a detailed framework to characterize flood and drought events in a tropical urban city-state (i.e., Singapore), based on daily data from 26 precipitation stations. Flood and drought events are extracted from standardized precipitation anomalies from monthly to seasonal time scales. Frequency, duration and magnitude of flood and drought at all the stations are analyzed based on crossing theory. In addition, spatial variation of flood and drought characteristics in Singapore is investigated using ordinary kriging method. Lastly, the impact of ENSO condition on flood and drought characteristics is analyzed using regional regression method. The results show that Singapore can be prone to extreme flood and drought events at both monthly and seasonal time scales. ENSO has significant influence on flood and drought characteristics in Singapore, but mainly during the South West Monsoon season. During the El Niño phase, drought can become more extreme. The results have implications for water management practices in Singapore.

  14. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  15. A Conspiracy of Oscillators

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2008-01-01

    We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....

  16. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  17. Density wave oscillations of a boiling natural circulation loop induced by flashing

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Masahiro; Inada, Fumio; Yasuo, Akira [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1995-09-01

    Experiments are conducted to investigate two-phase flow instabilities in a boiling natural circulation loop with a chimney due to flashing in the chimney at lower pressure. The test facility used in this experiment is designed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Stability maps in reference to the heat flux, the inlet subcooling, the system pressure are presented. This instability is suggested to be density wave oscillations due to flashing in the chimney, and the differences from other phenomena such as flow pattern oscillations and geysering phenomena are discussed by investigating the dynamic characteristics, the oscillation period, and the transient flow pattern.

  18. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  19. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  20. Multiparticle phenomena and Landau damping

    International Nuclear Information System (INIS)

    Talman, R.

    1987-01-01

    The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance

  1. Impact of Temperature Anomalies Associated with El Niño-Southern Oscillation and Indian Ocean Dipole Events on Wine Grape Maturity in Australia

    Science.gov (United States)

    Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I.

    2016-12-01

    Annual grapevine growth and development are intimately linked with growing season weather conditions. Shifts in circulation patterns resulting from atmospheric teleconnections to changes in sea surface temperature (SST) anomalies associated with El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events can alter seasonal weather across Australia. Both ENSO and IOD events tend to peak in austral spring, when vine and berry development is especially critical and susceptible to damage. To investigate the impacts of ENSO and IOD events on the Australian wine grape growing sector, historical gridded climate data and annual vineyard grape maturity data from a variety of wine growing regions was collected and analysed. The greatest impacts on grape maturity were found when La Niña and IOD positive events occurred in tandem. During these events, significantly dry and hot conditions persist throughout the wine grape growing season, suggesting that the IOD overrides the ENSO signal. These conditions lead to a rapid, compressed growing season, which can cause logistical complications during harvest and impact grape and wine quality. Warming of equatorial SSTs in the Indian Ocean are likely to enhance the amplitude of IOD positive events, which has serious implications for wine grape production in Australia, highlighting the importance of this research.

  2. Luminous Phenomena - A Scientific Investigation of Anomalous Luminous Atmospheric Phenomena

    Science.gov (United States)

    Teodorani, M.

    2003-12-01

    Anomalous atmospheric luminous phenomena reoccur in several locations of Earth, in the form of multi-color light balls characterized by large dimensions, erratic motion, long duration and a correlated electromagnetic field. The author (an astrophysicist) of this book, which is organized as a selection of some of his technical and popularizing papers and seminars, describes and discusses all the efforts that have been done in 10 years, through several missions and a massive data analysis, in order to obtain some scientific explanation of this kind of anomalies, in particular the Hessdalen anomaly in Norway. The following topics are treated in the book: a) geographic archive of the areas of Earth where such phenomena are known to reoccur most often; b) observational techniques of astrophysical kind that have been used to acquire the data; c) main scientific results obtained so far; d) physical interpretation and natural hypothesis vs. ETV hypothesis; e) historical and chronological issues; f) the importance to brindle new energy sources; g) the importance to keep distance from any kind of "ufology". An unpublished chapter is entirely devoted to a detailed scientific investigation project of light phenomena reoccurring on the Ontario lake; the chosen new-generation multi-wavelength sensing instrumentation that is planned to be used in future missions in that specific area, is described together with scientific rationale and planned procedures. The main results, which were obtained in other areas of the world, such as the Arizona desert, USA and the Sibillini Mountains, Italy, are also briefly mentioned. One chapter is entirely dedicated to the presentation of extensive abstracts of technical papers by the author concerning this specific subject. The book is accompanied with a rich source of bibliographic references.

  3. Asymptotic representation of relaxation oscillations in lasers

    CERN Document Server

    Grigorieva, Elena V

    2017-01-01

    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  4. Excitation of solar and stellar oscillations

    International Nuclear Information System (INIS)

    Baudin, Frederic

    2009-01-01

    In this report for an Accreditation to Supervise Research (HDR), and after an introduction which outlines the potential of helio-seismology, the author addresses the problem of excitation and amplitude of stellar oscillations with respect to their most important aspects, i.e. the theoretical framework of the present understanding of excitation mechanisms, and instrumental influences on measurements which are used to assess excitation rates, the difficulty to perform these measurements, and their analysis in some various cases. Thus, the author addresses excitation mechanisms of stellar oscillation (stochastic excitation, opacity- related excitation, and other excitation mechanisms), the excitation of solar modes (observation and theoretical predictions, influence of magnetic phenomena, solar g modes), and the excitation of modes in other stars (solar-type pulsators, red giants, and not so conventional pulsators such as HD180642 and Be stars like HD49330)

  5. Coherent amplification and pulsar phenomena

    International Nuclear Information System (INIS)

    Casperson, L.W.

    1977-01-01

    A modification of the rotating-star model has been developed to interpret the periodic energy bursts from pulsars. This new configuration involves theta-directed oscillation modes in the stellar atmosphere or magnetosphere, and most aspects of the typical pulse characteristics are well accounted for. Gain is provided by resonant interactions with particles trapped in the stellar magnetic field. The most significant feature is the fact that highly directional beaming of the output energy results as a natural consequence of coherence between the radiation fields emerging from various locations about the pulsar; and a localized radiation origin is not required. (Auth.)

  6. Chaplygin sleigh with periodically oscillating internal mass

    Science.gov (United States)

    Bizyaev, Ivan A.; Borisov, Alexey V.; Kuznetsov, Sergey P.

    2017-09-01

    We consider the movement of Chaplygin sleigh on a plane that is a solid body with imposed nonholonomic constraint, which excludes the possibility of motions transversal to the constraint element (“knife-edge”), and complement the model with an attached mass, periodically oscillating relatively to the main platform of the sleigh. Numerical simulations indicate the occurrence of either unrestricted acceleration of the sleigh, or motions with bounded velocities and momenta, depending on parameters. We note the presence of phenomena characteristic to nonholonomic systems with complex dynamics; in particular, attractors occur responsible for chaotic motions. In addition, quasiperiodic regimes take place similar to those observed in conservative nonlinear dynamics.

  7. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  8. Dissipative neutrino oscillations in randomly fluctuating matter

    International Nuclear Information System (INIS)

    Benatti, F.; Floreanini, R.

    2005-01-01

    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis

  9. Dissipative neutrino oscillations in randomly fluctuating matter

    Science.gov (United States)

    Benatti, F.; Floreanini, R.

    2005-01-01

    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis.

  10. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    Science.gov (United States)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence

  11. Observation of Quasichanneling Oscillations

    International Nuclear Information System (INIS)

    Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.

    2017-01-01

    Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.

  12. LSND neutrino oscillation results

    International Nuclear Information System (INIS)

    Louis, W.C.

    1996-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations

  13. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  14. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  15. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  16. Dynamics of chiral oscillations: a comparative analysis with spin flipping

    International Nuclear Information System (INIS)

    Bernardini, A E

    2006-01-01

    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum

  17. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  18. Phenomena and Diosignes of Aratous

    Science.gov (United States)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  19. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  20. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  1. Nonlinear phenomena in general relativity

    Science.gov (United States)

    Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza

    2018-04-01

    The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.

  2. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  3. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  4. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  5. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  6. Foot anthropometry and morphology phenomena.

    Science.gov (United States)

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  7. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  8. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  9. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  10. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  11. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  12. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  13. Oscillators and operational amplifiers

    OpenAIRE

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.

  14. Chaotic solar oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)

    1981-09-01

    A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.

  15. Rotational atmospheric circulation during North Atlantic-European winter: the influence of ENSO

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [UCM, Departamento de Geofisica y Meteorologia, Madrid (Spain); Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Rodriguez-Fonseca, B.; Zurita-Gotor, P.; Camara, A. de la [UCM, Departamento de Geofisica y Meteorologia, Madrid (Spain); Blade, I. [UB, Departament d' Astronomia i Meteorologia, Barcelona (Spain)

    2011-11-15

    The dominant variability modes of the North Atlantic-European rotational flow are examined by applying a principal component analysis (PCA/EOF) to the 200 hPa streamfunction mid-winter anomalies (Jan-Feb monthly means). The results reveal that, when this norm is used, the leading mode (EOF1) does not correspond to the traditional North Atlantic Oscillation (NAO, which appears in our analysis as the second leading mode, EOF2) but is the local manifestation of the leading hemispheric streamfunction EOF. The regression of this regional mode onto the global SST field exhibits a clear El Nino signature, with no signal over the Atlantic, while the associated upper height anomalies resemble the Tropical/Northern Hemisphere (TNH) pattern. East of North America, this TNH-like wavetrain produces a meridional dipole-like pattern at lower levels. Although in some ways this pattern resembles the NAO (EOF2), the dynamics of these two modes are very different in that only EOF2 is associated with a latitudinal shift of the North Atlantic stormtrack. Thus, the choice of the streamfunction norm in the EOF analysis allows the separation of two different phenomena that can produce similar dipolar surface pressure anomalies over the North Atlantic but that have different impact on European climate. These two modes also differ on their contribution to variability at lower levels: while NAO-EOF2 is mostly confined to the North Atlantic, TNH-EOF1 has a more annular, global character. At upper levels NAO-EOF2 also produces a global pattern but with no annular structure, reminiscent of the ''circumglobal'' teleconnection. (orig.)

  16. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  17. Vibration phenomena in large scale pressure suppression tests

    International Nuclear Information System (INIS)

    Aust, E.; Boettcher, G.; Kolb, M.; Sattler, P.; Vollbrandt, J.

    1982-01-01

    Structure und fluid vibration phenomena (acceleration, strain; pressure, level) were observed during blow-down experiments simulating a LOCA in the GKSS full scale multivent pressure suppression test facility. The paper describes first the source related excitations during the two regimes of condensation oscillation and of chugging, and deals then with the response vibrations of the facility's wetwell. Modal analyses of the wetwell were run using excitation by hammer and by shaker in order to separate phenomena that are particular to the GKSS facility from more general ones, i.e. phenomena specific to the fluid related parameters of blowdown and to the geometry of the vent pipes only. The lowest periodicities at about 12 and 16 Hz stem from the vent acoustics. A frequency of about 36 to 38 Hz prominent during chugging seems to result from the lowest local models of two of the wetwell's walls when coupled by the wetwell pool. Further peaks found during blowdown in the spectra of signals at higher frequencies correspond to global vibration modes of the wetwell. (orig.)

  18. Modeling of termokinetic oscillations at partial oxidation of methane

    Science.gov (United States)

    Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving

  19. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  20. Echo phenomena in a plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.

    1983-01-01

    The mechanism of echo phenomenon in different plasma media: laboratory and cosmic plasma, metals and semiconductors is analyzed to get a more comprehensive idea on collective processes in a plasma and for practical applications in radiophysics and plasma diagnostics. The echo phenomenon permitted to confirm a reversible nature of the Landau damping, to prove the fact that the information on perturbation is conserved in a plasma (as non-damping oscillations of the distribution function) even after disappearing of the macroscopic field. The dependence of the diffusion coefficient on the velocity is measured, microturbulences in a plasma are investigated. New ways of the plasma wave conversion are suggested, as well as ''lightning'' of super-critical plasma layers and regions of plasma non-transparency. Prospective advantages of using echo for studying the mechanisms of charged particle interaction with the surface bounding a plasma are revealed