Sample records for orthopaedic tissue healing

  1. Multilayer scaffolds in orthopaedic tissue engineering.

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A


    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  2. Engineering complex orthopaedic tissues via strategic biomimicry.

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H


    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  3. Engineering Complex Orthopaedic Tissues via Strategic Biomimicry

    Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.


    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  4. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben


    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  5. Functional tissue engineering of ligament healing

    Hsu Shan-Ling


    Full Text Available Abstract Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL and medial collateral ligament (MCL of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally.

  6. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering.

    Farraro, Kathryn F; Kim, Kwang E; Woo, Savio L-Y; Flowers, Jonquil R; McCullough, Matthew B


    In recent years, there has been a surge of interest in magnesium (Mg) and its alloys as biomaterials for orthopaedic applications, as they possess desirable mechanical properties, good biocompatibility, and biodegradability. Also shown to be osteoinductive, Mg-based materials could be particularly advantageous in functional tissue engineering to improve healing and serve as scaffolds for delivery of drugs, cells, and cytokines. In this paper, we will present two examples of Mg-based orthopaedic devices: an interference screw to accelerate ACL graft healing and a ring to aid in the healing of an injured ACL. In vitro tests using a robotic/UFS testing system showed that both devices could restore function of the goat stifle joint. Under a 67-N anterior tibial load, both the ACL graft fixed with the Mg-based interference screw and the Mg-based ring-repaired ACL could restore anterior tibial translation (ATT) to within 2mm and 5mm, respectively, of the intact joint at 30°, 60°, and 90° of flexion. In-situ forces in the replacement graft and Mg-based ring-repaired ACL were also similar to those of the intact ACL. Further, early in vivo data using the Mg-based interference screw showed that after 12 weeks, it was non-toxic and the joint stability and graft function reached similar levels as published data. Following these positive results, we will move forward in incorporating bioactive molecules and ECM bioscaffolds to these Mg-based biomaterials to test their potential for functional tissue engineering of musculoskeletal and other tissues. © 2013 Published by Elsevier Ltd.

  7. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols.

    Madry, H; Alini, M; Stoddart, M J; Evans, C; Miclau, T; Steiner, S


    Research in orthopaedic tissue engineering has intensified over the last decade and new protocols continue to emerge. The clinical translation of these new applications, however, remains associated with a number of obstacles. This report highlights the major issues that impede the clinical translation of advanced tissue engineering concepts, discusses strategies to overcome these barriers, and examines the need to increase incentives for translational strategies. The statements are based on presentations and discussions held at the AO Foundation-sponsored symposium "Where Science meets Clinics 2013" held at the Congress Center in Davos, Switzerland, in September, 2013. The event organisers convened a diverse group of over one hundred stakeholders involved in clinical translation of orthopaedic tissue engineering, including scientists, clinicians, healthcare industry professionals and regulatory agency representatives. A major point that emerged from the discussions was that there continues to be a critical need for early trans-disciplinary communication and collaboration in the development and execution of research approaches. Equally importantly was the need to address the shortage of sustained funding programs for multidisciplinary teams conducting translational research. Such detailed discussions between experts contribute towards the development of a roadmap to more successfully advance the clinical translation of novel tissue engineering concepts and ultimately improve patient care in orthopaedic and trauma surgery.

  8. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols

    H Madry


    Full Text Available Research in orthopaedic tissue engineering has intensified over the last decade and new protocols continue to emerge. The clinical translation of these new applications, however, remains associated with a number of obstacles. This report highlights the major issues that impede the clinical translation of advanced tissue engineering concepts, discusses strategies to overcome these barriers, and examines the need to increase incentives for translational strategies. The statements are based on presentations and discussions held at the AO Foundation-sponsored symposium "Where Science meets Clinics 2013" held at the Congress Center in Davos, Switzerland, in September, 2013. The event organisers convened a diverse group of over one hundred stakeholders involved in clinical translation of orthopaedic tissue engineering, including scientists, clinicians, healthcare industry professionals and regulatory agency representatives. A major point that emerged from the discussions was that there continues to be a critical need for early trans-disciplinary communication and collaboration in the development and execution of research approaches. Equally importantly was the need to address the shortage of sustained funding programs for multidisciplinary teams conducting translational research. Such detailed discussions between experts contribute towards the development of a roadmap to more successfully advance the clinical translation of novel tissue engineering concepts and ultimately improve patient care in orthopaedic and trauma surgery.

  9. Tissue transglutaminase in normal and abnormal wound healing: review article

    Verderio, EAM; Johnson, T; Griffin, M


    A complex series of events involving inflammation, cell migration and proliferation, ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the tissue response to injury. Wound healing involves the dynamic interactions of multiple cells types with components of the extracellular matrix (ECM) and growth factors. Impaired wound healing as a consequence of aging, injury or disease may lead to serious disabilities and poor quality of life. Abnormal wound healing may al...

  10. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C


    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  11. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Anna Meiliana


    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  12. Advances and Perspectives on Tissue Repair and Healing

    Pinheiro, Antonio L. B.; Marques, Aparecida M. C.; de Sousa, Ana Paula C.; Aciole, Jouber M. S.; Soares, Luiz G. P.


    Wound healing involves local and systemic responses that reflect the etiology of the lesion, type of tissue, systemic condition and others. Despite being essentially the same for different wounds, the pattern of healing may change due to intrinsic and/or extrinsic factors. The type of tissue has also to be considered. Several therapeutic approaches have been used to improve healing including phototherapies such as Laser, LEDs and Lamps. Their effects on soft and mineralized tissues are well reported. The choice of appropriated parameters is essential for the results of the treatment and includes wavelength, power density, energy, duration and frequency of application and others. We studied the effects of different types of light on the healing of both soft and mineralized tissues using different models. We found that the use of Laser and polarized light are effective on improving the healing of diabetic and undernourished animals. We also found that Laser light is capable of improving the healing of drug-induced impairment and on increasing the survival rate of flaps on both diabetic and non-diabetic animals. We have also studied and shown the influence of the laser parameters on the healing of surgical and laser wounds. Lately we verified the positive effect of LEDs on healing. We used Laser/LED light for improving bone healing in conditions such as in dental implants, autologous grafts, biomaterials and fractures. From these reports and our own experience we have no doubt whatsoever that the use of phototherapies, carried out with appropriate parameters, promotes quicker tissue repair.

  13. Soft tissue wound healing around teeth and dental implants.

    Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D


    To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Hand transplantation and vascularized composite tissue allografts in orthopaedics and traumatology.

    Schuind, F


    Composite tissue allograft (CTA) is defined as heterologous transplantation of a complex comprising skin and subcutaneous, neurovascular and mesenchymal tissue. Such techniques allow complex reconstruction using matched tissue, without donor site morbidity. The potential indications in orthopaedics-traumatology could in the future be more frequent than the present indications of heart, lung, liver, kidney and pancreas transplantation. International clinical experience clearly demonstrates the feasibility of CTA, both surgically and immunologically. However, immunosuppression remains indispensable, exposing the patient to risks that are not acceptable for purely functional surgery, except in very particular indications. The main hope for the future lies in induction of graft-specific tolerance. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  15. Wound healing potential of adipose tissue stem cell extract.

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho


    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. FOXO1 expression in keratinocytes promotes connective tissue healing

    Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.


    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813

  17. Soft tissue healing in alveolar socket preservation technique: histologic evaluations.

    Pellegrini, Gaia; Rasperini, Giulio; Obot, Gregory; Farronato, Davide; Dellavia, Claudia


    After tooth extraction, 14 alveolar sockets were grafted with porous bovine bone mineral particles and covered with non-cross-linked collagen membrane (test group), and 14 alveolar sockets were left uncovered. At 5 and 12 weeks, microvascular density (MVD), collagen content, and amount of lymphocytes (Lym) T and B were analyzed in soft tissue. At 5 weeks, MVD was significantly lower and Lym T was significantly higher in tests than in controls (P healing process of the soft tissue.

  18. Axolotl cells and tissues enhances cutaneous wound healing in mice

    DEMIRCAN, Turan; KESKIN, Ilknur; GUNAL, Yalcin; ILHAN, Ayse Elif; KOLBASI, Bircan; OZTURK, Gurkan


    Adult mammalian skin wound repair is defective due to loss of the regulation in balancing the complete epithelial regeneration and excessive connective tissue production, and this repair process commonly results in scar tissue formation. However, unlike mammals, adult salamanders repair the wounds by regeneration compared to scarring. To elucidate the healing capability of a salamander, Axolotl, in a different species, here we addressed this question by treating the wounds in mice with Axolot...

  19. Wound healing potential of adipose tissue stem cell extract

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho


    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.

  20. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results

    Isaksson, H.E.; Donkelaar, van C.C.; Huiskes, R.; Ito, K.


    Several mechanoregulation algorithms proposed to control tissue differentiation during bone healing have been shown to accurately predict temporal and spatial tissue distributions during normal fracture healing. As these algorithms are different in nature and biophysical parameters, it raises the

  1. Tobacco smoking and surgical healing of oral tissues: A review

    Balaji S


    Full Text Available It is believed that the crew of Columbus had introduced tobacco from the ′American India′ to the rest of the world, and tobacco was attributed as a medicinal plant. It was often used to avert hunger during long hours of work. But in reality, tobacco causes various ill effects including pre-malignant lesions and cancers. This article aims at reviewing the literature pertaining to the effect of tobacco smoking upon the outcome of various surgical procedures performed in the oral cavity. Tobacco affects postoperative wound healing following surgical and nonsurgical tooth extractions, routine maxillofacial surgeries, implants, and periodontal therapies. In an experimental study, bone regeneration after distraction osteogenesis was found to be negatively affected by smoking. Thus, tobacco, a peripheral vasoconstrictor, along with its products like nicotine increases platelet adhesiveness, raises the risk of microvascular occlusion, and causes tissue ischemia. Smoking tobacco is also associated with catecholamines release resulting in vasoconstriction and decreased tissue perfusion. Smoking is believed to suppress the innate and host immune responses, affecting the function of neutrophils - the prime line of defense against infection. Thus, the association between smoking and delayed healing of oral tissues following surgeries is evident. Dental surgeons should stress on the ill effects of tobacco upon the routine postoperative healing to smoker patients and should aid them to become tobacco-free.


    Fırat SELVİ


    Full Text Available Purpose: The purpose of this study was to investigate the healing differences in between four different widely used suture materials in the oral surgery practice, including silk (Perma- Hand; Ethicon, INC., Somerville, NJ, USA, polypropylene (Prolene; Ethicon, INC., Somerville, NJ, USA, coated polyglactin 910 (Ethicon, INC., Somerville, NJ, USA. and polyglecaprone 25 (Ethicon, INC., Somerville, NJ, USA . Materials and Methods: 20 male rats were randomly allocated into two groups depending on their sacrification days (post-operative 1st and the 7th days. Four longitudinal incision wounds, each 1cm in size, were created on the dorsum of each animal which were then primarily closed with four different types of sutures. Results: The effects of these suture materials on soft tissue healing were compared histopathologically, by means of density of the cells, necrosis, fibrosis, foreign body reaction, the presence of cells of acute and chronic infection. No statistically significant difference was observed between the groups regarding the density of the cells, necrosis, fibrosis, foreign body reaction, and the presence of the cells of acute & chronic infections. Of note, propylene showed slightly less tissue reaction among the other materials. Conclusion: The results of our study showed that there is no only one ideal suture material for surgical practice. The factors related to the patient, the type of the surgery and the quality of the tissue are important to decide an appropriate suture material.

  3. Sensitivity of tissue differentiation and bone healing predictions to tissue properties

    Isaksson, H.E.; Donkelaar, van C.C.; Ito, K.


    Computational models are employed as tools to investigate possible mechano-regulation pathways for tissue differentiation and bone healing. However, current models do not account for the uncertainty in input parameters, and often include assumptions about parameter values that are not yet

  4. Open Tibia Shaft Fractures and Soft-Tissue Coverage: The Effects of Management by an Orthopaedic Microsurgical Team.

    VandenBerg, James; Osei, Daniel; Boyer, Martin I; Gardner, Michael J; Ricci, William M; Spraggs-Hughes, Amanda; McAndrew, Christopher M


    To compare the timing of soft-tissue (flap) coverage and occurrence of complications before and after the establishment of an integrated orthopaedic trauma/microsurgical team. Retrospective cohort study. A single level 1 trauma center. Twenty-eight subjects (13 pre- and 15 post-integration) with open tibia shaft fractures (OTA/AO 42A, 42B, and 42C) treated with flap coverage between January 2009 and March 2015. Flap coverage for open tibia shaft fractures treated before ("preintegration") and after ("postintegration") implementation of an integrated orthopaedic trauma/microsurgical team. Time from index injury to flap coverage. The unadjusted median time to coverage was 7 days (95% confidence interval, 5.9-8.1) preintegration, and 6 days (95% confidence interval, 4.6-7.4) postintegration (P = 0.48). For preintegration, 9 (69%) of the patients experienced complications, compared with 7 (47%) postintegration (P = 0.23). After formation of an integrated orthopaedic trauma/microsurgery team, we observed a 1-day decrease in median days to coverage from index injury. Complications overall were lowered in the postintegration group, although statistically insignificant. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  5. Tissue repair genes: the TiRe database and its implication for skin wound healing

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.


    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that ...

  6. An Osteoconductive, Osteoinductive, and Osteogenic Tissue-Engineered Product for Trauma and Orthopaedic Surgery: How Far Are We?

    Wasim S. Khan


    Full Text Available The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.

  7. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we?

    Khan, Wasim S; Rayan, Faizal; Dhinsa, Baljinder S; Marsh, David


    The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.

  8. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    Lu, Helen H.; Thomopoulos, Stavros


    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  9. Connective Tissue Characteristics around Healing Abutments of Different Geometries: New Methodological Technique under Circularly Polarized Light.

    Delgado-Ruiz, Rafael Arcesio; Calvo-Guirado, Jose Luis; Abboud, Marcus; Ramirez-Fernandez, Maria Piedad; Maté-Sánchez de Val, José Eduardo; Negri, Bruno; Gomez-Moreno, Gerardo; Markovic, Aleksa


    To describe contact, thickness, density, and orientation of connective tissue fibers around healing abutments of different geometries by means of a new method using coordinates. Following the bilateral extraction of mandibular premolars (P2, P3, and P4) from six fox hound dogs and a 2-month healing period, 36 titanium implants were inserted, onto which two groups of healing abutments of different geometry were screwed: Group A (concave abutments) and Group B (wider healing abutment). After 3 months the animals were sacrificed and samples extracted containing each implant and surrounding soft and hard tissues. Histological analysis was performed without decalcifying the samples by means of circularly polarized light under optical microscope and a system of vertical and horizontal coordinates across all the connective tissue in an area delimited by the implant/abutment, epithelium, and bone tissue. In no case had the connective tissue formed a connection to the healing abutment/implant in the internal zone; a space of 35 ± 10 μm separated the connective tissue fibers from the healing abutment surface. The total thickness of connective tissue in the horizontal direction was significantly greater in the medial zone in Group B than in Group A (p connective tissue thickness. © 2013 Wiley Periodicals, Inc.

  10. Dynamics of soft tissue healing at implants and teeth: a study in a dog model.

    Sukekava, Flávia; Pannuti, Claudio M; Lima, Luiz A; Tormena, Mariana; Araújo, Mauricio G


    The aim of this study was to describe and to compare some characteristics of the soft tissue healing process around teeth and implants after flap surgery. Five adult beagle dogs had their third and fourth lower premolars extracted. After 3 months, four implants per dog were placed on the healed alveolar ridge and allowed to heal non-submerged during 3 months. After 3 months, four regions characterized by one implant and one adjacent tooth were identified in each dog. One region was randomly selected and soft tissue ressective flap surgery was performed at its buccal aspect. The remaining three regions were randomly treated in an identical manner, and the dogs were sacrificed to provide biopsies representing healing intervals of 1, 2, 4, and 12 weeks. The biopsies were prepared for histological and morphological analyses. Morphometric and histometric analyses have shown that the gingival tissues surrounding teeth were completely healed after a 4-week interval. However, it took from 4 to 12 weeks for the peri-implant mucosa to heal completely. The healing process around teeth and implants follows a similar sequence of events. Nevertheless, the complete process of healing and maturation of the peri-implant tissues takes longer than around teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Effect of Ankaferd Blood Stopper on Early Bone Tissue Healing in ...

    Keywords: Ankaferd blood stopper, Wound healing, Mineralized bone tissue, Inflammatory cell infiltration ... protein network formation with blood cells covers the primary and .... bone repair and regeneration, antibiotics and antimicrobial ...

  12. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo


    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The effects of LIPUS on soft-tissue healing: a review of literature.

    Khanna, Anil; Nelmes, Richard T C; Gougoulias, Nikolaos; Maffulli, Nicola; Gray, Jim


    Ultrasound is widely used for imaging purposes and as an adjunct to physiotherapy. Low-intensity pulsed ultrasound (LIPUS), having removed the thermal component found at higher intensities, is used to improve bone healing. However, its potential role in soft-tissue healing is still under investigation. We searched on Medline using the keywords: low-intensity pulsed ultrasound, LIPUS and LIPUS and soft-tissue healing. Thirty-two suitable articles were identified. Research, mainly pre-clinical, so far has shown encouraging result, with LIPUS able to promote healing in various soft tissues such as cartilage, inter-vertebral disc, etc. The effect on the bone-tendon junction, however, is primarily on bone. The role of LIPUS in treating tendinopathies is questionable. Adequately powered human studies with standardisation of intensities and dosages of LIPUS for each target tissue are needed.

  14. The Role of 3D Modelling and Printing in Orthopaedic Tissue Engineering: A Review of the Current Literature.

    Shaunak, Shalin; Dhinsa, Baljinder S; Khan, Wasim S


    Orthopaedic surgery lends itself well to advances in technology. An area of interest and ongoing research is that of the production of scaffolds for use in trauma and elective surgery. 3D printing provides unprecedented accuracy in terms of micro- and macro-structure and geometry for scaffold production. It can also be utilised to construct scaffolds of a variety of different materials and more recently has allowed for the construction of bio-implants which recapitulate bone and cartilage tissue. This review seeks to look at the various methods of 3DP, the materials used, elements of functionality and design, as well as modifications to increase the biomechanics and bioactivity of 3DP scaffolds. Copyright© Bentham Science Publishers; For any queries, please email at

  15. Devising tissue ingrowth metrics: a contribution to the computational characterization of engineered soft tissue healing.

    Alves, Antoine; Attik, Nina; Bayon, Yves; Royet, Elodie; Wirth, Carine; Bourges, Xavier; Piat, Alexis; Dolmazon, Gaëlle; Clermont, Gaëlle; Boutrand, Jean-Pierre; Grosgogeat, Brigitte; Gritsch, Kerstin


    The paradigm shift brought about by the expansion of tissue engineering and regenerative medicine away from the use of biomaterials, currently questions the value of histopathologic methods in the evaluation of biological changes. To date, the available tools of evaluation are not fully consistent and satisfactory for these advanced therapies. We have developed a new, simple and inexpensive quantitative digital approach that provides key metrics for structural and compositional characterization of the regenerated tissues. For example, metrics provide the tissue ingrowth rate (TIR) which integrates two separate indicators; the cell ingrowth rate (CIR) and the total collagen content (TCC) as featured in the equation, TIR% = CIR% + TCC%. Moreover a subset of quantitative indicators describing the directional organization of the collagen (relating structure and mechanical function of tissues), the ratio of collagen I to collagen III (remodeling quality) and the optical anisotropy property of the collagen (maturity indicator) was automatically assessed as well. Using an image analyzer, all metrics were extracted from only two serial sections stained with either Feulgen & Rossenbeck (cell specific) or Picrosirius Red F3BA (collagen specific). To validate this new procedure, three-dimensional (3D) scaffolds were intraperitoneally implanted in healthy and in diabetic rats. It was hypothesized that quantitatively, the healing tissue would be significantly delayed and of poor quality in diabetic rats in comparison to healthy rats. In addition, a chemically modified 3D scaffold was similarly implanted in a third group of healthy rats with the assumption that modulation of the ingrown tissue would be quantitatively present in comparison to the 3D scaffold-healthy group. After 21 days of implantation, both hypotheses were verified by use of this novel computerized approach. When the two methods were run in parallel, the quantitative results revealed fine details and

  16. Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing.

    Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S


    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.

  17. Nanotechnology and bone healing.

    Harvey, Edward J; Henderson, Janet E; Vengallatore, Srikar T


    Nanotechnology and its attendant techniques have yet to make a significant impact on the science of bone healing. However, the potential benefits are immediately obvious with the result that hundreds of researchers and firms are performing the basic research needed to mature this nascent, yet soon to be fruitful niche. Together with genomics and proteomics, and combined with tissue engineering, this is the new face of orthopaedic technology. The concepts that orthopaedic surgeons recognize are fabrication processes that have resulted in porous implant substrates as bone defect augmentation and medication-carrier devices. However, there are dozens of applications in orthopaedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from 10s of nanometers to a few micrometers. Examples include scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. We review the basic science, clinical implications, and early applications of the nanotechnology revolution and emphasize the rich possibilities that exist at the crossover region between micro- and nanotechnology for developing new treatments for bone healing.

  18. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E


    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at

  19. The connection between cellular mechanoregulation and tissue patterns during bone healing.

    Repp, Felix; Vetter, Andreas; Duda, Georg N; Weinkamer, Richard


    The formation of different tissues in the callus during secondary bone healing is at least partly influenced by mechanical stimuli. We use computer simulations to test the consequences of different hypotheses of the mechanoregulation at the cellular level on the patterns of tissues formed during healing. The computational study is based on an experiment on sheep, where after a tibial osteotomy, histological sections were harvested at different time points. In the simulations, we used a recently proposed basic phenomenological model, which allows ossification to occur either via endochondral or intramembranous ossification, but tries otherwise to employ a minimal number of simulation parameters. The model was extended to consider also the possibility of bone resorption and consequently allowing a description of the full healing progression till the restoration of the cortex. Specifically, we investigated how three changes in the mechanoregulation influence the resulting tissue patterns: (1) a time delay between stimulation of the cell and the formation of the tissue, (2) a variable mechanosensitivity of the cells, and (3) an independence of long time intervals of the soft tissue maturation from the mechanical stimulus. For all three scenarios, our simulations do not show qualitative differences in the time development of the tissue patterns. Largest differences were observed in the intermediate phases of healing in the amount and location of the cartilage. Interestingly, the course of healing was virtually unaltered in case of scenario (3) where tissue maturation proceeded independent of mechanical stimulation.

  20. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues


    healing process. We selected fibrin and hydrogel as delivery vehicles for our test. The rationale is that fibrin, which is a natural biopolymer of blood...E.U. Alt, IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin- chitosan scaffold enhance wound repair in a murine soft

  1. Defective Wound-healing in Aging Gingival Tissue.

    Cáceres, M; Oyarzun, A; Smith, P C


    Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process. © International & American Associations for Dental Research.

  2. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering.

    Rahmani Del Bakhshayesh, Azizeh; Annabi, Nasim; Khalilov, Rovshan; Akbarzadeh, Abolfazl; Samiei, Mohammad; Alizadeh, Effat; Alizadeh-Ghodsi, Mohammadreza; Davaran, Soodabeh; Montaseri, Azadeh


    The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.

  3. Minced Umbilical Cord Fragments as a Source of Cells for Orthopaedic Tissue Engineering: An In Vitro Study

    A. Marmotti


    Full Text Available A promising approach for musculoskeletal repair and regeneration is mesenchymal-stem-cell- (MSC-based tissue engineering. The aim of the study was to apply a simple protocol based on mincing the umbilical cord (UC, without removing any blood vessels or using any enzymatic digestion, to rapidly obtain an adequate number of multipotent UC-MSCs. We obtained, at passage 1 (P1, a mean value of 4,2×106 cells (SD 0,4 from each UC. At immunophenotypic characterization, cells were positive for CD73, CD90, CD105, CD44, CD29, and HLA-I and negative for CD34 and HLA-class II, with a subpopulation negative for both HLA-I and HLA-II. Newborn origin and multilineage potential toward bone, fat, cartilage, and muscle was demonstrated. Telomere length was similar to that of bone-marrow (BM MSCs from young donors. The results suggest that simply collecting UC-MSCs at P1 from minced umbilical cord fragments allows to achieve a valuable population of cells suitable for orthopaedic tissue engineering.

  4. Tissue Factor and Tissue Factor Pathway Inhibitor in the Wound-Healing Process After Neurosurgery.

    Ślusarz, Robert; Głowacka, Mariola; Biercewicz, Monika; Barczykowska, Ewa; Haor, Beata; Rość, Danuta; Gadomska, Grażyna


    The aim of the study was to assess the concentrations of tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in the blood of patients with a postoperative wound after neurosurgery. Participants included 20 adult patients who underwent neurosurgery because of degenerative spine changes. The concentration of TF and TFPI in the patients' blood serum was measured 3 times: before surgery, during the first 24 hr after surgery, and between the 5th and 7th days after surgery. The control group comprised 20 healthy volunteers similar to the patient group with respect to gender and age. A statistically significant difference was observed between TF concentration at all three measurement time points in the research group and TF concentration in the control group (p = .018, p = .010, p = .001). A statistically significant difference was found between TFPI concentration at the second time point in the research group and TFPI concentration in the control group (p = .041). No statistically significant within-subject difference was found between TF concentrations before and after surgery. A statistically significant within-subject difference was found between TFPI concentrations within 24 hr after surgery and 5-7 days after surgery (p = .004). High perioperative concentrations of TF indicate not only the presence of thrombophilia but also the importance of TF in the wound-healing process. Perioperative changes in TFPI concentrations are related to its compensatory influence on hemostasis in thrombophilic conditions. © The Author(s) 2015.

  5. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review.

    Ho, Jasmine; Walsh, Claire; Yue, Dominic; Dardik, Alan; Cheema, Umber


    Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.

  6. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon


    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival sof...

  7. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    Arca, Turkan; Genever, Paul; Proffitt, Joanne


    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  8. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    Arca, Turkan; Genever, Paul [Department of Biology, University of York, York, YO10 5DD (United Kingdom); Proffitt, Joanne, E-mail: [TSL Centre of Biologics, Covidien, Allerton Bywater, Castleford, WF10 2DB (United Kingdom)


    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  9. What tissue bankers should know about the use of allograft meniscus in orthopaedics.

    McDermott, Ian D


    The menisci of the knee are two crescent shaped cartilage shock absorbers sitting between the femur and the tibia, which act as load sharers and shock absorbers. Loss of a meniscus leads to a significant increase in the risk of developing arthritis in the knee. Replacement of a missing meniscus with allograft tissue can reduce symptoms and may potentially reduce the risk of future arthritis. Meniscal allograft transplantation is a complex surgical procedure with many outstanding issues, including 'what techniques should be used for processing and storing grafts?', 'how should the allografts be sized?' and 'what surgical implantation techniques might be most appropriate?' Further clinical research is needed and close collaboration between the users (surgeons) and the suppliers (tissue banks) is essential. This review explores the above subject in detail.

  10. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats.

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu


    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6-7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  11. Direct transplantation of native pericytes from adipose tissue: A new perspective to stimulate healing in critical size bone defects.

    König, Matthias A; Canepa, Daisy D; Cadosch, Dieter; Casanova, Elisa; Heinzelmann, Michael; Rittirsch, Daniel; Plecko, Michael; Hemmi, Sonja; Simmen, Hans-Peter; Cinelli, Paolo; Wanner, Guido A


    Fractures with a critical size bone defect (e.g., open fracture with segmental bone loss) are associated with high rates of delayed union and non-union. The prevention and treatment of these complications remain a serious issue in trauma and orthopaedic surgery. Autologous cancellous bone grafting is a well-established and widely used technique. However, it has drawbacks related to availability, increased morbidity and insufficient efficacy. Mesenchymal stromal cells can potentially be used to improve fracture healing. In particular, human fat tissue has been identified as a good source of multilineage adipose-derived stem cells, which can be differentiated into osteoblasts. The main issue is that mesenchymal stromal cells are a heterogeneous population of progenitors and lineage-committed cells harboring a broad range of regenerative properties. This heterogeneity is also mirrored in the differentiation potential of these cells. In the present study, we sought to test the possibility to enrich defined subpopulations of stem/progenitor cells for direct therapeutic application without requiring an in vitro expansion. We enriched a CD146+NG2+CD45- population of pericytes from freshly isolated stromal vascular fraction from mouse fat tissue and tested their osteogenic differentiation capacity in vitro and in vivo in a mouse model for critical size bone injury. Our results confirm the ability of enriched CD146+NG2+CD45- cells to efficiently generate osteoblasts in vitro, to colonize cancellous bone scaffolds and to successfully contribute to regeneration of large bone defects in vivo. This study represents proof of principle for the direct use of enriched populations of cells with stem/progenitor identity for therapeutic applications. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Blood flow in healed and inflamed periodontal tissues of dogs

    Hock, J.M.; Kim, S.


    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p<0.05) lower in non-inflamed healed gingiva (32.1 +- 2.7 ml/min/100 g) than in inflamed gingiva (46.1 +- 5.3 ml/min/100 g). No differences in the blood flow of the alveolar bone underlying inflamed or non-inflamed gingiva were present. In the second experiment, the right mandibular teeth of 5 dogs were treated to resolve periodontitis while teeth in the other quadrants were ligated for 4, 10 or 12 wk. The duration of ligation did not alter blood flow. Gingival blood flow around ligated maxillary and mandibular teeth was comparable and approximately 54% higher than around non-ligated teeth (p<0.03). The difference in blood flow between gingiva with G.I.>1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow.

  13. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review.

    Miron, Richard J; Fujioka-Kobayashi, Masako; Bishara, Mark; Zhang, Yufeng; Hernandez, Maria; Choukroun, Joseph


    The growing multidisciplinary field of tissue engineering aims at predictably regenerating, enhancing, or replacing damaged or missing tissues for a variety of conditions caused by trauma, disease, and old age. One area of research that has gained tremendous awareness in recent years is that of platelet-rich fibrin (PRF), which has been utilized across a wide variety of medical fields for the regeneration of soft tissues. This systematic review gathered all the currently available in vitro, in vivo, and clinical literature utilizing PRF for soft tissue regeneration, augmentation, and/or wound healing. In total, 164 publications met the original search criteria, with a total of 48 publications meeting inclusion criteria (kappa score = 94%). These studies were divided into 7 in vitro, 11 in vivo, and 31 clinical studies. In summary, 6 out of 7 (85.7%) and 11 out of 11 (100%) of the in vitro and in vivo studies, respectively, demonstrated a statistically significant advantage for combining PRF to their regenerative therapies. Out of the remaining 31 clinical studies, a total of 8 reported the effects of PRF in a randomized clinical trial, with 5 additional studies (13 total) reporting appropriate controls. In those clinical studies, 9 out of the 13 studies (69.2%) demonstrated a statistically relevant positive outcome for the primary endpoints measured. In total, 18 studies (58% of clinical studies) reported positive wound-healing events associated with the use of PRF, despite using controls. Furthermore, 27 of the 31 clinical studies (87%) supported the use of PRF for soft tissue regeneration and wound healing for a variety of procedures in medicine and dentistry. In conclusion, the results from the present systematic review highlight the positive effects of PRF on wound healing after regenerative therapy for the management of various soft tissue defects found in medicine and dentistry.

  14. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing.

    Kurashima, Yosuke; Kiyono, Hiroshi


    The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.

  15. Sympathetic nerves: How do they affect angiogenesis, particularly during wound healing of soft tissues?

    Pan, Liangli; Tang, Jianbing; Liu, Hongwei; Cheng, Biao


    Angiogenesis is essential for wound healing, and angiogenesis impairment can result in chronic ulcers. Studies have shown that the sympathetic nervous system has an important role in angiogenesis. In recent years, researchers have focused on the roles of sympathetic nerves in tumor angiogenesis. In fact, sympathetic nerves can affect angiogenesis in the wound healing of soft tissues, and may have a similar mechanism of action as that seen in tumorigenesis. Sympathetic nerves act primarily through interactions between the neurotransmitters released from nerve endings and receptors present in target organs. Among this, activation or inhibition of adrenergic receptors (mainly β-adrenergic receptors) influence formation of new blood vessels considerably. As sympathetic nerves locate near pericytes in microvessel, go along the capillaries and there are adrenergic receptors present in endothelial cells and pericytes, sympathetic nerves may participate in angiogenesis by influencing the endothelial cells and pericytes of new capillaries. Studying the roles of sympathetic nerves on the angiogenesis of wound healing can contribute to understanding the mechanisms of tissue repair, tissue regeneration, and tumorigenesis, thereby providing new therapeutic perspectives.

  16. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    Toshiki Yoneda


    Full Text Available Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10, may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old (n = 27 received topical application of ointment containing 5% rCoQ10 (experimental group or control ointment (control group to the sockets for 3 or 8 days (n = 6–7/group. At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05. Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05. At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  17. The effects of odontogenic and nonodontogenic tissues on bone healing in Guinea pig mandible

    Kim, So Jung; Hwang, Eui Hwan; Lee, Sang Rae; Hong, Jung Pyo


    This study was for comparing healing patterns and effects between with odontogenic and nonodontogenic tissues on the defected mandible. Experimental bone defects that measured 3 mm in diameter were created on the mandibular body of guinea pig by removal of bone with the use of trephine burs and bone defects were grafted with Biogran (Orthovita Co., U.S. A.) and covered with Dura Mata (Pfrimmer-Viggo GmbH Co., Germany). Guinea pigs were serially terminated by fours on the 3 days, the 1 week, the 2 weeks, the 3 weeks, the 4 weeks, and the 5 weeks after experiment, and the mandibular body was removed and fixed with 10% neutral formalin. They were decalcified and embedded in paraffin as using the usual methods. The specimen sectioned and stained with hematoxylin and eosin and toluidine blue. They were observed with a light microscope and a polarizing microscope. The obtained results were as follows: 1. Defected bone was healed fast from the odontogenic tissues in early stage of the experiment. 2. The arrangement of the bone matrix was relatively regular in the bone from the nonodontogenic tissues, but irregular in the bone from the odotogenic tissues. 3. Compact bone has started to be absorbed and changed to the pattern of matrix bone tissue from 3 weeks after experiment.

  18. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

    Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.


    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428

  19. An exploratory study on differences in cumulative plantar tissue stress between healing and non-healing plantar neuropathic diabetic foot ulcers

    van Netten, Jaap J.; van Baal, Jeff G.; Bril, Adriaan; Wissink, Marieke; Bus, Sicco A.


    Mechanical stress is important in causing and healing plantar diabetic foot ulcers, but almost always studied as peak pressure only. Measuring cumulative plantar tissue stress combines plantar pressure and ambulatory activity, and better defines the load on ulcers. Our aim was to explore differences

  20. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J


    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Tissue-Engineered Skin Substitute Enhances Wound Healing after Radiation Therapy.

    Busra, Mohd Fauzi bin Mh; Chowdhury, Shiplu Roy; bin Ismail, Fuad; bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj


    When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. These results indicate that BTESS is the preferred treatment for

  2. Use of the carbon dioxide laser in guided tissue regeneration wound healing in the beagle dog

    Rossmann, Jeffrey A.; Parlar, Ates; Abdel-Ghaffar, Khaled A.; El-Khouli, Amr M.; Israel, Michael


    The concept of guided tissue regeneration (GTR) allowing cells from the periodontal ligament and alveolar bone to repopulate the treated root surface has shown the ability to obtain periodontal new attachment. Healing studies have also shown that conventional GTR therapy still does not exclude all the epithelium. This epithelial proliferation apically interferes with the establishment of the new connective tissue attachment to the root surface. The objective of this research study was to examine whether controlled de-epithelialization with the carbon dioxide laser during the healing phase after periodontal surgery, would retard the apical migration of the epithelium and thereby enhance the results obtained through guided tissue regeneration. Eight beagle dogs were used, the experimental side received de-epithelialization with the CO2 laser in conjunction with flap reflection and surgically created buccal osseous defects. Selected defects on each side were treated with ePTFE periodontal membranes. The laser de-epithelialization was repeated every 10 days until removal of the membranes. The control side received the same surgical treatment without laser application. This experimental design allowed histologic study of the new attachment obtained in defects treated with flap debridement with or without laser de-epithelialization and with or without ePTFE membranes. A statistical analysis was performed on the histometric data from 48 teeth in the 8 dogs after 4 months of healing. The results showed significant amounts of new attachment obtained from all four treatment modalities with no statistically significant differences for any one treatment. However, the trend towards enhanced regeneration with the combined treatment of laser and membrane vs. membrane alone or debridement alone was evident. The histologic analysis revealed a significant amount of newly formed `fat cementum' seen only on the laser treated teeth. This feature was the most remarkable finding of the

  3. Rapidly dissociated autologous meniscus tissue enhances meniscus healing: An in vitro study.

    Numpaisal, Piya-On; Rothrauff, Benjamin B; Gottardi, Riccardo; Chien, Chung-Liang; Tuan, Rocky S

    Treatment of meniscus tears is a persistent challenge in orthopedics. Although cell therapies have shown promise in promoting fibrocartilage formation in in vitro and preclinical studies, clinical application has been limited by the paucity of autologous tissue and the need for ex vivo cell expansion. Rapid dissociation of the free edges of the anterior and posterior meniscus with subsequent implantation in a meniscus lesion may overcome these limitations. The purpose of this study was to explore the effect of rapidly dissociated meniscus tissue in enhancing neotissue formation in a radial meniscus tear, as simulated in an in vitro explant model. All experiments in this study, performed at minimum with biological triplicates, utilized meniscal tissues from hind limbs of young cows. The effect of varying collagenase concentration (0.1%, 0.2% and 0.5% w/v) and treatment duration (overnight and 30 minutes) on meniscus cell viability, organization of the extracellular matrix (ECM), and gene expression was assessed through a cell metabolism assay, microscopic examination, and quantitative real-time reverse transcription polymerase chain reaction analysis, respectively. Thereafter, an explant model of a radial meniscus tear was used to evaluate the effect of a fibrin gel seeded with one of the following: (1) fibrin alone, (2) isolated and passaged (P2) meniscus cells, (3) overnight digested tissue, and (4) rapidly dissociated tissue. The quality of in vitro healing was determined through histological analysis and derivation of an adhesion index. Rapid dissociation in 0.2% collagenase yielded cells with higher levels of metabolism than either 0.1% or 0.5% collagenase. When seeded in a three-dimensional fibrin hydrogel, both overnight digested and rapidly dissociated cells expressed greater levels of collagens type I and II than P2 meniscal cells at 1 week. At 4 and 8 weeks, collagen type II expression remained elevated only in the rapid dissociation group. Histological

  4. Vancomycin pre-treatment impairs tissue healing in experimental colitis: Importance of innate lymphoid cells.

    Zhao, Di; Cai, Chenwen; Zheng, Qing; Jin, Shuang; Song, Dongjuan; Shen, Jun; Ran, Zhihua


    The interplay between luminal microbes and innate immunity during colonic epithelial repair has been well noted. At the same time, antibiotic has widely been used during flare-ups of ulcerative colitis. The possible effects of luminal microbiota disruption caused by antibiotics usage on epithelial repairing have been scarcely discussed. Innate lymphoid cells (ILCs) embedded in the lamina propria can be modulated by gut microbes, resulting in altered colonic IL-22/pSTAT3 levels, which is considered a prominent molecular axis in tissue repairing after epithelium damage. This study aimed to investigate whether antibiotics could interfere with ILCs-dependent tissue repair. Dextran sodium sulfate (DSS)-induced colitis was established in mice pre-treated with reagent of different antibiotic spectrum. Both morphological and molecular markers of tissue repair after DSS cessation were detected. ILCs population and function status were also recorded. Further attention was paid to the response of dendritic cells after antibiotics treatment, which were claimed to regulate colonic ILC3s in an IL-23 dependent way. Using of vancomycin resulted in delayed tissue repairing after experimental colitis. Both colonic IL-22/pSTAT3 axis and ILC3 population were found decreased in this situation. Vancomycin treatment diminished the upstream IL-23 and producer dendritic cell population. The reduced dendritic cell number may due to inadequate chemokines and colony-stimulating factors supply. Presence of vancomycin-sensitive microbiota is required for the maturation of ILC3-activating dendritic cells hence maintain the sufficient IL-22/pSTAT3 level in the colon during tissue healing. Manipulation of colonic microbiota may help achieve colonic mucosal healing post inflammation and injury. Copyright © 2016. Published by Elsevier Inc.

  5. Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications.

    Thangavel, Ponrasu; Ramachandran, Balaji; Kannan, Ramya; Muthuvijayan, Vignesh


    The aim of this article was to develop silk protein (SF) and l-proline (LP) loaded chitosan-(CS) based hydrogels via physical cross linking for tissue engineering and wound healing applications. Silk fibroin, a biodegradable and biocompatible protein, and l-proline, an important imino acid that is required for collagen synthesis, were added to chitosan to improve the wound healing properties of the hydrogel. Characterization of these hydrogels revealed that CS/SF/LP hydrogels were blended properly and LP incorporated hydrogels showed excellent thermal stability and good surface morphology. Swelling study showed the water holding efficiency of the hydrogels to provide enough moisture at the wound surface. In vitro biodegradation results demonstrated that the hydrogels had good degradation rate in PBS with lysozyme. LP loaded hydrogels showed approximately a twofold increase in antioxidant activity. In vitro cytocompatibility studies using NIH 3T3 L1 cells showed increased cell viability (p Cell adhesion on SF and LP hydrogels were observed using SEM and compared to CS hydrogel. LP incorporation showed 74-78% of wound closure compared to 35% for CS/SF and 3% for CS hydrogels at 48 h. These results suggest that incorporation of LP can significantly accelerate wound healing process compared to pure CS and SF-loaded CS hydrogels. Hence, CS/LP hydrogels could be a potential wound dressing material for the enhanced wound tissue regeneration and repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1401-1408, 2017. © 2016 Wiley Periodicals, Inc.

  6. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group "Tissue Regeneration" of the German Society of Orthopaedic Surgery and Traumatology (DGOU)].

    Niemeyer, P; Andereya, S; Angele, P; Ateschrang, A; Aurich, M; Baumann, M; Behrens, P; Bosch, U; Erggelet, C; Fickert, S; Fritz, J; Gebhard, H; Gelse, K; Günther, D; Hoburg, A; Kasten, P; Kolombe, T; Madry, H; Marlovits, S; Meenen, N M; Müller, P E; Nöth, U; Petersen, J P; Pietschmann, M; Richter, W; Rolauffs, B; Rhunau, K; Schewe, B; Steinert, A; Steinwachs, M R; Welsch, G H; Zinser, W; Albrecht, D


    Autologous chondrocyte transplantation/implantation (ACT/ACI) is an established and recognised procedure for the treatment of localised full-thickness cartilage defects of the knee. The present review of the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU) describes the biology and function of healthy articular cartilage, the present state of knowledge concerning potential consequences of primary cartilage lesions and the suitable indication for ACI. Based on current evidence, an indication for ACI is given for symptomatic cartilage defects starting from defect sizes of more than 3-4 cm2; in the case of young and active sports patients at 2.5 cm2. Advanced degenerative joint disease is the single most important contraindication. The review gives a concise overview on important scientific background, the results of clinical studies and discusses advantages and disadvantages of ACI. Georg Thieme Verlag KG Stuttgart · New York.

  7. Linking ontogeny and tissue regeneration: a study on tissue damage and wound healing in carp in connection to the developmental stage

    Nielsen, Michael Engelbrecht; Schmidt, Jacob; Ingerslev, Hans-Christian

    regeneration since its genome is well-described and it is easy visually to follow the wound healing. In this study, carps were physically damaged in the musculature using sterile needles at day 10, 16, 24, 47 and 94 post hatch. Muscle tissue samples were subsequently taken at day 1, 3 and 7 post damage...... healing and tissue regeneration, the developmental stage of the individual may influence the immune reaction initiated following damage and thus the proliferative responses, which usually cross-talk with the immune system. Common carp (Cyprinus carpio) is an excellent fish specie to study tissue...

  8. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing.

    Henshaw, F R; Boughton, P; Lo, L; McLennan, S V; Twigg, S M


    Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P diabetic foot ulcers.

  9. Wound healing in a fetal, adult, and scar tissue model: a comparative study

    Coolen, N.A.; Schouten, K.C.; Boekema, B.K.; Middelkoop, E.; Ulrich, M.


    Early gestation fetal wounds heal without scar formation. Understanding the mechanism of this scarless healing may lead to new therapeutic strategies for improving adult wound healing. The aims of this study were to develop a human fetal wound model in which fetal healing can be studied and to

  10. A Review of Injectable and Implantable Biomaterials for Treatment and Repair of Soft Tissues in Wound Healing

    Shih-Feng Chou


    Full Text Available The two major topics concerning the development of nanomedicine are drug delivery and tissue engineering. With the advance in nanotechnology, scientists and engineers now have the ability to fabricate functional drug carriers and/or biomaterials that deliver and release drugs locally as well as promote tissue regeneration. In this short review, we address the use of nanotechnology in the fabrication of biomaterials (i.e., nanoparticles and nanofibers and their therapeutic function in wound healing as dressing materials. Furthermore, we discuss the use of surface nanofeatures to regulate cell adhesion, migration, proliferation, and differentiation, which is a crucial step in wound healing associated with tissue regeneration. Given that nanotechnology-based biomaterials exhibit superior pharmaceutical performance as compared to the traditional medicine, this short review provides current status and future directions of how nanotechnology is and will be used in biomedical field, especially in wound healing.

  11. Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit Achilles tendon tissue.

    Buschmann, Johanna; Puippe, Gilbert; Bürgisser, Gabriella Meier; Bonavoglia, Eliana; Giovanoli, Pietro; Calcagni, Maurizio


    Static and dynamic high-frequency ultrasound of healing rabbit Achilles tendons were set in relationship to histomorphometric analyses at three and six weeks post-surgery. Twelve New Zealand White rabbits received a clean-cut Achilles tendon laceration (the medial and lateral Musculus gastrocnemius) and were repaired with a four-strand Becker suture. Six rabbits got additionally a tight polyester urethane tube at the repair site in order to vary the adhesion extent. Tendons were analysed by static and dynamic ultrasound (control: healthy contralateral legs). The ultrasound outcome was corresponded to the tendon shape, tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, collagen fibre orientation and adhesion extent. The spindle-like morphology of healing tendons (ultrasound) was confirmed by the swollen epitenon (histology). Prediction of adhesion formation by dynamic ultrasound assessment was confirmed by histology (contact region to surrounding tissue). Hyperechogenic areas corresponded to acellular zones with aligned fibres and hypoechogenic zones to not yet oriented fibres and to cell-rich areas. These findings add new in-depth structural knowledge to the established non-invasive analytical tool, ultrasound.

  12. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.

    Vassallo, Christopher N; Wall, Daniel


    Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.

  13. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li


    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells.

    Kato, Toshiki; Khanh, Vuong Cat; Sato, Kazutoshi; Takeuchi, Kosuke; Carolina, Erica; Yamashita, Toshiharu; Sugaya, Hisashi; Yoshioka, Tomokazu; Mishima, Hajime; Ohneda, Osamu


    Glucocorticoids cause the delayed wound healing by suppressing inflammation that is required for wound healing process. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) play an important role for wound healing by their cytokine productions including stromal derived factor 1 (SDF-1). However, it has not been clear how glucocorticoids affect the wound healing ability of AT-MSCs. In this study, we found that glucocorticoid downregulated SDF-1 expression in AT-MSCs. In addition, glucocorticoid-treated AT-MSCs induced less migration of inflammatory cells and impaired wound healing capacity compared with glucocorticoid-untreated AT-MSCs. Of note, prostaglandin E2 (PGE2) synthesis-related gene expression was downregulated by glucocorticoid and PGE2 treatment rescued not only SDF-1 expression in the presence of glucocorticoid but also their wound healing capacity in vivo. Furthermore, we found SDF-1-overexpressed AT-MSCs restored wound healing capacity even after treatment of glucocorticoid. Consistent with the results obtained from glucocorticoid-treated AT-MSCs, we found that AT-MSCs isolated from steroidal osteonecrosis donors (sAT-MSCs) who received chronic glucocorticoid therapy showed less SDF-1 expression and impaired wound healing capacity compared with traumatic osteonecrosis donor-derived AT-MSCs (nAT-MSCs). Moreover, the SDF-1 level was also reduced in plasma derived from steroidal osteonecrosis donors compared with traumatic osteonecrosis donors. These results provide the evidence that concomitant application of AT-MSCs with glucocorticoid shows impaired biological modulatory effects that induce impaired wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Immunohistochemical comparison of markers for wound healing on plastic-embedded and frozen mucosal tissue.

    Mai, Ronald; Gedrange, Tomasz; Leonhardt, Henry; Sievers, Nicole; Lauer, Günter


    Immunohistologic investigations of wound healing in human oral mucosa require specific cell biological markers as well as consecutive small biopsies. Small specimens are ideally embedded in plastic (methylmethacrylate, MMA) resin due to their miniature size. This limits the use of antibodies for these markers. In this immunohistochemical study, the distribution of wound healing markers, e.g. cytokeratin (CK), laminin, collagen IV, vimentin, vinculin and fibronectin, were compared between semithin sections of plastic-embedded tissue and frozen sections of mucosal tissue in order to assess their use for future investigations. The antibodies against laminin, collagen IV and CK 1/2/10/11, 5/6, 13, 14, 17, 19 gave comparable staining patterns on cryostat sections of attached mucosa and on semithin sections of MMA-embedded attached mucosa. In the epithelial cell layers, the following distribution of CK immunostaining was observed: The basal cell layer was positive for CK 5/6, CK 14 and CK 19; the intermediate cell layer for CK 13, CK 17 and CK 1/2/10/11, and the superficial cell layer for CK 13 and CK 1/2/10/11. For most of these antibodies, enzyme digestion with 0.1% trypsin was adequate for demasking the antigens, except for anti-CK 14, anti-CK 17 and anti-laminin; predigestion with 0.4% pepsin in 0.01 N HCl gave similar staining results. The antibodies against vimentin, vinculin, fibronectin and CK 4 showed no affinity or a reciprocal reaction on the semithin sections. Therefore, the antibodies against CK 1/2/10/11; 5/6; 13; 14; 17, and 19, as well as the basement proteins laminin and collagen IV are deemed markers suitable on semithin sections of plastic-embedded attached oral mucosa. (c) 2008 S. Karger AG, Basel.

  16. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds?

    Zöller, Nadja; Valesky, Eva; Butting, Manuel; Hofmann, Matthias; Kippenberger, Stefan; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland


    The treatment regime of non-healing or slowly healing wounds is constantly improving. One aspect is surgical defect coverage whereby mesh grafts and keratinocyte suspension are applied. Tissue-cultured skin autografts may be an alternative for the treatment of full-thickness wounds and wounds that cover large areas of the body surface. Autologous epidermal and dermal cells were isolated, expanded in vitro and seeded on collagen-elastin scaffolds. The developed autograft was immunohistochemically characterized and subsequently transplanted onto a facial chronic ulceration of a 71-year-old patient with vulnerable atrophic skin. Characterization of the skin equivalent revealed comparability to healthy human skin due to the epidermal strata, differentiation and proliferation markers. Within 138 days, the skin structure at the transplantation site closely correlated with the adjacent undisturbed skin. The present study demonstrates the comparability of the developed organotypic skin equivalent to healthy human skin and the versatility for clinical applications.

  17. Prognosis of critical limb ischemia patients with tissue loss after achievement of complete wound healing by endovascular therapy.

    Kobayashi, Norihiro; Hirano, Keisuke; Nakano, Masatsugu; Ito, Yoshiaki; Ishimori, Hiroshi; Yamawaki, Masahiro; Tsukahara, Reiko; Muramatsu, Toshiya


    Critical limb ischemia (CLI) patients with tissue loss have been recognized to have a poor survival rate. In this study, we aimed to determine whether the prognosis of CLI patients with tissue loss improves after complete wound healing is achieved by endovascular therapy. We treated 187 CLI patients with tissue loss by endovascular therapy from April 2007 to December 2012. Among these patients, 113 patients who achieved complete wound healing were enrolled. The primary end point was survival rate at 3 years. The secondary end points were limb salvage rate and recurrence rate of CLI at 3 years. The mean follow-up period after achievement of complete wound healing was 32 ± 18 months. At 1 year, 2 years, and 3 years, the survival rates were 86%, 79%, and 74%; the limb salvage rates were 100%, 100%, and 100%; the recurrence rates of CLI were 2%, 6%, and 9%, respectively. On multivariate Cox proportional hazard analysis, age >75 years (hazard ratio, 3.18; 95% confidence interval, 1.23-8.24; P = .017) and nonambulatory status (hazard ratio, 2.46; 95% confidence interval, 1.08-5.65; P = .035) were identified as independent predictors of death for CLI patients with tissue loss even after complete wound healing was achieved. The Kaplan-Meier curve for the overall survival rate at 3 years showed that CLI patients of older age (>75 years) had a significantly decreased survival rate compared with CLI patients of younger age (≤75 years) (58% vs 87%; log-rank test, P wound healing was achieved. Nonambulatory status and age >75 years can serve as predictors of death even after complete wound healing is achieved. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  18. The clinical study of the early soft tissue healing and marginal bone resorption after non-submerged implants

    Xu Anchen; Yang Desheng; Hu Bei; Leng Bin; Zhang Li


    Objective: To compare the amount of early marginal bone resorption in the first three months after non-submerged implants and to explore the relationship between the amount of early marginal bone resorption and the soft tissue healing in the first month. Method: ITI with non-submerged implants were implanted in 33 patients. Digital panoramic radiographs were taken during the operation, one month and three months later. The amount of marginal bone resorption was measured in the first, second and the third month after implant operation. The soft tissue healing was observed after 10 days. Results: There was significant difference (P<0.01) in the amount of early marginal bone resorption between one month and three months later. The early marginal bone resorption in the first month after implantation kept correlation with the soft tissue healing on 10th day(r=0.794, P<0.01). Conclusion: The amount of early marginal bone resorption in the first month exceeds that in the second and the third months after implant operation, and the soft tissue healing affects the amount of early marginal bone resorption in the first month. Biological seal is the critical factor influencing the early marginal bone resorption. (authors)

  19. Regional disturbances in blood flow and metabolism in equine limb wound healing with formation of exuberant granulation tissue

    Sørensen, Mette A.; Petersen, Lars; Bundgaard, Louise


    As in other fibroproliferative disorders, hypoxia has been suggested to play a key role in the pathogenesis of exuberant granulation tissue (EGT). The purpose of this study was to investigate metabolism and blood flow locally in full-thickness wounds healing with (limb wounds) and without (body...

  20. Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics’ Impaired Healing

    Jorge Berlanga-Acosta


    Full Text Available Type 2 diabetes mellitus is a metabolic noncommunicable disease with an expanding pandemic magnitude. Diabetes predisposes to lower extremities ulceration and impairs the healing process leading to wound chronification. Diabetes also dismantles innate immunity favoring wound infection. Amputation is therefore acknowledged as one of the disease’s complications. Hyperglycemia is the proximal detonator of systemic and local toxic effectors including proinflammation, acute-phase proteins elevation, and spillover of reactive oxygen and nitrogen species. Insulin axis deficiency weakens wounds’ anabolism and predisposes to inflammation. The systemic accumulation of advanced glycation end-products irreversibly impairs the entire physiology from cells-to-organs. These factors in concert hamper fibroblasts and endothelial cells proliferation, migration, homing, secretion, and organization of a productive granulation tissue. Diabetic wound bed may turn chronically inflammed, procatabolic, and an additional source of circulating pro-inflammatory cytokines, establishing a self-perpetuating loop. Diabetic fibroblasts and endothelial cells may bear mitochondrial damages becoming prone to apoptosis, which impairs granulation tissue cellularity and perfusion. Endothelial progenitor cells recruitment and tubulogenesis are also impaired. Failure of wound reepithelialization remains a clinical challenge while it appears to be biologically multifactorial. Ulcer prevention by primary care surveillance, education, and attention programs is of outmost importance to reduce worldwide amputation figures.

  1. Novel Stem Cell Therapies for Applications to Wound Healing and Tissue Repair.

    Grada, Ayman; Falanga, Vincent


    The number of individuals with chronic cutaneous wounds has been increasing worldwide due to an aging population, diabetes, obesity, and cardiovascular disease. In the United States, almost seven million Americans have chronic skin ulcers. Many therapeutic approaches have been used. However, the treatment outcomes are not always ideal because of failure to achieve complete wound closure in around 60% of cases, scarring, and high rate of recurrence. Therefore, there is a need for more effective therapies. Stem cells offer promising possibilities. Pre-clinical studies have shown that bone- or adipose tissue-derived mesenchymal stem cells (MSCs) have a competitive advantage over other types of stem cells due to their better defined multipotent differentiating potential, paracrine effects, immunomodulatory properties, and safety. However, large controlled clinical trials are needed to examine the capabilities of MSCs in humans and to assess their safety profile. In this review, we highlight emerging treatments in tissue regeneration and repair and provide some perspectives on how to translate current knowledge about stem cells-both multipotent and pluripotent-into viable clinical approaches for treating patients with difficult to heal wounds.

  2. Matrix- and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine.

    Sheets, Anthony R; Massey, Conner J; Cronk, Stephen M; Iafrati, Mark D; Herman, Ira M


    Non-healing wounds are a major global health concern and account for the majority of non-traumatic limb amputations worldwide. However, compared to standard care practices, few advanced therapeutics effectively resolve these injuries stemming from cardiovascular disease, aging, and diabetes-related vasculopathies. While matrix turnover is disrupted in these injuries, debriding enzymes may promote healing by releasing matrix fragments that induce cell migration, proliferation, and morphogenesis, and plasma products may also stimulate these processes. Thus, we created matrix- and plasma-derived peptides, Comb1 and UN3, which induce cellular injury responses in vitro, and accelerate healing in rodent models of non-healing wounds. However, the effects of these peptides in non-healing wounds in diabetes are not known. Here, we interrogated whether these peptides stimulate healing in a diabetic porcine model highly reminiscent of human healing impairments in type 1 and type 2-diabetes. After 3-6 weeks of streptozotocin-induced diabetes, full-thickness wounds were surgically created on the backs of adult female Yorkshire swine under general anesthesia. Comb1 and UN3 peptides or sterile saline (negative control) were administered to wounds daily for 3-7 days. Following sacrifice, wound tissues were harvested, and quantitative histological and immunohistochemical analyses were performed for wound closure, angiogenesis and granulation tissue deposition, along with quantitative molecular analyses of factors critical for angiogenesis, epithelialization, and dermal matrix remodeling. Comb1 and UN3 significantly increase re-epithelialization and angiogenesis in diabetic porcine wounds, compared to saline-treated controls. Additionally, fluorescein-conjugated Comb1 labels keratinocytes, fibroblasts, and vascular endothelial cells in porcine wounds, and Far western blotting reveals these cell populations express multiple fluorescein-Comb1-interacting proteins in vitro. Further

  3. Effects of topical negative pressure therapy on tissue oxygenation and wound healing in vascular foot wounds.

    Chiang, Nathaniel; Rodda, Odette A; Sleigh, Jamie; Vasudevan, Thodur


    Topical negative pressure (TNP) therapy is widely used in the treatment of acute wounds in vascular patients on the basis of proposed multifactorial benefits. However, numerous recent systematic reviews have concluded that there is inadequate evidence to support its benefits at a scientific level. This study evaluated the changes in wound volume, surface area, depth, collagen deposition, and tissue oxygenation when using TNP therapy compared with traditional dressings in patients with acute high-risk foot wounds. This study was performed with hospitalized vascular patients. Forty-eight patients were selected with an acute lower extremity wound after surgical débridement or minor amputation that had an adequate blood supply without requiring further surgical revascularization and were deemed suitable for TNP therapy. The 22 patients who completed the study were randomly allocated to a treatment group receiving TNP or to a control group receiving regular topical dressings. Wound volume and wound oxygenation were analyzed using a modern stereophotographic wound measurement system and a hyperspectral transcutaneous oxygenation measurement system, respectively. Laboratory analysis was conducted on wound biopsy samples to determine hydroxyproline levels, a surrogate marker to collagen. Differences in clinical or demographic characteristics or in the location of the foot wounds were not significant between the two groups. All patients, with the exception of two, had diabetes. The two patients who did not have diabetes had end-stage renal failure. There was no significance in the primary outcome of wound volume reduction between TNP and control patients on day 14 (44.2% and 20.9%, respectively; P = .15). Analyses of secondary outcomes showed a significant result of better healing rates in the TNP group by demonstrating a reduction in maximum wound depth at day 14 (36.0% TNP vs 17.6% control; P = .03). No significant findings were found for the other outcomes of changes

  4. [Treatment of Osteochondral Lesions in the Ankle: A Guideline from the Group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU)].

    Aurich, M; Albrecht, D; Angele, P; Becher, C; Fickert, S; Fritz, J; Müller, P E; Niemeyer, P; Pietschmann, M; Spahn, G; Walther, M


    Background: Osteochondral lesions (OCL) of the ankle are a common cause of ankle pain. Although the precise pathophysiology has not been fully elucidated, it can be assumed that a variety of factors are responsible, mainly including traumatic events such as ankle sprains. Advances in arthroscopy and imaging techniques, in particular magnetic resonance imaging (MRI), have improved the possibilities for the diagnosis of OCLs of the ankle. Moreover, these technologies aim at developing new classification systems and modern treatment strategies. Material and Methods: This article is a review of the literature. Recommendations of the group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU) for the treatment of OCLs of the ankle are presented. The review gives a concise overview on the results of clinical studies and discusses advantages and disadvantages of different treatment strategies. Results: Non-operative treatment shows good results for selected indications in children and adolescents, especially in early stages of osteochondritis dissecans (OCD). However, surgical treatment is usually indicated in OCLs in adolescents and adults, depending on the size and location of the lesion. Various arthroscopic and open procedures are frequently employed, including reattachment of the fragment, local debridement of the lesion with fragment removal and curettage of the lesion, bone marrow-stimulation by microfracture or microdrilling (antegrade or retrograde), and autologous matrix-induced chondrogenesis (AMIC®) - with or without reconstruction of a subchondral bone defect or cyst by autologous cancellous bone grafting. Isolated subchondral cysts with an intact cartilage surface can be treated by retrograde drilling and possibly additional retrograde bone grafting. For larger defects or as salvage procedure, osteochondral cylinder transplantation (OATS® or Mosaicplasty®) or matrix-induced autologous chondrocyte transplantation

  5. Can tissue spectrophotometry and laser Doppler flowmetry help to identify patients at risk for wound healing disorders after neck dissection?

    Rohleder, Nils H; Flensberg, Sandra; Bauer, Florian; Wagenpfeil, Stefan; Wales, Craig J; Koerdt, Steffen; Wolff, Klaus D; Hölzle, Frank; Steiner, Timm; Kesting, Marco R


    Microcirculation and oxygen supply in cervical skin were measured with an optical, noninvasive method in patients with or without radiotherapy before neck dissection. The course of wound healing was monitored after the surgical procedure to identify predictive factors for postoperative wound healing disorders. Tissue spectrophotometry and laser Doppler flowmetry were used to determine capillary oxygen saturation, hemoglobin concentration, blood flow, and blood velocity at 2-mm and 8-mm depths in the cervical skin of 91 patients before neck dissection in a maxillofacial unit of a university hospital in Munich, Germany. Parameters were evaluated for differences between patients with irradiation (24) and without (67) and patients with wound healing disorders (25) and without (66) (univariate or multivariate statistical analyses). Velocity at 2 mm was lower in irradiated skin (P = .016). Flow at 2 mm was higher in patients with wound healing disorders (P = .018). High flow values could help to identify patients at risk for cervical wound healing disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement.

    Brochu, Alice B W; Chyan, William J; Reichert, William M


    Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented. Capsules had average diameters ranging from 74 to 222 μm and average shell thicknesses ranging from 1.5 to 6 μm. The capsule content was determined via thermogravimetric analysis and subsequent analysis of the capsules following up to 8 weeks storage revealed minimal loss of core contents. Mechanical testing of OCA-containing capsules showed individual capsules withstood compressive forces up to a few tenths of Newtons, and the contents released from crushed capsules generated tensile adhesive forces of a few Newtons. Capsules were successfully mixed into the poly(methyl methacrylate) bone cement, surviving the mixing process, exposure to methyl methacrylate monomer, and the resulting exothermic matrix curing. Copyright © 2012 Wiley Periodicals, Inc.

  7. Design and implementation of therapeutic ultrasound generating circuit for dental tissue formation and tooth-root healing.

    Woon Tiong Ang; Scurtescu, C; Wing Hoy; El-Bialy, T; Ying Yin Tsui; Jie Chen


    Biological tissue healing has recently attracted a great deal of research interest in various medical fields. Trauma to teeth, deep and root caries, and orthodontic treatment can all lead to various degrees of root resorption. In our previous study, we showed that low-intensity pulsed ultrasound (LIPUS) enhances the growth of lower incisor apices and accelerates their rate of eruption in rabbits by inducing dental tissue growth. We also performed clinical studies and demonstrated that LIPUS facilitates the healing of orthodontically induced teeth-root resorption in humans. However, the available LIPUS devices are too large to be used comfortably inside the mouth. In this paper, the design and implementation of a low-power LIPUS generator is presented. The generator is the core of the final intraoral device for preventing tooth root loss and enhancing tooth root tissue healing. The generator consists of a power-supply subsystem, an ultrasonic transducer, an impedance-matching circuit, and an integrated circuit composed of a digital controller circuitry and the associated driver circuit. Most of our efforts focus on the design of the impedance-matching circuit and the integrated system-on-chip circuit. The chip was designed and fabricated using 0.8- ¿m high-voltage technology from Dalsa Semiconductor, Inc. The power supply subsystem and its impedance-matching network are implemented using discrete components. The LIPUS generator was tested and verified to function as designed and is capable of producing ultrasound power up to 100 mW in the vicinity of the transducer's resonance frequency at 1.5 MHz. The power efficiency of the circuitry, excluding the power supply subsystem, is estimated at 70%. The final products will be tailored to the exact size of teeth or biological tissue, which is needed to be used for stimulating dental tissue (dentine and cementum) healing.

  8. Wound healing of critical limb ischemia with tissue loss in patients on hemodialysis.

    Honda, Yohsuke; Hirano, Keisuke; Yamawaki, Masahiro; Mori, Shinsuke; Shirai, Shigemitsu; Makino, Kenji; Tokuda, Takahiro; Takama, Takuro; Tsutumi, Masakazu; Sakamoto, Yasunari; Takimura, Hideyuki; Kobayashi, Norihiro; Araki, Motoharu; Ito, Yoshiaki


    We assessed wound healing in patients on hemodialysis (HD) with critical limb ischemia (CLI). This study enrolled 267 patients (including 120 patients on HD and 147 patients not on HD) who underwent endovascular therapy (EVT) for CLI. The primary endpoint was wound-healing rate at two years. Secondary endpoints were time to wound healing, wound recurrence rate, and limb salvage at two years. The percentage of male and young patients was higher in the HD patients ( p healing rate was significantly lower in HD patients (79.5% vs. 92.4%, p healing was significantly longer in HD patients (median 132 days vs. 82 days, p = 0.005). Wound recurrence was observed more frequently in HD patients (25.0% vs. 10.2%, p = 0.007). Limb salvage (72.8% vs. 86.4%, p = 0.002) was significantly lower in HD patients. In a cox proportional hazard model, HD was an independent predictor of wound healing (risk ratio (RR), 0.46; 95% confidence interval (CI), 0.33-0.62; p healing, and wound recurrence.

  9. Diode laser-induced tissue effects: in vitro tissue model study and in vivo evaluation of wound healing following non-contact application.

    Havel, Miriam; Betz, Christian S; Leunig, Andreas; Sroka, Ronald


    The basic difference between the various common medical laser systems is the wavelength of the emitted light, leading to altered light-tissue interactions due to the optical parameters of the tissue. This study examines laser induced tissue effects in an in vitro tissue model using 1,470 nm diode laser compared to our standard practice for endonasal applications (940 nm diode laser) under standardised and reproducible conditions. Additionally, in vivo induced tissue effects following non-contact application with focus on mucosal healing were investigated in a controlled intra-individual design in patients treated for hypertrophy of nasal turbinate. A certified diode laser system emitting the light of λ = 1470 nm was evaluated with regards to its tissue effects (ablation, coagulation) in an in vitro setup on porcine liver and turkey muscle tissue model. To achieve comparable macroscopic tissue effects the laser fibres (600 µm core diameter) were fixed to a computer controlled stepper motor and the laser light was applied in a reproducible procedure under constant conditions. For the in vivo evaluation, 20 patients with nasal obstruction due to hyperplasia of inferior nasal turbinates were included in this prospective randomised double-blinded comparative trial. The endoscopic controlled endonasal application of λ = 1470 nm on the one and λ = 940 nm on the other side, both in 'non-contact' mode, was carried out as an outpatient procedure under local anaesthesia. The postoperative wound healing process (mucosal swelling, scab formation, bleeding, infection) was endoscopically documented and assessed by an independent physician. In the experimental setup, the 1,470 nm laser diode system proved to be efficient in inducing tissue effects in non-contact mode with a reduced energy factor of 5-10 for highly perfused liver tissue to 10-20 for muscle tissue as compared to the 940 nm diode laser system. In the in vivo evaluation scab formation

  10. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H


    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Influence of bacterial colonization of the healing screws on peri-implant tissue

    Simonetta D'Ercole


    Conclusion: The healing screws left in situ for a period of 90 days caused a peri-implant inflammation and the presence of periodontal pathogenic bacteria in the peri-implant sulcus, due to the plaque accumulation on screw surfaces.

  12. In vivo Molecular Evaluation of Guinea Pig Skin Incisions Healing after Surgical Suture and Laser Tissue Welding Using Raman Spectroscopy

    Alimova, A.; Chakraverty, R.; Muthukattil, R.; Elder, S.; Katz, A.; Sriramoju, V.; Lipper, Stanley; Alfano, R. R.


    The healing process in guinea pig skin following surgical incisions was evaluated at the molecular level, in vivo, by the use of Raman spectroscopy. After the incisions were closed either by suturing or by laser tissue welding (LTW), differences in the respective Raman spectra were identified. The study determined that the ratio of the Raman peaks of the amide III (1247 cm−1) band to a peak at 1326 cm−1 (the superposition of elastin and keratin bands) can be used to evaluate the progression of wound healing. Conformational changes in the amide I band (1633 cm−1 to 1682 cm−1) and spectrum changes in the range of 1450 cm−1 to 1520 cm−1 were observed in LTW and sutured skin. The stages of the healing process of the guinea pig skin following LTW and suturing were evaluated by Raman spectroscopy, using histopathology as the gold standard. LTW skin demonstrated better healing than sutured skin, exhibiting minimal hyperkeratosis, minimal collagen deposition, near-normal surface contour, and minimal loss of dermal appendages. A wavelet decomposition-reconstruction baseline correction algorithm was employed to remove the fluorescence wing from the Raman spectra. PMID:19581109

  13. The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing.

    Couture, Camille; Zaniolo, Karine; Carrier, Patrick; Lake, Jennifer; Patenaude, Julien; Germain, Lucie; Guérin, Sylvain L


    Corneal injuries remain a major cause of consultation in the ophthalmology clinics worldwide. Repair of corneal wounds is a complex mechanism that involves cell death, migration, proliferation, differentiation, and extracellular matrix (ECM) remodeling. In the present study, we used a tissue-engineered, two-layers (epithelium and stroma) human cornea as a biomaterial to study both the cellular and molecular mechanisms of wound healing. Gene profiling on microarrays revealed important alterations in the pattern of genes expressed by tissue-engineered corneas in response to wound healing. Expression of many MMPs-encoding genes was shown by microarray and qPCR analyses to increase in the migrating epithelium of wounded corneas. Many of these enzymes were converted into their enzymatically active form as wound closure proceeded. In addition, expression of MMPs by human corneal epithelial cells (HCECs) was affected both by the stromal fibroblasts and the collagen-enriched ECM they produce. Most of all, results from mass spectrometry analyses provided evidence that a fully stratified epithelium is required for proper synthesis and organization of the ECM on which the epithelial cells adhere. In conclusion, and because of the many characteristics it shares with the native cornea, this human two layers corneal substitute may prove particularly useful to decipher the mechanistic details of corneal wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels-Alder Click Reaction and Acylhydrazone Bond.

    Yu, Feng; Cao, Xiaodong; Du, Jie; Wang, Gang; Chen, Xiaofeng


    Hydrogel, as a good cartilage tissue-engineered scaffold, not only has to possess robust mechanical property but also has to have an intrinsic self-healing property to integrate itself or the surrounding host cartilage. In this work a double cross-linked network (DN) was designed and prepared by combining Diels-Alder click reaction and acylhydrazone bond. The DA reaction maintained the hydrogel's structural integrity and mechanical strength in physiological environment, while the dynamic covalent acylhydrazone bond resulted in hydrogel's self-healing property and controlled the on-off switch of network cross-link density. At the same time, the aldehyde groups contained in hydrogel further promote good integration of the hydrogel to surrounding tissue based on aldehyde-amine Schiff-base reaction. This kind of hydrogel has good structural integrity, autonomous self-healing, and tissue-adhesive property and simultaneously will have a good application in tissue engineering and tissue repair field.

  15. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N


    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  16. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing

    Ribeiro, Martha Simoes


    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N 2 on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm 2 . Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  17. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing.

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian


    The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.

  18. Role of tissue-engineered artificial tendon in healing of a large Achilles tendon defect model in rabbits.

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid


    Treatment of large Achilles tendon defects is technically demanding. Tissue engineering is an option. We constructed a collagen-based artificial tendon, covered it with a polydioxanon (PDS) sheath, and studied the role of this bioimplant on experimental tendon healing in vivo. A 2-cm tendon gap was created in the left Achilles tendon of rabbits (n = 120). The animals were randomly divided into 3 groups: control (no implant), treated with tridimensional-collagen, and treated with tridimensional-collagen-bidimensional-PDS implants. Each group was divided into 2 subgroups of 60 and 120 days postinjury (DPI). Another 50 pilot animals were used to study the host-implant interaction. Physical activity of the animals was scored and ultrasonographic and bioelectrical characteristics of the injured tendons were investigated weekly. After euthanasia, macro, micro, and nano morphologies and biophysical and biomechanical characteristics of the healing tendons were studied. Treatment improved function of the animals, time dependently. At 60 and 120 DPI, the treated tendons showed significantly higher maximum load, yield, stiffness, stress, and modulus of elasticity compared with controls. The collagen implant induced inflammation and absorbed the migrating fibroblasts in the defect area. By its unique architecture, it aligned the fibroblasts and guided their proliferation and collagen deposition along the stress line of the tendon and resulted in improved collagen density, micro-amp, micro-ohm, water uptake, and delivery of the regenerated tissue. The PDS-sheath covering amplified these characteristics. The implants were gradually absorbed and replaced by a new tendon. Minimum amounts of peritendinous adhesion, muscle atrophy, and fibrosis were observed in the treated groups. Some remnants of the implants were preserved and accepted as a part of the new tendon. The implants were cytocompatible, biocompatible, biodegradable, and effective in tendon healing and regeneration. This

  19. Soft-tissue wound healing by anti-advanced glycation end-products agents.

    Chang, P-C; Tsai, S-C; Jheng, Y-H; Lin, Y-F; Chen, C-C


    The blocking of advanced glycation end-products (AGE) has been shown to reduce diabetic complications and control periodontitis. This study investigated the pattern of palatal wound-healing after graft harvesting under the administration of aminoguanidine (AG), an AGE inhibitor, or N-phenacylthiazolium bromide (PTB), a glycated cross-link breaker. Full-thickness palatal excisional wounds (5.0 x 1.5 mm(2)) were created in 72 Sprague-Dawley rats. The rats received daily intraperitoneal injections of normal saline (control), AG, or PTB and were euthanized after 4 to 28 days. The wound-healing pattern was assessed by histology, histochemistry for collagen matrix deposition, immunohistochemistry for AGE and the AGE receptor (RAGE), and the expression of RAGE, as well as inflammation- and recovery-associated genes. In the first 14 days following AG or PTB treatments, wound closure, re-epithelialization, and collagen matrix deposition were accelerated, whereas AGE deposition, RAGE-positive cells, and inflammation were reduced. RAGE and tumor necrosis factor-alpha were significantly down-regulated at day 7, and heme oxygenase-1 was persistently down-regulated until day 14. The levels of vascular endothelial growth factor, periostin, type I collagen, and fibronectin were all increased at day 14. In conclusion, anti-AGE agents appeared to facilitate palatal wound-healing by reducing AGE-associated inflammation and promoting the recovery process.

  20. Orthopaedic training in Kenya

    Background: Orthopaedic training in Kenya, like in other East, central and .... quite a number of good facilities that would train an ... provide a forum for exchange of ideas and training. (2,3) ... administrators purely interested in service provision,.

  1. The role of PRP and adipose tissue-derived keratinocytes on burn wound healing in diabetic rats.

    Hosseini Mansoub, Navid; Gürdal, Mehmet; Karadadaş, Elif; Kabadayi, Hilal; Vatansever, Seda; Ercan, Gulinnaz


    Introduction: Diabetic burn wounds and ulcers are significant complications of diabetic patients. The aim of this study is to investigate the use of platelet rich-plasma (PRP) and/or keratinocyte-like cells (KLCs) in diabetic thermal wound rat model and to evaluate EGF, FGF-2, TGF-β1, COL1α2, MCP-1 and VEGF-α as wound healing markers at gene expression level. Method: In this study, we used adipose tissue as the source of mesenchymal stem cells (MSCs) and differentiated MSCs into KLCs. KLCs were characterized and transferred to the burn areas on the dorsum of streptozotocine (STZ)-induced diabetic rats. We prepared PRP from rat blood and evaluated its effect alone or in combination with KLCs. On 3 rd , 7 th , 10 th and 14 th days after treatment, wound areas were measured and biopsy samples were excised from the wound areas of the KLCs and/or PRP-treated and untreated diabetic rats to analyze gene expression levels of wound healing markers by qPCR. Results: We observed that, wound contraction started earlier in the PRP and/or KLCs-treated groups in comparison to the control group. However, PRP and KLCs when applied in combination showed additive affect in wound healing. In all groups treated with KLCs and/or PRP, the gene expression levels of evaluated growth factors and COL1α2 increased, while MCP-1 levels decreased when compared to the untreated diabetic rats. In addition, the most prominent difference in qPCR results belongs to combined PRP and KLCs-treated group. Conclusion: We demonstrated that applying PRP and KLCs in combination has a greater potential for treatment of diabetic burn wounds.

  2. The Placenta: Applications in Orthopaedic Sports Medicine.

    McIntyre, James Alexander; Jones, Ian A; Danilkovich, Alla; Vangsness, C Thomas


    Placenta has a long history of use for treating burns and wounds. It is a rich source of collagen and other extracellular matrix proteins, tissue reparative growth factors, and stem cells, including mesenchymal stem cells (MSCs). Recent data show its therapeutic potential for orthopaedic sports medicine indications. To provide orthopaedic surgeons with an anatomic description of the placenta, to characterize its cellular composition, and to review the literature reporting the use of placenta-derived cells and placental tissue allografts for orthopaedic sports medicine indications in animal models and in humans. Systematic review. Using a total of 63 keyword combinations, the PubMed and MEDLINE databases were searched for published articles describing the use of placental cells and/or tissue for orthopaedic sports medicine indications. Information was collected on placental tissue type, indications, animal model, study design, treatment regimen, safety, and efficacy outcomes. Results were categorized by indication and subcategorized by animal model. Outcomes for 29 animal studies and 6 human studies reporting the use of placenta-derived therapeutics were generally positive; however, the placental tissue source, clinical indication, and administration route were highly variable across these studies. Fourteen animal studies described the use of placental tissue for tendon injuries, 13 studies for osteoarthritis or articular cartilage injuries, 3 for ligament injuries, and 1 for synovitis. Both placenta-derived culture-expanded cells (epithelial cells or MSCs) and placental tissue allografts were used in animal studies. In all human studies, commercial placental allografts were used. Five of 6 human studies examined the treatment of foot and ankle pathological conditions, and 1 studied the treatment of knee osteoarthritis. A review of the small number of reported studies revealed a high degree of variability in placental cell types, placental tissue preparation, routes

  3. Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: responses to oxidative stress in ovariectomised rats.

    Jebahi, S; Oudadesse, H; Jardak, N; Khayat, I; Keskes, H; Khabir, A; Rebai, T; El Feki, H; El Feki, A


    New synthetic biomaterials are constantly being developed for wound repair and regeneration. Bioactive glasses (BG) containing strontium have shown successful applications in tissue engineering account of their biocompatibility and the positive biological effects after implantation. This study aimed to assess whether BG-Sr was accepted by the host tissue and to characterize oxidative stress biomarker and antioxidant enzyme profiles during muscle and skin healing. Wistar rats were divided into five groups (six animals per group): the group (I) was used as negative control (T), after ovariectomy, groups II, III, IV and V were used respectively as positive control (OVX), implanted tissue with BG (OVX-BG), BG-Sr (OVX-BG-Sr) and presented empty defects (OVX-NI). Soft tissues surrounding biomaterials were used to estimate superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) concentration. Our results show that 60 days after operation, treatment of rats with BG-Sr significantly increased MDA concentration and caused an increase of SOD, CAT and GPx activities in both skin and muscular tissues. BG-Sr revealed maturation of myotubes followed a normal appearance of muscle regenerated with high density and mature capillary vessels. High wound recovery with complete re-epithelialization and regeneration of skin was observed. The results demonstrate that the protective action against reactive oxygen species (ROS) was clearly observed in soft tissue surrounding BG-Sr. Moreover, the potential use of BG-Sr rapidly restores the wound skin and muscle structural and functional properties. The BG advantages such as ion release might make BG-Sr an effective biomaterial choice for antioxidative activity. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing

    Henshaw, F. R.; Boughton, P.; Lo, L.; McLennan, S. V.; Twigg, S. M.


    Aims/Hypothesis. Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Methods. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1??g?rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulati...

  5. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.

    Vetter, A; Liu, Y; Witt, F; Manjubala, I; Sander, O; Epari, D R; Fratzl, P; Duda, G N; Weinkamer, R


    During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. A two-compartment mechanochemical model of the roles of transforming growth factor and tissue tension in dermal wound healing

    Murphy, Kelly E.; Hall, Cameron L.; McCue, Scott W.; Sean McElwain, D.L.


    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGF β) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF β and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF β in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF β significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. © 2010 Elsevier Ltd.

  7. A two-compartment mechanochemical model of the roles of transforming growth factor and tissue tension in dermal wound healing

    Murphy, Kelly E.


    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGF β) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF β and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF β in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF β significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. © 2010 Elsevier Ltd.

  8. American Academy of Orthopaedic Surgeons

    ... Research Research Tools Research Roadmap Facts and Figures Unified Orthopaedic Research Agenda Sex and Gender in Research ... Career Center Clinician Scholar Career Development Clinician-Patient Communication Leadership Fellows Program Medical Student Resources Postgraduate Orthopaedic ...

  9. Orthopaedic Footwear Design


    Although the need for orthopaedic shoes is increasing, the number of skilled shoemakers has declined. This has led to the development of a CAD/CAM system to design and fabricate, orthopaedic footwear. The NASA-developed RIM database management system is the central repository for CUSTOMLAST's information storage. Several other modules also comprise the system. The project was initiated by Langley Research Center and Research Triangle Institute in cooperation with the Veterans Administration and the National Institute for Disability and Rehabilitation Research. Later development was done by North Carolina State University and the University of Missouri-Columbia. The software is licensed by both universities.

  10. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin


    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  11. A comparative study to evaluate the effect of two different abutment designs on soft tissue healing and stability of mucosal margins

    Patil, Ratnadeep; van Brakel, Ralph; Iyer, Kavita; Huddleston Slater, James; de Putter, Cornelis; Cune, Marco

    Aim To evaluate the effect of two different abutment designs on soft tissue healing and the stability of the mucosal margin in vivo. Materials and methods Twenty-nine subjects received two, non-adjacent endosseous implants in the esthetic zone. Subsequently, conventional (control) and curved

  12. East African Orthopaedic Journal: Submissions

    Author Guidelines. The East African Orthopaedic Journal is published biannually by the Kenya Orthopaedics Association. Its primary objective is to give researchers in orthopaedics and ... Format should be as follows; Details of authors as for original articles, summary of not more than 200 words, introduction, case report,

  13. Wound Healing and ndash; A Proteomic Analysis of the Effect of Erythropoietin on Granulation Tissue Isolated from ePTFE Implants

    Bekka Christensen


    Conclusion: Daily injection of recombinant human erythropoietin of 1000 IU/kg alters the protein expression of GAPDH, ENOA and TPIS in granulation tissue from wounds on postoperative day 9. The successful combination of proteomic analysis of wound tissue and the ePTFE wound model could advance our knowledge of the complex healing process. [Arch Clin Exp Surg 2014; 3(1.000: 26-33

  14. Mesenchymal Stem Cells in Bone Tissue Regeneration and Application to Bone Healing

    Crha, M.; Nečas, A.; Srnec, R.; Janovec, J.; Raušer, P.; Urbanová, L.; Plánka, L.; Jančář, J.; Amler, Evžen


    Roč. 78, č. 4 (2009), s. 635-642 ISSN 0001-7213 R&D Projects: GA MŠk 2B06130; GA AV ČR IAA500390702 Institutional research plan: CEZ:AV0Z50390703 Keywords : tissue engineering * biomaterials * segmental bone lesion Subject RIV: BO - Biophysics Impact factor: 0.403, year: 2009

  15. [Orthopaedics' megalomania - myth or mobbing?

    Gundtoft, Per Hviid; Brand, Eske; Klit, Jakob; Weisskirchner, Kristoffer Barfod


    It is a general impression in the world of medicine that orthopaedic surgeons differ from doctors of other specialities in terms of intellect and self-confidence. The purpose of this study was to evaluate the self-confidence of orthopaedics. We asked doctors from 30 different specialities to fill out a questionnaire. In addition to this, the participating orthopaedics were asked to rate their self-perceived surgical skills. In all, 120 orthopaedics and 416 non-orthopaedic doctors completed the questionnaire. There was no difference in GSE scores between orthopaedics and other doctors (p = 0.58). 98% of young orthopaedics estimated that their surgical talent was average or above average when compared with their colleagues on the same level of education. 72% believed that they were "equally talented", "more talented", or "far more talented" than their colleagues on a higher level of education. 76% believed that when assisting a senior surgeon the patients would "sometimes" (60%), "often" (14%) or "always" (2%) be better off if they were the ones performing the operation. More orthopaedics than non-orthopaedics believed that their speciality was regarded as one of the least important specialities in the world of medicine (p = 0.001). Orthopaedic surgeons in general are not more self-confident than other doctors or the average population, but young orthopaedic surgeons have a very high level of confidence in their own operation skills. none. none.

  16. Predictive validity of granulation tissue color measured by digital image analysis for deep pressure ulcer healing: a multicenter prospective cohort study.

    Iizaka, Shinji; Kaitani, Toshiko; Sugama, Junko; Nakagami, Gojiro; Naito, Ayumi; Koyanagi, Hiroe; Konya, Chizuko; Sanada, Hiromi


    This multicenter prospective cohort study examined the predictive validity of granulation tissue color evaluated by digital image analysis for deep pressure ulcer healing. Ninety-one patients with deep pressure ulcers were followed for 3 weeks. From a wound photograph taken at baseline, an image representing the granulation red index (GRI) was processed in which a redder color represented higher values. We calculated the average GRI over granulation tissue and the proportion of pixels exceeding the threshold intensity of 80 for the granulation tissue surface (%GRI80) and wound surface (%wound red index 80). In the receiver operating characteristics curve analysis, most GRI parameters had adequate discriminative values for both improvement of the DESIGN-R total score and wound closure. Ulcers were categorized by the obtained cutoff points of the average GRI (≤80, >80), %GRI80 (≤55, >55-80, >80%), and %wound red index 80 (≤25, >25-50, >50%). In the linear mixed model, higher classes for all GRI parameters showed significantly greater relative improvement in overall wound severity during the 3 weeks after adjustment for patient characteristics and wound locations. Assessment of granulation tissue color by digital image analysis will be useful as an objective monitoring tool for granulation tissue quality or surrogate outcomes of pressure ulcer healing. © 2012 by the Wound Healing Society.

  17. Development and validation of a new scoring system to predict wound healing after endovascular therapy in critical limb ischemia with tissue loss.

    Kobayashi, Norihiro; Hirano, Keisuke; Nakano, Masatsugu; Muramatsu, Toshiya; Tsukahara, Reiko; Ito, Yoshiaki; Ishimori, Hiroshi; Yamawaki, Masahiro; Araki, Motoharu; Takimura, Hideyuki; Sakamoto, Yasunari


    To develop a scoring system to predict wound healing in critical limb ischemia (CLI) patients treated with endovascular therapy (EVT). Between July 2007 and January 2013, 184 patients (118 men; mean age 73.0 years) with CLI (217 limbs) and tissue loss underwent EVT. From this cohort 236 separate wounds were divided into development (n = 118) and validation (n = 118) groups. Predictors of wound healing were identified using multivariable analysis. Each predictor was assigned a score based on its regression coefficient, and total scores were calculated, ranging from 0 to 1 for low risk up to ≥ 4 for high risk of a nonhealing wound. The performance of the scoring system in the prediction of wound healing was evaluated by calculating the area under the receiver operating characteristics (ROC) curve. By multivariable analysis, a University of Texas grade ≥ 2 (HR 0.524, 95% CI 0.288-0.951, p = 0.034), an infected wound (HR 0.497, 95% CI 0.276-0.894, p = 0.020), dependence on hemodialysis (HR 0.459, 95% CI 0.259-0.814, p = 0.008), no visible blood flow to the wound (HR 0.343, 95% CI 0.146-0.802, p = 0.014), and major tissue loss (HR 0.322, 95% CI 0.165-0.630, p = 0.001) predicted a non-healing wound. The 1-year rates of wound healing in the low-, intermediate-, and high-risk groups were 94.6%, 67.6%, and 9.1%, respectively, in the development group (p wound healing in CLI patients after endovascular revascularization and is potentially helpful in deciding if additional adjuncts or revascularization should be considered. © The Author(s) 2015.

  18. [Histologic assessment of tissue healing of hyaline cartilage by use of semiquantitative evaluation scale].

    Vukasović, Andreja; Ivković, Alan; Jezek, Davor; Cerovecki, Ivan; Vnuk, Drazen; Kreszinger, Mario; Hudetz, Damir; Pećina, Marko


    Articular cartilage is an avascular and aneural tissue lacking lymph drainage, hence its inability of spontaneous repair following injury. Thus, it offers an interesting model for scientific research. A number of methods have been suggested to enhance cartilage repair, but none has yet produced significant success. The possible application of the aforementioned methods has brought about the necessity to evaluate their results. The objective of this study was to analyze results of a study of the effects of the use of TGF-beta gene transduced bone marrow clot on articular cartilage defects using ICRS visual histological assessment scale. The research was conducted on 28 skeletally mature sheep that were randomly assigned to four groups and surgically inflicted femoral chondral defects. The articular surfaces were then treated with TGF-beta1 gene transduced bone marrow clot (TGF group), GFP transduced bone marrow clot (GFP group), untransduced bone marrow clot (BM group) or left untreated (NC group). The analysis was performed by visual examination of cartilage samples and results were obtained using ICRS visual histological assessment scale. The results were subsequently subjected to statistical assessment using Kruskal-Wallis and Mann-Whitney tests. Kruskal-Wallis test yielded statistically significant difference with respect to cell distribution. Mann-Whitney test showed statistically significant difference between TGF and NC groups (P = 0.002), as well as between BM and NC groups (P = 0.002 with Bonferroni correction). Twenty-six of the twenty-eight samples were subjected to histologic and subsequent statistical analysis; two were discarded due to faulty histology technique. Our results indicated a level of certainty as to the positive effect of TGF-beta1 gene transduced bone marrow clot in restoration of articular cartilage defects. However, additional research is necessary in the field. One of the significant drawbacks on histologic assessment of cartilage

  19. Biomaterials in orthopaedics

    Navarro, M; Michiardi, A; Castaño, O; Planell, J.A


    At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field. PMID:18667387

  20. Smartphones in orthopaedics.

    Al-Hadithy, Nawfal; Gikas, Panagiotis D; Al-Nammari, Shafic Said


    With the introduction of the European Working Time Directive, surgical trainees are facing limited training opportunities and doctors are required to maximise their training opportunities. Smartphone sales have been rapidly increasing over the last five years and can be used as a training tool for the orthopaedic trainee and surgeon. Common uses include applications (AO, eLogbook and PubMed), Ebooks, online Logbooks, Guidelines and surgical techniques. In addition, smartphones can be used to immediately complete work-based assessments, in the absence of computers, hopefully increasing completion rates and reliability. Some journals now provide podcasts and video tutorials which may be accessed on smartphones, which is useful for higher examinations. Smartphones can also be used in the clinical setting to take photographs of wounds. Smartphones are enjoying increased uptake and application in the workplace and we review their use for orthopaedic surgeons and trainees to allow them to make the most out of their training opportunities.

  1. Influence of collar design on peri-implant tissue healing around immediate implants: A pilot study in Foxhound dogs.

    Calvo-Guirado, José Luis; López-López, Patricia Jara; Maté Sánchez de Val, José Eduardo; Mareque-Bueno, Javier; Delgado-Ruiz, Rafael Arcesio; Romanos, Georgios E


    The study aims to assess the soft tissue level (STL) and crestal bone level (CBL), of titanium dental implants with different mixed collar abutments configurations. This study included 48 implants with the same dimensions. They were divided into two groups of 24 implants each one: implants with a polished collar of 2 mm plus a roughened area of 0.8 mm (CONTROL) and implants with a polished collar of 0.8 mm plus a micro-threated and roughened area of 2 mm (TEST). The implants were inserted randomly in the post-extraction sockets of P2, P3, P4, and M1 bilaterally in the lower jaw of six foxhound dogs. STL and CBL were evaluated after 8 and 12 weeks by histology and histometry. All implants were clinically and histologically osseointegrated. Healing patterns examined microscopically at 8 and 12 weeks for both groups yielded similar qualitative findings for the STL evaluation, without significant differences between groups (P > 0.05). CBL was significantly higher in the buccal side in comparison with the lingual side for both groups (P implant shoulder to the top of the bony crest) and IS-C (distance from the implant shoulder to the first bone-to-implant contact) values significantly higher for control group in comparison with test (P < 0.05). At 12 weeks, CBL showed increased values for both groups that were higher in controls group in comparison with test (P < 0.05). Bony crest resorption could not be avoided both at test and control sites. However, the neck conformation at the test sites reduced the buccal bone resorption. Soft tissue dimensions were similar both at the test and control sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.

    Lyons, Frank G


    One of the key challenges in tissue engineering is to understand the host response to scaffolds and engineered constructs. We present a study in which two collagen-based scaffolds developed for bone repair: a collagen-glycosaminoglycan (CG) and biomimetic collagen-calcium phosphate (CCP) scaffold, are evaluated in rat cranial defects, both cell-free and when cultured with MSCs prior to implantation. The results demonstrate that both cell-free scaffolds showed excellent healing relative to the empty defect controls and somewhat surprisingly, to the tissue engineered (MSC-seeded) constructs. Immunological analysis of the healing response showed higher M1 macrophage activity in the cell-seeded scaffolds. However, when the M2 macrophage response was analysed, both groups (MSC-seeded and non-seeded scaffolds) showed significant activity of these cells which are associated with an immunomodulatory and tissue remodelling response. Interestingly, the location of this response was confined to the construct periphery, where a capsule had formed, in the MSC-seeded groups as opposed to areas of new bone formation in the non-seeded groups. This suggests that matrix deposited by MSCs during in vitro culture may adversely affect healing by acting as a barrier to macrophage-led remodelling when implanted in vivo. This study thus improves our understanding of host response in bone tissue engineering.

  3. Smartphones in orthopaedics

    Al-Hadithy, Nawfal; Gikas, Panagiotis D; Al-Nammari, Shafic Said


    With the introduction of the European Working Time Directive, surgical trainees are facing limited training opportunities and doctors are required to maximise their training opportunities. Smartphone sales have been rapidly increasing over the last five years and can be used as a training tool for the orthopaedic trainee and surgeon. Common uses include applications (AO, eLogbook and PubMed), Ebooks, online Logbooks, Guidelines and surgical techniques. In addition, smartphones can be used to ...

  4. Zinc, copper, and selenium tissue levels and their relation to subcutaneous abscess, minor surgery, and wound healing in humans

    Mirastschijski, Ursula; Martin Moreno, Alicia; Jorgensen, Lars N


    Trace element involvement in wounds left to heal by secondary intention needs clarification. We have previously reported faster healing of wounds following acute surgery compared with elective excision of pilonidal sinus disease. The effect of topical zinc on the closure of the excisional wounds ...

  5. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.


    The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules. PMID:23268651

  6. Comment on "Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing".

    Li, Hongling; Cao, Cong; Huang, Ai; Man, Yi


    A recent paper in this journal, presented a novel method by topical application of growth factors in stimulating diabetic cutaneous wound healing that caught our attention. We believe that the experimental method in the article is efficient and creative, but it also has some controversies and shortcomings to be discussed. We noted that the authors used "Tegaderm" as a semiocclusive dressing film and stated that it exerted a "splinting effect" on the wound margins and controlled contraction. Indeed, the "Tegaderm" itself can serve as a dressing film to isolate the wound bed with outside environments while the "splinting effect" is mainly achieved by adding silicone splints around the wound. Considering the unique properties of silicone splints and "Tegaderm," our experimental group propose an alternative method named "combined-suturing" technique that is not only suturing the silicone splints but also securing the "Tegaderm" around the wound. The specific reasons and operative procedures are explained in detail in this letter.

  7. Ultra-hydrophilic stent platforms promote early vascular healing and minimise late tissue response: a potential alternative to second-generation drug-eluting stents.

    Kolandaivelu, Kumaran; Bailey, Lynn; Buzzi, Stefano; Zucker, Arik; Milleret, Vincent; Ziogas, Algirdas; Ehrbar, Martin; Khattab, Ahmed A; Stanley, James R L; Wong, Gee K; Zani, Brett; Markham, Peter M; Tzafriri, Abraham R; Bhatt, Deepak L; Edelman, Elazer R


    Simple surface modifications can enhance coronary stent performance. Ultra-hydrophilic surface (UHS) treatment of contemporary bare metal stents (BMS) was assessed in vivo to verify whether such stents can provide long-term efficacy comparable to second-generation drug-eluting stents (DES) while promoting healing comparably to BMS. UHS-treated BMS, untreated BMS and corresponding DES were tested for three commercial platforms. A thirty-day and a 90-day porcine coronary model were used to characterise late tissue response. Three-day porcine coronary and seven-day rabbit iliac models were used for early healing assessment. In porcine coronary arteries, hydrophilic treatment reduced intimal hyperplasia relative to the BMS and corresponding DES platforms (1.5-fold to threefold reduction in 30-day angiographic and histological stenosis; p<0.04). Endothelialisation was similar on UHS-treated BMS and untreated BMS, both in swine and rabbit models, and lower on DES. Elevation in thrombotic indices was infrequent (never observed with UHS, rare with BMS, most often with DES), but, when present, correlated with reduced endothelialisation (p<0.01). Ultra-hydrophilic surface treatment of contemporary stents conferred good healing while moderating neointimal and thrombotic responses. Such surfaces may offer safe alternatives to DES, particularly when rapid healing and short dual antiplatelet therapy (DAPT) are crucial.

  8. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing.

    Zuliani-Alvarez, Lorena; Midwood, Kim S


    Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.

  9. Tissue

    David Morrissey


    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  10. Peri-implant soft tissue and marginal bone adaptation on implant with non-matching healing abutments: micro-CT analysis.

    Finelle, Gary; Papadimitriou, Dimitrios E V; Souza, André B; Katebi, Negin; Gallucci, German O; Araújo, Mauricio G


    To assess (i) the outcome of changing the horizontal-offset dimension on the peri-implant soft tissues and the crestal bone and (ii) the effect of different healing abutments (flared vs. straight) on the marginal peri-implant soft tissues and crestal bone. Two-piece dental implants diameters of 3.5 and 4.5 mm were placed at least 1 mm subcrestal in five beagle dogs. Three different investigational groups: (i) 3.5-mm-diameter implant with narrow healing abutment (3.5N), (ii) 4.5-mm-diameter implant with narrow healing abutment (4.5N), and (iii) 3.5-mm-diameter implant with wide healing abutment (3.5W), were assessed. After 4 months of healing, the vertical distance from the marginal crestal bone (MB) to the implant shoulder (IS); the vertical distance from the IS to the first bone-to-implant contact; and the horizontal distance of bone ingrowth on the implant platform were measured with a high-resolution micro-CT (Xradia MicroXCT-200 system). Implants with a narrow healing caps showed an interproximal MB located between 0 and 1 mm above the implant shoulder, while the 3.5W group exhibits a mean value -0.50 mm. As all implants in group 3.5N presented a fBIC located at the level of the IS. For the 4.5N group, the mean fBIC-IS distance was -0.52 mm apically to the IS. For the 3.5WC group, the mean fBIC-IS distance was -1.42 mm. Horizontal bone apposition was only observed for the 3.5N group and the 4.5N group. The dimension of the horizontal offset would play a minimal role in reducing bone remodeling, whereas the configuration of the transmucosal component would directly influence marginal bone remodeling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Stem Cell Therapies in Orthopaedic Trauma

    Marcucio, Ralph S.; Nauth, Aaron; Giannoudis, Peter V.; Bahney, Chelsea; Piuzzi, Nicolas S.; Muschler, George; Miclau, Theodore


    Stem cells offer great promise to help understand the normal mechanisms of tissue renewal, regeneration, and repair, and also for development of cell-based therapies to treat patients after tissue injury. Most adult tissues contain stem cells and progenitor cells that contribute to homeostasis, remodeling and repair. Multiple stem and progenitor cell populations in bone are found in the marrow, the endosteum, and the periosteum. They contribute to the fracture healing process after injury and...

  12. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    Frederico O Ribeiro

    Full Text Available The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2 has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.

  13. Tissue response and wound healing after placement of two types of bioengineered grafts containing vital cells in submucosal maxillary pouches: an experimental pilot study in rabbits.

    Bornstein, Michael M; Reichart, Peter A; Buser, Daniel; Bosshardt, Dieter D


    This pilot study evaluated the wound healing and tissue response after placement of two different skin substitutes in subgingival mucosal pouches in rabbits. Four rabbits were selected to receive a commercially available skin substitute consisting of a collagen matrix with fibroblasts and an epithelial layer (test membrane 1) and a prototype device consisting of a collagen matrix with fibroblasts only (test membrane 2). In each rabbit, two horizontal incisions were made in the buccal alveolar mucosa of the maxilla bilaterally to create submucosal pouches. Three pouches in each animal were filled with either the test 1 or test 2 membranes, and one pouch was left without a membrane (sham-operated control). All rabbits were sacrificed after a healing period of 4 weeks, and histologic samples were prepared and examined. After a healing period of 1 month, both tested membranes were still visible in the sections. Test membrane 1 was still bilayered, contained inflammatory cells in its center, and was encapsulated by a thick fibrous tissue. Numerous ectopic calcifications were evident in the collagenous part of the membrane and in association with some basal epithelial cells. Test membrane 2 was also encapsulated in fibrous tissue, with inflammatory cells present only between the fibrous encapsulation and the remnants of the membrane. For test membrane 2, no calcifications were visible. Test membrane 1 seemed to be more resistant to degradation, but there was also a more pronounced inflammatory reaction in comparison to test membrane 2, especially in the vicinity of the keratinocytes. The significance of the ectopic calcifications, along with that of the resorption or degradation processes of both tested membranes, must be evaluated in future experimental studies, with different time points after implantation examined.

  14. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice.

    Devalliere, Julie; Dooley, Kevin; Hu, Yong; Kelangi, Sarah S; Uygun, Basak E; Yarmush, Martin L


    Growth factor therapy is a promising approach for chronic diabetic wounds, but strategies to efficiently and cost-effectively deliver active molecules to the highly proteolytic wound environment remain as major obstacles. Here, we re-engineered keratinocyte growth factor (KGF) and the cellular protective peptide ARA290 into a protein polymer suspension with the purpose of increasing their proteolytic resistance, thus their activity in vivo. KGF and ARA290 were fused with elastin-like peptide (ELP), a protein polymer derived from tropoelastin, that confers the ability to separate into a colloidal suspension of liquid-like coacervates. ELP fusion did not diminish peptides activities as demonstrated by ability of KGF-ELP to accelerate keratinocyte proliferation and migration, and ARA290-ELP to protect cells from apoptosis. We examined the healing effect of ARA290-ELP and KGF-ELP alone or in combination, in a full-thickness diabetic wound model. In this model, ARA290-ELP was found to accelerate healing, notably by increasing angiogenesis in the wound bed. We further showed that co-delivery of ARA290 and KGF, with the 1:4 KGF-ELP to ARA290-ELP ratio, was the most effective wound treatment with the fastest healing rate, the thicker granulation tissue and regenerated epidermis after 28 days. Overall, this study shows that ARA290-ELP and KGF-ELP constitute promising new therapeutics for treatment of chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Origins of eponymous orthopaedic equipment.

    Meals, Clifton; Wang, Jeffrey


    Orthopaedists make great use of eponymous equipment, however the origins of these tools are unknown to many users. This history enriches, enlightens, and enhances surgical education, and may inspire modern innovation. We explored the origins of common and eponymous orthopaedic equipment. We selected pieces of equipment named for their inventors and in the broadest use by modern orthopaedists. We do not describe specialized orthopaedic implants and instruments owing to the overwhelming number of these devices. The history of this equipment reflects the coevolution of orthopaedics and battlefield medicine. Additionally, these stories evidence the primacy of elegant design and suggest that innovation is often a process of revision and refinement rather than sudden inspiration. Their history exposes surgical innovators as brilliant, lucky, hardworking, and sometimes odd. These stories amuse, enlighten, and may inspire modern orthopaedists to develop creative solutions of their own. The rich history of the field's eponymous instruments informs an ongoing tradition of innovation in orthopaedics.

  16. Comparative evaluation of efficacy and soft tissue wound healing using diode laser (810 nm versus conventional scalpel technique for second-stage implant surgery

    Manvir Kaur


    Full Text Available Background: This study was aimed to compare the efficacy and soft tissue wound healing using diode lasers (810 nm versus conventional scalpel approach as uncovering technique during the second-stage surgery in implants. This was a prospective, randomized study which was conducted on 20 subjects in which the implants were already placed using a two-stage technique. Implant sites were examined and the patients were randomly divided into two groups. Materials and Methods: Patients were randomly divided into two groups, i.e., Group A and Group B. In Group A, implants were uncovered as a part of Stage II surgery with conventional scalpel technique, and in Group B, implants were uncovered using 810 nm diode laser. Clinical parameters such as need and amount of local anesthesia, duration of surgery, intraoperative bleeding, pain index, wound healing index (HI, and time for impression taking were recorded at various intervals. Results: Statistical differences for clinical parameters were seen between Group A and Group B showing uncovery of implant with laser more effective, and for time of impression taking, difference was statistically significant showing that impressions were taken early in case of Group A because of better healing which was recorded with help of HI, but the difference in time of healing between Group A and Group B was not statistically significant. Conclusion: The use of a diode laser (810 nm in the second-stage implant surgery can minimize surgical trauma, reduce the amount of anesthesia, improve visibility during surgery due to the absence of bleeding, and eliminate postoperative discomfort.

  17. An information revolution in orthopaedics.

    Goldberg, A J; MacGregor, A; Spencer, S A


    With the established success of the National Joint Registry and the emergence of a range of new national initiatives for the capture of electronic data in the National Health Service, orthopaedic surgery in the United Kingdom has found itself thrust to the forefront of an information revolution. In this review we consider the benefits and threats that this revolution poses, and how orthopaedic surgeons should marshal their resources to ensure that this is a force for good.




    Full Text Available BACKGROUND: Management of open fractures and massive soft tissue injuries around leg ankle, foot and hand requires multi - disciplinary approach. VAC therapy is an innovative approach to the treatment of these wounds. VAC therapy facilitates granulation tissue formation, promotes healing, reduces infection and allows early skin grafting or flap closure. AIM: To describe our experience with VAC therapy for orthopaedics trauma around leg ankle, foot and hand. MATERIALS AND METHODS : 41 patients were included in Prospective Study performed at Preethi hospital, Madurai in years 2011 - 12. Only patients having t raumatic wound of leg, ankle, foot and hand were i ncluded. Patients with bleeding disorders were not included. VAC therapy was used as adjuvant to debridement in wound care. RESULTS: In 39 patients lower limb and in 2 patient hands was involved. The mean age was 39.3 years and 38 pateints were male 3 were female. Mean wound grade after VAC therapy decrease by 1 grade. Average wound area reduction was 10%. The mean duration of VAC therapy was 5.2 days. Plastic surgery was done in mean 6 days after removal of VAC dressing. Local flap was required in only 39% of patients. After VAC therapy all 10 patients having heel injury showed good granulation tissue. Complications like infection, bleeding and skin irritation were not seen in our study. CONCLUSION : VAC therapy is a viable adjuvant in the management of trau matic open wounds. It facilitates the rapid granulation tissue formation and wound healing. It reduces the duration of treatment, hospital stay and need of extensive plastic surgery

  19. Saliva and wound healing.

    Brand, Henk S; Ligtenberg, Antoon J M; Veerman, Enno C I


    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In addition, saliva contains several proteins which play a role in the different stages of wound healing. Saliva contains substantial amounts of tissue factor, which dramatically accelerates blood clotting. Subsequently, epidermal growth factor in saliva promotes the proliferation of epithelial cells. Secretory leucocyte protease inhibitor inhibits the tissue-degrading activity of enzymes like elastase and trypsin. Absence of this protease inhibitor delays oral wound healing. Salivary histatins in vitro promote wound closure by enhancing cell spreading and cell migration, but do not stimulate cell proliferation. A synthetic cyclic variant of histatin exhibits a 1,000-fold higher activity than linear histatin, which makes this cyclic variant a promising agent for the development of a new wound healing medication. Conclusively, recognition of the many roles salivary proteins play in wound healing makes saliva a promising source for the development of new drugs involved in tissue regeneration.

  20. Cellular response of healing tissue to DegraPol tube implantation in rabbit Achilles tendon rupture repair: an in vivo histomorphometric study.

    Buschmann, Johanna; Meier-Bürgisser, Gabriella; Bonavoglia, Eliana; Neuenschwander, Peter; Milleret, Vincent; Giovanoli, Pietro; Calcagni, Maurizio


    In tendon rupture repair, improvements such as higher primary repair strength, anti-adhesion and accelerated healing are needed. We developed a potential carrier system of an electrospun DegraPol tube, which was tightly implanted around a transected and conventionally sutured rabbit Achilles tendon. Histomorphometric analysis of the tendon tissue 12 weeks postoperation showed that the tenocyte density, tenocyte morphology and number of inflammation zones were statistically equivalent, whether or not DegraPol tube was implanted; only the collagen fibres were slightly less parallelly orientated in the tube-treated case. Comparison of rabbits that were operated on both hind legs with ones that were operated on only one hind leg showed that there were significantly more inflammation zones in the two-leg cases compared to the one-leg cases, while the implantation of a DegraPol tube had no such adverse effects. These findings are a prerequisite for using DegraPol tube as a carrier system for growth factors, cytokines or stem cells in order to accelerate the healing process of tendon tissue. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Molecular Mechanisms of Soft Tissue Regeneration and Bone Formation in Mice: Implications in Fracture Repair and Wound Healing in Humans

    Baylink, David


    The primary goal of the project funded by the U.S. Army is to identify genes which play an anabolic role in bone tissue and soft tissue function, particularly during regeneration, and to clarify the function of these genes...

  2. Expression and activity levels of chymase in mast cells of burn wound tissues increase during the healing process in a hamster model.

    Dong, Xianglin; Xu, Tao; Ma, Shaolin; Wen, Hao


    The present study aimed to investigate the changes in the expression levels and activity of mast cell chymase in the process of burn wound healing in a hamster model of deep second-degree burn. The hamster model was established by exposing a ~3 cm diameter area of bare skin to hot water (75°C) for 0, 6, 8, 10 or 12 sec. Tissue specimens were collected 24 h after burning and histological analysis revealed that hot water contact for 12 sec was required to produce a deep second-degree burn. Quantitative polymerase chain reaction and a radioimmunoassay were used to the determine changes in chymase mRNA expression levels and activity. The mRNA expression levels and activity of chymase were increased in the burn wound tissues when compared with the normal skin. However, no statistically significant differences were observed in mast cell chymase activity amongst the various post-burn stages. Chymase mRNA expression levels peaked at day 1 post-burn, subsequently decreasing at days 3 and 7 post-burn and finally increasing again at day 14 post-burn. In summary, a hamster model of deep second-degree burn can be created by bringing the skin into contact with water at 75°C for 12 sec. Furthermore, the mRNA expression levels and activity of chymase in the burn wound tissues increased when compared with those in normal skin tissues.

  3. Computational radiology for orthopaedic interventions

    Li, Shuo


    This book provides a cohesive overview of the current technological advances in computational radiology, and their applications in orthopaedic interventions. Contributed by the leading researchers in the field, this volume covers not only basic computational radiology techniques such as statistical shape modeling, CT/MRI segmentation, augmented reality and micro-CT image processing, but also the applications of these techniques to various orthopaedic interventional tasks. Details about following important state-of-the-art development are featured: 3D preoperative planning and patient-specific instrumentation for surgical treatment of long-bone deformities, computer assisted diagnosis and planning of periacetabular osteotomy and femoroacetabular impingement, 2D-3D reconstruction-based planning of total hip arthroplasty, image fusion for  computer-assisted bone tumor surgery, intra-operative three-dimensional imaging in fracture treatment, augmented reality based orthopaedic interventions and education, medica...


    traditional methods which include debridement, skin grafting, flaps, compression dressing and stockings, allografts and vascular surgery. The less traditional ones include hyperbaric oxygen, enzymatic debridement and autolysis. Bioengineering which creates tissue for replacement. There have been other weird traditional.

  5. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants.

    Jäger, Marcus; Jennissen, Herbert P; Dittrich, Florian; Fischer, Alfons; Köhling, Hedda Luise


    The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of "smaller, faster, cheaper", nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.

  6. April 2006. 32 Major Orthopaedic Procedures



    Apr 1, 2006 ... Major Orthopaedic Procedures: 17 Year Trends. Biruk Lambisso Wamisho1 ... financial and logistic constraints with poor compliance of ... Modern orthopaedic surgery is very expensive. A highly ..... Case management. Tribury.

  7. Developmental orthopaedic diseases in foals

    Şİrİn, Özlem; Alkan, Zeki


    Developmental Orthopaedic Diseases (DOD) is seen frequently in horses which completed their maturity. Osteochondrosis, physitis, angular limb deformities, flexural deformities, juvenil arthritis, cervical vertebral anomalies, cuboidal bone abnormalities are problems investigated under Developmental Orthopaedic Diseases title. This diseases can develop single or some together in fast growing, heavy animals (especially Arabian and English Thoroughbreds). Multifactorial causes of this diseases etiopathogenesis can be listed as genetic predisposition, trauma, nutrition, vitamins/minerals and endocrine disorders. But the exact causes of these diseases are not known. In this review detailed information are given about the diseases mentioned above

  8. Orthopaedic training in Kenya | Mulimba | East African Orthopaedic ...

    Objective: To do a survey of the current orthopaedic specialists in Kenya's training since their first medical degrees. Determine the duration, facilities and methods of training. Methods: A number of doctors trained under different arrangements were identified, interviewed and where curriculum was available this was read.

  9. Patient compliance and effect of orthopaedic shoes

    Philipsen, A B; Ellitsgaard, N; Krogsgaard, M R


    Orthopaedic shoes are individually handmade after a prescription from an orthopaedic surgeon, hence relatively expensive. Bad compliance is mentioned in the literature but not investigated. In order to evaluate patient compliance and the effect of orthopaedic shoes, 85 patients who were prescribed...

  10. Solid emulsion gel as a vehicle for delivery of polyunsaturated fatty acids: implications for tissue repair, dermal angiogenesis and wound healing.

    Shingel, Kirill I; Faure, Marie-Pierre; Azoulay, Laurent; Roberge, Christophe; Deckelbaum, Richard J


    The paper describes preparation and biological characterization of the solid hybrid biomaterial that was designed for cell-targeted lipid delivery in healing tissues. The material referred to as 'solid emulsion gel' combines a protein-stabilized lipid emulsion and a hydrogel structure in a single compartment. The potential of the omega-3 (n-3)-fatty acids rich solid emulsion gel for tissue repair applications was investigated at the macro-, micro-, molecular and gene expression levels, using human fibroblasts and endothelial cells and a porcine model of full-thickness wounds. Being non-cytotoxic in vitro and in vivo, the biomaterial was found to affect cell metabolism, modulate expression of certain genes, stimulate early angiogenesis and promote wound repair in vivo. The neovascular response in vivo was correlated with upregulated expression of the genes involved in lipid transport (e.g. adipophilin), anti-apoptosis (e.g. heat shock proteins, haem oxygenase 1) and angiogenesis (vascular endothelial growth factor, placental growth factor). Collectively, the results of this study provide first evidence that the angiogenic response provided by solid emulsion gel-mediated delivery of n-3 fatty acids is an alternative to the topical administration of exogenous growth factors or gene therapy, and can be advantageously used for the stimulation of tissue repair in complex wounds. Copyright (c) 2008 John Wiley & Sons, Ltd.

  11. A two-compartment mechanochemical model of the roles of transforming growth factor β and tissue tension in dermal wound healing.

    Murphy, Kelly E; Hall, Cameron L; McCue, Scott W; Sean McElwain, D L


    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGFβ) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGFβ and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGFβ in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGFβ significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Hand dominance in orthopaedic surgeons.

    Lui, Darren F


    Handedness is perhaps the most studied human asymmetry. Laterality is the preference shown for one side and it has been studied in many aspects of medicine. Studies have shown that some orthopaedic procedures had poorer outcomes and identified laterality as a contributing factor. We developed a questionnaire to assess laterality in orthopaedic surgery and compared this to an established scoring system. Sixty-two orthopaedic surgeons surveyed with the validated Waterloo Handedness Questionnaire (WHQ) were compared with the self developed Orthopaedic Handedness Questionnaire (OHQ). Fifty-eight were found to be right hand dominant (RHD) and 4 left hand dominant (LHD). In RHD surgeons, the average WHQ score was 44.9% and OHQ 15%. For LHD surgeons the WHQ score was 30.2% and OHQ 9.4%. This represents a significant amount of time using the non dominant hand but does not necessarily determine satisfactory or successful dexterity transferable to the operating room. Training may be required for the non dominant side.



    Sep 11, 2017 ... East African Orthopaedic Journal. Advocacy may be ... taxation of medical equipment and implants in Kenya. In 2013 a change ... Asia countries especially India were doing the opposite. They reduced ... Most developing countries have been dealing with communicable ... The role of advocacy is huge here.

  14. Do Orthopaedic Surgeons Acknowledge Uncertainty?

    Teunis, Teun; Janssen, Stein; Guitton, Thierry G.; Ring, David; Parisien, Robert


    Much of the decision-making in orthopaedics rests on uncertain evidence. Uncertainty is therefore part of our normal daily practice, and yet physician uncertainty regarding treatment could diminish patients' health. It is not known if physician uncertainty is a function of the evidence alone or if

  15. Communication skills training in orthopaedics.

    Lundine, Kristopher; Buckley, Richard; Hutchison, Carol; Lockyer, Jocelyn


    Communication skills play a key role in many aspects of both medical education and clinical patient care. The objectives of this study were to identify the key components of communication skills from the perspectives of both orthopaedic residents and their program directors and to understand how these skills are currently taught. This study utilized a mixed methods design. Quantitative data were collected with use of a thirty-item questionnaire distributed to all Canadian orthopaedic residents. Qualitative data were collected through focus groups with orthopaedic residents and semistructured interviews with orthopaedic program directors. One hundred and nineteen (37%) of 325 questionnaires were completed, twelve residents participated in two focus groups, and nine of sixteen program directors from across the country were interviewed. Both program directors and residents identified communication skills as being the accurate and appropriate use of language (i.e., content skills), not how the communication was presented (i.e., process skills). Perceived barriers to effective communication included time constraints and the need to adapt to the many personalities and types of people encountered daily in the hospital. Residents rarely have explicit training in communication skills. They rely on communication training implicitly taught through observation of their preceptors and clinical experience interacting with patients, peers, and other health-care professionals. Orthopaedic residents and program directors focus on content and flexibility within communication skills as well as on the importance of being concise. They value the development of communication skills in the clinical environment through experiential learning and role modeling. Education should focus on developing residents' process skills in communication. Care should be taken to avoid large-group didactic teaching sessions, which are perceived as ineffective.

  16. The use of three-dimensional printing technology in orthopaedic surgery.

    Wong, Tak Man; Jin, Jimmy; Lau, Tak Wing; Fang, Christian; Yan, Chun Hoi; Yeung, Kelvin; To, Michael; Leung, Frankie


    Three-dimensional (3-D) printing or additive manufacturing, an advanced technology that 3-D physical models are created, has been wildly applied in medical industries, including cardiothoracic surgery, cranio-maxillo-facial surgery and orthopaedic surgery. The physical models made by 3-D printing technology give surgeons a realistic impression of complex structures, allowing surgical planning and simulation before operations. In orthopaedic surgery, this technique is mainly applied in surgical planning especially revision and reconstructive surgeries, making patient-specific instruments or implants, and bone tissue engineering. This article reviews this technology and its application in orthopaedic surgery.

  17. Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC-MS spectroscopy

    Matsuda, Fumio; Morino, Keiko; Miyashita, Masahiro; Miyagawa, Hisashi [Kyoto Univ. (Japan). Department of Agriculture


    The metabolic flux of two phenylpropanoid metabolites, N-p-coumaroyloctopamine (p-CO) and chlorogenic acid (CGA), in the wound-healing potato tuber tissue was quantitatively analyzed by a newly developed method based upon the tracer experiment using stable isotope-labeled compounds and LC-MS. Tuber disks were treated with aqueous solution of L-phenyl-d{sub 5}-alanine, and the change in the ratio of stable isotope-labeled compound to non-labeled (isotope abundance) was monitored for p-CO and CGA in the tissue extract by LC-MS. The time-dependent change in the isotope abundance of each metabolite was fitted to an equation that was derived from the formation and conversion kinetics of each compound. Good correlations were obtained between the observed and calculated isotope abundances for both p-CO and CGA. The rates of p-CO formation and conversion (i.e. fluxes) were 1.15 and 0.96 nmol (g FW){sup -1}h{sup -1}, respectively, and for CGA, the rates 4.63 and 0.42 nmol (g FW){sup -1}h{sup -1}, respectively. This analysis enabled a direct comparison of the biosynthetic activity between these two compounds. (author)

  18. Exogenous modulation of TGF-β1 influences TGF-βR-III-associated vascularization during wound healing in irradiated tissue

    Wehrhan, F.; Schultze-Mosgau, S.; Grabenbauer, G.G.; Roedel, F.; Amann, K.


    in the TGF-β 1 -treated group. Conclusion: Neutralizing of TGF-β 1 activity in irradiated tissue undergoing surgery leads to a higher expression of TGF-βR-III and increased vascularization. TGF-βR-III seems to be associated with newly formed blood vessels during neovascularization in wound healing. (orig.)

  19. Clinical aspects of tendon healing

    J.C.H.M. van der Meulen (Jacques)


    textabstractWe know that healing of a tendon wound takes place by an invasion of fibreblasts from the surrounding tissues; the tendon itself has no intrinsic healing capacity. lt was Potenza (1962) who proved that a traumatic suture of the tendons within their sheath is followed by disintegration of

  20. Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue.

    Taraballi, Francesca; Bauza, Guillermo; McCulloch, Patrick; Harris, Josh; Tasciotti, Ennio


    Musculoskeletal reconstruction is an ongoing challenge for surgeons as it is required for one out of five patients undergoing surgery. In the past three decades, through the close collaboration between clinicians and basic scientists, several regenerative strategies have been proposed. These have emerged from interdisciplinary approaches that bridge tissue engineering with material science, physiology, and cell biology. The paradigm behind tissue engineering is to achieve regeneration and functional recovery using stem cells, bioactive molecules, or supporting materials. Although plenty of preclinical solutions for bone and cartilage have been presented, only a few platforms have been able to move from the bench to the bedside. In this review, we highlight the limitations of musculoskeletal regeneration and summarize the most relevant acellular tissue engineering approaches. We focus on the strategies that could be most effectively translate in clinical practice and reflect on contemporary and cutting-edge regenerative strategies in surgery. Stem Cells Translational Medicine 2017;6:2186-2196. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Planning for life after orthopaedics.

    Barr, Joseph S; McCaslin, Michael J; Hinds, Cynthia K


    The word retirement is going out of fashion. Many orthopaedic surgeons want to work in some capacity when they stop performing surgery. Making a smooth transition from a busy orthopaedic practice to alternative work demands advanced planning. The surgeon must consider personal issues that involve how to use human capital (his or her accumulated knowledge and experience). New ventures, hobbies, travel, and spending time with family and friends are some possibilities. Plans for slowing down or leaving the practice should be discussed and agreed on well ahead of time. Agreements for buyouts may be difficult to work out and will require creative thinking. The solo practitioner can close the practice or hire a successor. Financial planning is perhaps the most important consideration and should be started by approximately age 40. It is recommended that the surgeon develop a portfolio of secure investments and annuities to provide adequate income for as long as is needed and then to turn the residual income to one's family, favorite charities, or other desired cause. A team of competent advisors is needed to help develop and achieve one's goals, create financial security, and provide the discipline to carry out the needed planning for life after orthopaedics.

  2. Social Media in Pediatric Orthopaedics.

    Lander, Sarah T; Sanders, James O; Cook, Peter C; O'Malley, Natasha T

    Internet searches and social media utilization in health care has exploded over the past 5 years, and patients utilize it to gain information on their health conditions and physicians. Social media has the potential to serve as a means for education, communication, and marketing in all health care specialties. Physicians are sometimes reluctant to engage because of concerns of privacy, litigation, and lack of experience with this modality. Many surgical subspecialties have capitalized on social media but no study to date has examined the specific footprint of pediatric orthopaedic surgeons in this realm. We aim to quantify the utilization of individual social media platforms by pediatric orthopaedic surgeons, and identify any differences between private and hospital-based physicians, but also regional differences. Using the Pediatric Orthopaedic Society of North America Member Directory, each active member's social media presence was reviewed through an Internet search. Members were stratified on the basis of practice model and geographic location. Individual Internet searches, social media sites, and number of publications were reviewed for social media presence. Of 987 Pediatric Orthopaedic Society of North America members, 95% had a professional webpage, 14.8% a professional Facebook page, 2.2% a professional Twitter page, 36.8% a LinkedIn profile, 25.8% a ResearchGate profile, 33% at least 1 YouTube. Hospital-based physicians had a lower mean level of utilization of social media compared with their private practice peers, and a higher incidence of Pubmed publications. Private practice physicians had double the social media utilization. Regional differences reveal that practicing Pediatric Orthopaedists in the Northeast had increased utilization of ResearchGate and LinkedIn and the West had the lowest mean social media utilization levels. The rapid expansion of social media usage by patients and their family members is an undeniable force affecting the health

  3. Implant removal after fracture healing : facts and fiction

    Vos, D.I.


    A frequently asked question to trauma and orthopaedic surgeons is whether and if yes, when an implant will be removed? Although implant removal after fracture healing is daily practice, a scientific basis doesn’t exist. All studies in this thesis were performed to unravel the facts and fiction of

  4. [Specificities in children wound healing].

    Sanchez, J; Antonicelli, F; Tuton, D; Mazouz Dorval, S; François, C


    Children have specific characteristics of wound healing. The aim of this study was to describe the specific clinical characteristics of wounds healing in children and to present the current knowledge on the specific mechanisms with regard to infant age. The tissue insult or injury in fetus can heal without scar, mainly due to reduced granulation tissue associated to diminished or even no inflammatory phase, modified extracellular matrix such as the concentration of hyaluronic acid in amniotic liquid, expression and arrangement of collagen and tenascin. Thickness of children skin is a serious negative factor in case of trauma, whereas poor co-morbidities and efficient growth tissue mechanisms are beneficial to good evolution, even in cases of extensive damage and loss of tissue. The subsequent tissue mechanical forces, wound healing during childhood, spanning from the age of 2 until the end of puberty, is associated with more hypertrophic scars, both in duration and in intensity. Consequently, unnecessary surgery has to be avoided during this period when possible, and children with abnormal or pathologic wound healing should benefit from complementary treatments (hydration, massage, brace, silicone, hydrotherapy…), which represent efficient factors to minimize tissue scarring. After wound healing, the growth body rate can be responsible for specific complications, such as contractures, alopecia, and scar intussusceptions. Its evolutionary character implies the need of an attentive follow-up until adult age. Psychologic repercussions, as a consequence of pathologic scars, must be prevented and investigated by the surgeon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Ultra-som terapêutico na cicatrização tecidual Therapeutic ultrasound in the tissue healing

    Débora Cristina Olsson


    Full Text Available Visando a minimizar o período de tratamento cicatricial em diversos tecidos, buscam-se alternativas à terapia convencional que colaborem com o processo reparativo criando um microambiente ideal para sua ocorrência. Dentre os inúmeros benefícios das técnicas aplicáveis à medicina regenerativa, o ultra-som terapêutico (UST é prática adjuvante cada vez mais freqüente. Os modelos experimentais de terapia sonora em animais têm propiciado informações relevantes para o tratamento de vários tipos de lesões; todavia, apesar de serem muito utilizados, ainda existem controvérsias em relação aos seus potenciaia biológicos de acordo com a modalidade e a dosimetria indicadas para cada caso. Os efeitos biofísicos do ultra-som (US sobre o reparo tecidual são pouco compreendidos, sendo seu uso muitas vezes negligenciado ou fundamentado na experiência prática, o que resulta em procedimentos errôneos. O objetivo desta revisão bibliográfica é apresentar informações sobre o UST, relatar a existência de riscos de danos celulares decorrentes da inadequada aplicação e revelar a importância de seus mecanismos de ação nos tecidos, tanto no sentido físico, como nos seus aspectos biológicos.Aiming to minimize the cicatricial treatment period, alternatives have been searched to conventional therapy, among which the therapeutic ultrasound is a practice more and more frequent. However, despite of being used in the treatment of various lesions types, there are still controversies related to its real therapeutical value and the indicated dosimetry for each case. The ultrasound effect on the tissue repair is little understood, and its use is seldom based on the practical experience, what sometimes results in wrong procedures. This review has the objective to show the therapeutic ultrasound information and to reveal the importance of its mechanisms in the tissues in the physical and biological aspects.

  6. Xenogenic (porcine) acellular dermal matrix promotes growth of granulation tissues in the wound healing of Fournier gangrene.

    Zhang, Zhaoxin; Lv, Lei; Mamat, Masut; Chen, Zhao; Zhou, Zhitao; Liu, Lihua; Wang, Zhizhong


    This article investigates the application values of Xenogenic (porcine) acellular dermal matrix (XADM) in preparation of a Fournier gangrene wound bed. Thirty-six consecutive cases of patients with Fournier gangrene between 2002 and 2012 were enrolled in our department of our hospital. The patients were divided into two groups according to different methods of wound bed preparation after surgical débridement, including the experimental group (17 cases) and the control group (19 cases). The wounds in the experimental group were covered with XADM after surgical wound débridement, whereas the wounds were cleaned with hydrogen peroxide and sodium hypochlorite solution (one time/day) in the control group. The wound bed preparation time and hospital stay were then compared in the two groups. The wound preparation time was 13.64 ± 1.46 days and hospitalization period was 26.06 ± 0.83 days in the experimental XADM group. In the control group, the wound bed preparation time and hospitalization period were 22.37 ± 1.38 and 38.11 ± 5.60 days, respectively. The results showed statistical differences between these two groups. When used in wound débridement after Fournier gangrene, XADM protects interecological organizations, promotes the growth of granulation tissues, and maximally retains function and morphology of the perineum and penis.

  7. Wound Healing and Care

    ... Safe Videos for Educators Search English Español Wound Healing and Care KidsHealth / For Teens / Wound Healing and ... open to heal through natural scar formation. The Healing Process Before healing begins, the body gears up ...

  8. Custom anatomic healing abutments

    Vinayak S Gowda


    Full Text Available Dental implants with their increasing success rates and predictability of final outcome are fast becoming the treatment of choice for replacing missing teeth. Considering the success of immediate implant placement in reducing tissue loss and achieving good esthetic results, is making it a more popular treatment modality in implant dentistry. Understanding the management of gingival tissues in relation to implants to obtain maximum esthetics is of utmost importance. The use of provisional abutments and immediate temporization has a proven track record of their ability to produce optimal esthetics and to guide the tissue response during the healing phase. With careful patient selection and execution, customized healing abutments can provide an effective method to enhance the esthetic and emergence profile for anterior implant restorations.

  9. The Core Competencies for General Orthopaedic Surgeons.

    Kellam, James F; Archibald, Douglas; Barber, James W; Christian, Eugene P; D'Ascoli, Richard J; Haynes, Richard J; Hecht, Suzanne S; Hurwitz, Shepard R; Kellam, James F; McLaren, Alexander C; Peabody, Terrance D; Southworth, Stephen R; Strauss, Robert W; Wadey, Veronica M R


    With the changing delivery of orthopaedic surgical care, there is a need to define the knowledge and competencies that are expected of an orthopaedist providing general and/or acute orthopaedic care. This article provides a proposal for the knowledge and competencies needed for an orthopaedist to practice general and/or acute care orthopaedic surgery. Using the modified Delphi method, the General Orthopaedic Competency Task Force consisting of stakeholders associated with general orthopaedic practice has proposed the core knowledge and competencies that should be maintained by orthopaedists who practice emergency and general orthopaedic surgery. For relevancy to clinical practice, 2 basic sets of competencies were established. The assessment competencies pertain to the general knowledge needed to evaluate, investigate, and determine an overall management plan. The management competencies are generally procedural in nature and are divided into 2 groups. For the Management 1 group, the orthopaedist should be competent to provide definitive care including assessment, investigation, initial or emergency care, operative or nonoperative care, and follow-up. For the Management 2 group, the orthopaedist should be competent to assess, investigate, and commence timely non-emergency or emergency care and then either transfer the patient to the appropriate subspecialist's care or provide definitive care based on the urgency of care, exceptional practice circumstance, or individual's higher training. This may include some higher-level procedures usually performed by a subspecialist, but are consistent with one's practice based on experience, practice environment, and/or specialty interest. These competencies are the first step in defining the practice of general orthopaedic surgery including acute orthopaedic care. Further validation and discussion among educators, general orthopaedic surgeons, and subspecialists will ensure that these are relevant to clinical practice. These

  10. Aarhus Regenerative Orthopaedics Symposium (AROS)

    Foldager, Casper B.; Bendtsen, Michael; Berg, Lise C.


    to musculoskeletal pain and disability. The Aarhus Regenerative Orthopaedics Symposium (AROS) 2015 was motivated by the need to address regenerative challenges in an ageing population by engaging clinicians, basic scientists, and engineers. In this position paper, we review our contemporary understanding of societal......, patient-related, and basic science-related challenges in order to provide a reasoned roadmap for the future to deal with this compelling and urgent healthcare problem. © 2017 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation....

  11. Allergies in orthopaedic and trauma surgery.

    Lohmann, C H; Hameister, R; Singh, G


    Hypersensitivity reactions to implants in orthopaedic and trauma surgery are a rare but devastating complication. They are considered as a delayed-type of hypersensitivity reaction (type IV), characterized by an antigen activation of sensitized T-lymphocytes releasing various cytokines and may result in osteoclast activation and bone resorption. Potential haptens are originated from metal alloys or bone-cement. A meta-analysis has confirmed a higher probability of developing a metal hypersensitivity postoperatively and noted a greater risk of failed replacements compared to stable implants. Hypersensitivity to implants may present with a variety of symptoms such as pain, joint effusion, delayed wound/bone healing, persistent secretion, allergic dermatitis (localized or systemic), clicking noises, loss of joint function, instability and failure of the implant. Various diagnostic options have been offered, including patch testing, metal alloy patch testing, histology, lymphocyte transformation test (LTT), memory lymphocyte immunostimulation assay (MELISA), leukocyte migration inhibition test (LIF) and lymphocyte activation test (LAT). No significant differences between in vivo and in vitro methods have been found. Due to unconvincing evidence for screening methods, predictive tests are not recommended for routine performance. Infectious aetiology always needs to be excluded. As there is a lack of evidence on large-scale studies with regards to the optimal treatment option, management currently relies on individual case-by-case decisions. Several options for patients with (suspected) metal-related hypersensitivity exist and may include materials based on ceramic, titanium or oxinium or modified surfaces. Promising results have been reported, but long-term experience is lacking. More large-scaled studies are needed in this context. In patients with bone-cement hypersensitivity, the component suspected for hypersensitivity should be avoided. The development of

  12. International Combined Orthopaedic Research Societies: A model for international collaboration to promote orthopaedic and musculoskeletal research

    Theodore Miclau


    Full Text Available In October 2013, the International Combined Orthopaedic Research Societies (ICORS; was founded with inaugural member organisations from the previous Combined Orthopaedic Research Society, which had sponsored combined meetings for more than 2 decades. The ICORS is dedicated to the stimulation of orthopaedic and musculoskeletal research in fields such as biomedical engineering, biology, chemistry, and veterinary and human clinical research. The ICORS seeks to facilitate communication with member organisations to enhance international research collaborations and to promote the development of new international orthopaedic and musculoskeletal research organisations. Through new categories of membership, the ICORS represents the broadest coalition of orthopaedic research organisations globally.

  13. 1 venous thromboembolism in orthopaedics references


    2004; 126: 338-400S. 3. American Academy of Orthopaedic Surgeons. American Academy of orthopaedic Surgeons clinical guidelines on prevention of symptomatic pulmonary embolism in patients undergoing total hip or knee guidelines/PE_guideline. Pdf (accessed May 23, 2008). 4.

  14. Mentorship in orthopaedic and trauma residency training ...

    Background: Mentorship is important in residency training as it is necessary for personal and professional development of the resident trainees. Objectives: This study documents mentorship in orthopaedic residency training programme in Nigeria by assessing the awareness of orthopaedic residents on the role of a mentor, ...

  15. Orthopaedic research and education foundation and industry.

    Wurth, Gene R; Sherr, Judy H; Coffman, Thomas M


    Members of orthopaedic industry commit a significant amount of funds each year to support research and education programs that are directly related to their product(s). In addition, industry supports organizations such as the Orthopaedic Research and Education Foundation. The relationship between the Orthopaedic Research and Education Foundation and industry began in the early 1980s. The support to the Orthopaedic Research and Education Foundation from industry primarily has come in the form of unrestricted grants. These grants best can be looked at as an investment rather than a contribution. This form of giving, once called corporate philanthropy is more accurately referred to as strategic philanthropy. Members of industry make these investments to enhance their reputations, build brand awareness, market their products and services, improve employee morale, increase customer loyalty, and establish strategic alliances. The specialty of orthopaedics is among the leaders in medicine in the amount of funding raised within the specialty for research and education programs. This is because of the amount of support from members of industry and the surgeons. During the past 15 years, 40% of the annual support to the Orthopaedic Research and Education Foundation has come from industry and the balance has come from surgeons and members of lay public. Future industry support of the Orthopaedic Research and Education Foundation and other organizations within the specialty of orthopaedics will be dependent on the continued demonstration of tangible returns in areas described.

  16. Nigerian Journal of Orthopaedics and Trauma

    The Nigerian Journal of Orthopaedics and Trauma publishes original papers, review articles and case reports on pathology, anaesthesia, orthopaedics and trauma. Vol 12, No 1 (2013). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of Contents. Articles. Management of ...

  17. Surgical site infection among patients undergone orthopaedic ...

    Surgical site infection among patients undergone orthopaedic surgery at Muhimbili Orthopaedic Institute, Dar es Salaam, Tanzania. ... of surgical site infection at Muhimbili Orthopedic Institute was high. This was associated with more than 2 hours length of surgery, lack of prophylaxis use, and pre-operative hospital stay.

  18. Do Orthopaedic Surgeons Acknowledge Uncertainty?

    Teunis, Teun; Janssen, Stein; Guitton, Thierry G; Ring, David; Parisien, Robert


    Much of the decision-making in orthopaedics rests on uncertain evidence. Uncertainty is therefore part of our normal daily practice, and yet physician uncertainty regarding treatment could diminish patients' health. It is not known if physician uncertainty is a function of the evidence alone or if other factors are involved. With added experience, uncertainty could be expected to diminish, but perhaps more influential are things like physician confidence, belief in the veracity of what is published, and even one's religious beliefs. In addition, it is plausible that the kind of practice a physician works in can affect the experience of uncertainty. Practicing physicians may not be immediately aware of these effects on how uncertainty is experienced in their clinical decision-making. We asked: (1) Does uncertainty and overconfidence bias decrease with years of practice? (2) What sociodemographic factors are independently associated with less recognition of uncertainty, in particular belief in God or other deity or deities, and how is atheism associated with recognition of uncertainty? (3) Do confidence bias (confidence that one's skill is greater than it actually is), degree of trust in the orthopaedic evidence, and degree of statistical sophistication correlate independently with recognition of uncertainty? We created a survey to establish an overall recognition of uncertainty score (four questions), trust in the orthopaedic evidence base (four questions), confidence bias (three questions), and statistical understanding (six questions). Seven hundred six members of the Science of Variation Group, a collaboration that aims to study variation in the definition and treatment of human illness, were approached to complete our survey. This group represents mainly orthopaedic surgeons specializing in trauma or hand and wrist surgery, practicing in Europe and North America, of whom the majority is involved in teaching. Approximately half of the group has more than 10 years

  19. Radiologic examination of orthopaedics. Methods and techniques

    Hafner, E.; Meuli, H.C.


    This volume describes in detail radiological examinations of the skeleton modern procedures in orthopaedic surgery. Special emphasis is given to functional examination techniques based upon the authors' extensive work on standardized radiological examinations best suited to the needs of orthopaedic surgeons. These techniques were developed at the Radiodiagnostic Department of the Central Radiological Clinic, Bern University, in cooperation with the University Clinic of Orthopaedics and Surgery of the Locomotor System. Exposure techniques are explained concisely, yet with extraordinary precision and attention to detail. They have proved highly successful in teaching programs for X-ray technicians and as standard examination techniques for many hospitals, X-ray departments, orthopaedic units, and private clinics. Recommended for orthopaedic surgeons, radiologists, general surgeons, and X-ray technicians, this definitive treatise, with its superb X-ray reproductions and complementary line drawings, explains how to achieve improved diagnoses and standardized control with the least possible radiation exposure to the patient

  20. Pulsed electromagnetic field therapy improves tendon-to-bone healing in a rat rotator cuff repair model.

    Tucker, Jennica J; Cirone, James M; Morris, Tyler R; Nuss, Courtney A; Huegel, Julianne; Waldorff, Erik I; Zhang, Nianli; Ryaby, James T; Soslowsky, Louis J


    Rotator cuff tears are common musculoskeletal injuries often requiring surgical intervention with high failure rates. Currently, pulsed electromagnetic fields (PEMFs) are used for treatment of long-bone fracture and lumbar and cervical spine fusion surgery. Clinical studies examining the effects of PEMF on soft tissue healing show promising results. Therefore, we investigated the role of PEMF on rotator cuff healing using a rat rotator cuff repair model. We hypothesized that PEMF exposure following rotator cuff repair would improve tendon mechanical properties, tissue morphology, and alter in vivo joint function. Seventy adult male Sprague-Dawley rats were assigned to three groups: bilateral repair with PEMF (n = 30), bilateral repair followed by cage activity (n = 30), and uninjured control with cage activity (n = 10). Rats in the surgical groups were sacrificed at 4, 8, and 16 weeks. Control group was sacrificed at 8 weeks. Passive joint mechanics and gait analysis were assessed over time. Biomechanical analysis and μCT was performed on left shoulders; histological analysis on right shoulders. Results indicate no differences in passive joint mechanics and ambulation. At 4 weeks the PEMF group had decreased cross-sectional area and increased modulus and maximum stress. At 8 weeks the PEMF group had increased modulus and more rounded cells in the midsubstance. At 16 weeks the PEMF group had improved bone quality. Therefore, results indicate that PEMF improves early tendon healing and does not alter joint function in a rat rotator cuff repair model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:902-909, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Cell-based and biomaterial approaches to connective tissue repair

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  2. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing.

    Santos, Jorge M; Camões, Sérgio P; Filipe, Elysse; Cipriano, Madalena; Barcia, Rita N; Filipe, Mariana; Teixeira, Mariana; Simões, Sandra; Gaspar, Manuela; Mosqueira, Diogo; Nascimento, Diana S; Pinto-do-Ó, Perpétua; Cruz, Pedro; Cruz, Helder; Castro, Matilde; Miranda, Joana P


    The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM

  3. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue

    Badr Gamal


    Full Text Available Abstract Background Continuous diabetes-associated complications are a major source of immune system exhaustion and an increased incidence of infection. Diabetes can cause poor circulation in the feet, increasing the likelihood of ulcers forming when the skin is damaged and slowing the healing of the ulcers. Whey proteins (WPs enhance immunity during childhood and have a protective effect on some immune disorders. Therefore, in this study, we investigated the effects of camel WP on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Results Diabetic mice exhibited delayed wound closure characterized by a significant decrease in an anti-inflammatory cytokine (namely, IL-10 and a prolonged elevation of the levels of inflammatory cytokines (TNF-α, IL-1β and IL-6 in wound tissue. Moreover, aberrant expression of chemokines that regulate wound healing (MIP-1α, MIP-2, KC and CX3CL1 and growth factors (TGF-β were observed in the wound tissue of diabetic mice compared with control nondiabetic mice. Interestingly, compared with untreated diabetic mice, supplementation with WP significantly accelerated the closure of diabetic wounds by limiting inflammatory stimuli via the restoration of normal IL-10, TNF-α, IL-1β and IL-6 levels. Most importantly, the supplementation of diabetic mice with WP significantly modulated the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wound tissue compared with untreated diabetic mice. Conclusion Our data demonstrate the benefits of WP supplementation for improving the healing and closure of diabetic wounds and restoring the immune response in diabetic mice.

  4. Tunnel technique with connective tissue graft versus coronally advanced flap with enamel matrix derivative for root coverage: a RCT using 3D digital measuring methods. Part II. Volumetric studies on healing dynamics and gingival dimensions.

    Rebele, Stephan F; Zuhr, Otto; Schneider, David; Jung, Ronny E; Hürzeler, Markus B


    The aim of this randomized clinical trial (RCT) was to compare the clinical performance of the tunnel technique with subepithelial connective tissue graft (TUN) versus a coronally advanced flap with enamel matrix derivative (CAF) in the treatment of gingival recession defects. The use of innovative 3D digital measuring methods allowed to study healing dynamics at connective tissue (CT)-grafted sites and to evaluate the influence of the thickness of the root covering soft tissues on the outcome of surgical root coverage. Twenty-four patients contributed a total of 47 Miller class I or II recessions for scientific evaluation. Precise study models collected at baseline and follow-up examinations were optically scanned and virtually superimposed for digital evaluation of clinical outcome measures including mean marginal soft tissue thickness (THK). Healing dynamics were measured in a defined region of interest at CT-grafted sites where volume differences between time points were calculated. At 12 months, recession reduction as well as mean root coverage were significantly better at CT-grafted sites treated in the TUN group (1.94 mm and 98.4% respectively) compared to the non-augmented sites of the CAF group (1.17 mm and 71.8% respectively) and statistical analysis revealed a positive correlation of THK (1.63 mm TUN versus 0.91 mm CAF, p tissue healing following surgical root coverage with CT-grafting was mainly accomplished after 6 months, with around two-thirds of the augmented volume being maintained after 12 months. The TUN resulted in thicker gingiva and better clinical outcomes compared to CAF. Increased gingival thickness was associated with better surgical outcomes in terms of recession reduction and root coverage. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The effects of healing abutments of different size and anatomic shape placed immediately in extraction sockets on peri-implant hard and soft tissues. A pilot study in foxhound dogs.

    López-López, Patricia J; Mareque-Bueno, Javier; Boquete-Castro, Ana; Aguilar-Salvatierra Raya, Antonio; Martínez-González, José M; Calvo-Guirado, José L


    The aim of this animal study was to compare the effects of narrow, concave-straight and wide anatomic healing abutments on changes to soft tissues and crestal bone levels around implants immediately placed into extraction sockets in foxhound dogs. Forty-eight titanium implants (Bredent Medical GMBH, Germany) of the same dimensions were placed in six foxhound dogs. They were divided into two groups (n = 24): test (implants with anatomic abutment) and control (implants with concave-straight abutment). The implants were inserted randomly in the post extraction sockets of P2 , P3 , P4, and M1 bilaterally in six dogs. After eight and twelve weeks, the animals were sacrificed and samples extracted containing the implants and the surrounding soft and hard tissues. Soft tissue and crestal bone loss (CBL) were evaluated by histology and histomorphometry. All implants were clinically and histologically osseointegrated. Healing patterns were examined microscopically at eight and twelve weeks. After eight and twelve weeks, for hard tissues, the distance from the implant shoulder to the first bone-to-implant contact (IS-C) was higher for control group in the lingual aspect with statistical significance (P < 0.05). For soft tissues (STL), the distance from the top of the peri-implant mucosa to the apical portion of the junction epithelium (PM-Je) was significantly less on the lingual aspect in the test group (with wider abutment) at eight and twelve weeks (P < 0.05). The distance from the top of the apical portion of the junction epithelium to the first bone-to-implant contact (Je-C) was significantly higher in the test group (wider abutment) in the lingual aspect at eight and twelve weeks (P < 0.05). There was no connective tissue contact with any abutment surface. Within the limitations of this animal study, anatomic healing abutments protect soft and hard tissues and reduce crestal bone resorption compared with concave-straight healing abutments. © 2014 John Wiley

  6. Where Are the Women in Orthopaedic Surgery?

    Rohde, Rachel S; Wolf, Jennifer Moriatis; Adams, Julie E


    Although women account for approximately half of the medical students in the United States, they represent only 13% of orthopaedic surgery residents and 4% of members of the American Academy of Orthopaedic Surgeons (AAOS). Furthermore, a smaller relative percentage of women pursue careers in orthopaedic surgery than in any other subspecialty. Formal investigations regarding the gender discrepancy in choice of orthopaedic surgery are lacking. (1) What reasons do women orthopaedic surgeons cite for why they chose this specialty? (2) What perceptions do women orthopaedic surgeons think might deter other women from pursuing this field? (3) What role does early exposure to orthopaedics and mentorship play in this choice? (4) What professional and personal choices do women in orthopaedics make, and how might this inform students who are choosing a career path? A 21-question survey was emailed to all active, candidate, and resident members of the Ruth Jackson Orthopaedic Society (RJOS, n = 556). RJOS is the oldest surgical women's organization incorporated in the United States. An independent orthopaedic specialty society, RJOS supports leadership training, mentorship, grant opportunities, and advocacy for its members and promotes sex-related musculoskeletal research. Although not all women in orthopaedic practice or training belong to RJOS, it is estimated that 42% of women AAOS fellows are RJOS members. Questions were formulated to determine demographics, practice patterns, and lifestyle choices of women who chose orthopaedic surgery as a specialty. Specifically, we evaluated the respondents' decisions about their careers and their opinions of why more women do not choose this field. For the purpose of this analysis, the influences and dissuaders were divided into three major categories: personal attributes, experience/exposure, and work/life considerations. The most common reasons cited for having chosen orthopaedic surgery were enjoyment of manual tasks (165 of 232

  7. Computer Assisted Orthopaedic Surgery – CAOS

    Enes M. Kanlić


    Full Text Available The use of computer navigation in orthopedic surgery allows for real time intraoperative feedback resulting in higher precision of bone cuts, better alignment of implants and extremities, easier fracture reductions, less radiation and better documentation than what is possible in classical orthopaedic procedures. There is no need for direct and repeated visualization of many anatomical landmarks (classical method in order to have good intraoperative orientation. Navigation technology depicts anatomy and position of "smart tools" on the screen allowing for high surgical precision (smaller number of outliers from desired goal and with less soft tissue dissection (minimally invasive surgery - MIS. As a result, there are more happy patients with less pain, faster recovery, better functional outcome and well positioned, long lasting implants. In general, navigation cases are longer on the average 10 to 20 minutes, special training is required and equipment is relatively expensive. CAOS applications in knee and hip joint replacement are discussed.

  8. History of orthopaedics in China: a brief review.

    Li, Jia; Zhang, Yingze


    Chinese orthopaedic surgeons have made a substantial contribution to the development of orthopaedics worldwide, and traditional Chinese medicine (TCM) in orthopaedics has a very long history in China. We make a brief review of the development of orthopaedics in China, intending to pave the way for further understanding of Chinese orthopaedics for scholars all over the world. The description of fractures firstly appeared in 3600 years ago in China, and the theories, experience, and treatment strategies of TCM still play important roles in clinical diagnosis and treatment of orthopaedic disorders in our country. Western orthopaedics was first introduced into China in the early twentieth century. After decades of development, Chinese scholars have made some gratifying achievements in orthopaedics. Orthopaedics is constantly evolving, and we need to strengthen the ability of independent innovation to achieve orthopaedic surgeons' Chinese dream, and better serve our patients.

  9. How wounds heal

    ... How puncture wounds heal; How burns heal; How pressure sores heal; How lacerations heal ... bleed. For example, burns, some puncture wounds, and pressure sores do not bleed. Once the scab forms, your ...

  10. American Orthopaedic Society for Sports Medicine

    ... Upcoming Meetings Online Education Archived Meetings Faculty Resources Sports Medicine Fellowships Traveling Fellowship Submit an Abstract Submit ... Support AOSSM Research Publications Toggle American Journal of Sports Medicine Sports Health: A Multidisciplinary Approach Orthopaedic Journal ...

  11. The effect of platelet-rich plasma on Achilles tendon healing in a rabbit model.

    Takamura, Masaki; Yasuda, Toshito; Nakano, Atsushi; Shima, Hiroaki; Neo, Masashi


    The aim of the present study was to evaluate the effects of PRP on Achilles tendon healing in rabbits during the inflammatory, proliferative, and remodeling phases by histological examination and quantitative assessments. Fifty mature male Japanese albino rabbits with severed Achilles tendons were divided into two equal groups and treated with platelet-rich plasma (PRP) or left untreated. Tendon tissue was harvested at 1, 2, 3, 4, and 6 weeks after treatment, and sections were stained with hematoxylin-eosin and monoclonal antibodies against CD31 and type I collagen. Collagen fibers proliferated more densely early after severance, and subsequent remodeling of the collagen fibers and approximation of normal tendinous tissue occurred earlier in the PRP group than in the control group. The fibroblast number was significantly higher in the PRP group than in the control group at 1 and 2 weeks. Similarly, the area ratio of CD31-positive cells was significantly higher in the PRP group than in the control group at 1 and 2 weeks. Positive staining for type I collagen was more intense in the PRP group than in the control group after 3 weeks, indicating tendon maturation. Administration of PRP shortened the inflammatory phase and promoted tendon healing during the proliferative phase. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  12. The financial impact of orthopaedic fellowship training.

    Gaskill, Trevor; Cook, Chad; Nunley, James; Mather, R Chad


    Previous reports have compared the expected financial return of a medical education with those expected in other professions. However, we know of no published report estimating the financial return of orthopaedic training. The purpose of this study was to estimate the financial incentives that may influence the decision to invest an additional year of training in each of the major orthopaedic fellowships. With survey data from the American Academy of Orthopaedic Surgeons and using standard financial techniques, we calculated the estimated return on investment of an additional year of orthopaedic training over a working lifetime. The net present value, internal rate of return, and the break-even point were estimated. Eight fellowships were examined and compared with general orthopaedic practice. Investment in an orthopaedic fellowship yields variable returns. Adult spine, shoulder and elbow, sports medicine, hand, and adult arthroplasty may yield positive returns. Trauma yields a neutral return, while pediatrics and foot and ankle have negative net present values. On the basis of mean reported incomes, the break-even point was two years for spine, seven years for hand, eight years for shoulder and elbow, twelve years for adult arthroplasty, thirteen years for sports medicine, and twenty-seven years for trauma. Fellowship-trained pediatric and foot and ankle surgeons did not break even following the initial investment. When working hours were controlled for, the returns for adult arthroplasty and trauma became negative. The financial return of an orthopaedic fellowship varies on the basis of the specialty chosen. While reasons to pursue fellowship training vary widely, and many are not financial, there are positive and negative financial incentives. Therefore, the decision to pursue fellowship training is best if it is not made on the basis of financial incentives. This information may assist policy makers in analyzing medical education economics to ensure the

  13. Physiotherapy following elective orthopaedic procedures.

    De Kleijn, P; Blamey, G; Zourikian, N; Dalzell, R; Lobet, S


    As haemophilic arthropathy and chronic synovitis are still the most important clinical features in people with haemophilia, different kinds of invasive and orthopaedic procedures have become more common during the last decades. The availability of clotting factor has made arthroplasty of one, or even multiple joints possible. This article highlights the role of physiotherapy before and after such procedures. Synovectomies are sometimes advocated in people with haemophilia to stop repetitive cycles of intra-articular bleeds and/or chronic synovitis. The synovectomy itself, however, does not solve the muscle atrophy, loss of range of motion (ROM), instability and poor propriocepsis, often developed during many years. The key is in taking advantage of the subsequent, relatively safe, bleed-free period to address these important issues. Although the preoperative ROM is the most important variable influencing the postoperative ROM after total knee arthroplasty, there are a few key points that should be considered to improve the outcome. Early mobilization, either manual or by means of a continuous passive mobilization machine, can be an optimal solution during the very first postoperative days. Muscle isometric contractions and light open kinetic chain exercises should also be started in order to restore the quadriceps control. Partial weight bearing can be started shortly after, because of quadriceps inhibition and to avoid excessive swelling. The use of continuous clotting factor replacement permits earlier and intensive rehabilitation during the postoperative period. During the rehabilitation of shoulder arthroplasty restoring the function of the rotator cuff is of utmost importance. Often the rotator cuff muscles are inhibited in the presence of pain and loss of ROM. Physiotherapy also assists in improving pain and maintaining ROM and strength. Functional weight-bearing tasks, such as using the upper limbs to sit and stand, are often discouraged during the first 6

  14. Surgical simulation in orthopaedic skills training.

    Atesok, Kivanc; Mabrey, Jay D; Jazrawi, Laith M; Egol, Kenneth A


    Mastering rapidly evolving orthopaedic surgical techniques requires a lengthy period of training. Current work-hour restrictions and cost pressures force trainees to face the challenge of acquiring more complex surgical skills in a shorter amount of time. As a result, alternative methods to improve the surgical skills of orthopaedic trainees outside the operating room have been developed. These methods include hands-on training in a laboratory setting using synthetic bones or cadaver models as well as software tools and computerized simulators that enable trainees to plan and simulate orthopaedic operations in a three-dimensional virtual environment. Laboratory-based training offers potential benefits in the development of basic surgical skills, such as using surgical tools and implants appropriately, achieving competency in procedures that have a steep learning curve, and assessing already acquired skills while minimizing concerns for patient safety, operating room time, and financial constraints. Current evidence supporting the educational advantages of surgical simulation in orthopaedic skills training is limited. Despite this, positive effects on the overall education of orthopaedic residents, and on maintaining the proficiency of practicing orthopaedic surgeons, are anticipated.

  15. Orthopaedic complications of osteogenesis imperfecta

    Azrak, S.; Ksyar, R.; Ben Rais, N.


    Osteogenesis imperfecta is a genetic disease characterized by bone frailty. It is generally caused by an abnormal production of collagen, which is the main fibrous protein of the bone. Collagen is also present in the skin, tendons, the sclera of the eye and dentin. The most frequent manifestation of osteogenesis imperfecta is the occurrence of multiple fractures without major trauma. Severity and timing of the attack varies widely: some patients sustain a significant number of fractures during early childhood which may have a serious impact on growth, while others will have some fractures separated by a few years. In all cases, the bone strength improves in adulthood. The bone fractures cause pain and bone deformities sometimes result in a smaller size. Scoliosis is frequent and associated with painful vertebral collapses. We present a case of osteogenesis imperfecta in a 40-year-old adult and we describe the various orthopaedic complications of the disease, stressing the role of bone scintigraphy in the diagnosis and monitoring of these complications. (authors)

  16. Audit of Orthopaedic Surgical Documentation

    Fionn Coughlan


    Full Text Available Introduction. The Royal College of Surgeons in England published guidelines in 2008 outlining the information that should be documented at each surgery. St. James’s Hospital uses a standard operation sheet for all surgical procedures and these were examined to assess documentation standards. Objectives. To retrospectively audit the hand written orthopaedic operative notes according to established guidelines. Methods. A total of 63 operation notes over seven months were audited in terms of date and time of surgery, surgeon, procedure, elective or emergency indication, operative diagnosis, incision details, signature, closure details, tourniquet time, postop instructions, complications, prosthesis, and serial numbers. Results. A consultant performed 71.4% of procedures; however, 85.7% of the operative notes were written by the registrar. The date and time of surgery, name of surgeon, procedure name, and signature were documented in all cases. The operative diagnosis and postoperative instructions were frequently not documented in the designated location. Incision details were included in 81.7% and prosthesis details in only 30% while the tourniquet time was not documented in any. Conclusion. Completion and documentation of operative procedures were excellent in some areas; improvement is needed in documenting tourniquet time, prosthesis and incision details, and the location of operative diagnosis and postoperative instructions.

  17. Use of a strontium-enriched calcium phosphate cement in accelerating the healing of soft-tissue tendon graft within the bone tunnel in a rabbit model of anterior cruciate ligament reconstruction.

    Kuang, G M; Yau, W P; Lu, W W; Chiu, K Y


    We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft-bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL-bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft.

  18. [Wound healing in the elderly].

    Eming, S A; Wlaschek, M; Scharffetter-Kochanek, K


    Restoration of tissue integrity is essential for host defense and protection of the organism. The efficacy and quality of skin repair varies significantly over a person's lifetime. Whereas prenatal wound healing is characterized by regeneration and scarless healing, scarring, fibrosis, and loss of function are features of postnatal repair. In fact, aging is the prominent risk factor for chronic wounds, skin fragility, infections, comorbidities, and decreased quality of life. Current strategies for restoration of tissue integrity and wound therapy are not sufficient and require further investigation of the underlying pathomechanisms and the development of causal-based concepts.

  19. Ehlers-Danlos Syndrome in Orthopaedics

    Shirley, Eric D.; DeMaio, Marlene; Bodurtha, Joanne


    Ehlers-Danlos syndrome is a heterogeneous connective tissue condition characterized by varying degrees of skin hyperextensibility, joint hypermobility, and vascular fragility. Joint dislocations, musculoskeletal pain, atrophic scars, easy bleeding, vessel/viscera rupture, severe scoliosis, and obstetric complications may occur. These manifestations are secondary to abnormal collagen, with specific molecular defects in types I, III, and V collagen; they may also be related to tenascin-X, which has been identified in some patients. Ehlers-Danlos syndrome has been classified into 6 types, with variable degrees of joint instability, skin hyperextensibility, wound healing difficulty, and vascular fragility. Diagnosis begins with recognition of the signs and symptoms of global hypermobility and referring appropriate patients for genetic consultation. It is important to accurately identify patients with Ehlers-Danlos syndrome to initiate appropriate musculoskeletal treatment, optimize anesthetic and postoperative management, perform appropriate vascular screening, and help families address their concerns with other families and advocacy groups. PMID:23016112

  20. Can Bone Tissue Engineering Contribute to Therapy Concepts after Resection of Musculoskeletal Sarcoma?

    Boris Michael Holzapfel


    Full Text Available Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology.

  1. Patients' perceptions and experiences of living with a surgical wound healing by secondary intention: A qualitative study.

    McCaughan, Dorothy; Sheard, Laura; Cullum, Nicky; Dumville, Jo; Chetter, Ian


    Most surgical wounds heal by primary intention, that is to say, the edges of the wound are brought together with sutures, staples, adhesive glue or clips. However, some wounds may be left open to heal (if there is a risk of infection, or if there has been significant tissue loss), and are known as 'surgical wounds healing by secondary intention'. They are estimated to comprise approximately 28% of all surgical wounds and are frequently complex to manage. However, they are under researched and little is known of their impact on patients' lives. To explore patients' views and experiences of living with a surgical wound healing by secondary intention. A qualitative, descriptive approach. Participants were recruited from acute and community nursing services in two locations in the North of England characterised by high levels of deprivation and diverse populations. Participants were aged 18 years or older and had at least one surgical wound healing by secondary intention, which was slow to heal. Purposeful sampling was used to include patients of different gender, age, wound duration and type of surgery (general, vascular and orthopaedic). Twenty people were interviewed between January and July 2012. Semi-structured interviews were conducted, guided by use of a topic guide developed with input from patient advisors. Data were thematically analysed using steps integral to the 'Framework' approach to analysis, including familiarisation with data; development of a coding scheme; coding, charting and cross comparison of data; interpretation of identified themes. Alarm, shock and disbelief were frequently expressed initial reactions, particularly to "unexpected" surgical wounds healing by secondary intention. Wound associated factors almost universally had a profound negative impact on daily life, physical and psychosocial functioning, and wellbeing. Feelings of frustration, powerlessness and guilt were common and debilitating. Patients' hopes for healing were often

  2. Use of Oxygen Therapies in Wound Healing

    Gottrup, Finn; Dissemond, Joachim; Baines, Carol


    Among other things wound healing requires restoration of macro-And microcirculation as essential conditions for healing.1,2 One of the most 'immediate' requirements is oxygen, which is critically important for reconstruction of new vessels and connective tissue and to enable competent resistance...

  3. Knowledge on Bone Banking among Participants in an Orthopaedic Conference: A Preliminary Survey.

    Mohd, S; Yusof, N; Ramalingam, S; Ng, W M; Mansor, A


    Despite increasing use of bone graft in Malaysia, there was still lack of data to quantify knowledge level on bone banking among orthopaedic community who are involved in transplantation related work. Therefore, a survey on awareness in tissue banking specifically bone banking, usage and choice of bone grafts was conducted. From 80 respondents, 82.5% were aware about tissue banking however only 12.5% knew of the existence of tissue banks in Malaysia. Femoral head was the bone allograft most often used as a substitute to autograft. Only 34.8% respondents preferred irradiated bone grafts whilst 46.9% preferred nonirradiated, indicating the need to educate the importance of radiation for sterilising tissues. Exhibition was the most preferred medium for awareness programme to disseminate information about bone banking in the orthopaedic community. The professional awareness is necessary to increase the knowledge on the use of bone graft, hence to increase bone transplantation for musculoskeletal surgeries in the country.

  4. Evaluating the use of preoperative antibiotics in pediatric orthopaedic surgery.

    Formaini, Nathan; Jacob, Paul; Willis, Leisel; Kean, John R


    To evaluate the rate of infection after minimally invasive procedures on a consecutive series of pediatric orthopaedic patients. We hypothesized that the use of preoperative antibiotics for minimally invasive pediatric orthopaedic procedures does not significantly reduce the incidence of surgical site infection requiring surgical debridement within 30 days of the primary procedure. We retrospectively reviewed 2330 patients having undergone minimally invasive orthopaedic procedures at our institution between March 2008 and November 2010. Knee arthroscopy, closed reduction with percutaneous fixation, soft tissue releases, excision of bony or soft-tissue masses, and removal of hardware constituted the vast majority of included procedures. Two groups, based on whether prophylactic antibiotics were administered before surgery, were created and the incidence of a repeat procedure required for deep infection was recorded. Statistical analysis was performed to determine significance, if any, between the 2 groups. Chart review of the 2330 patients identified 1087 as having received preoperative antibiotics, whereas the remaining 1243 patients did not receive antibiotics before surgery. Only 1 patient out of the 1243 cases in which antibiotics were not given required additional surgery within 30 days of the primary procedure due to a complicated surgical site infection (an incidence of 0.0008%). No patients in the antibiotic group developed a postoperative infection within 30 days requiring a return to the operating room for management. Our data revealed no significant increase in the incidence of complicated infection requiring additional procedures when antibiotics were not administered before surgery. Though prophylactic antibiotics have been shown to confer numerous benefits for patients undergoing relatively major operations, their use in cases of minimally invasive and/or percutaneous orthopaedic surgery is not well defined. Our data suggest that the use of

  5. Analysis of new bone, cartilage, and fibrosis tissue in healing murine allografts using whole slide imaging and a new automated histomorphometric algorithm

    Zhang, Longze; Chang, Martin; Beck, Christopher A; Schwarz, Edward M; Boyce, Brendan F


    Histomorphometric analysis of histologic sections of normal and diseased bone samples, such as healing allografts and fractures, is widely used in bone research. However, the utility of traditional semi-automated methods is limited because they are labor-intensive and can have high interobserver variability depending upon the parameters being assessed, and primary data cannot be re-analyzed automatically. Automated histomorphometry has long been recognized as a solution for these issues, and ...

  6. Tendon tissue engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: a comprehensive in vivo study.

    Meimandi-Parizi, Abdolhamid; Oryan, Ahmad; Moshiri, Ali


    Healing of large tendon defects is challenging. We studied the role of collagen implant with or without polydioxanone (PDS) sheath on the healing of a large Achilles tendon defect model, in rabbits. Sixty rabbits were divided into three groups. A 2 cm gap was created in the left Achilles tendon of all rabbits. In the control lesions, no implant was used. The other two groups were reconstructed by collagen and collagen-PDS implants respectively. The animals were clinically examined at weekly intervals and their lesions were observed by ultrasonography. Blood samples were obtained from the animals and were assessed for hematological analysis and determination of serum PDGF level, at 60 days post injury (DPI). The animals were then euthanized and their lesions were assessed for gross and histopathology, scanning electron microscopy, biomechanical testing, dry matter and hydroxyproline content. Another 65 pilot animals were also studied grossly and histopathologically to define the host implant interaction and graft incorporation at serial time points. The treated animals gained significantly better clinical scoring compared to the controls. Treatment with collagen and collagen-PDS implants significantly increased the biomechanical properties of the lesions compared to the control tendons at 60DPI (Ptendon. Implantation of the bioimplants had a significant role in initiating tendon healing and the implants were biocompatible, biodegradable and safe for application in tendon reconstructive surgery. The results of the present study may be valuable in clinical practice.

  7. Inpatient consultations to an orthopaedic service: the hidden workload.

    O'Malley, N T


    While the quality and efficiency of out-patient orthopaedic referrals are well documented in the literature, there is little on the standard and appropriateness of inpatient orthopaedic consultations.

  8. Current status and progress of digital orthopaedics in China

    Guo-Xian Pei


    Full Text Available Based on the development of digital medicine and digital anatomy, the concept of “digital orthopaedics” was raised by Pei Guo-Xian in China in 2006. The most striking feature of digital orthopaedics is the combination of basic and clinical orthopaedic knowledge with digital technology. In this review, we summarised the development of digital orthopaedics in China in recent years with respect to: the foundation of the Chinese Association of Digital Orthopedics, virtual human project (VHP, three-dimensional (3D reconstruction, finite element simulation, navigation in orthopaedic operations, and robot-assisted orthopaedic operations. In addition, we briefly reviewed digital orthopaedics in world leading institutes. We also looked into the future of digital orthopaedics in China and proposed the major challenges in digital technology and application in orthopaedics.

  9. Establishing a children's orthopaedic hospital for Malawi: A review ...

    ordinate the MNCP since 2007. At present the program has a total of 29 clinics, which have treated 5748 patients. Furthermore, BCIH has overseen the full or partial training of 5 orthopaedic surgeons and 82 orthopaedic clinical officers in Malawi.

  10. Radiation safety knowledge and practices among Irish orthopaedic trainees.

    Nugent, M


    Fluoroscopy is frequently used in orthopaedic surgery, particularly in a trauma setting. Exposure of patients and staff to ionising radiation has been studied extensively; however, little work has been done to evaluate current knowledge and practices among orthopaedic trainees.

  11. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats.

    Chung, Shu-Lu; Leung, Kwok-Sui; Cheung, Wing-Hoi


    Low magnitude high frequency vibration (LMHFV) has been shown to improve anabolic and osteogenic responses in osteoporotic intact bones and during osteoporotic fracture healing; however, the molecular response of LMHFV during osteoporotic fracture healing has not been investigated. It was hypothesized that LMHFV could enhance osteoporotic fracture healing by regulating the expression of genes related to chondrogenesis (Col-2), osteogenesis (Col-1) and remodeling (receptor activator for nuclear factor- κ B ligand (RANKL) and osteoproteger (OPG)). In this study, the effects of LMHFV on both osteoporotic and normal bone fracture healing were assessed by endpoint gene expressions, weekly radiographs, and histomorphometry at weeks 2, 4 and 8 post-treatment. LMHFV enhanced osteoporotic fracture healing by up-regulating the expression of chondrogenesis-, osteogenesis- and remodeling-related genes (Col-2 at week 4 (p=0.008), Col-1 at week 2 and 8 (p<0.001 and p=0.008) and RANKL/OPG at week 8 (p=0.045)). Osteoporotic bone had a higher response to LMHFV than normal bone and showed significantly better results as reflected by increased expression of Col-2 and Col-1 at week 2 (p<0.001 for all), larger callus width at week 2 (p=0.001), callus area at week 1 and 5(p<0.05 for all) and greater relative area of osseous tissue (p=0.002) at week 8. This study helps to understand how LMHFV regulates gene expression of callus formation, mineralization and remodeling during osteoporotic fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Tissue engineering in the treatment of cartilage lesions

    Jakob Naranđa


    Full Text Available Background: Articular cartilage lesions with the inherent limited healing potential are difficult to treat and thus remain a challenging problem for orthopaedic surgeons. Regenerative treatment techniques, such as autologous chondrocyte implantation (ACI, are promising as a treatment option to restore hyaline-like cartilage tissue in damaged articular surfaces, as opposed to the traditional reparative procedures (e.g. bone marrow stimulation – microfracture, which promote a fibrocartilage formation with lower tissue biomechanical properties and poorer clinical results. ACI technique has undergone several advances and is constantly improving. The new concept of cartilage tissue preservation uses tissue-engineering technologies, combining new biomaterials as a scaffold, application of growth factors, use of stem cells, and mechanical stimulation. The recent development of new generations of ACI uses a cartilage-like tissue in a 3-dimensional culture system that is based on the use of biodegradable material which serves as a temporary scaffold for the in vitro growth and subsequent implantation into the cartilage defect. For clinical practice, single stage procedures appear attractive to reduce cost and patient morbidity. Finally, modern concept of tissue engineering facilitates hyaline-like cartilage formation and a permanent treatment of cartilage lesions.Conclusion: The review focuses on innovations in the treatment of cartilage lesions and covers modern concepts of tissue engineering with the use of biomaterials, growth factors, stem cells and bioreactors, and presents options for clinical use.

  13. Hydroethanolic Extract of Strychnos pseudoquina Accelerates Skin Wound Healing by Modulating the Oxidative Status and Microstructural Reorganization of Scar Tissue in Experimental Type I Diabetes

    Mariáurea M. Sarandy


    Full Text Available The effect of topical application of ointment based on Strychnos pseudoquina hydroethanolic extract in the cutaneous wounds healing in diabetic rats was evaluated. Samples of S. pseudoquina were submitted to phytochemical prospection and in vitro antioxidant assay. Thirty Wistar rats were divided into 5 groups: Sal-wounds treated with 0.9% saline solution; VH-wounds treated with 0.6 g of lanolin cream (vehicle; SS-wounds treated with silver sulfadiazine cream (10 mg/g; ES5- and ES10-wounds treated with an ointment of S. pseudoquina extract, 5% and 10%, respectively. Fragments of wounds were removed for histological and biochemical analysis every 7 days during 21 days. ES showed equivalent levels per gram of extract of total phenols and flavonoids equal to 122.04 mg for TAE and 0.60 mg for RE. The chlorogenic acid was one of the major constituents. S. pseudoquina extract presented high antioxidant potential in vitro. ES5 and ES10 showed higher wound healing rate and higher amount of cells, blood vessels, and type III and I collagen. The oxidative stress markers were lower in the ES5 and ES10 groups, while the antioxidants enzymes levels were higher. Ointment based on S. pseudoquina extract promotes a fast and efficient cutaneous repair in diabetic rats.

  14. Adenosine Receptors and Wound Healing

    Bruce N. Cronstein


    Full Text Available Recent studies have demonstrated that application of topical adenosine A2A receptor agonists promotes more rapid wound closure and clinical studies are currently underway to determine the utility of topical A2A adenosine receptor agonists in the therapy of diabetic foot ulcers. The effects of adenosine A2A receptors on the cells and tissues of healing wounds have only recently been explored. We review here the known effects of adenosine A2A receptor occupancy on the cells involved in wound healing.

  15. [Orthopaedic day surgery in Emilia-Romagna].

    Rolli, M; Rodler, M; Petropulacos, K; Baldi, R


    It is well known that the organizational model of day surgery, concerning surgical problems defined by the literature as minor, has the aim of optimising the use of hospital resources and facilitating patients and their families, from a psychological and social point of view, by reducing hospitalisation time and the associated complications, and ensuring the same efficacy and more appropriateness of treatment. This study is firstly aimed at analysing the impact that the healthcare policy of the Emilia Romagna Region has had on the development of day surgery practice. Secondly, it compares the patients treated in orthopaedic day surgery in the hospitals of Bologna, Modena, Ferrara, Parma, Reggio Emilia, Maggiore hospital of Bologna and Rizzoli Orthopaedic Institute of Bologna (II.OO.R). In the period 1997-2000 there was a marked increase in the number of operations carried out in day surgery in all of the above-mentioned hospitals. Also in the unispecialistic orthopaedic hospital there was a surprising increase in the percentage of operations carried out in day surgery with respect to the total number of operations performed. The aim of the Rizzoli Orthopaedic Institute and the Emilia Romagna Region is to further implement this form of healthcare, contextually potentiating the appropriateness of hospital admission and avoiding, when not necessary, other forms of healthcare.

  16. Intimate partner violence in orthopaedic trauma patients

    Sprague, S.A.


    Intimate partner violence (IPV) or domestic violence is a common and serious public health problem around the globe. Victims of IPV frequently present to health care practitioners including orthopaedic surgeons. Substantial research has been conducted on IPV over the past few decades, but very

  17. The orthopaedic management of myelomeningocele | Horn | South ...

    The orthopaedic management of myelomeningocele. A Horn, S Dix-Peek, S Mears, EB Hoffman. Abstract. Despite improvement in antenatal care and screening, myelomeningocele remains the most common congenital birth defect, with a reported incidence of 1 - 2.5/1000 patients in the Western Cape, South Africa.

  18. Nigerian Journal of Orthopaedics and Trauma: Submissions

    The Nigerian Journal of Orthopaedics and Trauma is a peer reviewed journal publishing original research articles on all aspects of trauma, musculoskeletal ... initials and surnames of all authors, their highest academic degrees, affiliations / institutions and the name, address and e-mail address of the corresponding author.

  19. Aspirin for Prophylaxis Against Venous Thromboembolism After Orthopaedic Oncologic Surgery.

    Mendez, Gregory M; Patel, Yash M; Ricketti, Daniel A; Gaughan, John P; Lackman, Richard D; Kim, Tae Won B


    Patients who undergo orthopaedic oncologic surgical procedures are at increased risk of developing a venous thromboembolism (VTE). Guidelines from surgical societies are shifting to include aspirin as a postoperative VTE prophylactic agent. The purpose of this study was to review our experience using aspirin as postoperative VTE prophylaxis for orthopaedic oncologic surgical procedures. This study was a retrospective review of patients diagnosed with a primary malignant soft-tissue or bone tumor or metastatic carcinoma. Demographic information, histopathologic diagnosis, VTE history, surgical procedure, and VTE prophylaxis were analyzed. VTE rates in the overall and prophylactic-specific cohorts were recorded and compared. A total of 142 distinct surgical procedures in 130 patients were included. VTE prophylaxis with aspirin was used after 103 procedures, and non-aspirin prophylaxis was used after 39. In 33 cases, imaging was used to investigate for VTE because of clinical signs and symptoms. VTE developed after 7 (4.9%) of the 142 procedures. There were 6 deep venous thromboses (DVTs) and 1 pulmonary embolism, and 2 of the VTEs presented in patients with a VTE history. VTE developed in 2.9% (3) of the 103 aspirin cases and 10.3% (4) of the 39 non-aspirin cases. No patient in the aspirin group who had been diagnosed with metastatic carcinoma, malignant soft-tissue sarcoma, lymphoma, or multiple myeloma developed a VTE. Risk factors for VTE development included diabetes mellitus (odds ratio [OR] = 10.40, 95% confidence interval [CI] = 1.61 to 67.30), a history of VTE (OR = 7.26, 95% CI = 1.19 to 44.25), postoperative transfusion (OR = 34.50, 95% CI = 3.94 to 302.01), and estimated blood losses of 250 mL (OR = 1.50, 95% CI = 1.11 to 2.03), 500 mL (OR = 2.26, 95% CI = 1.23 to 4.13), and 1,000 mL (OR = 5.10, 95% CI = 1.52 to 17.04). Aspirin may be a suitable and effective option for VTE chemoprophylaxis in patients treated with orthopaedic oncologic surgery, especially

  20. Multiscale Inorganic Hierarchically Materials: Towards an Improved Orthopaedic Regenerative Medicine.

    Ruso, Juan M; Sartuqui, Javier; Messina, Paula V


    Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well

  1. Orthopaedic surgeries in rheumatic patient

    Moises Cohen


    Full Text Available Rheumatoid arthritis is the most common rheumatic disease thatneeds surgical intervention. The most affected joints are the wrists,metacarpophalangeal, interphalangeal, metatarsophalangeal, andknees. The others joints are affected in the development of thedisease. During its progression, the infl ammatory process extendsto the periarticular structures of the connective tissue as tendonsand ligaments. These involvements of soft tissue with osteoarticularinvolvement lead to instability and deformities. Open or arthroscopicsynovectomies lead to pain relief, while tenotomies and tendonstransfer aim to correct deformities, as well as regain function of thejoint. Arthroplasty is an excellent choice in order to have a goodrange of motion, functional and not a painful joint. Arthrodesis ischosen, when there is an intense articular involvement and there isno indication for arthroplasty. Although, it limits the range of motionit can achieve pain relief and function, when performed in the rightangle of fl exion and extension.

  2. Early mechanical stimulation only permits timely bone healing in sheep.

    Tufekci, Pelin; Tavakoli, Aramesh; Dlaska, Constantin; Neumann, Mirjam; Shanker, Mihir; Saifzadeh, Siamak; Steck, Roland; Schuetz, Michael; Epari, Devakar


    Bone fracture healing is sensitive to the fixation stability. However, it is unclear which phases of healing are mechano-sensitive and if mechanical stimulation is required throughout repair. In this study, a novel bone defect model, which isolates an experimental fracture from functional loading, was applied in sheep to investigate if stimulation limited to the early proliferative phase is sufficient for bone healing. An active fixator controlled motion in the fracture. Animals of the control group were unstimulated. In the physiological-like group, 1 mm axial compressive movements were applied between day 5 and 21, thereafter the movements were decreased in weekly increments and stopped after 6 weeks. In the early stimulatory group, the movements were stopped after 3 weeks. The experimental fractures were evaluated with mechanical and micro-computed tomography methods after 9 weeks healing. The callus strength of the stimulated fractures (physiological-like and early stimulatory) was greater than the unstimulated control group. The control group was characterized by minimal external callus formation and a lack of bone bridging at 9 weeks. In contrast, the stimulated groups exhibited advanced healing with solid bone formation across the defect. This was confirmed quantitatively by a lower bone volume in the control group compared to the stimulated groups.The novel experimental model permits the application of a well-defined load history to an experimental bone fracture. The poor healing observed in the control group is consistent with under-stimulation. This study has shown early mechanical stimulation only is sufficient for a timely healing outcome. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1790-1796, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Does treatment of split-thickness skin grafts with negative-pressure wound therapy improve tissue markers of wound healing in a porcine experimental model?

    Ward, Christopher; Ciraulo, David; Coulter, Michael; Desjardins, Steven; Liaw, Lucy; Peterson, Sarah


    Negative-pressure wound therapy (NPWT) has been used for to treat wounds for more than 15 years and, more recently, has been used to secure split-thickness skin grafts. There are some data to support this use of NPWT, but the actual mechanism by which NPWT speeds healing or improves skin graft take is not entirely known. The purpose of this project was to assess whether NPWT improved angiogenesis, wound healing, or graft survival when compared with traditional bolster dressings securing split-thickness skin grafts in a porcine model. We performed two split-thickness skin grafts on each of eight 30 kg Yorkshire pigs. We took graft biopsies on postoperative days 2, 4, 6, 8, and 10 and submitted the samples for immunohistochemical staining, as well as standard hematoxylin and eosin staining. We measured the degree of vascular ingrowth via immunohistochemical staining for von Willenbrand's factor to better identify blood vessel epithelium. We determined the mean cross-sectional area of blood vessels present for each representative specimen, and then compared the bolster and NPWT samples. We also assessed each graft for incorporation and survival at postoperative day 10. Our analysis of the data revealed that there was no statistically significant difference in the degree of vascular ingrowth as measured by mean cross-sectional capillary area (p = 0.23). We did not note any difference in graft survival or apparent incorporation on a macroscopic level, although standard hematoxylin and eosin staining indicated that microscopically, there seemed to be better subjective graft incorporation in the NPWT samples and a nonsignificant trend toward improved graft survival in the NPWT group. We were unable to demonstrate a significant difference in vessel ingrowth when comparing NPWT and traditional bolster methods for split-thickness skin graft fixation. More studies are needed to elucidate the manner by which NPWT exerts its effects and the true clinical magnitude of these

  4. Validation of the Osteopenia Sheep Model for Orthopaedic Biomaterial Research

    Ding, Ming


    months. This suggests that a prolonged administration of GC is needed for a long-term observation to keep osteopenic bone.                 In conclusion, after 7 months of GC treatments with restricted diet, the microarchitectural characteristics, mechanical competence, mineralization of the bone tissues...... resemble osteoporosis in humans. This study aimed to validate glucocorticoid-induced osteopenia sheep model for orthopaedic implant and biomaterial research. We hypothesized that a 7-month GC treatment together with restricted diet but without OVX would induce osteopenia. Materials and Methods: Eighteen...... for 7 months. The sheep were housed outdoors in paddocks, and received restricted diet with low calcium and phosphorus (0.55% calcium and 0.35% phosphorus) and hay. After sacrifice, cancellous bone specimens from the 5th lumbar vertebra, bilateral distal femur, and bilateral proximal tibia, and cortical...

  5. Critical roles of orthopaedic surgeon leadership in healthcare systems to improve orthopaedic surgical patient safety.

    Kuo, Calvin C; Robb, William J


    The prevention of medical and surgical harm remains an important public health problem despite increased awareness and implementation of safety programs. Successful introduction and maintenance of surgical safety programs require both surgeon leadership and collaborative surgeon-hospital alignment. Documentation of success of such surgical safety programs in orthopaedic practice is limited. We describe the scope of orthopaedic surgical patient safety issues, define critical elements of orthopaedic surgical safety, and outline leadership roles for orthopaedic surgeons needed to establish and sustain a culture of safety in contemporary healthcare systems. We identified the most common causes of preventable surgical harm based on adverse and sentinel surgical events reported to The Joint Commission. A comprehensive literature review through a MEDLINE(®) database search (January 1982 through April 2012) to identify pertinent orthopaedic surgical safety articles found 14 articles. Where gaps in orthopaedic literature were identified, the review was supplemented by 22 nonorthopaedic surgical references. Our final review included 36 articles. Six important surgical safety program elements needed to eliminate preventable surgical harm were identified: (1) effective surgical team communication, (2) proper informed consent, (3) implementation and regular use of surgical checklists, (4) proper surgical site/procedure identification, (5) reduction of surgical team distractions, and (6) routine surgical data collection and analysis to improve the safety and quality of surgical patient care. Successful surgical safety programs require a culture of safety supported by all six key surgical safety program elements, active surgeon champions, and collaborative hospital and/or administrative support designed to enhance surgical safety and improve surgical patient outcomes. Further research measuring improvements from such surgical safety systems in orthopaedic care is needed.

  6. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction

    Cohen, Daniel J.; Gloerich, Martijn; Nelson, W. James


    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apicalbasal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Ep...

  7. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model.

    Yookyung Jung

    Full Text Available Peripheral nerve injury (PNI, a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout

  8. Leadership and business education in orthopaedic residency training programs.

    Kiesau, Carter D; Heim, Kathryn A; Parekh, Selene G


    Leadership and business challenges have become increasingly present in the practice of medicine. Orthopaedic residency programs are at the forefront of educating and preparing orthopaedic surgeons. This study attempts to quantify the number of orthopaedic residency programs in the United States that include leadership or business topics in resident education program and to determine which topics are being taught and rate the importance of various leadership characteristics and business topics. A survey was sent to all orthopaedic department chairpersons and residency program directors in the United States via e-mail. The survey responses were collected using a survey collection website. The respondents rated the importance of leadership training for residents as somewhat important. The quality of character, integrity, and honesty received the highest average rating among 19 different qualities of good leaders in orthopaedics. The inclusion of business training in resident education was also rated as somewhat important. The topic of billing and coding received the highest average rating among 14 different orthopaedically relevant business topics. A variety of topics beyond the scope of clinical practice must be included in orthopaedic residency educational curricula. The decreased participation of newly trained orthopaedic surgeons in leadership positions and national and state orthopaedic organizations is concerning for the future of orthopaedic surgery. Increased inclusion of leadership and business training in resident education is important to better prepare trainees for the future.

  9. Quality of life during orthopaedic training and academic practice. Part 1: orthopaedic surgery residents and faculty.

    Sargent, M Catherine; Sotile, Wayne; Sotile, Mary O; Rubash, Harry; Barrack, Robert L


    A pilot study of two academic training programs revealed concerning levels of resident burnout and psychological dysfunction. The purpose of the present study was to determine the quality of life of orthopaedic residents and faculty on a national scale and to identify risk factors for decompensation. Three hundred and eighty-four orthopaedic residents and 264 full-time orthopaedic faculty members completed a voluntary, anonymous survey consisting of three validated instruments (the Maslach Burnout Inventory, the General Health Questionnaire-12, and the Revised Dyadic Adjustment Scale) and question sets assessing demographic information, relationship issues, stress reactions/management, and work/life balance. High levels of burnout were seen in 56% of the residents and 28% of the faculty members. Burnout risk was greatest among second-postgraduate-year residents and residents in training programs with six or more residents per postgraduate year. Sixteen percent of residents and 19% of faculty members reported symptoms of psychological distress. Sleep deprivation was common among the residents and correlated positively with every distress measure. Faculty reported greater levels of stress but greater satisfaction with work and work/life balance. A number of factors, such as making time for hobbies and limiting alcohol use, correlated with decreased dysfunction for both residents and faculty. Despite reporting high levels of job satisfaction, orthopaedic residents and faculty are at risk for burnout and distress. Identification of protective factors and risk factors may provide guidance to improve the quality of life of academic orthopaedic surgeons in training and beyond.

  10. The 2016 American Orthopaedic Association-Japanese Orthopaedic Association Traveling Fellowship.

    Nandi, Sumon; Cho, Samuel K; Freedman, Brett A; Firoozabadi, Reza


    The American Orthopaedic Association-Japanese Orthopaedic Association (AOA-JOA) Traveling Fellowship, which began in 1992 as a collaborative effort between the 2 orthopaedic communities, is aimed at fostering leadership among early-career surgeons through clinical, academic, and cultural exchange. Over 3 weeks, we experienced an extraordinary journey that led us across nearly 800 miles of the picturesque Japanese countryside, with stops at 6 distinguished academic centers. The opportunity to become personally acquainted with orthopaedic leaders in Japan, learn from their experiences, and immerse ourselves in the ancient and storied culture of a beautiful country was one that we will not soon forget. Along the way, we accumulated a wealth of information while enjoying the legendary hospitality of the Japanese people. There is a ubiquitous challenge in delivering cost-effective, accessible health care while maintaining a commitment to education and research. The U.S. orthopaedic community may take solace in the fact that our Japanese colleagues stand with us as partners in this pursuit, and our relationship with them continues to grow stronger through endeavors such as the AOA-JOA Traveling Fellowship. We look forward to honoring our Japanese colleagues in 2017 when we host them in the United States.

  11. Interview. The story of Advanced BioHealing: commercializing bioengineered tissue products. Mr Tozer speaks to Emily Culme-Seymour, Assistant Commissioning Editor.

    Tozer, Dean


    Dean Tozer is Senior Vice President at Advanced BioHealing, Inc. (ABH), overseeing marketing, corporate development, government affairs, product development, various regulatory functions and international expansion. After completing his Bachelor of Commerce from Saint Mary's University in Halifax, Canada, Mr Tozer spent 10 years in the global pharmaceutical industry, primarily with G.D. Searle (a division of Monsanto) where he had a wide variety of roles in Global Marketing, Sales, Business Redesign, and Accounting and Finance. Mr Tozer then worked as a consultant to the biopharmaceutical industry, assisting start-up organizations in developing commercial strategies for both pharmaceutical products and biomedical devices, prior to joining ABH in March 2006 as Vice President of Marketing & Corporate Development. In addition to his leadership role at ABH, Mr Tozer currently serves as an officer and board member for the Alliance for Regenerative Medicine, a Washington DC-based organization formed to advance regenerative medicine by representing and supporting the community of companies, academic research institutions, patient advocacy groups, foundations, and other organizations before the Congress, federal agencies and the general public.

  12. Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles

    Ioana Petre


    Full Text Available Year after year recovery clinics worldwide report significant numbers of lower limb bearing joint disabilities. An effective method for the speedy rehabilitation of patients with such afflictions is Continuous Passive Motion (CPM, drawing upon a range of specific equipment. This paper presents an innovative constructive solution for such orthopaedic rehabilitation equipment, designed to ensure a swift reintegration of patients at as low a cost as possible. The absolute novelty consists in the utilization of the linear pneumatic muscle as actuator of the orthopaedic rehabilitation equipment, thus achieving a light and highly compliant construction that satisfies safety requirements related to man-machine interaction. Pneumatic muscles are bio-inspired actuation systems characterized by a passive variable compliant behaviour. This property, deployed in rehabilitation systems, enables the development of human friendly devices, which are comfortable for the patients, and capable of safe interaction. This paper presents the constructive schematic of the orthopaedic rehabilitation equipment, the structure of the actuation and positioning system, and several of its functional characteristics.

  13. Quality of online pediatric orthopaedic education materials.

    Feghhi, Daniel P; Komlos, Daniel; Agarwal, Nitin; Sabharwal, Sanjeev


    Increased availability of medical information on the Internet empowers patients to look up answers to questions about their medical conditions. However, the quality of medical information available on the Internet is highly variable. Various tools for the assessment of online medical information have been developed and used to assess the quality and accuracy of medical web sites. In this study we used the LIDA tool (Minervation) to assess the quality of pediatric patient information on the AAOS (American Academy of Orthopaedic Surgeons) and POSNA (Pediatric Orthopaedic Society of North America) web sites. The accessibility, usability, and reliability of online medical information in the "Children" section of the AAOS web site and on the POSNA web site were assessed with use of the LIDA tool. Flesch-Kincaid (FK) and Flesch Reading Ease (FRE) values were also calculated to assess the readability of the pediatric education material. Patient education materials on each web site scored in the moderate range in assessments of accessibility, usability, and reliability. FK and FRE values indicated that the readability of each web site remained at a somewhat higher (more difficult) level than the recommended benchmark. The quality and readability of online information for children on the AAOS and POSNA web sites are acceptable but can be improved further. The quality of online pediatric orthopaedic patient education materials may affect communication with patients and their caregivers, and further investigation and modification of quality are needed. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  14. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction

    Cohen, Daniel J.; Gloerich, Martijn; Nelson, W. James


    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity

  15. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process

    Wang L


    Full Text Available Lei Wang,1,* Guoyuan Li,1,* Ling Ren,2,* Xiangdong Kong,1 Yugang Wang,1 Xiuguo Han,1 Wenbo Jiang,3 Kerong Dai,1 Ke Yang,2 Yongqiang Hao11Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 2Special Materials and Device Research Department, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 3Medical 3D Printing Innovation Research Center, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Treatment for fractures requires internal fixation devices, which are mainly produced from stainless steel or titanium alloy without biological functions. Therefore, we developed a novel nano-copper-bearing stainless steel with nano-sized copper-precipitation (317L-Cu SS. Based on previous studies, this work explores the effect of 317L-Cu SS on fracture healing; that is, proliferation, osteogenic differentiation, osteogenesis-related gene expression, and lysyl oxidase activity of human bone mesenchymal stem cells were detected in vitro. Sprague–Dawley rats were used to build an animal fracture model, and fracture healing and callus evolution were investigated by radiology (X-ray and micro-CT, histology (H&E, Masson, and safranin O/fast green staining, and histomorphometry. Further, the Cu2+ content and Runx2 level in the callus were determined, and local mechanical test of the fracture was performed to assess the healing quality. Our results revealed that 317L-Cu SS did not affect the proliferation of human bone mesenchymal stem cells, but promoted osteogenic differentiation and the expression of osteogenesis-related genes. In addition, 317L-Cu SS upregulated the lysyl oxidase activity. The X-ray and micro-CT results showed that the callus evolution efficiency and fracture healing speed were

  16. The Libyan civil conflict: selected case series of orthopaedic trauma managed in Malta in 2014.

    Ng, Colin; Mifsud, Max; Borg, Joseph N; Mizzi, Colin


    The purpose of this series of cases was to analyse our management of orthopaedic trauma casualties in the Libyan civil war crisis in the European summer of 2014. We looked at both damage control orthopaedics and for case variety of war trauma at a civilian hospital. Due to our geographical proximity to Libya, Malta was the closest European tertiary referral centre. Having only one Level 1 trauma care hospital in our country, our Trauma and Orthopaedics department played a pivotal role in the management of Libyan battlefield injuries. Our aims were to assess acute outcomes and short term mortality of surgery within the perspective of a damage control orthopaedic strategy whereby aggressive wound management, early fixation using relative stability principles, antibiotic cover with adequate soft tissue cover are paramount. We also aim to describe the variety of war injuries we came across, with a goal for future improvement in regards to service providing. Prospective collection of six interesting cases with severe limb and spinal injuries sustained in Libya during the Libyan civil war between June and November 2014. We applied current trends in the treatment of war injuries, specifically in damage control orthopaedic strategy and converting to definitive treatment where permissible. The majority of our cases were classified as most severe (Type IIIB/C) according to the Gustilo-Anderson classification of open fractures. The injuries treated reflected the type of standard and improved weaponry available in modern warfare affecting both militants and civilians alike with increasing severity and extent of damage. Due to this fact, multidisciplinary team approach to patient centred care was utilised with an ultimate aim of swift recovery and early mobilisation. It also highlighted the difficulties and complex issues required on a hospital management level as a neighbouring country to war zone countries in transforming care of civil trauma to military trauma.

  17. Modeling of anisotropic wound healing

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.


    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  18. Collagen metabolism during wound healing in rats. The aminoterminal propeptide of type III procollagen in serum and wound fluid in relation to formation of granulation tissue

    Jensen, L T; Garbarsch, C; Hørslev-Petersen, K


    The aminoterminal propeptide of type III procollagen (PIIINP) in serum has been shown to correlate with fibrillogenesis, and thus to be a potential direct marker of type III collagen deposition. The aim of the study was to investigate the correlation between changes in serum PIIINP and formation ......, changes in serum PIIINP mirror fibrillogenesis. Furthermore, our study provides experimental evidence consistent with the hypothesis that wound fluid PIIINP directly mirrors the local formation of granulation tissue, independent of weight loss and cyclophosphamide treatment.......The aminoterminal propeptide of type III procollagen (PIIINP) in serum has been shown to correlate with fibrillogenesis, and thus to be a potential direct marker of type III collagen deposition. The aim of the study was to investigate the correlation between changes in serum PIIINP and formation...... loss caused by treatment, weight loss caused by starvation was investigated. In untreated rats, serum PIIINP and wound fluid PIIINP were related to formation of granulation tissue (serum: r = 0.58, p

  19. Determination of the Dynamics of Healing at the Tissue-Implant Interface by Means of Microcomputed Tomography and Functional Apparent Moduli

    Chang, Po-Chun; Seol, Yang-Jo; Goldstein, Steven A.; Giannobile, William V.


    Purpose It is currently a challenge to determine the biomechanical properties of the hard tissue–dental implant interface. Recent advances in intraoral imaging and tomographic methods, such as microcomputed tomography (micro-CT), provide three-dimensional details, offering significant potential to evaluate the bone-implant interface, but yield limited information regarding osseointegration because of physical scattering effects emanating from metallic implant surfaces. In the present study, it was hypothesized that functional apparent moduli (FAM), generated from functional incorporation of the peri-implant structure, would eliminate the radiographic artifact–affected layer and serve as a feasible means to evaluate the biomechanical dynamics of tissue-implant integration in vivo. Materials and Methods Cylindric titanium mini-implants were placed in osteotomies and osteotomies with defects in rodent maxillae. The layers affected by radiographic artifacts were identified, and the pattern of tissue-implant integration was evaluated from histology and micro-CT images over a 21-day observation period. Analyses of structural information, FAM, and the relationship between FAM and interfacial stiffness (IS) were done before and after eliminating artifacts. Results Physical artifacts were present within a zone of about 100 to 150 μm around the implant in both experimental defect situations (osteotomy alone and osteotomy + defect). All correlations were evaluated before and after eliminating the artifact-affected layers, most notably during the maturation period of osseointegration. A strong correlation existed between functional bone apparent modulus and IS within 300 μm at the osteotomy defects (r > 0.9) and functional composite tissue apparent modulus in the osteotomy defects (r > 0.75). Conclusion Micro-CT imaging and FAM were of value in measuring the temporal process of tissue-implant integration in vivo. This approach will be useful to complement imaging

  20. Prescription for herbal healing

    Balch, Phyllis A; Bell, Stacey J


    .... From the most trusted name in natural healing, Phyllis A. Balch's new edition of Prescription for Herbal Healing provides the most current research and comprehensive facts in an easy-to-read A- to-Z format, including...

  1. Wound healing in animal models: review article

    Fariba Jaffary


    Full Text Available Wound healing and reduction of its recovery time is one of the most important issues in medicine. Wound is defined as disruption of anatomy and function of normal skin. This injury could be the result of physical elements such as  surgical incision, hit or pressure cut of the skin and gunshot wound. Chemical or caustic burn is another category of wound causes that can be induced by acid or base contact irritation. Healing is a process of cellular and extracellular matrix interactions that occur in the damaged tissue. Wound healing consists of several stages including hemostasis, inflammatory phase, proliferative phase and new tissue formation which reconstructs by new collagen formation. Wounds are divided into acute and chronic types based on their healing time. Acute wounds have sudden onset and in normal individuals usually have healing process of less than 4 weeks without any residual side effects. In contrast, chronic wounds have gradual onset. Their inflammatory phase is prolonged and the healing process is stopped due to some background factors like diabetes, ischemia or local pressure. If the healing process lasts more than 4 weeks it will be classified as chronic wound. Despite major advances in the treatment of wounds, still finding effective modalities for healing wounds in the shortest possible time with the fewest side effects is a current challenge. In this review different phases of wound healing and clinical types of wound such as venous leg ulcer, diabetic foot ulcer and pressure ulcer are discussed. Also acute wound models (i.e burn wounds or incisional wound and chronic wound models (such as venous leg ulcers, diabetic foot ulcer, pressure ulcers or bedsore in laboratory animals are presented. This summary can be considered as a preliminary step to facilitate designing of more targeted and applied research in this area.

  2. Reno Orthopaedic Trauma Fellowship business curriculum.

    Althausen, Peter L; Bray, Timothy J; Hill, Austin D


    The Reno Orthopaedic Center (ROC) Trauma Fellowship business curriculum is designed to provide the fellow with a graduate level business practicum and research experience. The time commitments in a typical 12-month trauma fellowship are significant, rendering a traditional didactic master's in business administration difficult to complete during this short time. An organized, structured, practical business education can provide the trauma leaders of tomorrow with the knowledge and experience required to effectively navigate the convoluted and constantly changing healthcare system. The underlying principle throughout the curriculum is to provide the fellow with the practical knowledge to participate in cost-efficient improvements in healthcare delivery. Through the ROC Trauma Fellowship business curriculum, the fellow will learn that delivering healthcare in a manner that provides better outcomes for equal or lower costs is not only possible but a professional and ethical responsibility. However, instilling these values without providing actionable knowledge and programs would be insufficient and ineffective. For this reason, the core of the curriculum is based on individual teaching sessions with a wide array of hospital and private practice administrators. In addition, each section is equipped with a suggested reading list to maximize the learning experience. Upon completion of the curriculum, the fellow should be able to: (1) Participate in strategic planning at both the hospital and practice level based on analysis of financial and clinical data, (2) Understand the function of healthcare systems at both a macro and micro level, (3) Possess the knowledge and skills to be strong leaders and effective communicators in the business lexicon of healthcare, (4) Be a partner and innovator in the improvement of the delivery of orthopaedic services, (5) Combine scientific and strategic viewpoints to provide an evidence-based strategy for improving quality of care in a

  3. Sex hormones and mucosal wound healing.

    Engeland, Christopher G; Sabzehei, Bahareh; Marucha, Phillip T


    Wound healing studies, which have chiefly examined dermal tissues, have reported a female advantage in healing rates. In contrast, our laboratory recently demonstrated women heal mucosal wounds more slowly than men. We hypothesized sex hormones influence wound healing rates, possibly through their modulating effects on inflammation. This study involved 329 younger subjects aged 18-43 (165 women, 164 men) and 93 older subjects aged 50-88 (60 women, 33 men). A 3.5mm diameter wound was created on the hard oral palate and videographed daily to assess wound closure. Blood collected at the time of wounding was used to assess circulating testosterone, progesterone and estradiol levels, and in vitro cytokine production in response to LPS. No strong associations were observed between healing times and estradiol or progesterone levels. However, in younger subjects, lower testosterone levels related to faster wound closure. Conversely, in older women higher testosterone levels related to (1) lower inflammatory responses; and (2) faster healing times. No such relationships were seen in older men, or in women taking oral contraceptives or hormone replacement therapy [HRT]. Older women (50-54 years) not yet experiencing menopause healed similarly to younger women and dissimilarly from age-matched post-menopausal women. This suggests that the deleterious effects of aging on wound healing occur secondary to the effects of menopause. Supporting this, there was evidence in post-menopausal women that HRT augmented wound closure. Overall, this study suggests that human mucosal healing rates are modulated by testosterone levels. Based upon when between-group differences were observed, testosterone may impact upon the proliferative phase of healing which involves immune processes such as re-epithelialization and angiogenesis.

  4. Nanostructured diamond coatings for orthopaedic applications



    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213

  5. Hyperbaric oxygen therapy. Promoting healing in difficult cases

    Cohn, G.H.


    Inhalation of pressurized 100% oxygen is a helpful adjunctive treatment for certain patients, because the increased oxygen carried by the blood to the tissue enhances new growth of microcirculation and, thus, healing. Patients with tissue breakdown after radiation therapy, refractory osteomyelitis, gas gangrene, soft-tissue infection with necrosis from mixed aerobic and anaerobic organisms, crush injuries resulting in acute ischemia, and compromised skin grafts or non-healing wounds are likely to benefit from hyperbaric oxygen therapy

  6. Prevalence and pattern of small animal orthopaedic conditions at ...

    Small animal orthopaedic case records of a 20-year period were surveyed to obtain the prevalence and pattern of orthopaedic conditions presented to the Veterinary Teaching Hospital (VTH), University of Ibadan, Nigeria, with the objective of providing data for planning on small animal healthcare facilities, policy ...

  7. Social Competence and Temperament in Children with Chronic Orthopaedic Disability

    Yagmurlu, Bilge; Yavuz, H. Melis


    The aim of the study was to investigate social competence in children with orthopaedic disability and its concurrent relations to child's temperament, health condition, and maternal warmth. Participants were 68 Turkish children (mean = 5.94 years) with chronic orthopaedic disability and their mothers coming from disadvantaged backgrounds. Mother…


    L. Lokanadha Rao


    Full Text Available BACKGROUND Large, complicated wounds pose a significant surgical problem. Negative pressure wound therapy is one of several methods enabling to obtain better treatment results in case of open infected wounds.1,2 The use of negative pressure therapy enables to obtain a reduction in the number of bacteria which significantly reduces the number of complications.3,4,5 AIMS AND OBJECTIVES: To review the Role of VAC in wound healing in Orthopaedics. MATERIALS AND METHODS The cases presented in this study are those who were admitted in King George Hospital in the time period from January 2014 to August 2015. This is a prospective interventional study. In this study, 15 patients were assigned to the study group (Negative Pressure Wound Therapy- NPWT based on their willingness for undergoing treatment. OBSERVATIONS AND RESULTS 12 males and 3 females are involved in the study. There is decrease in the mean wound area from 64 cm2 to 38 cm2 . There is decrease in the duration of hospital stay. Finally, wound is closed by SSG or secondary suturing. DISCUSSION NPWT is known to reduce bacterial counts, although they remain colonised with organisms. Wounds covered with NPW dressing are completely isolated from the environment, thereby reduces cross infection. In our series, we had 73.3% (11 cases excellent results and 26.7% (4 cases good results and no poor results. As interpretation with results, VAC therapy is effective mode of adjuvant therapy for the management of infected wounds. CONCLUSION VAC has been proven to be a reliable method of treating a variety of infected wounds. It greatly increases the rate of granulation tissue formation and lowers bacterial counts to accelerate wound healing. It can be used as a temporary dressing to prepare wounds optimally prior to closure or as a definitive treatment for nonsurgical and surgical wounds. VAC is now being used in a multitude of clinical settings, including the treatment of surgical wounds, infected wounds

  9. Impaired Fracture Healing after Hemorrhagic Shock

    Philipp Lichte


    Full Text Available Impaired fracture healing can occur in severely injured patients with hemorrhagic shock due to decreased soft tissue perfusion after trauma. We investigated the effects of fracture healing in a standardized pressure controlled hemorrhagic shock model in mice, to test the hypothesis that bleeding is relevant in the bone healing response. Male C57/BL6 mice were subjected to a closed femoral shaft fracture stabilized by intramedullary nailing. One group was additionally subjected to pressure controlled hemorrhagic shock (HS, mean arterial pressure (MAP of 35 mmHg for 90 minutes. Serum cytokines (IL-6, KC, MCP-1, and TNF-α were analyzed 6 hours after shock. Fracture healing was assessed 21 days after fracture. Hemorrhagic shock is associated with a significant increase in serum inflammatory cytokines in the early phase. Histologic analysis demonstrated a significantly decreased number of osteoclasts, a decrease in bone quality, and more cartilage islands after hemorrhagic shock. μCT analysis showed a trend towards decreased bone tissue mineral density in the HS group. Mechanical testing revealed no difference in tensile failure. Our results suggest a delay in fracture healing after hemorrhagic shock. This may be due to significantly diminished osteoclast recruitment. The exact mechanisms should be studied further, particularly during earlier stages of fracture healing.

  10. The older orthopaedic patient: general considerations.

    Potter, Jane F


    People older than 65 years are more likely to need elective and emergent orthopaedic surgery compared with younger persons. They also experience significant benefits. Although age-related changes increase the risk of perioperative complications, understanding those changes allows prevention or at least early recognition and treatment when problems arise. Because of comorbidities, older persons take more medications that need to be managed in the perioperative period. Care could be simplified if patients were to bring their medications to the preoperative evaluation. Central nervous system sensitivity to certain pain medications (meperidine and propoxyphene) means that these drugs are best avoided as good alternatives exist (morphine and oxycodone). Adverse reactions to drugs are an important cause of acute confusion (delirium) that often complicates orthopaedic care. Early mobilization after surgery, avoiding certain drugs, avoiding restraints (including Foley catheters), attending to hydration, promoting normal sleep, compensating for sensory disorders, and stimulating daytime activities can prevent delirium. Patients with dementia are more likely to have delirium develop and, like many older people, will present special challenges in communication and decision making. Including family members in discussions may be helpful in ensuring truly informed consent.

  11. Clinical features of anaerobic orthopaedic infections.

    Lebowitz, Dan; Kressmann, Benjamin; Gjoni, Shpresa; Zenelaj, Besa; Grosgurin, Olivier; Marti, Christophe; Zingg, Matthieu; Uçkay, Ilker


    Some patient populations and types of orthopaedic surgery could be at particular risk for anaerobic infections. In this retrospective cohort study of operated adult patients with infections from 2004 to 2014, we assessed obligate anaerobes and considered first clinical infection episodes. Anaerobes, isolated from intra-operative samples, were identified in 2.4% of 2740 surgical procedures, of which half (33/65; 51%) were anaerobic monomicrobial infections. Propionibacterium acnes, a penicillin and vancomycin susceptible pathogen, was the predominantly isolated anaerobe. By multivariate analysis, the presence of fracture fixation plates was the variable most strongly associated with anaerobic infection (odds ratio: 2.1, 95% CI: 1.3-3.5). Anaerobes were also associated with spondylodesis and polymicrobial infections. In contrast, it revealed less likely in native bone or prosthetic joint infections and was not related to prior antibiotic use. In conclusion, obligate anaerobes in our case series of orthopaedic infections were rare, and mostly encountered in infections related to trauma with open-fracture fixation devices rather than clean surgical site infection. Anaerobes were often co-pathogens, and cultures most frequently recovered P. acnes. These observations thus do not support changes in current practices such as broader anaerobe coverage for perioperative prophylaxis.

  12. A Clinico- Epidemiological Study Of Filarial Related Orthopaedic Manifestations

    Patond K.R


    Full Text Available An epidemiological study was undertaken to study the incidence and distribution of orthopaedic manifestations of filariasis in an endemic area. A total of 207 cases were clinically examined and investigated. Patients were divided into three groups , viz., Group A: Orthopaedic manifestations with no history of filariasis . Group B: Orthopaedic manifestations with history of filariasis such as microfilaraemia or filarial fevers etc., Group C: Orthopaedic manifestations with chronic manifestations such as elephantiasis, hydrocele etc. To confirm filarial etiology, all the cases were examined for the presence of filarial antibody by indirect ELISA using wuchereda bancrofti microfilarial excretory- secretary antigen (wd Mf ESAg . A total of 61 of 102 patients of Group A, 14 of 21 patients of group B, and 73 of 84 patients of Group C were positive for filarial antibody. This study showed the prevalence of filarial antibody in about 71.4% of various orthopaedic manifestations.

  13. Fibroblast implantation enhances wound healing as indicated by breaking strength determinations

    Krueger, W W; Goepfert, H; Romsdahl, M; Hersen, J; Withers, R H; Jesse, R H


    Irradiation of normal tissues at the dose/time factor employed in the treatment of solid tumors impairs the subsequent healing of surgical wounds made in those tissues. Irreversible radiation damage to regional fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts, harvested from tissue culture when injected into irradiated guinea pig skin at the time of wound closure, could improve wound healing. Breaking strength determinations indicate that irradiated wounds demonstrate enhanced wound healing if implanted with fibroblasts.

  14. Dendritic cells modulate burn wound healing by enhancing early proliferation.

    Vinish, Monika; Cui, Weihua; Stafford, Eboni; Bae, Leon; Hawkins, Hal; Cox, Robert; Toliver-Kinsky, Tracy


    Adequate wound healing is vital for burn patients to reduce the risk of infections and prolonged hospitalization. Dendritic cells (DCs) are antigen presenting cells that release cytokines and are central for the activation of innate and acquired immune responses. Studies have showed their presence in human burn wounds; however, their role in burn wound healing remains to be determined. This study investigated the role of DCs in modulating healing responses within the burn wound. A murine model of full-thickness contact burns was used to study wound healing in the absence of DCs (CD11c promoter-driven diphtheria toxin receptor transgenic mice) and in a DC-rich environment (using fms-like tyrosine kinase-3 ligand, FL- a DC growth factor). Wound closure was significantly delayed in DC-deficient mice and was associated with significant suppression of early cellular proliferation, granulation tissue formation, wound levels of TGFβ1 and formation of CD31+ vessels in healing wounds. In contrast, DC enhancement significantly accelerated early wound closure, associated with increased and accelerated cellular proliferation, granulation tissue formation, and increased TGFβ1 levels and CD31+ vessels in healing wounds. We conclude that DCs play an important role in the acceleration of early wound healing events, likely by secreting factors that trigger the proliferation of cells that mediate wound healing. Therefore, pharmacological enhancement of DCs may provide a therapeutic intervention to facilitate healing of burn wounds. © 2016 by the Wound Healing Society.

  15. Faith healing and faith in healing.

    Gopichandran, Vijayaprasad


    Sarkar and Seshadri have presented an interesting paper in this issue on the ethical approach that a physician should take when faced with requests for faith healing (1). The paper describes four approaches that the physician can take. These are rejecting the request, keeping oneself detached from the issue, endorsing the request and trying to understand the practices concerned so as to make a reasoned decision. This commentary attempts to explore the issue of faith healing further, from the point of view of clinical care. It shall discuss five important dimensions which can supplement the arguments by Sarkar and Seshadri. These are the concepts of faith, spirituality and religion and faith healing; the difference between cure and healing; patient-centred care; the various factors influencing a doctor's response to requests for faith healing; and finally, the ethical issues to be considered while making a decision. Before launching into the discussion, it should be made clear that this commentary refers mainly to those faith healing practices which are not overtly harmful, such as prayers, and wearing rings and amulets.

  16. Preliminary study on the effect of parenteral naloxone, alone and in association with calcium gluconate, on bone healing in an ovine "drill hole" model system

    Langhoff Jens D


    Full Text Available Abstract Background Several diseases affect bone healing and physiology. Many drugs that are commonly used in orthopaedics as "analgesics" or anti-inflammatory agents impair bone healing. Stressful conditions are associated with decreased serum osteocalcin concentration. High endorphin levels alter calcium metabolism, blocking the membrane channels by which calcium normally enters cells. The consequent decrease of intracellular calcium impairs the activities of calcium-related enzymes. Naloxone is a pure opioid antagonist. Morphine-induced osteocalcin inhibition was abolished when osteoblasts were incubated with naloxone. Naloxone restored the altered cellular and tissue physiology by removing β-endorphins from specific receptors. However, this is only possible if the circulating Ca concentration is adequate. The aim of the present study was to evaluate the efficacy of parenteral naloxone administration in inducing fast mineralization and callus remodelling in a group of sheep with a standardised bone lesion. Methods Twenty ewes were randomly assigned to 4 treatment groups. Group A acted as control, group B received a solution of calcium gluconate, group C a solution of naloxone, and group D a solution of calcium gluconate and naloxone. A transverse hole was drilled in the left metacarpus, including both cortices, then parenteral treatment was administered intramuscularly, daily for four weeks. Healing was evaluated by weekly radiographic examination for eight weeks. For quantitative evaluation, the ratio of the radiographic bone density between the drill area and the adjacent cortical bone was calculated. After eight weeks the sheep were slaughtered and a sample of bone was collected for histopathology Results Group D showed a higher radiographic ratio than the other groups. Sheep not treated with naloxone showed a persistently lower ratio in the lateral than the medial cortex (P Conclusion A low-dose parenteral regimen of naloxone enhances

  17. Fractures after multimodality treatment of soft tissue sarcomas with isolated limb perfusion and radiation; likely to occur and hard to heal.

    Seinen, J M; Jutte, P C; Been, L B; Pras, E; Hoekstra, H J


    Treatment associated fractures (TAFs) are known severe side effects after surgery and radiotherapy for soft tissue sarcoma (STS). There is no literature about TAF after multimodality treatment with isolated limb perfusion (ILP) for locally advanced STS. This study aimed to analyze predictive factors, treatment and outcome for TAF after multimodality treatment with ILP. Out of 126 consecutive patients undergoing ILP after 1991 till now, 25 patients were excluded due to no surgery or direct amputation at initial surgery. Therefore, 101 patients were at risk and 12 developed a TAF (12%). The majority of tumors was located at the upper leg and knee (N = 60), and 11 patients developed a TAF (18%) after median 28 (5-237) months. Twenty-five tumors were located at the lower leg, and 1 patient developed a TAF after 12 months (4%). No patients with a tumor at the upper extremities (N = 16) developed a TAF. Ten out of 12 patients with a fracture received adjuvant RT with a dose of 50 Gy, and a median boost dose of 18 (10-20) Gy. Predictive factors were periosteal stripping, age over 65 years at time of treatment and tumor size after ILP ≥10 cm. Multivariate analysis showed periosteal stripping and tumor size after ILP ≥10 cm as significant predictive factors. The majority of the fractures were treated with intramedullary nailing. Only one of 12 patients without radiotherapy reached bone union (8%). The median survival after developing TAF was 18 (1-195) months. The overall risk of TAF after multimodality treatment with ILP was relatively high with 15% at ten years. The incidence of TAF for patients with tumors located at the thigh and knee after resection with periosteal stripping and radiotherapy was even >50%. The treatment of these fractures is challenging due to the high non-union rate, requiring an extensive orthopedic oncological TAF experience. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical

  18. General concept of wound healing, revisited

    Theddeus O.H. Prasetyono


    Full Text Available Wound healing is a transition of processes which is also recognized as one of the most complex processes in human physiology. Complex series of reactions and interactions among cells and mediators take place in the healing process of wound involving cellular and molecular events. The inflammatory phase is naturally intended to remove devitalized tissue and prevent invasive infection. The proliferative phase is characterized by the formation of granulation tissue within the wound bed, composed of new capillary network, fibroblast, and macrophages in a loose arrangement of supporting structure. This second phase lasts from day 8 to 21 after the injury is also the phase for epithelialisation. The natural period of proliferative phase is a reflection for us in treating wound to reach the goal which ultimately defines as closed wound. The final maturation phase is also characterized by the balancing between deposition of collagen and its degradation. There are at least three prerequisites which are ideal local conditions for the nature of wound to go on a normal process of healing i.e. 1 all tissue involved in the wound and surrounding should be vital, 2 no foreign bodies in the wound, and 3 free from excessive contamination/infection. The author formulated a step ladder of thinking in regards of healing intentions covering all acute and chronic wounds. Regarding the “hierarchy” of healing intention, the fi rst and ideal choice to heal wounds is by primary intention followed by tertiary intention and lastly the secondary intention. (Med J Indones 2009;18:206-14Key words: inflammatory mediator, epithelialisation, growth factor, wound healing

  19. Potato tuber wounding induces responses associated with various healing processes

    Wounding induces an avalanche of biological responses involved in the healing and protection of internal tuber tissues exposed by mechanical damage and seed cutting. Collectively, our studies have framed a portrait of the mechanisms and regulation of potato tuber wound-healing, but much more is req...

  20. Factors Affecting Wound Healing

    Guo, S.; DiPietro, L.A.


    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  1. The science of ultrasound therapy for fracture healing

    Della Rocca Gregory


    Full Text Available Fracture healing involves a complex interplay of cellular processes, culminating in bridging of a fracture gap with bone. Fracture healing can be compromised by numerous exogenous and endogenous patient factors, and intense research is currently going on to identify modalities that can increase the likelihood of successful healing. Low-intensity pulsed ultrasound (LIPUS has been proposed as a modality that may have a benefit for increasing reliable fracture healing as well as perhaps increasing the rate of fracture healing. We conducted a review to establish basic scince evidence of therapeutic role of lipus in fracture healing. An electronic search without language restrictions was accomplished of three databases (PubMed, Embase, Cinahl for ultrasound-related research in osteocyte and chondrocyte cell culture and in animal fracture models, published from inception of the databases through December, 2008. Studies deemed to be most relevant were included in this review. Multiple in vitro and animal in vivo studies were identified. An extensive body of literature exists which delineates the mechanism of action for ultrasound on cellular and tissue signaling systems that may be related to fracture healing. Research on LIPUS in animal fracture models has demonstrated promising results for acceleration of fracture healing and for promotion of fracture healing in compromised tissue beds. A large body of cellular and animal research exists which reveals that LIPUS may be beneficial for accelerating normal fracture healing or for promoting fracture healing in compromised tissue beds. Further investigation of the effects of LIPUS in human fracture healing is warranted for this promising new therapy.

  2. Radiation exposure to the eye lens of orthopaedic surgeons during various orthopaedic procedures

    Romanova, K.; Alyakov, M.; Vassileva, J.


    The aim of the present study was to assess the radiation dose to the eye lens of orthopaedic surgeons during various orthopaedic procedures and to make efforts to ensure that radiation protection is optimised. The study was performed for Fractura femoris and Fractura cruris procedures performed in orthopaedic operating theatres, as well as for fractures of wrist, ankle and hand/ shoulder performed in the emergency trauma room. The highest mean value of the eye lens dose of 47.2 μSv and higher mean fluoroscopy time of 3 min, as well as the corresponding highest maximum values of 77.1 μSv and 5.0 min were observed for the Fractura femoris procedure performed with the Biplanar 500e fluoroscopy systems. At a normal workload, the estimated mean annual dose values do not exceed the annual occupational dose limit for the lens of eye, but at a heavy workload in the department, this dose limit could be achieved or exceeded. The use of protective lead glasses is recommended as they could reduce the radiation exposure of the lens of the eye. The phantom measurements demonstrated that the use of half-dose mode could additionally reduce dose to the operator's eye lens. (authors)

  3. Thromboembolism prophylaxis practices in orthopaedic arthroplasty patients.

    Cawley, D


    Thromboembolic events are a post-operative complication of arthroplasty surgery for up to 3 months. The incidence however, is not fully known. Some form of prophylaxis should be provided to all arthroplasty patients. Clinicians are wary of side effects, compliance profile and the associated cost. The objective of this study is to investigate practice patterns and their relevance to 3 risk groups. Ninety questionnaires were sent to orthopaedic surgeons with 3 hypothetical clinical scenarios and 10 prophylaxis regimes for thromboembolism across different risk groups. The response rate was 81\\/90 (90%). The most popular options in all 3 cases were early mobilisation, thrombo-embolism deterrant (TED) stockings and low molecular weight heparin (LMWH) (51\\/81, 62% of all cases). An inconsistent relationship exists between preferred practice and relevant guidelines. Preferred practice does not correlate with each level of risk.

  4. Knowledge on Bone Banking among Participants in an Orthopaedic Conference: A Preliminary Survey

    Mohd S


    Full Text Available Despite increasing use of bone graft in Malaysia, there was still lack of data to quantify knowledge level on bone banking among orthopaedic community who are involved in transplantation related work. Therefore, a survey on awareness in tissue banking specifically bone banking, usage and choice of bone grafts was conducted. From 80 respondents, 82.5% were aware about tissue banking however only 12.5% knew of the existence of tissue banks in Malaysia. Femoral head was the bone allograft most often used as a substitute to autograft. Only 34.8% respondents preferred irradiated bone grafts whilst 46.9% preferred nonirradiated, indicating the need to educate the importance of radiation for sterilising tissues. Exhibition was the most preferred medium for awareness programme to disseminate information about bone banking in the orthopaedic community. The professional awareness is necessary to increase the knowledge on the use of bone graft, hence to increase bone transplantation for musculoskeletal surgeries in the country.

  5. Healing of experimentally created defects: a review

    Aaboe, M; Pinholt, E M; Hjørting-Hansen, E


    Within cranio-maxillofacial surgery and orthopedic surgery a bone graft or a bone substitute is required to recontour or assist bony healing in repair of osseous congenital deformities, or in repair of deformity due to trauma or to surgical excision after elimination of osseous disease processes ...... proteins have with success been added as adjuncts to already known biomaterials. In the future, inductive materials together with a suitable carrier and a biodegradable membrane may be the choice of bone substitute used within cranio-maxillofacial and orthopaedic surgery.......Within cranio-maxillofacial surgery and orthopedic surgery a bone graft or a bone substitute is required to recontour or assist bony healing in repair of osseous congenital deformities, or in repair of deformity due to trauma or to surgical excision after elimination of osseous disease processes...... exceeding a certain size. An autogenous bone graft is the optimal material of choice, however its use is problematic due to donor site morbidity, sparse amounts and uncontrolled resorption. Immunological responses and risk of viral contamination of allogenous and xenogenous bone materials make the use...


    E. M. Polyakova


    Full Text Available Review brief presents description of polymerase chain reaction method (PCR and its most common variants. Three PCR-based lines of research, carried out in the traumatology and orthopaedics, include identifying a causative agents of the implant-associated infection after orthopaedic surgery; detection of antibiotic resistance genes and biofilm forming genes. It was shown that PCR can be used as additional method for detection of genetic disorders, significant for traumatology and orthopaedics, and for investigation of cartilage and bone regeneration.

  7. Clinical and Histopathological Evaluation of Healing After Excision of Leukoplakia with Diode Laser

    Kruti A Shah


    Result: After one month, the patients were examined for normal clinical healing of the site. For more confirmation, re-biopsy was done and result showed normal tissue healing except in one patient (16%. Only one patient (16% developed pain, swelling, fibrosis and recurrence. Conclusion: It was concluded that laser provides good coagulation, healing, reduces surgical time and prevents high-grade infection.

  8. Catalysts for better health care. Medical tissue banks bring multiple benefits to countries

    Phillips, G.O.; Morales, J.


    For millions of injured and disabled people around the world, the treatment brings a new quality of life. Called tissue grafting or transplantation, it relies on the use of sterilized bone, skin, and other tissues to heal serious injuries, wounds, and sickness. Prime beneficiaries include severe burn victims, and men, women, and children suffering from crippling diseases, birth defects, and blindness. Long applied in plastic and orthopaedic surgery, tissue grafting once relied only on using a patient's own tissues, known as an autograft. But now tissues from human or animal donors (allograft) are used for transplantation. This new form of tissue grafting has made big strides over the past decade. An expanding number of facilities today prepare the valuable tissues to the high-quality standards demanded in medical care. Dozens of such new tissue banks have opened in Asia, Latin America, Europe, and North America. A productive channel of progress has been an IAEA-supported technical cooperation programme. Through it, experts have worked together behind the scenes to help national health authorities establish tissue banks, train associated staff, and develop standards and regulatory guides. The IAEA accordingly has gained more experience and success than any other international organization in supporting the establishment of tissue banks for medical use in developing countries. Increasingly for quality and cost reasons, the technology of irradiation is used to sterilize tissues for medical care. The IAEA, through its technical cooperation channels, assists national atomic energy authorities to safely and productively employ radiation technology. An interregional programme on radiation and tissue banking, initiated over a decade ago, today extends to 30 countries

  9. Stem cells in degenerative orthopaedic pathologies: effects of aging on therapeutic potential.

    Atesok, Kivanc; Fu, Freddie H; Sekiya, Ichiro; Stolzing, Alexandra; Ochi, Mitsuo; Rodeo, Scott A


    The purpose of this study was to summarize the current evidence on the use of stem cells in the elderly population with degenerative orthopaedic pathologies and to highlight the pathophysiologic mechanisms behind today's therapeutic challenges in stem cell-based regeneration of destructed tissues in the elderly patients with osteoarthritis (OA), degenerative disc disease (DDD), and tendinopathies. Clinical and basic science studies that report the use of stem cells in the elderly patients with OA, DDD, and tendinopathies were identified using a PubMed search. The studies published in English have been assessed, and the best and most recent evidence was included in the current study. Evidence suggests that, although short-term results regarding the effects of stem cell therapy in degenerative orthopaedic pathologies can be promising, stem cell therapies do not appear to reverse age-related tissue degeneration. Causes of suboptimal outcomes can be attributed to the decrease in the therapeutic potential of aged stem cell populations and the regenerative capacity of these cells, which might be negatively influenced in an aged microenvironment within the degenerated tissues of elderly patients with OA, DDD, and tendinopathies. Clinical protocols guiding the use of stem cells in the elderly patient population are still under development, and high-level randomized controlled trials with long-term outcomes are lacking. Understanding the consequences of age-related changes in stem cell function and responsiveness of the in vivo microenvironment to stem cells is critical when designing cell-based therapies for elderly patients with degenerative orthopaedic pathologies.

  10. Effect of aging on wound healing: current concepts.

    Pittman, Joyce


    The population is aging, and advanced age is commonly identified as a risk factor for delayed wound healing. Therefore, it is important for WOC nurses to be knowledgeable about how aging affects the wound healing and repair process, and strategies they can use to promote healing in the elderly population. Impaired wound healing in the aged is due partly to comorbidities common among the elderly, but evidence also suggests that inherent differences in cellular structure and function may impair tissue repair and regeneration as well. This article will address the effect of aging on wound healing, with a particular focus on processes of cellular senescence and related factors hypothesized to result in slowed or impaired wound healing in the elderly.

  11. Biomimetic Self-Healing


    methyl-2-pyrrolidone (NMP), dimethylacetamide (DMA), dimethylformamide (DMF), and dimethylsulfoxide ( DMSO ) displayed the best results; unfortunately...Both techniques demand the production of a stable emulsion, using solvents that do not react with the healing substances. If water is used (and it...highly cross-linked UF polymer. Healing chemicals, solvents , surfactants, and emulsifiers are not shown. Figure 6. Synthesis of PU capsules

  12. Mechanoregulation of Wound Healing and Skin Homeostasis

    Joanna Rosińczuk


    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  13. Alveolar socket healing: what can we learn?

    Araújo, Mauricio G; Silva, Cléverson O; Misawa, Mônica; Sukekava, Flavia


    Tooth extraction induces a series of complex and integrated local changes within the investing hard and soft tissues. These local alterations arise in order to close the socket wound and to restore tissue homeostasis, and are referred to as '"socket healing". The aims of the present report were twofold: first, to describe the socket-healing process; and, second, to discuss what can be learned from the temporal sequence of healing events, in order to improve treatment outcomes. The socket-healing process may be divided into three sequential, and frequently overlapping, phases: inflammatory; proliferative; and modeling/remodeling. Several clinical and experimental studies have demonstrated that the socket-healing process promotes up to 50% reduction of the original ridge width, greater bone resorption at the buccal aspect than at the lingual/palatal counterpart and a larger amount of alveolar bone reduction in the molar region. In conclusion, tooth extraction, once a simple and straightforward surgical procedure, should be performed in the knowledge that ridge reduction will follow and that further clinical steps should be considered to compensate for this, when considering future options for tooth replacement. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Lumican as a multivalent effector in wound healing.

    Karamanou, Konstantina; Perrot, Gwenn; Maquart, Francois-Xavier; Brézillon, Stéphane


    Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing. Copyright © 2018. Published by Elsevier B.V.

  15. Biodegradable Implants in Orthopaedics and Traumatology

    YETKIN, Haluk


    Biodegradable implants are an alternative to metallic implants and have the advantage of not being necessary to remove once the fracture has healed. Twenty-two patients with fractures were treated with biodegradable implants. There were osteolysis in eleven patients; however, no serious complication was encountered. Although biodegradable implants are expensive, a second surgical procedure to remove the implants is not necessary, relieving the patient of the related costs and risks.

  16. Effects of isoniazid and niacin on experimental wound-healing

    Weinreich, Jürgen; Ågren, Sven Per Magnus; Bilali, Erol


    There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues.......There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues....

  17. Self Healing Percolation

    Scala, Antonio


    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.

  18. Factors Affecting Wound Healing

    Guo, S.; DiPietro, L.A.


    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  19. An Experimental Animal Model for Abdominal Fascia Healing after Surgery

    Burcharth, J; Pommergaard, H-C; Klein, M


    be used to evaluate the actively healing fascia. Such an animal model may promote future research in the prevention of IH. Methods: 86 male Sprague-Dawley rats were used to establish a model involving six experiments (experiments A-F). Mechanical testing of the breaking strength of the healed fascia......Background: Incisional hernia (IH) is a well-known complication after abdominal surgical procedures. The exact etiology of IH is still unknown even though many risk factors have been suggested. The aim of this study was to create an animal model of a weakly healed abdominal fascia that could...... was performed by testing tissue strips from the healed fascia versus the unincised control fascia 7 and 28 days postoperatively. Results: During the six experiments a healing model was created that produced significantly weaker coherent fascia when compared with the control tissue measured in terms...

  20. Risk factors for surgical site infections following clean orthopaedic ...

    Risk factors for surgical site infections following clean orthopaedic operations. ... the host and environmental risk factors for surgical site infections following clean ... Materials and Methods: Consecutive patients who satisfied the inclusion ...

  1. Role of adipose-derived stem cells in wound healing.

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin


    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  2. A basic introduction to statistics for the orthopaedic surgeon.

    Bertrand, Catherine; Van Riet, Roger; Verstreken, Frederik; Michielsen, Jef


    Orthopaedic surgeons should review the orthopaedic literature in order to keep pace with the latest insights and practices. A good understanding of basic statistical principles is of crucial importance to the ability to read articles critically, to interpret results and to arrive at correct conclusions. This paper explains some of the key concepts in statistics, including hypothesis testing, Type I and Type II errors, testing of normality, sample size and p values.

  3. Battlefield-Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome


    Award Number: W81XWH-10-2-0138 TITLE: Battlefield-Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome PRINCIPAL INVESTIGATOR...Immunogenicity to Metals Affects Orthopaedic pla t Outcome 5b. GRANT NUMBER W91ZSQ0135N646 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Nadim James...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEM ENTARY NOTES 14. ABSTRACT The effects of battlefield

  4. Bone Adaptation Around Orthopaedic Implants of Varying Materials

    Bagge, Mette


    The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading......The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading...

  5. Smartphone apps for orthopaedic sports medicine - a smart move?

    Wong, Seng Juong; Robertson, Greg A; Connor, Katie L; Brady, Richard R; Wood, Alexander M


    With the advent of smartphones together with their downloadable applications (apps), there is increasing opportunities for doctors, including orthopaedic sports surgeons, to integrate such technology into clinical practice. However, the clinical reliability of these medical apps remains questionable. We reviewed available apps themed specifically towards Orthopaedic Sports Medicine and related conditions and assessed the level of medical professional involvement in their design and content, along with a review of these apps. The most popular smartphone app stores (Android, Apple, Blackberry, Windows, Samsung, Nokia) were searched for Orthopaedic Sports medicine themed apps, using the search terms; Orthopaedic Sports Medicine, Orthopaedics, Sports medicine, Knee Injury, Shoulder Injury, Anterior Cruciate Ligament Tear, Medial Collateral Ligament Tear, Rotator Cuff Tear, Meniscal Tear, Tennis Elbow. All English language apps related to orthopaedic sports medicine were included. A total of 76 individual Orthopaedic Sports Medicine themed apps were identified. According to app store classifications, there were 45 (59 %) medical themed apps, 28 (37 %) health and fitness themed apps, 1 (1 %) business app, 1 (1 %) reference app and 1 (1 %) sports app. Forty-nine (64 %) apps were available for download free of charge. For those that charged access, the prices ranged from £0.69 to £69.99. Only 51 % of sports medicine apps had customer satisfaction ratings and 39 % had named medical professional involvement in their development or content. We found the majority of Orthopaedic Sports Medicine apps had no named medical professional involvement, raising concerns over their content and evidence-base. We recommend increased regulation of such apps to improve the accountability of app content.

  6. Effects of genistein on early-stage cutaneous wound healing

    Park, Eunkyo [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Seung Min [Research Institute of Health Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Jung, In-Kyung [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lim, Yunsook [Department of Foods and Nutrition, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jung-Hyun, E-mail: [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of)


    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  7. Bone healing and bone substitutes.

    Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason


    With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.

  8. Collagen V haploinsufficiency in a murine model of classic Ehlers-Danlos syndrome is associated with deficient structural and mechanical healing in tendons.

    Johnston, Jessica M; Connizzo, Brianne K; Shetye, Snehal S; Robinson, Kelsey A; Huegel, Julianne; Rodriguez, Ashley B; Sun, Mei; Adams, Sheila M; Birk, David E; Soslowsky, Louis J


    Classic Ehlers-Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1 +/- mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1 +/- ) with wild-type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1 +/- tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild-type tendons, which recovered their pre-injury values by 6 weeks post injury. Additionally, the Col5a1 +/- tendons demonstrated altered fibril morphology and diameter distributions compared to the wild-type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707-2715, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Paranormal healing and hypertension

    Beutler, Jaap J; Attevelt, Johannes T M; Schouten, Sybo A; Faber, Joop A J; Mees, Evert J Dorhout; Geijskes, Gijsbert G


    A prospective randomised trial was carried out to see whether paranormal healing by laying on of hands might reduce blood pressure in essential hypertension and whether such an effect might be due to a paranormal, psychological, or placebo factor. Patients were randomised to three treatment groups: paranormal healing by laying on of hands (n=40), paranormal healing at a distance (n=37), and no paranormal healing (controls; n=38). Healing at a distance and no paranormal healing were investigated double blind. Systolic and diastolic blood pressures were significantly reduced in all three groups at week 15 (mean reduction (95% confidence interval) 17·1 (14·0 to 20·2)/8·3 (6·6 to 10·0) mm Hg). Only the successive reductions in diastolic blood pressures among the groups from week to week were significantly different. Each week diastolic pressure was consistently lower (average 1·9 mm Hg) after healing at a distance compared with control, but on paired comparison these differences were not significant. Probably week to week variations among the groups accounted for any differences noted. In this study no treatment was consistently better than another and the data cannot therefore be taken as evidence of a paranormal effect on blood pressure. Probably the fall in blood pressure in all three groups either was caused by the psychosocial approach or was a placebo effect of the trial itself. PMID:3134082

  10. (Mis)perceptions about intimate partner violence in women presenting for orthopaedic care: a survey of Canadian orthopaedic surgeons.

    Bhandari, Mohit; Sprague, Sheila; Tornetta, Paul; D'Aurora, Valerie; Schemitsch, Emil; Shearer, Heather; Brink, Ole; Mathews, David; Dosanjh, Sonia


    Domestic violence is the most common cause of nonfatal injury to women in North America. In a review of 144 such injuries, the second most common manifestation of intimate partner violence was musculoskeletal injuries (28%). The American Academy of Orthopaedic Surgeons is explicit that orthopaedic surgeons should play a role in the screening and appropriate identification of victims. We aimed to identify the perceptions, attitudes, and knowledge of Canadian orthopaedic surgeons with regard to intimate partner violence. We surveyed members of the Canadian Orthopaedic Association to identify attitudes toward intimate partner violence. With use of a systematic random sample, 362 surgeons were mailed questionnaires. The questionnaire consisted of three sections: (1) the general attitude of the orthopaedic surgeon toward intimate partner violence, (2) the attitude of the orthopaedic surgeon toward victims and batterers, and (3) the clinical relevance of intimate partner violence in orthopaedic surgery. Up to three follow-up mailings were performed to enhance response rates. A total of 186 orthopaedic surgeons responded (a response rate of 51%), and 167 (91%) of them were men. Most orthopaedic surgeons (95%) estimated that <10% of their patients were victims of intimate partner violence, and most respondents (80%) believed that it was exceedingly rare (a prevalence of <1%). The concept of mandatory screening for intimate partner violence was met with uncertainty by 116 surgeons (64%). Misconceptions were perpetuated by surgeons who believed that inquiring about intimate partner violence was an invasion of the victim's privacy, that investigating intimate partner violence was not part of their duty, that victims choose to be a victim, and that victims play a proactive role in causing their abuse. By the completion of the survey, the majority of surgeons (91%) believed that knowledge about intimate partner violence was relevant to their surgical practice. Discomfort with

  11. A metrology solution for the orthopaedic industry

    Bills, P; Brown, L; Jiang, X; Blunt, L


    Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5 million operations performed annually. Currently joint replacements are expected to function for 10-15 years, however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer term improved quality of life for patients. The amount of wear that a joint incurs is seen as a good indicator of performance, with higher wear rates typically leading to reduced function and premature failure. New technologies and materials are pushing traditional wear assessment methods to their limits, and novel metrology solutions are required to assess wear of joints following in vivo and in vitro use. This paper presents one such measurement technique; a scanning co-ordinate metrology machine for geometrical assessment. A case study is presented to show the application of this technology to a real orthopaedic measurement problem: the wear of components in total knee replacement. This technique shows good results and provides a basis for further developing techniques for geometrical wear assessment of total joint replacements

  12. Racial and ethnic diversity in orthopaedic surgery residency programs.

    Okike, Kanu; Utuk, Mekeme E; White, Augustus A


    Although the U.S. population is increasingly diverse, the field of orthopaedic surgery has historically been less diverse. The purpose of this study was to quantify the representation of racial and ethnic minorities among orthopaedic surgery residents compared with those in other fields of medicine and to determine how these levels of diversity have changed over time. We determined the representation of minorities among residents in orthopaedic surgery and in other fields by analyzing the Graduate Medical Education reports published annually by the Journal of the American Medical Association (JAMA), which provided data for African-Americans from 1968 to 2008, Hispanics from 1990 to 2008, Asians from 1995 to 2008, and American Indians/Alaskan Natives and Native Hawaiians/Pacific Islanders from 2001 to 2008. During the 1990s and 2000s, representation among orthopaedic residents increased rapidly for Asians (+4.53% per decade, p < 0.0001) and gradually for Hispanics (+1.37% per decade, p < 0.0001) and African-Americans (+0.68% per decade, p = 0.0003). Total minority representation in orthopaedics averaged 20.2% during the most recent years studied (2001 to 2008), including 11.7% for Asians, 4.0% for African-Americans, 3.8% for Hispanics, 0.4% for American Indians/Alaskan Natives, and 0.3% for Native Hawaiians/Pacific Islanders. However, orthopaedic surgery was significantly less diverse than all of the other residencies examined during this time period (p < 0.001). This was due primarily to the lower representation of Hispanics and Asians in orthopaedic surgery than in any of the other fields of medicine. Minority representation in orthopaedic residency programs has increased over time for Asians, Hispanics, and African-Americans. In spite of these gains, orthopaedic surgery has remained the least diverse of the specialty training programs considered in this study. While further efforts are needed to determine the factors underlying this lack of representation, we

  13. Degradable polymers for tissue engineering

    van Dijkhuizen-Radersma, Riemke; Moroni, Lorenzo; van Apeldoorn, Aart A.; Zhang, Zheng; Grijpma, Dirk W.; van Blitterswijk, Clemens A.


    This chapter elaborates the degradable polymers for tissue engineering and their required scaffold material in tissue engineering. It recognizes the examples of degradable polymers broadly used in tissue engineering. Tissue engineering is the persuasion of the body to heal itself through the

  14. A phytomodulatory hydrogel with enhanced healing effects.

    Vasconcelos, Mirele S; Souza, Tamiris F G; Figueiredo, Ingrid S; Sousa, Emília T; Sousa, Felipe D; Moreira, Renato A; Alencar, Nylane M N; Lima-Filho, José V; Ramos, Márcio V


    The healing performance of a hydrogel composed of hemicelluloses extracted from seeds of Caesalpinia pulcherrima (Fabaceae) and mixed with phytomodulatory proteins obtained from the latex of Calotropis procera was characterized on excisional wounds. The hydrogel did not induce dermal irritability. When topically used on excisional wounds, the hydrogel enhanced healing by wound contraction. Histology and the measurement of inflammatory mediators (myeloperoxidase, interleukin-1β, and interleukin-6) suggested that the inflammatory phase of the healing process was intensified, stimulating fibroplasia and neovascularization (proliferative phase) and tissue remodeling by increasing new collagen fiber deposition. In addition, reduction on levels of malondialdehyde in the groups that the hydrogel was applied suggested that the oxidative stress was reduced. The hydrogel performed better than the reference drug used, as revealed by the extended thickness of the remodeled epithelium. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Healing Becomes a Fishy Business.

    Morrow, Thomas


    Fish skin skews the contest between healing and the biodegradation of healing molecules toward the healing side. Fish skin is very high in omega-3 fatty acids, compounds that promote healing. And cod evokes virtually no inflammatory or immune response in humans.

  16. Correlation between RUST assessments of fracture healing to structural and biomechanical properties.

    Cooke, Margaret E; Hussein, Amira I; Lybrand, Kyle E; Wulff, Alexander; Simmons, Erin; Choi, Jeffrey H; Litrenta, Jody; Ricci, William M; Nascone, Jason W; O'Toole, Robert V; Morgan, Elise F; Gerstenfeld, Louis C; Tornetta, Paul


    Radiographic Union Score for Tibia (RUST) and modified RUST (mRUST) are radiographic tools for quantitatively evaluating fracture healing using a cortical scoring system. This tool has high intra-class correlation coefficients (ICCs); however, little evidence has evaluated the scores against the physical properties of bone healing. Closed, stabilized fractures were made in the femora of C3H/HeJ male mice (8-12 week-old) of two dietary groups: A control and a phosphate restricted diet group. Micro-computed tomography (µCT) and torsion testing were carried out at post-operative days (POD) 14, 21, 35, and 42 (n = 10-16) per group time-point. Anteroposterior and lateral radiographic views were constructed from the µCT scans and scored by five raters. The raters also indicated if the fracture were healed. ICCs were 0.71 (mRUST) and 0.63 (RUST). Both RUST scores were positively correlated with callus bone mineral density (BMD) (r = 0.85 and 0.80, p RUST scores positively correlated with callus strength (r = 0.35 and 0.26, p RUST ≥10 and had excellent relationship to structural and biomechanical metrics. Effect of delayed healing due to phosphate dietary restrictions was found at later time points with all mechanical properties (p RUST scores (p > 0.318). Clinical relevance of this study is both RUST scores showed high correlation to physical properties of healing and generally distinguished healed vs. non-healed fractures. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:945-953, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Healing Childhood Trauma Worldwide

    Kuban, Caelan


    Millions of the world's children are exposed to traumatic events and relationships every day. Whatever the cause, this overwhelming stress produces a host of unsettling symptoms and reactions. The author highlights six practical principles that undergird healing interventions.

  18. Cutaneous wound healing in aging small mammals: a systematic review.

    Kim, Dong Joo; Mustoe, Thomas; Clark, Richard A F


    As the elderly population grows, so do the clinical and socioeconomic burdens of nonhealing cutaneous wounds, the majority of which are seen among persons over 60 years of age. Human studies on how aging effects wound healing will always be the gold standard, but studies have ethical and practical hurdles. Choosing an animal model is dictated by costs and animal lifespan that preclude large animal use. Here, we review the current literature on how aging effects cutaneous wound healing in small animal models and, when possible, compare healing across studies. Using a literature search of MEDLINE/PubMed databases, studies were limited to those that utilized full-thickness wounds and compared the wound-healing parameters of wound closure, reepithelialization, granulation tissue fill, and tensile strength between young and aged cohorts. Overall, wound closure, reepithelialization, and granulation tissue fill were delayed or decreased with aging across different strains of mice and rats. Aging in mice was associated with lower tensile strength early in the wound healing process, but greater tensile strength later in the wound healing process. Similarly, aging in rats was associated with lower tensile strength early in the wound healing process, but no significant tensile strength difference between young and old rats later in healing wounds. From studies in New Zealand White rabbits, we found that reepithelialization and granulation tissue fill were delayed or decreased overall with aging. While similarities and differences in key wound healing parameters were noted between different strains and species, the comparability across the studies was highly questionable, highlighted by wide variability in experimental design and reporting. In future studies, standardized experimental design and reporting would help to establish comparable study groups, and advance the overall knowledge base, facilitating the translatability of animal data to the human clinical condition.

  19. Safety syringes and anti-needlestick devices in orthopaedic surgery.

    Sibbitt, Wilmer L; Band, Philip A; Kettwich, Lawrence G; Sibbitt, Cristina R; Sibbitt, Lori J; Bankhurst, Arthur D


    The American Academy of Orthopaedic Surgery (AAOS), The Joint Commission, the Occupational Safety and Health Administration (OSHA), and the Needlestick Safety and Prevention Act encourage the integration of safety-engineered devices to prevent needlestick injuries to health-care workers and patients. We hypothesized that safety syringes and needles could be used in outpatient orthopaedic injection and aspiration procedures. The study investigated the orthopaedic uses and procedural idiosyncrasies of safety-engineered devices, including (1) four safety needles (Eclipse, SafetyGlide, SurGuard, and Magellan), (2) a mechanical safety syringe (RPD), (3) two automatic retractable syringes (Integra, VanishPoint), (4) three manual retractable syringes (Procedur-SF, Baksnap, Invirosnap), and (5) three shielded syringes (Safety-Lok, Monoject, and Digitally Activated Shielded [DAS] Syringe). The devices were first tested ex vivo, and then 1300 devices were used for 425 subjects undergoing outpatient arthrocentesis, intra-articular injections, local anesthesia, aspiration biopsy, and ultrasound-guided procedures. During the clinical observation, there were no accidental needlesticks (0 needlesticks per 1300 devices). Safety needles could be successfully used on a Luer syringe but were limited to ≤1.5 in (≤3.81 cm) in length and the shield could interfere with sonography. The mechanical safety syringes functioned well in all orthopaedic procedures. Automatic retractable syringes were too small for arthrocentesis of the knee, and the plunger blew out and prematurely collapsed with high-pressure injections. The manual retractable syringes and shielded syringes could be used with conventional needles for most orthopaedic procedures. The most effective and reliable safety devices for orthopaedic syringe procedures are shielded safety needles, mechanical syringes, manual retractable syringes, and shielded syringes, but not automatic retractable syringes. Even when adopting

  20. Understanding traditional African healing



    Traditional African healing has been in existence for many centuries yet many people still seem not to understand how it relates to God and religion/spirituality. Some people seem to believe that traditional healers worship the ancestors and not God. It is therefore the aim of this paper to clarify this relationship by discussing a chain of communication between the worshipers and the Almighty God. Other aspects of traditional healing namely types of traditional healers, training of tradition...

  1. Mechanoresponsive Healing Polymers

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor)


    Methods are provided to produce new mechanoresponsive healing systems. Additionally, various embodiments provide a two tier self-healing material system concept that provides a non-intrusive method to mitigate impact damage in a structure ranging from low velocity impact damage (e.g., crack damage) to high velocity impact damage (e.g., ballistic damage.) The various embodiments provide the mechanophore linked polymer PBG-BCB-PBG. The various embodiments provide methods for synthesizing PBG-BCB-PBG.

  2. Leptin promotes wound healing in the skin.

    Susumu Tadokoro

    Full Text Available Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.

  3. Stimulation of type I collagen activity in healing of pulp perforation

    Kunarti, Sri


    Background: TGF-β1 is a connective tissue stimulant, potential regulator for tissue repair, and promoter in wound healing. The healing of pulp perforation is decided by quantity and quality of new collagen deposition. TGF-β1 upregulates collagen transcription. However, after several weeks production of type I collagen synthesis is stopped and enzymatic degradation of collagen matrix will occur. Purpose: Observe synthesis type I collagen during the process of pulp perforation healing in 7, 14,...

  4. Characterization and role of the immune response during ligament healing

    Chamberlain, Connie S.

    Scar formation of ligaments after rupture remains a great challenge. Ligament healing involves a complex, coordinated series of events that form a neo-ligament, which is more disorganized and fibrotic in character than the native tissue. The repair process may extend from months to years, and the injured ligament never fully recovers its original mechanical properties. With little intrinsic healing potential, ruptures of the anterior cruciate ligament (ACL) are usually reconstructed. The "healed" tissues, however, do not regenerate native tissues or recapitulate their mechanical function. ACL grafts often lengthen (incidents range from 40-100%) and their strength can drop by ˜50% after remodeling. Reconstructed knees are often less stable and fail to restore normal joint kinematics. Our overall goal is to improve healing, making ligaments more regenerative. The first 2 studies characterized ligament healing in a spatial and temporal manner over 28 days. The experiments demonstrated creeping substitution and the potential role of the immune system to control the repair and/or regenerative process. From these studies, macrophages were identified as significant players during healing. Macrophages paralleled creeping substitution, were abundant within the healing ligament, and potentially played a destructive role via matrix phagocytosis. The role of macrophages during early ligament healing was then evaluated using liposome-encapsulated clodronate to inhibit phagocytosing macrophages. Clodronate attenuated the early infiltration of macrophages, resulting in delayed structural and functional healing. Macrophage re-infiltration into the wound resulted in continued ligament healing. These results suggested that early inhibition of phagocytosing macrophages is detrimental to ligament healing. The final experiment evaluated the effects of interleukin-4 on ligament healing. Interleukin-4 (IL-4) is reported to stimulate the Th2 lymphocyte/M2 macrophage pathway, reducing

  5. Orthopaedic admissions due to sports and recreation injuries.

    Delaney, R A


    The health benefits of exercise may be attenuated by sports and recreation related injury (SRI). Though the majority of SRI are mild and self-limiting, a significant number are serious and require orthopaedic intervention. The aims of this study were to assess the burden of these serious injuries on the orthopaedic inpatient service, and to investigate potential target areas for injury prevention. All 1,590 SRI seen in the ED over a 3-month period were analysed using the Patient Information Management System to determine which patients received inpatient orthopaedic care. The medical records of those 63 patients who required inpatient care under orthopaedics were reviewed and data collected on demographic features, history, operative procedure and theatre resources, and length of hospital stay. Data were analyzed using SPSS. SRI accounted for 12.3% of all ED presentations. The principal activities resulting in injury requiring orthopaedic care were soccer, hurling and informal play e.g. trampoline. Falls made up 37% of the overall mechanism of injury but 68% of the injuries severe enough to require operative management. Most operative procedures were performed as part of a routine day trauma list but 20% were performed out of hours. This group of injuries places a significant burden on a busy trauma service. Injury prevention measures such as public education regarding falls in sport may have a role in reducing this burden.

  6. Are the claims made in orthopaedic print advertisements valid?

    Davidson, Donald J; Rankin, Kenneth S; Jensen, Cyrus D; Moverley, Robert; Reed, Mike R; Sprowson, Andrew P


    Advertisements are commonplace in orthopaedic journals and may influence the readership with claims of clinical and scientific fact. Since the last assessment of the claims made in orthopaedic print advertisements ten years ago, there have been legislative changes and media scrutiny which have shaped this practice. The purpose of this study is to re-evaluate these claims. Fifty claims from 50 advertisements were chosen randomly from six highly respected peer-reviewed orthopaedic journals (published July-December 2011). The evidence supporting each claim was assessed and validated by three orthopaedic surgeons. The assessors, blinded to product and company, rated the evidence and answered the following questions: Does the evidence as presented support the claim made in the advertisement and what is the quality of that evidence? Is the claim supported by enough evidence to influence your own clinical practice? Twenty-eight claims cited evidence from published literature, four from public presentations, 11 from manufacturer "data held on file" and seven had no supporting evidence. Only 12 claims were considered to have high-quality evidence and only 11 were considered well supported. A strong correlation was seen between the quality of evidence and strength of support (Spearman r = 0.945, p advertisements. High-quality evidence is required by orthopaedic surgeons to influence clinical practice and this evidence should be sought by manufacturers wishing to market a successful product.

  7. Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur.

    Hao, Yongqiang; Ma, Yongcheng; Wang, Xuepeng; Jin, Fangchun; Ge, Shengfang


    Damaged bone is sensitive to mechanical stimulation throughout the remodeling phase of bone healing. Muscle damage and muscular atrophy associated with open fractures and subsequent fixation are not beneficial to maintaining optimum conditions for mechanical stability. The aim of this study was to investigate whether local muscle atrophy and dysfunction affect fracture healing in a rat femur fracture model. We combined the rat model of a short period atrophy of the quadriceps with femur fracture. Forty-four-month-old male Wistar rats were adopted for this study. Two units of botulinum toxin-A (BXTA) were administered locally into the right side of the quadriceps of each rat, while the same dose of saline was injected into the contralateral quadriceps. After BXTA had been fully absorbed by the quadriceps, osteotomy was performed in both femurs with intramedullary fixation. Gross observation and weighing of muscle tissue, X-ray analysis, callus histology, and bone biomechanical testing were performed at different time points up to 8 weeks post-surgery. Local injection of BXTA led to a significant decrease in the volume and weight of the quadriceps compared to the control side. At the eighth week, the left side femurs of the saline-injected quadriceps almost reached bony union, and fibrous calluses were completely calcified into woven bone. However, a gap was still visible in the BXTA-treated side on X-ray images. As showed by bone histology, there were no mature osseous calluses or woven bone on the BXTA-treated side, but a resorption pattern was evident. Biomechanical testing indicated that the femurs of the BXTA-treated side exhibited inferior mechanical properties compared with the control side. The inferior outcome following BXTA injection, compared with saline injection, in terms of callus resistance may be the consequence of unexpected load and mechanical unsteadiness caused by muscle atrophy and dysfunction. Copyright © 2011 Orthopaedic Research Society.

  8. Hyperbaric oxygen and wound healing

    Sourabh Bhutani


    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.


    Claudia eDi Bella


    Full Text Available Chondral and Osteochondral lesions represent one of the most challenging and frustrating scenarios for the orthopaedic surgeon and for the patient. The lack of therapeutic strategies capable to reconstitute the function and structure of hyaline cartilage and to halt the progression towards osteoarthritis has brought clinicians and scientists together, to investigate the potential role of tissue engineering as a viable alternative to current treatment modalities. In particular, the role of bioprinting is emerging as an innovative technology that allows for the creation of organized 3D tissue constructs via a layer-by-layer deposition process. This process also has the capability to combine cells and biomaterials in an ordered and predetermined way. Here we review the recent advances in cartilage bioprinting and we identify the current challenges and the directions for future developments in cartilage regeneration.

  10. Laser-induced modification of structure and shape of cartilage in otolaryngology and orthopaedics

    Sobol', E. N.; Baum, O. I.; Omel'chenko, A. I.; Soshnikova, Yu. M.; Yuzhakov, A. V.; Kas'yanenko, E. M.; Tokareva, A. V.; Baskov, A. V.; Svistushkin, V. M.; Selezneva, L. V.; Shekhter, A. B.


    We present the results of basic research in laser modification of tissues in otolaryngology (correcting the shape of nasal septum and larynx cartilages), cosmetology (correcting ear and nose shape), orthopaedics and spinal surgery (treatment of diseases of spine disc and joints). The physical processes and mechanisms of laser-induced relaxation of stresses and regeneration of tissues are considered. New results of studies in this fast-developing field of laser surgery are presented, in particular, the results of laser correction of costal cartilage shape in the process of making implants for the treatment of larynx stenosis and controlled regeneration of the hyaline articular cartilage. Presented at the Fundamentals of Laser Assisted Micro- and Nanotechnologies (FLAMN-2016) International Symposium (Pushkin, Leningrad oblast, 27 June to 1 July 2016).

  11. From mini-invasive to non-invasive treatment using monopolar radiofrequency: the next orthopaedic frontier.

    Whipple, Terry L


    Tendinopathy arises from a failed tendon healing process. Current non-invasive therapeutic alternatives are anti-inflammatory in nature, and outcomes are unpredictable. The benefit of invasive alternatives resides in the induction of the healing response. A new technology that uses non-invasive monopolar capacitive coupled radiofrequency has demonstrated the ability to raise temperatures in tendons and ligaments above 50 degrees C, the threshold for collagen modulation, tissue shrinkage and recruitment of macrophages, fibroblasts, and heat shock protein factors, without damaging the overlying structures, resulting in activation of the wound healing response. Monopolar capacitive-coupled radiofrequency offers a new non-invasive choice for tendinopathies and sprained ligaments. It does not interfere with subsequent surgical procedures should they become necessary.

  12. Diabetic mouse model of orthopaedic implant-related Staphylococcus aureus infection.

    Lovati, Arianna B; Drago, Lorenzo; Monti, Lorenzo; De Vecchi, Elena; Previdi, Sara; Banfi, Giuseppe; Romanò, Carlo L


    Periprosthetic bacterial infections represent one of the most challenging orthopaedic complications that often require implant removal and surgical debridement and carry high social and economical costs. Diabetes is one of the most relevant risk factors of implant-related infection and its clinical occurrence is growing worldwide. The aim of the present study was to test a model of implant-related infection in the diabetic mouse, with a view to allow further investigation on the relative efficacy of prevention and treatment options in diabetic and non-diabetic individuals. A cohort of diabetic NOD/ShiLtJ mice was compared with non-diabetic CD1 mice as an in vivo model of S. aureus orthopaedic infection of bone and soft tissues after femur intramedullary pin implantation. We tested control and infected groups with 1×10(3) colony-forming units of S. aureus ATCC 25923 strain injected in the implant site. At 4 weeks post-inoculation, host response to infection, microbial biofilm formation, and bone damage were assessed by traditional diagnostic parameters (bacterial culture, C-reactive protein and white blood cell count), histological analysis and imaging techniques (micro computed tomography and scanning electron microscopy). Unlike the controls and the CD1 mice, all the diabetic mice challenged with a single inoculum of S. aureus displayed severe osteomyelitic changes around the implant. Our findings demonstrate for the first time that the diabetic mouse can be successfully used in a model of orthopaedic implant-related infection. Furthermore, the same bacteria inoculum induced periprosthetic infection in all the diabetic mice but not in the controls. This animal model of implant-related infection in diabetes may be a useful tool to test in vivo treatments in diabetic and non-diabetic individuals.

  13. Diabetic mouse model of orthopaedic implant-related Staphylococcus aureus infection.

    Arianna B Lovati

    Full Text Available BACKGROUND: Periprosthetic bacterial infections represent one of the most challenging orthopaedic complications that often require implant removal and surgical debridement and carry high social and economical costs. Diabetes is one of the most relevant risk factors of implant-related infection and its clinical occurrence is growing worldwide. The aim of the present study was to test a model of implant-related infection in the diabetic mouse, with a view to allow further investigation on the relative efficacy of prevention and treatment options in diabetic and non-diabetic individuals. METHODOLOGY: A cohort of diabetic NOD/ShiLtJ mice was compared with non-diabetic CD1 mice as an in vivo model of S. aureus orthopaedic infection of bone and soft tissues after femur intramedullary pin implantation. We tested control and infected groups with 1×10(3 colony-forming units of S. aureus ATCC 25923 strain injected in the implant site. At 4 weeks post-inoculation, host response to infection, microbial biofilm formation, and bone damage were assessed by traditional diagnostic parameters (bacterial culture, C-reactive protein and white blood cell count, histological analysis and imaging techniques (micro computed tomography and scanning electron microscopy. RESULTS: Unlike the controls and the CD1 mice, all the diabetic mice challenged with a single inoculum of S. aureus displayed severe osteomyelitic changes around the implant. CONCLUSIONS: Our findings demonstrate for the first time that the diabetic mouse can be successfully used in a model of orthopaedic implant-related infection. Furthermore, the same bacteria inoculum induced periprosthetic infection in all the diabetic mice but not in the controls. This animal model of implant-related infection in diabetes may be a useful tool to test in vivo treatments in diabetic and non-diabetic individuals.

  14. Using financial incentives to improve value in orthopaedics.

    Lansky, David; Nwachukwu, Benedict U; Bozic, Kevin J


    A variety of reforms to traditional approaches to provider payment and benefit design are being implemented in the United States. There is increasing interest in applying these financial incentives to orthopaedics, although it is unclear whether and to what extent they have been implemented and whether they increase quality or reduce costs. We reviewed and discussed physician- and patient-oriented financial incentives being implemented in orthopaedics, key challenges, and prerequisites to payment reform and value-driven payment policy in orthopaedics. We searched the MEDLINE database using as search terms various provider payment and consumer incentive models. We retrieved a total of 169 articles; none of these studies met the inclusion criteria. For incentive models known to the authors to be in use in orthopaedics but for which no peer-reviewed literature was found, we searched Google for further information. Provider financial incentives reviewed include payments for reporting, performance, and patient safety and episode payment. Patient incentives include tiered networks, value-based benefit design, reference pricing, and value-based purchasing. Reform of financial incentives for orthopaedic surgery is challenged by (1) lack of a payment/incentive model that has demonstrated reductions in cost trends and (2) the complex interrelation of current pay schemes in today's fragmented environment. Prerequisites to reform include (1) a reliable and complete data infrastructure; (2) new business structures to support cost sharing; and (3) a retooling of patient expectations. There is insufficient literature reporting the effects of various financial incentive models under implementation in orthopaedics to know whether they increase quality or reduce costs. National concerns about cost will continue to drive experimentation, and all anticipated innovations will require improved collaboration and data collection and reporting.

  15. Teleconsultation in paediatric orthopaedics in Djibouti: evaluation of response performance.

    Bertani, A; Launay, F; Candoni, P; Mathieu, L; Rongieras, F; Chauvin, F


    Djibouti has no paediatric orthopaedics department and three options are available for difficult cases: transfer of the patient to another country; overseas mission transfer to Djibouti by a specialised surgical team; and management by a local orthopaedic surgeon receiving guidance from an expert. The extreme poverty of part of the population of Djibouti often precludes the first two options. Telemedecine can allow the local orthopaedic surgeon to receive expert advice. HYPOTHESES AND STUDY DESIGN: We prospectively recorded all the paediatric orthopaedics teleconsultations that occurred between November 2009 and November 2011. Our objective was to assess the performance of the teleconsultations. We hypothetized that this option was influential in decision making. We assessed the influence of the teleconsultation on patient management (i.e., change in the surgical indication and/or procedure). We then used the electronic patient records to compare the actual management to that recommended retrospectively by two independent orthopaedic surgeon consultants who had experience working overseas. Finally, we assessed the clinical outcomes in the patients. Of 48 teleconsultations for 39 patients, 13 dealt with diagnostic problems and 35 with therapeutic problems. The teleconsultation resolved the diagnostic uncertainties in 90% of cases. Advice from the expert modified the management in 37 (77%) teleconsultations; the change was related to the surgical indication in 18 cases, the surgical technique in 13 cases, and both in six cases. Agreement between the advice from the independent consultants and the treatment delivered by the local surgeon was 2.2/3. Clinical outcomes were good or very good in 31 (81%) of the 38 treated patients. This study establishes the feasibility and usefulness of paediatric orthopaedics teleconsultations in Djibouti. The introduction of telemedicine has changed our approach to challenges raised by patients in remote locations or precarious

  16. The spectrum of orthopaedics at Chris Hani Baragwanath Academic Hospital

    Pillay, J; Ramokgopa, MT


    Chris Hani Baragwanath Academic Hospital (CHBAH) is the third largest hospital in the world and is the largest in the Southern hemisphere, serving a population of more than 3.5 million people.¹ The purpose of this review is to identify the orthopaedic-related health events that occur within the population being serviced by the hospital, and in doing so provide a tool to be used for improving orthopaedic-related patient care and outcomes in public health services.² We also took special interes...

  17. Orthopaedic nurses' perception of research utilization - A cross sectional survey

    Berthelsen, Connie Bøttcher; Hølge-Hazelton, Bibi


    The call for evidence-based knowledge in clinical nursing practice has increased during recent decades and research in orthopaedic nursing is needed to improve patients' conditions, care and treatment. A descriptive cross-sectional survey was conducted to determine the self-perceived theoretical....... The results indicated that despite the majority of orthopaedic nurses having low self-perceived theoretical knowledge and practical research competencies, their interest and motivation to improve these were high, especially their inner motivation. However, the nurses' inner motivation was inhibited by a lack...

  18. The Influence of Interleukin-4 on Ligament Healing

    Chamberlain, Connie S; Leiferman, Ellen M; Frisch, Kayt E; Wang, Sijian; Yang, Xipei; Brickson, Stacey L; Vanderby, Ray


    Despite a complex cascade of cellular events to reconstruct the damaged extracellular matrix, ligament healing results in a mechanically inferior scarred ligament. During normal healing, granulation tissue expands into any residual normal ligamentous tissue (creeping substitution), resulting in a larger region of healing, greater mechanical compromise, and an inefficient repair process. To control creeping substitution and possibly enhance the repair process, the anti-inflammatory cytokine, interleukin-4 (IL-4) was administered to rats prior to and after rupture of their medial collateral ligaments. In vitro experiments demonstrated a time-dependent effect on fibroblast proliferation after interleukin-4 treatment. In vivo treatments with interleukin-4 (100 ng/ml i.v.) for 5 days resulted in decreased wound size and type III collagen and increased type I procollagen, indicating a more regenerative early healing in response to the interleukin-4 treatment. However, continued treatment of interleukin-4 to day 11 antagonized this early benefit and slowed healing. Together, these results suggest that interleukin-4 influences the macrophages and T-lymphocytes but also stimulates fibroblasts associated with the proliferative phase of healing in a dose-, cell-, and time-dependent manner. Although treatment significantly influenced healing in the first week after injury, interleukin-4 alone was unable to maintain this early regenerative response. PMID:21518087

  19. A small peptide with potential ability to promote wound healing.

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.


    S. I. Artiukhova


    Full Text Available Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechnological properties of native cultures created a new consortium of microorganisms containing lactic acid streptococci and bacilli, allowing the maximum extent possible to implement the physiological, biochemical and technological potential of microorganisms. Scientifically substantiated and experimentally developed a new biotechnology production of bioproducts «Healing-1», obtained on the basis of microbial consortium with broad spectrum antimicrobial activity. Experimentally investigated quality parameters of organic food «Healing-1» using a new microbial consortium as freshly prepared and during storage. Found that antagonistic activity of microflora bio «Healing-1» with respect to pathogenic and conditionally pathogenic bacteria, as well as its resistance to substances in the gastrointestinal tract of man is more pronounced compared to bioproducts obtained using a separate starter, members of the microbial consortium. It should be noted a more pronounced synthesis of exopolysaccharides in bioproduct «Healing-1», which leads to increased viscosity of the system and improves the consistency of bio. New bioproducts have good organoleptic characteristics and contain a high number of viable cells of lactic acid bacteria. High stability and survival of lactic acid bacteria during storage. In the study of attacked proteins bioproducts digestive proteinases «in vitro» found that the fermentation of milk microbial consortium increases the digestibility

  1. Healing the nations

    Karl Dortzbach


    Full Text Available This article gives the motivations, methodology and some results of a study done in Christian healing interventions in African contexts of� stress and violence. Healing in community has been viewed through the prism of �shalom�. Shalom occurs when people who are in a� right� relationship with God� and� each other enjoy and share together the resources of the earth� in ways� that� show Christ� is Lord of all creation. Charts are given showing� the various kinds of community needs, ways to intervene, and some indications of ways to evaluate the interventions.

  2. 77 FR 66848 - Minimum Clinically Important Difference: An Outcome Metric in Orthopaedic Device Science and...


    ...] Minimum Clinically Important Difference: An Outcome Metric in Orthopaedic Device Science and Regulation... Clinically Important Difference: An Outcome Metric in Orthopaedic Device Science and Regulation.'' FDA is co... (MCID) for patient-reported outcome (PRO) instruments used in orthopaedic extremity device-related...

  3. Heterotopic epithelialization presenting as a non-healing scalp wound after surgery

    Askaner, Gustav; Rasmussen, Rune; Schmidt, Grethe


    Patients undergoing cerebral revascularization surgery have a relatively high incidence of wound complications. We report a case of heterotopic epithelialization of the dura presenting as a non-healing scalp wound after an extracranial-intracranial (EC-IC) arterial bypass. The scalp wound...... was revised twice without healing. During the third revision, epithelial tissue was found growing on the dura and was removed. After the epithelial tissue was removed, the wound healed without further complications. This case illustrates the importance of thoroughly examining a non-healing wound to find...

  4. Healing stone ... by infection

    Micallef, Roderick


    Roderick Micallef has a long family history within the construction industry. He coupled this passion with a fascination with science when reading for an undergraduate degree in Biology and Chemistry (University of Malta).

  5. Frontiers in Healing Racism.

    Rutstein, Nathan


    Author reflects on forty years of experience writing about the civil rights movement. The Institute for Healing Racism, a grassroots movement for participants of diverse backgrounds to study racism and to help discover the oneness of humankind, grew out of the author's concerns. The principles and processes of the Institute are described.…

  6. Orthopaedic Section Poster Presentations (Abstracts OPO1-OPO300).


    These abstracts are presented here as prepared by the authors. The accuracy and content of each abstract remain the responsibility of the authors. In the identification number above each abstract, OPO designates an Orthopaedic Section poster presentation. J Orthop Sports Phys Ther 2018;48(1):A67-A202. doi:10.2519/jospt.2018.48.1.A67.

  7. Transient aphasia following spinal anaesthesia in an orthopaedic ...

    A 50-year-old male [American Society of Anesthesiologists (ASA) grade II] was scheduled for lower limb orthopaedic surgery. The subarachnoid space was localised with difficulty at L3/4 interspace and 3 ml of hyperbaric bupivacaine was given. Within a few minutes, the patient developed aphasia with a very high sensory ...

  8. Establishing a children's orthopaedic hospital for Malawi: A review ...

    At present the program has a total of 29 clinics, which .... Thus a total of 1154 paediatric orthopaedic operations were known to have taken place in Malawi during the 10th year of operational services with 53% of cases being performed at BCIH. ... regional hip replacement course, 1 regional knee replacement course for ...

  9. Compliance in Antibiotic Prophylaxis in Orthopaedics and Trauma ...

    Compliance in Antibiotic Prophylaxis in Orthopaedics and Trauma: Surgical Practice in a Tertiary Hospital, North-West Nigeria. ... or international guide lines, to reap the expected benefit of prophylactic antibiotics and avoid unwanted adverse effects like emergence of resistant bacteria strains and extra cost of healthcare.

  10. 99m Tc-labeled heparin test in orthopaedic surgery

    Bouvier, J.F.; Lafon, J.C.; Colin, M.; Chatelut, J.; Beaubatie, F.


    99m Tc-labeled heparin test was performed for early detection of phlebitis or pulmonary embolism after orthopaedic prothesis. Heparinic treatment and surgery per se were demonstrated to have no effect on the results. If this test demonstrates a statistical difference for pathologic patients, it is of greater value to consider ratio between rates before and after intervention [fr

  11. Bone Graft Substitutes : Developed for Trauma and Orthopaedic Surgery

    J. van der Stok (Johan)


    markdownabstract__Abstract__ Bone grafting was established in the 19th century and has become a common procedure in which bone defects are filled with bone grafts or bone graft substitutes. Bone defects that require bone grafting are encountered in approximately 10% of trauma and orthopaedic

  12. Non-Steroidal Anti Inflammatory Drugs Usage In Orthopaedics And ...

    Background: Non steroidal anti-inflammatory drugs NSAIDs) are a group of heterogeneous compounds with nti inflammatory, analgesic and often times anti pyretic roperties. They are weak organic acids and are the most commonly used drugs in Orthopaedic/Trauma practice. hey provide mild to moderate pain relief.

  13. Orthopaedic injuries in children: Federal Medical Centre, Umuahia ...

    Background: Worldwide, trauma is a recognized leading cause of childhood morbidity, mortality and disability. Aim: To review the causes and consequences of orthopaedic injuries in children. Methods: A retrospective study of all injuries in children 14 years and below seen at the Federal Medical Centre Umuahia from 1st ...

  14. Infections in orthopaedic surgery : clinical and experimental studies

    Vogely, Henri Charles


    The diagnostic difficulties, variability in outcome and the heterogeinity of the problem of orthopaedic infections stimulated the author to a study of the literature, and several clinical and experimental studies. The diagnosis prosthesis-related infection can only be reached with an acceptable

  15. Find an Orthopaedic Foot and Ankle MD/DO

    ... All Site Content AOFAS / FootCareMD / Find a Surgeon Find a Foot & Ankle Orthopaedic Surgeon Page Content Who ... your prescribed treatment (surgical and/or non-surgical) ​ Find a Surgeon ​ Click here to find a foot ...

  16. Management of Patients with Orthopaedic Implants Undergoing Dental Procedures.

    Quinn, Robert H; Murray, Jayson N; Pezold, Ryan; Sevarino, Kaitlyn S


    The American Academy of Orthopaedic Surgeons, in collaboration with the American Dental Association, has developed Appropriate Use Criteria (AUC) for the Management of Patients with Orthopaedic Implants Undergoing Dental Procedures. Evidence-based information, in conjunction with the clinical expertise of physicians, was used to develop the criteria to improve patient care and obtain best outcomes while considering the subtleties and distinctions necessary in making clinical decisions. The Management of Patients with Orthopaedic Implants Undergoing Dental Procedures AUC clinical patient scenarios were derived from indications of patients with orthopaedic implants presenting for dental procedures, as well as from current evidence-based clinical practice guidelines and supporting literature to identify the appropriateness of the use of prophylactic antibiotics. The 64 patient scenarios and 1 treatment were developed by the writing panel, a group of clinicians who are specialists in this AUC topic. Next, a separate, multidisciplinary, voting panel (made up of specialists and nonspecialists) rated the appropriateness of treatment of each patient scenario using a 9-point scale to designate a treatment as Appropriate (median rating, 7 to 9), May Be Appropriate (median rating, 4 to 6), or Rarely Appropriate (median rating, 1 to 3).

  17. Motives for seeking a second opinion in orthopaedic surgery.

    Dalen, I. van; Groothoff, J.; Stewart, R.; Spreeuwenberg, P.; Groenewegen, P.; Horn, J. van


    The number of second opinions in orthopaedic surgery is increading rapidly, yet the grounds on which patients and their doctors decide to seek a second opinion have been little studied. The goal of the study was to identify patient and consultant factors that appeared to contribute to a second

  18. Local corticosteroid injections: Rational use in common orthopaedic ...

    The use of local corticosteroid injections in orthopaedic practice is common due to their anti- inflammatory and analgesic effect. However, the use may result in local or systemic complications. Moreover, the conflicting reports on their benefits versus side effects, throws the average user in confusion or fear. This review ...

  19. Orthopaedic Implants And Prosthesis: Economic Costs Of Post ...

    OBJECTIVE: To assess the economic impact of post-operative wound infection in trauma patients who had open reduction and internal fixation with implants and prostheses following fractures of the femur. METHOD: This is a 2-year case controlled prospective study carried out at the National Orthopaedic Hospital, Lagos.

  20. Reading the small print - labelling recommendations for orthopaedic implants.

    Haene, Roger A; Sandhu, Ranbir S; Baxandall, Richard


    There exist, currently, no clear guidelines regarding standards for surgical implant labelling. Dimensions of the laminar flow canopies in orthopaedic use fixes the distance at which implant labels can be read. Mistakes when reading the label on an implant box can pose health risks for patients, and financial consequences for medical institutions. Using scientifically validated tools such as the Snellen Chart Formula, a theoretical minimum standard for text on implant labels was reached. This theoretical standard was then tested under real operating conditions. After discovering a minimum practical standard for implant labels, the authors then audited current labels in use on a wide range of orthopaedic implant packages. Furthermore, other non-text-related labelling problems were also noted. There is a definite minimum standard which should be observed when implant labels are manufactured. Implants in current use bear labels on the packaging that are of an insufficient standard to ensure patient safety in theatre. The authors have established text parameters that will increase the legibility of implant labels. In the interests of improving risk management in theatre, therefore, the authors propose a standard for orthopaedic implant labelling, and believe this will provide a useful foundation for further discussion between the orthopaedic community and implant manufacturers.

  1. Definitions of healing and healing interventions across different cultures.

    Lichtenstein, Ann H; Berger, Ann; Cheng, M Jennifer


    For centuries healing has been embedded in non-Western cultures. Traditional cultures believe that healing is derived from the divine and utilize a holistic approach to healing including the body, mind, and spirit. The community and environment are key elements in individual healing along with herbal remedies and ceremonies. Western cultures have accepted some traditional methods of relaxation and exercise, such as yoga and tai chi. In this paper we will examine some similar themes of traditional practices to better understand traditional patients' healing paradigm and find new tools as practitioners of Western medicine.

  2. The 25 most cited articles in arthroscopic orthopaedic surgery.

    Cassar Gheiti, Adrian J; Downey, Richard E; Byrne, Damien P; Molony, Diarmuid C; Mulhall, Kevin J


    The purpose of this study was to use Web of Knowledge to determine which published arthroscopic surgery-related articles have been cited most frequently by other authors by ranking the 25 most cited articles. We furthermore wished to determine whether there is any difference between a categorical "journal-by-journal" analysis and an "all-database" analysis in arthroscopic surgery and whether such a search methodology would alter the results of previously published lists of "citation classics" in the field. We analyzed the characteristics of these articles to determine what qualities make an article important to this subspecialty of orthopaedic surgery. Web of Knowledge was searched on March 7, 2011, using the term "arthroscopy" for citations to articles related to arthroscopy in 61 orthopaedic journals and using the all-database function. Each of the 61 orthopaedic journals was searched separately for arthroscopy-related articles to determine the 25 most cited articles. An all-database search for arthroscopy-related articles was carried out and compared with a journal-by-journal search. Each article was reviewed for basic information including the type of article, authorship, institution, country, publishing journal, and year published. The number of citations ranged from 189 to 567 in a journal-by-journal search and from 214 to 1,869 in an all-database search. The 25 most cited articles on arthroscopic surgery were published in 11 journals: 8 orthopaedic journals and 3 journals from other specialties. The most cited article in arthroscopic orthopaedic surgery was published in The New England Journal of Medicine, which was not previously identified by a journal-by-journal search. An all-database search in Web of Knowledge gives a more in-depth methodology of determining the true citation ranking of articles. Among the top 25 most cited articles, autologous chondrocyte implantation/transplantation is currently the most cited and most popular topic in arthroscopic

  3. Patient Perspectives of Midlevel Providers in Orthopaedic Sports Medicine.

    Manning, Blaine T; Bohl, Daniel D; Hannon, Charles P; Redondo, Michael L; Christian, David R; Forsythe, Brian; Nho, Shane J; Bach, Bernard R


    Midlevel providers (eg, nurse practitioners and physician assistants) have been integrated into orthopaedic systems of care in response to the increasing demand for musculoskeletal care. Few studies have examined patient perspectives toward midlevel providers in orthopaedic sports medicine. To identify perspectives of orthopaedic sports medicine patients regarding midlevel providers, including optimal scope of practice, reimbursement equity with physicians, and importance of the physician's midlevel provider to patients when initially selecting a physician. Cross-sectional study; Level of evidence, 3. A total of 690 consecutive new patients of 3 orthopaedic sports medicine physicians were prospectively administered an anonymous questionnaire prior to their first visit. Content included patient perspectives regarding midlevel provider importance in physician selection, optimal scope of practice, and reimbursement equity with physicians. Of the 690 consecutive patients who were administered the survey, 605 (87.7%) responded. Of these, 51.9% were men and 48.1% were women, with a mean age of 40.5 ± 15.7 years. More than half (51.2%) perceived no differences in training levels between physician assistants and nurse practitioners. A majority of patients (62.9%) reported that the physician's midlevel provider is an important consideration when choosing a new orthopaedic sports medicine physician. Patients had specific preferences regarding which services should be physician provided. Patients also reported specific preferences regarding those services that could be midlevel provided. There lacked a consensus on reimbursement equity for midlevel practitioners and physicians, despite 71.7% of patients responding that the physician provides a higher-quality consultation. As health care becomes value driven and consumer-centric, understanding patient perspectives on midlevel providers will allow orthopaedic sports medicine physicians to optimize efficiency and patient

  4. Understanding how orthopaedic surgery practices generate value for healthcare systems.

    Olson, Steven A; Mather, Richard C


    Orthopaedic surgery practices can provide substantial value to healthcare systems. Increasingly, healthcare administrators are speaking of the need for alignment between physicians and healthcare systems. However, physicians often do not understand what healthcare administrators value and therefore have difficulty articulating the value they create in discussions with their hospital or healthcare organization. Many health systems and hospitals use service lines as an organizational structure to track the relevant data and manage the resources associated with a particular type of care, such as musculoskeletal care. Understanding service lines and their management can be useful for orthopaedic surgeons interested in interacting with their hospital systems. We provide an overview of two basic types of value orthopaedic surgeons create for healthcare systems: financial or volume-driven benefits and nonfinancial quality or value-driven patient care benefits. We performed a search of PubMed from 1965 to 2012 using the term "service line." Of the 351 citations identified, 18 citations specifically involved the use of service lines to improve patient care in both nursing and medical journals. A service line is a structure used in healthcare organizations to enable management of a subset of activities or resources in a focused area of patient care delivery. There is not a consistent definition of what resources are managed within a service line from hospital to hospital. Physicians can positively impact patient care through engaging in service line management. There is increasing pressure for healthcare systems and hospitals to partner with orthopaedic surgeons. The peer-reviewed literature demonstrates there are limited resources for physicians to understand the value they create when attempting to negotiate with their hospital or healthcare organization. To effectively negotiate for resources to provide the best care for patients, orthopaedic surgeons need to claim and

  5. Orthopaedic podiatry triage: process outcomes of a skill mix initiative.

    Homeming, Lyndon J; Kuipers, Pim; Nihal, Aneel


    The Orthopaedic Podiatry Triage Clinic (OPodTC) is a 'skill mix' model of care developed in Queensland Health to address the problem of lengthy waiting times for orthopaedic surgery on foot and ankle pathologies. It is based on the recognition that many orthopaedic surgery referrals can be identified early and treated conservatively with podiatry, averting the need for more costly and invasive surgical interventions. The model is collaborative and relies on screening and triage by the podiatrist, rather than delegation by the orthopaedic surgeon. Screening and triage through OPodTC was trialled at three Queensland Health hospital facilities during 2009 and 2010 to improve service timeliness. Patients identified by the OPodTC podiatrist as suitable for conservative management were provided with non-surgical podiatry interventions and discharged if appropriate. Those identified as still requiring surgical intervention after the benefit of interim conservative treatment provided by the podiatrist (or who chose to remain on the list) were returned to their previous place on the orthopaedic waiting list. This paper presents a summary and description of waiting list changes in association with this trial. The OPodTC intervention resulted in a reduction in the non-urgent category of the waiting list across the three hospitals of between 23.3% and 49.7%. Indications from wait-list service data demonstrated increased timeliness and improved patient flow, which are core goals of these skill mix initiatives. This study highlights the potential of screening and triage functions in the skill mix debate. In this example, conservative treatment options were considered first, suitable patients did not have to wait long periods to receive timely and appropriate interventions, and those for whom surgery was indicated, were provided with a more targeted service.

  6. Does sleep deprivation impair orthopaedic surgeons' cognitive and psychomotor performance?

    O'Brien, Michael J; O'Toole, Robert V; Newell, Mary Zadnik; Lydecker, Alison D; Nascone, Jason; Sciadini, Marcus; Pollak, Andrew; Turen, Clifford; Eglseder, W Andrew


    Sleep deprivation may slow reaction time, cloud judgment, and impair the ability to think. Our purpose was to study the cognitive and psychomotor performances of orthopaedic trauma surgeons on the basis of the amount of sleep that they obtained. We prospectively studied the performances of thirty-two orthopaedic trauma surgeons (residents, fellows, and attending surgeons) over two four-week periods at an urban academic trauma center. Testing sessions used handheld computers to administer validated cognitive and psychomotor function tests. We conducted a multivariate analysis to examine the independent association between test performance and multiple covariates, including the amount of sleep the night before testing. Our analysis demonstrated that orthopaedic surgeons who had slept four hours or less the night before the test had 1.43 times the odds (95% confidence interval, 1.04 to 1.95; p = 0.03) of committing at least one error on an individual test compared with orthopaedic surgeons who had slept more than four hours the previous night. The Running Memory test, which assesses sustained attention, concentration, and working memory, was most sensitive to deterioration in performance in participants who had had four hours of sleep or less; when controlling for other covariates, the test demonstrated a 72% increase in the odds of making at least one error (odds ratio, 1.72 [95% confidence interval, 1.02 to 2.90]; p = 0.04). No significant decrease in performance with sleep deprivation was shown with the other three tests. Orthopaedic trauma surgeons showed deterioration in performance on a validated cognitive task when they had slept four hours or less the previous night. It is unknown how performance on this test relates to surgical performance.

  7. Leptin promotes wound healing in the oral mucosa.

    Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito


    Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the oral mucosa.

  8. Factors affecting the periapical healing process of endodontically treated teeth

    Roberto Holland

    Full Text Available Abstract Tissue repair is an essential process that reestablishes tissue integrity and regular function. Nevertheless, different therapeutic factors and clinical conditions may interfere in this process of periapical healing. This review aims to discuss the important therapeutic factors associated with the clinical protocol used during root canal treatment and to highlight the systemic conditions associated with the periapical healing process of endodontically treated teeth. The antibacterial strategies indicated in the conventional treatment of an inflamed and infected pulp and the modulation of the host's immune response may assist in tissue repair, if wound healing has been hindered by infection. Systemic conditions, such as diabetes mellitus and hypertension, can also inhibit wound healing. The success of root canal treatment is affected by the correct choice of clinical protocol. These factors are dependent on the sanitization process (instrumentation, irrigant solution, irrigating strategies, and intracanal dressing, the apical limit of the root canal preparation and obturation, and the quality of the sealer. The challenges affecting the healing process of endodontically treated teeth include control of the inflammation of pulp or infectious processes and simultaneous neutralization of unpredictable provocations to the periapical tissue. Along with these factors, one must understand the local and general clinical conditions (systemic health of the patient that affect the outcome of root canal treatment prediction.

  9. sup(99m)Tc-pyrophosphate scintiscanning in diagnostic orthopaedics

    Rauscher, W.


    To assess the findings of nuclear skeletal examinations, the pathological course of the disease must be known as far as possible. Pyrophosphate is the substance that causes bone accumulation while the metastable technetium is a high-intensity gamma source. Positive scintiscan findings are obtained in all processes with clear changes in the bone structure, e.g. all stages of osteomyelitis, articular processes of different genesis, inflammations, or activations of the bone metabolism. In these cases also processes of the articular cartilage and, partly, the soft tissue will be imaged. Terminated processes and purely degenerative changes, which are rare in clinical practice, will remain quiescent. Examinations after trauma or after surgery show a typical healing process. Scintiscanning is particularly useful for examinations of skeletal parts that are difficult to image by radiological methods; on the other hand, it does not yield additional information on the fit of an endoprothesis. Primary skeletal tumours can be diagnosed with sufficient accuracy only by means of quantitative methods. Nuclear methods, with their accurate information on the dynamics of the bone metabolism, often yield valuable additional information for the purposes of diagnosis, therapy, and prognosis. (orig./MG) [de

  10. Healing of corneal epithelial wounds in marine and freshwater fish.

    Ubels, J L; Edelhauser, H F

    The corneal epithelium of a fish is in direct contact with the aquatic environment and is a barrier to movement of ions and water into and through the cornea. This tissue layer is thus important in maintenance of corneal transparency. When the epithelium is wounded, its protective function is lost and corneal transparency remains compromised until the epithelial barrier is re-established. This study was undertaken to investigate the healing response of the fish cornea to epithelial abrasion. Wounds were stained with fluorescein and photographed during healing. Wound areas were measured by planimetry. The cornea of the sculpin, a marine teleost, becomes edematous after wounding and heals at 2.54 to 3.42 mm2/hr. Nonswelling corneas of the elasmobranchs--dogfish shark and skate--heal at 1.29 mm2/hr, respectively. The wounded eye of the rainbow trout, a freshwater teleost, is stressed by the low osmolality of the environment. Severe corneal edema and cataracts develop following epithelial wounding, and the cornea heals at 0.64 mm2/hr. Although the healing rates in teleosts differ from those in mammals, histology shows that the corneal healing mechanism is essentially the same in fish and mammals.

  11. Wound Healing Activity of a New Formulation from Platelet Lysate

    Akram Jamshidzadeh


    Full Text Available Platelet-rich plasma (PRP is an attractive preparation in regenerative medicine due to its potential role in the healing process in different experimental models. This study was designed to investigate the wound healing activity of a new formulation of PRP. Different gel-based formulations of PRP were prepared. Open excision wounds were made on the back of male Sprague-Dawley rats, and PRP gel was administered topically once daily until the wounds healed completely (12 days. The results revealed that the tested PRP formulation significantly accelerated the wound healing process by increasing the wound contraction, tissue granulization, vascularization, and collagen regeneration. Interestingly, this study showed that there were no significant differences between the PRP and its gel-based formulation in all the above mentioned parameters. Although this investigation showed that PRP formulation had significant wound healing effects, the PRP gel-based formulation also had significant wound healing properties. This might indicate the wound healing properties of the PRP gel ingredients in the current investigation.

  12. [Healing with art?].

    Kühlmann, A Y R Rosalie; Jeekel, J Hans; Pierik, E G J M Robert


    Music and other forms of art are increasingly being integrated into hospitals. As well as the aesthetic value of art, more and more attention is being paid to its contribution to the healing of the patient. Scientific research indicates the possible benefits of specific art in healthcare facilities. Using this knowledge of the role and employability of surroundings and art in the healing of patients may be complementary to the high quality of care in the Netherlands. By means of proper, methodologically correct research, it is possible to investigate the use of different aspects of the patient's environment as simple, safe and low-cost measures in improving health and well-being of patients.

  13. Understanding traditional African healing.

    Mokgobi, M G


    Traditional African healing has been in existence for many centuries yet many people still seem not to understand how it relates to God and religion/spirituality. Some people seem to believe that traditional healers worship the ancestors and not God. It is therefore the aim of this paper to clarify this relationship by discussing a chain of communication between the worshipers and the Almighty God. Other aspects of traditional healing namely types of traditional healers, training of traditional healers as well as the role of traditional healers in their communities are discussed. In conclusion, the services of traditional healers go far beyond the uses of herbs for physical illnesses. Traditional healers serve many roles which include but not limited to custodians of the traditional African religion and customs, educators about culture, counselors, social workers and psychologists.

  14. Self-healing polymers

    Klein, Daniel J. (Inventor)


    A three dimensional structure fabricated from a self-healing polymeric material, comprising poly(ester amides) obtained from ethylene glycol, azelaic acid and 1,1-aminoundecanoic acid, wherein polymeric material has a melt index above 2.5 g/10 min. as determined by ASTM D1238 at C. and 2.16kg, impact resistance and ductility sufficient to resist cracking and brittle fracture upon impact by a 9 mm bullet fired at a temperature of about C. at subsonic speed in a range from about 800 feet/sec to about 1000 feet/sec. It has been determined that the important factors necessary for self-healing behavior of polymers include sufficient impact strength, control of the degree of crystallinity, low melting point and the ability to instantly melt at impacted area.

  15. Biology and Biomarkers for Wound Healing

    Lindley, Linsey E.; Stojadinovic, Olivera; Pastar, Irena; Tomic-Canic, Marjana


    Background As the population grows older, the incidence and prevalence of conditions which lead to a predisposition for poor wound healing also increases. Ultimately, this increase in non-healing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has, and will continue to be the leading pathway to the discovery of therapeutic targets as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of non-healing patients for whom biomarker-guided approaches may aid in healing. Methods A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. Results Currently, biomarkers are being identified using biomaterials sourced locally, from human wounds and/or systemically using systematic high-throughput “omics” modalities (genomic, proteomic, lipidomic, metabolomic analysis). In this review we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum including those measured in tissue specimens e.g. β-catenin and c-myc, wound fluid e.g. MMP’s and interleukins, swabs e.g. wound microbiota and serum e.g. procalcitonin and MMP’s. Conclusions Identification of numerous potential biomarkers utilizing different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity, and consistent implementation of these biomarkers as well as an emphasis on efficacious follow-up therapeutics is necessary for transition of this technology to clinically feasible point-of-care applications. PMID:27556760

  16. Wound repair and factors influencing healing in veterinary clinical medicine I.

    Kudrnová, Adéla


    Wound healing in both human and veterinary medicine is essential physological process important for the survival of any species. Not only the internal (nutritional status, age, tissue hypoxia, etc.) and external (infections, medication, physical - chemical external influences, etc.) factors affect each stage of wound healing and its success, but also the overall treatment and choice of covering material. Wound healing is a natural process and sometimes takes place without any problems, themse...

  17. Does Residency Selection Criteria Predict Performance in Orthopaedic Surgery Residency?

    Raman, Tina; Alrabaa, Rami George; Sood, Amit; Maloof, Paul; Benevenia, Joseph; Berberian, Wayne


    More than 1000 candidates applied for orthopaedic residency positions in 2014, and the competition is intense; approximately one-third of the candidates failed to secure a position in the match. However, the criteria used in the selection process often are subjective and studies have differed in terms of which criteria predict either objective measures or subjective ratings of resident performance by faculty. Do preresidency selection factors serve as predictors of success in residency? Specifically, we asked which preresidency selection factors are associated or correlated with (1) objective measures of resident knowledge and performance; and (2) subjective ratings by faculty. Charts of 60 orthopaedic residents from our institution were reviewed. Preresidency selection criteria examined included United States Medical Licensing Examination (USMLE) Step 1 and Step 2 scores, Medical College Admission Test (MCAT) scores, number of clinical clerkship honors, number of letters of recommendation, number of away rotations, Alpha Omega Alpha (AOA) honor medical society membership, fourth-year subinternship at our institution, and number of publications. Resident performance was assessed using objective measures including American Board of Orthopaedic Surgery (ABOS) Part I scores and Orthopaedics In-Training Exam (OITE) scores and subjective ratings by faculty including global evaluation scores and faculty rankings of residents. We tested associations between preresidency criteria and the subsequent objective and subjective metrics using linear correlation analysis and Mann-Whitney tests when appropriate. Objective measures of resident performance namely, ABOS Part I scores, had a moderate linear correlation with the USMLE Step 2 scores (r = 0.55, p communication skills" subsection of the global evaluations. We found that USMLE Step 2, number of honors in medical school clerkships, and AOA membership demonstrated the strongest correlations with resident performance. Our

  18. Ireland's contribution to orthopaedic literature: a bibliometric analysis.

    Kennedy, C; O Sullivan, P; Bilal, M; Walsh, A


    Bibliometric analysis of scientific performance within a country or speciality, facilitate the recognition of factors that may further enhance research activity and performance. Our aim was to illicit the current state of Irelands orthopaedic research output in terms of quantity and quality. We performed a retrospective bibliometric analysis of all Irish orthopaedic publications over the past 5 years, in the top 20 peer-reviewed orthopaedic journals. Utilising the MEDLINE database, each journal was evaluated for articles that were published over the study period. Reviews, editorials, reports and letters were excluded. Each article abstract was analysed for research content, and country of origin. A nation's mean IF was defined by multiplying each journal's IF by the number of articles. Publications per million (PmP) was calculated by dividing the total number of publications by the population of each country. We analysed a total of 25,595 article abstracts. Ireland contributed 109 articles in total (0.42% of all articles), however ranking according to population per million was 10th worldwide. Ireland ranked 18th worldwide in relation to mean impact factor, which was 2.91 over the study period. Ireland published in 16 of the top 20 journals, 9 of these were of European origin, and 1 of the top 5 was of American origin. In total, 61 Irish articles were assignable to clinical orthopaedic units. Clinical based studies (randomised controlled trials, observational, and epidemiology/bibliometric articles) and research based studies (In vivo, In vitro, and biomechanical) numbered 76 (69.7%) and 33 (30.2%) articles, respectively. This study provides a novel overview of current Irish orthopaedic related research, and how our standards translate to the worldwide orthopaedic community. In order to maintain our publication productivity, academic research should continue to be encouraged at post graduate level. Copyright © 2013 Royal College of Surgeons of Edinburgh

  19. Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: a long term study with high clinical relevance.

    Meimandi-Parizi, Abdolhamid; Oryan, Ahmad; Moshiri, Ali


    Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. The major limitations to manage these injuries are poor healing response and development of peritendinous adhesions in the injured area. This study investigated the effectiveness of a novel collagen implant on tendon healing in rabbits. Seventy five mature White New-Zealand rabbits were divided into treated (n = 55) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. The defects of the treated animals were filled with collagen implants and repaired with sutures, but in control rabbits the defects were sutured similarly but the gap was left untreated. Changes in the injured and normal contralateral tendons were assessed weekly by measuring the diameter, temperature and bioelectrical characteristics of the injured area. Clinical examination was done and scored. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 and 60 (n = 5 at each time interval) and the remainder (n = 20) and the control animals at 120 days post injury (DPI). The lesions of all animals were examined at macroscopic and microscopic levels and the dry matter content, water delivery and water uptake characteristics of the lesions and normal contralateral tendons of both groups were analyzed at 120 DPI. This novel collagen implant was biodegradable, biocompatible and possibly could be considered as a substitute for auto and allografts in clinical practice in near future.

  20. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing; Interacao da radiacao laser linearmente polarizada de baixa intensidade com tecidos vivos: efeitos na acelaracao de cicatrizacao tissular em lesoes de pele

    Ribeiro, Martha Simoes


    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N{sub 2} on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm{sup 2}. Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  1. Endomicroscopy for assessing mucosal healing in patients with ulcerative colitis.

    Gheorghe, Cristian; Cotruta, Bogdan; Iacob, Razvan; Becheanu, Gabriel; Dumbrava, Mona; Gheorghe, Liana


    The assessment of tissue healing has emerged as an important treatment goal in patients with inflammatory bowel disease. In patients with ulcerative colitis (UC), mucosal healing may represent the ultimate therapeutic goal due to the fact that the inflammation is limited to the mucosal layer. Mucosal and histological healing may indicate a subset of UC patients in long-term clinical, endoscopic and histological remission in whom immunomodulators, biologics, and even aminosalicylates may be withdrawn. Confocal laser endomicroscopy allows the assessment of residual cellular inflammation, crypt and vessel architecture distortion during ongoing endoscopy, and therefore permits a real-time evaluation of histological healing in patients with ulcerative proctitis. Images of conventional optical microscopy and confocal laser endomicroscopy in patients with ulcerative proctitis in remission are presented.

  2. Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius.

    Peacock, Hanna M; Gilbert, Emily A B; Vickaryous, Matthew K


    Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing. © 2015 Anatomical Society.

  3. Extremity Soft Tissue Sarcoma: A Review of 19 Cases. | Eyesan ...

    Background: Although soft tissue sarcoma is a rare tumour, it accounts for a significant proportion of malignancies seen in many orthopaedic practices. The objectives of this study are to evaluate the pattern of presentation of extremity soft tissue sarcoma and the treatment outcome in our patients. Method: This is a 3 year ...

  4. The molecular biology in wound healing & non-healing wound.

    Qing, Chun


    The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  5. The Advantages of Traditional Chumash Healing

    James D. Adams


    Full Text Available Chumash healing has been practiced in California for ∼13 000 years. Chumash healers treat their patients with prayer, laughter, dreaming, phytotherapy, aromatherapy, healing ceremonies and other techniques. Healing involves first healing the spirit, then healing the body. Chumash people still maintain their unique identity. Chumash Healers still practice the ancient healing arts in California. This lecture is a brief introduction to Chumash Healing.

  6. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  7. Competency-based education: a new model for teaching orthopaedics.

    Alman, Benjamin A; Ferguson, Peter; Kraemer, William; Nousiainen, Markku T; Reznick, Richard K


    The current methods used to train residents to become orthopaedic surgeons are based on tradition, not evidence-based models. Educators have only a limited ability to assess trainees for competency using validated tests in various domains. The reduction in resident work hours limits the time available for clinical training, which has resulted in some calls for lengthening the training process. Another approach to address limited training hours is to focus training in a program that allows residents to graduate from a rotation based on demonstrated competency rather than on time on a service. A pilot orthopaedic residency curriculum, which uses a competency-based framework of resident training and maximizes the use of available training hours, has been designed and is being implemented.

  8. Bone graft materials in fixation of orthopaedic implants in sheep

    Babiker, Hassan


    Bone graft is widely used within orthopaedic surgery especially in revision joint arthroplasty and spine fusion. The early implant fixation in the revision situation of loose joint prostheses is important for the long-term survival. Bone autograft has been considered as gold standard in many...... orthopaedic procedures, whereas allograft is the gold standard by replacement of extensive bone loss. However, the use of autograft is associated with donor site morbidity, especially chronic pain. In addition, the limited supply is a significant clinical challenge. Limitations in the use of allograft include...... the risk of bacterial contamination and disease transmission as well as non-union and poor bone quality. Other bone graft and substitutes have been considered as alternative in order to improve implant fixation. Hydroxyapatite and collagen type I composite (HA/Collagen) have the potential in mimicking...

  9. Computer-assisted Orthopaedic Surgery: Current State and Future Perspective

    Guoyan eZheng


    Full Text Available Introduced about two decades ago, computer-assisted orthopaedic surgery (CAOS has emerged as a new and independent area, due to the importance of treatment of musculoskeletal diseases in orthopaedics and traumatology, increasing availability of different imaging modalities, and advances in analytics and navigation tools. The aim of this paper is to present the basic elements of CAOS devices and to review state-of-the-art examples of different imaging modalities used to create the virtual representations, of different position tracking devices for navigation systems, of different surgical robots, of different methods for registration and referencing, and of CAOS modules that have been realized for different surgical procedures. Future perspectives will also be outlined.

  10. Three-Dimensional Bio-Printed Scaffold Sleeves With Mesenchymal Stem Cells for Enhancement of Tendon-to-Bone Healing in Anterior Cruciate Ligament Reconstruction Using Soft-Tissue Tendon Graft.

    Park, Sin Hyung; Choi, Yeong-Jin; Moon, Sang Won; Lee, Byung Hoon; Shim, Jin-Hyung; Cho, Dong-Woo; Wang, Joon Ho


    To investigate the efficacy of the insertion of 3-dimensional (3D) bio-printed scaffold sleeves seeded with mesenchymal stem cells (MSCs) to enhance osteointegration between the tendon and tunnel bone in anterior cruciate ligament (ACL) reconstruction in a rabbit model. Scaffold sleeves were fabricated by 3D bio-printing. Before ACL reconstruction, MSCs were seeded into the scaffold sleeves. ACL reconstruction with hamstring tendon was performed on both legs of 15 adult rabbits (aged 12 weeks). We implanted 15 bone tunnels with scaffold sleeves with MSCs and implanted another 15 bone tunnels with scaffold sleeves without MSCs before passing the graft. The specimens were harvested at 4, 8, and 12 weeks. H&E staining, immunohistochemical staining of type II collagen, and micro-computed tomography of the tunnel cross-sectional area were evaluated. Histologic assessment was conducted with a histologic scoring system. In the histologic assessment, a smooth bone-to-tendon transition through broad fibrocartilage formation was identified in the treatment group, and the interface zone showed abundant type II collagen production on immunohistochemical staining. Bone-tendon healing histologic scores were significantly higher in the treatment group than in the control group at all time points. Micro-computed tomography at 12 weeks showed smaller tibial (control, 9.4 ± 0.9 mm 2 ; treatment, 5.8 ± 2.9 mm 2 ; P = .044) and femoral (control, 9.6 ± 2.9 mm 2 ; treatment, 6.0 ± 1.0 mm 2 ; P = .03) bone-tunnel areas in the treated group than in the control group. The 3D bio-printed scaffold sleeve with MSCs exhibited excellent results in osteointegration enhancement between the tendon and tunnel bone in ACL reconstruction in a rabbit model. If secure biological healing between the tendon graft and tunnel bone can be induced in the early postoperative period, earlier, more successful rehabilitation may be facilitated. Three-dimensional bio-printed scaffold sleeves with

  11. Image guidance in orthopaedics and traumatology: A historical perspective.

    Székely, Gabor; Nolte, Lutz-P


    In this note we summarize the history of computer aided surgery in orthopaedics and traumatology from the end of the nineteenth century to currently observable future trends. We concentrate on the two major components of such systems, pre-operative planning and intra-operative execution. The evolution of the necessary technological components, the numerous platforms and components offered commercially as well as their clinical use are surveyed. Copyright © 2016. Published by Elsevier B.V.

  12. Adverse Effects of Smoking on Outcomes of Orthopaedic Surgery

    Sheung-tung Ho


    Smoking has many adverse effects on the musculoskeletal system, particularly on the outcomes after orthopaedic surgery. Smoking is associated with surgical site infection and postoperative wound complications after spine surgery, total joint arthroplasty, and fracture fixation; nonunion after spinal fusion, ankle fusion, osteotomy, and internal fixation and bone grafting for scaphoid nonunion; worse outcomes after lumbar disc prolapse, spinal stenosis, and cervical myelopathy surgery; peripro...

  13. Rapid Prototyping in Orthopaedic Surgery: A User's Guide

    Frame, Mark; Huntley, James S.


    Rapid prototyping (RP) is applicable to orthopaedic problems involving three dimensions, particularly fractures, deformities, and reconstruction. In the past, RP has been hampered by cost and difficulties accessing the appropriate expertise. Here we outline the history of rapid prototyping and furthermore a process using open-source software to produce a high fidelity physical model from CT data. This greatly mitigates the expense associated with the technique, allowing surgeons to produce pr...

  14. Biocompatibility of orthopaedic implants on bone forming cells

    Kapanen, A. (Anita)


    Abstract Reindeer antler was studied for its possible use as a bone implant material. A molecular biological study showed that antler contains a growth factor promoting bone formation. Ectopic bone formation assay showed that antler is not an equally effective inducer as allogenic material. Ectopic bone formation assay was optimised for biocompatibility studies of orthopaedic NiTi implants. Ti-6Al-4V and stainless steel were used as reference materials. The assay...

  15. Surgical skills simulation in trauma and orthopaedic training

    Stirling, Euan RB; Lewis, Thomas L; Ferran, Nicholas A


    Changing patterns of health care delivery and the rapid evolution of orthopaedic surgical techniques have made it increasingly difficult for trainees to develop expertise in their craft. Working hour restrictions and a drive towards senior led care demands that proficiency be gained in a shorter period of time whilst requiring a greater skill set than that in the past. The resulting conflict between service provision and training has necessitated the development of alternative methods in orde...

  16. Vancouver winters: Environmental influences on inpatient adult orthopaedic trauma demographics

    Noordin, S.; Masri, B. A.


    Objective: To compare the pattern of adult inpatient orthopaedic injuries admitted at three Vancouver hospitals following one of the worst winter snowstorms in the region with the preceding control winter period. Methods: The surveillance study was conducted at the University of British Columbia, Vancouver, Canada, 2007 to 2010. Inpatient adult admissions for orthopaedic injuries at three hospitals were recorded, including age, gender, anatomic location of injury, type of fracture (open or closed), fixation method (internal versus external fixation), and length of acute care hospital stay. Comparisons between admissions during this weather pattern and admission during a previous winter with minimal snow were made. SPSS 19 was used for statistical analysis. Results: Of the 511 patients admitted under Orthopaedic trauma service during the significant winter snowstorms of December 2008 - January 2009, 100 (19.6%) (CI: 16.2%-23.2%) were due to ice and snow, whereas in the preceding mild winter only 18 of 415 (4.3%) (CI: 2.5%-6.8%) cases were related to snow (p<0.05). Ankle and wrist fractures were the most frequent injuries during the index snow storm period (p<0.05). At all the three institutions, 97 (96.5%) fractures were closed during the snowstorm as opposed to 17 (95%) during the control winter period. Internal fixation in 06 (89%) fractures as opposed to external fixation in 12 (11%) patients was the predominant mode of fixation across the board during both time periods. Conclusion: The study demonstrated a significantly higher inpatient orthopaedic trauma volume during the snowstorm more rigorous prospective studies need to be designed to gain further insight to solving these problems from a public health perspective. (author)

  17. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants

    Jäger, Marcus; Jennissen, Herbert P.; Dittrich, Florian; Fischer, Alfons; Köhling, Hedda Luise


    The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of “smaller, faster, cheaper”, nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the bi...

  18. Revascularization in Maxillofacial Bone Healing.


    the use of these implants to support dentures and other prostheses, it appears they may have significant application in dentistry to restore contour...of the Biometric Consulting Laboratory, Department of Biostatistics , University of North Carolina. The differences between experimental and control... dentistry , endodontics, periodontics, orthopaedic surgery and cancer chemotherapy. These protocols were designed in conjunction with the involved

  19. Factors driving physician-hospital alignment in orthopaedic surgery.

    Page, Alexandra E; Butler, Craig A; Bozic, Kevin J


    The relationships between physicians and hospitals are viewed as central to the proposition of delivering high-quality health care at a sustainable cost. Over the last two decades, major changes in the scope, breadth, and complexities of these relationships have emerged. Despite understanding the need for physician-hospital alignment, identification and understanding the incentives and drivers of alignment prove challenging. Our review identifies the primary drivers of physician alignment with hospitals from both the physician and hospital perspectives. Further, we assess the drivers more specific to motivating orthopaedic surgeons to align with hospitals. We performed a comprehensive literature review from 1992 to March 2012 to evaluate published studies and opinions on the issues surrounding physician-hospital alignment. Literature searches were performed in both MEDLINE(®) and Health Business™ Elite. Available literature identifies economic and regulatory shifts in health care and cultural factors as primary drivers of physician-hospital alignment. Specific to orthopaedics, factors driving alignment include the profitability of orthopaedic service lines, the expense of implants, and issues surrounding ambulatory surgery centers and other ancillary services. Evolving healthcare delivery and payment reforms promote increased collaboration between physicians and hospitals. While economic incentives and increasing regulatory demands provide the strongest drivers, cultural changes including physician leadership and changing expectations of work-life balance must be considered when pursuing successful alignment models. Physicians and hospitals view each other as critical to achieving lower-cost, higher-quality health care.

  20. Professional liability in orthopaedics and traumatology in Italy.

    Tarantino, Umberto; Giai Via, Alessio; Macrì, Ernesto; Eramo, Alessandro; Marino, Valeria; Marsella, Luigi Tonino


    Interest in medical errors has increased during the last few years owing to the number of medical malpractice claims. Reasons for the increasing number of claims may be related to patients' higher expectations, iatrogenic injury, and the growth of the legal services industry. Claims analysis provides helpful information in specialties in which a higher number of errors occur, highlighting areas where orthopaedic care might be improved. We determined: (1) the number of claims involving orthopaedics and traumatology in Rome; (2) the risk of litigation in elective and trauma surgery; (3) the most common surgical procedures involved in claims and indemnity payments; (4) the time between the adverse medical event and the judgment date; and (5) issues related to informed consent. We analyzed 1925 malpractice judgments decided in the Civil Court of Rome between 2004 and 2010. In total, 243 orthopaedics claims were filed, and in 75% of these cases surgeons were found liable; 149 (61%) of these resulted from elective surgery. Surgical teams were sued in 30 claims and found liable in 22. The total indemnity payment ordered was more than €12,350,000 (USD 16,190,000). THA and spinal surgery were the most common surgical procedures involved. Inadequate informed consent was reported in 5.3% of cases. Our study shows that careful medical examination, accurate documentation in medical records, and adequate informed consent might reduce the number of claims. We suggest monitoring of court judgments would be useful to develop prevention strategies to reduce claims.

  1. Regenerative orthopaedics: in vitro, in silico.

    Geris, Liesbet


    In silico, defined in analogy to in vitro and in vivo as those studies that are performed on a computer, is an essential step in problem-solving and product development in classical engineering fields. The use of in silico models is now slowly easing its way into medicine. In silico models are already used in orthopaedics for the planning of complicated surgeries, personalised implant design and the analysis of gait measurements. However, these in silico models often lack the simulation of the response of the biological system over time. In silico models focusing on the response of the biological systems are in full development. This review starts with an introduction into in silico models of orthopaedic processes. Special attention is paid to the classification of models according to their spatiotemporal scale (gene/protein to population) and the information they were built on (data vs hypotheses). Subsequently, the review focuses on the in silico models used in regenerative orthopaedics research. Contributions of in silico models to an enhanced understanding and optimisation of four key elements-cells, carriers, culture and clinics-are illustrated. Finally, a number of challenges are identified, related to the computational aspects but also to the integration of in silico tools into clinical practice.

  2. State Variation in Medicaid Reimbursements for Orthopaedic Surgery.

    Lalezari, Ramin M; Pozen, Alexis; Dy, Christopher J


    Medicaid reimbursements are determined by each state and are subject to variability. We sought to quantify this variation for commonly performed inpatient orthopaedic procedures. The 10 most commonly performed inpatient orthopaedic procedures, as ranked by the Healthcare Cost and Utilization Project (HCUP) National Inpatient Sample, were identified for study. Medicaid reimbursement amounts for those procedures were benchmarked to state Medicare reimbursement amounts in 3 ways: (1) ratio, (2) dollar difference, and (3) dollar difference divided by the relative value unit (RVU) amount. Variability was quantified by determining the range and coefficient of variation for those reimbursement amounts. The range of variability of Medicaid reimbursements among states exceeded $1,500 for all 10 procedures. The coefficients of variation ranged from 0.32 (hip hemiarthroplasty) to 0.57 (posterior or posterolateral lumbar interbody arthrodesis) (a higher coefficient indicates greater variability), compared with 0.07 for Medicare reimbursements for all 10 procedures. Adjusted as a dollar difference between Medicaid and Medicare per RVU, the median values ranged from -$8/RVU (total knee arthroplasty) to -$17/RVU (open reduction and internal fixation of the femur). Variability of Medicaid reimbursement for inpatient orthopaedic procedures among states is substantial. This variation becomes especially remarkable given recent policy shifts toward focusing reimbursements on value.

  3. Surgical skills simulation in trauma and orthopaedic training.

    Stirling, Euan R B; Lewis, Thomas L; Ferran, Nicholas A


    Changing patterns of health care delivery and the rapid evolution of orthopaedic surgical techniques have made it increasingly difficult for trainees to develop expertise in their craft. Working hour restrictions and a drive towards senior led care demands that proficiency be gained in a shorter period of time whilst requiring a greater skill set than that in the past. The resulting conflict between service provision and training has necessitated the development of alternative methods in order to compensate for the reduction in 'hands-on' experience. Simulation training provides the opportunity to develop surgical skills in a controlled environment whilst minimising risks to patient safety, operating theatre usage and financial expenditure. Many options for simulation exist within orthopaedics from cadaveric or prosthetic models, to arthroscopic simulators, to advanced virtual reality and three-dimensional software tools. There are limitations to this form of training, but it has significant potential for trainees to achieve competence in procedures prior to real-life practice. The evidence for its direct transferability to operating theatre performance is limited but there are clear benefits such as increasing trainee confidence and familiarity with equipment. With progressively improving methods of simulation available, it is likely to become more important in the ongoing and future training and assessment of orthopaedic surgeons.

  4. Neoprene Orthopaedic Supports: An Underrecognised Cause of Allergic Contact Dermatitis

    S. Hawkey


    Full Text Available Thioureas, often contained within neoprene to provide water resistance, are an important cause of allergic contact dermatitis (ACD in those who use neoprene products. We wish to present three cases of thiourea-induced ACD from three different orthopaedic supports containing neoprene. The first case was a 67-year-old woman who developed an itchy rash on her heel three weeks after using a neoprene insole for plantar fasciitis. The second case was a 47-year-old man who developed an itchy rash on his wrist after wearing neoprene wrist splints for psoriatic arthropathy. The third case was a 77-year-old woman who experienced a severe erythematous rash with blistering from a neoprene elbow brace she received following a humeral fracture. All patients were patch tested to the British Society of Cutaneous Allergy Standard and rubber series and a cut piece from all the relevant supports. At 96 hours, all patients had a + reaction to mixed dialkylthiourea, diethylthiourea, and the supports’ material. No other positive patch test reactions were identified. As neoprene is fast becoming one of the most popular materials used for orthopaedic supports, awareness of this reaction and close liaison between dermatologists and orthopaedic surgeons are therefore essential to allow for early recognition of this complication.

  5. Analysis of scientific articles published in two general orthopaedic journals.

    Holzer, Lukas A; Holzer, Gerold


    To give an overview of the behaviour and scientific contributions of the Journal of Bone and Joint Surgery American (JBJS-A) and British Volume (JBJS-B). 480 original articles published in 2009 were identified through a combined comprehensive computer and manual library search. Articles were assigned to 11 orthopaedic categories and by country, type and specialty of the institution. Possible grants and citations were analysed. USA led all countries in published articles (36,87%), followed by UK (20,62%) and South Korea (5,83%). Most studies published were performed at academic institutions (65,83 %), only 4,16% at private practices. Almost half of the articles (46,24%) were published in three categories: hip (19.16%), knee (13.75%) and trauma (13.33%). In both journals 47.15% articles had at least one funding source. A review of articles published in major journals allows to show how research in orthopaedics is distributed worldwide. This study shows that a variety of different journals is neccessary to reflect the broad spectrum of orthopaedics in depth. Level of Evidence III, Retrospective Comparative Study.

  6. Mucosal healing in ulcerative colitis

    Seidelin, Jakob Benedict; Coskun, Mehmet; Nielsen, Ole Haagen


    . With the introduction of the tumor necrosis factor-alpha inhibitors for the treatment of UC, it has become increasingly evident that the disease course is influenced by whether or not the patient achieves mucosal healing. Thus, patients with mucosal healing have fewer flare-ups, a decreased risk of colectomy......, and a lower probability of developing colorectal cancer. Understanding the mechanisms of mucosal wound formation and wound healing in UC, and how they are affected therapeutically is therefore of importance for obtaining efficient treatment strategies holding the potential of changing the disease course of UC....... This review is focused on the pathophysiological mechanism of mucosal wound formation in UC as well as the known mechanisms of intestinal wound healing. Regarding the latter topic, pathways of both wound healing intrinsic to epithelial cells and the wound-healing mechanisms involving interaction between...

  7. Human DPSCs fabricate vascularized woven bone tissue: A new tool in bone tissue engineering

    Paino, F.; Noce, M.L.; Giuliani, A.; de Rosa, A.; Mazzoni, F.; Laino, L.; Amler, Evžen; Papaccio, G.; Desiderio, V.; Tirino, V.


    Roč. 131, č. 8 (2017), s. 699-713 ISSN 0143-5221 Institutional support: RVO:68378041 Keywords : bone differentiation * bone regeneration * bone tissue engineering Subject RIV: FP - Other Medical Disciplines OBOR OECD: Orthopaedics Impact factor: 4.936, year: 2016

  8. Treatment of open tibial shaft fracture with soft tissue and bone defect caused by aircraft bomb--case report.

    Golubović, Zoran; Vidić, Goran; Trenkić, Srbobran; Vukasinović, Zoran; Lesić, Aleksandar; Stojiljković, Predrag; Stevanović, Goran; Golubović, Ivan; Visnjić, Aleksandar; Najman, Stevo


    Aircraft bombs can cause severe orthopaedic injuries. Tibia shaft fractures caused by aircraft bombs are mostly comminuted and followed by bone defects, which makes the healing process extremely difficult and prone to numerous complications. The goal of this paper is to present the method of treatment and the end results of treatment of a serious open tibial fracture with soft and bone tissue defects resulting from aircraft bomb shrapnel wounds. A 26-year-old patient presented with a tibial fracture as the result of a cluster bomb shrapnel wound. He was treated applying the method of external bone fixation done two days after wounding, as well as of early coverage of the lower leg soft tissue defects done on the tenth day after the external fixation of the fracture. The external fixator was removed after five months, whereas the treatment was continued by means of functional plaster cast for another two months. The final functional result was good. Radical wound debridement, external bone fixation of the fracture, and early reconstruction of any soft tissue and bone defects are the main elements of the treatment of serious fractures.

  9. Mast cells and angiogenesis in wound healing.

    Gaber, Mohamed A; Seliet, Iman A; Ehsan, Nermin A; Megahed, Mohamed A


    To investigate the role of mast cells and vascular endothelial growth factor (VEGF) as a mediator of angiogenesis to promote wound healing in surgical and pathological scars. The study was carried out on 40 patients who presented with active scar lesions. They were subdivided into 4 groups. They included granulation tissue (10 cases), surgical scar (10 cases), hypertrophic scar (10 cases), and keloid scar (10 cases). Also 10 healthy volunteers of the same age and sex were selected as a control group. Skin biopsies were taken from the patients and the control group. Skin biopsies from clinically assessed studied groups were processed for routine histology and embedded in paraffin. Four sections were prepared from each paraffin block. The first section was stained with hematoxylin and eosin for histological evaluation. The second and third sections were processed for immunostaining of mast cells that contain chymase (MCCs) and mast cells that contain tryptase (MCTs). The fourth section was processed for immunostaining of VEGF. MCCs exhibited mild expression in normal tissue, granulation tissue, and surgical, hypertrophic and keloid scars. MCTs exhibited mild expression in normal tissue, granulation tissue and keloid, whereas moderate expression was exhibited in hypertrophic and surgical scars. VEGF expression was absent in normal tissue, mild in keloid, surgical and hypertrophic scars, and moderate in keloids and granulation tissue. Mast cell expression variation among different scar types signals the pathological evolution of the lesion, and hence may guide the need for therapeutic intervention.

  10. Achilles tendon healing

    Dillon, E.H.; Pope, C.F.; Barber, V.; Jokl, P.; Lynch, K.


    This paper reports on symptomatic Achilles tendon abnormalities (rupture, tendinitis) evaluated with MR imaging during the healing phase after either surgical or conservative treatment. A total of 21 patients were studied. Fifteen of 21 underwent surgery (13 tendon ruptures) and six were managed conservatively (one rupture). MR studies were obtained before treatment in 11, at 3 months in eight, at 6 months in seven, and at 12 months in 12. The 1.5-T spin-echo and gradient-echo images were correlated with clinical results, planter reflex response times, and calf force measurements. Sequential T2 times were obtained from representative levels in the tendons

  11. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.


    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  12. Skin wound healing in different aged Xenopus laevis.

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella


    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation. Copyright © 2013 Wiley Periodicals, Inc.

  13. Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants

    Ektessabi, A.M.; Otsuka, T.; Tsuboi, Y.; Yokoyama, K.; Albrektsson, T.; Sennerby, L.; Johansson, C.


    In the past two decades the utilization of dental and orthopaedic implants in reconstructive surgery has been spread widely. Most of these implants are inserted in the corrosive environment of the human body for long periods of time. The level of dissolution, release, and transport of metal ions as a result of corrosion of these materials are not fully known at present. We report the results of application of micro ion beam PIXE spectroscopy to detect release of titanium from titanium and titanium alloy implants inserted in the tibiae of rabbits for three months. It was found that titanium ions could be detected in the surrounding tissues, with high precision, as a gradient from the implant surface and in higher amounts in the bone tissue as compared with the soft tissues. It is concluded that application of micro ion beam PIXE spectroscopy for detection of metal ion release, and distribution of the released material around the implants with high special resolution and accuracy may be used to further investigate the mechanism of metal release, and the relation between surface micromorphology and corrosion resistance of the implant materials. (author)

  14. Healing agent for self-healing cementious material

    Jonkers, H.M.


    The invention provides a process for the production of a cementious material. The process comprises mixing cement starting materials and a particulate healing agent to provide the cementious material. The healing agent comprises coated particles, wherein the coated particles comprise bacterial

  15. Reirradiation of healing murine skin

    Terry, N.H.A.; Aldana, M.W.; Travis, E.L.


    The most common way of assessing residual radiation damage in a tissue has been to retreat at a fixed time interval after a first treatment. Previous studies in skin have shown that the greatest proportion of remembered dose (20-40%) was seen if the retreatment interval was one month, shortly after the acute reaction caused by the first treatment has subsided. Moreover, the observed state of the foot at retreatment depended on the size of the first dose. After a priming dose of 22.5 Gy, the peak skin reaction of 0.8 returned to zero by Day 27. On retreatment at Day 30, the foot was indistinguishable from controls. After higher first doses, the feet still had significant reaction scores ranging from 0.5 to more than 1.0. Thus, in this present study, feet were retreated at a common level of healing rather than after a fixed time interval. Mice feet were irradiated with a range of X-ray doses (22.5-37.5 Gy) covering the threshold to full response. The feet were reirradiated when their skin reactions had fallen to a common value of 0.5. The time of this retreatment was therefore earlier (13 days) after the lowest priming dose (22.5 Gy) than after higher doses. In these latter instances retreatment times ranged from 18-40 days. These data are compared with those from schedules where the second irradiations were performed a fixed time after the first treatment

  16. Gingival wound healing: an essential response disturbed by aging?

    Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J


    Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications. © International & American Associations for Dental Research 2014.

  17. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity

    Isaksson, H.E.; Donkelaar, van C.C.; Huiskes, R.; Ito, K.


    Phenomenological computational models of tissue regeneration and bone healing have been only partially successful in predicting experimental observations. This may be a result of simplistic modeling of cellular activity. Furthermore, phenomenological models are limited when considering the effects

  18. High strength, surface porous polyether-ether-ketone for load-bearing orthopaedic implants

    Evans, Nathan T.; Torstrick, F. Brennan; Lee, Christopher S.D.; Dupont, Kenneth M.; Safranski, David L.; Chang, W. Allen; Macedo, Annie E.; Lin, Angela; Boothby, Jennifer M.; Whittingslow, Daniel C.; Carson, Robert A.; Guldberg, Robert E.; Gall, Ken


    Despite its widespread clinical use in load-bearing orthopaedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer thickness was 399.6±63.3 µm and possessed a mean pore size of 279.9±31.6 µm, strut spacing of 186.8±55.5 µm, porosity of 67.3±3.1%, and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via µCT and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopaedic applications. PMID:25463499

  19. Potential dermal wound healing agent in Blechnum orientale Linn

    Lim Yau


    Full Text Available Abstract Background Blechnum orientale Linn. (Blechnaceae is used ethnomedicinally to treat wounds, boils, blisters or abscesses and sores, stomach pain and urinary bladder complaints. The aim of the study was to validate the ethnotherapeutic claim and to evaluate the effects of B. orientale water extract on wound healing activity. Methods Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control and 10% povidone-iodine (positive control respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test. Results Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group. Conclusions The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process.

  20. Inflammation and wound healing: The role of the macrophage

    Koh, Timothy J.; DiPietro, Luisa Ann


    The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds. PMID:21740602

  1. Evaluation of Cynodon dactylon for wound healing activity.

    Biswas, Tuhin Kanti; Pandit, Srikanta; Chakrabarti, Shrabana; Banerjee, Saheli; Poyra, Nandini; Seal, Tapan


    Research in the field of wound healing is very recent. The concept of wound healing is changing from day to day. Ayurveda is the richest source of plant drugs for management of wounds and Cynodon dactylon L. is one such. The plant is used as hemostatic and wound healing agent from ethnopharmacological point of view. Aim of the present study is scientific validation of the plant for wound healing activity in detail. Aqueous extract of the plant was prepared and phytochemical constituents were detected by HPLC analysis. Acute and dermatological toxicity study of the extract was performed. Pharmacological testing of 15% ointment (w/w) of the extract with respect to placebo control and standard comparator framycetin were done on full thickness punch wound in Wister rats and effects were evaluated based on parameters like wound contraction size (mm 2 ), tensile strength (g); tissue DNA, RNA, protein, hydroxyproline and histological examination. The ointment was applied on selected clinical cases of chronic and complicated wounds and efficacy was evaluated on basis of scoring on granulation, epithelialization, vascularity as well as routine hematological investigations. Significant results (pCynodon dactylon explores its potential wound healing activity in animal model and subsequent feasibility in human subjects. Phenolic acids and flavonoids present in c. dactylon supports its wound healing property for its anti-oxidative activity that are responsible for collagenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The efficacy of an extended scope physiotherapy clinic in paediatric orthopaedics.

    O Mir, Marie


    The demand for paediatric orthopaedic care is growing, and providing the service required is an increasingly challenging task. Physiotherapist-led triage clinics are utilised in adult orthopaedics to enable the provision of care to patients who may not require a surgical consult. The Physiotherapy Orthopaedic Triage Clinic (POTC) was established in Our Lady\\'s Children\\'s Hospital Crumlin in response to increasing demands on the paediatric orthopaedic service. The clinic is run by physiotherapists working in an advanced practice role (APP), and is the first paediatric clinic of its type and scale in the Republic of Ireland.

  3. The impact of clinical data on the evaluation of tibial fracture healing

    Dijkman Bernadette G


    Full Text Available Abstract Background Radiographic healing is a common outcome measure in orthopedic trials and adjudication by outcome assessors is often conducted on the basis of plain films alone. The degree to which this process reflects clinical practice, in which both plain films and clinical notes are available, is uncertain. We explored the effect of adding clinical notes to radiographs in the adjudication process of a feasibility trial of tibial shaft fractures. Methods Radiographic and clinical data from a multicenter randomized controlled trial of 51 patients with operatively treated tibial fractures formed the basis of the study data. At the completion of the trial, serial radiographs (anteroposterior and lateral were independently evaluated for progression of fracture healing, defined as bridging of at least 3 of 4 cortices, by an adjudication committee comprised of 3 blinded orthopaedic trauma surgeons. Immediately after determination of radiographic time to healing, each surgeon was provided with clinical notes associated with each radiographic follow up visit and asked to re-visit their initial impression. Consensus was achieved for both adjudications. We calculated the percentage of time to healing consensus decisions that changed after evaluation of clinical notes. We further examined the contents of clinical notes and their relative influence on the committee's decisions. Results 47 of 51 patients were determined to have healed radiographically during the trial follow-up period, and consideration of clinical notes resulted in a change of 40% (19 of 47 of time to healing consensus decisions; however, revised decisions were equally likely to support an earlier or a later time to healing. Clinical notes that resulted in a change to either a 'healed' or a 'not healed' decision contained significantly more comments of either pain resolution or deterioration, respectively, resumption of or failure to resume weightbearing, or either return or no

  4. Self-Healing Laminate System

    Beiermann, Brett A. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor); Sottos, Nancy R. (Inventor)


    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  5. Our Pathway toward Healing Racism

    Honour, Robert


    In this article, Robert Honour, Training and Staff Development Manager, at the Fairfax, Virginia, Department of Family Services (DFS), reports on the outcome of "Healing Racism" training at his organization. Participants in "Healing Racism Institutes" are transforming relationships and creating an organizational culture that…

  6. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Runa Ghosh Auddy


    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  7. Involvement of the endocannabinoid system in periodontal healing

    Kozono, Sayaka; Matsuyama, Takashi; Biwasa, Kamal Krishna; Kawahara, Ko-ichi; Nakajima, Yumiko; Yoshimoto, Takehiko; Yonamine, Yutaka; Kadomatsu, Hideshi; Tancharoen, Salunya; Hashiguchi, Teruto; Noguchi, Kazuyuki; Maruyama, Ikuro


    Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.

  8. Involvement of the endocannabinoid system in periodontal healing

    Kozono, Sayaka [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Matsuyama, Takashi, E-mail: [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Biwasa, Kamal Krishna [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205 (Bangladesh); Kawahara, Ko-ichi [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Nakajima, Yumiko; Yoshimoto, Takehiko; Yonamine, Yutaka; Kadomatsu, Hideshi [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400 (Thailand); Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Noguchi, Kazuyuki [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Maruyama, Ikuro [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)


    Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.

  9. Simulation of peri-implant bone healing due to immediate loading in dental implant treatments.

    Chou, Hsuan-Yu; Müftü, Sinan


    The goal of this work was to investigate the role of immediate loading on the peri-implant bone healing in dental implant treatments. A mechano-regulatory tissue differentiation model that takes into account the stimuli through the solid and the fluid components of the healing tissue, and the diffusion of pluripotent stem cells into the healing callus was used. A two-dimensional axisymmetric model consisting of a dental implant, the healing callus tissue and the host bone tissue was constructed for the finite element analysis. Poroelastic material properties were assigned to the healing callus and the bone tissue. The effects of micro-motion, healing callus size, and implant thread design on the length of the bone-to-implant contact (BIC) and the bone volume (BV) formed in the healing callus were investigated. In general, the analysis predicted formation of a continuous layer of soft tissue along the faces of the implant which are parallel to the loading direction. This was predicted to be correlated with the high levels of distortional strain transferred through the solid component of the stimulus. It was also predicted that the external threads on the implant, redistribute the interfacial load, thus help reduce the high distortional stimulus and also help the cells to differentiate to bone tissue. In addition, the region underneath the implant apex was predicted to experience high fluid stimulus that results in the development of soft tissue. The relationship between the variables considered in this study and the outcome measures, BV and BIC, was found to be highly nonlinear. A three-way analysis of variance (ANOVA) of the results was conducted and it showed that micro-motion presents the largest hindrance to bone formation during healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Regularity of wound healing in rats irradiated locally with different doses of soft X-rays

    Liu Jianzhong; Zhou Yuanguo; Cheng Tianmin; Zhou Ping; Liu Xia; Li Ping


    Objective: To study the regular patter of wound healing in rats irradiated locally with different doses of soft X-rays. Methods: Rats were locally irradiated, and wounded immediately thereafter. Gross observation, histopathology and immunohistochemistry examinations, and image analysis were used to study the wound healing process. Results: The authors found that the delayed time of wound healing induced by soft X-ray irradiation of 0.50, 1.01, 1.96, 3,26, 4.00, 5.21 Gy was 1.6, 4.2, 5.4, 6.6, 8.2 and 9.4 days, respectively. Irradiation with 7.0 and 10.0 Gy caused failure of wound healing (up to 40 days). Compared to the non-irradiated wounds, the healing rates of irradiation-impaired wounds were lower during the whole healing process. From day 3 to day 9 after irradiation, the healing rates decreased along with increasing of the radiation dose, indicating the key phase of wound healing was delayed. After irradiation, the collagen synthesis was decreased, its arrangement was disordered, and the structure of granulation tissue was irregular. Conclusion: Soft X-rays irradiation may cause a delay of wound healing in a dose-dependent manner, and irradiation with 7.0 and 10.0 Gy cause failure of wound healing

  11. Comment on “Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing”

    Hongling Li


    Full Text Available A recent paper in this journal, presented a novel method by topical application of growth factors in stimulating diabetic cutaneous wound healing that caught our attention. We believe that the experimental method in the article is efficient and creative, but it also has some controversies and shortcomings to be discussed. We noted that the authors used “Tegaderm” as a semiocclusive dressing film and stated that it exerted a “splinting effect” on the wound margins and controlled contraction. Indeed, the “Tegaderm” itself can serve as a dressing film to isolate the wound bed with outside environments while the “splinting effect” is mainly achieved by adding silicone splints around the wound. Considering the unique properties of silicone splints and “Tegaderm,” our experimental group propose an alternative method named “combined-suturing” technique that is not only suturing the silicone splints but also securing the “Tegaderm” around the wound. The specific reasons and operative procedures are explained in detail in this letter.

  12. Synthetic Self-Healing Methods

    Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Given enough time, pressure, temperature fluctuation, and stress any material will fail. Currently, synthesized materials make up a large part of our everyday lives, and are used in a number of important applications such as; space travel, under water devices, precise instrumentation, transportation, and infrastructure. Structural failure of these material scan lead to expensive and dangerous consequences. In an attempt to prolong the life spans of specific materials and reduce efforts put into repairing them, biologically inspired, self-healing systems have been extensively investigated. The current review explores recent advances in three methods of synthesized self-healing: capsule based, vascular, and intrinsic. Ideally, self-healing materials require no human intervention to promote healing, are capable of surviving all the steps of polymer processing, and heal the same location repeatedly. Only the vascular method holds up to all of these idealities.

  13. Folk Medicine, Folk Healing

    Mustafa SEVER


    Full Text Available Folk medicine and folk healing may be defined codified, regulated, taught openly and practised widely, and benefit from thousands of years of experience. On the other hand, it may be highly secretive, mystical and extremely localized, with knowledge of its practices passed on orally. Folk medicine and traditional medical practices emerged as a result of the reactions of primitive men against natural events and their ways of comparing and exchanging the medical practices of relevant communities with their own practices. Magic played an important role in shaping the practices. Folk medicine is the solutions developed by societies against material and moral disorders starting from the mythic period until today. Folk healer, on the other hand, is the wisest and the most respectable person in the society, in terms of materiality and morale. This person has the power of identifying and curing the diseases, disorders, consequently the origin of these diseases and disorders, and the skill of using various drugs for the treatment of the diseases and disorders or applying the practices with the help of information and practices acquired from the tradition. The Turks having rich and deep rooted culture. The Turkısh folk medicine and folk healing that contain rich cultural structure in themselves survive until today by being fed by different sources. Before Islam, the Turks used to believe that there were white and black possessors, ancestors’ spirits (arvaks and their healthy and peaceful life depended on getting on with these spirits. They also believed that diseases were caused when they could no more keep in with possessors and spirits, or when they offended and annoyed them. In such an environment of belief, the visible diseases caused by material reasons were generally cured with products obtained from plants, mines and animals in the region or drugs that were made out of their combinations. On the other hand, in invisible diseases associated with

  14. Unveiling Cebuano Traditional Healing Practices

    ZachiaRaiza Joy S. Berdon


    Full Text Available This study aims to identify the features of Cebuano’s traditional healing practices. Specifically, it also answers the following objectives: analyze traditional healing in Cebuano’s perspectives, explain the traditional healing process practiced in terms of the traditional healers’ belief, and extrapolate perceptions of medical practitioners toward traditional healing. This study made use of qualitative approach, among five traditional healers who performed healing for not less than ten years, in the mountain barangays of Cebu City. These healers served as the primary informants who were selected because of their popularity in healing. The use of open-ended interview in local dialect and naturalistic observation provided a free listing of their verbatim accounts were noted and as primary narratives. Participation in the study was voluntary and participants were interviewed privately after obtaining their consent. The Cebuano traditional healing practices or “panambal” comprise the use of “himolso” (pulse-checking, “palakaw” (petition, “pasubay” (determining what causes the sickness and its possible means of healing, “pangalap” (searching of medicinal plants for “palina” (fumigation, “tayhop” (gentle-blowing, “tutho” (saliva-blowing,“tuob” (boiling, “orasyon” (mystical prayers, “hilot” (massage, and “barang” (sorcery. Though traditional with medical science disapproval, it contributes to a mystical identity of Cebuano healers, as a manifestation of folk Catholicism belief, in order to do a good legacy to the community that needs help. For further study, researchers may conduct further the studies on the: curative effects of medicinal plants in Cebu, psychological effect pulsechecking healed persons by the mananambal, and unmasking the other features of traditional healing.

  15. Exploring Inpatients' Experiences of Healing and Healing Spaces

    Lorissa MacAllister PhD, AIA


    Full Text Available In order to understand a patient’s healing experience it is essential to understand the elements that they, the patient, believes contributed to their healing. Previous research has focused on symptom reducers or contributors through environment such as stress. A person’s experience of healing happens over time not instantaneous. Therefore, in this study, the interviews with patients happened after forty-eight hours of hospitalization. This mixed methods study describes the experiences of seventeen inpatients from two healthcare systems using a phenomenological approach combined with evidence based design evaluation methods to document the setting. The qualitative data was analyzed first for reoccurring themes then further explored and defined through quantitative environmental observations. The seventeen patients defined healing as “getting better/well.” Seventy three statements were recorded about contributors and detractors to healing in the physical environment. Three primary themes emerged from the data as positive influencers of a healing experience: being cared for, being comfortable and experiencing something familiar or like home. These results demonstrate that patients perceive their inpatient healing experience through a supported environment.

  16. Healing of Horizontal Intra-alveolar Root Fractures after Endodontic Treatment with Mineral Trioxide Aggregate.

    Kim, Dohyun; Yue, Wonyoung; Yoon, Tai-Cheol; Park, Sung-Ho; Kim, Euiseong


    The purpose of this retrospective study was to evaluate the healing type and assess the outcome of horizontal intra-alveolar root fractures after endodontic treatment with mineral trioxide aggregate (MTA) as filling material. The clinical database of the Department of Conservative Dentistry at Yonsei University Dental Hospital, Seoul, Korea, was searched for patients with histories of intra-alveolar root fractures and endodontic treatments with MTA between October 2005 and September 2014. Radiographic healing at the fracture line was evaluated independently by 2 examiners and was classified into 4 types according to Andreasen and Hjørting-Hansen. Of the 22 root-fractured teeth that received endodontic treatment with MTA, 19 cases participated in the follow-up after a period of at least 3 months. Seventeen of the 19 teeth (89.5%) exhibited healing of the root fractures. For each healing type, 7 teeth (36.8%) showed healing with calcified tissue, 8 teeth (42.1%) showed interposition of connective tissue, 2 teeth (10.5%) showed interposition of connective tissue and bone, and 2 teeth (10.5%) showed interposition of granulation tissue without healing. Within the limitations of this study, intra-alveolar root fractures showed satisfactory healing outcomes after endodontic treatment with MTA. MTA could be considered to be suitable filling material for the endodontic treatment of horizontal intra-alveolar root fractures. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Stress and coping among orthopaedic surgery residents and faculty.

    Sargent, M Catherine; Sotile, Wayne; Sotile, Mary O; Rubash, Harry; Barrack, Robert L


    Evaluations of physicians and residents have revealed concerning levels of psychosocial dysfunction. The purposes of this study were to determine the quality of life of orthopaedic residents and faculty and to identify the risk factors for decompensation. Twenty-one orthopaedic residents and twenty-five full-time orthopaedic faculty completed a 102-question voluntary, anonymous survey. The survey consisted of three validated instruments, i.e., the Maslach Burnout Inventory, the General Health Questionnaire-12, and the Revised Dyadic Adjustment Scale; and three novel question sets addressing background and demographic information, stress reaction and management, and the balance between work and home life. Descriptive statistics, pairwise correlations, simple t tests, and Pearson and nonparametric Spearman correlations were calculated. The simple correlation coefficient was used to assess bivariate relationships. The mean overall quality-of-life score, on a scale of 0 to 4 points, was 2.5 points for residents compared with 3.6 points for faculty members. Residents reported considerable burnout, showing a high level of emotional exhaustion and depersonalization and an average level of personal achievement, whereas faculty reported minimal burnout, showing a low level of emotional exhaustion (p burnout and psychiatric morbidity correlated with weekly work hours; conflict between the commitments of work and home life; discord with faculty, nursing staff, and senior residents; debt load; and work-related stress. Protective factors included being a parent, spending time with a spouse, having a physician father, and deriving satisfaction from discussing concerns with colleagues, friends, and family. In pursuit of our goal of determining the quality of life of orthopaedic residents and faculty, we identified a large disparity between the two groups. The resident group reported much greater levels of dysfunction particularly with regard to burnout and psychiatric morbidity

  18. Quantification of facial contamination with blood during orthopaedic procedures.

    Collins, D


    Operative surgery exposes the surgeon to possible blood-borne infections. Risks include pen-etrating injuries and conjunctival contact with infected blood. Visor masks worn during orthopaedic trauma procedures were assessed for blood contamination using computer analysis. This was found to be present on 86% of masks, of which only 15% was recognized by the surgeon intraoperatively. Of the blood splashes 80% were less than 0.6mm in diameter. We conclude that power instrumentation produces a blood particulate mist causing considerable microscopic, facial contamination which is a significant risk to the surgeon.

  19. What I expect from an orthopaedic traumatology fellow.

    Lee Chip Routt, Milton; Stark, Delbert H


    After 2.5 decades working with a variety of orthopaedic traumatology fellows, I have learned that several qualities and behaviors are important to a successful experience. Most fellows possess them, but some do not. Those that do usually integrate quickly onto the team and are rewarded with enriched teaching and clinical experiences. Some that do not may be able to adjust or alter their behaviors and eventually fit in. Some cannot adjust and their experiences suffer. I realize that no 2 individuals are the same, so my expectations of a fellow serve as a relationship foundation to then build their experiences upon. Their qualities and behaviors guide our relationship.

  20. Conductive polymer sensor arrays for smart orthopaedic implants

    Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.


    This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.

  1. Rapid Prototyping in Orthopaedic Surgery: A User's Guide

    Frame, Mark; Huntley, James S.


    Rapid prototyping (RP) is applicable to orthopaedic problems involving three dimensions, particularly fractures, deformities, and reconstruction. In the past, RP has been hampered by cost and difficulties accessing the appropriate expertise. Here we outline the history of rapid prototyping and furthermore a process using open-source software to produce a high fidelity physical model from CT data. This greatly mitigates the expense associated with the technique, allowing surgeons to produce precise models for preoperative planning and procedure rehearsal. We describe the method with an illustrative case. PMID:22666160

  2. Radiotherapy and wound healing: principles, management and prospects (review).

    Gieringer, Matthias; Gosepath, Jan; Naim, Ramin


    Radiation therapy is a major therapeutic modality in the management of cancer patients. Over 60% of these patients receive radiotherapy at some point during their course of treatment and over 90% will develop skin reactions after therapy. Problematic wound healing in radiation-damaged tissue constitutes a major surgical difficulty and despite all efforts, irradiated skin remains a therapeutic challenge. This review provides an overview of the fundamental principles of radiation therapy with regards to the wound healing in normal and irradiated skin. Furthermore, it presents techniques that describe how to prevent and manage skin side effects as well as prospects that may improve cutaneous wound repair in general and in irradiated skin.

  3. Bacteriophage Mediated Killing of Staphylococcus aureus In Vitro on Orthopaedic K Wires in Presence of Linezolid Prevents Implant Colonization

    Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay


    Background Infections of bone and joint tissues following arthroplasty surgeries remain a major challenge in orthopaedic settings. Methicillin resistant Staphylococcus aureus (MRSA) is recognised as an established pathogen in such infections. Combination therapy using linezolid and bacteriophage impregnated in biopolymer was investigated in the present study as an alternative strategy to prevent MRSA colonisation on the orthopaedic implant surface. Methodology Coating of stainless steel orthopaedic grade K-wires was achieved using hydroxypropylmethlycellulose (HPMC) mixed with phage alone, linezolid alone and phage and linezolid together. The potential of these agents to inhibit adhesion of S.aureus (MRSA) 43300 on K-wires was assessed. Coated and naked wires were analysed by scanning electron microscopy (SEM) and fluorescent staining. Result Significant reduction in bacterial adhesion was achieved on phage/linezolid wires in comparison to naked as well as HPMC coated wires. However, maximum reduction in bacterial adherence (∼4 log cycles) was observed on the wires coated with phage-linezolid combination. The frequency of emergence of resistant mutants was also negligible in presence of both the agents. Conclusion This study provides evidence to confirm that local delivery system employing linezolid (a potent protein synthesis inhibitor) along with a broad spectrum lytic bacteriophage (capable of self-multiplication) is able to attack the adhered as well as surrounding bacteria present near the implant site. Unlike other antibiotic based therapies, this combination has the potential to significantly restrict the emergence of resistant mutants, thus paving the way for effective treatment of MRSA associated infection of medical implants. PMID:24594764

  4. Virtual interactive musculoskeletal system (VIMS in orthopaedic research, education and clinical patient care

    Yoshida Hiroaki


    Full Text Available Abstract The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System. Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation.

  5. Virtual Interactive Musculoskeletal System (VIMS) in orthopaedic research, education and clinical patient care.

    Chao, Edmund Y S; Armiger, Robert S; Yoshida, Hiroaki; Lim, Jonathan; Haraguchi, Naoki


    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation.

  6. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen in orthopaedics.

    Marcotte, Anthony L; Trzeciak, Marc A


    Staphylococcus aureus (S aureus) remains one of the most common pathogens for skin and soft-tissue infections encountered by the orthopaedic surgeon. Community-acquired methicillin-resistant S aureus (CA-MRSA) has become increasingly prevalent, particularly among athletes, children in day care, homeless persons, intravenous drug users, men who have sex with men, military recruits, certain minorities (ie, Alaskan Natives, Native Americans, Pacific Islanders), and prison inmates. Risk factors include antibiotic use within the preceding year, crowded living conditions, compromised skin integrity, contaminated surfaces, frequent skin-to-skin contact, shared items, and suboptimal cleanliness. When a patient presents with a skin or soft-tissue infection, the clinician should determine whether an abscess or other infection needs to be surgically incised and drained. Cultures should be performed. When the patient is a member of an at-risk group or has any of the risk factors for CA-MRSA, beta-lactam antibiotics (eg, methicillin) are no longer a reasonable choice for treatment. Empiric treatment should consist of non-beta-lactam antibiotics active against CA-MRSA.

  7. Demographics, nature and treatment of orthopaedic trauma injuries occurring in an agricultural context in the West of Ireland.

    Byrne, F J


    Farming is a major industry in the West of Ireland. This prospective study examined the age profile, nature and treatment of orthopaedic injuries occurring in agricultural surroundings presenting at the Orthopaedic Unit of Merlin Park Hospital, Galway.

  8. Deep healing: ritual healing in the teshuvah movement.

    Sharabi, Asaf


    Based on an ethnographic analysis of religious healing rituals in Israel, this paper addresses the question of how healer-client relations are structured on these rituals. An examination of what takes place at the rallies held by Rabbi Amnon Yitzhak indicates that, apart from the regular blessings, which can be referred to as ordinary healing, there are some ritual events that can be referred to as 'deep healing'. The current paper demonstrates how deep healing rituals are generally conducted in severe cases through give-and-take between the rabbi and the person upon whom the blessing is bestowed, and that they are linked to relationships between people and the ethic of mutual support.

  9. Strategies for delivering bone morphogenetic protein for bone healing

    Begam, Howa [School of Bioscience and Engineering, Jadavpur University, Kolkata 700032 (India); Nandi, Samit Kumar, E-mail: [Department of Veterinary Surgery, Radiology West Bengal University of Animal and Fishery Sciences, Kolkata 700037 (India); Kundu, Biswanath, E-mail: [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Chanda, Abhijit [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)


    Bone morphogenetic proteins (BMPs) are the most significant growth factors that belong to the Transforming Growth Factor Beta (TGF-β) super-family. Though more than twenty members of this family have been identified so far in humans, Food and Drug Administration (FDA) approved two growth factors: BMP-2 and BMP-7 for treatments of spinal fusion and long-bone fractures with collagen carriers. Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in the repair of long bone defects. The efficiency of BMPs depends a lot on the selection of suitable carriers. At present, different types of carrier materials are used: natural and synthetic polymers, calcium phosphate and ceramic-polymer composite materials. Number of research articles has been published on the minute intricacies of the loading process and release kinetics of BMPs. Despite the significant evidence of its potential for bone healing demonstrated in animal models, future clinical investigations are needed to define dose, scaffold and route of administration. The efficacy and application of BMPs in various levels with a proper carrier and dose is yet to be established. The present article collates various aspects of success and limitation and identifies the prospects and challenges associated with the use of BMPs in orthopaedic surgery. - Highlights: • Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in repair of long bone defects. • Different types of carrier materials are used: natural, synthetic polymers, calcium phosphate and ceramic-polymer composite • Efficacy and application of BMPs in various levels with proper carrier and dose is yet to be established • Number of research articles has been published on minute intricacies of loading process and release kinetics of BMPs • Present article collates success, limitation and identifies prospects, challenges for use of BMPs in orthopaedic surgery.

  10. Long Sick Leave after Orthopaedic Inpatient Rehabilitation: Treatment Failure or Relapse?

    Mangels, Marija; Schwarz, Susanne; Worringen, Ulrike; Holme, Martin; Rief, Winfried


    We investigated whether short-term versus long-term sick leave after orthopaedic inpatient rehabilitation can be predicted by initial assessment information, the clinical status at discharge, or whether the follow-up interval is crucial for later sick leave. We examined 214 patients from an orthopaedic rehabilitation hospital at admission,…

  11. Burnout and quality of life among orthopaedic trainees in a modern educational programme

    van Vendeloo, S. N.; Brand, P. L. P.; Verheyen, C. C. P. M.

    We aimed to determine quality of life and burnout among Dutch orthopaedic trainees following a modern orthopaedic curriculum, with strict compliance to a 48-hour working week. We also evaluated the effect of the clinical climate of learning on their emotional wellbeing. We assessed burnout, quality

  12. Advanced practice physiotherapy in paediatric orthopaedics: innovation and collaboration to improve service delivery.

    Ó Mír, M; O'Sullivan, C


    One in eight paediatric primary care presentations is for a musculoskeletal (MSK) disorder. These patients are frequently referred to paediatric orthopaedic surgeons; however, up to 50% of referrals are for normal variants. This results in excessive wait-times and impedes access for urgent surgical cases. Adult MSK medicine has successfully utilised advanced practice physiotherapists (APP) managing non-surgical candidates, with documented benefits both to patients and services. There is a gap in the literature with regard to APP in paediatric orthopaedics. In this review, we investigate demands on paediatric orthopaedic services, examine the literature regarding APP in paediatric orthopaedics and explore the value the role has to offer current outpatient services. Paediatric orthopaedic services are under-resourced with concurrent long wait times. Approximately 50% of referrals are for normal variants, which do not require specialist intervention. Poor musculoskeletal examination skills and low diagnostic confidence amongst primary care physicians have been identified as a cause of inappropriate referrals. APP clinics for normal variants have reported independent management rate and discharge rates of 95% and marked reduction in patient wait times. There is limited evidence to support the APP in paediatric orthopaedics. Further studies are needed investigating diagnostic agreement, patient/stakeholder satisfaction, patient outcomes and economic evaluation. Paediatric orthopaedics is in crisis as to how to effectively manage the overwhelming volume of referrals. Innovative multidisciplinary solutions are required so that the onus is not solely on physicians to provide all services. The APP in paediatric orthopaedics may be part of the solution.

  13. 78 FR 21129 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...


    ... radiofrequency band ranging between 13 megahertz to 27.12 megahertz and is intended for the treatment of medical...] Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: Orthopaedic and Rehabilitation Devices Panel of the Medical Devices...

  14. Medical opinions, beliefs and prescription of orthopaedic footwear: A survey of Dutch orthopaedists and rehabilitation practitioners.

    Boer, Hendrik; Seydel, E.R.


    Objectives: To get insight into medical opinions about the use of orthopaedic footwear and the medical and social factors related to the prescription of orthopaedic footwear by orthopaedists and rehabilitation practitioners. Methods: In this study 85 orthopaedists and 96 rehabilitation practitioners

  15. Progress in corneal wound healing

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh


    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  16. Wound Healing in Older Adults.

    Gould, Lisa J; Fulton, Ana Tuya


    Impaired wound healing in the elderly represents a major clinical problem that is growing as our population ages. Wound healing is affected by age and by co-morbid conditions, particularly diabetes and obesity. This is particularly important in Rhode Island as the state has a very high percentage of vulnerable older adults. A multi- disciplinary approach that incorporates the skills of a comprehensive wound center with specialized nursing, geriatric medicine and palliative care will facilitate rapid wound healing, reduce costs and improve outcomes for our older adults that suffer from 'problem wounds'.

  17. [Famous figures of the Poznań orthopaedics of the period of the occupation and post-war years. Coryphees of Polish orthopaedics].

    Barcikowski, Władysław


    In this article author presents, from a perspective of own memories is portraying persons which he met in his professional activity. They participated in forming the orthopaedics in Poznań and different nooks of Poland. He resembles their, often very dramatic, fates and the influence they had on Polish medicine reviving after the II world war. With the special attention he is reminding one of most well-known and valued celebrities of the Polish orthopaedics professor Wiktor Dega.

  18. Consultation of orthopaedics cases using multimedia messaging services.

    Eranki, Vivek; Munt, Justin; Lim, Ming J; Atkinson, Robert


    Frequently, radiological data is transferred verbally between the Emergency Department (ED) and orthopaedic registrar. Given the different language skills and medical experience of health staff, there is often a limit to the adequacy of the verbal description that could lead to suboptimal patient care. This study proposes that concurrent review of MMS teleradiology with traditional verbal reporting results in a significant therapeutic benefit. Case notes of 40 patients who presented to ED were reviewed. Images were captured and sent to an Orthopaedic registrar along with a brief clinical synopsis. Information was collected on the diagnosis of the MMS radiograph, need for urgent admission and management plan outlined to ED. Correct diagnosis was made in 27 of 40 cases. Using the latest technology available, MMS teleradiology had 79% sensitivity, 83% specificity and an accuracy of 80%. 50% of paediatric fractures and 60% of undisplaced fractures were diagnosed successfully. MMS teleradiology is not suitable by itself as a remote diagnostic tool. However, when combined with existing clinical practice, it is effective in screening patients, enhances confidence in decision making and communication between doctors.

  19. Assessing readability of patient education materials: current role in orthopaedics.

    Badarudeen, Sameer; Sabharwal, Sanjeev


    Health literacy is the single best predictor of an individual's health status. It is important to customize health-related education material to the individual patient's level of reading skills. Readability of a given text is the objective measurement of the reading skills one should possess to understand the written material. In this article, some of the commonly used readability assessment tools are discussed and guidelines to improve the comprehension of patient education handouts are provided. Where are we now? Several healthcare organizations have recommended the readability of patient education materials be no higher than sixth- to eighth-grade level. However, most of the patient education materials currently available on major orthopaedic Web sites are written at a reading level that may be too advanced for comprehension by a substantial proportion of the population. WHERE DO WE NEED TO GO?: There are several readily available and validated tools for assessing the readability of written materials. While use of audiovisual aids such as video clips, line drawings, models, and charts can enhance the comprehension of a health-related topic, standard readability tools cannot construe such enhancements. HOW DO WE GET THERE?: Given the variability in the capacity to comprehend health-related materials among individuals seeking orthopaedic care, stratifying the contents of patient education materials at different levels of complexity will likely improve health literacy and enhance patient-centered communication.

  20. Complex orthopaedic management of patients with skeletal dysplasias

    A. G. Baindurashvili


    Full Text Available Skeletal dysplasias are challenging for diagnostics and treatment. We present a series of fifteen patients with different forms of skeletal dysplasias with age ranged from 6 to 17 years with variable clinical presentations managed as a part of the project of scientific cooperation between Turner Paediatric Orthopaedic Institute and Orthopaedic Hospital Vienna-Speising. The spectrum of diagnoses included multiple epiphyseal dysplasia, spondyloepiphyseal dysplasia congenita, diastrophic dysplasia, metaphyseal dysplasia, spondylometaphyseal dysplasia, Stickler syndrome, Kniest dysplasia, and anauxetic dysplasia. Complex treatment, which included axial correction and juxta-articular realignment, was performed as a single-stage, or consecutive surgery. Surgical techniques included corrective osteotomies with internal fixation, guided growth technique and external fixation devices. Best results (full axial correction, normal alignment of the joint were achieved in 8 patients, including 2 patients with metaphyseal dysplasia, 2 patients with multiple epyphyseal dysplasia, 2 patients with spondyloepyphyseal dysplasia, patient with Stickler syndrome and patient with spondylometaphyseal dysplasia. Good results (partial correction at the present time were seen in 4 patients (2 patients with Kniest dysplasia, 1 - with multiple epyphyseal dysplasia and 1 - with anauxetic dysplasia. Satisfactory results (non-progressive condition in previous progression were obtained in 2 patients with diastrophic dysplasia, and poor results (progression of the deformity - in 1 patient with diastrophic dysplasia. Positive results in most of the cases of our series make promising future for usage of complex approach for orthopedic management of children with skeletal dysplasias; advanced international cooperation is productive and helpful for diagnostics and management of rare diseases.

  1. The effect of inclement weather on trauma orthopaedic workload.

    Cashman, J P


    BACKGROUND: Climate change models predict increasing frequency of extreme weather. One of the challenges hospitals face is how to make sure they have adequate staffing at various times of the year. AIMS: The aim of this study was to examine the effect of this severe inclement weather on hospital admissions, operative workload and cost in the Irish setting. We hypothesised that there is a direct relationship between cold weather and workload in a regional orthopaedic trauma unit. METHODS: Trauma orthopaedic workload in a regional trauma unit was examined over 2 months between December 2009 and January 2010. This corresponded with a period of severe inclement weather. RESULTS: We identified a direct correlation between the drop in temperature and increase in workload, with a corresponding increase in demand on resources. CONCLUSIONS: Significant cost savings could be made if these injuries were prevented. While the information contained in this study is important in the context of resource planning and staffing of hospital trauma units, it also highlights the vulnerability of the Irish population to wintery weather.

  2. Radiographic evaluation of fracture healing after rigid plate fixation

    Paavolainen, P.; Karaharju, E.; Slaetis, P.; Waris, P.


    Experimental osteotomies were made in 35 rabbit tibio-fibular bones and fixed with rigid stainless steel osteosynthesis plates (DCP/ASIF). The radiographic and histopathologic appearances in the healing osteotomies and adjacent bone were analysed at intervals from 3 up to 24 weeks postoperatively. Radiologically the osteotomy had closed at 9 weeks and microscopically this could be confirmed as longitudinal orientation of the cutter heads across the osteotomy gap with longitudinal orientation of the bone structure. The healing of the osteotomy was accompanied by gross structural changes in the adjacent cortical bone with loss of intracortical and subendosteal osteons, cementing lines and intermediate tissue between the osteons. This was characterized by decreasing attenuation of the cortical bone after healing of the osteotomy and should clinically be regarded as an indication for removal of the implant. (Auth.)

  3. Wound healing: time to look for intelligent, 'natural' immunological approaches?

    Garraud, Olivier; Hozzein, Wael N; Badr, Gamal


    There is now good evidence that cytokines and growth factors are key factors in tissue repair and often exert anti-infective activities. However, engineering such factors for global use, even in the most remote places, is not realistic. Instead, we propose to examine how such factors work and to evaluate the reparative tools generously provided by 'nature.' We used two approaches to address these objectives. The first approach was to reappraise the internal capacity of the factors contributing the most to healing in the body, i.e., blood platelets. The second was to revisit natural agents such as whey proteins, (honey) bee venom and propolis. The platelet approach elucidates the inflammation spectrum from physiology to pathology, whereas milk and honey derivatives accelerate diabetic wound healing. Thus, this review aims at offering a fresh view of how wound healing can be addressed by natural means.

  4. Scintigraphic studies for checking postoperative healing after cystectomies

    Wickenhauser, J.


    Defect filling of extensive cavities in the region of the jaw after cystectomies of large odontogenic cysts constitutes a particular problem as the restoration of the carrying capacity of the crest of the jaw is of decisive signifance for sufficient prosthetic surgery. The fibrin-spongiosa graft method was performed in all patients; both homologous and autologous cancellous tissue was used. In addition to X-ray examinations, for the first time nuclear medical examination methods were used for assessing the future site of the graft and checking the postoperative healing process. This method permitted not only detection of an osteomyelitis during pre-operative examinations, but in one case also a disturbance of the postoperative healing process was discovered. Therefore, the combined X-ray - isotope examination constitutes the method of choice as regards diagnosis, planning of treatment and control of the healing process. (Author)

  5. miRNA delivery for skin wound healing.

    Meng, Zhao; Zhou, Dezhong; Gao, Yongsheng; Zeng, Ming; Wang, Wenxin


    The wound healing has remained a worldwide challenge as one of significant public health problems. Pathological scars and chronic wounds caused by injury, aging or diabetes lead to impaired tissue repair and regeneration. Due to the unique biological wound environment, the wound healing is a highly complicated process, efficient and targeted treatments are still lacking. Hence, research-driven to discover more efficient therapeutics is a highly urgent demand. Recently, the research results have revealed that microRNA (miRNA) is a promising tool in therapeutic and diagnostic fields because miRNA is an essential regulator in cellular physiology and pathology. Therefore, new technologies for wound healing based on miRNA have been developed and miRNA delivery has become a significant research topic in the field of gene delivery. Copyright © 2017. Published by Elsevier B.V.

  6. Mechanical property changes during neonatal development and healing using a multiple regression model.

    Ansorge, Heather L; Adams, Sheila; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J


    During neonatal development, tendons undergo a well orchestrated process whereby extensive structural and compositional changes occur in synchrony to produce a normal tissue. Conversely, during the repair response to injury, structural and compositional changes occur, but a mechanically inferior tendon is produced. As a result, developmental processes have been postulated as a potential paradigm for elucidation of mechanistic insight required to develop treatment modalities to improve adult tissue healing. The objective of this study was to compare and contrast normal development with injury during early and late developmental healing. Using backwards multiple linear regressions, quantitative and objective information was obtained into the structure-function relationships in tendon. Specifically, proteoglycans were shown to be significant predictors of modulus during early developmental healing but not during late developmental healing or normal development. Multiple independent parameters predicted percent relaxation during normal development, however, only biglycan and fibril diameter parameters predicted percent relaxation during early developmental healing. Lastly, multiple differential predictors were observed between early development and early developmental healing; however, no differential predictors were observed between late development and late developmental healing. This study presents a model through which objective analysis of how compositional and structural parameters that affect the development of mechanical parameters can be quantitatively measured. In addition, information from this study can be used to develop new treatment and therapies through which improved adult tendon healing can be obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The use of wound healing assessment methods in psychological studies: a review and recommendations.

    Koschwanez, Heidi E; Broadbent, Elizabeth


    To provide a critical review of methods used to assess human wound healing in psychological research and related disciplines, in order to guide future research into psychological influences on wound healing. Acute wound models (skin blister, tape stripping, skin biopsy, oral palate biopsy, expanded polytetrafluoroethylene tubing), surgical wound healing assessment methods (wound drains, wound scoring), and chronic wound assessment techniques (surface area, volumetric measurements, wound composition, and assessment tools/scoring systems) are summarized, including merits, limitations, and recommendations. Several dermal and mucosal tissue acute wound models have been established to assess the effects of psychological stress on the inflammatory, proliferative, and repair phases of wound healing in humans, including material-based models developed to evaluate factors influencing post-surgical recovery. There is a paucity of research published on psychological factors influencing chronic wound healing. There are many assessment techniques available to study the progression of chronic wound healing but many difficulties inherent to long-term clinical studies. Researchers need to consider several design-related issues when conducting studies into the effects of psychological stress on wound healing, including the study aims, type of wound, tissue type, setting, sample characteristics and accessibility, costs, timeframe, and facilities available. Researchers should consider combining multiple wound assessment methods to increase the reliability and validity of results and to further understand mechanisms that link stress and wound healing. ©2010 The British Psychological Society.

  8. Methyl methacrylate as a healing agent for self-healing cementitious materials

    Van Tittelboom, K; De Belie, N; Adesanya, K; Dubruel, P; Van Puyvelde, P


    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice

  9. Local Delivery Is Critical for Monocyte Chemotactic Protein-1 Mediated Site-Specific Murine Aneurysm Healing.

    Hourani, Siham; Motwani, Kartik; Wajima, Daisuke; Fazal, Hanain; Jones, Chad H; Doré, Sylvain; Hosaka, Koji; Hoh, Brian L


    Local delivery of monocyte chemotactic protein-1 (MCP-1/CCL2) via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway. In this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model. We compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic) acid (PLGA)-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor) and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention. Systemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency. We show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.

  10. Orthopaedic Trauma Care Capacity Assessment and Strategic Planning in Ghana: Mapping a Way Forward.

    Stewart, Barclay T; Gyedu, Adam; Tansley, Gavin; Yeboah, Dominic; Amponsah-Manu, Forster; Mock, Charles; Labi-Addo, Wilfred; Quansah, Robert


    Orthopaedic conditions incur more than 52 million disability-adjusted life years annually worldwide. This burden disproportionately affects low and middle-income countries, which are least equipped to provide orthopaedic care. We aimed to assess orthopaedic capacity in Ghana, describe spatial access to orthopaedic care, and identify hospitals that would most improve access to care if their capacity was improved. Seventeen perioperative and orthopaedic trauma care-related items were selected from the World Health Organization's Guidelines for Essential Trauma Care. Direct inspection and structured interviews with hospital staff were used to assess resource availability and factors contributing to deficiencies at 40 purposively sampled facilities. Cost-distance analyses described population-level spatial access to orthopaedic trauma care. Facilities for targeted capability improvement were identified through location-allocation modeling. Orthopaedic trauma care assessment demonstrated marked deficiencies. Some deficient resources were low cost (e.g., spinal immobilization, closed reduction capabilities, and prosthetics for amputees). Resource nonavailability resulted from several contributing factors (e.g., absence of equipment, technology breakage, lack of training). Implants were commonly prohibitively expensive. Building basic orthopaedic care capacity at 15 hospitals without such capacity would improve spatial access to basic care from 74.9% to 83.0% of the population (uncertainty interval [UI] of 81.2% to 83.6%), providing access for an additional 2,169,714 Ghanaians. The availability of several low-cost resources could be better supplied by improvements in organization and training for orthopaedic trauma care. There is a critical need to advocate and provide funding for orthopaedic resources. These initiatives might be particularly effective if aimed at hospitals that could provide care to a large proportion of the population.

  11. Efficacy of Honey Dressing Versus Mechanical Debridement in Healing of Ulcers with Biofilms: A Comparative Study

    Suryaprakash A


    Full Text Available Background: Chronic and delayed healing wounds are the significant health problems globally. Microbial bio burden in the form of biofilms contribute significantly for chronicity and delayed healing. Management of biofilm is complex task. Effective management of biofilms significantly reduces healing time. Raw unprocessed honey has several antibacterial properties and factors stimulating wound healing. Aim and Objectives: Acomparative study was taken to compare the efficacy of local application of raw unprocessed honey versus mechanical debridement and antiseptic application in terms of biofilm eradication and enhanced wound healing. Method and Materials: Ninety patients with non healing wounds having biofilms were included and divided equally (forty five each for local application of honey and mechanical debridement respectively. They were managed similarly and assessed for presence or eradication of biofilms, healing process and final outcome regularly. Results: Data analysed showed presence of biofilms in chronic wounds was 60% and 68% in study and control groups respectively. Time for appearance of healthy granulation tissue was significantly less (P=0.022 Mean duration for eradication of biofilms was less with (P=0.025 Mean hospital stay was also reduced (P=0.004. Conclusion: Raw unprocessed honey is a good, simple and effective solution for eradication of biofilms and enhances healing in non healing ulcers.

  12. Self-Healing Wire Insulation

    Parrish, Clyde F. (Inventor)


    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  13. Healing Arts Radiation Protection Act


    The Healing Arts Radiation Protection Act is concerned with regulating the registration, installation, operation, inspection and safety of X-ray machines. The Act provides for the establishment of the Healing Arts Radiation Protection Commission which is responsible for reporting on all the above matters to the Ontario Minister of Health. In addition the board is responsible for the continuing development of an X-ray safety code and for the submission of an annual report of their activities to the minister

  14. Nanoparticles for tendon healing and regeneration: literature review.

    Paolo Domenico Parchi


    Full Text Available Tendon injuries are commonly met in the emergency department. Unfortunately, tendon tissue has limited regeneration potential and usually the consequent formation of scar tissue causes inferior mechanical properties Nanoparticles could be used in different way to improve tendon healing and regeneration, ranging from scaffolds manufacturing (increasing the strength and endurance or anti-adhesions, anti-microbial and anti-inflammatory properties to gene therapy. This paper aims to summarize the most relevant studies showing the potential application of nanoparticles for tendon tissue regeneration

  15. Ascorbic acid for the healing of skin wounds in rats

    CC. Lima

    Full Text Available BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 ± 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12 - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12 - skin wound cleaned daily and treated with ascorbic acid cream (10%. Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.

  16. Healing: through the lens of intentionality.

    Zahourek, Rothlyn P


    Understanding and studying healing is one of our challenges as health care providers. This study is a presentation of a secondary analysis of data collected to study intentionality in the context of healing. Six healers and 6 healees, five of each who participate as dyads, described their experiences and their concepts of healing. The theory, Intentionality: the Matrix for Healing (IMH), is presented along with a more expanded definition of healing as an awareness of shift and a transformative process.

  17. Variability of Arthroscopy Case Volume in Orthopaedic Surgery Residency.

    Gil, Joseph A; Waryasz, Gregory R; Owens, Brett D; Daniels, Alan H


    To examine orthopaedic surgery case logs for arthroscopy case volume during residency training and to evaluate trends in case volume and variability over time. Publicly available Accreditation Council for Graduate Medical Education surgical case logs from 2007 to 2013 for orthopaedic surgery residency were assessed for variability and case volume trends in shoulder, elbow, wrist, hip, knee, and ankle arthroscopy. The national average number of procedures performed in each arthroscopy category reported was directly compared from 2009 to 2013. The 10th and 90th percentile arthroscopy case volume was compared between 2007 and 2013 for shoulder and knee arthroscopy procedures. Subsequently, the difference between the 10th and 90th percentile arthroscopy case volume in each category in 2007 was compared with the difference between the 10th and 90th percentile arthroscopy case volume in each category in 2013. From 2007 to 2013, shoulder arthroscopy procedures performed per resident increased by 43.1% (P = .0001); elbow arthroscopy procedures increased by 28.0% (P = .00612); wrist arthroscopy procedures increased by 8.6% (P = .05); hip arthroscopy procedures, which were first reported in 2012, increased by 588.9%; knee arthroscopy procedures increased by 8.5% (P = .0435); ankle arthroscopy increased by 27.6% (P = .00149). The difference in knee and shoulder arthroscopy volume between residents in the 10th and 90th percentile in 2007 and residents in the 10th and 90th percentile in 2013 was not significant (P > .05). There was a 3.66-fold difference in knee arthroscopy volume between residents in the 10th and 90th percentile in 2007, whereas the difference was 3.36-fold in 2013 (P = .70). There was a 5.86-fold difference in shoulder arthroscopy case volume between residents in the 10th and 90th percentile in 2007, whereas the difference was 4.96-fold in 2013 (P = .29). The volume of arthroscopy cases performed by graduating orthopaedic surgery residents has

  18. Effectiveness of the AAOS Leadership Fellows Program for Orthopaedic Surgeons.

    Day, Charles S; Tabrizi, Shervin; Kramer, Jeffrey; Yule, Arthur C; Ahn, Brian S


    Effective physician leadership is critical to the future success of healthcare organizations. The American Academy of Orthopaedic Surgeons (AAOS) Leadership Fellows Program is a one-year program designed to train young orthopaedic surgeons to become future leaders in orthopaedics. The purpose of this study was to evaluate the impact of the AAOS Leadership Fellows Program on the leadership skills and achievements of its participants. Graduates of the Leadership Fellows Program were compared with a control group of previous applicants who were not accepted to the program (applicants) in a retrospective cohort comparison study. A subjective survey of leadership skills was used to assess the confidence of the two cohorts in eight areas of leadership. In addition, an updated curriculum vitae from each of sixty leadership fellows from the classes of 2003 through 2009 and from each of forty-seven applicants was retrospectively reviewed for evidence of leadership. The updated curriculum vitae of the leadership fellows was evaluated for leadership activity attained prior to and following participation in the program, while the updated curriculum vitae of applicants was evaluated for leadership activity attained prior to and following the last year of application to the program. Curricula vitae were assessed for demonstration of national leadership, academic rank, hospital administrative rank, and research experience. On the leadership survey, the graduates of the Leadership Fellows Program scored higher than the applicants in seven of eight categories. The review of the curricula vitae demonstrated that, prior to the Leadership Fellows Program, the leadership fellows were more likely than the applicants to have an academic practice and hold an academic rank. The difference between the two cohorts in administrative rank and leadership of national committees was not significant. Following the program, the leadership fellows were more likely to chair national committees (p

  19. Corruption in the health care sector: A barrier to access of orthopaedic care and medical devices in Uganda.

    Bouchard, Maryse; Kohler, Jillian C; Orbinski, James; Howard, Andrew


    Globally, injuries cause approximately as many deaths per year as HIV/AIDS, tuberculosis and malaria combined, and 90% of injury deaths occur in low- and middle- income countries. Given not all injuries kill, the disability burden, particularly from orthopaedic injuries, is much higher but is poorly measured at present. The orthopaedic services and orthopaedic medical devices needed to manage the injury burden are frequently unavailable in these countries. Corruption is known to be a major barrier to access of health care, but its effects on access to orthopaedic services is still unknown. A qualitative case study of 45 open-ended interviews was conducted to investigate the access to orthopaedic health services and orthopaedic medical devices in Uganda. Participants included orthopaedic surgeons, related healthcare professionals, industry and government representatives, and patients. Participants' experiences in accessing orthopaedic medical devices were explored. Thematic analysis was used to analyze and code the transcripts. Analysis of the interview data identified poor leadership in government and corruption as major barriers to access of orthopaedic care and orthopaedic medical devices. Corruption was perceived to occur at the worker, hospital and government levels in the forms of misappropriation of funds, theft of equipment, resale of drugs and medical devices, fraud and absenteeism. Other barriers elicited included insufficient health infrastructure and human resources, and high costs of orthopaedic equipment and poverty. This study identified perceived corruption as a significant barrier to access of orthopaedic care and orthopaedic medical devices in Uganda. As the burden of injury continues to grow, the need to combat corruption and ensure access to orthopaedic services is imperative. Anti-corruption strategies such as transparency and accountability measures, codes of conduct, whistleblower protection, and higher wages and benefits for workers could be

  20. Corruption in the health care sector: A barrier to access of orthopaedic care and medical devices in Uganda

    Bouchard Maryse


    Full Text Available Abstract Background Globally, injuries cause approximately as many deaths per year as HIV/AIDS, tuberculosis and malaria combined, and 90% of injury deaths occur in low- and middle- income countries. Given not all injuries kill, the disability burden, particularly from orthopaedic injuries, is much higher but is poorly measured at present. The orthopaedic services and orthopaedic medical devices needed to manage the injury burden are frequently unavailable in these countries. Corruption is known to be a major barrier to access of health care, but its effects on access to orthopaedic services is still unknown. Methods A qualitative case study of 45 open-ended interviews was conducted to investigate the access to orthopaedic health services and orthopaedic medical devices in Uganda. Participants included orthopaedic surgeons, related healthcare professionals, industry and government representatives, and patients. Participants’ experiences in accessing orthopaedic medical devices were explored. Thematic analysis was used to analyze and code the transcripts. Results Analysis of the interview data identified poor leadership in government and corruption as major barriers to access of orthopaedic care and orthopaedic medical devices. Corruption was perceived to occur at the worker, hospital and government levels in the forms of misappropriation of funds, theft of equipment, resale of drugs and medical devices, fraud and absenteeism. Other barriers elicited included insufficient health infrastructure and human resources, and high costs of orthopaedic equipment and poverty. Conclusions This study identified perceived corruption as a significant barrier to access of orthopaedic care and orthopaedic medical devices in Uganda. As the burden of injury continues to grow, the need to combat corruption and ensure access to orthopaedic services is imperative. Anti-corruption strategies such as transparency and accountability measures, codes of conduct

  1. Corruption in the health care sector: A barrier to access of orthopaedic care and medical devices in Uganda


    Background Globally, injuries cause approximately as many deaths per year as HIV/AIDS, tuberculosis and malaria combined, and 90% of injury deaths occur in low- and middle- income countries. Given not all injuries kill, the disability burden, particularly from orthopaedic injuries, is much higher but is poorly measured at present. The orthopaedic services and orthopaedic medical devices needed to manage the injury burden are frequently unavailable in these countries. Corruption is known to be a major barrier to access of health care, but its effects on access to orthopaedic services is still unknown. Methods A qualitative case study of 45 open-ended interviews was conducted to investigate the access to orthopaedic health services and orthopaedic medical devices in Uganda. Participants included orthopaedic surgeons, related healthcare professionals, industry and government representatives, and patients. Participants’ experiences in accessing orthopaedic medical devices were explored. Thematic analysis was used to analyze and code the transcripts. Results Analysis of the interview data identified poor leadership in government and corruption as major barriers to access of orthopaedic care and orthopaedic medical devices. Corruption was perceived to occur at the worker, hospital and government levels in the forms of misappropriation of funds, theft of equipment, resale of drugs and medical devices, fraud and absenteeism. Other barriers elicited included insufficient health infrastructure and human resources, and high costs of orthopaedic equipment and poverty. Conclusions This study identified perceived corruption as a significant barrier to access of orthopaedic care and orthopaedic medical devices in Uganda. As the burden of injury continues to grow, the need to combat corruption and ensure access to orthopaedic services is imperative. Anti-corruption strategies such as transparency and accountability measures, codes of conduct, whistleblower protection, and higher

  2. Ligament Tissue Engineering

    Khan, Wasim Sardar


    Ligaments are commonly injured in the knee joint, and have a poor capacity for healing due to their relative avascularity. Ligament reconstruction is well established for injuries such as anterior cruciate ligament rupture, however the use of autografts and allografts for ligament reconstruction are associated with complications, and outcomes are variable. Ligament tissue engineering using stem cells, growth factors and scaffolds is a novel technique that has the potential to provide an unlim...

  3. Gender affects skin wound healing in plasminogen deficient mice.

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  4. Analysis of plastic deformation in cortical bone after insertion of coated and non-coated self-tapping orthopaedic screws.

    Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R


    Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.

  5. An orthopaedic geriatric rehabilitation unit: the first two years experience.

    Sainsbury, R; Gillespie, W J; Armour, P C; Newman, E F


    Experience of the first two years of an orthopaedic geriatric rehabilitation unit is described. There were 325 admissions comprising 271 females and 54 males. The predominant diagnosis was fracture of the proximal femur. Average length of stay in the unit was 43 days for males and 36.7 days for females. 75.9% of patients admitted from home returned there and 66.1% of patients admitted from residential care returned to similar accommodation. In the first year there was a fall of 13.5 days in the average length of stay for elderly females with proximal femoral fracture, resulting in 2175 less bed days for this diagnosis. This improvement has continued.

  6. 'Ready-access' CT imaging for an orthopaedic trauma clinic.

    Cawley, D


    \\'Ready-Access\\' to CT imaging facilities in Orthopaedic Trauma Clinics is not a standard facility. This facility has been available at the regional trauma unit, in Merlin Park Hospital, Galway for the past four years. We reviewed the use of this facility over a 2-year period when 100 patients had CT scans as part of their trauma clinic assessment. The rate of CT scan per clinic was 0.6. The mean waiting time for a CT scan was 30 minutes. 20 (20%) new fractures were confirmed, 33 (33%) fractures were out-ruled, 25 (25%) fractures demonstrated additional information and 8 (8%) had additional fractures. 20 (20%) patients were discharged and 12 (12%) patients were admitted as a result of the CT scan. It adds little time and cost to CT scanning lists.

  7. Overview of Implant Infections in Orthopaedics Department: Retrospective Study

    Tugrul Bulut


    Full Text Available In this study, our aim was to evaluate the antibiotic susceptibility of bacteria isolated from orthopedic implant infections. Within two years operated 1996 patients in an orthopedics and traumatology clinic were retrospectively investigated. Seventy-six (76/1996, 3.8% orthopedic implant infections were detected. Isolated bacteria and their antibiotic susceptibility patterns were analyzed. The bacteries isolated from implant related infections and antibiotic sensitivity patterns were evaluated retrospectively in our orthopaedics and traumatology clinic. Staphylococcus aureus was the predominant organism (30.3%. Gram negative bacterias were isolated in 65.8% of our patients. No resistance was determined against vancomycin and linezolid in gram positive bacterias. Imipenem, amicasin and cefepim was seen as the most effective antibiotics for gram negative bacterias.

  8. Patient handover in orthopaedics, improving safety using Information Technology.

    Pearkes, Tim


    Good inpatient handover ensures patient safety and continuity of care. An adjunct to this is the patient list which is routinely managed by junior doctors. These lists are routinely created and managed within Microsoft Excel or Word. Following the merger of two orthopaedic departments into a single service in a new hospital, it was felt that a number of safety issues within the handover process needed to be addressed. This quality improvement project addressed these issues through the creation and implementation of a new patient database which spanned the department, allowing trouble free, safe, and comprehensive handover. Feedback demonstrated an improved user experience, greater reliability, continuity within the lists and a subsequent improvement in patient safety.

  9. Acute and overuse elbow trauma: radio-orthopaedics overview.

    Nocerino, Elisabetta Antonia; Cucchi, Davide; Arrigoni, Paolo; Brioschi, Marco; Fusi, Cristiano; Genovese, Eugenio A; Messina, Carmelo; Randelli, Pietro; Masciocchi, Carlo; Aliprandi, Alberto


    The correct management of acute, subacute and overuse-related elbow pathologies represents a challenging diagnostic and therapeutic problem. While major trauma frequently requires a rapid surgical intervention, subluxation and minor trauma allow taking more time for diagnostics and planning the correct elective treatment after careful clinical and radiological investigation. In these conditions, communication between orthopaedic surgeon and radiologist allow to create a detailed radiology report, tailored to the patient's and surgeon's needs and optimal to plan proper management. Imaging technique as X-Ray, CT, US, MRI, CTA and MRA all belong to the radiologist's portfolio in elbow diagnostics. Detailed knowledge of elbow pathology and its classification and of the possibilities and limits of each imaging technique is of crucial importance to reach the correct diagnosis efficiently. The aim of this review is to present the most frequent elbow pathologies and suggest a suitable diagnostic approach for each of them.

  10. Churg-Strauss syndrome from an orthopaedic perspective.

    Kung, K L; Yee, P K


    Churg-Strauss syndrome, which has been frequently described by physicians in the literature, is a small and medium-sized vessel systemic vasculitis typically associated with asthma, lung infiltrates, and hypereosinophilia. We report a case of Churg-Strauss syndrome with presenting symptoms of bilateral lower limb weakness and numbness only. The patient was admitted to an orthopaedic ward for management and a final diagnosis was reached following sural nerve biopsy. The patient's symptoms responded promptly to steroid treatment and she was able to walk with a stick 3 weeks following admission. This report emphasises the need to be aware of this syndrome when managing patients with neurological deficit in order to achieve prompt diagnosis and treatment.

  11. Orthopaedic positioning in diagnostic radiology. 2. rev. and enlarged ed.

    Bernau, A.


    Effective roentgenology of the skeletal system very much relies on good knowledge of three main factors, namely patient positioning, film cassette positioning, and radiation field. The functional approach developed in orthopaedic diagnostics has been adopted for practical adjustment techniques in all X-ray examinations, so that e.g. examinations of the vertebral column and lower extremities now are carried out in upright position instead of the lying position, which of course corresponds to the real functional demand. In order to guarantee good reproducibility of X-ray images, a high standardization of positioning and adjustment techniques is to be achieved. The aspect of optimum radiological protection is also discussed, referring to shielding of the gonads, foils, measures for reduction of scattered radiation fields, and unambiguous labelling of film material. (orig./GDG) With 490 figs. and 1 separate folded tab [de

  12. [Management of war orthopaedic injuries in recent armed conflicts].

    Frank, M; Mathieu, L


    The extremities continue to be the most frequent sites of wounding during armed conflicts despite the change of combat tactics, soldier armour and battlefield medical support. Due to the advances in prehospital care and timely transport to the hospital, orthopaedic surgeons deal with severe and challenging injuries of the limbs. In contrast to civilian extremity trauma, the most combat-related injuries are open wounds that often have infection-related complications. Data from two recent large armed conflicts (Iraq, Afghanistan) show that extremity injuries are associated with a high complication rate, morbidity and healthcare utilization. A systematic approach that consists of sequential surgical care and good transport capabilities can reduce the complication rate of these injuries. New medical technologies have been implemented in the treatment strategy during the last decade. This article reviews the published scientific data and current opinions on combat-related extremity injuries. Key words: extremity, combat, trauma, medical support system.

  13. Development, implementation and evaluation of a patient handoff tool to improve safety in orthopaedic surgery.

    Gagnier, Joel J; Derosier, Joseph M; Maratt, Joseph D; Hake, Mark E; Bagian, James P


    To develop, implement and test the effect of a handoff tool for orthopaedic trauma residents that reduces adverse events associated with the omission of critical information and the transfer of erroneous information. Components of this project included a literature review, resident surveys and observations, checklist development and refinement, implementation and evaluation of impact on adverse events through a chart review of a prospective cohort compared with a historical control group. Large teaching hospital. Findings of a literature review were presented to orthopaedic residents, epidemiologists, orthopaedic surgeons and patient safety experts in face-to-face meetings, during which we developed and refined the contents of a resident handoff tool. The tool was tested in an orthopaedic trauma service and its impact on adverse events was evaluated through a chart review. The handoff tool was developed and refined during the face-to-face meetings and a pilot implementation. Adverse event data were collected on 127 patients (n = 67 baseline period; n = 60 test period). A handoff tool for use by orthopaedic residents. Adverse events in patients handed off by orthopaedic trauma residents. After controlling for age, gender and comorbidities, testing resulted in fewer events per person (25-27% reduction; P < 0.10). Preliminary evidence suggests that our resident handoff tool may contribute to a decrease in adverse events in orthopaedic patients. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  14. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation.

    Zhao, Huichen; Lu, Shengxia; Chai, Jiachao; Zhang, Yuchao; Ma, Xiaoli; Chen, Jicui; Guan, Qingbo; Wan, Meiyan; Liu, Yuantao


    The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H 2 S) has been reported to have multiple biological activities. We aim to investigate the role of H 2 S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H 2 S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. CSE expression, and H 2 S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H 2 S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats.

    Agarwal, P K; Singh, A; Gaurav, K; Goel, Shalini; Khanna, H D; Goel, R K


    Plantain banana (M. sapientum var. paradisiaca, MS) has been shown to possess ulcer healing activity. The present work with plantain banana was undertaken with the premise that the drug promoting ulcer healing could have effect on wound healing also. Wound healing activity of MS was studied in terms of (i) percent wound contraction, epithelization period and scar area; (ii) wound breaking strength and (iii) on granulation tissue antioxidant status [estimation of superoxide dismutase (SOD) and reduced glutathione (GSH), free radical (lipid peroxidation, an indicator of tissue damage) and connective tissue formation and maturation (hexuronic acid, hydroxyproline and hexosamine levels)] in excision, incision and dead space wound models respectively. The rats were given graded doses (50-200 mg/kg/day) of aqueous (MSW) and methanolic (MSE) extracts of MS orally for a period of 10-21 days depending upon the type of study. Both extracts (100 mg/kg) when studied for incision and dead space wounds parameters, increased wound breaking strength and levels of hydroxyproline, hexuronic acid, hexosamine, superoxide dismutase, reduced glutathione in the granulation tissue and decreased percentage of wound area, scar area and lipid peroxidation when compared with the control group. Both the extracts showed good safety profile. Plantain banana thus, favoured wound healing which could be due to its antioxidant effect and on various wound healing biochemical parameters.

  16. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing.

    Piperigkou, Zoi; Götte, Martin; Theocharis, Achilleas D; Karamanos, Nikos K


    Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas


    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  18. The occurrence of biofilm in an equine experimental wound model of healing by secondary intention

    Jørgensen, Elin Lisby Kastbjerg; Bay, Lene; Bjarnsholt, Thomas


    impaired healing. Presence of biofilm in tissue biopsies was assessed by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) and confocal laser scanning microscopy (CLSM). Bandaged limb wounds developed EGT and displayed delayed healing, while shoulder and un-bandaged limb wounds healed.......009). The finding that biofilm was most prevalent in bandaged limb wounds with EGT formation suggests that biofilm may be linked to delayed wound healing in horses, as has been observed in humans. The inability to clear bacteria could be related to hypoxia and low-grade inflammation in the EGT, but the interaction......In humans, biofilm is a well-known cause of delayed healing and low-grade inflammation of chronic wounds. In horses, biofilm formation in wounds has been studied to a very limited degree. The objective of this study was thus to investigate the occurrence of biofilm in equine experimental wounds...

  19. Surface self-organization: From wear to self-healing in biological and technical surfaces

    Nosonovsky, Michael; Bhushan, Bharat


    Wear occurs at most solid surfaces that come in contact with other solid surfaces. While biological surfaces and tissues usually have the ability for self-healing, engineered self-healing materials only started to emerge recently. These materials are currently created using the trial-and-error approach and phenomenological models, so there is a need of a general first-principles theory of self-healing. We discuss the conditions under which the self-healing occurs and provide a general theoretical framework and criteria for self-healing using the concept of multiscale organization of entropy and non-equilibrium thermodynamics. The example of epicuticular wax regeneration of plant leaves is discussed as a case study.

  20. Effect of topically applied Saccharomyces boulardii on the healing of acute porcine wounds: a preliminary study.

    Partlow, Jessica; Blikslager, Anthony; Matthews, Charles; Law, Mac; Daniels, Joshua; Baker, Rose; Labens, Raphael


    Normal wound healing progresses through a series of interdependent physiological events: inflammation, angiogenesis, re-epithelialization, granulation tissue formation and extracellular matrix remodeling. Alterations in this process as well as the bacterial type and load on a wound may alter the wound healing rate. The purpose of this study was to evaluate the effect of topical Saccharomyces boulardii on the healing of acute cutaneous wounds, using a prospective, controlled, experimental study, with six purpose bred landrace pigs. All wounds healed without apparent complications. Comparison of the mean 3D and 2D wound surface area measurements showed no significant difference between treatment groups as wounds decreased similarly in size over the duration of the study. A significant reduction in wound surface area was identified sooner using 3D assessments (by day 9) compared to 2D assessments (by day 12) (P Saccharomyces boulardii does not hasten wound healing or change the wounds' microbiome under the conditions reported in this study.

  1. Hand-arm vibration in orthopaedic surgery: a neglected risk.

    Mahmood, F; Ferguson, K B; Clarke, J; Hill, K; Macdonald, E B; Macdonald, D J M


    Hand-arm vibration syndrome is an occupational disease caused by exposure to hand-arm transmitted vibration. The Health and Safety Executive has set limits for vibration exposure, including an exposure action value (EAV), where steps should be taken to reduce exposure, and an exposure limit value (ELV), beyond which vibrating equipment must not be used for the rest of the working day. To measure hand-arm transmitted vibration among orthopaedic surgeons, who routinely use hand-operated saws. We undertook a cadaveric study measuring vibration associated with a tibial cut using battery-operated saws. Three surgeons undertook three tibial cuts each on cadaveric tibiae. Measurements were taken using a frequency-weighted root mean square acceleration, with the vibration total value calculated as the root of the sums squared in each of the three axes. A mean (SD) vibration magnitude of 1 (0.2) m/s2 in the X-axis, 10.3 (1.9) m/s2 in the Y-axis and 4.2 (1.3) m/s2 in the Z-axis was observed. The weighted root mean squared magnitude of vibration was 11.3 (1.7) m/s2. These results suggest an EAV of 23 min and ELV of 1 h 33 min using this equipment. Our results demonstrate that use of a battery-operated sagittal saw can transmit levels of hand-arm vibration approaching the EAV or ELV through prolonged use. Further study is necessary to quantify this risk and establish whether surveillance is necessary for orthopaedic surgeons. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email:

  2. International Patients on Operation Vacation – Perspectives of Patients Travelling to Hungary for Orthopaedic Treatments

    Eszter Kovacs


    Full Text Available Background The importance of cross-border healthcare, medical and health tourism plays a significant role in the European health policy and health management. After dentistry, orthopaedic treatments are the leading motivation for seeking care in Hungary, as patients with rheumatic and motion diseases are drawn to the thermal spas and well-established orthopaedic centres. This paper aims to gain insight into foreign patients’ perspectives on their experience of having sought medical tourism in orthopaedic care in Hungary. Methods A patient survey was conducted in 2012 on motivations for seeking treatment abroad, orthopaedic care received and overall satisfaction. In addition, health professionals’ interviews, and 17 phone interviews were conducted in 2013 with Romanian patients who had orthopaedic treatment in Hungary. Finally, medical records of foreign patients were analysed. Results The survey was completed by 115 participants – 61.1% females, mean age= 41.9, 87% Romanian origin. Most of the patients came to Hungary for orthopaedic surgeries, e.g. arthroscopy, knee/hip prosthesis or spinal surgery. 72.6% chose Hungary because of related to perceived better quality and longstanding culture of Hungarian orthopaedic care. Over 57% of patients reported being ‘very satisfied’ with care received and 41.6% ‘satisfied’. The follow-up interviews further reflected this level of satisfaction, therefore many respondents stating they have already recommended the Hungarian healthcare to others. Conclusion Based on the findings, patients from neighbouring regions are increasingly seeking orthopaedic care in Hungary. Patients having orthopaedic care are highly satisfied with the quality of care, the whole treatment process from the availability of information to discharge summaries and would consider returning for further treatments.

  3. Heat enhances radiation inhibition of wound healing

    Twomey, P.; Hill, S.; Joiner, M.; Hobson, B.; Denekamp, J.


    To study the effect of hyperthermia on the inhibition of healing by radiation, the authors used 2 models of wound tensile strength in mice. In one, tensile strength of 1 cm strips of wounded skin was measured. In the other, strength was measured on 2 by 1 by .3 cm surgical prosthetic sponges of polyvinyl alcohol which has been cut, resutured, and implanted subcutaneously. Granulation tissue grows into the pores of the sponges which gradually fill with collagen. Tensile strength in both models was measured on day 14 using a constant strain extensiometer. The wounds were given graduated doses of ortho-voltage radiation with or without hyperthermia. Maximum radiation sensitivity occurred during the period of rapid neovascularization in the first 5 days after wounding, when a loss of 80% in wound strength occurred with doses less than 20 gray. For single radiation doses given 48 hours after wounding, the authors found a steep dose-response curve with half maximum reduction in strength occurring in both models at approximately 10 gray. Hyperthermia was produced in two ways. Skin wounds were heated in a circulating water bath. In the sponge model, more uniform heating occurs with an RF generator scaled to the mouse. At a dose of 43 C for 30 minutes, no inhibition of healing by heat alone was found. However the combination of heat and radiation produced definite enhancement of radiation damage, with thermal enhancement ratios of up to 1.9 being observed

  4. Custom CAD-CAM healing abutment and impression coping milled from a poly(methyl methacrylate) block and bonded to a titanium insert.

    Proussaefs, Periklis


    This article describes a technique in which a custom-made computer-aided design and computer-aided manufacturing (CAD-CAM) healing abutment milled from a poly(methyl methacrylate) (PMMA) block is fabricated and bonded to a titanium metal insert. An impression is made during dental implant surgery, and the CAD-CAM custom-made healing abutment is fabricated before second-stage surgery while appropriate healing time is allowed for the dental implant to osseointegrate. The contours of the healing abutment are based on the contours of a tentatively designed definitive prosthesis. The healing tissue obtains contours that will be compatible with the contours of the definitive prosthesis. After the milling process is complete, a titanium metal insert is bonded to the healing abutment. Placement of the custom-made CAD-CAM healing abutment at second-stage surgery allows the tissue to obtain contours similar to those of the definitive prosthesis. A custom-made CAD-CAM impression coping milled from a PMMA block and with a titanium insert is used for the definitive impression after the soft tissue has healed. This technique allows guided soft tissue healing by using a custom-made CAD-CAM healing abutment and impression coping. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.

    Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min


    One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Healing history? Aboriginal healing, historical trauma, and personal responsibility.

    Waldram, James B


    What can an exploration of contemporary Aboriginal healing programs such as those offered in Canadian prisons and urban clinics tell us about the importance of history in understanding social and psychological pathology, and more significantly the salience of the concept of "historical trauma"? The form of Aboriginal "healing" that has emerged in recent decades to become dominant in many parts of the country is itself a reflection of historical processes and efforts to ameliorate the consequences of what is today often termed "historical trauma." In other words, contemporary notions of "healing" and the social, cultural, medical, and psychological disruption and distress caused by colonialism and captured in the term "historical trauma" have coevolved in an interdependent manner. I also argue that there is a tension between the attribution of this distress to both specific (e.g., residential schools) and generalized (e.g., colonialism) historical factors, as evident in the "historical trauma" concept, and the prevailing emphasis in many healing programs to encourage the individual to take personal responsibility for their situation and avoid attributing blame to other factors. I conclude that "historical trauma" represents an idiom of distress that captures a variety of historical and contemporary phenomena and which provides a language for expressing distress that is gaining currency, at least among scholars, and that the contemporary Aboriginal healing movement represents an effort to deal with the absence or failure of both "traditional" Aboriginal healing and government-sponsored medical and psychological services to adequately deal with this distress of colonialism. © The Author(s) 2013 Reprints and permissions:

  7. Resources for your career in orthopaedic traumatology: what can the OTA do for you?

    Mehta, Samir; Smith, Jeffrey M


    For those choosing a career in orthopaedic traumatology, several resources have been established by the Orthopaedic Trauma Association to facilitate progression from the years in training to the early years in practice. Young practitioners have access to educational programming, such as preparation for Part II of the Board Examination, web-based resources, such as on-line job postings, advocacy in health policy for the issues that will affect their ability to practice, and public relations efforts to increase their presence in the community. Ultimately, the resources set aside for the young practitioner by the Orthopaedic Trauma Association are intended to facilitate a sense of excellence, service, and community.

  8. Research on the Influence of Orthopaedic Inserts on Pressure Distribution in the Foot

    Ignas Rutulys


    Full Text Available The article examines the influence of individual orthopaedic inserts on pressure distribution in the foot. Feet deformations, types of orthopaedic inserts, materials and pressure in the foot testing methods are discussed. Experimental computer measurements of pressure in the foot before and after the use of inserts have been done. During research, the inserts made of different kinds of materials selected according to human weight, pathology, skin sensitivity and many other reasons has been used. It has been determinated that orthopaedic inserts have a more noticeable impact on children whose feet is adjusted easier if compared with those of adults.Article in Lithuanian

  9. Far infrared promotes wound healing through activation of Notch1 signaling.

    Hsu, Yung-Ho; Lin, Yuan-Feng; Chen, Cheng-Hsien; Chiu, Yu-Jhe; Chiu, Hui-Wen


    The Notch signaling pathway is critically involved in cell proliferation, differentiation, development, and homeostasis. Far infrared (FIR) has an effect that promotes wound healing. However, the underlying molecular mechanisms are unclear. In the present study, we employed in vivo and HaCaT (a human skin keratinocyte cell line) models to elucidate the role of Notch1 signaling in FIR-promoted wound healing. We found that FIR enhanced keratinocyte migration and proliferation. FIR induced the Notch1 signaling pathway in HaCaT cells and in a microarray dataset from the Gene Expression Omnibus database. We next determined the mRNA levels of NOTCH1 in paired normal and wound skin tissues derived from clinical patients using the microarray dataset and Ingenuity Pathway Analysis software. The result indicated that the Notch1/Twist1 axis plays important roles in wound healing and tissue repair. In addition, inhibiting Notch1 signaling decreased the FIR-enhanced proliferation and migration. In a full-thickness wound model in rats, the wounds healed more rapidly and the scar size was smaller in the FIR group than in the light group. Moreover, FIR could increase Notch1 and Delta1 in skin tissues. The activation of Notch1 signaling may be considered as a possible mechanism for the promoting effect of FIR on wound healing. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model.

  10. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)


    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  11. Heat-washout measurements compared to distal blood pressure and perfusion in orthopaedic patients with foot ulcers

    Midttun, M; Azad, B B S; Broholm, R


    Distal blood pressure and local skin perfusion pressure were compared to measurement of blood flow rate (BFR) measured by the heat-washout method in orthopaedic patients with and without diabetes, all with a foot ulcer in one foot, compared to healthy controls. The correlation was good between heat......-washout and distal blood pressure in patients with diabetes with and without an ulcer (P = 0·024 and 0·059, respectively). The correlation was weak in patients without diabetes with and without an ulcer, most probably due to power problems (P = 0·118 and 0·116, respectively). The correlation in the healthy controls...... the surrounding tissue, and therefore, measurements are easier made in these subjects. BFR in the first toe increased significantly in all patients when the foot was moved from heart level to 50 cm below heart level (P = between 0·03 and 0·05) as previously seen in patients with claudication...

  12. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James


    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  13. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    Datta, Hema Sharma; Mitra, Shankar Kumar; Patwardhan, Bhushan


    The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary e...

  14. Molecular pathology of wound healing.

    Kondo, Toshikazu; Ishida, Yuko


    Skin-wound healing is an orchestrated biological phenomena consisting of three sequential phases, inflammation, proliferation, and maturation. Many biological substances are involved in the process of wound repair, and this short and simplified overview of wound healing can be adopted to determine wound vitality or wound age in forensic medicine. With the development of genetically engineered animals, essential molecules for skin-wound healing have been identified. Especially, cytokines, and growth factors are useful candidates and markers for the determination of wound vitality or age. Moreover, bone marrow-derived progenitor cells would give significant information to wound age determination. In this review article, some interesting observations are presented, possibly contributing to the future practice of forensic pathologists. Copyright © 2010. Published by Elsevier Ireland Ltd.

  15. Interior design and healing architecture

    Mogensen, Jeppe; Poulsen, Søren Bolvig; Hansen, Allan Grutt


    . Through a mixed-method study, 43 patients from the outpatient-lung department at Hospital Vendsyssel, Denmark were presented with different types of furniture and materials and were asked about their preferences. Additional questions on their experience of the hospital interior were asked to guide......Hospital design is today influenced by the design concept healing architecture, stating that the patients’ healing process is promoted through accommodating physical surroundings. However, despite the increasing amount of research in the field of healing architecture, research on interior design...... and materials are rather limited. To compliment research in hospital interior design with particular focus on the use of interior textiles, this pilot study explores if the patients’ preferences for more home-like hospital interiors can be linked to a preference for textile-based furniture and materials...

  16. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications

    Gizaw, Mulugeta; Thompson, Jeffrey; Faglie, Addison; Lee, Shih-Yu; Neuenschwander, Pierre; Chou, Shih-Feng


    Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds. PMID:29382065

  17. The roles of cellular and molecular components of a hematoma at early stage of bone healing.

    Shiu, Hoi Ting; Leung, Ping Chung; Ko, Chun Hay


    Bone healing is a complex repair process that commences with the formation of a blood clot at the injured bone, termed hematoma. It has evidenced that a lack of a stable hematoma causes delayed bone healing or non-union. The hematoma at the injured bone constitutes the early healing microenvironment. It appears to dictate healing pathways that ends in a regenerative bone. However, the hematoma is often clinically removed from the damaged site. Conversely, blood-derived products have been used in bone tissue engineering for treating critical sized defects, including fibrin gels and platelet-rich plasma. A second generation of platelet concentrate that is based on leukocyte and fibrin content has also been developed and introduced in market. Conflicting effect of these products in bone repair are reported. We propose that the bone healing response becomes dysregulated if the blood response and subsequent formation and properties of a hematoma are altered. This review focuses on the central structural, cellular, and molecular components of a fracture hematoma, with a major emphasis on their roles in regulating bone healing mechanism, and their interactions with mesenchymal stem cells. New angles towards a better understanding of these factors and relevant mechanisms involved at the beginning of bone healing may help to clarify limited or adverse effects of blood-derived products on bone repair. We emphasize that the recreation of an early hematoma niche with critical compositions might emerge as a viable therapeutic strategy for enhanced skeletal tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Surgical wound healing in radio-tagged adult Pacific lamprey Entosphenus tridentatus held on different substrata

    Mesa, M.G.; Magie, R.J.; Copeland, E.S.; Christiansen, H.E.


    Radio-tagged adult Pacific lamprey Entosphenus tridentatus held in a raceway with Plexiglas-lined walls and bottom healed more slowly and retained sutures longer than fish held in an all-concrete raceway or one with Plexiglas walls and a cobble-lined bottom. On all substrata, healing depended on when sutures were lost, and fish that lost their sutures in healed faster than those that kept sutures longer. Long-term suture retention led to tissue trauma, infection and poor survival.

  19. Dynamic protein expression patterns during intraoral wound healing in the rat.

    van Beurden, Hugo E; Snoek, Patricia A M; Von den Hoff, Johannes W; Torensma, Ruurd; Maltha, Jaap C; Kuijpers-Jagtman, Anne M


    Wound healing after cleft palate surgery is often associated with impairment of maxillary growth and dento-alveolar development. Wound contraction and scar tissue formation contribute strongly to these effects. In vitro studies have revealed that fibroblasts isolated during different phases of palatal wound healing show phenotypical differences. They change from a quiescent to an activated state and then partly back to a quiescent state. In this study, we evaluated the existence of fibroblast phenotypes at several time-points during palatal wound healing in the rat. Based on cytoskeletal changes (alpha-sma, vimentin, vinculin), integrin expression (alpha1, alpha2, alpha(v) and beta1) and changes in cellularity, we conclude that phenotypically different fibroblast populations are also present during in vivo wound healing. Alpha-sma and the integrin subunits alpha1 and alpha(v) were significantly up-regulated, and vinculin was significantly down-regulated, at early time-points compared to late time-points in wound healing. These changes point to an activated fibroblast state early in wound healing. Later in wound healing, these activated fibroblasts return only partially to the unwounded situation. These results strongly support the idea that different fibroblast populations with specific phenotypes occur in the course of palatal wound healing.

  20. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Sandra Matabi Ayuk


    Full Text Available The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI or photobiomodulation (PBM is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.