WorldWideScience

Sample records for orogenic gold deposits

  1. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  2. Critical elements in Carlin, epithermal, and orogenic gold deposits

    Science.gov (United States)

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.

    2016-01-01

    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  3. Metal mobility during metamorphism and formation of orogenic gold deposits: Insights from the Dalradian of Scotland

    OpenAIRE

    Engström, Adam

    2013-01-01

    Orogenic gold deposits occur within metamorphic belts throughout the world and have through time represented the source for over 25% of the world’s gold production. Although orogenic gold deposits are of great economic importance, controversies exist on the subject of fluid and metal sources and there have been few studies of gold´s distribution and mobility outside of large economic deposits. Research made by Pitcairn et al. (2006), on the Mesozoic Otago and Alpine schists of New Zealand, ob...

  4. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency, Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana secondary placer gold. A field study indicates that the Langkowala (Bombana placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.

  5. Sulfur and lead isotope geochemistry of the orogenic gold deposits in the eastern Kunlun area, Qinghai province

    International Nuclear Information System (INIS)

    Feng Chengyou; Zhang Dequan; Li Daxin; She Hongquan; Zhu Huaping

    2003-01-01

    Based on researches on the basic geological characteristics and sulfur and lead isotopic geochemistry of four typical gold deposits, it is considered that they have many similar geo-geochemical characteristics and are all related genetically to orogenic process. Therefore, they should belong to a type of orogenic gold deposits according to the newest classification of gold deposits provided by Kerrich et al. (2000). There is a big change in the average 34 S values of the sulfides selected from different deposits, varying from -3.7‰-4.4‰ and tower-shape distribution is apparent. The lead isotope in four gold deposits is characterized by high compositions and minor changes, with 206 Pb/ 204 Pb > 18.3380, 207 Pb/ 204 Pb > 15.5555, 208 Pb/ 204 Pb >38.1796 in ores and wall-rocks, it can be concluded that the ore-forming material consisting of sulfur and lead are mainly derived from wall-rocks. Intensive subduction and collision during late Paleozoic and early Mesozoic not only formed deep faults, large-scale shear belt, and low-order folds and faults but also induced fluidization and mineralization, and resulted in formation and zonal distribution of several large or medium gold deposits in this area. (authors)

  6. Possible genetic link between I-type granite and orogenic gold deposits in Egypt (metamorphic-magmatic interaction?)

    Science.gov (United States)

    Abd El Monsef, Mohamed

    2015-04-01

    The orogenic gold deposits are a distinctive type of deposits that revealed unique temporal and spatial association with an orogeny. Where, the system of gold veins and related ore minerals was confined to hydrothermal solutions formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens, with the respect to ongoing deep-crustal, subduction-related thermal processes. In Egypt, most of vein-type and dyke-type gold mineralization are restricted to granitic rocks or at least near of granitic intrusion that seems to have had an important influence on gold mineralization. Shear zone-related, mesothermal gold deposits of Fatira and Gidami mines in the northern Eastern Desert of Egypt are found within granitic bodies or at the contact between granites and metavolcanic rocks. The hosting-granitic rocks in Fatira and Gidami areas are mainly of granodioritic composition (I-Type granite) which is related to calc-alkaline magmatic series. However, Fatira granitoids were developed within island arc tectonic settings related to mature island arc system (Late-orogenic stage), at relatively low temperature (around 660° C) and medium pressure between (5 - 10 Kbar). On the other hand, Gidami granitoids were developed during the collision stage in continental arc regime related to active continental margin (Syn-orogeny), which were crystallized at relatively high temperature (700-720° C) and low pressure (around 0.1 Kbar). The ore mineralogy includes pyrite, chalcopyrite, sphalerite, covellite, ilmenite, goethite ± pyrrhotite ± pentlandite ± galena ± molybdenite. Native gold is detected only in Gidami mineralization as small inclusions within pyrite and goethite or as tiny grains scattered within quartz vein (in close proximity to the sulfides). In Fatira deposits, it is detected only by microprobe analysis within the crystal lattice of pyrite and jarosite. Fluid inclusions study for the mineralized

  7. Bicarbonate-rich fluid inclusions and hydrogen diffusion in quartz from the Libčice orogenic gold deposit, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Hrstka, Tomáš; Dubessy, J.; Zachariáš, J.

    2011-01-01

    Roč. 281, 3-4 (2011), s. 317-332 ISSN 0009-2541 Institutional research plan: CEZ:AV0Z30130516 Keywords : bicarbonate * fluid inclusions * hydrogen diffusion * orogenic gold deposits * raman spectroscopy Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.518, year: 2011

  8. Spatial and temporal distribution of the orogenic gold deposits in the Late Palaeozoic Variscides and Southern Tianshan: How orogenic are they?

    NARCIS (Netherlands)

    Boorder, H. de

    2012-01-01

    A principal uncertainty in models of orogenic ore deposits concerns their ages relative to orogenic processes. The yardstick of the relation has resided, loosely, in the peak of metamorphism. Age estimates in the Variscides and Tianshan indicate that most orogenic ore deposits were formed in the

  9. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    Science.gov (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  10. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran

    Science.gov (United States)

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.

    2011-01-01

    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  11. Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 69): Chapter H in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Goldfarb, Richard J.; Marsh, Erin; Anderson, Eric D.; Horton, John D.; Finn, Carol A.; Beaudoin, Georges

    2015-01-01

    The gold resources of Mauritania presently include two important deposits and a series of poorly studied prospects. The Tasiast belt of deposits, which came into production in 2007, is located in the southwestern corner of the Rgueïbat Shield and defines a world-class Paleoproterozoic(?) orogenic gold ore system. The producing Guelb Moghrein deposit occurs along a shear zone in Middle Archean rocks at the bend in the Northern Mauritanides and is most commonly stated to be an iron oxide-copper-gold (IOCG) type of deposit, although it also has some important characteristics of orogenic gold and skarn deposits. Both major deposits are surrounded by numerous prospects that show similar mineralization styles. The Guelb Moghrein deposit, and IOCG deposit types in general are discussed in greater detail in a companion report by Fernette (2015). In addition, many small gold prospects, which are probably orogenic gold occurrences and are suggested to be early Paleozoic in age, occur along the length of Southern Mauritanides. Existing data indicate the gold deposits and prospects in Mauritania have a sulfide assemblage most commonly dominated by pyrrhotite and chalcopyrite, and have ore-related fluids with apparently high salinities.

  12. Multiple fluid sources/pathways and severe thermal gradients during formation of the Jílové orogenic gold deposit, Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Zachariáš, J.; Žák, Karel; Pudilová, M.; Snee, L. W.

    2013-01-01

    Roč. 54, October (2013), s. 81-109 ISSN 0169-1368 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : Orogenic gold deposits * Carbon isotopes * Oxygen isotopes * Bismuth * Age * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.383, year: 2013

  13. Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    Science.gov (United States)

    Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace

    2002-01-01

    The late Paleozoic–early Mesozoic tectonic evolution of Xinjiang Autonomous Region, northwestern China provided a favorable geological setting for the formation of lode gold deposits along the sutures between a number of the major Eastern Asia cratonic blocks. These sutures are now represented by the Altay Shan, Tian Shan, and Kunlun Shan ranges, with the former two separated by the Junggar basin and the latter two by the immense Tarim basin. In northernmost Xinjiang, final growth of the Altaid orogen, southward from the Angara craton, is now recorded in the remote mid- to late Paleozoic Altay Shan. Accreted Early to Middle Devonian oceanic rock sequences contain typically small, precious-metal bearing Fe–Cu–Zn VMS deposits (e.g. Ashele). Orogenic gold deposits are widespread along the major Irtysh (e.g. Duyolanasayi, Saidi, Taerde, Kabenbulake, Akexike, Shaerbulake) and Tuergen–Hongshanzui (e.g. Hongshanzui) fault systems, as well as in structurally displaced terrane slivers of the western Junggar (e.g. Hatu) and eastern Junggar areas. Geological and geochronological constraints indicate a generally Late Carboniferous to Early Permian episode of gold deposition, which was coeval with the final stages of Altaid magmatism and large-scale, right-lateral translation along older terrane-bounding faults. The Tian Shan, an exceptionally gold-rich mountain range to the west in the Central Asian republics, is only beginning to be recognized for its gold potential in Xinjiang. In this easternmost part to the range, northerly- and southerly-directed subduction/accretion of early to mid-Paleozoic and mid- to late Paleozoic oceanic terranes, respectively, to the Precambrian Yili block (central Tian Shan) was associated with 400 to 250 Ma arc magmatism and Carboniferous through Early Permian gold-forming hydrothermal events. The more significant resulting deposits in the terranes of the southern Tian Shan include the Sawayaerdun orogenic deposit along the Kyrgyzstan

  14. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit

    Science.gov (United States)

    LaFlamme, Crystal; Sugiono, Dennis; Thébaud, Nicolas; Caruso, Stefano; Fiorentini, Marco; Selvaraja, Vikraman; Jeon, Heejin; Voute, François; Martin, Laure

    2018-02-01

    The evolution of a gold-bearing hydrothermal fluid from its source to the locus of gold deposition is complex as it experiences rapid changes in thermochemical conditions during ascent through the crust. Although it is well established that orogenic gold deposits are generated during time periods of abundant crustal growth and/or reworking, the source of fluid and the thermochemical processes that control gold precipitation remain poorly understood. In situ analyses of multiple sulfur isotopes offer a new window into the relationship between source reservoirs of Au-bearing fluids and the thermochemical processes that occur along their pathway to the final site of mineralisation. Whereas δ34S is able to track changes in the evolution of the thermodynamic conditions of ore-forming fluids, Δ33S is virtually indelible and can uniquely fingerprint an Archean sedimentary reservoir that has undergone mass independent fractionation of sulfur (MIF-S). We combine these two tracers (δ34S and Δ33S) to characterise a gold-bearing laminated quartz breccia ore zone and its sulfide-bearing alteration halo in the (+6 Moz Au) structurally-controlled Archean Waroonga deposit located in the Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. Over 250 analyses of gold-associated sulfides yield a δ34S shift from what is interpreted as an early pre-mineralisation phase, with chalcopyrite-pyrrhotite (δ34S = +0.7‰ to +2.9‰) and arsenopyrite cores (δ34S = ∼-0.5‰), to a syn-mineralisation stage, reflected in Au-bearing arsenopyrite rims (δ34S = -7.6‰ to +1.5‰). This shift coincides with an unchanging Δ33S value (Δ33S = +0.3‰), both temporally throughout the Au-hosting hydrothermal sulfide paragenesis and spatially across the Au ore zone. These results indicate that sulfur is at least partially recycled from MIF-S-bearing Archean sediments. Further, the invariant nature of the observed MIF-S signature demonstrates that sulfur is derived from a

  15. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    Science.gov (United States)

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

  16. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Science.gov (United States)

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.

    2016-01-01

    It is quite evident that it is not anomalous metal transport, nor unique depositional conditions, nor any single factor at the deposit scale, that dictates whether a mineral deposit becomes a giant or not. A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments. For giant orogenic, intrusion-related gold systems (IRGS) and Carlin-type gold deposits and iron oxide-copper-gold (IOCG) deposits, there are common factors among all of these at the lithospheric to crustal scale. All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or, in the case of most Phanerozoic orogenic giants, define the primary suture zones between tectonic terranes. Giant provinces of IRGS, IOCG, and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province. The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids, whereas the association of such melts with Carlin-type ores is more indirect and enigmatic. Giant orogenic gold provinces show no direct relationship to such magmatism, forming from metamorphic fluids, but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.

  17. Nature and source of the ore-forming fluids associated with orogenic gold deposits in the Dharwar Craton

    Directory of Open Access Journals (Sweden)

    Biswajit Mishra

    2018-05-01

    Full Text Available Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include (1 the famous Kolar mine and the world class Hutti deposit; (2 small mines at Hira-Buddini, Uti, Ajjanahalli, and Guddadarangavanahalli; (3 prospects at Jonnagiri; and (4 old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous (H2O + CO2 ± CH4 + NaCl ore fluids, which precipitated gold and altered the host rocks in a narrow P–T window of 0.7–2.5 kbar and 215–320 °C. While the calculated fluid O- and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs. magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite

  18. Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt: Constrains on the tectonic evolution of the North China Craton

    Directory of Open Access Journals (Sweden)

    Ju-Quan Zhang

    2018-03-01

    Full Text Available The Wutai greenstone belt in central North China Craton (NCC hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation (BIF, meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ∼2.5–2.3 Ga and the third one at ∼1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows. (1 ∼2.6–2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite (TTG magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean. (2 ∼2.5–2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization. (3 ∼2.2–2.1 Ga: extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits. (4 ∼2.2–2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region. (5 ∼1.95–1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.

  19. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.

    2002-08-01

    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  20. U-Pb SHRIMP and {sup 40}Ar/{sup 39}Ar constraints on the timing of mineralization in the Paleoproterozoic Caxias orogenic gold deposit, Sao Luis cratonic fragment, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Evandro Luiz, E-mail: evandro.klein@cprm.gov.br [Servico Geologico do Brasil (CPRM), Belem, PA (Brazil); Tassinari, Colombo Celso Gaeta, E-mail: ccgtassi@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Geociencias. Centro de Pesquisas Geocronologicas; Vasconcelos, Paulo Marcos, E-mail: paulo@earth.uq.edu.au [University of Queensland, School of Earth Sciences, Brisbane (Australia)

    2014-07-01

    Caxias is an orogenic gold deposit in the Sao Luis cratonic fragment, which is correlated with the Rhyacian terranes of the West-African Craton. The deposit postdates peak metamorphism (estimated at 2100 ± 15 Ma) and is hosted in a shear zone that cuts across schists of the Aurizona Group (2240 ± 5 Ma) and the Caxias Microtonalite. The emplacement age of the microtonalite, as determined in this work by SHRIMP U-Pb zircon dating, is 2009 ± 11 Ma and represents a latest age magmatic event in the Sao Luis cratonic fragment. Older zircon age of 2139 ± 10 Ma is interpreted as due to inheritance from the older granitoid or volcanic suites (magmatic sources?) or to contamination during emplacement. Lead isotope compositions indicate that the Pb incorporated in ore-related pyrite was probably sourced from regional, orogenic calc-alkaline granitoids of ca. 2160 Ma. Hydrothermal sericite from Caxias yielded a {sup 40}Ar/{sup 39}Ar plateau age of 1990 ± 30 Ma, which combined with the emplacement age of the Caxias Microtonalite brackets the age of gold mineralization between 2009 ± 11 and 1990 ± 30 Ma. (author)

  1. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    DEFF Research Database (Denmark)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle

    2017-01-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland’s only operating metalliferous mine until i...

  2. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  3. The dilemma of the Jiaodong gold deposits: Are they unique?

    Science.gov (United States)

    Goldfarb, Richard J.; Santosh, M.

    2013-01-01

    The ca. 126–120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as >3000 t Au. The vein and disseminated ores are hosted by NE- to NNE-trending brittle normal faults that parallel the margins of ca. 165–150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Precambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous “Yanshanian” intracontinental extensional deformation and associated gold formation.Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong deposits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolatilization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130–123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineralization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate

  4. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    OpenAIRE

    Idrus, Arifudin; Nur, I; Warmada, I. W; Fadlin, Fadlin

    2011-01-01

    DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency), Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This pa...

  5. Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Upton, P.; MacKenzie, D.J.

    2009-01-01

    Orogenic hydrothermal systems in the South Island of New Zealand were active during Mesozoic and late Cenozoic collisional deformation and metamorphism of greywacke/schist terranes. Observations on the currently active mountain-building environment yield insights on processes occurring in the upper 5-15 km of the crust, and observations on an adjacent lithologically identical exhumed ancient mountain belt provide information on processes at 10-20 km in the crust. Hydrothermal fluids were mainly derived from metamorphic dehydration reactions and/or circulating topographically driven meteoric water in these mountain belts. Three geochemically and mineralogically different types of hydrothermal alteration and vein mineralisation occurred in these orogenic belts, and gold enrichment (locally economic) occurred in some examples of each of these three types. The first type of alteration involved fluids that were in or near chemical equilibrium with their greenschist facies host rocks. Fluid flow was controlled by discontinuous fractures, and by microshears and grain boundaries in host rocks, in zones from metres to hundreds of metres thick. Vein and alteration mineralogy was similar to that of the host rocks, and included calcite and chlorite. The second type of alteration occurred where the fluids were in distinct disequilibrium with the host rocks. Fracture permeability was important for fluid flow, but abundant host rock alteration occurred as well. The alteration zones were characterised by decomposition of chlorite and replacement by ankeritic carbonate in zones up to tens of metres thick. The mineralising fluid was deep-sourced and initially rock-equilibrated, with some meteoric input. The third type of mineralisation was controlled almost exclusively by fracture permeability, and host rock alteration was minor (centimetre scale). This mineralisation type commonly involved calcite and chlorite as vein and alteration minerals, and mineralisation fluids had a major

  6. Metamorphic rock-hosted orogenic gold deposit style at Bombana (Southeast Sulawesi and Buru Island (Maluku: Their key features and significances for gold exploration in Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2017-06-01

    are identified. Early quartz veins are segmented, sigmoidal discontinuous and parallel to the foliation of the host rock. This generation of quartz veins is characterized by crystalline relatively clear quartz, and weakly mineralized with low sulfide and gold contents. The second type of quartz veins occurs within the ‘mineralized zone’ of about 100 m in width and ~1,000 m in length. Gold mineralization is intensely overprinted by argillic alteration. The mineralization-alteration zone is probably parallel to the mica schist foliation and strongly controlled by N-S or NE-SW-trending structures. Gold-bearing quartz veins are characterized by banded texture particularly following host rock foliation and sulphide banding, brecciated and rare bladed-like texture. Alteration types consist of propylitic (chlorite, calcite, sericite, argillic and carbonation represented by graphite banding and carbon flakes. Ore mineral comprises pyrite, native gold, pyrrhotite, and arsenopyrite. Cinnabar and stibnite are present in association with gold. Ore chemistry indicates that 11 out of 15 samples yielded more than 1 g/t Au, in which 6 of them graded in excess of 3 g/t Au. All high-grade samples are composed of limonite or partly contain limonitic material. This suggests the process of supergene enrichment. Interestingly, most of the high-grade samples contain also high concentrations of As (up to 991ppm, Sb (up to 885ppm, and Hg (up to 75ppm. Fluid inclusions in both quartz vein types consist of 4 phases including L-rich, V-rich, L-V-rich and L1-L2-V (CO2-rich phases. The mineralizing hydrothermal fluid typically is CO2-rich, of moderate temperature (300-400 ºC, and low salinity (0.36 to 0.54 wt.% NaCl eq. Based on those key features, gold mineralization in Bombana and Buru Island tends to meet the characteristics of orogenic, mesothermal types of gold deposit. Metamorphic rock-hosted gold deposits could represent the new targets for gold exploration particularly in Eastern

  7. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria

    Science.gov (United States)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.

    2015-10-01

    high Hg content (up to 11 mass %). The Cu-Au deposits in the Flatschach area show similarities with meso- to epizonal orogenic lode gold deposits regarding the geological setting, the structural control of mineralization, the type of alteration, the early (stage 1) sulfide assemblage and composition of gold. Unique about the Flatschach district is the lower-temperature overprint of copper arsenides (domeykite and koutekite) and copper sulfides (djurleite, yarrowite/spionkopite) on earlier formed sulfide mineralization. Based on mineralogical considerations temperature of stage 2 mineralization was between about 70 °C and 160 °C. Gold was locally mobilized during this low-temperature hydrothermal overprint as well as during stage 3 supergene oxidation and cementation processes.

  8. Geochemical modeling of orogenic gold deposit using PCANN hybrid method in the Alut, Kurdistan province, Iran

    Science.gov (United States)

    Mohammadzadeh, Mohammadjafar; Nasseri, Aynur

    2018-03-01

    In this paper stream sediments based geochemical exploration program with the aim of delineating potentially promising areas by a comprehensive stepwise optimization approach from univariate statistics, PCA, ANN, and fusion method PCANN were under taken for an orogenic gold deposit located in the Alut, Kurdistan province, NW of Iran. At first the data were preprocessed and then PCA were applied to determine the maximum variability directions of elements in the area. Subsequently the artificial neural network (ANN) was used for quick estimation of elemental concentration, as well as discriminating anomalous populations and intelligent determination of internal structure among the data. However, both the methods revealed constraints for modeling. To overcome the deficiency and shortcoming of each individual method a new methodology is presented by integration of both "PCA & ANN" referred as PCANN method. For integrating purpose, the detected PCs pertinent to ore mineralization selected and intruded to neural network structure, as a result different MLPs with various algorithms and structures were produced. The resulting PCANN maps suggest that the gold mineralization and its pathfinder elements (Au, Mo, W, Bi, Sb, Cu, Pb, Ag & As) are associated with metamorphic host rocks intruded by granite bodies in the Alut area. In addition, more concealed and distinct Au anomalies with higher intensity were detected, confirming the privileges of the method in evaluating susceptibility of the area in delineating new hidden potential zones. The proposed method demonstrates simpler network architecture, easy computational implementation, faster training speed, as well as no need to consider any primary assumption about the behavior of data and their probability distribution type, with more satisfactory predicting performance for generating gold potential map of the area. Comparing the results of three methods (PCA, ANN and PCANN), representing the higher efficiency and more

  9. Geochemistry of the Dashui gold deposit in west Qinling mountains, Gansu

    International Nuclear Information System (INIS)

    Han Chunming; Yuan Wanming; Yu Fusheng; Tang Yunhui; Bao Zengkuan

    2003-01-01

    Dashui large gold deposit is located in the south of western Qinling Moutains between Qinling orogenic zone and Songpan-Ganzi orogenic zone. It was controlled by NWW-trending fault zone. The host rocks of the gold mineralization is mainly Triassic altered limestone and adamellite dikes. The σ 34 S values of pyrite range from -1.8 to +4.5 per mil with a mean of 2.40‰, reflecting a deep source of sulfur. Oxygen isotope data of calcite in ores indicates that calcite has σ 18 O values ranging from -22.4 to -11.1 per mil The calculated σ 18 O water values of calcite range from -4.32 to +8.33 per mil and the σD values range from -61.1 to -101 per mil, σD and σ 18 O water values suggesting that the ore fluids were mainly derived from magma in the early stage of mineralization. However, the values in the late mineralization stage decrease, indicating mixing of meteoric waters at the time of the mineralization. Homogenization temperatures of fluid inclusions are relatively low, falling between 100 and 400℃ and mostly between 150 and 200℃, with a peak value of 175℃. Salinities exhibit a wide range from 2.70 to 9.10 wt.% NaCl equiv , with a mean of 4.88 wt.% NaCl equiv In addition, the early gold mineralization occurred from 196 Ma to 182.8 Ma, and late gold mineralization took place range from 72.15 Ma to 41.21 Ma, based on the Rb-Sr isochron dating of inclusions from calcite in ores, it means that the Dashui gold deposit at least has twice gold mineralization. (authors)

  10. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model

    Science.gov (United States)

    Yakubchuk, Alexander

    2004-09-01

    The Altaids are an orogenic collage of Neoproterozoic-Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic-Early Paleozoic magmatic arcs (Kipchak, Tuva-Mongol, and Mugodzhar-Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper-molybdenum, lead-zinc, nickel and other deposits of various types. In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva-Mongol magmatic arcs were rifted off Eastern Europe-Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar-Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu-Pb-Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc-arc collision events in the Middle Cambrian and Late Ordovician. The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike-slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh-Mongol and Zharma-Saur-Valerianov-Beltau-Kurama arcs that welded the extinct Kipchak and Tuva-Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust

  11. The Tintina Gold Belt - A global perspective

    Science.gov (United States)

    Goldfarb, Richard J.; Hart, Craig J.R.; Miller, Marti L.; Miller, Lance D.; Farmer, G. Lang; Groves, David I.; Tucker, Terry L.; Smith, Moira T.

    2000-01-01

    The so-called Tintina Gold Belt extends for more than 1000 km along the length of the northern North American Cordillera. Middle to Late Cretaceous Au deposits within the belt have various similar characteristics, among which are a spatial and temporal association with magmatism; Bi-W-Te signatures in deposits hosted by granitod stocks and As-Sb signatures where hosted by sedimentary rocks and dyke systems; and δ180 values consistently > 12 per mil for Au-bearing quartz. Nevertheless significant differences in structural styles, levels of deposit emplacement, ore-fluid chemistry, and Au grades suggest that the characteristics represent a broad range of deposit types. Many of these are best classified as orogenic Au deposits in the Yukon-Tanana terrane, as epithermal and porphyry-style Au deposits in the Kuskokwim region, and as Au-bearing, granite-related veins and stockworks, replacements, and skarns, as well as associated polymetallic lodes, in central Yukon. The diverse types of Au deposits and associated plutons of the Tintina Gold Belt collectively define a 45-m.y.-long period of arc magmatism that migrated northwesterly, for about 1000 km, across the active collisional margin of Cretaceous northwestern North America. The initiation of fluid flow and plutonism in Albian time seems to correlate with the onset of oblique subduction and dextral strike-slip on the Denali-Farewell, Tintina-Kaltag, and related fault systems. Initial Au-vein formation and subduction-related magmatism at about 115-110 Ma (e.g., including the Goodpaster and Fortymile districts), within the seaward side of the Yukon-Tanana terrane, correlate with the arrival of the Wrangellia superterrane off the continental margin. Dextral translation of the allochthonous Wrangellia block was associated with the migration of the thermal pulse to the northwest at about 95-90 Ma. Orogenic (or so­ called mesotherrnal) and granitoid-related Au deposits formed across the width of the Yukon

  12. Tectonic setting of synorogenic gold deposits of the Pacific Rim

    Science.gov (United States)

    Goldfarb, R.J.; Phillips, G.N.; Nokleberg, W.J.

    1998-01-01

    batholith have yielded more than 100 million oz of gold. Additional significant ore-forming events during the development of North America's Cordilleran orogen included those in the Klamath Mountains region, California in the Late Jurassic and Early Cretaceous; the Klondike district, Yukon by the Early Cretaceous; the Nome and Fairbanks districts, Alaska, and the Bridge River district, British Columbia in the middle Cretaceous; and the Juneau gold belt, Alaska in the Eocene. Gold-bearing veins deposited during the Late Jurassic and Early Cretaceous terrane collision that formed the present-day Russian Far East have been the source for more than 130 million oz of placer gold. The abundance of gold-bearing quartz-carbonate veins throughout the Gondwanan, North American and Eurasian continental margins suggests the migration and concentration of large fluid volumes during continental growth. Such volumes could be released during orogenic heating of hydrous silicate mineral phases within accreted marine strata. The common temporal association between gold veining and magmatism around the Pacific Rim reflects these thermal episodes. Melting of the lower thickened crust during arc formation, slab rollback and extensional tectonism, and subduction of a slab window beneath the seaward part of the forearc region can all provide the required heat for initation of the ore-forming processes.

  13. Stable Isotopes (O, H, and S) in the Muteh Gold Deposit, Golpaygan Area, Iran

    International Nuclear Information System (INIS)

    Abdollahi, M. J.; Karimpour, M. H.; Kheradmand, A.; Zarasvandi, A. R.

    2009-01-01

    The Muteh gold district with nine gold deposits is located in the Sanandaj-Sirjan metamorphic zone. Gold mineralization occurs in a pre-Permian complex which mainly consists of green schists, meta-volcanics, and gneiss rocks. Shear zones are the host of gold mineralization. Gold paragenesis minerals include pyrite, chalcopyrite, pyrrhotite, and secondary minerals. Pyrites occur as pre-, syn-, and post-metamorphism minerals. To determine the source of the ore-bearing fluids, fifty samples were selected for petrographical and stable isotope studies. The mean values of 12.4 per mille , and -42 per mille for δ 18 O and δD isotopes, respectively, and a mean value of 7.75 per mille of calculated fractionation factors for δ 18 O H 2 O, from quartz veins indicate that metamorphic host rocks are the most important source for the fluids and gold mineralization. Three generations of pyrite can be distinguished showing a wide range of δ 34 S. Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones. The characteristics of the gold mineralization in the study area are similar to those of orogenic gold deposits elsewhere

  14. The giant Kalgoorlie Gold Field revisited

    Directory of Open Access Journals (Sweden)

    Noreen Mary Vielreicher

    2016-05-01

    Direct timing constraints on gold mineralization indicate that Fimiston- and Mt Charlotte-style mineralization formed within a relative short period of time around 2.64 Ga, and, as such, support a model of progressive deformation of a rheologically heterogeneous rock package late in the structural history. Fluid characteristics, combined with the structural, metamorphic and absolute timing, support description of gold mineralization at the Golden Mile as orogenic and mesozonal, and this allows direct correlation with orogenic gold deposits worldwide, which classically formed during accretion along convergent margins throughout Earth history.

  15. Province-scale commonalities of some world-class gold deposits: Implications for mineral exploration

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2015-05-01

    Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adopted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.

  16. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    Science.gov (United States)

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  17. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran

    Directory of Open Access Journals (Sweden)

    Taghipour Batoul

    2015-03-01

    Full Text Available The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ, within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist and footwall (meta-limestone rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG type shear zone and orogenic type gold mineralisation.

  18. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from H-O-He-Ar isotopes

    Science.gov (United States)

    Zeng, Qingdong; He, Huaiyu; Zhu, Rixiang; Zhang, Song; Wang, Yongbin; Su, Fei

    2017-08-01

    The Haigou lode deposit contains 40 t of gold at an average grade of 3.5 g/t, and is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold-bearing quartz veins hosted in a Carboniferous monzonite-monzogranite stock. Cretaceous dikes consisting of diorite, diabase, and granodiorite porphyries are well developed in the deposit. The diorite porphyry dikes (130.4 ± 6.3 Ma) occur together with gold-bearing quartz veins in NNE- and NE-striking faults. Gold-bearing quartz veins crosscut the diorite porphyry dikes, and the veins are in turn crosscut by E-W-striking 124.6 ± 2.2 Ma granodiorite porphyry dikes. The mineralization mainly occurs as auriferous quartz veins with minor amounts of sulfide minerals, including pyrite, galena, chalcopyrite, and molybdenite. Gold occurs as either native gold or calaverite. Common gangue minerals in the deposit include quartz, sericite, and calcite. The deposit is characterized by various types of hydrothermal alteration, including silicification, sericitization, chloritization, potassic alteration, and carbonatization. Three stages of hydrothermal activity have been recognized in the deposit: (1) a barren quartz stage; (2) a polymetallic sulfide (gold) stage; (3) a calcite stage. Fluid inclusions in hydrothermal pyrites have 3He/4He ratios of 0.3 to 3.3 Ra and 40Ar/36Ar ratios of 351 to 1353, indicating mixing of fluids of mantle and crustal origin. Hydrothermal quartz yielded δ18O values of -1.3‰ to +7.2‰ and δD values of fluid inclusions in the quartz vary between -80‰ and -104‰. These stable isotope data also suggest mixing of magmatic and meteoric fluids. Noble gas and stable isotopic data suggest that the ore fluids have a predominant mantle source with a significant crustal component. Based on the spatial association of gold-bearing quartz veins with early Cretaceous intrusions, and the H-O-He-Ar isotopic

  19. Study on the determination of ore-formation age of primary gold ore

    International Nuclear Information System (INIS)

    Ying Junlong; Zhao Puyun; Guo Hong

    1997-01-01

    The accurate determination of gold ore-formation age and ore-source isotope composition are of important significance in the research on gold geology and prospecting. According to the summary of three year indoor and field work, the ore-formation ages and isotope compositions of some typical gold deposits were obtained: The age of gold ore of the Wuhuaaobao deposit in geo-syncline region north to the north margin of North-China paleo-land is 130-120 Ma corresponding to the Late-orogenic stage. The ore-formation age of the Saiwusu gold deposit in the southern platform region is 211 +- 15 Ma, recycling reworking of the old-land. The Hougou-Huangtuliang gold deposit located in the middle of the platform region is 243 +- 7 Ma old attributed to the regeneration ore-formation on the old-land. the age of Jiaojia-Rushan gold deposit in Eastern Shandong is 122.7 +- 3.4 Ma and 128 +- 23 Ma belonging to Yanshanian stage. The Babaoshan gold-silver deposit in Cathaysian old-land is 140 +- 5 Ma old originated from volcanic hydrothermal ore-formation

  20. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  1. Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras

    Science.gov (United States)

    Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro

    2014-04-01

    The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.

  2. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization

    Science.gov (United States)

    Han, Chunming; Xiao, Wenjiao; Zhao, Guochun; Ao, Songjian; Zhang, Jien; Qu, Wenjun; Du, Andao

    2010-12-01

    The timing and genesis of the major Ni-Cu-Co sulfide deposit in the Xiangshan intrusion have been studied based on newly obtained in-situ U-Pb, Hf and Re-Os isotopic analyses. The SIMS U-Pb zircon ages of the gabbro hosting the Ni-Cu-Co sulfide deposit indicate that the Xiangshan intrusion was emplaced at 279.6 ± 1.1 Ma (95% confidence level, MSWD = 1.30, n = 15). On the basis of combined geological and geochronological evidence, we suggest that the Xiangshan and other adjacent Ni-Cu deposits were formed in the same period. Sulphides have low common Os concentrations and high Re/Os ratios, similar to sulphide ores from the Duluth, Sally Malay and Voisey Bay complexes. The Re-Os isotopic data from the disseminated and massive ores from the Xiangshan intrusion do not form a single isochron, as they have different initial Os ratios. The Hf and Os isotopic data suggest that the Xiangshan intrusion and associated Ni-Cu-Co mineralization were derived from crustally contaminated mantle melts. The geochemical data show a tholeiitic affinity and a strong suprasubduction zone signature with negative Nb, Sr, and Ti anomalies similar to N-MORB and E-MORB. We suggest that the mafic-ultramafic rocks and associated Ni-Cu mineralization of the Eastern Tianshan orogen formed in an Alaska-type subduction zone-arc setting. Some diagnostic features of ridge-trench interaction are present in the Chinese East Tianshan orogen (e.g. granites, adakites, high-Mg andesites, near-trench magmatism, Alaskan-type mafic-ultramafic complexes, high-temperature metamorphic belts that prograde rapidly from low-grade belts, and orogenic gold deposits). The above distinctive rock groups are probably related to the same thermal event, ridge subduction, as in the Cenozoic orogen of Alaska. We suggest that ridge subduction is the most plausible mechanism to provide the necessary heat. Ridge subduction provides an important promising model for understanding many aspects of the evolution of the Chinese

  3. The Metamorphic Rocks-Hosted Gold Mineralization At Rumbia Mountains Prospect Area In The Southeastern Arm of Sulawesi Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hasria Hasria

    2017-09-01

    Full Text Available Recently, in Indonesia gold exploration activities  are not only focused along volcanic-magmatic belts, but also starting to shift along metamorphic and sedimentary terrains. The study area is located in Rumbia mountains, Bombana Regency, Southeast Sulawesi Province. This paper is aimed to describe characteristics of alteration and ore mineralization associated  with metamorphic rock-related gold deposits.  The study area is found the placer and  primary gold hosted by metamorphic rocks. The gold is evidently derived from gold-bearing quartz veins hosted by Pompangeo Metamorphic Complex (PMC. These quartz veins are currently recognized in metamorphic rocks at Rumbia Mountains. The quartz veins are mostly sheared/deformed, brecciated, irregular vein, segmented and  relatively massive and crystalline texture with thickness from 1 cm to 15.7 cm. The wallrock are generally weakly altered. Hydrothermal alteration types include sericitization, argillic, inner propylitic, propylitic, carbonization and carbonatization. There some precious metal identified consist of native gold and ore mineralization including pyrite (FeS2, chalcopyrite (CuFeS2, hematite (Fe2O3, cinnabar (HgS, stibnite (Sb2S3 and goethite (FeHO2. The veins contain erratic gold in various grades from below detection limit <0.0002 ppm to 18.4 ppm. Based on those characteristics, it obviously indicates that the primary gold deposit present in the study area is of orogenic gold deposit type. The orogenic gold deposit is one of the new targets for exploration in Indonesia

  4. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation

    Science.gov (United States)

    Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, Chad; McClelland, W.

    2004-01-01

    -10 per mil, with the sulfur derived from diagenetic pyrite and organic matter within ihe flysch basin. A smaller group of ??34S measurements, which shows values as depleted as -27 per mil, suggests a different local sulfur reservoir in the basin for the later hydrothermal episode dominated by stibnite. Initial ENd of -8.7 to -3.1 and 87Sr/86Sr measurements of 0.706 to 0.709 for the ore-hosting dikes also indicate a crustal reservoir for some of the Late Cretaceous magmatism. Overlapping lead isotope data for these intrusive rocks and for sulfide minerals suggest a crustal contribution for the lead in both. Copper- and gold-bearing stockwork veinlets in hornfels occur at Dome, a prospect located at the northern end of the Donlin Creek deposit. These stockworks are cut by the younger auriferous gold veins that define the main Donlin Creek gold mineralization. Highly saline, gas-rich, heterogeneously trapped fluids deposited the stockworks at temperatures approximately 100??C hotter than those of the main gold-forming event at Donlin Creek. The genetic relationship of the Dome prospect to the main Donlin Creek gold resource is equivocal. The epizonal Donlin Creek deposit shows affinities to the gold systems interpreted by various workers as orogenic or intrusion related; it shows important differences from typical epithermal and Carlin-like deposits. The ore-forming fluids were derived by either broad-scale metamorphic devolatilization above rising mantle melts or exsolution from a magma that was dominated by a significant flysch melt component. ??2004 by Economic Geology.

  5. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China

    Science.gov (United States)

    Yang, Fuquan; Geng, Xinxia; Wang, Rui; Zhang, Zhixin; Guo, Xuji

    2018-06-01

    The Altay Mountains within the Xinjiang region of northwestern China hosts major metallic ore deposits. Here we review the geological characteristics, metallogenic features and tectonic settings of these deposits. The metallic ore deposits in the Altay Mountains occur mainly within four regions: North Altay, Central Altay, South Altay and Erqis. We recognize seven types of metallic ore deposits in the Altay Mountains: VMS, submarine volcanogenic iron, magmatic, skarn, pegmatite, hydrothermal vein (Cu-Zn, Fe) and orogenic gold. Among these types, the VMS, pegmatite, orogenic gold and skarn deposits are the most common. Most of the rare metal pegmatite deposits are distributed in Central Altay, with only a few in South Altay. The VMS, submarine volcanogenic type iron and skarn-type deposits are distributed in South Altay, whereas the orogenic-type gold deposits are distributed in the Erqis Fault belt. The hydrothermal vein-type deposits occur in the Erqis Fault belt and Chonghu'er Basin in South Altay. Magmatic-type deposits are mostly in the Erqis Fault belt and Central Altay. Based on isotopic age data, the VMS, submarine volcanogenic-type Fe and skarn-type Cu, Pb, Zn, Fe mineralization occurred during Early-Middle Devonian (∼410-377 Ma), orogenic-type Au, magmatic-type Cu-Ni, and a small number of skarn-type Fe, hydrothermal vein-type Cu-Zn, pegmatite-type rare-metal deposits in Early-Middle Permian (293-261 Ma), pegmatite-type rare-metal deposits, few skarn-type Fe deposit in Early-Middle Triassic (248-232 Ma), and dominantly represented by pegmatite-type rare-metal deposits in Late Triassic-Early Jurassic (223-180 Ma). The metallic ore deposits in the Altay Mountains formed in various tectonic settings, such as the Early-Middle Devonian continental arc and oceanic island arc, Early-Middle Permian post-collisional extensional setting, and Triassic-Early Jurassic intracontinental setting.

  6. Major Brazilian gold deposits - 1982 to 1999

    Science.gov (United States)

    Thorman, Charles H.; DeWitt, Ed; Maron, Marcos A.; Ladeira, Eduardo A.

    2001-07-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (>20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Carajás Mineral Province.

  7. Major brazilian gold deposits - 1982 to 1999

    Science.gov (United States)

    Thorman, C.H.; Dewitt, E.; Maron, M.A.; Ladeira, E.A.

    2001-01-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased 'rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (> 20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Caraja??s Mineral Province.

  8. Archaean Gold Mineralization in an Extensional Setting: The Structural History of the Kukuluma and Matandani Deposits, Geita Greenstone Belt, Tanzania

    Directory of Open Access Journals (Sweden)

    Shimba D. Kwelwa

    2018-04-01

    with intrusive complexes and volcanics that formed in an oceanic plateau rather than subduction setting, and formed late-tectonically during an extensional phase. They are not characteristic of typical orogenic gold deposits.

  9. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  10. Principal types of precambrian uranium-gold deposits and their metallogenetic characteristics in China

    International Nuclear Information System (INIS)

    Liang Liang; Zhong Zhiyun.

    1988-01-01

    Principal types of Precambrian uranium-gold deposits are follows: paleo-conglomerate uranium-deposit, stratified or strata-bound uranium-gold deposit, unconformity-related uranium deposit (no or seldem gold) and greenstone gold deposit. The main types of gold deposits in China is greenstone one which is characterized by later age, high grade metamorphism and a large time difference between diagenesis of host rocks and gold metallogenesis. Gold deposits are spatially distributed in the uplift area, whereas uranium deposits are distributed in the downfaulted belt. Furthermore, both uranium and gold deposits are controlled by regional fractures

  11. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data

    Science.gov (United States)

    Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto

    2012-03-01

    This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial modeling techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity models include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold geochemical anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil geochemical anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.

  12. Flash vaporization during earthquakes evidenced by gold deposits

    Science.gov (United States)

    Weatherley, Dion K.; Henley, Richard W.

    2013-04-01

    Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.

  13. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  14. Physicochemical Properties of Gold Nanostructures Deposited on Glass

    Directory of Open Access Journals (Sweden)

    Zdenka Novotna

    2014-01-01

    Full Text Available Properties of gold films sputtered onto borosilicate glass substrate were studied. UV-Vis absorption spectra were used to investigate optical parameters. XRD analysis provided information about the gold crystalline nanostructure, the texture, and lattice parameter and biaxial tension was also determined by the XRD method. The surface morphology was examined by atomic force microscopy (AFM; chemical structure of sputtered gold nanostructures was examined by X-ray photoelectron spectroscopy (ARXPS. The gold crystallites are preferentially [111] oriented on the sputtered samples. Gold deposition leads to dramatic changes in the surface morphology in comparison to pristine glass substrate. Oxygen is not incorporated into the gold layer during gold deposition. Experimental data on lattice parameter were also confirmed by theoretical investigations of nanoclusters using tight-binding potentials.

  15. Phanerozoic continental growth and gold metallogeny of Asia

    Science.gov (United States)

    Goldfarb, Richard J.; Taylor, Ryan D.; Collins, Gregory S.; Goryachev, Nicolay A.; Orlandini, Omero Felipe

    2014-01-01

    The Asian continent formed during the past 800 m.y. during late Neoproterozoic through Jurassic closure of the Tethyan ocean basins, followed by late Mesozoic circum-Pacific and Cenozoic Himalayan orogenies. The oldest gold deposits in Asia reflect accretionary events along the margins of the Siberia, Kazakhstan, North China, Tarim–Karakum, South China, and Indochina Precambrian blocks while they were isolated within the Paleotethys and surrounding Panthalassa Oceans. Orogenic gold deposits are associated with large-scale, terrane-bounding fault systems and broad areas of deformation that existed along many of the active margins of the Precambrian blocks. Deposits typically formed during regional transpressional to transtensional events immediately after to as much as 100 m.y. subsequent to the onset of accretion or collision. Major orogenic gold provinces associated with this growth of the Asian continental mass include: (1) the ca. 750 Ma Yenisei Ridge, ca. 500 Ma East Sayan, and ca. 450–350 Ma Patom provinces along the southern margins of the Siberia craton; (2) the 450 Ma Charsk belt of north-central Kazakhstan; (3) the 310–280 Ma Kalba belt of NE Kazakhstan, extending into adjacent NW Xinjiang, along the Siberia–Kazakhstan suture; (4) the ca. 300–280 Ma deposits within the Central Asian southern and middle Tien Shan (e.g., Kumtor, Zarmitan, Muruntau), marking the closure of the Turkestan Ocean between Kazakhstan and the Tarim–Karakum block; (5) the ca. 190–125 Ma Transbaikal deposits along the site of Permian to Late Jurassic diachronous closure of the Mongol–Okhotsk Ocean between Siberia and Mongolia/North China; (6) the probable Late Silurian–Early Devonian Jiagnan belt formed along the margin of Gondwana at the site of collision between the Yangtze and Cathaysia blocks; (7) Triassic deposits of the Paleozoic Qilian Shan and West Qinling orogens along the SW margin of the North China block developed during collision of South China

  16. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  17. A new indicator mineral methodology based on a generic Bi-Pb-Te-S mineral inclusion signature in detrital gold from porphyry and low/intermediate sulfidation epithermal environments in Yukon Territory, Canada

    Science.gov (United States)

    Chapman, R. J.; Allan, M. M.; Mortensen, J. K.; Wrighton, T. M.; Grimshaw, M. R.

    2017-12-01

    Porphyry-epithermal and orogenic gold are two of the most important styles of gold-bearing mineralization within orogenic belts. Populations of detrital gold resulting from bulk erosion of such regions may exhibit a compositional continuum wherein Ag, Cu, and Hg in the gold alloy may vary across the full range exhibited by natural gold. This paper describes a new methodology whereby orogenic and porphyry-epithermal gold may be distinguished according to the mineralogy of microscopic inclusions observed within detrital gold particles. A total of 1459 gold grains from hypogene, eluvial, and placer environments around calc-alkaline porphyry deposits in Yukon (Nucleus-Revenue, Casino, Sonora Gulch, and Cyprus-Klaza) have been characterized in terms of their alloy compositions (Au, Ag, Cu, and Hg) and their inclusion mineralogy. Despite differences in the evolution of the different magmatic hydrothermal systems, the gold exhibits a clear Bi-Pb-Te-S mineralogy in the inclusion suite, a signature which is either extremely weak or (most commonly) absent in both Yukon orogenic gold and gold from orogenic settings worldwide. Generic systematic compositional changes in ore mineralogy previously identified across the porphyry-epithermal transition have been identified in the corresponding inclusion suites observed in samples from Yukon. However, the Bi-Te association repeatedly observed in gold from the porphyry mineralization persists into the epithermal environment. Ranges of P-T-X conditions are replicated in the geological environments which define generic styles of mineralization. These parameters influence both gold alloy composition and ore mineralogy, of which inclusion suites are a manifestation. Consequently, we propose that this methodology approach can underpin a widely applicable indicator methodology based on detrital gold.

  18. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  19. The Yatela gold deposit in Mali, West Africa: The final product of a long-lived history of hydrothermal alteration and weathering

    Science.gov (United States)

    Masurel, Quentin; Miller, John; Hein, Kim A. A.; Hanssen, Eric; Thébaud, Nicolas; Ulrich, Stanislav; Kaisin, Jean; Tessougue, Samuel

    2016-01-01

    The Yatela gold deposit is located in the Kédougou-Kénieba inlier (KKI), a window of ca. 2200-2050 Ma rocks that are exposed in eastern Senegal and western Mali. The geology of the KKI differs from other Paleoproterozoic granite-greenstone belts and sedimentary basins by the abundance of carbonate rocks. The Yatela deposit occurs within 8 km of the regional-scale Senegal-Mali Shear Zone. Country rocks in the Yatela region have been subjected to polycyclic deformation and regional greenschist-facies metamorphism. A syn-kinematic diorite stock has intruded the metasedimentary sequences in the open pit and is associated with a hornblende-hornfels contact aureole. Field relationships and micro-textural data indicate that the primary gold mineralisation is shear-hosted. The similar relative timing and structural setting between the Yatela primary gold mineralisation and other world-class deposits in the region (e.g., Loulo, Lawrence et al., 2013a; Massawa, Treloar et al., 2014; Sadiola Hill, Masurel et al., in press) suggest that regional orogenic gold mineralisation occurred during a period of transcurrent tectonics, after the cessation of regional compressional deformation. The primary gold mineralisation at Yatela, however, is low-grade and sub-economic. It is hosted by marbles and, to a lesser extent, diorite. The primary ore is pyrite-rich, with abundant chalcopyrite, minor arsenopyrite and accessory Zn-Pb-Sb-Fe-Ag-Co-Ni-bearing mineral species. Post-Birimian surficial dissolution of hydrothermally altered and mineralised host marbles resulted in the creation of troughs, which were draped and infilled with a ferruginous dissolution residue enriched in gold. This auriferous residuum formed the economic resource mined at Yatela until decommissioning in 2013. The Yatela gold deposit is unique with respect to mineralisation types encountered in West Africa because an auriferous residuum of economic interest (>1 Moz) derives from an underlying sub-economic Birimian

  20. Metallogenesis of the lode gold deposit in Ilesha area of southwestern Nigeria: inferences from lead isotope systematics

    International Nuclear Information System (INIS)

    Oyinloye, A.O.

    2006-01-01

    Studies were carried out on the geochemistry of 18 representative samples of the granite gneiss host rock, common Pb dates on six granite gneiss whole rock samples, six feldspar sample separates, and six samples from the lode gold deposit in the Ilesha schist belt. The AFM plot for the biotite granite gneiss indicated that its potlatch was derived from a subduction related tectonic setting. The granite gneiss had low U/Pb and Th/Pb ratios (0.10 to 0.31 and 0.33 to 1.31, respectively), and upper crystal Pb content of 30-47 ppm. The /sup 207/Pb/sup 204/Pb, /sup 206/Pb /sup 204/Pb, /sup 208/Pb/sup 204/Pb, were extremely homogeneous in the host rock, the feldspar, and the pyrite indicating derivation from a subduction related environment like a back arc or island arc. The two-stage Stacy and Kramers (1975) Pb-Pb model dating method of interpretation adopted in this study indicated that the granite gneiss was emplaced at 2750 +- 25 Ma in an orogen. On analysis, common Pb in pyrite yielded an average model age of 550 Ma. This Pb systematic indicated that Au was derived from the volcanics in the lIesha schist belt by hydrothermal leaching, transported through the same medium and deposited in the massive quartz veins as thio-complexes from which native gold was liberated through interaction of the ore fluid and spinals in the host rock. Studies were carried out on the geochemistry of 18 representative samples of the granite gneiss host rock, common Pb dates on six granite gneiss whole rock samples, six feldspar sample separates, and six samples from the lode gold deposit in the Ilesha schist belt. The AFM plot for the biotite granite gneiss indicated that its potlatch was derived from a subduction related tectonic setting. The granite gneiss had low U/Pb and Th/Pb ratios (0.10 to 0.31 and 0.33 to 1.31, respectively), and upper crustal Pb content of 30-47 ppm. The /sup 207/Pb /sup 204/Pb, /sup 206/Pb /sup 204/Pb, /sup 208/Pb /sup 204/Pb, were extremely homogeneous in the

  1. A special issue devoted to gold deposits in northern Nevada: Part 2. Carlin-type Deposits

    Science.gov (United States)

    Hofstra, Albert H.; John, David A.; Theodore, Ted G.

    2003-01-01

    This is the second of two special issues of Economic Geology devoted to gold deposits in northern Nevada. Readers interested in a general overview of these deposits, their economic significance, their context within the tectonic evolution of the region, and synoptic references on each gold deposit type are directed to the preface of the first special issue (John et al., 2003). Volume 98, issue 2, contains five papers that address regional aspects important to the genesis of gold deposits in northern Nevada and five papers that present detailed studies of epithermal deposits and districts. All of the regional papers are pertinent to Carlin-type gold deposits, because they address the age of mineralization (Arehart et al., 2003), origin and evolutionary history of the northwest-striking mineral belts that localize many deposits (Grauch et al., 2003), nature of the middle and lower crust below these mineral belts (Howard, 2003), district- to deposit-scale stream sediment and lithogeochemical anomalies (Theodore et al., 2003), and stratigraphy and structure of a district located along a northeast-striking lineament (Peters et al., 2003).

  2. The giant Carlin gold province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary

    Science.gov (United States)

    Emsbo, P.; Groves, D.I.; Hofstra, A.H.; Bierlein, F.P.

    2006-01-01

    Northern Nevada hosts the only province that contains multiple world-class Carlin-type gold deposits. The first-order control on the uniqueness of this province is its anomalous far back-arc tectonic setting over the rifted North American paleocontinental margin that separates Precambrian from Phanerozoic subcontinental lithospheric mantle. Globally, most other significant gold provinces form in volcanic arcs and accreted terranes proximal to convergent margins. In northern Nevada, periodic reactivation of basement faults along this margin focused and amplified subsequent geological events. Early basement faults localized Devonian synsedimentary extension and normal faulting. These controlled the geometry of the Devonian sedimentary basin architecture and focused the discharge of basinal brines that deposited syngenetic gold along the basin margins. Inversion of these basins and faults during subsequent contraction produced the complex elongate structural culminations that characterize the anomalous mineral deposit "trends." Subsequently, these features localized repeated episodes of shallow magmatic and hydrothermal activity that also deposited some gold. During a pulse of Eocene extension, these faults focused advection of Carlin-type fluids, which had the opportunity to leach gold from gold-enriched sequences and deposit it in reactive miogeoclinal host rocks below the hydrologic seal at the Roberts Mountain thrust contact. Hence, the vast endowment of the Carlin province resulted from the conjunction of spatially superposed events localized by long-lived basement structures in a highly anomalous tectonic setting, rather than by the sole operation of special magmatic or fluid-related processes. An important indicator of the longevity of this basement control is the superposition of different gold deposit types (e.g., Sedex, porphyry, Carlin-type, epithermal, and hot spring deposits) that formed repeatedly between the Devonian and Miocene time along the trends

  3. Gold deposits in the western sector of the Central Spanish System

    International Nuclear Information System (INIS)

    Barrios, S.; Florido, P.; Reguilon, R.

    2010-01-01

    The gold deposits in the western sector of the Central Spanish System can be grouped in: (1) gold quartz veins type (El Chivote, La Pedrera), (2) paleoplacers: gold nuggets in tertiary alluvial deposits (Las Cavenes, Sierro de Coria), (3) quaternary placers (Rio Erjas), (4) gold nuggets in a regolith developed on the Schist and Graywacke Complex (CEG) (Casillas de Coria). The morphological study of gold nuggets will provide physical, chemical, bacteriological and climatic characteristics. Mining works are located on these deposits from roman time to the present day. (Author)

  4. Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and co-deposition of gold and carbon

    International Nuclear Information System (INIS)

    Salvadori, M. C.; Teixeira, F. S.; Araújo, W. W. R.; Sgubin, L. G.; Cattani, M.; Spirin, R. E.; Brown, I. G.

    2012-01-01

    We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp 3 bonding for the DLC, demonstrating that some sp 3 bonds are destroyed by the gold implantation.

  5. Sulphur isotopes in a metamorphogenic gold deposit, Macraes mine, Otago Schist, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Hall, A.J.; Fallick, A.E.; Boyce, A.J.

    1995-01-01

    The Macraes gold quartz vein deposit, New Zealand, is located in a shear zone cutting greenschist facies metasediments of the Otago Schist. The deposit has been interpreted as being metamorphogenic in origin as there is no evidence for coeval magmatic activity in the Otago Schist orogen. The immediate host rock at the Macraes deposit is pyritic (δ 34 S = -2.7 to -1.3 per mil ) and locally weakly graphitic schist, a rare rock type in the Otago Schist. Sulphur isotope analyses of pyrite and arsenopyrite extracts from auriferous veins and wall-rock schist provide a similar narrow range in δ 34 S values, from -3.0 to -1.0 per mil (n=9). The lack of isotopically depleted sulphur, the narrow range in values, and the replacement sulphide textures help discount a primary bacteriogenic origin for host-rock sulphide. Sulphide in both veins and wall rock is of hydrothermal origin. Sulphides in metasediments and metavolcanics elsewhere in the Otago Schist have δ 34 S in the narrow range -6 to +6 per mil. The sulphur isotope data are consistent with origin of hydrothermal sulphur within the metamorphic pile but provide no constraint on specific rock types which contributed the sulphur to the hydrothermal fluid. The study demonstrates that sulphur isotopic signatures near zero per mil can arise without any direct magmatic input into the mineralisation process. (author). 34 refs., 2 figs., 1 tab

  6. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  7. Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the formation of the Grass Valley gold district, Sierra Foothills province, California

    Science.gov (United States)

    Taylor, Ryan D.; Goldfarb, Richard J.; Monecke, Thomas; Fletcher, Ian R.; Cosca, Michael A.; Kelly, Nigel M.

    2015-01-01

    The Grass Valley orogenic gold district in the Sierra Nevada foothills province, central California, the largest historic gold producer of the North American Cordillera, comprises both steeply dipping east-west (E-W) veins located along lithologic contacts in accreted ca. 300 and 200 Ma oceanic rocks and shallowly dipping north-south (N-S) veins hosted by the Grass Valley granodiorite; the latter have yielded about 70 percent of the 13 million ounces of historic lode gold production in the district. The oceanic host rocks were accreted to the western margin of North America between 200 and 170 Ma, metamorphosed to greenschist and amphibolite facies, and uplifted between 175 and 160 Ma. Large-scale magmatism in the Sierra Nevada occurred between 170-140 Ma and 120-80 Ma, with the Grass Valley granodiorite being emplaced during the older episode of magmatism. Uranium-lead isotopic dating of hydrothermal xenotime yielded the first absolute age of 162±5 Ma for the economically more significant N-S veins. The vein-hosted xenotime, as well as associated monazite, are unequivocally of hydrothermal origin as indicated by textural and chemical characteristics, including grain shape, lack of truncated growth banding, lack of a Eu anomaly, and low U and Th concentrations. Furthermore, the crack-seal texture of the veins, with abundant wallrock slivers, suggests their formation as a result of episodic fluid flow possibly related to reoccurring seismic events, rather than a period of fluid exsolution from an evolving magma. The N-S veins are temporally distinct from a younger 153-151 Ma gold event that was previously reported for the E-W veins. Overlapping U-Pb zircon (159.9±2.2 Ma) and 40Ar/39Ar biotite and hornblende (159.7±0.6 to 161.9±1.4 Ma) ages and geothermobarometric calculations indicate that the Grass Valley granodiorite was emplaced at ca. 160 Ma at elevated temperatures (~800°C) within approximately 3 km of the paleosurface and rapidly cooled to the ambient

  8. Sediment-hosted gold deposits of the world: database and grade and tonnage models

    Science.gov (United States)

    Berger, Vladimir I.; Mosier, Dan L.; Bliss, James D.; Moring, Barry C.

    2014-01-01

    All sediment-hosted gold deposits (as a single population) share one characteristic—they all have disseminated micron-sized invisible gold in sedimentary rocks. Sediment-hosted gold deposits are recognized in the Great Basin province of the western United States and in China along with a few recognized deposits in Indonesia, Iran, and Malaysia. Three new grade and tonnage models for sediment-hosted gold deposits are presented in this paper: (1) a general sediment-hosted gold type model, (2) a Carlin subtype model, and (3) a Chinese subtype model. These models are based on grade and tonnage data from a database compilation of 118 sediment-hosted gold deposits including a total of 123 global deposits. The new general grade and tonnage model for sediment-hosted gold deposits (n=118) has a median tonnage of 5.7 million metric tonnes (Mt) and a gold grade of 2.9 grams per tonne (g/t). This new grade and tonnage model is remarkable in that the estimated parameters of the resulting grade and tonnage distributions are comparable to the previous model of Mosier and others (1992). A notable change is in the reporting of silver in more than 10 percent of deposits; moreover, the previous model had not considered deposits in China. From this general grade and tonnage model, two significantly different subtypes of sediment-hosted gold deposits are differentiated: Carlin and Chinese. The Carlin subtype includes 88 deposits in the western United States, Indonesia, Iran, and Malaysia, with median tonnage and grade of 7.1 Mt and 2.0 g/t Au, respectively. The silver grade is 0.78 g/t Ag for the 10th percentile of deposits. The Chinese subtype represents 30 deposits in China, with a median tonnage of 3.9 Mt and medium grade of 4.6 g/t Au. Important differences are recognized in the mineralogy and alteration of the two sediment-hosted gold subtypes such as: increased sulfide minerals in the Chinese subtype and decalcification alteration dominant in the Carlin type. We therefore

  9. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    Science.gov (United States)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  10. The shear zone-related gold mineralization at the Turmalina deposit, Quadrilátero Ferrífero, Brazil: structural evolution and the two stages of mineralization

    Science.gov (United States)

    Fabricio-Silva, Wendell; Rosière, Carlos Alberto; Bühn, Bernhard

    2018-05-01

    Turmalina is an important orogenic gold deposit located in the NW region of the Quadrilátero Ferrífero. The deposit is hosted in an Archean greenstone belt composed of ortho-amphibolites and pelites with interleaved tuffs metamorphosed under amphibolite facies conditions and intruded by a granite stock. The orebodies are controlled by WNW-ESE-trending shear zones, associated with hydrothermal alteration. Three deformation events are recognized in the Turmalina gold deposit: D1 and D2 are the result of a progressive Archean deformation under ductile conditions between 2749 ± 7 and 2664 ± 35 Ma; D3 is characterized by a transpressional event under ductile-brittle conditions with the age still unclear. The three generations of garnet observed show that Grt1 blastesis is pre- to syn-D1 and Grt2 growth during the late to post-deformation stages of the D2 event. The initial temperature (Grt1 core) is around 548-600 °C, whereas during late D2, the temperatures reached 633 °C (metamorphic peak-Grt2 rim), likely as a result of granite intrusion. The Grt3 resulted from re-equilibration under retrograde conditions. Two gold-bearing sulfide stages were identified: pyrrhotite-arsenopyrite ± löllingite ± chalcopyrite ± gold stage I precipitated below a metamorphic peak temperature of 598 ± 19 °C associated with S1 foliation (D1), and pyrrhotite-pyrite-arsenopyrite ± chalcopyrite ± gold stage II is located commonly along V3 quartz-carbonate veinlets with a temperature range between 442 ± 9 and 510 ± 30 °C. We suggest that the granite intrusion imposed an additional thermal effect that promoted further dehydration of country rocks. The Au derived mainly from a metamorphic fluid source but potentially mixed with magmatic fluids from the granite.

  11. GOLD-BEARING MINERALIZED ZONES OF THE YUZHNOE ORE OCCURRENCE AND ITS COMPARISON WITH LODE GOLD DEPOSITS OF YENISEI RIDGE

    OpenAIRE

    MANSUROV R.KH.

    2016-01-01

    The relevance of the discussed issue is caused by the need to detect a new gold ore deposits within the Yenisei ridge to replenish the mineral resources of gold ore in Russia. The main aim of the study is to explore the features of geological structure and gold ore mineralized zones of ore occurrence Yuzhnoe in order to forecast gold ore bodies, and to substantiate the continuation of geological exploration. The prospecting is realized by the express method of prospecting of gold ore deposits...

  12. Gold and uranium metallogenesis in the framework of Neo-proterozoic crust growth and differentiation: example of the Mayo-Kebbi Massif (Chad) in the Central Africa Orogenic belt

    International Nuclear Information System (INIS)

    Mbaguedje, Diondoh

    2015-01-01

    The Mayo Kebbi massif located in southwestern Chad between the Congo craton in the South, the West African craton in the west and the Sahara meta-craton to the east exposes a segment of Neo-proterozoic juvenile crust accreted in the Central African orogenic belt during the Pan African orogeny. It consists of two greenstone belts (Zalbi and Goueygoudoum) separated by the May Kebbi calc-alkaline batholith complexes and intruded by calc-alkaline high-K granitic plutons. The whole is covered by Phanerozoic sedimentary formations. The greenstone belts contain sulphide zones hosted mainly by meta-plutonic rocks (granodiorites) and meta-basalts and meta-volcaniclastics. The mineralization comprises pyrite, pyrrhotite, arsenopyrite, chalcopyrite, pentlandite, pentlandite silver, pentlandite cobaltiferous, sphalerite, cobaltite. These sulphides are disseminated, aggregated in form of layers or are filling veins and cracks. The greenstones also contain quartz veins with calcite and chlorite comprising a mineralization made of pyrite, chalcopyrite, galena and gold. Gold is present both as native crystals and as electrum. The high-K calc-alkaline Zabili granitic pluton hosts uranium mineralization related to a superposition of: (1) ductile deformation and metasomatic alteration implying the interaction between magmatic minerals with a Na-rich fluid, of potential magmatic origin, coeval to the main deposition of uranium oxides, followed by (2) brittle deformation and deposition of secondary hydrated uranium silicates involving a Na-Ca-rich fluid. We propose that these uranium mineralizations represent the extreme expression of crustal differentiation as a result of Pan-African reworking of a Neo-proterozoic juvenile crustal segment. (author) [fr

  13. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  14. Selective electrochemical gold deposition onto p-Si (1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Santinacci, L; Etcheberry, A [Institut Lavoisier de Versailles (UMR CNRS 8180), University of Versailles-Saint-Quentin, 45 avenue des Etats-Unis, F-78035 Versailles cedex (France); Djenizian, T [Laboratoire Chimie Provence (UMR CNRS 6264), University of Aix-Marseille I-II-III, Centre Saint-Jerome, F-13397 Marseille Cedex 20 (France); Schwaller, P [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratory for Materials Testing and Research, Feuerwerkstr. 39, CH-3602 Thun (Switzerland); Suter, T [Laboratory for Corrosion and Materials Integrity, Swiss Federal Laboratory for Materials Testing and Research, Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Schmuki, P [Department of Materials Science, LKO-WW4, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)], E-mail: lionel.santinacci@uvsq.fr

    2008-09-07

    In this paper, we report selective electrochemical gold deposition onto p-type Si (1 0 0) into nanoscratches produced through a thin oxide layer using an atomic force microscope. A detailed description of the substrate engraving process is presented. The influence of the main scratching parameters such as the normal applied force, the number of scans and the scanning velocity are investigated as well as the mechanical properties of the substrate. Gold deposition is carried out in a KAu(CN){sub 2} + KCN solution by applying cathodic voltages for various durations. The gold deposition process is investigated by cyclic voltammetry. Reactivity enhancement at the scratched locations was studied by comparing the electrochemical behaviour of intact and engraved surfaces using a micro-electrochemical setup. Selective electrochemical gold deposition is achieved: metallic patterns with a sub-500 nm lateral resolution are obtained demonstrating, therefore, the bearing potential of this patterning technique.

  15. isotopic chronological study on gold-stibium deposits in Bayinbuluke area of Tianshan mountains

    International Nuclear Information System (INIS)

    Chen Fuwen; Li Huaqin

    2003-01-01

    Several gold-stibium deposits have recently been found in Bayinbuluke area of Tianshan Mountains, such as the Dashankou gold deposit and Chahansala stibium deposit. isotopic chronological study of mineralization show that the fluid inclusion Rb-Sr isochron age for gold-bearing pyrite-quartz veins and pyrite-limonite-quartz veins from the Dashankou gold mine are 354 ± 8.1 Ma (2 σ) and 344 ± 21 Ma (2 σ), respectively. The two ages are consistent in test errors, indicating the gold deposit was formed in early Carboniferous and related to regional shearing; the fluid inclusion Rb-Sr isochron age for quartz-stibnite veins and quartz-tetrahedrite-bismuthinite-stibnite veins from the Chahansala stibium mine is 257 ± 23 Ma (2 σ), indicating the deposit was formed during the late Hercynian-Early Indosinian Period and related to intracontinental deformation. (authors)

  16. Deposition kinetics of nanocolloidal gold particles

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Hakbijl, Mark; Wormeester, Herbert; Poelsema, Bene

    2005-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane (APTES), is investigated in situ using single wavelength optical reflectometry. A well-defined flow of colloids towards the

  17. Complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit

    International Nuclear Information System (INIS)

    Abdusalyamova, M.N.; Gadoev, S.A.; Dreisinger, D.; Solozhenkin, P.M.

    2013-01-01

    Present article is devoted to complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit. The purpose of research was obtaining the metallic mercury and antimony with further gold and thallium extraction.

  18. Composition and genesis of the Konevinsky gold deposit, Eastern Sayan, Russia

    Science.gov (United States)

    Damdinov, B. B.; Zhmodik, S. M.; Roshchektaev, P. A.; Damdinova, L. B.

    2016-03-01

    The Konevinsky gold deposit in southeast Eastern Sayan is distinguished from most known deposits in this region (Zun-Kholba, etc.) by the geological setting and composition of mineralization. To elucidate the cause of the peculiar mineralization, we have studied the composition, formation conditions, and origin of this deposit, which is related to the Ordovician granitoid pluton 445-441 Ma in age cut by intermediate and basic dikes spatially associated with metavolcanic rocks of the Devonian-Carboniferous Ilei Sequence. Four mineral assemblages are recognized: (1) quartz-pyrite-molybdenite, (2) quartz-gold-pyrite, (3) gold-polysulfide, and (4) telluride. Certain indications show that the ore was formed as a result of the superposition of two distinct mineral assemblages differing in age. The first stage dated at ~440 Ma is related to intrusions generating Cu-Mo-Au porphyry mineralization and gold-polysulfide veins. The second stage is controlled by dikes pertaining to the Devonian-Carboniferous volcanic-plutonic association. The second stage is characterized by gain of Hg and Te and formation of gold-mercury-telluride paragenesis.

  19. ∼2.5 Ga late cratonisation events in Dharwar craton: insights from the gold mineralisation ages

    International Nuclear Information System (INIS)

    Srinivasa Sarma, D.; Ram Mohan, M.; McNaughton, Neal

    2013-01-01

    The history of volcanism, granitic magmatism, and gold mineralization is defined by U-Pb geochronology of magmatic zircons and hydrothermal monazite and xenotime respectively. The felsic volcanic host rocks from Hutti greenstone belt have a U-Pb zircon age of 258 ±7 Ma, about 40 m.y. older than the age of gold mineralization at 2547±10 Ma determined from hydrothermal monazite in the Hutti gold deposit. The syntectonic Kavital granitoid in the Hutti greenstone belt has a U-Pb zircon age of 2545±7 Ma, which overlaps with the timing of gold deposition and is consistent with structural interpretations. Zircon U-Pb ages for a felsic volcanic rock (2,588±10 Ma) and an intrusive granite (e''2,555±6 Ma) in the Gadag greenstone belt in the Western Dharwar Craton. In situ U-Pb dating of monazite and xenotime in gold reefs of the Gadag (2,522±6 Ma) and Ajjanahalli (2,520±9 Ma) gold deposits reveal a previously undated episode of gold mineralization at 2.52 Ga, substantially younger than the 2.55 Ga Hutti deposit in the eastern Dharwar Craton. The Hutti, Gadag and Ajjanahalli gold geochronology suggests that gold mineralization occurred throughout the Dharwar craton some 80 to 120 m.y. later than the major peak of Late Archean world-class orogenic gold mineralization in most other Archean cratons. Although gold mineralization across the craton postdates most of the magmatic activity and metamorphism at upper crustal levels, widespread thermal reworking of the lower middle crust, involving partial melting, metamorphism, and lower crustal granitoid intrusion, occurred concurrently with gold mineralization. It is likely that the large-scale hydrothermal fluid flow that produced widespread gold deposition was also part of this tectono-thermal event during the final stages of cratonization of the Dharwar Craton in southern India. (author)

  20. Geochemistry of Gold Deposits in Anka Schist Belt, Northwestern ...

    African Journals Online (AJOL)

    HP USER

    ABSTRACT. Gold quartz veins have been identified associated with the rock formations of the Anka Schist Belt forming eight gold deposits that include Kuba I, Kuba II, Doka, Dumi I, Dumi II, Zurzurfa I, Zurzurfa II, Jameson and Kwali. The present study involves the use of major and trace elements to characterize some of the.

  1. GOLD MINERAL PROSPECTING USING PHASED ARRAY TYPE L-BAND SYNTHETIC APERTURE RADAR (PALSAR SATELLITE REMOTE SENSING DATA, CENTRAL GOLD BELT, MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2016-06-01

    Full Text Available The Bentong-Raub Suture Zone (BRSZ of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  2. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  3. Magnesium–Gold Alloy Formation by Underpotential Deposition of Magnesium onto Gold from Nitrate Melts

    Directory of Open Access Journals (Sweden)

    Vesna S. Cvetković

    2017-03-01

    Full Text Available Magnesium underpotential deposition on gold electrodes from magnesium nitrate –ammonium nitrate melts has been investigated. Linear sweep voltammetry and potential step were used as electrochemical techniques. Scanning electron microscopy (SEM, energy dispersive spectrometry (EDS and X-ray diffraction (XRD were used for characterization of obtained electrode surfaces. It was observed that reduction processes of nitrate, nitrite and traces of water (when present, in the Mg underpotential range studied, proceeded simultaneously with magnesium underpotential deposition. There was no clear evidence of Mg/Au alloy formation induced by Mg UPD from the melt made from eutectic mixture [Mg(NO32·6H2O + NH4NO3·XH2O]. However, EDS and XRD analysis showed magnesium present in the gold substrate and four different Mg/Au alloys being formed as a result of magnesium underpotential deposition and interdiffusion between Mg deposit and Au substrate from the melt made of a nonaqueous [Mg(NO32 + NH4NO3] eutectic mixture at 460 K.

  4. Geochemistry of Gold Deposits in Anka Schist Belt, Northwestern ...

    African Journals Online (AJOL)

    Gold quartz veins have been identified associated with the rock formations of the Anka Schist Belt forming eight gold deposits that include Kuba I, Kuba II, Doka, Dumi I, Dumi II, Zurzurfa I, Zurzurfa II, Jameson and Kwali. The present study involves the use of major and trace elements to characterize some of the features that ...

  5. Gold and radioactive elements in the bauxite deposits of Shevaroy hills, Tamil Nadu

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B K; Sengupta, D K

    1982-11-01

    The presence of gold and radioactive elements in the bauxite deposits of Shevaroy Hills has been determined by neutron activation technique. The behaviour of uranium supports the theoretical findings. The higher concentration of gold (<10/sup 3/%) indicates that the deposits are auriferous.

  6. Gold and radioactive elements in the bauxite deposits of Shevaroy hills, Tamil Nadu

    International Nuclear Information System (INIS)

    Mukherjee, B.K.; Sengupta, D.K.

    1982-01-01

    The presence of gold and radioactive elements in the bauxite deposits of Shevaroy Hills has been determined by neutron activation technique. The behaviour of uranium supports the theoretical findings. The higher concentration of gold ( -3 %) indicates that the deposits are auriferous. (author)

  7. Alteration zones: are they a good target for gold deposits in Egypt

    International Nuclear Information System (INIS)

    Botros, N.S.

    2002-01-01

    Extensive rock alterations are a clearly visible characteristic of most Egyptian gold deposits and occurrences. The alterations occur either surrounding the auriferous quartz veins and/or structurally controlled by specific structural features, such as fractures and shear surfaces. Some samples of these alteration zones have proved to be anomalously enriched in gold while others are completely barren. Accordingly there is a controversy on the merit of alteration zones as good lead to gold. Here, the various types of wall rocks wall-rock alteration are reviewed with a discussion on the possible reaction that could have generated them. It is concluded that two main styles of alterations could be recognized in the field. The first results during the liberation of gold from the source rocks, and is characterized by being widely distributed and spatial relation to major structures. The second style, however, is related to the deposition of gold and is recognizable only within a few meters of the auriferous quartz veins. The potentiality of each style is discussed and applications of concept are offered. In general, alterations accompanying the liberation of gold are not completely devoid of gold, but may still retain some gold depending on the mineralogical siting of gold in the source rocks. Moreover, this type of alteration is a good criterion for the presence of gold in the nearby sites. Alterations accompanying deposition of gold, on the other hand, constitute a good target for gold particularly the portions that are dissected by minor quartz veins, veinlets and stockworks (silicification) where gold is believed to migrate to such sites with silica liberated during the different types of alterations. The presence of some efficient precipitants, such as sulphides, carbonates, clay minerals, sericites, iron oxides, chlorite and graphite in the alteration zones is a good indicator of the alteration zone. (author)

  8. Age of mineralization of the Nansatsu type gold deposits, Kagoshima, Japan

    International Nuclear Information System (INIS)

    Izawa, Eiji; Urashima, Yukitoshi; Okubo, Yoshikazu.

    1984-01-01

    Gold-bearing massive silicified rocks occur in the volcanic piles of the Neogene Tertiary age in the Makurazaki district, southern Kyushu and are termed as the Nansatsu type gold deposits. Currently three mines, Kasuga, Iwato and Akeshi, are operating. The argillized zones consisting mainly of quartz, kaolinite and minor goethite surround the silicified rocks. Alunite series minerals occur in and around the silicified rocks. Ages of mineralization have been discussed for many years but were unanswered. K-Ar dating of selected alunite and alunite-bearing rocks from three mines yields ages of 5.5 - 3.7 m.y. K-Ar ages at Mt. Sonomi of the Kasuga mine (5.5 +- 0.4 m.y.) and at the Arabira orebody of the Iwato mine (4.7 +- 1.0 m.y.) probably represent the ages of gold mineralization. Slightly younger ages at Mt. Iwato of the Iwato mine (4.4 +- 0.7 m.y.) and at the No. 1 orebody of the Akeshi mine (3.7 +- 1.1 m.y.) might reflect possible changes in chemical composition of alunite during weathering after mineralization. Gold-silver mineralization in southern Kyushu took place in the Pliocene to early Pleistocene, except minor silver-rich vein type deposits in the middle Miocene time. This study shows that four values are concordant with each other and indicate the latest Miocene to early Pliocene ages for mineralization of the Nansatsu type gold deposits in the Makurazaki district. The ages are comparable with the vein type gold deposits of the early Pliocene time such as Kushikino (4.0 +- 0.3 m.y.) and Hanakago (4.8 +- 2.9 m.y.). Another gold mineralization were known in the early Pleistocene time such as Hishikari (1.5 +- 0.3 m.y.) and Ora (1.8 +- 0.2 m.y.). At present there seems to be only minor gold mineralization between 4 and 2 m.y. (author)

  9. Ultra-small platinum and gold nanoparticles by arc plasma deposition

    International Nuclear Information System (INIS)

    Kim, Sang Hoon; Jeong, Young Eun; Ha, Heonphil; Byun, Ji Young; Kim, Young Dok

    2014-01-01

    Highlights: • Ultra-small (<2 nm) and bigger platinum and gold nanoparticles were produced by arc plasma deposition (APD). • Size and coverage of deposited nanoparticles were easily controlled with APD parameters. • Crystalline structures of deposited nanoparticles emerged only when the particle size was bigger than ∼2 nm. - Abstract: Ultra-small (<2 nm) nanoparticles of platinum and gold were produced by arc plasma deposition (APD) in a systematic way and the deposition behavior was studied. Nanoparticles were deposited on two dimensional amorphous carbon and amorphous titania thin films and characterized by transmission electron microscopy (TEM). Deposition behavior of nanoparticles by APD was studied with discharge voltage (V), discharge condenser capacitance (C), and the number of plasma pulse shots (n) as controllable parameters. The average size of intrinsic nanoparticles generated by APD process was as small as 0.9 nm and deposited nanoparticles began to have crystal structures from the particle size of about 2 nm. V was the most sensitive parameter to control the size and coverage of generated nanoparticles compared to C and n. Size of APD deposited nanoparticles was also influenced by the nature of evaporating materials and substrates

  10. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran)

    Science.gov (United States)

    Taghipour, Batoul; Ahmadnejad, Farhad

    2015-03-01

    The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ), within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist) and footwall (meta-limestone) rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu) are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG) type shear zone and orogenic type gold mineralisation. Based on the number of phases observed at room temperature and their microthermometric behaviour, three fluid inclusion types have been recognised in quartz-sulphide and quartz-calcite veins: Type I monophase aqueous inclusions, Type II two-phase liquid-vapour (L-V) inclusions which are subdivided into two groups based on the homogenisation temperature (Th): a) L-V inclusions with Th from 205 to 255°C and melting temperature of last ice (Tm) from -3 to -9°C. b) L-V inclusions with higher Th from 335 to 385

  11. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Cihan, Ebru [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Özoğul, Alper [Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey); Baykara, Mehmet Z., E-mail: mehmet.baykara@bilkent.edu.tr [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey)

    2015-11-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  12. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    International Nuclear Information System (INIS)

    Cihan, Ebru; Özoğul, Alper; Baykara, Mehmet Z.

    2015-01-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  13. Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst

    Directory of Open Access Journals (Sweden)

    Britta Kämpken

    2012-07-01

    Full Text Available In this work the applicability of neopentasilane (Si(SiH34 as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of “liquid bright gold”, a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.

  14. K-Ar age for alunite-bearing rock from the Iwato gold deposit, Kagoshima Prefecture, southern Japan

    International Nuclear Information System (INIS)

    Togashi, Yukio; Shibata, Ken

    1984-01-01

    K-Ar age determination was made on a whole rock sample of the alunite-bearing silicified rock from the Iwato gold deposit, Kagoshima Prefecture, southern Japan. The sample is from one of the Nansatsu-type gold deposits, whose mineralization is characterized by the occurrence of leaching-type massive silicified rocks with gold dissemination. The result, 4.15 +- 0.78 Ma, is interpreted to be the age of the mineralization at the Iwato gold deposit. It also suggests that the Nansatsu-type deposits were formed in close association with andesitic volcanism in the early Pliocene age. (author)

  15. Illumination wavelength and time dependent nano gold photo-deposition and CO oxidation

    Directory of Open Access Journals (Sweden)

    Siewhui Chong

    Full Text Available In this study, nano gold (Au was deposited on titanium dioxide (TiO2 of different morphologies and crystallinities by photo-deposition method under LED irradiation with various wavelengths and irradiation times. The reactivity of carbon monoxide (CO oxidation of the as-prepared catalysts was examined and correlated with the characteristics of TiO2 support and gold particles. Characterization and activity tests showed that the effective illumination wavelength of photo-deposition is strongly determined by the band-gap of TiO2. Au/Cubic-TiO2 (450 nm, 5 min yielded comparatively highest CO conversion of 71%, followed by Au/P25 (375 nm, 1 min and Au/ST21 (340 nm, 1 min. When the photon energy of the LED is lower than the band-gap of TiO2, CO conversion rate increases with the irradiation time due to the decrease in gold particle size which could possibly due to the lower speed of photo-deposition compared to that of concentration diffusion. Keywords: Gold, Catalyst, TiO2, Photodeposition, Carbon monoxide, Oxidation

  16. Significant deposits of gold, silver, copper, lead, and zinc in the United States

    Science.gov (United States)

    Long, K.R.; DeYoung, J.H.; Ludington, S.

    2000-01-01

    Approximately 99 percent of past production and remaining identified resources of gold, silver, copper, lead, and zinc in the United States are accounted for by deposits that originally contained at least 2 metric tonnes (t) gold, 85 t silver, 50,000 t copper, 30,000 t lead, or 50,000 t zinc. The U.S. Geological Survey, beginning with the 1996 National Mineral Resource Assessment, is systematically compiling data on these deposits, collectively known as 'significant' deposits. As of December 31, 1996, the significant deposits database contained 1,118 entries corresponding to individual deposits or mining districts. Maintaining, updating and analyzing a database of this size is much easier than managing the more than 100,000 records in the Mineral Resource Data System and Minerals Availability System/Minerals Industry Location System, yet the significant deposits database accounts for almost all past production and remaining identified resources of these metals in the United States. About 33 percent of gold, 22 percent of silver, 42 percent of copper, 39 percent of lead, and 46 percent of zinc are contained in or were produced from deposits discovered after World War II. Even within a database of significant deposits, a disproportionate share of past production and remaining resources is accounted for by a very small number of deposits. The largest 10 producers for each metal account for one third of the gold, 60 percent of the silver, 68 percent of the copper, 85 percent of the lead, and 75 percent of the zinc produced in the United States. The 10 largest deposits in terms of identified remaining resources of each of the five metals contain 43 percent of the gold, 56 percent of the silver, 48 percent of the copper, 94 percent of the lead, and 72 percent of the zinc. Identified resources in significant deposits for each metal are less than the mean estimates of resources in undiscovered deposits from the 1996 U.S. National Mineral Resource Assessment. Identified

  17. Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Erik B. Melchiorre

    2018-02-01

    Full Text Available Placer gold from the Devils Nest deposits at Rich Hill, Arizona, USA, was studied using a range of micro-analytical and microbiological techniques to assess if differences in (paleo-environmental conditions of three stratigraphically-adjacent placer units are recorded by the gold particles themselves. High-angle basin and range faulting at 5–17 Ma produced a shallow basin that preserved three placer units. The stratigraphically-oldest unit is thin gold-rich gravel within bedrock gravity traps, hosting elongated and flattened placer gold particles coated with manganese-, iron-, barium- (Mn-Fe-Ba oxide crusts. These crusts host abundant nano-particulate and microcrystalline secondary gold, as well as thick biomats. Gold surfaces display unusual plumate-dendritic structures of putative secondary gold. A new micro-aerophilic Betaproteobacterium, identified as a strain of Comamonas testosteroni, was isolated from these biomats. Significantly, this ‘black’ placer gold is the radiogenically youngest of the gold from the three placer units. The middle unit has well-rounded gold nuggets with deep chemical weathering rims, which likely recorded chemical weathering during a wetter period in Arizona’s history. Biomats, nano-particulate gold and secondary gold growths were not observed here. The uppermost unit is a pulse placer deposited by debris flows during a recent drier period. Deep cracks and pits in the rough and angular gold from this unit host biomats and nano-particulate gold. During this late arid period, and continuing to the present, microbial communities established within the wet, oxygen-poor bedrock traps of the lowermost placer unit, which resulted in biological modification of placer gold chemistry, and production of Mn-Fe-Ba oxide biomats, which have coated and cemented both gold and sediments. Similarly, deep cracks and pits in gold from the uppermost unit provided a moist and sheltered micro-environment for additional gold

  18. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  19. The Porgera gold deposit, Papua, New Guinea, 2: sources of metals

    International Nuclear Information System (INIS)

    Richards, J.P.; McCulloch, M.T.; Kerrich, R.

    1991-01-01

    Sr and Pb isotopic studies of mineralized rocks and veins from the Porgera gold deposit indicates that these components were derived from a mixture of sedimentary and igneous sources, probably located within the Om Formation which underlies (< 3 km depth) the presently exposed Porgera Intrusive Complex (PIC) and associated ore deposit. Gold abundances in least-altered samples correlate with PGE, and indicate that the parental magma was mil enriched in Au and Pt-group elements relative to the Ir-group. (author)

  20. Deposition of plasmon gold-fluoropolymer nanocomposites

    Science.gov (United States)

    Safonov, Alexey I.; Sulyaeva, Veronica S.; Timoshenko, Nikolay I.; Kubrak, Konstantin V.; Starinskiy, Sergey V.

    2016-12-01

    Degradation-resistant two-dimensional metal-fluoropolymer composites consisting of gold nanoparticles coated with a thin fluoropolymer film were deposited on a substrate by hot wire chemical vapour deposition (HWCVD) and ion sputtering. The morphology and optical properties of the obtained coatings were determined. The thickness of the thin fluoropolymer film was found to influence the position of the surface plasmon resonance peak. Numerical calculations of the optical properties of the deposited materials were performed using Mie theory and the finite-difference time-domain (FDTD) method. The calculation results are consistent with the experimental data. The study shows that the position of the resonance peak can be controlled by changing the surface concentration of particles and the thickness of the fluoropolymer coating. The protective coating was found to prevent the plasmonic properties of the nanoparticles from changing for several months.

  1. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-05-14

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  2. Greisen deposits associated to carboniferous post-orogenic granites with mineralization potential, Sierra de Fiambala, Catamarca, Argentina

    International Nuclear Information System (INIS)

    Fogliata, A. S.; Rubinstein, N. R.; Avila, J. C.; Baez, M.

    2008-01-01

    The Fiambala range is located in the central south part of the province of Catamarca, Western Sierras Pampeanas, Argentina. It is largely conformed by Precambrian metamorphic rocks, a Cambrian granitic intrusive, Ordovician basic and ultra basic rocks and epi zonal Carboniferous granites (Los Ratones, El Salto and Ayacucho Granites). The Carboniferous granites are sub alkaline, weakly peraluminous, high silica (except for the porphyritic facies of Los Ratones granite) and moderately enriched in K. Contents of trace elements and REE indicate that El S alto and Ayacucho granites and the granular facies of Los Ratones granite have characteristics of evolved and differentiated granite associated with hydrothermal systems. The variations of trace elements, particularly Sn, W, U, Rb, Ba, Zr and Sr suggest that they correspond to granites with mineralization potential. Genetically linked to these granites there are Sn, W, U and minor base metals greisen deposits. The hydrothermal process that yield to these deposits involved two main alteration stages, beginning with alkali metasomatism follow by greissenization. According to the isotopic ages the hydrothermal processes postdate about 1 Ma the magmatic activity. The analyses of the granites and the associated greisen deposits confirm that the post orogenic carboniferous magmatism is the major metallogenetic control of the ore deposits from the studied area. This metallogenetic control could be a useful tool in prospecting similar deposits in the rest of the Western Sierras Pampeanas. (Author)

  3. Some Key Features and Possible Origin of the Metamorphic Rock-Hosted Gold Mineralization in Buru Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-07-01

    the role of supergene enrichment. Interestingly, most of the high-grade samples contain also high grade As (up to 991ppm, Sb (up to 885 ppm, and Hg (up to 75 ppm. Fluid inclusions in both quartz vein types consist of four phases including L-rich, V-rich, L-V-rich, and L1-L2-V (CO2-rich phases. Mineralizing hydrothermal fluid is typified by CO2-rich fluid, moderate temperature of 300 - 400 ºC and a typical low salinity (0.36 to 0.54 wt.% NaCl eq. Based on those key features, gold mineraliza­tion in Buru Island meets the characteristics of LS epithermal or orogenic gold deposit types; however, it tends to be fitter with orogenic gold deposit rather than another type.  

  4. Ionic Strength Dependent Kinetics of Nanocolloidal Gold Deposition

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane, is investigated in situ using single wavelength reflectometry. A well-defined flow of colloids toward the surface is realized

  5. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  6. Deposition of functionalized gold nanoparticles onto modified silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Riskin, A.; Dobbelaere, C. de; Elen, K.; Rul, H. van den; Mullens, J.; Hardy, A. [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); D' Haen, J. [Imecvzw Division IMOMEC, Diepenbeek (Belgium); Electrical and Physical Characterization, Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Bael, M.K. van [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Imecvzw Division IMOMEC, Diepenbeek (Belgium)

    2010-04-15

    In this report, an existing phase transfer method for the synthesis of alkylamine- or alkanethiol-functionalized gold nanoparticles (NPs) is investigated. A parameter study shows that the concentration of the gold salt used is important for the stability of the resulting sol, but has little effect on the final average particle size or the size distribution. By adding dodecanethiol before the reduction, the formation of NPs was inhibited, providing evidence for the autocatalytic pathway for the formation of metallic NPs in wet chemical synthesis proposed in the literature. The resulting functionalized gold NPs are deposited onto Si-OH, octadecyltrichlorosilane (OTS) or 3-mercaptopropyltrimethoxysilane modified SiO{sub 2}/Si substrates. scanning electron microscope (SEM) is used to analyze the ordering behavior and surface coverage of the NPs and it is shown that the difference in affinity for the substrate has a profound effect on the deposition behavior. The functionalization of the substrates and of the NPs is confirmed by grazing angle attenuated total reflectance fourier transform infrared spectroscopy (GATR-FTIR). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Gold in primary high thermal transformations of the Au porphyry deposit Biely vrch

    International Nuclear Information System (INIS)

    Kozak, J.; Kodera, P.; Lexa, J.; Chovan, M.

    2014-01-01

    Porphyry gold deposit Biely vrch is situated in northern part of the Javorie stratovolcano in eastern part of Central Slovakia Volcanic Field. Intrusion of diorite to andesite porphyry with andesites is affected by hydrothermal alterations with dominant intermediate argillic alteration. Accumulations of gold are spatially associated with stockwork, formed by different types of quartz veinlets. Gold grains occur in altered rocks in the vicinity of quartz veinlets and rarely also as inclusions in vein. Analysed gold grains are chemically very homogenous and have fineness between 87 to 99.50 wt % Au while silver is the only significant element in addition to gold. In deeper parts of the deposit gold also occurs associated with K and Ca-Na silicate alteration which confirms precipitation of gold already in early stages of the hydrothermal system from high salinity Fe-K rich salt melt based on analyses of corresponding fluid inclusions. Difference in the fineness of gold is not significant between primary and secondary hydrothermal alterations. The highest fineness of gold (more than 99 wt %) in advanced argillic alteration is probably caused by remobilisation by acidic hydrothermal fluids. (authors)

  8. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life

    Science.gov (United States)

    Heinrich, Christoph A.

    2015-03-01

    The Witwatersrand Basin in South Africa is one of the best-preserved records of fluvial sedimentation on an Archaean continent. The basin hosts the worlds biggest gold resource in thin pebble beds, but the process for gold enrichment is debated. Mechanical accumulation of gold particles from flowing river water is the prevailing hypothesis, yet there is evidence for hydrothermal mobilization of gold by fluids invading the metasedimentary rocks after their burial. Earth's atmosphere three billion years ago was oxygen free, but already sustained some of the oldest microbial life on land. Here I use thermodynamic modelling and mass-balance calculations to show that these conditions could have led to the chemical transport and precipitation of gold in anoxic surface waters, reconciling the evidence for fluvial deposition with evidence for hydrothermal-like chemical reactions. I suggest that the release of sulphurous gases from large volcanic eruptions created acid rain that enabled the dissolution and transport of gold in surface waters as sulphur complexes. Precipitation of the richest gold deposits could have been triggered by chemical reduction of the dissolved gold onto organic material in shallow lakes and pools. I conclude that the Witwatersrand gold could have formed only during the Archaean, after the emergence of continental life but before the rise of oxygen in the Earth's atmosphere.

  9. Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens

    Science.gov (United States)

    Şengör, A. M. Celâl; Özeren, Mehmet Sinan; Keskin, Mehmet; Sakınç, Mehmet; Özbakır, Ali Değer; Kayan, İlhan

    Post-collisional magmatism may be generated by extensive crustal melting in Tibet-type collisional environments or by falling out of slabs from under giant subduction-accretion complexes in Turkic-type collisional orogens giving rise to decompression melting of the asthenospheric mantle replacing the removed oceanic lithosphere. In Turkic-type post-collisional magmatism, the magmatic products are dominantly alkalic to peralkalic and greatly resemble those of extensional regions giving rise to much confusion especially in interpreting old collisional orogenic belts. Such magmatic regions are also host to a variety of economically valuable ore deposits, including gold. One place in the world where today active, Turkic-type post-collisional magmatism is present is the eastern Anatolian high plateau, produced after the terminal Arabia/Eurasia collision in the late Miocene. The plateau is mostly underlain by the late Cretaceous to Oligocene East Anatolian Accretionary Complex, which formed south of the Rhodope-Pontide magmatic arc. This subduction-accretion complex has been further shortening since the collision, but it has also since been domed and became almost entirely covered by at least 15,000 km 3 of volcanic rocks. The volcanic rocks are calc-alkalic in the north, transitional in the middle, and alkalic in the south of the plateau. Where the crust is thinnest today (less than 38 km), the volcanics are derived almost entirely from an enriched mantle. The ages of the volcanics also become younger from north to south, from about 11 Ma to possibly 17th century AD. We interpret the origin of the magmatic rocks as the result of decompression melting of the asthenospheric mantle sucked towards the exposed base of the East Anatolian Accretionary Complex as the oceanic lithosphere beneath it fell out. The lower density of the hot asthospheric material was the cause of the doming. We believe that similar processes dominated the post-collisional tectonics of such vast

  10. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China

    NARCIS (Netherlands)

    Wang, Changming; Carranza, E.J.M; Zhang, Shouting; Zhang, Jing; Liu, Xiaoji Liu; Zhang, Da; Sun, Xiang; Duan, Cunji

    2013-01-01

    Recognition of primary geochemical haloes is one of the most important tools for exploring undiscovered mineral resources. This tool is being routinely applied in exploration programs at the Huanxiangwa gold deposit, Xiong'er Mountains, China. Sampling of unweathered rock for multi-element analysis

  11. Constraints on mineralisation and hydrothermal alteration in the Nalunaq gold deposit, South Greenland

    DEFF Research Database (Denmark)

    Bell, Robin-Marie Fairbairn

    Summary: Nalunaq is located in South Greenland and is a small high gold-grade deposit, which for the majority of its operational life was Greenland's only metalliferous mine. Gold is hosted in narrow quartz veins which are cross-cut by late-stage faults. Gold-quartz veins are hosted by fine...

  12. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Garza, Maria de la; Hernandez, Tomas; Colas, Rafael; Gomez, Idalia

    2010-01-01

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO 2 as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {1 1 1} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  13. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Maria de la; Hernandez, Tomas [Laboratorio de Materiales I, Centro de Laboratorios Especializados, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Colas, Rafael [Programa Doctoral en Ingenieria de Materiales, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez, Idalia, E-mail: mgomez@fcq.uanl.mx [Laboratorio de Materiales I, Centro de Laboratorios Especializados, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2010-10-25

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO{sub 2} as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {l_brace}1 1 1{r_brace} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  14. Using ASD data to identify the altered minerals for exploring of gold deposit in the Beishan area, North China

    Science.gov (United States)

    Ren, G. L.; Yi, H.; Yang, M.; Liang, N.; Li, J. Q.; Yang, J. L.

    2016-11-01

    Hyperspectral information of altered minerals plays an important role in the identifications of mineralized zones. In this study, the altered minerals of two gold deposits from Fangshankou-Laojinchang regions of Beishan metallogenic belt were measured by ASD field Spectrometer. Many gold deposits would have a close relationship with Variscan magma intrusion, which have been found in study region. The alteration minerals have been divided six types by the spectral results, i.e. sericite, limonite, dolomite, chlorite, epidote and calcite. The distribution characteristics and formations of altered minerals were discussed here. By the ASD, the spectral curve of different geological units in the Jintanzi and Fangshankou gold deposits were analysed and summarized. The results show that the sericite and limonite are mainly related with the gold mineralization and widely occurred in the gold deposits. Therefore, we proposed that the sericite and limonite are the iconic alteration mineral assemblages for gold mineralization and the models of altered minerals for gold deposits could be established in this region.

  15. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals

    Directory of Open Access Journals (Sweden)

    A. V. Snachev

    2018-03-01

    Full Text Available This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5 g/t that allows suggesting the setting up of new gold deposit.

  16. Determination of gold of No. 501 uranium deposits and soil samples by cold leaching gold in dilute aqua regia and collection on activated charcoal

    International Nuclear Information System (INIS)

    Shen Maogen; Yao Liying.

    1989-01-01

    The gold determination method is described by cold leaching gold in dilute aqua regia and collection on activated charcoal and presents the results obtained in determining gold of uranium deposits and soil samples

  17. Are modern geothermal waters in northwest Nevada forming epithermal gold deposits?

    Science.gov (United States)

    Breit, George N.; Hunt, Andrew G.; Wolf, Ruth E.; Koenig, Alan E.; Fifarek, Richard; Coolbaugh, Mark F.

    2010-01-01

    Hydrothermal systems currently are active near some gold deposits in northwestern Nevada. Possible links of these modern systems to gold mineralization were evaluated by chemically and isotopically analyzing water samples from the Brady, Dixie Valley, Humboldt House, San Emidio-Empire, Soda Lake, and Wabuska geothermal areas. In addition, quartz veins from Humboldt House and the adjacent Florida Canyon Mine were analyzed to compare ore and gangue phases with those predicted to form from proximal hydrothermal fluids.Nearly all water samples are alkali-chloride-type. Total dissolved solids range from 800 to 3900 mg/L, and pH varies from 5.6 to 7.8. Geochemical modeling with SOLVEQ, WATCH, and CHILLER predict the precipitation of silica in all systems during cooling. Anhydrite, calcite, barite, pyrite, base-metal sulfides, and alumino-silicates are variably saturated at calculated reservoir temperatures and also precipitate during boiling/cooling of some fluids. Measured dissolved gold concentrations are low (<0.2μg/L), but are generally consistent with contents predicted by equilibrium of sampled solutions with elemental gold at reservoir temperatures.  Although the modern geothermal waters can precipitate ore minerals, the low gold and other ore metal concentrations require very large fluid volumes to form a deposit of economic interest.

  18. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  19. Gold and copper deposits in Central Lapland, Northern Finland, with special reference to their exploration and exploitation

    OpenAIRE

    Korkalo, T. (Tuomo)

    2006-01-01

    Abstract At least 30 gold deposits verified by means of one or more notable diamond drill hole results have been discovered in Central Lapland in the last 20 years, and these can be divided spatially into groups, between which the metal composition varies. The deposits contain varying amounts of sulphides and sulpharsenides as well as gold. Pyrite is the most common sulphide mineral in the gold deposits associated with volcanic rocks, and usually pyrrhotite in those associated with sedimen...

  20. The Sanfengshan copper deposit and early Carboniferous volcanogenic massive sulfide mineralization in the Beishan orogenic belt, Northwestern China

    Science.gov (United States)

    Wang, Jialin; Gu, Xuexiang; Zhang, Yongmei; Zhou, Chao; He, Ge; Liu, Ruiping

    2018-03-01

    The Sanfengshan copper deposit, located in the Beishan orogenic belt, Northwestern China, is hosted in the lower member of the Hongliuyuan Formation, an early Carboniferous metavolcanic-sedimentary sequence. Mineralization occurs as stratiform, stratiform-like and lenticular orebodies, and comprises of laminated, brecciated, banded, massive, and disseminated ores. The mineralogy is dominated by pyrite, chalcopyrite and sphalerite. Fe-Mn chert is widely distributed and generally occurs as massive, laminated, bands or lenses, which are consistent with the orebody. Alteration at Sanfengshan displays a clear concentric zoning pattern and the footwall alteration is more intense and somewhat thicker than the hanging-wall alteration. Systematic geochemical investigation on the volcanic rocks in this area shows that the basalts of the Hongliuyuan Formation (HLY) are predominantly tholeiites with nearly flat rare earth element (REE) pattern, insignificant negative anomalies of high field strength elements (HFSEs), and low Ti/V and Th/Nb ratios. They were most likely derived from partial melting of depleted asthenospheric mantle and formed in a fore-arc setting during initiation of the southward subduction of the Paleo-Asian Ocean. The basalts of the Maotoushan Formation (MTS) display a calc-alkaline nature and are enriched in large ion lithophile elements (LILEs) and depleted in HFSEs, suggesting an active continental margin setting. Sulfur isotope (δ34S) values of the sulfide and sulfate minerals vary between 0‰ and 5.4‰, which are consistent with sulfur derivation from leaching of the host volcanic rocks, although a direct magmatic contribution cannot be ruled out. The Re-Os isotope data of pyrite yield an isochron age of 353 ± 35 Ma, consistent with the age of the host HLY basalts. Thus, a syngenetic (volcanogenic massive sulfide) model is proposed and it is concluded that the Sanfengshan copper deposit is a typical Cyprus-type VMS deposit that formed in an early

  1. Gold nanoparticles and films produced by a laser ablation/gas deposition (LAGD) method

    International Nuclear Information System (INIS)

    Kawakami, Yuji; Seto, Takafumi; Yoshida, Toshinobu; Ozawa, Eiichi

    2002-01-01

    Gold nanoparticles have great potential for various nanoelectronic applications such as single electron transistors, an infrared absorption sensor and so on. It is very important to understand and control the size distribution of the particles for such a variety of applications. In this paper, we report the size distribution of gold nanoparticles and the relationship between the nanoparticle-films and the electrical property produced by a laser ablation method. Gold nanoparticle-films were prepared by a technique, which sprays nanoparticles on the substrate through a nozzle. We call it a gas deposition method. The nanoparticles were generated by the nanosecond pulsed Nd:YAG laser ablation of a gold substrate under a low-pressure inert gas atmosphere. The ambient pressure was changed to control the average size and their distribution. The particles produced in the generation chamber were transported by a helium carrier gas to the deposition chamber and deposited on a substrate to form the films composed of gold nanoparticles. The electrical resistivity of the generated gold nanoparticle-films on the glass substrates was measured using a four-probe method. The size distribution of the nanoparticles was examined using transmission electron microscopy (TEM) and a low-pressure differential mobility analyzer (LP-DMA). The relationship between the particle size and the electrical properties of each film made by the different synthesis conditions were analyzed. The electrical resistivity changed from the order of 10 -5 to 10 -1 Ω cm depending on the ambient pressure and the size distribution

  2. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  3. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation

    Science.gov (United States)

    Němec, Matěj; Zachariáš, Jiří

    2018-02-01

    The Krásná Hora-Milešov and Příčovy districts (Czech Republic) are the unique examples of Sb-Au subtype orogenic gold deposits in the Bohemian Massif. They are represented by quartz-stibnite veins and massive stibnite lenses grading into low-grade, disseminated ores in altered host rocks. Gold postdates the stibnite and is often replaced by aurostibite. The ore zones are hosted by hydrothermally altered dikes of lamprophyres (Krásná Hora-Milešov) or are associated with local strike-slip faults (Příčovy). Formation of Sb-Au deposits probably occurred shortly after the main gold-bearing event (348-338 Ma; Au-only deposits) in the central part of the Bohemian Massif. Fluid inclusion analyses suggest that stibnite precipitated at 250 to 130 °C and gold at 200 to 130 °C from low-salinity aqueous fluids. The main quartz gangue hosting the ore precipitated from the same type of fluid at about 300 °C. Early quartz-arsenopyrite veins are not associated with the Sb-Au deposition and formed from low-salinity, aqueous-carbonic fluid at higher pressure and temperature ( 250 MPa, 400 °C). The estimated oxygen isotope composition of the ore-bearing fluid (4 ± 1‰ SMOW; based on post-ore calcite) suggests its metamorphic or mixed magmatic-metamorphic origin and excludes the involvement of meteoric water. Rapid cooling of warm hydrothermal fluids reacting with "cold" host rock was probably the most important factor in the formation of both stibnite and gold.

  4. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  5. Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Lalor, J.H.

    1986-01-01

    The Olympic Dam copper-uranium-gold deposit was discovered in July 1975. It is located 650 km north-northwest of Adelaide on Roxby Downs Station in South Australia. The first diamond drill hole, RD1, intersected 38 m of 1.05% copper. A further eight holes were drilled with only marginal encouragement to November 1976, when RD10 cored 170 m of 2.12% copper and 0.06% of uranium oxide, thus confirming an economic discovery. The discovery of Olympic Dam is an excellent example applying broad-scale, scientifically based conceptual studies to area selection. Exploration management supported its exploration scientists in testing their ideas with stratigraphic drilling. Geologic modeling, supported by geophysical interpretations and tectonic studies, was used to site the first hole. The discovery also illustrates the persistence required in mineral exploration. The deposit appears to be a new type of stratabound sediment-hosted ore. It has an areal extent exceeding 20 km 2 with vertical thicknesses of mineralization up to 350 m. It is estimated to contain more than 2000 million MT of mineralized material with an average grade of 1.6% copper, 0.06% uranium oxide, and 0.6 g/MT gold. The deposit occurs in middle Proterozoic basement beneath 350 m of unmineralized, flat upper Proterozoic sediments. The sediments comprising the local basement sequence are predominantly sedimentary breccias controlled by a northwest-trending graben

  6. Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Yasuro; Hisanabe, Hideyuki; Kuroiwa, Keita; Kimizuka, Nobuo; Yamada, Sunao

    2006-01-01

    Using pulsed laser irradiation (532 nm), dodecanethiol-capped gold nanoparticles (DT-Au) were deposited on the laser-irradiated region of a hydrophobic glass substrate modified with dimethyloctadecylchlorosilane (DMOS). After removal of deposited DT-Au, the laser-deposited region on the substrate was hydrophilic, as verified by static water contact angles. X-ray photoelectron spectroscopy suggested that the naked glass surface was not exposed at the hydrophilic region. Immersion of the substrate into gold nanorod (NR) solution selectively immobilized NRs on the hydrophilic surface via electrostatic interactions, indicating that the hydrophilic region was an anionic surface. From these results, it is expected that some immobilized DMOS groups on the laser-irradiated region of the substrate were oxidized during DT-Au deposition and fragmentation of the deposited DT-Au

  7. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    Science.gov (United States)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  8. Stable isotope and fluid inclusion signatures of hydrothermal fluids in transcrustal fault zones: significance for orogenic, Archean lode-gold mineralization

    International Nuclear Information System (INIS)

    Neumayr, P.; Hagemann, S.G.; Groves, D.I.

    1999-01-01

    Full text: Large to giant (>1t) gold deposits are typically hosted in second- and third-order structures adjacent to largely barren, transcrustal fault zones. Gold-bearing hydrothermal fluids have been channelled within the transcrustal fault zones from mantle and deep crustal sources into the second- and third-order structures, where gold has been deposited. Transcrustal fault zones are long-lived structures with specific deformation events relating to gold deposition in the second- and third-order structures. For example the Archaean Perseverance Fault in the Yilgarn Craton of Western Australia evolved from a wide (5km) ductile shear zone during D2 to a narrow ( 2 -CH 4 -dominated compositions with minor H 2 O and H 2 S components, whereas there are H 2 O-dominated H 2 O-CO 2 +CH 4 fluids with a significant H 2 S component in the second- and third-order shear zones at the Sigma gold deposit, a major gold deposit 5km to the north of the CTZ. These differences can be explained by continuous phase separation, with CO 2 -vapour escape into the upper portions of the ductile uncapped CTZ, contrasting with in-situ phase separation of the gold-bearing fluids in crack-seal veins in the second-order shear zones at Sigma, with trapping of both the episodic vapour and liquid components in individual sealed veins. Gold mineralization in the second- and third-order structures appears to be controlled by the high H 2 S activity of the aqueous hydrothermal fluids. because gold was likely carried in a bisulphide complex and was deposited during sulfidation reactions in the wallrock and phase separation in the quartz vein. In contrast, the carbonic fluids in the CTZ lacked the ability to carry significant metal ligands due to their low H 2 S activity. Oxygen isotopes from hydrothermal quartz within the CTZ (13.3 to 15.6 per mil, av. 14.0 per mil; VSMOW) are heavier than those from mineralized quartz veins in second- and third-order shear zones (11.8 to 19.6 per mil, av. 12.2 per

  9. The Geometry and Structural Analysis of the Gold Deposits of ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... 1Chirano Gold Mines Limited, Kinross Company, Chirano, Ghana .... the Tarkwaian sedimentary rocks, comprises open, gently N-S ... from 2006 – 2010, deposit scale pit maps, trench .... 12 Plan Section of Akoti Fault showing.

  10. Deposition of gold nanoparticles from colloid on TiO2 surface

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  11. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    Science.gov (United States)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  12. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  13. Magnetic, radiometric and gravity signatures of localities of epithermal gold deposits in Fiji

    International Nuclear Information System (INIS)

    Gunn, Peter J.; Mackey, Tim; Meixner, Tony J.

    1998-01-01

    Fiji contains several epithermal gold deposits and by studying the geophysical responses in the vicinity of these deposits it is possible to identify a set of geophysical characteristics which indicate localities where such deposits may be located. Epithermal gold deposits are formed above intrusive stocks resulting from subduction processes. The source intrusions for the deposits are normally covered by lavas and pyroclastic rocks and the irregular magnetic effects of these units obscure the magnetic effects of the intrusions. In Fiji however the source intrusions can be recognized as causing gravity highs and magnetic highs in upward continued magnetic data in which the magnetic effects of volcanic rocks are suppressed. Vents associated with the intrusions can be recognized as magnetic lows which sometimes contain a central high. Some vents and calderas can be recognized in digital elevation data. Increased potassium concentrations ca be interpreted to indicate potassium alteration associated with mineralizing processes. Fractures that may localize epithermal deposits can be recognized in the magnetic data and enhancements of the data such as produced by derivative operations. (author)

  14. Effects of the thickness of gold deposited on a source backing film in the 4πβ-counting

    International Nuclear Information System (INIS)

    Miyahara, Hiroshi; Yoshida, Makoto; Watanabe, Tamaki

    1976-01-01

    A gold deposited VYNS film as a source backing in the 4πβ-counting has generally been used for reducing the absorption of β-rays. The thickness of the film with the gold is usually a few times thicker than the VYNS film itself. However, Because the appropriate thickness of gold has not yet been determined, the effects of gold thickness on electrical resistivity, plateau characteristics and β-ray counting efficiency were studied. 198 Au (960 keV), 60 Co(315 keV), 59 Fe(273 keV) and 95 Nb(160 keV), which were prepared as sources by the aluminium chloride treatment method, were used. Gold was evaporated under a deposition rate of 1 - 5 μg/cm 2 /min at a pressure less than 1 x 10 -5 Torr. Results show that the gold deposition on the side opposite the source after source preparation is essential. In this case, a maximum counting efficiency is obtained at the mean thickness of 2 μg/cm 2 . When gold is deposited only on the same side as the source, a maximum counting efficiency, which is less than that in the former case, is obtained at the mean thickness of 20 μg/cm 2 . (Evans, J.)

  15. High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels

    Science.gov (United States)

    Rao, Xi; Guyon, Cédric; Ognier, Stephanie; Da Silva, Bradley; Chu, Chenglin; Tatoulian, Michaël; Hassan, Ali Abou

    2018-05-01

    Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.

  16. Reconnaissance investigation of the placer gold deposits in the Zarkashan Area of Interest, Ghazni Province, Afghanistan

    Science.gov (United States)

    Malpeli, Katherine C.; Chirico, Peter G.; McLoughlin, Isabel H.

    2013-01-01

    This study is a reconnaissance investigation of the placer gold deposits in the Zarkashan Area of Interest (AOI) in Ghazni Province, Afghanistan. Detailed investigations of the Zarkashan gold deposits were conducted by Soviet and Afghan geologists in the 1960s and 1970s, prior to the development of satellite-based remote-sensing platforms and new methods of geomorphic mapping. The purpose of this study was to integrate new mapping techniques with previously collected concentration and borehole sampling data and geomorphologic interpretations to reassess the placer gold deposits in the Zarkashan AOI. A methodology combining the collection and analysis of historical sampling data, digital database development, hydrologic analysis, and geomorphic modeling was used. The analysis led to the reinterpretation of four gold-bearing seams along the Zarkashan River, and the calculation of an estimated gold reserve of approximately 3,000 kilograms (kg). This estimate is approximately 1,500 kg greater than the Soviet estimate. The result differs in large part due to the reinterpretation of the seams based on a much lower cutoff grade of 100 mg/m3. Because cutoff grade is dependent in part on the price of gold, the sevenfold increase in the price of gold since the undertaking of the Soviet investigation warranted our re-evaluation of their 500 mg/m3 cutoff grade.

  17. Magmatism in the Shapinggou district of the Dabie orogen, China: Implications for the formation of porphyry Mo deposits in a collisional orogenic belt

    Science.gov (United States)

    Ren, Zhi; Zhou, Taofa; Hollings, Pete; White, Noel C.

    2018-05-01

    The Shapinggou molybdenum deposit is located in the Qinling-Dabie Orogen, which hosts the world's largest molybdenum belt. The igneous rocks at Shapinggou can be divided into two stages (136-127 Ma and 118-114 Ma), the early suite of felsic (136-127 Ma, SiO2 = 58.0 to 72.9 wt%) and mafic rocks (133-128 Ma, SiO2 = 45.2 to 57.0 wt%), and a later suite comprising syenite (117 Ma, SiO2 = 64.2 to 65.0 wt%), quartz syenite porphyry (116 Ma, 62.5 to 70.0 wt%), granite porphyry (112 Ma, SiO2 = 75.5 to 77.6 wt%) and diorite porphyry (111 Ma, SiO2 = 56.6 to 59.7 wt%). The early-stage felsic rocks display high SiO2, Al2O3, Na2O, K2O, Sr, LREE contents, and Sr/Y, (La/Yb)N ratios, initial Sr isotope ratios of 0.7076 to 0.7089, but low MgO, FeOT, Y, Yb contents and negative εNd(t) values, consistent with partial melting of the lower continental crust. The early-stage mafic rocks exhibit low SiO2, high MgO, Ni and Cr contents, consistent with an upper mantle source, but trace element and isotope data suggest a role for crustal contamination. The late-stage syenite and quartz syenite porphyry show high abundances of Na2O, K2O, Al2O3, HFSEs (e.g., Th, U, Zr, Hf) and significant negative Eu anomalies. The late-stage granite porphyry displays high SiO2 contents, and depletions in Ba, Sr, Eu and Ti. The geochemical features of the late-stage intrusions are similar to A-type granites. Crystal fractionation of plagioclase, K-feldspar, biotite/ muscovite, amphibole/ garnet and Fe-Ti oxides controlled the evolution of the magma. The geochemical and isotopic data suggest that the rocks at Shapinggou were likely derived from a mixed source of lithospheric mantle, subducted continental crust of the Yangtze Block (Kongling Group) and partial melts of the Dabie Complex. Early stage rocks represent melts of the source with a lower proportion of Dabie Complex materials, whereas late stage rocks were derived from a source with a higher proportion Dabie Complex component. The geochemical and

  18. The deposition of gold nanoparticles in MWCNT forests

    Science.gov (United States)

    de Jong, Franciscus; Buffet, Adeline; Schlueter, Michael

    2015-11-01

    The deposition, i.e. transport and attachment, of small-sized particles is a basic process, on which many applications are based. The innumerable applications range from biology and medicine to engineering. Due to their promising mechanical properties multi-walled carbon nanotubes (MWCNTs) have gained increasing popularity in the past decade. A large number of dense packed vertically aligned MWCNTs form a so-called MWCNT forest. In our study we functionalized the MWCNT forest to filter gold nanoparticles from a colloidal suspension. An experimental investigation was carried out in which the particle deposition kinetics was locally determined with small-angle X-ray scattering (SAXS). Furthermore, inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to verify the local observations. It was concluded that both, SAXS and ICP-AES investigations shows very good agreement. Furthermore, an analytical deposition model was developed based on the DLVO-theory. The experimental and theoretical investigation presented here give insight in the deposition kinetics within a MWCNT forest. The results open up pathways to optimize MWCNT forests for filtering purposes.

  19. Sulfur and lead isotope characteristics of the Pontes e Lacerda gold deposits, SW Amazonian Craton Brazil

    International Nuclear Information System (INIS)

    Geraldes, M.C.; Tassinari, C.C.G.; Babinski; M; Iyer, S

    2001-01-01

    This work deals with the characterization of the S and Pb isotope signatures in sulfides from the Pontes e Lacerda mesothermal gold deposits located in the SW sector of Amazonian craton. Stable and radiogenic isotopes have played an important role in the study of ore deposited and hydrothermal processes and they are most useful when can be used together. The purpose of this study is to constrain the sources and the mechanisms of gold deposition in Pontes e Lacerda region which may be a helpful contribution to an exploratory model in the area (au)

  20. How Gold Deposition Affects Anatase Performance in the Photo-catalytic Oxidation of Cyclohexane

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Yang, Chieh-Chao; Moma, John A.; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    Gold deposition on Hombikat UV100 was found to negatively affect the activity of this Anatase catalyst in selective photo-oxidation of cyclohexane. By ammonia TPD and DRIFT spectroscopy it was determined that the Au deposition procedure leads to a significant decrease in OH-group density (mol m−2

  1. Low-Impact Exploration for Gold in the Scottish Caledonides.

    Science.gov (United States)

    Rice, Samuel; Cuthbert, Simon; Hursthouse, Andrew; Broetto, Gabriele

    2017-04-01

    The Caledonian orogenic belt of the northern British Isles hosts some significant gold deposits. However, gold mineralization in the region is underexplored. Some of the most prospective areas identified by rich alluvial gold anomalies are environmentally and culturally sensitive. Traditional mineral exploration methods can have a range of negative environmental, social and economic impacts. The regional tourism economy is dependent on outdoor activities, landscape quality, wildlife and industrial heritage and has the potential to be disrupted by mineral resource developments. Low-cost, low-impact exploration strategies are therefore, key to sustainably developing the mineral resource potential. Research currently in progress in part of the Scottish Caledonides aims to develop protocols for more sustainable exploration. We are using a range of geoscience techniques to characterize the mineral system, improve exploration targeting and reduce negative impacts. To do this we targeted an area with a large preexisting dataset (e.g. stream sediment geochemistry, geomorphology, structural geology, petrology, geophysics, mine data) that can be synthesized and analyzed in a GIS. Part of the work aims to develop and test a model for gold dispersion in the surface environment that accounts for climatic and anthropogenic influences in order to locate bedrock sources. This multidisciplinary approach aims to reduce the target areas for subsequent exploration activities such as soil sampling, excavation and drilling.

  2. Investigations on the genesis of syngenetic gold-uranium deposits in conglomerates of the Precambrian Pongola Supergroup and Moodies Group including a contribution on the genesis of the epigenetic gold deposits of Klipwal, Kaapvaal Kraton, South Africa

    International Nuclear Information System (INIS)

    Stupp, H.D.

    1984-01-01

    The terrain diagnostics and the results of mineralogical and geochemical investigations are presented and discussed. The gold and uranium deposits in the Pongola rocks are described extensively. The orogeneses are characterized and their enrichment processes interpreted. The obtained results imply application possibilities for the exploration of gold-uranium placers and hydrothermal gold orogenesis. (DG) [de

  3. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Science.gov (United States)

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  4. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt

    Science.gov (United States)

    Zheng, Rongguo; Li, Jinyi; Xiao, Wenjiao; Zhang, Jin

    2018-03-01

    The ages and origins of metasedimentary rocks, which were previously mapped as Precambrian, are critical in rebuilding the orogenic process and better understanding the Phanerozoic continental growth in the Central Asian Orogenic Belt (CAOB). The Beishan Complex was widely distributed in the southern Beishan Orogenic Collage, southernmost CAOB, and their ages and tectonic affinities are still in controversy. The Beishan Complex was previously proposed as fragments drifted from the Tarim Craton, Neoproterozoic Block or Phanerozoic accretionary complex. In this study, we employ detrital zircon age spectra to constrain ages and provenances of metasedimentary sequences of the Beishan Complex in the Chuanshanxun area. The metasedimentary rocks here are dominated by zircons with Paleoproterozoic-Mesoproterozoic age ( 1160-2070 Ma), and yield two peak ages at 1454 and 1760 Ma. One sample yielded a middle Permian peak age (269 Ma), which suggests that the metasedimentary sequences were deposited in the late Paleozoic. The granitoid and dioritic dykes, intruding into the metasedimentary sequences, exhibit zircon U-Pb ages of 268 and 261 Ma, respectively, which constrain the minimum deposit age of the metasedimentary sequences. Zircon U-Pb ages of amphibolite (274 and 216 Ma) indicate that they might be affected by multi-stage metamorphic events. The Beishan Complex was not a fragment drifted from the Tarim Block or Dunhuang Block, and none of cratons or blocks surrounding Beishan Orogenic Collage was the sole material source of the Beishan Complex due to obviously different age spectra. Instead, 1.4 Ga marginal accretionary zones of the Columbia supercontinent might have existed in the southern CAOB, and may provide the main source materials for the sedimentary sequences in the Beishan Complex.

  5. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia

    International Nuclear Information System (INIS)

    Roberts, D.E.; Hudson, G.R.T.

    1983-01-01

    The Olympic Dam copper-uranium-gold deposit appears to be a new type of strata-bound sediment-hosted ore deposit. It is located 650 km north-northwest of Adelaide in South Australia and was discovered in 1975. It has an areal extent exceeding 20 km 2 with vertical thicknesses of mineralization up to 350 m. The deposit is estimated to contain in excess of 2,000 million metric tons of mineralized material with an average grade of 1.6 percent copper, 0.06 percent uranium oxide, and 0.6 g/metric ton gold. The deposit occurs in the basement beneath 350 m of unmineralized, flat-lying Adelaidean (late Proterozoic) to Cambrian sediments in the Stuart shelf region of South Australia. The host rocks of the deposit are unmetamorphosed and are probably younger than 1,580 m.y. The deposit is spatially related to coincident gravity and magnetic anomalies and the intersection of west-northwest- and north-northwest-trending lineaments. The Proterozoic sediments comprising the local basement sequence are predominantly sedimentary breccias ranging from matrix-poor granite breccias to matrix-rich polymict breccias containing clasts of a variety of rock types. This sequence is over 1 km thick and has been divided into two main units--the Olympic Dam Formation and the Greenfield Formation. The Olympic Dam Formation has five members, three of which are matrix rich. The Greenfield Formation has three members, the lower two being very hematite rich while the upper has a significant volcanic component. Pervasive hematite, chlorite, and sericite alteration of varying intensity affects all the basement sequence

  6. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  7. Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors

    International Nuclear Information System (INIS)

    Gwak, Eun-Ji; Kang, Na-Ri; Baek, Un Bong; Lee, Hae Moo; Nahm, Seung Hoon; Kim, Ju-Young

    2013-01-01

    We fabricate almost crack-free 1.5 μm thick nanoporous gold thin films using free-corrosion dealloying and transfer processes from sputter-deposited precursors. By controlling the temperature and the concentration of the nitric acid solution during free-corrosion dealloying, we obtain ligament sizes in nanoporous gold between 22 and 155 nm. We investigate the effects of dissolution rate of Ag atoms, surface diffusivity of Au atoms and formation of Ag oxide on nanoporosity evolution

  8. Alteration and petrology of Intrusive Rocks associated with Gold Mineralization at Kuh-E-Zar Gold Deposit, Torbat-e-Heydaryeh

    Directory of Open Access Journals (Sweden)

    Alireza Mazloumi Bajestani

    2009-09-01

    Full Text Available Kuh- e -Zar gold deposit located 35 km west of Torbat-e-Heydaryeh, (Khorassan e- Razavi province, East of Iran. This deposit is a specularite-rich Iron oxide type (IOCG. This mine is situated within Khaf-Bardascan volcanic plutonic belt. Based on recent exploration along this belt, several IOCG type system plus Kuh-e-Zar deposit are discovered. In the study area, several type of tuff and lava having acid to intermediate composition are identified (upper Eocene. Oligo-Miocene granite, granodiorite, synogranite and monzonite intruded upper Eocene andesite-dacite-rhyolite. Intrusive rocks are meta-aluminous, medium to high-K series I-type. Based on spider diagram, intrusive rocks show enrichment in LILE = K, Th, Rb and depletion in HFSE = Nb, Sr, Ti. Based geochemistry of igneous rock, they formed in continental margin subduction zone. Propylitic (chlorite alteration is dominated and covers large area. Silicification is restricted only to mineralized zones. Argillic and albitization is found in certain location and cover small areas. The style of mineralization was controlled by the type and geometry of fault zones. Mineralization is found as vein, stockwork and breccias. Hypogene mineral Paragenesis include: specularite-quartz-gold-chlorite ± chalcopyrite ± pyrite ± galena ± barite. Secondary minerals formed due to oxidation are: goethite, limonite, lepidocrucite, Malachite, Azurite, Covelite, Cerucite, hydrocerucite, Pyrolusite and Smitsonite. In a few localities, chalcopyrite and minor pyrite and galena are found. Based on SEM analysis gold is present as electrum. Mineralization appeared in different type such as vein, stockwork and Hydrothermal breccia in strike sleep fault zone which are hidden inside volcano plutonic rocks. The average gold grade is between 3.02 ppm and ore reserve is estimated more than 3 million tons (cut off grade = 0.7 ppm.

  9. Mineralogy of Copper-Gold Deposit, Masjid Daghi Area, Jolfa, IRAN

    Science.gov (United States)

    Zenoozi, Roya

    2010-05-01

    The Copper-Gold deposit of Masjid Daghi area is located in the Jolfa quadrangle (scale 1:100,000), East Azerbaijan Province, north-west Iran. The deposit, hosting by sub-volcanic bodies comprise of quartz monzonite composition whose intruded the Tertiary volcanic and volcanic-sedimentary rocks and turbidities. The Tertiary volcanic rocks consist of andesite, trachy andesite and quartz andesite. These mineral-bearing bodies related to Late Eocene sub-volcanic activities which intrudded the Eocene volcanic rocks. Mineralography, XRD and SEM studies showed that the variations in mineralization of the area. The main agent of mineralization is the intrusion of Late Eocene sub volcanic bodies inside the Tertiary volcanic units. The mineralography studies revealed two main groups of mineralization as oxides and sulfides. The sulfide minerals formed as veins, vein lets and stock work.The economic minerals comprise of native gold, copper sulfides. The native gold occurring in siliceous veins and almost as inclusions inside the sulfides minerals such as chalcopyrite. The copper sulfides, contain pyrite, chalcopyrite and chalco-pyrrhoyite. Pyrite is main sulfide in the area and formed as disseminations, cavity filling and colloform. The amount of pyrite, chalcopyrite and chalco-pyrrhoyite increases with depth. Supergene alteration produced digenite, covellite, bornite, and malachite. The alteration occurred as potassic, phyllic, argillic and propylitic minerals. Furthermore, selective sercitic, sericitic-chloritic and alunitic alterations are seen around the mineralized veins. The mineralography studies indicate that pyrite is main mineral phase and native gold occurred in silicious vein almost as inclusions inside the sulfide mineral. Most of economic mineral formed as veins, vein lets, disseminated, cavity filling and colloform which related to intrusions of Late Eocene quartz monzonite bodies into the Eocene volcanic rocks and turbiditse. Some types of alterations such as

  10. Quantitative analysis of gold nanorod alignment after electric field assisted deposition

    NARCIS (Netherlands)

    Ahmed, W.; Ahmed, Waqqar; Kooij, Ernst S.; van Silfhout, Arend; Poelsema, Bene

    2009-01-01

    We have studied the alignment of colloidal gold nanorods, deposited from solution onto well-defined substrates in the presence of an AC electric field generated by micrometer spaced electrodes. The field strengths employed in our experiments are sufficiently large to overcome Brownian motion and

  11. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  12. Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit

    OpenAIRE

    Arifudin Idrus

    2018-01-01

    Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas co...

  13. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern-central China: Constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes

    Science.gov (United States)

    Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang

    2015-05-01

    The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.

  14. Reconnaissance investigation of the alluvial gold deposits in the North Takhar Area of Interest, Takhar Province, Afghanistan

    Science.gov (United States)

    Chirico, Peter G.; Malpeli, Katherine C.; Moran, Thomas W.

    2013-01-01

    This study is a reconnaissance assessment of the alluvial gold deposits of the North Takhar Area of Interest (AOI) in Takhar Province, Afghanistan. Soviet and Afghan geologists collected data and calculated the gold deposit reserves in Takhar Province in the 1970s, prior to the development of satellite-based remote-sensing platforms and new methods of geomorphic mapping. The purpose of this study was to integrate new mapping techniques with previously collected borehole sampling and concentration sampling data and geomorphologic interpretations to reassess the alluvial gold placer deposits in the North Takhar AOI. Through a combination of historical borehole and cross-section data and digital terrain modeling, the Samti, Nooraba-Khasar-Anjir, and Kocha River placer deposits were reassessed. Resource estimates were calculated to be 20,927 kilograms (kg) for Samti, 7,626 kg for Nooraba-Khasar-Anjir, 160 kg for the mouth of the Kocha, 1,047 kg for the lower Kocha, 113 kg for the middle Kocha, and 168 kg for the upper Kocha. Previous resource estimates conducted by the Soviets for the Samti and Nooraba-Khasar-Anjir deposits estimated 30,062 kg and 802 kg of gold, respectively. This difference between the new estimates and previous estimates results from the higher resolution geomorphic model and the interpretation of areas outside of the initial work zone studied by Soviet and Afghan geologists.

  15. The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Enver Akaryalı

    2013-07-01

    Full Text Available The Arzular mineralization is one of the best examples of epithermal gold deposits in the eastern Pontides orogenic belt. The mineralization is hosted by the subduction-related basaltic andesites and is mainly controlled by E–W and NE–SW trending fracture zones. The main ore minerals are galena, sphalerite, pyrite, chalcopyrite, tetrahedrite and gold. Homogenization temperatures of fluid inclusions are between 130 and 295 °C for quartz and between 90 and 133 °C for sphalerite. Sulphur isotope values obtained from pyrite, galena and sphalerite vary between −1.2‰ and 3‰, indicating that sulphur belongs to magmatic origin and was derived from the Lutetian non-adakitic granitic intrusions in the region. Oxygen isotope values are between 15.0‰ and 16.7‰, and hydrogen isotope values are between −87‰ and −91‰. The sulphur isotope thermometer yielded temperatures in the range of 244–291 °C for the ore formation. Our results support the hypothesis that the Arzular mineralization is a low-sulfidation epithermal gold deposit associated with non-adakitic subduction-related granitic magmas that were generated by slab window-related processes in a south-dipping subduction zone during the Lutetian.

  16. Study of dithiol monolayer as the interface for controlled deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Cichomski, M.; Tomaszewska, E.; Kosla, K.; Kozlowski, W.; Kowalczyk, P.J.; Grobelny, J.

    2011-01-01

    Self-assembled monolayer of dithiol molecules, deposited on polycrystalline Au (111), prepared at room atmosphere, was studied using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Dithiols were used as interface, which chemically bonds to the deposited gold nanoparticles through strong covalent bonds. The size and size distribution of the deposited nanoparticles were measured using dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The AFM results showed that nanoparticles are immobilized and stable during scanning procedure and do not contaminate the AFM tip. The size of monodisperse nanoparticles obtained from the DLS measurements is slightly higher than that obtained from the AFM and SEM measurements. This is due to the fact that the DLS measures the hydrodynamic radius, dependent on the protective chemical layer on nanoparticles. - Research Highlights: → Dithiols molecules create chemically bounded layers on a Au (111) surface. → Gold nanoparticles can be chemically bounded to a self-assembled monolayer. → Nanoparticles are stable during AFM probe interactions.

  17. On the crypto-explosive crater and its relation with gold mineralization in larma Au-U deposit

    International Nuclear Information System (INIS)

    Chen Guohua; Jing Hongxiang; Huang Shutao

    1998-01-01

    A new type of gold mineralization-controlling structure-hydrothermal crypto-explosive crater was identified at the Larma gold-uranium deposit in the border regions between Gansu and Sichuan provinces, western China. The hydrothermal crypto-explosive crater is ellipse-shaped at the surface, while funnel-like in profile. A silica-cap composed of hydrothermal siliceous breccia is distributed at the top of the crater, while hydrothermal crypto-explosive breccia are in the centre. The configuration of the crater is roughly consistent with the distribution of gold ore bodies. The formation mechanism of the crater is: first, a silica cap composed of hydrothermal siliceous metasomatic rock was formed at the contact area between the siliceous rock and the slate, and blocked the movement of hydrothermal fluid and resulted in the appearance of over-pressed geothermal environment. Then, at 49.5 Ma, the rejuvenation of the EW-striking faults in larma area resulted in the breaking of the brittle silica cap, followed by the crypto-explosion of hydrothermal fluid. In Larma gold-uranium deposit, the hydrothermal crypto-explosion gave rise to the precipitation of gold from the hydrothermal fluid, while the crypto-explosive crater provided the space for gold mineralization

  18. Organic SIMS: the influence of time on the ion yield enhancement by silver and gold deposition

    Science.gov (United States)

    Adriaensen, L.; Vangaever, F.; Gijbels, R.

    2004-06-01

    A series of organic dyes and pharmaceuticals was used to study the secondary ion yield enhancement by metal deposition. The molecules were dissolved in methanol and spincasted on silicon substrates. Subsequently, silver or gold was evaporated on the samples to produce a very thin coating. The coated samples, when measured with TOF-SIMS, showed a considerable increase in characteristic secondary ion intensity. Gold-evaporated samples appear to exhibit the highest signal enhancement. These observations apply to organic samples in general, an advantage that allows to use the technique of metal deposition on real-world samples. However, the observed signal increase does not occur at any given moment. The time between metal deposition on the sample surface and the measuring of the sample with TOF-SIMS appears to have an important influence on the enhancement of the secondary ion intensities. In consideration of these observations several experiments were carried out, in which the spincasted samples were measured at different times after sample preparation, i.e., after gold or silver was deposited on the sample surface. The results show that, depending on the sample and the metal deposited, the secondary ion signals reach their maximum at different times. Further study will be necessary to detect the mechanism responsible for the observed enhancement effect.

  19. A comparative study of electrochemical and optical properties of rhenium deposited on gold and platinum

    Energy Technology Data Exchange (ETDEWEB)

    Zerbino, Jorge O.; Castro Luna, Ana M.; Martins, M. E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones Fisico-Quimicas, Teoricas y Aplicadas (INIFTA)]. E-mail: mmartins@inifta.unlp.edu.ar; Zinola, Carlos F.; Mendez, Eduardo [Universidad de la Republica, Montevideo (Uruguay). Facultad de Ciencias. Lab. de Electroquimica Fundamental

    2002-08-01

    Rhenium-containing films were grown on gold and platinum after different potentiostatic and potentiodynamic polarizations in the - 0.20 V to 0.70 V range (vs rhe) in aqueous acid perrhenate. Experimental data were obtained using cyclic voltammetry and ellipsometry, from which the thickness and optical indices of the electrodeposited rhenium layer were calculated. Metallic rhenium deposition on gold takes place at potentials within the hydrogen evolution reaction. Rhenium oxide on platinum is formed in the hydrogen adatom potential domain, whereas metallic rhenium is deposited concurrently with the hydrogen adsorption and evolution reactions on the same metal. (author)

  20. A comparative study of electrochemical and optical properties of rhenium deposited on gold and platinum

    Directory of Open Access Journals (Sweden)

    Zerbino Jorge O.

    2002-01-01

    Full Text Available Rhenium-containing films were grown on gold and platinum after different potentiostatic and potentiodynamic polarizations in the - 0.20 V to 0.70 V range (vs rhe in aqueous acid perrhenate. Experimental data were obtained using cyclic voltammetry and ellipsometry, from which the thickness and optical indices of the electrodeposited rhenium layer were calculated. Metallic rhenium deposition on gold takes place at potentials within the hydrogen evolution reaction. Rhenium oxide on platinum is formed in the hydrogen adatom potential domain, whereas metallic rhenium is deposited concurrently with the hydrogen adsorption and evolution reactions on the same metal.

  1. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    Science.gov (United States)

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  2. Thiol-modified gold nanoparticles deposited on silica support using dip coating

    International Nuclear Information System (INIS)

    Magura, Jozef; Zeleňáková, Adriana; Zeleňák, Vladimír; Kaňuchová, Maria

    2014-01-01

    Graphical abstract: - Highlights: • Thin layers of gold were deposited on glass substrate. • Layers were modified by two different ligands, 1,4-dithiothreitol and L-glutathione. • Red shift of SPR band was observed in spectra after modification of Au by thiols. • Charge transfer between Au and S atoms leads to ferromagnetic behaviour of samples. - Abstract: In our work, we have prepared thin layers of gold nanoparticles deposited via dip coating technique on silica glass substrate. The prepared thin layers were modified by two different ligands, namely 1,4-dithiothreitol (sample Au-DTT NPs) and L-glutathione (sample Au-GSH NPs). The spectral, structural and magnetic properties of the prepared samples were investigated. The modification of Au nanoparticles with thiol ligands leads to change of their plasmon resonance fields, as indicated by UV–vis spectra. The magnetic measurements showed that the magnetization of the samples is composed from two magnetic contributions: diamagnetic contribution and low field ferromagnetic contribution. Our experimental results show that the charge transfer between Au and S atoms gives rise to the ferromagnetic behaviour of prepared thin layers

  3. Native gold and gold-rich sulfide deposits in a submarine basaltic caldera, Higashi-Aogashima hydrothermal field, Izu-Ogasawara frontal arc, Japan

    Science.gov (United States)

    Iizasa, Kokichi; Asada, Akira; Mizuno, Katsunori; Katase, Fuyuki; Lee, Sangkyun; Kojima, Mitsuhiro; Ogawa, Nobuhiro

    2018-04-01

    Sulfide deposits with extremely high Au concentrations (up to 275 ppm; avg. 102 ppm, n = 15), high Au/Ag ratios (0.24, n = 15), and low Cu/(Cu + Zn) ratios (0.03, n = 15) were discovered in 2015 in active hydrothermal fields at a water depth of 760 m in a basalt-dominated submarine caldera in the Izu-Ogasawara frontal arc, Japan. Native gold grains occur in massive sulfide fragments, concretions, and metalliferous sediments from a sulfide mound (40 m across and 20 m high) with up to 30-m-high black smoker chimneys. Tiny native gold grains up to 14 μm in diameter are mainly present in sulfide fallouts from chimney orifices and plumes. Larger native gold grains up to 150 μm long occur mostly as discrete particles and/or with amorphous silica and sulfides. The larger gold grains are interpreted to represent direct precipitation from Au-bearing hydrothermal fluids circulating in and/or beneath the unconsolidated sulfide mound deposits. Sulfur isotope compositions from a limited number of sulfide separates (n = 4) range from 4.3 to 5.8‰ δ34S, similar to the quaternary volcanic rocks of the arc. Barite separates have values of 22.2 and 23.1‰, close to modern seawater values, and indicate probable seawater sulfate origin. The Cu, Zn, and Pb concentrations in bulk samples of sulfide-rich rocks are similar to those of volcanogenic massive sulfides formed in continental crustal environments. The gold is interpreted to have formed by low-temperature hydrothermal activity, perhaps genetically different from systems with documented magmatic contributions or from seafloor hydrothermal systems in other island arc settings. Its presence suggests that basalt-dominated submarine calderas situated on relatively thick continental crust in an intraoceanic arc setting such as the Higashi-Aogashima knoll caldera may be perspective for gold mineralization.

  4. Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-03-01

    Full Text Available Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas contained by the rocks were analyzed petrographically and chemically. Mineral chemistry was detected by electron microprobe analyzer, whilst biotite is petrographically classified as either magmatic or hydrothermal types. Sericite replacing plagioclase occurred as fine-grained mineral and predominantly associated with argillic-related alteration types. Biotites in the Batu Hijau deposit are classified as phlogopite with a relatively low mole fraction magnesium (XMg (~0.75 compared to the “typical” copper porphyry deposit (~0.82. The relationship between the XMg and halogen contents are generally consistent with “Fe-F and Mg-Cl avoidance rules”.  F content in biotite and sericite decrease systematically from inner part of the deposit which is represented by early biotite (potassic zone where the main copper-gold hosted, to the outer part of the deposit. However, chlorine in both biotite and sericite from each of the alteration zones shows a relative similar concentration, which suggests that it is not suitable to be used in identification of the alteration zones associated with strong copper-gold mineralization. H2O content of the biotite and sericite also exhibits a systematic increase outward which may also provide a possible geochemical vector to ore for the copper porphyry deposits. This is well correlated with fluorine content of biotite in rocks and bulk concentration of copper from the corresponding rocks.

  5. Carbon-oxygen isotopes and rare earth elements as an exploration vector for Carlin-type gold deposits: A case study of the Shuiyindong gold deposit, Guizhou Province, SW China

    Science.gov (United States)

    Tan, Qin-Ping; Xia, Yong; Wang, Xueqiu; Xie, Zhuo-Jun; Wei, Dong-Tian

    2017-10-01

    The Shuiyindong gold deposit is a deeply concealed strata-bound Carlin-type deposit in southwestern Guizhou Province, China. The deposit lies on the eastern limb of the Huijiabao anticline with ores mainly along the anticline axis and hosted in bioclastic limestone, containing calcite veins, of the Permian Longtan Formation units. In this study, we measured carbon and oxygen isotopic ratios and rare earth element (REE) concentrations of the host rocks and calcite veins along a profile across the Shuiyindong deposit. Orebodies in the upper unit of the Longtan Formation have higher δ18O values (20.6-22.4‰) and lower δ13C values (-3.7 to -0.5‰) than the country rocks (δ18O: 18.8-21.4‰; δ13C: -0.7 to 0.8‰). However, there are no obvious trends of δ18O and δ13C values from the country rocks to the orebodies in the middle unit of the Longtan Formation. The spatial distribution of the calcite veins displays distinct halos of δ13C and δ18O values and REE concentrations. Calcite veins along the anticlinal axis and major reverse fault are enriched in Middle REE (Sm, Eu, Gd, and Tb) and 18O and depleted in 13C. Surficial veining calcite-filled fractures/faults that connect to deep concealed strata-bound gold mineralization systems can be vectors toward deep ores in southwestern Guizhou Province, China.

  6. Late-orogenic mantle garnet pyroxenites evidence mantle refertilization during exhumation of orogenic belt

    Science.gov (United States)

    Chazot, G.; France, L.; Kornprobst, J.; Dallai, L.; Vannucci, R.

    2008-12-01

    The petrological and geochemical study of garnet bearing pyroxenites from four localities (FMC, Morocco, Jordan, Cameroon) demonstrates that these rocks are cumulates crystallised in the lithospheric mantle domain. Metamorphic reactions, exsolutions and trace elements WR analysis demonstrate that their crystallisation pressure ranges between 1 and 2GPa (30 to 60km). The elaboration of the PTt paths for the studied samples attests of important movements in the respective lithospheres. Replaced in the geodynamical contexts, the samples are interpreted to represent the crystallisation of melts formed during exhumation of orogenic domains. Radiogenic isotopes (Sr-Nd) show that in a very same region, the samples are isotopicaly heterogeneous but are similar to the respective regional lithosphere. Initial isotopic ratios lead to propose that the FMC samples have crystallised at the end of the Hercynian orogen and that the samples from the other localities (Morocco, Jordan and Cameroon) have crystallised at the end of the Pan-African orogen. After recalculation at the crystallisation time, the isotopic compositions are in good agreement with the respective regional lithosphere ones and so samples of this study could represent the product of the melting of these lithospheres. The analyses of oxygen stable isotopes allow to precise the model; they show that twelve of the samples come from the melting of a lherzolitic mantle and that the four others come from the melting of a heterogeneous mantle formed of lherzolites and eclogites. The presence of some hydrous minerals such as amphiboles and micas and the trace elements WR analyses show that some of the samples were affected by a late metasomatic event. Results of our study show that thermal relaxation following orogenic events lead to the crystallisation of pyroxenites in the lithosphere. The presence of lage amounts of mantle pyroxenites in old orogenic regions confers physical and chemical particularities to these

  7. Geochemical Characteristics of Metamorphic Rock-Hosted Gold Deposit At Onzon-Kanbani Area, Central Myanmar

    Directory of Open Access Journals (Sweden)

    Aung Tay Zar

    2017-09-01

    Full Text Available Gold and associated base metal mineralization of Onzon-Kabani area located in the western border of generally N-S trending Mogoke Metamorphic Belt where well-known Sagaing fault is served as a western boundary of this area. In this research area, many artisanal and small-scale gold mines were noted in last three decades. Gold mineralization is hosted in marble and gneiss unit of research area but most common in marble unit. Variety of igneous intrusions are also observed in research area. Mineralizations are observed as fissure filling veins as well as lesser amount of disseminated nature in marble unit. Mineralogically, gold are associated with other base metal such as pyrite, galena, sphalerite, chalcopyrite, marcasite and arsenopyrite. Hydrothermal alteration halos are developed in peripheral of hydrothermal conduits or mineralization veins from proximal to distal such as 1 silicic, 2 sericite-illite, and 3 propylitic alteration.  Most of hydrothermal minerals from each altered zones showed that near neutral condition of pH (e.g. adularia, calcite, illite, sericite and chlorite. Alternatively, hydrothermal alteration zones that show with ore minerals such as native gold, electrum, sphalerite, galena, chalcopyrite, arsenopyrite and marcasite which mostly observed in silicic alteration zone. Typical boiling characters of vein textures and fluid inclusion petrography are observed in hydrothermal system of research area. Boiling, cooling and mixing are possiblily responsible for gold deposition in hydrothermal system. In this paper, authors are documented to clarify the type of mineralization based on hydrothermal alterations, ore and gangue mineral assemblages and fluid inclusion study. All of these data can describe and play an important role for both with respect to understanding deposit genesis and in mineral exploration.

  8. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  9. Solid-State Dewetting of Gold Aggregates/Islands on TiO2 Nanorod Structures Grown by Oblique Angle Deposition.

    Science.gov (United States)

    Liu, Shizhao; Plawsky, Joel L

    2017-12-12

    A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO 2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO 2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO 2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value s min . We also found that TiO 2 nanorod tips affect dewetting dynamics differently than planar TiO 2 . The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.

  10. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Limat, Meriadec; El Roustom, Bahaa [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland); Jotterand, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Physics of the Complex Matter, CH-1015 Lausanne (Switzerland); Foti, Gyoergy [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)], E-mail: gyorgy.foti@epfl.ch; Comninellis, Christos [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)

    2009-03-30

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate.

  11. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Limat, Meriadec; El Roustom, Bahaa; Jotterand, Henri; Foti, Gyoergy; Comninellis, Christos

    2009-01-01

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate

  12. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals)

    OpenAIRE

    A. V. Snachev; E. P. Shchulkin

    2018-01-01

    This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5...

  13. Relationship between uranium-molybdenum, fluorite and gold deposits within provinces of continental volcanicity

    International Nuclear Information System (INIS)

    Modnikov, I.S.; Skvortsova, K.V.; Chesnokov, L.V.

    1974-01-01

    The article gives a comparative description of and the age relationships between uranium-molybdenum, gold and fluorite mineralizations in the areas of development of adhesite-diorite and liparite-granite vulcanoplutonic formations, which are most fully and intensively manifest in the intra-anticlinal and median blocks of folded regions in the final stages of geosynclinal development or during the final stages of tectono-magmatic activation. These formations usually fill vulcano-tectonic depression structures - overlaid troughs and inherited delections. The geological and geochemical data are evidence of the close temporal link between the hydrothermal process of ore formation and the type and scale of manifestations of the vulcano-plutonic magmatism that is responsible for the general geochemical features of the ores of deposits of various types. The formation of gold, fluorite and uranium-molybdenum deposits occurred immediately after the completion of effusive and intrusive magmatism during a single metallogenic cycle. The spatial distribution of the ore fields and deposits depends chiefly on the peculiarities of the tectonic make-up of the depression structures, and also on the type and scale of the manifestations of vulcano-plutonic magmatism. (B.Ya.)

  14. Trace element mapping of pyrite from Archean gold deposits – A comparison between PIXE and EPMA

    Energy Technology Data Exchange (ETDEWEB)

    Agangi, A., E-mail: aagangi@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa); Przybyłowicz, W., E-mail: przybylowicz@tlabs.ac.za [Materials Research Department, iThemba LABS, National Research Foundation, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Hofmann, A., E-mail: ahofmann@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa)

    2015-04-01

    Chemical zoning of pyrites can record the evolution of mineralising fluids at widely varying P–T conditions ranging from diagenesis to medium-grade metamorphism. If preserved, zoning can reveal growth textures, brecciation and veining, resorption and recrystallisation events, thus shedding light on the processes that contributed to ore formation. Chemical zoning of sulfides is invisible in optical microscopy, but can be studied by chemical etching, high-contrast back-scattering electron images, and elemental imaging. In this study we compared micro-PIXE and WDS-EPMA elemental maps on the chemically zoned pyrites in mineralised vein-bearing samples from the Sheba and Fairview gold mines in the Barberton Greenstone Belt, South Africa. Elemental images show complex distribution of trace elements, suggesting multiple events of pyrite crystallisation and gold deposition. EPMA maps show fine-scale variations reflecting growth and recrystallisation textures marked, in particular, by variations of As, Ni, and Co. In PIXE maps, gold occurs both as finely-distributed and discrete inclusions, suggesting incorporation in the pyrite structure as solid solution, and deposition as electrum inclusions, respectively. Micro-PIXE and EPMA provide complementary information, forming together a powerful tool to obtain information on chemical zoning of pyrites in ore deposits.

  15. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen

    Science.gov (United States)

    Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong

    2018-05-01

    The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.

  16. Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarn deposits (southeastern Ecuador)

    Science.gov (United States)

    Vallance, Jean; Fontboté, Lluís; Chiaradia, Massimo; Markowski, Agnès; Schmidt, Susanne; Vennemann, Torsten

    2009-05-01

    and the compositional variability of chlorite, essentially controlled by host rock compositions. Gold was precipitated at this stage as a result of cooling and pH increase related to CO2 effervescence, which both result in destabilization of gold-bearing chloride complexes. Significant ingression of external fluids took place after gold deposition only, as recorded by δ18O values of 0.4‰ to 6.2‰ for fluids depositing quartz (below 350°C) in sulfide-rich barren veins. Low-temperature (bearing skarn deposits, not only the prograde stage but also the gold-precipitating retrograde stage is dominated by fluids of magmatic origin.

  17. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  18. Mapping Hydrothermal Alteration Zones at a Sediment-Hosted Gold Deposit - Goldstrike Mining District, Utah, Using Ground-Based Hyperspectral Imaging

    Science.gov (United States)

    Krupnik, D.; Khan, S.; Crockett, M.

    2017-12-01

    Understanding the origin, genesis, as well as depositional and structural mechanisms of gold mineralization as well as detailed mapping of gold-bearing mineral phases at centimeter scale can be useful for exploration. This work was conducted in the Goldstrike mining district near St. George, UT, a structurally complex region which contains Carlin-style disseminated gold deposits in permeable sedimentary layers near high-angle fault zones. These fault zones are likely a conduit for gold-bearing hydrothermal fluids, are silicified, and are frequently gold-bearing. Alteration patterns are complex, difficult to distinguish visually, composed of several phases, and vary significantly over centimeter to meter scale distances. This makes identifying and quantifying the extent of the target zones costly, time consuming, and discontinuous with traditional geochemical methods. A ground-based hyperspectral scanning system with sensors collecting data in the Visible Near Infrared (VNIR) and Short-Wave Infrared (SWIR) portions of the electromagnetic spectrum are utilized for close-range outcrop scanning. Scans were taken of vertical exposures of both gold-bearing and barren silicified rocks (jasperoids), with the intent to produce images which delineate and quantify the extent of each phase of alteration, in combination with discrete geochemical data. This ongoing study produces mineralogical maps of surface minerals at centimeter scale, with the intent of mapping original and alteration minerals. This efficient method of outcrop characterization increases our understanding of fluid flow and alteration of economic deposits.

  19. Occurrence modes of As, Sb, Te, Bi, Ag in sulfide assemblages of gold deposits of the Urals

    Science.gov (United States)

    Vikent'eva, O.; Vikentev, I.

    2016-04-01

    Review of occurrence modes of trace toxic elements ("potential pollutants") in ores from large gold deposits (the Urals) of different genetic types is presented. Mineral forms of these elements as well as their presence in main minerals from gold-bearing sulfide assemblages according to SEM, EPMA, INAA, ICP-MS and LA-ICP-MS are demonstrated.

  20. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen

    Science.gov (United States)

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.

    2007-01-01

    The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Carbonaceous rocks in the form of graphitic schist and carbonaceous phyllite are the major host rocks of the gold mineralization in Kundarkocha gold deposit of the Precambrian Singhbhum orogenic belt in eastern India. The detection of organic carbon, essentially in the carbonaceous phyllite and graphitized schist within ...

  2. The Pan-African Damara Orogen of South West Africa/Namibia

    International Nuclear Information System (INIS)

    Miller, R.McG.

    1983-01-01

    The structural grain of the Damara orogen points to a reversal of spreading and to north-westward subduction of the African cratons below a South American craton and of the Kalahari Craton below the Congo Craton. D 1 recumbent folding was followed by intrusion of 650 m.y.-old granitic rocks, uplift and erosion and deposition of a northern molasse. D 2 deformation in the coastal arm marked the continental collision phase in this region. The final, large-scale deformational event in this region caused westward-vergent back folding which was followed by intrusion of 570 m.y.-old post-tectonic granites. In the Central Zone, widespread intrusion of 550 m.y.-old, syntectonic granites and extrusion of their volcanic equivalents in a 150 km-wide, high-temperature-low-pressure zone along the leading edge of the Congo Craton was accompanied by uplift, erosion and the deposition of K-rich greywackes as a fore-arc sequence above the earlier, spreading-phase deposits in the closing Southern Zone ocean. Sedimentological aspects of the Damara along the southern margin of the orogen suggest that the lower Nama Group, which contains a unique Ediacara fauna and was derived from easterly sources, was deposited between about 650 and 550 m.y. ago during deformation north of the Southern Zone ocean. During the final major deformation event in the Central Zone (D 3 doming), the fore-arc deposits and the underlying passive-margin sediments to the south were deformed. The Damaran granitic rocks are Hercynotype; granites make up 96 per cent of the more than 200 plutons. Average compositions have a slightly less calc-alkaline character than typical compressional margin granitic suites. Early granites have I-type chemistries and appear to have been derived from deep crustal sources, whereas most of the young granites have intermediate to S-type compositions and were generated at various crustal levels

  3. Granite-related Yangjiashan tungsten deposit, southern China

    Science.gov (United States)

    Xie, Guiqing; Mao, Jingwen; Li, Wei; Fu, Bin; Zhang, Zhiyuan

    2018-04-01

    The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO3 with an average ore grade of 0.70% WO3) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U-Pb age of 406.6 ± 2.8 Ma (2σ, n = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206Pb/238U age of 409.8 ± 5.9 Ma (2σ, n = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re-Os age of 404.2 ± 3.2 Ma (2σ, n = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ18OH2O values of quartz intergrown with scheelite range from - 87 to - 68‰, and - 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ34S values of - 2.9 to - 0.7‰ with an average value of - 1.6‰ (n = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz-muscovite greisen style of ore, supports a magmatic-hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz-wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.

  4. Molybdenum mineralization related to the Yangtze's lower crust and differentiation in the Dabie Orogen: Evidence from the geochemical features of the Yaochong porphyry Mo deposit

    Science.gov (United States)

    Liu, Qing-Quan; Li, Bin; Shao, Yong-Jun; Lu, An-Huai; Lai, Jian-Qing; Li, Yong-Feng; Luo, Zheng-Zhuan

    2017-06-01

    The Dabie Orogen is a world-class case for large amounts of Mo mineralization in that it contains at least 10 porphyry Mo deposits with Mo metal reserves over 3 Mt from the time period of 156-110 Ma. However, the principal mechanism for the Mo mineralization remains controversial due to the lack of a precise definition of its source and shallow ore-forming process, which is essential to understand these rare large Mo deposits. Detailed geochronology, geochemistry, and isotopic data for ore-related granites and minerals were analyzed in order to place constraints on the massive Mo mineralization in the Dabie Orogen in eastern China. The Yaochong molybdenum orebodies were hosted in the transition belt and alteration zone between the granitic stocks and the Dabie Complex and were characterized as numerous veinlets with potassic, phyllic and propylitic alterations. The buried Yaochong granitic intrusions and associated molybdenum mineralization yield Early Cretaceous ages of magmatic activities at ca. 138 Ma and extremely similar Re-Os isotope ages for the corresponding Mo metallogenic event at ca. 137 Ma. The Yaochong monzogranite and granite porphyry belong to the highly fractionated I-type granites, which are believed to be derived from the dominantly Yangtze's lower crust mixed with the Northern Dabie Complex due to their geochemical and isotope features. The elemental diversity and isotopic homogeneity suggest that the formation of the Yaochong monzogranite involved the fractionation of biotite, garnet and minor feldspar and accessory minerals combined with a weak crustal assimilation process. In contrast, the granite porphyry was possibly generated by the partial melting of the same mixed lower continental crust via the differentiation process involving the fractionation of feldspar, apatite, and/or titanite. Fractional crystallization processes can significantly elevate the molybdenum concentration in the residual melts. The biotite fractional crystallization

  5. Fault geometry and fluid-rock reaction: Combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China

    Science.gov (United States)

    Yang, Lin; Zhao, Rui; Wang, Qingfei; Liu, Xuefei; Carranza, Emmanuel John M.

    2018-06-01

    The structures and fluid-rock reaction in the Xinli gold deposit, Jiaodong Peninsula, were investigated to further understand their combined controls on the development of permeability associated with ore-forming fluid migration. Orebodies in this deposit are hosted by the moderately SE-to S-dipping Sanshandao-Cangshang fault (SCF). Variations in both dip direction and dip angle along the SCF plane produced fault bends, which controlled the fluid accumulation and ore-shoot formation. Gold mineralizations occurred in early gold-quartz-pyrite and late gold-quartz-polymetallic sulphide stages following pervasive sericitization and silicification alterations. Theoretical calculation indicates that sericitization caused 8-57% volume decrease resulting in the development/enlargement of voids, further increase of grain-scale permeability, and resultant precipitation of the early gold-quartz-pyrite pods, which destroyed permeability. The rock softening produced by alterations promoted activities of SCF secondary faults and formation of new fractures, which rebuilt the permeability and controlled the late gold-quartz-polymetallic sulfide veins. Quantitative studies on permeability distributions show that the southwestern and northeastern bend areas with similar alteration and mineralization have persistent and anti-persistent permeability networks, respectively. These were likely caused by different processes of rebuilding permeability due to different stress states resulting from changes in fault geometry.

  6. The economic efficiency of investment in the development of reserves of small groups of geographically contiguous gold deposits

    Directory of Open Access Journals (Sweden)

    Evdokimov S.I.

    2017-01-01

    Full Text Available The object of the research is a group of geographically contiguous low volume gold deposits. The subject of the study is an economic justification for a way to involve economic turnover to get a positive commercial result on a specially formed group of gold deposits, in which individual field development is unprofitable. A small production volume, combined with high capital and operating costs are objective reasons for the reduction in investment attractiveness of the deposits which have reserves of gold of 50%, equipped with a mobile processing complex with deep processing technology on highly liquid commodity products on site. An economic-mathematical model was devised to determine the rational placement of the processing capacity of the group.A simulation was conducted and an economic evaluation was performed on the effectiveness of investments in individual and group mining projects. The simulation results show that the joint exploitation of the reserves of the group of deposits, the internal rate of return on investments exceed the rate of return of funds to the bank deposit, the return on investment is above the level of inflation. The group project complies with the strategic line of small mining companies in terms of cost recovery terms, availability of financial sources to cover expenses, provision of stable means of income and obtaining competitive advantage.

  7. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    Science.gov (United States)

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  8. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    Directory of Open Access Journals (Sweden)

    Alan Vitrey

    2017-02-01

    Full Text Available The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range.

  9. Carbonate hosted gold deposit in Tasmania, Australia

    International Nuclear Information System (INIS)

    Abadi, M.H.

    1999-01-01

    Full text: This study uses elemental and isotopic composition of carbonates associated with gold from Henty and Beaconsfield in Tasmania, Australia, to illustrate source of gold-bearing fluids, salinity, temperature and dissolution and reprecipitation of carbonate. The Beaconsfield and Henty gold mines are located in northern and western Tasmania respectively. Gold mineralisation in Beaconsfield occurs within the quartz-carbonate Tasmania Reef (Lower to Middle Palaeozoic sequence, Hills, 1998). The Henty gold mine is located at the base of the Cambrian Tyndall Group (volcano-sedimentary succession, White and McPhie, 1996) close to Henty Fault. Gold in carbonate samples from Henty ranges from 7.7 to 9360 ppm and in Beaconsfield ranges from 0.01 to 434 ppm. The amount of carbonate in samples from Henty and Beaconsfield gold mines varies from approximately 24 to 99.8%. Bivariate plot of Ca relative to total amounts of Mg, Fe and Mn illustrates that the major carbonate minerals at Beaconsfield and Henty gold mines are magnesian ankerite and calcite. The difference in carbonate mineralogy, at Henty and Beaconsfield gold mines, is attributed to the composition of fluids responsible for carbonate alteration. Gold and magnesium in Beaconsfield ankerite are derived from the leaching of Cambrian ultramafic rocks during the Devonian by the passage of meteoric fluids through tectonically affected Ordovician carbonates (Rao and Adabi, 1999). The total concentration of Fe and Mn are low (0.5 to 2%) in Henty and high (1 to 17.5%) in Beaconsfield ankerite, possibly due to oxidising conditions at Henty and reducing conditions at Beaconsfield gold mines during gold mineralisation. Variation of Sr values between Beaconsfield ankerite and Henty calcite is related to dissolution of limestone that increase Sr concentrations in gold mineralising fluids. Na values in both Beaconsfield (20 to 1100 ppm) and Henty carbonates (25 to 1650 ppm) suggest low salinity fluids responsible for gold

  10. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition

    Science.gov (United States)

    Schwartzkopf, Matthias; Buffet, Adeline; Körstgens, Volker; Metwalli, Ezzeldin; Schlage, Kai; Benecke, Gunthard; Perlich, Jan; Rawolle, Monika; Rothkirch, André; Heidmann, Berit; Herzog, Gerd; Müller-Buschbaum, Peter; Röhlsberger, Ralf; Gehrke, Rainer; Stribeck, Norbert; Roth, Stephan V.

    2013-05-01

    The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction

  11. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America).

    Science.gov (United States)

    Bersani, D; Salvioli-Mariani, E; Mattioli, M; Menichetti, M; Lottici, P P

    2009-08-01

    Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H(2)O-NaCl-KCl-CO(2)-CH(4), with temperature and pressure intervals of 210-413 degrees C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments.

  12. The Berezitovoe gold-polymetallic deposit (Upper Amur region, Russia: Structure, mineralogy and genetic aspects

    Directory of Open Access Journals (Sweden)

    Alexandr S. Vakh

    2016-05-01

    Full Text Available The Berezitovoe deposit in the Sergachi volcano-plutonic and metallogenic belt preserves evidence for polymetallic mineralization of multiple stages. The steeply dipping garnet-tourmaline-muscovite-quartz metasomatites (with K-Ar ages of 132 ± 2.9 and 127 ± 4.4 Ma carry two distinct stages of mineralization developed at different times: (1 polymetallic mineralization and (2 gold-quartz. The deposit is located within Paleozoic gneissose granitoids of the Pikansky complex (dated as 379 ± 1.1 Ma by zircon U-Pb method intruded by early Cretaceous porphyry-like granites of the Haikta pluton (dated as 137 ± 0.67 Ma by zircon U-Pb method and late Cretaceous dikes of porphyrites, porphyries, and lamprophyres. Evidence suggests the action of late gold-bearing hydrothermal fluids on the early polymetallic ores and the selective mobilization of some elements from these lead to redeposition together with complex sulphosalts.

  13. Late-Hercynian intrusion-related gold deposits: An integrated model on the Tighza polymetallic district, central Morocco

    Science.gov (United States)

    Éric, Marcoux; Khadija, Nerci; Yannick, Branquet; Claire, Ramboz; Gilles, Ruffet; Jean-Jacques, Peucat; Ross, Stevenson; Michel, Jébrak

    2015-07-01

    Gold have been recently recognized in the Tighza (formerly Jebel Aouam) district, in the Hercynian belt of central Morocco. This district has long been known for its W mineralization, as well as major Pb-Ag-Zn, and minor Sb-Ba deposits, all geographically associated with late-Hercynian calc-alkaline magmatism. Gold mineralization in the district is mainly hosted by thick W-Au quartz veins located around the "Mine granite" small granitic plug. Within the veins, gold grade is highest (up to 70 g/t) close to the granite but rapidly decreases going outward from the granite, defining a perigranitic zoning. Anomalous gold grades have also been measured in hydrothermal skarn layers close to two other granitic plugs (Kaolin granite and Mispickel granite), associated with disseminated As-Fe sulfides. The paragenetic sequence for the W-Au quartz veins shows three stages: (1) an early oxidized stage with wolframite-scheelite associated with early quartz (Q1), (2) an intermediate Bi-As-Te-Mo-Au sulfide stage with loellingite, bismuth minerals and native gold with a later quartz (Q2), restricted to a narrow distance from the granite, and (3) a late lower temperature As-Cu-Zn-(Pb) stage with abundant massive pyrrhotite, arsenopyrite and sphalerite, locally forming independent veins ("pyrrhotite vein"). Both Q1 hyaline and Q2 saccharoidal gold-bearing quartz display aqua-carbonic fluids with minor H2S and Cu and an homogeneous composition (81 mole% H2O, 18 mole% CO2 and about 1 mole% NaCl). The trapping pressure is estimated to 1.5-2 kbar with temperature ranging from 300 to 350 °C. Q1 inclusions have exploded indicating an uplift of the Tighza block, that lead to saccharoidal Q2 quartz deposition with multiphase NaCl-saturated fluid inclusions. 40Ar/39Ar dating demonstrates that the "Mine granite", tungsten skarnoid, scheelite-molybdenite veins, and very likely gold-bearing veins are coeval, emplaced at 286 ± 1 Ma. Multiple and widespread metal sources are indicated by

  14. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei

    2016-10-01

    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  15. Geochemical evidence for subduction in the early Archaean from quartz-carbonate-fuchsite mineralization, Isua Supracrustal Belt, West Greenland

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    Quartz, carbonate and fuchsite (chromian muscovite) is a common metasomatic assemblage observed in orogenic gold systems, both in Phanerozoic convergent margin settings, and within supracrustal and greenstone belts of Precambrian rocks. Geologic and geochemical observations in younger orogenic...... systems suggest that ore-forming metasomatic fluids are derived from subduction-related devolitilization reactions, implying that orogenic Au-deposits in Archaean and Proterozoic supracrustal rock suites are related to subduction-style plate tectonics beginning early in Earth history. Justification...... with Phanerozoic orogenic deposits and that this type of metasomatism is a unique result of subduction-related processes. Fuchsite from the ISB has a δ18O and δD of 7.7 to 17.9‰ and -115 to -61‰, respectively. δ18O of quartz from the same rocks is between 10.3 and 18.6‰. Muscovite-quartz oxygen isotope thermometry...

  16. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States

    International Nuclear Information System (INIS)

    Raines, Gary L.

    1999-01-01

    The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km 2 as training sites to develop the model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality

  17. Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model

    International Nuclear Information System (INIS)

    Brandenberger, C.; Rothen-Rutishauser, B.; Muehlfeld, C.; Schmid, O.; Ferron, G.A.; Maier, K.L.; Gehr, P.; Lenz, A.-G.

    2010-01-01

    The impact of nanoparticles (NPs) in medicine and biology has increased rapidly in recent years. Gold NPs have advantageous properties such as chemical stability, high electron density and affinity to biomolecules, making them very promising candidates as drug carriers and diagnostic tools. However, diverse studies on the toxicity of gold NPs have reported contradictory results. To address this issue, a triple cell co-culture model simulating the alveolar lung epithelium was used and exposed at the air-liquid interface. The cell cultures were exposed to characterized aerosols with 15 nm gold particles (61 ng Au/cm 2 and 561 ng Au/cm 2 deposition) and incubated for 4 h and 24 h. Experiments were repeated six times. The mRNA induction of pro-inflammatory (TNFα, IL-8, iNOS) and oxidative stress markers (HO-1, SOD2) was measured, as well as protein induction of pro- and anti-inflammatory cytokines (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, TNFα, INFγ). A pre-stimulation with lipopolysaccharide (LPS) was performed to further study the effects of particles under inflammatory conditions. Particle deposition and particle uptake by cells were analyzed by transmission electron microscopy and design-based stereology. A homogeneous deposition was revealed, and particles were found to enter all cell types. No mRNA induction due to particles was observed for all markers. The cell culture system was sensitive to LPS but gold particles did not cause any synergistic or suppressive effects. With this experimental setup, reflecting the physiological conditions more precisely, no adverse effects from gold NPs were observed. However, chronic studies under in vivo conditions are needed to entirely exclude adverse effects.

  18. Discussion on spatial emplacement of exogenic-epigenetic infiltration-type uranium deposit

    International Nuclear Information System (INIS)

    Zhao Fengmin

    2005-01-01

    Exogenic-epigenetic infiltration-type uranium deposit is a kind of deposit with large resources, low exploitation cost, and less environmental pollution being the recent important prospecting target in China. Prospecting practice for uranium during recent decade indicates that the metallogenic model and prospecting-evaluation criteria obtained from sandstone-hosted uranium deposits in Middle Asia are not applicable to the case in China. China is a country which has been subject to intense neotectonism, and Meso-Cenozoic basins in China have experienced various tectonic reworking. According to the spatial relation to orogenic belts sedimentary basins may be divided into: basins in orogenic belt; basins near orogenic belt and basins with weak tectonic activation far away from orogenic belt. Then, based on the structural features, basins may be further divided into corresponding subtypes. The author discusses the favourability of each type basin for the formation of exogenic-epigenetic uranium mineralization, as well as the paleo-climatic conditions for uranium ore-formation. Then, the author proposes that, for small intracontinental basins recharged by natural groundwater, the arid climatic period is not totally a favourable factor for uranium ore-formation, it even could be an unfavourable factor. In contrast, basins located in humid climatic region may be advantageous to uranium ore-formation. For improving the prospecting efficiency, a metallogenic model for exogenic-epigenetic infiltration uranium deposits and corresponding prospecting-evaluation criteria suitable for geologic situation of China have to be established as soon as possible. (authors)

  19. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    Science.gov (United States)

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    are attributes of the ancient North American cratonic margin that appear to be essential prerequisites to this style of postcollisional magmatism and associated gold-rich fluid exsolution. This type of magmatic hydrothermal activity occurs in a very specific tectonic setting that typically sets intrusion-related gold deposits apart from orogenic gold deposits, which are synorogenic in timing and have no consistent direct relationship to such diverse and contemporaneous lithospheric mantle-derived magmas, although they too are commonly sited adjacent to lithospheric boundaries.

  20. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  1. Mineralogy and fluid inclusion studies in kalchoye Copper- gold deposit, East of Esfahan

    Directory of Open Access Journals (Sweden)

    Rezvan Mehvary

    2009-09-01

    Full Text Available Kalchoye Copper-gold deposit is located about 110 kilometers east of Esfahan province and within the Eocene volcano sedimentary rocks. Sandy tuff and andesite lava are important members of this complex.The form of mineralization in area is vein and veinlet and quartz as the main gangue phase. The main ore minerals are chalcopyrite, chalcocite, galena and weathered minerals such as goethite, iron oxides, malachite and azurite. Studies in area indicate that ore mineralization Kalchoye is low sulfide, quartz type of hydrothermal ore deposits and results of thermometry studies on quartz minerals low- medium fluid with low potential mineralization is responsible for mineralization in this area.

  2. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  3. Mantle refertilization and magmatism in old orogenic regions: The role of late-orogenic pyroxenites

    Science.gov (United States)

    France, Lydéric; Chazot, Gilles; Kornprobst, Jacques; Dallai, Luigi; Vannucci, Riccardo; Grégoire, Michel; Bertrand, Hervé; Boivin, Pierre

    2015-09-01

    Pyroxenites and garnet pyroxenites are mantle heterogeneities characterized by a lower solidus temperature than the enclosing peridotites; it follows that they are preferentially involved during magma genesis. Constraining their origin, composition, and the interactions they underwent during their subsequent evolution is therefore essential to discuss the sources of magmatism in a given area. Pyroxenites could represent either recycling of crustal rocks in mantle domains or mantle originated rocks (formed either by olivine consuming melt-rock reactions or by crystal fractionation). Petrological and geochemical (major and trace elements, Sr-Nd and O isotopes) features of xenoliths from various occurrences (French Massif-Central, Jordan, Morocco and Cameroon) show that these samples represent cumulates crystallized during melt percolation at mantle conditions. They formed in mantle domains at pressures of 1-2 GPa during post-collisional magmatism (possibly Hercynian for the French Massif-Central, and Panafrican for Morocco, Jordan and Cameroon). The thermal re-equilibration of lithospheric domains, typical of the late orogenic exhumation stages, is also recorded by the samples. Most of the samples display a metasomatic overprint that may be either inherited or likely linked to the recent volcanic activity that occurred in the investigated regions. The crystallization of pyroxenites during late orogenic events has implications for the subsequent evolution of the mantle domains. The presence of large amounts of mantle pyroxenites in old orogenic regions indeed imparts peculiar physical and chemical characteristics to these domains. Among others, the global solidus temperature of the whole lithospheric domain will be lowered; in turn, this implies that old orogenic regions are refertilized zones where magmatic activity would be enhanced.

  4. Gold deposits of the southern Piedmont

    Science.gov (United States)

    Pardee, J.T.; Park, C.F.

    1948-01-01

    This report deals chiefly with the gold mines in the Southern Appalachian gold belt whose workings were accessible at the time of examination, but it also · summarizes available information concerning many mines that were not accessible. Most of the mines lie within a belt, 10 to 100 miles wide, that extends

  5. Fluid Inclusion Study of The Tumpangpitu High Sulfidation Epithermal Gold Deposit in Banyuwangi District, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Yu Yu Myaing

    2018-03-01

    Full Text Available The Tumpangpitu high sulfidation (HS epithermal gold deposit is located in the south coast of East Java, Banyuwangi District, East Java Province, Indonesia. This area lies within the central portion of the Cenozoic Sunda‐Banda magmatic arc which trends southeast from northern Sumatra to west Java then eastward through east Java, Bali, Lombok, Sumbawa and terminating at Banda sea. The geology of the Tumpangpitu is predominantly occupied by Late Oligocene to Middle Miocene low-K calc-alkaline to alkaline andesitic volcanic rocks and interbedded with volcaniclastic rock sequences, which are associated with low-K intermediate intrusions. The mineralization style at the Tumpangpitu area is composed of a high‐sulfidation (HS epithermal gold-copper system which is typically associated with concealed gold-rich porphyry copper system. The HS epithermal mineralization is hosted by volcanic and volcaniclastic rocks in this research area. The mineralization domains are divided into Zone A, Zone B and Zone C which are situated along NW-SE-trending silica ledges zones. The HS epithermal mineralization is texturally occurs as vuggy replacements mineralization as well as stockworks, disseminated forms, fractures and veins. Fluid inclusion study was conducted for 6 quartz vein samples which petrographically entrapped fluid inclusions. Homogenization temperature (Th and melting temperature (Tm can microthermometrically be determined by fluid inclusion analysis. The average homogenization temperature (Th of the fluid inclusions gives 180˚C to 342˚C and melting temperature are from -0.1 ˚C to -1.4˚C. Tm corresponds to the salinities ranging from 0.1 to 4.5 wt% NaCl equivalent. The paleodepth of ore formation can be estimated from the salinity of fluid. Since the deposit was not formed at boiling condition, the minimum paleodepth of ore (quartz samples taken from both shallow level (53.35 m and deep level (135.15 m is determined at 650m and 1,220 m

  6. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Noyhouzer, Tomer [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Mandler, Daniel, E-mail: mandler@vms.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ng L{sup -1}) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms.

  7. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  8. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: A mantle connection for mineralization?

    Science.gov (United States)

    Mao, J.; Li, Y.; Goldfarb, R.; He, Y.; Zaw, K.

    2003-01-01

    The Dongping gold deposit (>100 t Au) occurs about 200 km inboard of the northern margin of the North China craton. The deposit is mainly hosted by syenite of a middle Paleozoic alkalic intrusive complex that was emplaced into Late Archean basement rocks. Both groups of rocks are intruded by Late Jurassic to Early Cretaceous crustal-melt granite dikes and stocks, some within a few kilometers of the deposit. The gold ores were deposited during this latter magmatic period at about 150 Ma, a time that was characterized by widespread regional north-south compression that formed the east-west-trending Yanshan deformational belt. The ores include both the telluride mineral-bearing, low sulfide quartz veins and the highly K-feldspar-altered syenite, with most of the resource concentrated in two orebodies (1 and 70). Fluid inclusion microthermometry indicates heterogeneous trapping of low-salinity (e.g., 5-7 wt % NaCl equiv) fluids that varied from a few to 60 mole percent nonaqueous volatile species. Laser Raman spectroscopy confirms that the vapor phase in these inclusions is dominated by CO2, but may be comprised of as much as 9 mole percent H2S and 20 mole percent N2; methane concentrations in the vapor phase are consistently interaction of ore fluids with surrounding crustal rocks, which may have contributed additional He to the fluids. A mantle source for at least some of the components of the gold-forming fluid is consistent with upwelling of hot asthenosphere and erosion of as much as 100 to 150 km of cool Archean lithosphere beneath the craton during this time. The Dongping deposit is located along the 100-km-wide north-south gravity lineament, which marks the western border of the thinned crust. As both regional metamorphism of Mesoproterozoic and younger cover rocks, and widespread granite magmatism, also occurred at ca. 150 Ma, it is unclear as to whether one or both of these also contributed fluid and/or metals to the hydrothermal system. Importantly, these

  9. Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; van der Pluijm, B.A. (Univ. of Michigan, Ann Arbor (USA))

    1990-11-01

    Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authigenic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of paleomagnetic overprints of similar age, have focused attention on the possibility that these Mississippi Valley-type deposits formed as a result of late Paleozoic deformation. Geologic and geochemical similarities among most of these deposits, from Georgia to Newfoundland, including unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradiogenic lead, suggest that they are coeval. Sphalerite sand that parallels host-rock layering in many of the deposits indicates that mineralization occurred before regional deformation. Although the late Paleozoic age of deformation in the southern Appalachians provides little constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This hypothesis has important implications for basin evolution, fluid events, and remagnetization in the Appalachians.

  10. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    Science.gov (United States)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  11. Geology and Isotope Systematics of the Jianchaling Au Deposit, Shaanxi Province, China: Implications for Mineral Genesis

    Directory of Open Access Journals (Sweden)

    Su-Wei Yue

    2018-04-01

    Full Text Available The giant Jianchaling Au (52 t Au deposit is located in the Mian-Lue-Yang Terrane in the southern part of the Qinling Orogen of central China and is hosted by metamorphosed carbonate rocks of the Late Neoproterozoic Duantouya Formation. The deposit consists of multiple generations of mineralised quartz(-carbonate veins in WNW-trending extensional ductile-brittle shear zones. Based on the mineral assemblages and cross-cutting relationships between the quartz(-carbonate veins, the paragenesis is characterised by an early coarse-grained pyrite-pyrrhotite-pentlandite-dolomite-quartz assemblage (I, followed by pyrite-sphalerite-galena-carbonate-arsenopyrite-fuchsite-carbonate-quartz containing gold (II, and fine-grained pyrite-dolomite-calcite-quartz-realgar (As2S2-orpiment (As2S3 (III. The H-O-C isotope systematics for the three vein sets indicate that the mineralising fluid is probably sourced from the metamorphic dehydration of carbonate rocks in the Duantouya Formation, and gradually mixed with meteoric water during the emplacement of the third vein set. The δ34S values for sulfides (6.3–16.6‰ from the second auriferous vein set are greater than zero, indicating sulfates reduction from the Neoproterozoic metamorphic rocks (Duantouya Fm. The (206Pb/204Pbi ratios from pyrite (17.521–18.477 from each of the vein sets overlap those of the ultramafic rocks (18.324–18.717 and the Bikou Group (17.399–18.417, indicating that the units are possible sources for the sulfides in the mineralisation. Both εNd(t and Isr(t of sulfide overlap with the meta-ultramafic field and Duantouya formation and dominated with mature Sr-Nd character, which indicated that the Duantouya may play an important role during the ore formation and there may exist a minor ultramafic source that is involved in the ore fluid. The S-Pb-Sr-Nd isotopic ratios are closely related to those of the Bikou Group and Duantouya Formation, which indicates that the mineralised fluid has

  12. What Can Modern River Profiles Tell Us about Orogenic Processes and Orogen Evolution?

    Science.gov (United States)

    Whipple, K. X.

    2008-12-01

    Numerous lines of evidence from theory, numerical simulations, and physical experiments suggest that orogen evolution is strongly coupled to atmospheric processes through the interrelationships among climate, topography, and erosion rate. In terms of orogenic processes and orogen evolution, these relationships are most important at the regional scale (mean topographic gradient, mean relief above surrounding plains) largely because crustal deformation is most sensitive to erosional unloading averaged over sufficiently long wavelengths. For this reason, and because above moderate erosion rates (> 0.2 mm/yr) hillslope form becomes decoupled from erosion rate, attention has focused on the river network, and even on particularly large rivers. We now have data that demonstrates a monotonic relationship between erosion rate and the channel steepness index (slope normalized for differences in drainage area) in a variety of field settings. Consequently, study of modern river profiles can yield useful information on recent and on-going patterns of rock uplift. It is not yet possible, however, to quantitatively isolate expected climatic and lithologic influences on this relationship. A combination of field studies and theoretical analyses are beginning to reveal the timescale of landscape response, and thus the topographic memory of past conditions. At orogen scale, river profile response to a change in rock uplift rate is on the order of 1-10 Myr. Because of these long response times, the modern profiles of large rivers and their major tributaries can potentially preserve an interpretable record of rock uplift rates since the Miocene and are insensitive to short-term climatic fluctuations. Only significant increases in rock uplift rate, however, are likely to leave a clear topographic signature. Strategies have been developed to differentiate between temporal and spatial (tectonic, climatic, or lithologic) influences on channel profile form, especially where spatially

  13. The effect of cysteine on electrodeposition of gold nanoparticle

    International Nuclear Information System (INIS)

    Dolati, A.; Imanieh, I.; Salehi, F.; Farahani, M.

    2011-01-01

    Highlights: → Cysteine was found as an appropriate additive for electrodeposition of gold nanoparticles. → The deposition mechanism of gold nanoparticle was determined as instantaneous nucleation. → Oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits. - Abstract: The most applications of gold nanoparticles are in the photo-electronical accessories and bio-chemical sensors. Chloride solution with cysteine additive was used as electrolyte in gold nanoparticles electrodeposition. The nucleation and growing mechanism were studied by electrochemical techniques such as cyclic voltammetry and chronoamperometry, in order to obtain a suitable nano structure. The deposition mechanism was determined as instantaneous nucleation and the dimension of particles was controlled in nanometric particle size range. Atomic Force Microscope was used to evaluate the effect of cysteine on the morphology and topography of gold nanoparticles. Finally the catalytic property of gold nanoparticle electrodeposited was studied in KOH solution, where oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits.

  14. Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

    Directory of Open Access Journals (Sweden)

    Domagoj Belić

    2017-11-01

    Full Text Available This work presents a highly effective approach for the chemical purification of directly written 2D and 3D gold nanostructures suitable for plasmonics, biomolecule immobilisation, and nanoelectronics. Gold nano- and microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID. Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be diminished using a two-step process – a combination of optimized deposition followed by appropriate postdeposition cleaning. Starting from the common metal-organic precursor Me2-Au-tfac, it is demonstrated that the Au content in pristine FEBID nanostructures can be increased from 30 atom % to as much as 72 atom %, depending on the sustained electron beam dose. As a second step, oxygen-plasma treatment is established to further enhance the Au content in the structures, while preserving their morphology to a high degree. This two-step process represents a simple, feasible and high-throughput method for direct writing of purer gold nanostructures that can enable their future use for demanding applications.

  15. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  16. Geological factors of deposit formation

    International Nuclear Information System (INIS)

    Grushevoj, G.V.

    1980-01-01

    Geologic factors of hydrogenic uranium deposit formation are considered. Structural, formation and lithological-facies factors of deposit formation, connected with zones of stratal oxidation, are characterized. Peculiarities of deposit localization, connected with orogenic structures of Mesozoic and lenozoic age, are described. It is noted that deposits of anagenous group are widely spread in Paleozoic formations, infiltration uranium deposits are localized mainly in Cenozoic sediments, while uranium mineralization both anagenous and infiltration groups are widely developed in Mesozoic sediments. Anagenous deposits were formed in non-oxygen situation, their age varies from 200 to 55 mln years. Infiltration deposit formation is determined by asymmetric oxidation zonation, their age varies from 10 - 40 mln years to dozens of thousand years [ru

  17. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  18. Tracking the multi-stage exhumation history of the western Chinese Tianshan by Apatite Fission Track (AFT) dating - Implications for the preservation of epithermal deposits in ancient orogenic belt

    Science.gov (United States)

    Wang, Yannan; Cai, Keda

    2017-04-01

    The western Chinese Tianshan, located in the southern domain of the Central Asian Orogenic Belt (CAOB), was originally constructed by multiple accretion-collision processes in the Paleozoic, and was superimposed by complex intracontinental tectonic evolution in the Mesozoic-Cenozoic. Understanding the timing and mechanism of the latter geological processes is critical to unravel the preservation conditions of the epithermal deposits in the western Chinese Tianshan. This work presents new apatite fission track (AFT) data for three mountain ranges of the western Chinese Tianshan to track their exhumation history. Our AFT data gave a wide range of ages from 76.8 ± 5.5 Ma to 182.3 ± 9.9 Ma, and the mean confined fission track lengths are between 9.8 ± 0.5 μm and 12.3 ± 0.2 μm. The new data, in combination with the thermal history modeling,enable us to attribute the exhumation history to three primary stages, including Early Permian (300-280 Ma), Late Triassic-Early Cretaceous (230-130 Ma), and Late Oligocene-Early Miocene (30-20 Ma). The first stage may be caused by the terrane accretion-collision in the late Paleozoic. The second stage was likely related to the closure of the Mongol-Okhotsk Ocean during the Mesozoic. The last one is regarded as the result of the collision between the Indian Plate and the Eurasia Plate in the Cenozoic. The extraordinary exhumation processes of these three major mountain ranges might have been responsible for sediment supply to the corresponding intra-mountain basins in the western Chinese Tianshan, and the particularly mountain-basin coupling evolution is ascribed to an essential condition for the preservation of epithermal deposits in ancient orogenic belt.

  19. Improvement in crystallization and electrical properties of barium strontium titanate thin films by gold doping using metal-organic deposition method

    International Nuclear Information System (INIS)

    Wang, H.-W.; Nien, S.-W.; Lee, K.-C.; Wu, M.-C.

    2005-01-01

    The effect of gold (Au) on the crystallization, dielectric constant and leakage current density of barium strontium titanate (BST) thin films was investigated. BST thin films with various gold concentrations were prepared via a metal-organic deposition process. The X-ray diffraction shows enhanced crystallization as well as expanded lattice constants for the gold-doped BST films. Thermal analysis reveals that the gold dopant induces more complete decomposition of precursor for the doped films than those of undoped ones. The leakage current density of BST films is greatly reduced by the gold dopant over a range of biases (1-5 V). The distribution of gold was confirmed by electron energy loss spectroscopy and found to be inside the BST grains, not in the grain-boundaries. Gold acted as a catalyst, inducing the nucleation of crystallites and improving the crystallinity of the structure. Its addition is shown to be associated to the improvement of the electrical properties of BST films

  20. Geologic characteristics of sediment- and volcanic-hosted disseminated gold deposits - Search for an occurrence model

    Science.gov (United States)

    White, Donald E.; Fournier, Robert O.; Rytuba, James J.; Rye, Robert O.; Cunningham, Charles G.; Berger, Byron R.; Silberman, Miles L.; Bonham, Harold F.; Strachan, Donald G.; Birak, Donald J.; Hawkins, Robert J.; Tooker, Edwin W.; Tooker, Edwin W.

    1985-01-01

    The current expansion of resource information, particularly on "disseminated" gold, and the improved technologies now available for resource investigations should place us in an enhanced position for developing a better predictive methodology for meeting one of the important responsibilities of the U.S. Geological Survey-to examine and assess the mineral resources of the geologic terranes composing the public (and privately owned) lands of the United States. The first step is systematic organization of these data. Geologic-occurrence models are an effective systematic method by which to organize large amounts of resource information into a logical sequence facilitating its use more effectively in meeting several industry and Survey objectives, which include the exploration for resources and the assessment of resource potential for land-use decisions. Such models also provide a scientific basis for metallogenesis research, which considers the observable features or attributes of ore occurrence and their "fit" into the Earth's resource puzzle. The use of models in making resource assessments/appraisals was addressed by Shawe (1981), who reported the results of a workshop on methods for resource appraisal of Wilderness and Conterminous United States Mineral Appraisal Program (CUSMAP; 1:250,000-scale quadrangles) areas. The Survey's main objective in the 1982 workshop was to evaluate the status of knowledge about disseminated or very fine grained gold deposits and, if possible, to develop an occurrence model(s).This report on the workshop proceedings has three main objectives: (1) Education through the publication of a summary review and presentation of new thinking and observations about the scientific bases for those geologic processes and environments that foster disseminated gold-ore formation; (2) systematic organization of available geologic, geochemical, and geophysical information for a range of typical disseminated gold deposits (including recognition of gaps

  1. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  2. Importance of dewetting in organic molecular-beam deposition: Pentacene on gold

    International Nuclear Information System (INIS)

    Beernink, G.; Strunskus, T.; Witte, G.; Woell, Ch.

    2004-01-01

    Organic molecular-beam deposition of pentacene on gold substrates has been investigated using a multitechnique approach. The morphology of the organic thin films depends strongly on the substrate temperature. Pronounced dewetting and island formation are observed at room temperature. Whereas pentacene molecules adopt a planar monolayer structure, they continue to grow in an upright orientation in multilayer films as inferred from x-ray absorption spectroscopy and atomic force microscopy. These results are in pronounced contrast to a recent scanning tunneling microscopy (STM) study by Kang and Zhu [Appl. Phys. Lett. 82, 3248 (2003)] and indicate fundamental problems in the interpretation of STM measurements for organic thin films

  3. An active nano-supported interface designed from gold nanoparticles embedded on ionic liquid for depositing DNA

    International Nuclear Information System (INIS)

    Lu Liping; Kang Tianfang; Cheng Shuiyuan; Guo Xiurui

    2009-01-01

    The use of an active nano-interface designed from gold nanoparticles embedded on ionic liquid for DNA damage resulted from formalehyde (HCHO) is reported in this article. The active nano-interface was fabricated by depositing gold nanoparticles on the ionic liquid 1-butyl-3-methylimidazolium tetrafluroborate ([bmim][BF 4 ]). A glassy carbon electrode modified by this composite film was fabricated to immobilize DNA for probing into the damage resulted from HCHO. The modifying process was characterized by X-ray photoelectron spectroscopy, atomic force microscopy and electrochemistry involving electrochemical impedance spectroscopy. It was found that the modified film performs effectively in studying the DNA damage by electrocatalytic activity toward HCHO oxidation.

  4. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    Science.gov (United States)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and

  5. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    Science.gov (United States)

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  6. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.

    Directory of Open Access Journals (Sweden)

    Christian R Svensson

    Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.

  7. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    Science.gov (United States)

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  8. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U 3 O 8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U 3 O 8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  9. An overview of the regional, geological and structural setting of the uraniferous granites in the Damara Orogen, Namibia

    International Nuclear Information System (INIS)

    Brynard, H.J.; Andreoli, M.A.G.

    1988-01-01

    Uranium-bearing granites, comprising both potentially economic deposits and source rocks for uranium deposits in duricrustal and sedimentary sequences, occur in the Damara Orogen of Namibia. The economically important uraniferous granites are mainly confined to the Central Zone, delimited by the Omaruru and Okahandja lineaments, which demarcate the boundary between two markedly different magnetic and hence depositional and/or tectonic regimes. Various models to explain the origin and evolution of the uranium-enriched granites have been proposed to date, none of which are found to explain the observed petrological phenomena adequately. The paper critically reviews the existing literature on the origin of the granites and some criteria for exploration are discussed. (author). 24 refs, 6 figs, 2 tabs

  10. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also are similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage

  11. Geostatistical and GIS analysis of the spatial variability of alluvial gold content in Ngoura-Colomines area, Eastern Cameroon: Implications for the exploration of primary gold deposit

    Science.gov (United States)

    Takodjou Wambo, Jonas Didero; Ganno, Sylvestre; Djonthu Lahe, Yannick Sthopira; Kouankap Nono, Gus Djibril; Fossi, Donald Hermann; Tchouatcha, Milan Stafford; Nzenti, Jean Paul

    2018-06-01

    Linear and nonlinear geostatistic is commonly used in ore grade estimation and seldom used in Geographical Information System (GIS) technology. In this study, we suggest an approach based on geostatistic linear ordinary kriging (OK) and Geographical Information System (GIS) techniques to investigate the spatial distribution of alluvial gold content, mineralized and gangue layers thicknesses from 73 pits at the Ngoura-Colomines area with the aim to determine controlling factors for the spatial distribution of mineralization and delineate the most prospective area for primary gold mineralization. Gold content varies between 0.1 and 4.6 g/m3 and has been broadly grouped into three statistical classes. These classes have been spatially subdivided into nine zones using ordinary kriging model based on physical and topographical characteristics. Both mineralized and barren layer thicknesses show randomly spatial distribution, and there is no correlation between these parameters and the gold content. This approach has shown that the Ngoura-Colomines area is located in a large shear zone compatible with the Riedel fault system composed of P and P‧ fractures oriented NE-SW and NNE-SSW respectively; E-W trending R fractures and R‧ fractures with NW-SE trends that could have contributed significantly to the establishment of this gold mineralization. The combined OK model and GIS analysis have led to the delineation of Colomines, Tissongo, Madubal and Boutou villages as the most prospective areas for the exploration of primary gold deposit in the study area.

  12. Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-01-01

    The electrochemical reduction of tinidazole (TNZ) is studied on gold-nanoparticle/carbon-nanotubes (AuNP/CNT) modified glassy carbon electrodes using the linear sweep voltammetry. An electrochemical procedure was used for the deposition of gold nanoparticles onto the carbon nanotube film pre-cast on a glassy carbon electrode surface. The resulting nanoparticles were characterized by scanning electron microscopy and cyclic voltammetry. The effect of the electrodeposition conditions, e.g., salt concentration and deposition time on the response of the electrode was studied. Also, the effect of experimental parameters, e.g., potential and time of accumulation, pH of the buffered solutions and the potential sweep rate on the response is examined. Under the optimal conditions, the modified electrode showed a wide linear response toward the concentration of TNZ in the range of 0.1–50 μM with a detection limit of 10 nM. The prepared electrode was successfully applied for the determination of TNZ in pharmaceutical and clinical samples.

  13. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua

    2015-05-01

    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a

  14. Geochronology, geochemistry and Hf–Sr–Nd isotopes of the ore-bearing syenite from the Shapinggou porphyry Mo deposit, East Qinling-Dabie orogenic belt

    Directory of Open Access Journals (Sweden)

    Tao He

    2016-12-01

    Full Text Available The Shapinggou Mo deposit is located in the western Dabie mountains, the eastern part of the Qinling-Dabie molybdenum orogenic belt. Shapinggou Mo deposit is a concealed deposit with the ore body mainly hosted by explosive breccia of Gaijing and the granite porphyry as well as the syenite of Shapinggou. Geochemistry study show that the SiO2 contents of Shapinggou syenite range from 61.74 to 69.93%, and the A/CNK from 0.95 to 1.06, classified as metaluminous to weak peraluminous, belonging to alkalic to shoshonitic series. The Mo deposits in Qinling Mo belt formed in two main periods, i.e., the first period occurred in to the Early Cretaceous (145–130 Ma, the second period in the late Early Cretaceous (130–110 Ma. Most of the Mo deposits in Dabie region formed in the second period. The results of zircon U–Pb show that the age of the Shapinggou syenite is 111.3 ± 1.2 Ma, which belongs to the second period. Proterozoic-Archean inherited zircons suggest that it may include some more ancient crustal material like Kongling group. The ɛHf(t values of Shapinggou syenite range from −15.6 to −8.0, TDM2(Hf from 1.7 to 2.16 Ga, respectively. The ɛNd(t values of the Shapinggou syenite range from −12.29 to −11.76, TDM2(Nd from 1.85 to 1.89 Ga, the 87Sr/86Sr from 0.709 to 0.710, respectively. Results of zircon Hf isotope and whole rock Sr–Nd isotope of Shapinggou syenite indicate that the Mo ore-forming materials were mainly generated from old Yangtze craton, e.g., gneiss from Dabie orogeny, mixed with some juvenal mantle materials. The geodynamics of the Shapinggou Mo deposit corresponded to an extension period in Eastern China, which caused by large scale lithospheric thinning. The delamination caused asthenosphere upwelling and crust-mantle interaction, which provided the ore-forming material and heat.

  15. Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt

    Science.gov (United States)

    Zoheir, Basem A.; Akawy, Ahmed

    2010-06-01

    Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al

  16. Nature, diversity of deposit types and metallogenic relations of South China

    Science.gov (United States)

    Zaw, K.; Peters, S.G.; Cromie, P.; Burrett, C.; Hou, Z.

    2007-01-01

    the 'Northern Golden Triangle' of China. These deposits are mostly epigenetic hydrothermal micron-disseminated gold deposits with associated As, Hg, Sb + Tl mineralisation similar to Carlin-type deposits in USA. The important deposits in the Southern Golden Triangle are Jinfeng (Lannigou), Zimudang, Getang, Yata and Banqi in Guizhou Province, and the Jinya and Gaolong deposits in Guangxi District. The most important deposits in the Northern Golden Triangle are the Dongbeizhai and Qiaoqiaoshang deposits. Many porphyry-related polymetallic copper-lead-zinc and gold skarn deposits occur in South China. These deposits are related to Indosinian (Triassic) and Yanshanian (Jurassic to Cretaceous) magmatism associated with collision of the South China and North China Cratons and westward subduction of the Palaeo-Pacific Plate. Most of these deposits are distributed along the Lower to Middle Yangtze River metallogenic belt. The most significant deposits are Tonglushan, Jilongshan, Fengshandong, Shitouzui and Jiguanzui. Au-(Ag-Mo)-rich porphyry-related Cu-Fe skarn deposits are also present (Chengmenshan and Wushan in Jiangxi Province and Xinqiao, Mashan-Tianmashan, Shizishan and Huangshilaoshan in Anhui Province). The South China fold belt extending from Fujian to Zhejiang Provinces is characterised by well-developed Yanshanian intrusive to subvolcanic rocks associated with porphyry to epithermal type mineralisation and mesothermal vein deposits. The largest porphyry copper deposit in China, Dexing, occurs in Jiangxi Province and is hosted by Yanshanian granodiorite. The high-sulphidation epithermal system occurs at the Zijinshan district in Fujian Province and epithermal to mesothermal vein-type deposits are also found in the Zhejiang Province (e.g., Zhilingtou). Part of Shandong Province is located at the northern margin of the South China Craton and the province has unique world class granite-hosted orogenic gold deposits. Occurrences of Pt-Pd-Ni-Cu-Co are found in Permian

  17. Deformation correlations, stress field switches and evolution of an orogenic intersection: The Pan-African Kaoko-Damara orogenic junction, Namibia

    Directory of Open Access Journals (Sweden)

    Ben Goscombe

    2017-11-01

    Full Text Available Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System. Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing, and switches between different deformation events. Horizontal principle compressive stress rotated clockwise ∼180° in total during Kaoko Belt evolution, and ∼135° during Damara Belt evolution. At most stages, stress field variation is progressive and can be attributed to events within the Damara Orogenic System, caused by changes in relative trajectories of the interacting Rio De La Plata, Congo, and Kalahari Cratons. Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ∼590 Ma, involving E–W directed shortening, progressing through different transpressional states with ∼45° rotation of the stress field to strike-slip shear under NW–SE shortening at ∼550–530 Ma. Damaran orogenesis evolved from collision at ∼555–550 Ma with NW–SE directed shortening in common with the Kaoko Belt, and subsequently evolved through ∼90° rotation of the stress field to NE–SW shortening at ∼512–508 Ma. Both Kaoko and Damara orogenic fronts were operating at the same time, with all three cratons being coaxially convergent during the 550–530 Ma period; Rio De La Plata directed SE against the Congo Craton margin, and both together over-riding the Kalahari Craton margin also towards the SE. Progressive stress field rotation was punctuated by rapid and significant switches at ∼530–525 Ma, ∼508 Ma and ∼505 Ma. These three events included: (1 Culmination of main phase orogenesis in the Damara Belt, coinciding with maximum burial and peak metamorphism at 530–525 Ma. This occurred at the same time as termination of transpression and initiation of

  18. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Beni, Valerio; Dillon, Patrick H.; Barry, Thomas; Arrigan, Damien W.M

    2004-05-24

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l{sup -1} of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y ({mu}g l{sup -1}) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods.

  19. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    Science.gov (United States)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  20. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens

    Energy Technology Data Exchange (ETDEWEB)

    Boamponsem, L.K. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana); Adam, J.I. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Dampare, S.B., E-mail: dampare@cc.okayama-u.ac.j [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Department of Earth Sciences, Okayama University, 1-1, Tsushima-Naka 3-Chome, Okayama 700-8530 (Japan); Nyarko, B.J.B. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Essumang, D.K. [Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana)

    2010-05-01

    In situ lichens (Parmelia sulcata) have been used to assess atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana. Total heavy metal concentrations obtained by instrumental neutron activation analysis (INAA) were processed by positive matrix factorization (PMF), principal component (PCA) and cluster (CA) analyses. The pollution index factor (PIF) and pollution load index (PLI) criteria revealed elevated levels of Sb, Mn, Cu, V, Al, Co, Hg, Cd and As in excess of the background values. The PCA and CA classified the examined elements into anthropogenic and natural sources, and PMF resolved three primary sources/factors: agricultural activities and other non-point anthropogenic origins, natural soil dust, and gold mining activities. Gold mining activities, which are characterized by dominant species of Sb, Th, As, Hg, Cd and Co, and significant contributions of Cu, Al, Mn and V, are the main contributors of heavy metals in the atmosphere of the study area.

  1. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens

    International Nuclear Information System (INIS)

    Boamponsem, L.K.; Adam, J.I.; Dampare, S.B.; Nyarko, B.J.B.; Essumang, D.K.

    2010-01-01

    In situ lichens (Parmelia sulcata) have been used to assess atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana. Total heavy metal concentrations obtained by instrumental neutron activation analysis (INAA) were processed by positive matrix factorization (PMF), principal component (PCA) and cluster (CA) analyses. The pollution index factor (PIF) and pollution load index (PLI) criteria revealed elevated levels of Sb, Mn, Cu, V, Al, Co, Hg, Cd and As in excess of the background values. The PCA and CA classified the examined elements into anthropogenic and natural sources, and PMF resolved three primary sources/factors: agricultural activities and other non-point anthropogenic origins, natural soil dust, and gold mining activities. Gold mining activities, which are characterized by dominant species of Sb, Th, As, Hg, Cd and Co, and significant contributions of Cu, Al, Mn and V, are the main contributors of heavy metals in the atmosphere of the study area.

  2. A study on gold detection in Wenyu gold mine with XRF techniques

    International Nuclear Information System (INIS)

    Liu Liuchun

    1988-01-01

    A portable X ray fluorescence analyzer was used for detecting fluorcescent X rays from the elements associated with gold ores. Fe, As and Ni were chosen to be the indicator elements to analyse rock samples in Wenyu gold mine. Optimum indicators were determined, and it had proved to be successful to detect gold indirectly by measuring the yields of characteristic X rays of the elements. The method provided also valuable information on geology mapping and deposits forming environment

  3. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  4. The industrial types of uranium deposits of Ukraine and their resources

    International Nuclear Information System (INIS)

    Bakarjiev, A. Ch.; Makhivchuk, O.F.; Popov, N.I.

    1997-01-01

    Industrial uranium deposits of Ukraine are represented by two types. Their origin is related to the processes of alkali metasomatism in areas of proto-activization that took place at the late orogenic stage of the formation of the Ukrainian shield. Deposits are located in large cataclatic zones that are formed at the intersection of deep fractures. (author). 5 figs

  5. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  6. Seismological Constraints on Lithospheric Evolution in the Appalachian Orogen

    Science.gov (United States)

    Fischer, K. M.; Hopper, E.; Hawman, R. B.; Wagner, L. S.

    2017-12-01

    Crust and mantle structures beneath the Appalachian orogen, recently resolved by seismic data from the EarthScope SESAME Flexible Array and Transportable Array, provide new constraints on the scale and style of the Appalachian collision and subsequent lithospheric evolution. In the southern Appalachians, imaging with Sp and Ps phases reveals the final (Alleghanian) suture between the crusts of Laurentia and the Gondwanan Suwannee terrane as a low angle (Kellogg, 2017) isostatic arguments indicate crustal thicknesses were 15-25 km larger at the end of the orogeny, indicating a thick crustal root across the region. The present-day residual crustal root beneath the Blue Ridge mountains is estimated to have a density contrast with the mantle of only 104±20 kg/m3. This value is comparable to other old orogens but lower than values typical of young or active orogens, indicating a loss of lower crustal buoyancy over time. At mantle depths, the negative shear velocity gradient that marks the transition from lithosphere to asthenosphere, as illuminated by Sp phases, varies across the Appalachian orogen. This boundary is shallow beneath the northeastern U.S. and in the zone of Eocene volcanism in Virginia, where low velocity anomalies occur in the upper mantle. These correlations suggest recent active lithosphere-asthenosphere interaction.

  7. Remote sensing and Aeromagnetic investigations in porphyry copper deposits for identification of areas with high concentration of gold: a case study from the central part of Dehaj-Sarduiyeh belt, Kerman, Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh Hosseinjani Zadeh

    2018-04-01

    Full Text Available Introduction Remote sensing has shown tremendous potential in the identification of alteration zones. The importance of this science for mineral exploration and recognition of alteration zones with lower cost, time, and manpower is confirmed in many studies (Amer et al., 2012; Hosseinjani Zadeh et al., 2014; Tayebi and Tangestani, 2015; Shahriari et al., 2015. Gold is one of the byproducts in most of the porphyry copper deposits (PCDs. Although the gold assay is partly low and reaches between 0.012- 0.38 g/t in these deposits, the high tonnage of copper deposits provides a considerable source of gold which has an important economic value (Kerrich et al., 2000. Extension, intensity of alteration, assays and the type of mineralization vary in different deposits. For instance, many Au-poor porphyry copper deposits in southwest USA, Central Asia, and west of South America are associated with widespread phyllic alteration (Kesler et al., 2002. In addition, there is a positive correlation between gold and magnetite in PCDs (Kesler et al., 2002; Shafiei and Shahabpour, 2008; Sillitoe, 1979. Therefore, aeromagnetic investigation could be useful in identification of these deposits. The aim of this research is discrimination of alteration zones and investigation areas with high concentration of gold through processing of remote sensing and aeromagnetic data. Materials and methods A number of prone areas with different concentrations of gold in Dehaj-Sarduiyeh copper belt including Sar Kuh, Abdar, Meiduk, Sarcheshmeh, Darrehzar, Sara, Iju and Seridune were investigated using the processing of Advanced space borne thermal emission and reflection radiometer (ASTER, and aeromagnetic data. Pre-processing acts such as crosstalk correction and Internal Average Relative Reflection (IARR calibration were implemented on the ASTER data in order to remove noise and acquire surface reflectance. The alteration minerals were discriminated by implementation of

  8. Natural and mining-related mercury in an orogenic greywacke terrane, South Island, New Zealand

    International Nuclear Information System (INIS)

    Holley, E.A.; Craw, D.; Kim, J.P.

    2010-01-01

    Mercury (Hg) is naturally present in warm springs and mesothermal (orogenic) gold-bearing quartz vein systems in the South Island of New Zealand. Mercury amalgamation was used historically in ore processing at gold (Au) mines, resulting in composite natural and anthropogenic Hg signatures at these sites. This study compares natural Hg enrichment of the Au vein systems, residual anthropogenic Hg added for amalgamation, and enrichment of naturally present Hg during ore processing. Mercury concentration data are presented for solids and water at historic mine sites, the modern Macraes mine, fault-related warm springs, and zones of naturally occurring cinnabar and Hg-bearing Au. Arsenic (As) concentrations are also presented, as As is the most environmentally significant element in this tectonic setting. Tailings and processing residues at historic mine sites (Blackwater mine, West Coast; Golden Point and Golden Bar, Hyde-Macraes shear zone) contain up to 1000 mg/kg Hg, and in adjacent surface waters Hg is at or slightly above background from 0.6 to 0.8 ng/L. Relative to South Island Hg, As is more environmentally significant: solid wastes at some historic mine and mineral processing sites contain up to 30.5 wt% As due to enrichment of natural As in mineralised rocks. Shallow groundwater and processing waters at the modern Macraes mine are up to 0.01 mg/L Hg due to natural Hg in mineralised rocks, and no significant Hg elevation is evident in nearby surface waters, which are 3 to 10 4 times higher than primary ore, and Hg is disproportionally increased relative to As, indicating that much of the Hg was added during the amalgamation process. Natural cinnabar deposition from warm springs results in localised, strongly elevated Hg, equal to or less than the Hg contents in historic mine processing residues. Warm spring precipitates are up to 111 mg/kg Hg and waters are 0.3 μg/L Hg, comparable to data reported for active North Island geothermal (epithermal-style) systems

  9. The in vitro formation of placer gold by bacteria

    Science.gov (United States)

    Southam, Gordon; Beveridge, Terrance J.

    1994-10-01

    A laboratory simulation was developed to provide mechanistic information about placer (nugget) gold development in the natural environment. To initiate the simulation, ionic gold was immobilized to a high capacity by Bacillus subtilis 168 (116.2 μg/mg dry weight bacteria) as fine-grained intracellular colloids (5-50 nm). During the low-temperature diagenesis experiment (60°C), the release of organics due to bacterial autolysis coincided with the in vitro formation of hexagonal-octahedral gold crystals (20 μm). This octahedral gold was observed to aggregate, forming fine-grained placer gold (50 μm). In addition to achieving a fundamental understanding into secondary gold deposition, a significant economic benefit could be realized by employing this environmentally safe procedure to concentrate widely dispersed gold in placer deposits to facilitate mining by conventional methodologies.

  10. Micro-SR-X RF Studies for Archaeological Gold Identification - the Case of Cepharanthin Gold and of Dician Bracelets

    International Nuclear Information System (INIS)

    Constantinescu, B.; Vasilescu, A.; Radtke, M.; Reinholz, U.

    2009-01-01

    The goal of the study is to verify if Transylvanian gold was used to manufacture Romanian archaeological objects using information related to trace elements: Sb, Te, Pb - recognized fingerprints for Carpathian Mountains mines and Sn characteristic for the panned river-bed (alluvional) gold. To solve these issues, samples (grains, nuggets,fine gold s and ) from various Transylvanian mines and rivers and some very small (few milligrams) fragments of archaeological objects are measured. During the experiment, point spectra for 22 natural gold samples from Tran sylvania and 18 m icronic s amples from archaeological objects were acquired at 34 keV excitation SR energy, using a spatially resolved SR-XRF set-up mounted for analyses at the hard X-ray beam line - BAMline at BESSY, Berlin. A summary for the characterization of Transylvanian native gold is the following: high (8 - 30%) Ag amounts and low (0.2 - 1%) Cu amounts; placer deposits (Valea Oltului, Stanija, Valea Pianului) contain as fingerprint Sn (150-300 ppm) - most probably from river bed cassiterite; primary deposits present as fingerprints Te (200-2000 ppm), Sb (150-300 ppm) - however, the samples are very inhomogeneous; primary deposit Sacaramb contains Te 0,25%, Sb (500 ppm), but also Sn ( 200 ppm); primary deposit Fizesti presents a big amount of Pb 1%, Sb (350 ppm), traces of Te and also Sn. As concerning the k oson d acian coins, the type w ith monogram i s made from refined (more than 97%) gold with no Sb, Te or Sn traces (remelted gold) and the type w ithout monogram i s clearly made from alluvial gold, partially combined with primary Transylvanian gold (Sn and Sb traces detected). A spectacular application of the micro-SR-XRF studies on native gold was the one of authentication of some recovered heritage artifacts: five Dacian gold bracelets exhibited at the National Museum of Romania's History, Bucharest. The Dacian multi-spiraled bracelets were made of gold; they belong to the classical period of the

  11. Geological setting, isotope studies (C, O and Pb) and associated metals in the Tocantinzinho gold deposit, Tapajos domain, Tapajos-Parima Province

    International Nuclear Information System (INIS)

    Villas, Raimundo Netuno Nobre; Santiago, Erika Suellen Barbosa; Castilho, Marilia Portela

    2013-01-01

    The Tocantinzinho ore deposit is located along a NW-SE-trending lineament, southwestern of Itaituba (Para, Brazil), and is the largest known gold deposit of the Tapajos Province. The host Tocantinzinho granite is essentially isotropic and dominated by syenogranites and monzogranites that have been weakly to moderately altered by hydrothermal fluids. Microclinization (earliest), chloritization, sericitization, silicification and carbonatization (latest) are the main types of alteration. Most mineralization was contemporaneous with the sericitization/silicification and is represented by sulfide- and gold-bearing veinlets which locally occur as stockwork. Pyrite, chalcopyrite, sphalerite and galena are the most common sulfides. Among the ore metals, Cu, Pb and Zn present the highest contents, but Mo, As and Bi locally show anomalous concentrations. The relationship of Au with Cu, Pb or Zn is at random and the Au/Ag ratios range from 0.05 to 0.5. The higher the sulfide contents, the higher the Au concentrations, though it occurs mainly included in pyrite. Zircon monocrystals from the Tocantinzinho granite yielded an average Pb-Pb age of 1982 ±8Ma and may represent an earlier event of the Creporizao magmatic arc. δ 13 C PDB values for calcite from the carbonatization stage fall dominantly between -3.45 and -2.29‰, being compatible with a deep crustal source that may include carbonatite reservoirs. In turn, δ 18 O SMOW values vary from +5.97 to +14.10‰, being indicative of magmatic derivation, although the less positive values suggest contribution from surficial waters. Unpublished fluid inclusion study reveals the presence of aquo-carbonic fluids, whose CO 2 could have been dissolved in the granitic magma rather than being related to the shear zone. The available data allow the Tocantinzinho deposit to be classified as a granite-hosted, intrusion-related gold deposit. (author)

  12. Oxygen isotope zonation at the Golden Cross low-sulfidation epithermal gold deposit, New Zealand

    International Nuclear Information System (INIS)

    Mauk, J.L.; Simpson, M.P.

    2001-01-01

    Forty-one whole rock samples from the Gold Cross low-sulfidation epithermal Au-Ag deposit have δ 18 O values that range from 4.4 to 9.3 per mil, with an average value of 7.0 per mil. Unaltered and weakly altered rocks have δ 18 O values greater than 8 per mil, and the orebody is surrounded by samples that are depleted in 18 O. A strongly silicified sample adjacent to the Empire Vein System has a δ 18 O value of 9.0 per mil, similar to previously reported analyses of vein quartz (7.0 to 11.7 per mil, average 9.4 per mil). This suggests that, in detail, Golden Cross may have a zone of 18 O-enriched wall rocks in the core of the deposit, adjacent to the main underground veins. Although some workers have suggested that stable isotope geochemistry may provide useful information for epithermal mineral deposit exploration, at Golden Cross this is not the case. Alteration minerals, major elements and trace elements all define larger, less ambiguous halos than the zone of 18 O-depleted wall rocks. (author). 21 refs., 3 figs., 1 tab

  13. Geostatistical Approach to Estimating the Gold Ore Characteristics and Gold Reserves: A Case Study Daksa Area, Quang Nam Province, Viet Nam

    Science.gov (United States)

    Luan Truong, Xuan; Luong Le, Van; Quang Truong, Xuan

    2015-04-01

    Daksa gold deposit is the biggest gold deposits in Vietnam. The Daksa geological structure complicated, distributed mainly metamorphosed sedimentary NuiVu formation (PR3-?1nv2). The sulfide gold ore bodies distributed in quartz schist, quartz - biotite related to faut and distribution wing anticline. The gold ore bodies form circuits, network circuits, circuits lenses; fill the cup surface layer of the developing northeast - southwest; is the less than or west longitude north - SE. The results show that, Au and accompanying elements (Ag, Pb and Zn) have correlated pretty closely. All of its consistent with the logarithmic distribution standard, in accordance with the law of distribution of content mineral rare. The structure functions have nugget effect and spherical models with show that Au and accompanying elements special variation are changes. Au contents shown local anisotropy, no clearly anisotropy (K=1,17) and weakly anisotropy (K=1,4). Intensity mineralization of the ore bodies are quite high with demand spherical conversion coefficient ranging from 0.49 to 0.75 and from 0.66 to 0.97 (for other body). With nugget effects, ore bodies shown that it is consistent with mineralization in the ore bodies study, ore erasable, micro vein, infilling fractures in quartz vein. All of variogram presents local anisotropy, indicated gold mineralization at study area has least two-mineralization stages, consistent with the analysis of mineralography samples. By the results of the structure function study, the authors present the system optimization for exploration deposit and used to evaluate gold reserves by Ordinary Kriging. High accuracy of Kriging estimation results are expressed in the minimum Kriging variance, by compare the results calculated by some other methods (such as distance inverse weighting method, ..) and specially compare to the results of a some blocks have been exploited. Key words: Geostat and gold deposits VN. Daksa and gold mineralization. Geostat

  14. Usability of #betta#-spectrometric method to prospecting for copper-porphyric skarn and gold-quartz-sulfide deposits

    International Nuclear Information System (INIS)

    Syromyatnikov, N.G.; Ivanova, Eh.I.; Karpukhin, V.G.; Trofimova, L.A.; Tolmachev, I.I.

    1982-01-01

    Possibility of the prospecting for non-radioactive element deposits by means of radioactive elements as indicators is studied. Radioactive elements (uranium, thorium and potassium) were determined by gamma spectroscopy. Radiometric methods of prospecting are effective and economical. Clark contents of radioelements in rocks were determined in situ by field gamma spectrometers. It is established that copper-porphyric deposits are regularly controlled from the surface by aureoles of increased uranium contents, which sizes reach 400x500 m and can be revealed by gamma spectroscopy during 1:25000 and more large-scale survey. Skarn-ore zones of deposits of different mineral types (copper, polymetallic, iron ore ones) are fixed on the surface by increased radioactivity; this fact can be used as search criterion. Gold-bearing quartz veins differ from barren lodes by a higher level of total radioactivity and high potassium content. Top walls of ore-bearing quartz veins are mainly enriched by radioelements

  15. Role of mantle dynamics in rebuilding the Tianshan Orogenic Belt in NW China: A seismic tomographic investigation

    Science.gov (United States)

    He, Chuansong; Santosh, M.

    2018-05-01

    The Tianshan orogenic belt, Junggar terrane and Altai terrane are located at the southwestern part of the Central Asian Orogenic Belt (CAOB). Here, we investigate the velocity structure beneath the Xinjiang region in NW China, which includes the Tarim terrane, Tianshan orogenic belt, Junggar terrane and Altai terrane with a view to evaluate the mantle dynamics based on teleseismic data recorded by 103 seismic stations. Our tomographic results show both high and low velocity perturbations beneath the Tianshan orogenic belt. We suggest that the high velocity perturbations beneath this orogenic belt might represent the northward subducted lithosphere of the Tarim Basin and the southward subducted lithosphere of the Junggar Basin. The low velocity structure beneath the Tianshan orogenic belt might represent asthenosphere upwelling that triggered the extensive magmatism which contributed to rebuilding of the Tianshan orogenic belt.

  16. Tectonic controls of Holocene erosion in a glaciated orogen

    OpenAIRE

    Adams, Byron A.; Ehlers, Todd A.

    2018-01-01

    Recent work has highlighted a strong, worldwide, glacial impact of orogen erosion rates over the last 2 Ma. While it may be assumed that glaciers increased erosion rates when active, the degree to which past glaciations influence Holocene erosion rates through the adjustment of topography is not known. In this study, we investigate the influence of long-term tectonic and post-glacial topographic controls on erosion in a glaciated orogen, the Olympic Mountains, USA. We present 14 new 10Be and ...

  17. Plasmonic Titania Photo catalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape

    International Nuclear Information System (INIS)

    Kowalska, E.; Rau, S.; Kowalska, E.; Kowalska, E.; Ohtani, B.

    2012-01-01

    Plasmonic titania photo catalysts were prepared by titania modification with gold by photo deposition. It was found that for smaller amount of deposited gold (≤ 0.1 wt%), anatase presence and large surface area were beneficial for efficient hydrogen evolution during methanol dehydrogenation. After testing twelve amounts of deposited gold on large rutile titania, the existence of three optima for 0.5, 2 and >6 wt% of gold was found during acetic acid degradation. Under visible light irradiation, in the case of small gold NPs deposited on fine anatase titania, the dependence of photo activity on gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured powder, caused photo activity decrease. While for large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to change of size and shape of deposited gold with its amount increase. It has been thought that spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher level of photo activity under visible light irradiation. For all tested systems and regardless of deposited amount of gold, each rutile Au/TiO 2 photo catalyst of large gold and titania NPs exhibited much higher photo activity than anatase Au/TiO 2 of small gold and titania NPs

  18. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia

    Science.gov (United States)

    Heinson, Graham S.; Direen, Nicholas G.; Gill, Rob M.

    2006-07-01

    The iron oxide copper-gold Olympic Dam deposit, situated along the margin of the Proterozoic Gawler craton, South Australia, is the world's largest uranium deposit and sixth-largest copper deposit; it also contains significant reserves of gold, silver, and rare earth elements. Gaining a better understanding of the mechanisms for genesis of the economic liberalization is fundamental for defining exploration models in similar crustal settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses Olympic Dam and the major crustal boundaries. In this paper we present results from 58 long-period (10 104 s) MT sites, with site spacing of 5 10 km. A two-dimensional inversion of MT data from 33 sites to a depth of 100 km shows four notable features: (1) sedimentary cover sequences with low resistivity (1000 Ω·m) Archean crustal core from a more conductive crust and mantle to the north (typically Olympic Dam, the upper-middle crust to ˜20 km is quite resistive (˜1000 Ω·m), but the lower crust is much more conductive (Olympic Dam, we image a low-resistivity region (Olympic Dam may be due to the upward movement of CO2-bearing volatiles near the time of deposit formation that precipitated conductive graphite liberalization along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle degassing or retrograde metamorphism of the lower crust associated with Proterozoic crustal deformation.

  19. Orogenic structural inheritance and rifted passive margin formation

    Science.gov (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  20. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  1. Biodistribution of gold nanoparticles following intratracheal instillation in mouse lung

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Jacobsen, Nicklas R.; Danscher, Gorm

    2009-01-01

    plasma mass spectrometry (ICP-MS) and neutron activation analysis (NAA). The liver is the major site of deposition of circulating gold nanoparticles. Therefore the degree of translocation was determined by the hepatic deposition of gold. Mice were instilled with 5 intratracheal doses of gold...... repeatedly during 3 weeks, the load was substantial. Ultrastructurally, AMG silver enhanced gold nanoparticles were found in lysosome-/endosome-like organelles of the macrophages and analysis with AMG, ICP-MS and NAA of the liver revealed an almost total lack of translocation of nanoparticles. In mice given...... repeated instillations of 2 nm gold nanoparticles, 1.4‰ (by ICP-MS) to 1.9‰ (by NAA) of the instilled gold was detected in the liver. With the 40 nm gold, no gold was detected in the liver (detection level 2 ng, 0.1‰) except for one mouse in which 3‰ of the instilled gold was found in the liver. No gold...

  2. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    Science.gov (United States)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  3. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism?

    Science.gov (United States)

    Li, Chusi; Zhang, Mingjie; Fu, Piaoer; Qian, Zhuangzhi; Hu, Peiqing; Ripley, Edward M.

    2012-01-01

    The Permian Kalatongke Ni-Cu deposits in the Central Asian Orogenic Belt are among the most important Ni-Cu deposits in northern Xinjiang, western China. The deposits are hosted by three small mafic intrusions comprising mainly norite and diorite. Its tectonic context, petrogenesis, and ore genesis have been highly contested. In this paper, we present a new model involving slab window magmatism for the Kalatongke intrusions. The origin of the associated sulfide ores is explained in the context of this new model. Minor amounts of olivine in the intrusions have Fo contents varying between 71 and 81.5 mol%, which are similar to the predicted values for olivine crystallizing from coeval basalts in the region. Analytic modeling based on major element concentrations suggests that the parental magma of the Kalatongke intrusions and the coeval basalts represent fractionated liquids produced by ˜15% of olivine crystallization from a primary magma, itself produced by 7-8% partial melting of depleted mantle peridotite. Positive ɛ Nd values (+4 to +10) and significant negative Nb anomalies for both intrusive and extrusive rocks can be explained by the mixing of magma derived from depleted mantle with 6-18% of a partial melt derived from the lower part of a juvenile arc crust with a composition similar to coeval A-type granites in the region, plus up to 10% contamination with the upper continental crust. Our model suggests that a slab window was created due to slab break-off during a transition from oceanic subduction to arc-arc or arc-continent collision in the region in the Early Permian. Decompression melting in the upwelling oceanic asthenosphere produced the primary magma. When this magma ascended to pond in the lower parts of a juvenile arc crust, it underwent olivine crystallization and at the same time triggered partial melting of the arc crust. Mixing between these two magmas followed by contamination with the upper crust after the magma ascended to higher crustal

  4. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes

    International Nuclear Information System (INIS)

    Kolodziej, Adam; Figueiredo, Marta C.; Koper, Marc T.M.; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2017-01-01

    Highlights: •The potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode is mediated by the adsorption of phosphate anions on gold electrode. •Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. •Upon reduction of the phosphate-mediated cisplatin adsorption, the platinum deposits are formed by 3D nanoclusters -- Abstract: This manuscript reports the potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode. It was found that this process is mediated by the adsorption of phosphate anions on the gold electrode and that the maximum coverage of Pt adsorbed is given by the maximum coverage of phosphate adsorbed at a given potential. The interaction of cisplatin with the phosphate groups was confirmed by in situ FTIR spectroscopy under external reflexion configuration. Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. Moreover, the relationship between the charge of the Pt deposited and the charge of the electrochemical surface area of the Pt deposited on the gold electrodes indicates that 3D nanoclusters of a few atoms of Pt were formed over the gold electrode upon the electrochemical reduction of the adsorbed cisplatin. The Pt nanoclusters formed under these conditions were later evaluated for the oxidation of a monolayer of carbon monoxide. The Pt nanoclusters showed a high overpotential for the oxidation of the carbon monoxide monolayer and the high oxidation overpotential was attributed to the absence of adsorption sites for OH species on the Pt clusters: only at potentials where the OH species are adsorbed at the edge between the Pt nanocluster and the gold support, the oxidation of the carbon monoxide on the Pt nanoparticles takes place.

  5. Synthesis and analysis of gold nanoclusters on silicon substrates by ion beams

    International Nuclear Information System (INIS)

    Sood, D.K.; Venkatachalam, D.K.; Bhargava, S.K.; Evans, P.J.

    2005-01-01

    To facilitate the growth of silica nanowires on silicon substrates, two different seeding techniques: 1) ion implantation and 2) chemical deposition of as-synthesised gold colloids have been compared for the formation of catalysing gold nanoclusters. The prepared substrates of both types were analysed using Rutherford backscattering spectrometry at ANSTO to determine the amount of gold and its depth distribution. The topography of the substrates deposited with chemically synthesised gold nanoparticles were studied under SEM. The preliminary ion beam (RBS) analysis has shown ion implantation as a novel technique for seeding Au nanoclusters on silicon substrates facilitating growth of nanowires. This method holds a great potential for using any metal across the periodic table that can act as catalysing seed nanoclusters for nanowire growth. The use of chemical deposition as a seeding technique to deposit as-synthesised gold nanoparticles requires further investigations. RBS results show significant difference in the depth distribution of the gold nanoparticles on silicon substrates seeded by two different techniques. (author). 6 refs., 4 figs

  6. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    Science.gov (United States)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of tourmaline and gold suggests that the gold precipitated from the same boron-rich source as tourmaline.

  7. The Archaean Granny Smith gold deposit, western Australia: age and Pb-isotope tracer studies

    International Nuclear Information System (INIS)

    Ojala, V.J.; McNaughton, N.J.; Groves, D.I.; Ridley, J.R.; Fanning, C.M.

    1997-01-01

    The Granny Smith gold deposits are situated within a greenstone sequence in the Laverton-Leonora area of the Northeastern Goldfields Province of the Archaean Yilgarn Block, Western Australia. The greenstone sequence (U-Pb zircon age of 2677±6 Ma, felsic pyroclastic rock) was intruded by the Granny Smith Granodiorite at 2665±4 Ma. Gold mineralisation is located along a reactivated N-S Stricking, thrust which wraps around the granitoid intrusion, and within the granitoid intrusion. Initial lead-isotope compositions of the Granny Smith Granodiorite and ore-fluid Pb, estimated from K-feldspar and galena and lead tellurides, respectively, are slightly different. Calculations based on Pb isotope data for the host rocks, and the U-Pb zircon age of the Granny Smith Granodiorite, suggest that ore-fluid Pb was derived from a source with a similar initial lead-isotopic composition to the source of the Granny Smith Granodiorite but about 30 million years after the intrusion of the granitoid. The Pb-isotope data for granitoids of the Northeastern Goldfields fall in a distinct field different to that of the granitoids of the Norseman area and those from Kambalda to Menzies. (authors)

  8. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Viewing, K.

    1983-01-01

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  9. An investigation of the impurities in native gold by neutron-activation analysis

    International Nuclear Information System (INIS)

    Erasmus, C.S.; Sellschop, J.P.F.; Hallbauer, D.K.; Novak, E.

    1980-01-01

    Instrumental and radiochemical methods of neutron-activation analysis, developed for the determination of major, minor, and trace impurities in native gold, are described. The gold was obtained from Witwatersrand reefs and from deposits in the Barberton area. It was extracted by decomposition of the ore in cold hydrofluoric acid. Quantitative results are presented for 14 elements found in native gold, and the significance of these elements in relation to the distribution of gold is discussed. The results suggest that there are geochemical differences in native gold from various reefs and deposits

  10. The Russian-Kazakh Altai orogen: An overview and main debatable issues

    Directory of Open Access Journals (Sweden)

    Inna Safonova

    2014-07-01

    Full Text Available The paper reviews previous and recently obtained geological, stratigraphic and geochronological data on the Russian-Kazakh Altai orogen, which is located in the western Central Asian Orogenic Belt (CAOB, between the Kazakhstan and Siberian continental blocks. The Russian-Kazakh Altai is a typical Pacific-type orogen, which represents a collage of oceanic, accretionary, fore-arc, island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts. Evidence for this comes from key indicative rock associations, such as boninite- and turbidite (graywacke-bearing volcanogenic-sedimentary units, accreted pelagic chert, oceanic islands and plateaus, MORB-OIB-protolith blueschists. The three major tectonic domains of the Russian-Kazakh Altai are: (1 Altai-Mongolian terrane (AMT; (2 subduction-accretionary (Rudny Altai, Gorny Altai and collisional (Kalba-Narym terranes; (3 Kurai, Charysh-Terekta, North-East, Irtysh and Char suture-shear zones (SSZ. The evolution of this orogen proceeded in five major stages: (i late Neoproterozoic–early Paleozoic subduction-accretion in the Paleo-Asian Ocean; (ii Ordovician–Silurian passive margin; (iii Devonian–Carboniferous active margin and collision of AMT with the Siberian continent; (iv late Paleozoic closure of the PAO and coeval collisional magmatism; (v Mesozoic post-collisional deformation and anarogenic magmatism, which created the modern structural collage of the Russian-Kazakh Altai orogen. The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane (continental versus active margin, age of Altai basement, proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.

  11. Application of the nuclear x-ray fluorescence method to prospecting for gold in-situ

    International Nuclear Information System (INIS)

    Zhang, Y.; Xie, T.; Zhou, S.; Ge, L.

    1989-01-01

    Arsenic and chalcophile elements are often associated with gold, and can be considered indicator elements when prospecting for gold deposits. The nuclear geophysics X-ray fluorescence method can be used to search for hidden gold deposits by measuring fluorescence intensities of the indicator elements in situ. The method can speed geologic investigation and reduce exploration cost. Three types of portable radioisotope X-ray fluorescence analyzers, designed and manufactured by Chengdu College of Geology and Chongqing Geological Instrument Factory, are briefly introduced. These analyzers are widely used in different stages of geologic investigation for gold in China. In the two case histories presented five anomalous zones of X-ray fluorescence intensity related to gold mineralization are located and one hidden gold deposit is discovered with gold content of 23 g/t

  12. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  13. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  14. Analysis of rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province

    Science.gov (United States)

    Pan, Huali; Hu, Mingjian; Ou, Guoqiang

    2017-04-01

    According to the geological investigation in Fujian province, the total number of geological disasters was 9513, in which the number of landslide, collapse, unstable slope and surface collapse was 5816, 1888, 1591, 103 and 115 respectively. The main geological disaster was the landslide with 61.1% of total geological disasters. Among all these geological disasters, only 6.0% was relative stable, 17.0% was basic stable, nearly 76.0% was unstable. The slope disaster was the main geological disaster, if the unstable slope was the potential landslide or collapse; the slope collapse was 98.0% of all geological disasters. The rainfall, in particular the heavy rain, was direct dynamic factor for geological disasters, but the occurrence probability of geological disasters was different because of the sensitivity of the geological environment though of the same intensity rainfall. To obtain the characteristics of soil erosion under the rainfall condition, the rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province was analyzed by the meteorological and rainfall data. According to the distribution of monitoring stations of hydrological and rainfall in Longyan city of Fujian province and the location of gold-copper deposit, the Shanghang monitoring station of hydrological and rainfall was chosen, which is the nearest one to the gold-copper deposit. Then main parameters of the prediction model, the antecedent precipitation, the rainfall on the day and the rainfall threshold, were calculated by using the rainfall data from 2002 to 2010. And the relationship between geological disasters and the rainfall characteristics were analyzed. The results indicated that there was high risk for the debris flow with landslide collapse when either the daily rainfall was more than 100.0 mm, or the total rainfall was more than 136.0mm in the gold-copper deposit and the Shanghang region. At the same time, although there was few

  15. Recycling and utilisation of industrial solid waste: an explorative study on gold deposit tailings of ductile shear zone type in China.

    Science.gov (United States)

    Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran

    2015-06-01

    Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.

  16. Timing of sediment-hosted Cu-Ag mineralization in the Trans-Hudson orogen at Janice Lake, Wollaston Domain, Saskatchewan, Canada

    Science.gov (United States)

    Perelló, José; Valencia, Víctor A.; Cornejo, Paula; Clifford, John; Wilson, Alan J.; Collins, Greg

    2018-04-01

    The Janice Lake Cu-Ag mineralization in the Wollaston Domain of northern Saskatchewan is hosted by a metasedimentary sequence in the upper part of the Wollaston Supergroup of the Trans-Hudson orogen. The Wollaston Supergroup was deposited between 2070 and 1865 Ma in a foreland basin setting constructed over Archean basement of the Hearne craton. The Trans-Hudson orogen underwent final collision and peak metamorphism at 1810 Ma, during consolidation of Laurentia and its amalgamation with the Columbia supercontinent. Titanite is a common constituent of the post-peak metamorphic assemblages of Trans-Hudson lithotectonic units and accompanied disseminated sediment-hosted Cu sulfide mineralization at Janice Lake. Titanite crystals, intergrown with chalcocite over a strike-length of 2 km of Cu-bearing stratigraphy, were dated by the ID-TIMS and LA-ICP-MS U-Pb methods, returning an age range from 1780 to 1760 Ma and a weighted average age of 1775 ± 10 Ma. The titanite ages effectively date the associated chalcocite-dominated sediment-hosted Cu-Ag mineralization and its formation during initial post-orogenic uplift and cooling, 30 myr after peak metamorphism. The age-range and tectonic setting of the Janice Lake mineralization confirms that sediment-hosted Cu mineralization was an integral part of the metallogenic endowment of Columbia and that its emplacement coincided with the continental-scale Trans-Hudson orogeny rather than with diagenesis and extensional basin development 100 myr earlier.

  17. New studies on mustard gold from the Dongping Mines, Hebei Province, China: The tellurian, plumbian, manganoan and mixed varieties

    DEFF Research Database (Denmark)

    Li, Jiuling; Makovicky, Emil

    2001-01-01

    geologi, Dongping gold tellurite deposit, mustard gold, calaverite, Fe-Pb-Te minerals, alteration, tellurium, filling in micro-porous, composite varieties, particles of gold......geologi, Dongping gold tellurite deposit, mustard gold, calaverite, Fe-Pb-Te minerals, alteration, tellurium, filling in micro-porous, composite varieties, particles of gold...

  18. A comparison of multi-metal deposition processes utilising gold nanoparticles and an evaluation of their application to 'low yield' surfaces for finger mark development.

    Science.gov (United States)

    Fairley, C; Bleay, S M; Sears, V G; NicDaeid, N

    2012-04-10

    This paper reports a comparison of the effectiveness and practicality of using different multi-metal deposition processes for finger mark development. The work investigates whether modifications can be made to improve the performance of the existing process published by Schnetz. Secondly, we compare the ability of different multi-metal deposition processes to develop finger marks on a range of surfaces with that of other currently used development processes. All published multi-metal deposition processes utilise an initial stage of colloidal gold deposition followed by enhancement of the marks with using a physical developer. All possible combinations of colloidal gold and physical developer stages were tested. The method proposed by Schnetz was shown to be the most effective process, however a modification which reduced the pH of the enhancement solution was revealed to provide the best combination of effectiveness and practicality. In trials comparing the modified formulation with vacuum metal deposition, superglue and powder suspensions on surfaces which typically give low finger mark yields (cling film, plasticised vinyl, leather and masking tape), the modified method produced significantly better results over existing processes for cling film and plasticised vinyl. The modified formulation was found to be ineffective on both masking tape and leather. It is recommended that further tests be carried out on the modified multi-metal deposition formulation to establish whether it could be introduced for operational work on cling film material in particular. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka trend, Nevada

    Science.gov (United States)

    Yigit, O.; Hofstra, A.H.

    2003-01-01

    The Gold Bar district contains five Carlin-type gold deposits and four resources for a combined gold endowment of 1.6 M oz [50 t]. The gold deposits are hosted in Devonian carbonate rocks below parautochthonous and allochthonous Paleozoic siliciclastic rocks emplaced during the Early Mississippian Antler orogeny. The district is in the Battle Mountain-Eureka trend, a long-lived structural feature that localized intrusions and ore deposits of different types and ages. The whole-rock geochemistry of four different mineralized and unmineralized Devonian carbonate rock units (two favorable and two unfavorable) were determined and interpreted in the context of the regional geology. A combination of basic statistics, R-mode factor analysis, isocon plots, and alteration diagrams were utilized to (1) identify favorable geochemical attributes of the host rocks, (2) characterize alteration and associated element enrichments and depletions, and (3) identify the mechanism of gold precipitation. This approach also led to the recognition of other types of alteration and mineralization in host rocks previously thought to be solely affected by Carlin-type mineralization. Unit 2 of the Upper Member of the Denay Formation, with the highest Al2O3, Fe2O3 and SiO2 contents and the lowest CaO content, is the most favorable host rock. Based on the high regression coefficients of data arrays on X-Y plots that project toward the origin, Al2O3 and TiO2 were immobile and K2O and Fe2O3 were relatively immobile during alteration and mineralization. Specific element associations identified by factor analysis are also prominent on isocon diagrams that compare the composition of fresh and altered equivalents of the same rock units. The most prominent associations are: Au, As, Sb, SiO2, TI, -CaO and -LOI, the main gold mineralizing event and related silicification and decalcification; Cd, Zn, Ag, P, Ni and Tl, an early base metal event; and MgO, early dolomitization. Alteration diagrams

  20. Some aspects of the role of rift inheritance on Alpine-type orogens

    Science.gov (United States)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy; Chevrot, Sébastien

    2017-04-01

    Processes commonly recognized as fundamental for the formation of collisional orogens include oceanic subduction, arc-continent and continent-continent collision. As collisional belts result from the closure of oceanic basins and subsequent inversion of former rifted margins, their formation and evolution may also in theory be closely interlinked with the initial architecture of the former rifted margins. This assumption is indeed more likely to be applicable in the case of Alpine-type orogens, mainly controlled by mechanical processes and mostly devoid of arc-related magmatism. More and more studies from present-day magma-poor rifted margins illustrate the complex evolution of hyperextended domains (i.e. severely thinned continental crust (images across the Pyrenees (PYROPE) and the Alps (CIFALPS) reveal a surprisingly comparable present-day overall crustal and lithospheric structure. Based on the comparison between the two orogens we discuss: (1) the nature and depth of decoupling levels inherited from hyperextension; (2) the implications for restorations and interpretations of orogenic roots (former hyperextended domains vs. lower crust only); and (3) the nature and major role of buttresses in controlling the final stage of collisional processes. Eventually, we discuss the variability of the role of rift-inheritance in building Alpine-type orogens. The Pyrenees seem to represent one extreme, where rift-inheritance is important at different stages of collisional processes. In contrast, in the Alps the role of rift-inheritance is subtler, likely because of its more complex and polyphase compressional deformation history.

  1. Thin gold films on SnO2:In: Temperature-dependent effects on the optical properties

    International Nuclear Information System (INIS)

    Lansåker, P.C.; Niklasson, G.A.; Granqvist, C.G.

    2012-01-01

    Gold films with thicknesses of 5 ± 0.5 nm were sputter deposited onto SnO 2 :In-coated glass kept at different temperatures up to 140 °C, and similar films, deposited onto substrates at 25 °C, were annealing post treated at the same temperatures. Nanostructures and optical properties were recorded by scanning electron microscopy and spectrophotometry in the 0.3 to 2.5 μm wavelength range, respectively. Annealing had a minor influence on the optical transmittance despite significant changes in the scale of the nanostructure, whereas deposition onto substrates heated to 140 °C yielded granular films with strong plasmon absorption of luminous radiation. These results are of considerable interest for optical devices with gold films prepared at elevated temperature or operating at such temperature. - Highlights: ► Thin gold films have been deposited onto base layers of SnO 2 :In. ► The gold depositions were made onto both non-heated and heated substrates. ► Gold depositions onto non-heated substrates were followed by heat treatment. ► Depending on heating procedure, the gold films show apparently different structure.

  2. Neodymium and strontium isotope study of ophiolite and orogenic lherzolite petrogenesis

    International Nuclear Information System (INIS)

    Richard, P.; Allegre, C.J.; Paris-7 Univ., 75

    1980-01-01

    Neodymium isotopic analyses have been measured on nine ophiolites and four orogenic lherzolites. Epsilonsub(Nd) varies from +12 to +3 in the ophiolites and from +18 to +2 in the orogenic lherzolites. The majority of the analyses plot on a epsilonsub(Nd)-epsilonsub(Sr) correlation line as defined by Nd and Sr isotopic analyses of oceanic basalts. However, certain ophiolitic and lherzolitic samples exhibit high 87 Sr/ 86 Sr ratios and as such lie to the right of the correlation line towards seawater compositions. From these data one can postulate several origins for ophiolites including that of mid-ocean ridges and ocean islands. If the orogenic lherzolites are interpreted as representative of the mantle occurring below active ridges a more complex model is required involving mantle heterogeneity and multi-episodic chemical fractionation starting prior to 2 Ga ago. (orig.)

  3. A comparative evaluation of drilling techniques for deposits containing free gold using radioactive gold particles as tracers

    International Nuclear Information System (INIS)

    Clarkson, R.

    1998-01-01

    In the summers of 1992 and 1994, the author designed and carried out a statistically valid research program using radioactivated gold particles as tracers (radiotracers). Two types of fully cased normal circulation (N / C) drills, two types of reverse circulation (R/C) drills and three solid auger drills were evaluated under a variety of field conditions. A frozen cylindrical core of compacted gravels containing four sizes ( 1.2, 0.60, 0.30 and 0.15 mm), (+l4,+28,+48and+100 mesh)of radiotracers was placed in 44 drill holes and the holes were re drilled. Scintillometers were used to track free gold losses due to spillage and blow-by around the collar (top) of the hole. Some gold particles were located in temporary traps in the drilling equipment and these particles would have contaminated subsequent samples (as carry-over). Several myths commonly attributed to particular drilling methods were dispelled. There was no significant difference between the recovery of the four sizes of gold particles with any of the drills tested. Observations and down-hole scintillometer records indicated that the free gold particles did not follow the bit down the hole and were either carried out of the hole or forced onto the sides of the hole at or above the depth at which the radioactive gold was positioned. A comparative evaluation of the results of these tests is presented

  4. Native gold from the Inagli Pt-Au placer deposit (the Aldan Shield, Russia): geochemical characteristics and implications for possible bedrock sources

    Science.gov (United States)

    Svetlitskaya, Tatyana V.; Nevolko, Peter A.; Kolpakov, Vladislav V.; Tolstykh, Nadezhda D.

    2018-03-01

    The Inagli alluvial Pt-Au placer deposit in the Republic of Sakha (Yakutia), Russia, is linked to the Inagli massif, one of the several Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield. Gold from the placer is heterogeneous in composition and is represented by three types. Type 1 gold is the most abundant and is characterized by simple Au-Ag alloys with 4-34 wt% Ag, low Cu (up to 0.08 wt%) and negligible Hg, Pt, and Pd contents, and silver-tellurium sulfosalts (Ag-Cu-Te-S-As compounds) in the inclusion suite. Silicate inclusions are biotite, K-feldspar, Fe-Mg amphibole, chlorite, plagioclase, Fe-Mg pyroxene, zircon, and titanite. Distinctive features of this gold type are most similar to those derived from low-sulfidation systems linked to iron oxide copper-gold or iron skarn types of mineralization. The bedrock source of type 1 gold could be related with monzonite to syenite intrusions surrounding the Inagli massif. Distinctive features of type 2 gold include a wide discontinuous range of Ag content (1-18 wt%), elevated Cu (up to 0.5 wt%), and occasional Pd (up to 0.3 wt%) levels, non-detectable Pt and Hg contents, and rare inclusions of simple sulfides (digenite, pyrrhotite) and Na amphibole. Type 3 gold is distinguished by a narrow range in Ag content (5-8 wt%), elevated Hg (0.5-1 wt%) contents, negligible Cu, Pt and Pd levels, and Au-Pb compounds + K-feldspar inclusions. Microchemical characteristics of type 2 and type 3 gold are interpreted as suggestive of an alkaline-magmatic-related fluid. Based on the grain morphology and microchemical signatures, potential bedrock sources for both gold types could be related to the numerous alkaline veins and potassic alteration zones within the dunite core. A comparison of the Inagli and the Kondyor placer gold allows to generate distinctive generic signatures for gold from Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield.

  5. Singular value decomposition (SVD for extraction of gravity anomaly associated with gold mineralization in Tongshi gold field, Western Shandong Uplifted Block, Eastern China

    Directory of Open Access Journals (Sweden)

    B. B. Zhao

    2011-02-01

    Full Text Available A singular value decomposition (SVD program on MATLAB platform was effectively used to handle gravity signals for the Tongshi gold field. Firstly, the gravity signals were decomposed into different eigenimages with the help of singular value decomposition method (SVD. Secondly, the thresholds between the eigenvalues reflecting different layers of ore-controlling factors were established by multi-fractal method. Finally images reflecting different layers of ore-controlling factors were rebuilt. This yielded two layers of two-dimensional singular value images that depict regional and local ore-controlling factors, respectively.

    1. The regional ore-controlling factor is a saddle valley with the gravity anomaly values varying from −55 to 51 μm s−2 on the NW trending swell with the gravity anomaly values varying from −55 to 567 μm s−2 on the SW side of the Mesozoic volcanic sedimentary basin with the gravity anomaly values varying from −56 to −974 μm s−2. The saddle valley might be tectonically an extensional area where the Tongshi complex pluton and all gold deposits are located and thus this area is favorable for gold deposits.


    2. The local ore-controlling factor is the Tongshi complex pluton with a negative circular gravity anomaly varying from −339 to −11 μm s−2 and the ring contact metasomatic mineralization zone around the Tongshi complex with the positive gravity anomaly varying from 37 to 345 μm s−2. The skarn and porphyry types of gold deposits are located within the complex pluton and the Carlin and cryptobreccia types of gold deposits are located within the contact metasomatic mineralization zone. Thus both of them are potential areas for gold deposits.


    3. The Tongshi gold field exhibits a typical complexity with multi-layers of ore-controlling factors.

  6. The Porgera gold deposit, Papua, New Guinea, 1: association with alkalic magmatism in a continent-island-arc collision zone

    International Nuclear Information System (INIS)

    Richards, J.P.; Chappell, B.W.; McCulloch, M.T.; McDougall, I.

    1991-01-01

    The meso thermal to epithermal Porgera gold deposit is spatially and temporally associated with shallow level (≤ 2 km emplacement depth) stocks and dykes of the Porgera Intrusive Complex (PIC). Gold mineralization immediately followed emplacement of the PIC, and is dated between 5 and 6 Ma ago. The Porgera intrusive suite is comprised of fine- to medium-grained, porphyritic to euhedral granular, volatile-rich, sodic alkali basalts/gabbros, hawaiites, and mugearites (TAS chemical classification scheme). The rocks display chemical and isotopic characteristics similar to those of intra plate alkalic basalts, but their unusually high volatile contents result in stabilization of hornblende as a phenocryst and intergranular phase in more evolved rock types. The observed order of cotectic crystallization is olivine - clinopyroxene - hornblende -plagioclase, with ubiquitous spinel (chromite/magnetite) and fluor-apatite. (author)

  7. Relantionships between gold mineralization and granite - Discussion with the support of a pluridisciplinary study of the Passa Tres gold deposit (South Brazil)

    Science.gov (United States)

    Dressel, Bárbara; Chauvet, Alain; Trzaskos, Barbara; Biondi, Joao Carlos; Bruguier, Olivier; Monie, Patrick; Villanova, Sandro; Bazille, Jose

    2016-04-01

    represent the early stage of vein formation. These observations favor the link between late-magmatic fluids and veins formation. In order to constrain this assumption, a campaign of absolute dating has been undertaken. Zircons from granite and aplite for the magmatic feature and adularia, muscovite, sericite and molybdenite grains for the hydrothermal ones were selected and will be dated by, respectively U-Pb, Ar-Ar and Re-Os methods. Preliminary field results may suggest that gold-quartz veins may formed during the magmatic-hydrothermal transition and that mineralizing fluids possibly represent the late stages of magmatic fluid. Their mode of formation looks to be consistent with an extensional setting. With the help of all these new data, a discussion will be initiated about the genetic model of granite-hosted gold deposits and particularly on this specific case represented by the Passa Três deposit in which huge quartz veins, and no stockwork, are only formed inside the granite and not in surrounding rocks.

  8. Results of LA-ICP-MS sulfide mapping from Algoma-type BIF gold systems with implications for the nature of mineralizing fluids, metal sources, and deposit models

    Science.gov (United States)

    Gourcerol, B.; Kontak, D. J.; Thurston, P. C.; Petrus, J. A.

    2018-01-01

    Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-hosted gold deposits ( 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, 6 Moz Au Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their elemental associations determined. The main gold event in each of these deposits is characterized by the coupling of an As-Se-Te-Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data indicate presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association). Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).

  9. Uranium in minerals of gold-bearing formations of the North-Eastern part of the USSR

    International Nuclear Information System (INIS)

    Zagruzina, I.A.; Pinsky, E.M.

    1979-01-01

    Uranium concentration in 2190 mineral grains from 23 gold-bearing veins of different age deposits in the North-Eastern part of the USSR have been determined using f-radiography. The deposits studied are referred to two formation types: gold-silver epithermal and gold-quartz mesothermal. Differences in physico-chemical conditions of deposite formation of the above formation types are emphasized by the differences in uranium concentration in the vein minerals: 1.0-1.4 g/tU in the first type and 0.4 g/tU in the second one. Uranium content in minerals of gold-bearing veins as compared to minerals of other deposits is characterized by the lowest concentrations. In all gold-bearing veins hydrooxides of iron and hydromica are the main concentrators of uranium. Hypergene stage plays dominating role in uranium accumulation

  10. Features of Inner Structure of Placer Gold of the North-Eastern Part Siberian Platform

    Science.gov (United States)

    Gerasimov, Boris; Zhuravlev, Anatolii; Ivanov, Alexey

    2017-12-01

    Mineral and raw material base of placer and ore gold is based on prognosis evaluation, which allows to define promising areas regarding gold-bearing deposit prospecting. But there are some difficulties in gold primary source predicting and prospecting at the North-east Siberian platform, because the studied area is overlapped by thick cover of the Cenozoic deposits, where traditional methods of gold deposit prospecting are ineffective. In this connection, detailed study of typomorphic features of placer gold is important, because it contains key genetic information, necessary for development of mineralogical criteria of prognosis evaluation of ore gold content. Authors studied mineralogical-geochemical features of placer gold of the Anabar placer area for 15 years, with a view to identify indicators of gold, typical for different formation types of primary sources. This article presents results of these works. In placer regions, where primary sources of gold are not identified, there is need to study typomorphic features of placer gold, because it contains important genetic information, necessary for the development of mineralogical criteria of prognosis evaluation of ore gold content. Inner structures of gold from the Anabar placer region are studied, as one of the diagnostic typomorphic criteria as described in prominent method, developed by N.V. Petrovskaya [1980]. Etching of gold was carried out using reagent: HCl + HNO3 + FeCl3 × 6H2O + CrO3 +thioureat + water. Identified inner structures wer studied in details by means of scanning electron microscope JEOL JSM-6480LV. Two types of gold are identified according to the features of inner structure of placer gold of the Anabar region. First type - medium-high karat fine, well processed gold with significantly changed inner structure. This gold is allochthonous, which was redeposited many times from ancient intermediate reservoirs to younger deposits. Second type - low-medium karat, poorly rounded gold with

  11. Dynamic Settings and Interactions between Basin Subsidence and Orogeny in Zhoukou Depression and Dabie Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a study of the geo-dynamic setting and the relation between orogenic uplift and basin subsidence in the inland Zhoukou depression and Dabie orogenic belt. Since the Mesozoic the evolution of Zhoukou depression can be divided into three stages: (1) foreland basin, (2) transitional stage, (3) fault depression. Formation and variations of basin were not only related to the orogenesis, but also consistent with the orogenic uplift.

  12. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  13. The gold nuggets of the lower Pliocene Alhambra Formation (Betic Cordillera, Southern Spain)

    Science.gov (United States)

    Somma, Roberta; Bonvegna, Piero; Sanchez-Navas, Antonio

    2017-04-01

    The present research was devoted to the geochemical and textural characterization of gold nuggets extracted from auriferous siliciclastic deposits of the lower Pliocene continental Alhambra Formation (Betic Cordillera, Southern Spain). This Formation is mainly composed of metamorphic lithoclasts deriving both by the erosion of the Mulhacen Unit of the Nevado-Filabride Complex and the reworking of the upper Tortonian marine Dudar-Pinos Genil Formation, on its turn previously formed by erosion of the Veleta Unit of the Nevado-Filabride Complex. Particularly, the studied gold nuggets were separated from 1m3 of auriferous conglomerates sampled along the right side of the Genil River, in the abandoned Lancha de Cenes Mine, exploited since Roman time for gold mining. The recovered gold nuggets were 24 for a total weight of 0.125 g/m3. Textural analysis of gold nuggets was made by means mechanical sieving and visual comparison of roundness and form. They are sand-sized rounded to sub-rounded grains with spheroidal and cubic form. Surface analyses of the nuggets by SEM-EDS indicated that external portions show textures more porous than in the nuggets nuclei. Chemical analyses by EMPA indicated that they are constituted by pure gold with Ag and Hg as trace elements. The gold mine capacity of the studied auriferous deposits is at least of 0.125 g/m3 (lower than 0.5 g/m3; minimum value to be gold mine economically exploitable). Notwithstanding this value, the auriferous conglomerates of the Alhambra Formation reveal to be interesting under a gold mine exploitation point of view because of the gold high pureness degree. Finally, under a geological point of view, considering that the Alhambra Formation is mainly composed of lower Pliocene alluvial fan conglomerates and sandstones formed during the uplift of the Sierra Nevada, the selected gold nuggets are secondary deposits originally derived from primary deposits related to hydrothermal gold-bearing quartz veins included in

  14. Distributing Characteristics of Heavy Metal Elements in A Tributary of Zhedong River in Laowangzhai Gold Deposit, Yunnan (China): An Implication to Environmentology from Sediments

    Science.gov (United States)

    Yang, Shuran; Danĕk, Tomáš; Yang, Xiaofeng; Cheng, Xianfeng

    2016-10-01

    Five heavy metal contents from five sediments and seven sediment profiles in an upstream reach of Zhedong river in Laowangzhai gold deposit were investigated in this research, along with analysis of the horizontal distribution, the surface distribution, the vertical distribution and the interlayer distribution of five heavy metal contents: arsenic (As), mercury (Hg), copper (Cu), lead (Pb) and zinc (Zn). The potential ecological risk of five heavy metals was evaluated to help understanding pollution control of Laowangzhai deposit.

  15. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    Science.gov (United States)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  16. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe

    2013-07-01

    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  17. Geochronology of the Sleeper deposit, Humboldt County, Nevada: epithermal gold-silver mineralization following emplacement of a silicic flow-dome complex

    Science.gov (United States)

    Conrad, J.E.; McKee, E.H.; Rytuba, J.J.; Nash, J.T.; Utterback, W.C.

    1993-01-01

    The high-grade gold-silver deposits at the Sleeper mine are low sulfidation, quartz-adularia-type epithermal deposits, formed during the final stages of igneous hydrothermal activity of a small middle Miocene silicic flow-dome complex in north-central Nevada. There were multiple pulses of alteration and mineralization but all occurred within a period of less than 2 m.y. Later supergene alteration formed opal and alunite about 5.4 Ma but produced no Au or Ag mineralization other than some remobilization to produce locally rich pockets of secondary Au and Ag enrichment and is unrelated to the older magmatic hydrothermal system. The Sleeper deposit in the northern part of the Great Basin is genetically related to bimodal volcanism that followed a long period of arc-related andesitic volcanism in the same general region. -from Authors

  18. Synthesis of gold nanoparticles on multi-walled carbon nanotubes (Au-MWCNTs) via deposition precipitation method

    Science.gov (United States)

    Zulikifli, Farah Wahida Ahmad; Yazid, Hanani; Halim, Muhammad Zikri Budiman Abdul; Jani, Abdul Mutalib Md

    2017-09-01

    Carbon nanotubes (CNTs) have received impressive consideration as support materials of noble metal catalysts in heterogeneous catalysis due to their good mechanical strength, large surface area and good durability under harsh conditions. The interaction between CNTs and noble metal nanoparticles (NPs) gives an unusual unique microstructure properties and or modification of the electron density of the noble metal clusters, and enhances the catalytic activity. In this study, the MWCNTs were first treated with a mixture of concentrated sulfuric and nitric acid by sonication to improve its dispersibility and to introduce the carboxylic (-COOH) groups on CNTs surfaces. Gold nanoparticles (Au NPs) on multiwalled carbon nanotubes (MWCNTs) were synthesized by the deposition precipitation (DP) method as this method is simpler, low cost, and excellent method. Then, the effect of reducing agent (NaBH4) on gold distribution on the support of MWCNTs was also studied. Dispersion test, Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) are all used to characterize the functionalized MWCNTs (fCNTs) and the Au NPs-fCNTs catalyst. There are three important peaks in functionalized MWCNTs which correspond to C=O, O-H, and C-O absorption peaks, as a result of the oxidation of COOH groups on the surface of CNTs. The absorption band at 1717 cm-1 is corresponded to C=O stretching of COOH, while the absorption bands at 3384 cm-1 and 1011cm-1 are associated with O-H bending and C-O stretching, respectively. Surface morphology of Au NPs-fCNTs R4 and Au NPs- fCNTs WR catalyst by FESEM showed that the Au NPs of 19.22 ± 2.33 nm and 23.05 ± 2.57 nm size were successfully deposited on CNTs, respectively.

  19. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  20. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  1. Decomposition of NO in gas phase by gold nanoparticles supported on titanium dioxide synthesized by the deposition-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Fernandez, J., E-mail: javier.fernandez@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados, Av. Miguel de Cervantes 120, Complejo Industrial C.P. 31109, Chihuahua, Chih. (Mexico); Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Eje Central Lazaro Cardenas 152, C.P. 07730, D.F. (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Circuito exterior S/N, Ciudad Universitaria, C.P. 04510, A.P. 70-186, Delegacion Coyoacan, D.F. (Mexico); Aguilar-Elguezabal, A. [Centro de Investigacion en Materiales Avanzados, Av. Miguel de Cervantes 120, Complejo Industrial C.P. 31109, Chihuahua, Chih. (Mexico); Arizabalo, R.D.; Castillo, S.; Moran-Pineda, M. [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Eje Central Lazaro Cardenas 152, C.P. 07730, D.F. (Mexico)

    2010-10-25

    In the present work, the synthesis, characterization and photoactivity concerning the nitrogen monoxide (NO) decomposition of sol-gel Au/TiO{sub 2} photocatalysts are reported. TiO{sub 2} was prepared by gelling titanium (IV) isopropoxide, and gold nanoparticles were added by the deposition-precipitation method with urea. The catalysts with different gold concentrations were characterized by the following techniques: BET, XRD, UV-vis and dark-field TEM. It was found that by using this synthesis method, a high dispersion of gold nanoparticles on TiO{sub 2} was reached (4.4-6.7 nm), and the obtained structure lead to a band gap energy that is lower than the one observed for undoped TiO{sub 2}. A NO + O{sub 2} mixture (150 ppm) was used to evaluate the photocatalytic activity in situ, at room temperature, under atmospheric pressure and a UV lamp was used as radiation source. The photocatalytic conversion of nitrogen monoxide (NO) was followed by FTIR, which reached 96% in 60 min. The Au/TiO{sub 2} materials showed an enhanced photocatalytic activity when compared with the reference TiO{sub 2}.

  2. Extraction of gold and silver from geothermal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.L.; Roberts, P.J. (Geothermal Research Center, Wairakei (New Zealand); Spectrum Resources Ltd., Auckland (New Zealand))

    1988-11-10

    This paper describes the results of five experiments of the extraction of gold and silver from hydrothermal fluids with a experimental vessel settled up at KA35 well at the Kawerau geothermal field in New Zealand. The experimental vessel was designed to absorb the fluids from orifice plate controlled to be low pressure and had a chamber having within many collecting plates. The first experiment is a fundamental one in which a mild steel was used as metal collector plate. The rates of deposition of gold and silver on the plate were estimated. The second experiment showed that the rate on deposition of gold on the mild steel plate was controlled by the flux rate of hydrothermal fluid. The third experiment showed that a mild steel seemed to be better for the collection plate of gold and silver than copper and aluminium. The fourth experiment clarified that the activated charcoal was not suitable for the collector plate for gold and silver. The fifth experiment showed that a mild steel was better for metal collector than activated charcoal. 1 ref., 4 figs.

  3. Magnetotelluric Imaging of the Lithosphere Across the Variscan Orogen (Iberian Autochthonous Domain, NW Iberia)

    Science.gov (United States)

    Alves Ribeiro, J.; Monteiro-Santos, F. A.; Pereira, M. F.; Díez Fernández, R.; Dias da Silva, Í.; Nascimento, C.; Silva, J. B.

    2017-12-01

    A new magnetotelluric (MT) survey comprising 17 MT soundings throughout a 30 km long N30°W transect in the Iberian autochthons domain of NW Iberia (Central Iberian Zone) is presented. The 2-D inversion model shows the resistivity structure of the continental crust up to 10 km depth, heretofore unavailable for this region of the Variscan Orogen. The MT model reveals a wavy structure separating a conductive upper layer underlain by a resistive layer, thus picturing the two main tectonic blocks of a large-scale D2 extensional shear zone (i.e., Pinhel shear zone). The upper layer represents a lower grade metamorphic domain that includes graphite-rich rocks. The lower layer consists of high-grade metamorphic rocks that experienced partial melting and are associated with granites (more resistive) emplaced during crustal thinning. The wavy structure is the result of superimposed crustal shortening responsible for the development of large-scale D3 folds (e.g., Marofa synform), later deflected and refolded by a D4 strike-slip shear zone (i.e., Juzbado-Penalva do Castelo shear zone). The later contribution to the final structure of the crust is marked by the intrusion of postkinematic granitic rocks and the propagation of steeply dipping brittle fault zones. Our study demonstrates that MT imaging is a powerful tool to understand complex crustal structures of ancient orogens in order to design future prospecting surveys for mineral deposits of economic interest.

  4. GOLD's coating and testing facilities for ISSIS-WSO

    Science.gov (United States)

    Larruquert, Juan I.; Méndez, José Antonio; Aznárez, José Antonio; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica

    2011-09-01

    ISSIS imager has been thought as an open purpose instrument within the World Space Observatory (WSO) international space mission. The highest priorities of ISSIS, an instrument to be developed by Spain, are to guarantee high spatial resolution and high sensitivity down to the far ultraviolet (FUV). The paper displays the capacities of GOLD for multilayer deposition and FUV reflectometry, among other metrologies, for ISSIS optical elements. Deposition of coatings for ISSIS-WSO will be carried out in a new UHV system with a 75-cm diameter deposition chamber. The purpose of the new laboratory is the deposition of coatings satisfying the constraints for FUV space optics. The first target coating to be developed in this new laboratory is Al protected with MgF2, with optimum reflectance down to ˜120 nm. GOLD's existing reflectometer is able to characterize flat pieces both by transmittance and reflectance, and the latter from near-normal to grazing incidence, in the range from 12 to 200 nm. Other metrologies that will be available at GOLD for ISSIS's coatings and filters include optical thickness of filters to assure parfocality, filter wedge, and coating and filter scattering.

  5. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska

    Science.gov (United States)

    Selby, D.; Creaser, R.A.; Hart, C.J.R.; Rombach, C.S.; Thompson, J.F.H.; Smith, Moira T.; Bakke, A.A.; Goldfarb, R.J.

    2002-01-01

    New Re-Os molybdenite dates from two lode gold deposits of the Tintina Gold Belt, Alaska, provide direct timing constraints for sulfide and gold mineralization. At Fort Knox, the Re-Os molybdenite date is identical to the U-Pb zircon age for the host intrusion, supporting an intrusive-related origin for the deposit. However, 40Ar/39Ar dates from hydrothermal and igneous mica are considerably younger. At the Pogo deposit, Re-Os molybdenite dates are also much older than 40Ar/39Ar dates from hydrothermal mica, but dissimilar to the age of local granites. These age relationships indicate that the Re-Os molybdenite method records the timing of sulfide and gold mineralization, whereas much younger 40Ar/39Ar dates are affected by post-ore thermal events, slow cooling, and/or systemic analytical effects. The results of this study complement a growing body of evidence to indicate that the Re-Os chronometer in molybdenite can be an accurate and robust tool for establishing timing relations in ore systems.

  6. Modelling spatial anisotropy of gold concentration data using GIS ...

    Indian Academy of Sciences (India)

    Linear trends of anomalously high gold values in the Florida Canyon gold deposit, Nevada have been identified using a ... starting at 3500 ft above mean sea level (msl). Relatively high ..... by slower rise in semivariances for longer distance.

  7. Development of a gold-nanostructured surface for amperometric genosensors

    Energy Technology Data Exchange (ETDEWEB)

    Zanardi, Chiara, E-mail: chiara.zanardi@unimore.it [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy); Baldoli, Clara, E-mail: clara.baldoli@istm.cnr.it [Istituto di Scienze e Tecnologie Molecolari del CNR (Italy); Licandro, Emanuela [Universita degli Studi di Milano, Dipartimento di Chimica Organica ed Industriale (Italy); Terzi, Fabio; Seeber, Renato [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy)

    2012-10-15

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1-5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  8. Development of a gold-nanostructured surface for amperometric genosensors

    International Nuclear Information System (INIS)

    Zanardi, Chiara; Baldoli, Clara; Licandro, Emanuela; Terzi, Fabio; Seeber, Renato

    2012-01-01

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1–5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  9. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    OpenAIRE

    Arifudin Idrus

    2018-01-01

    DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, represent...

  10. A system design of gamma-ray spectrometric data processing for gold prospecting

    International Nuclear Information System (INIS)

    Yin Xueqin; Cheng Xuchu; Fang Lianxi; Huang Zuofeng.

    1992-01-01

    Based on different correlation between gamma-ray spectrometric data and gold grade in different types of gold deposits, it is necessary and possible to establish a mathematical model of gamma-ray spectrometric data processing for predicting specific gold deposits. A system design of gamma-ray spectrometric data processing for prospecting gold deposits has been worked out according to the mathematical method and procedure of data processing. The prediction effectiveness of commonly used multiple linear regression analysis is always not ideal but regression accuracy will be evidently increased after pre-processing of the calculated weight, deviation and favorability on gamma-ray spectrometric data. This system can establish more than ten models at the same time which enable users to have more choice. Tree structure and Chinese menu prompting are adopted in this system which can be utilized separately, sub-systems at different levels can be also individually operated. It can be transplanted to data processing of other similar geological deposit models (including non-gamma ray spectrometric data). The system is rapid, accurate, simple, convenient and flexible in use, more practical and easily popularized

  11. Fabrication of highly active and cost effective SERS plasmonic substrates by electrophoretic deposition of gold nanoparticles on a DVD template

    Energy Technology Data Exchange (ETDEWEB)

    Leordean, Cosmin; Marta, Bogdan; Gabudean, Ana-Maria; Focsan, Monica; Botiz, Ioan; Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro

    2015-09-15

    Highlights: • Simple and cost effective electrophoretic method to fabricate plasmonic substrates. • SERS performance at three different excitation laser lines. • Promising applicability in SERS based biosensing. - Abstract: In this work we present a simple, rapid and cost effective method to fabricate highly active SERS substrates. This method consists in an electrophoretic deposition of gold nanoparticles on a metallic nanostructured template of a commercial digital versatile disk (DVD). The negatively charged gold nanoparticles self-assemble on the positively charged DVD metallic film connected to a positive terminal of a battery, due to the influence of the electric field. When gold nanoparticles self-assembled on DVD metallic film, a 10-fold additional enhancement of Raman signal was observed when compared with the case of GNPs self-assembled on a polycarbonate DVD substrate only. Finite-difference time-domain simulations demonstrated that the additional electromagnetic field arising in the hot-spots created between gold nanoparticles and DVD metallic film induces an additional enhancement of the Raman signal. SERS efficiency of the fabricated plasmonic substrate was successfully demonstrated through detection of para-aminothiophenol molecule with three different excitation laser lines (532, 633 and 785 nm). The enhancement factor was calculated to be 10{sup 6} and indicates that plasmonic substrates fabricated through this method could be a promising platform for future SERS based sensors.

  12. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  13. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  14. Asymmetric gravitational spreading - Analogue experiments on the Svecofennian orogen

    Science.gov (United States)

    Nikkilä, Kaisa; Korja, Annakaisa; Koyi, Hemin; Eklund, Olav

    2015-04-01

    Over-thickened orogenic crust may suffer from rheological, gravitational and topographical unbalancing resulting in discharging via gravitational spreading. If the thickened orogen is also hot, then increased temperature may reduce the viscosity of the crust that may induce large-scale horizontal flow. The effect of flow on the crustal architecture has previously been modeled with symmetric two-way spreading or asymmetric one- or two-way spreading (like channel flow) experiments. Most models do not take into account of the contrasting mechanical properties of the juxtaposed terranes. We have made analogue experiments to study gravitational one-way spreading and the interplay between two crustal blocks with contrasting rheological properties. The models are 3 cm thick replicas of 60 km thick crust. They have three horizontal layers representing strong lower, weak middle and brittle upper crust. The models have cuts to study the effect of inherited crustal-scale weakness zones. The experiments have been conducted within a large centrifuge in the Hans Ramberg Tectonic Laboratory at Uppsala University. The analogue models propose that asymmetric, unilateral flow has different effect on the contrasting crustal units, in both horizontal and vertical directions. The laterally heterogeneous crust flows towards the direction of extension, and it rotates and extends the pre-existing weakness zones. The weakness zones facilitate exhumation and they increase strain rate. The weakness zones split the crust into subblocks, which stretch individually and which may show signatures of compression or rotation. The changes in thickness of the model reflect changes in the layers, which may thin or thicken depending on the mechanical properties of crustal layers. A consequence of this the total amount of flattening is less than the model extension. The results are compared to geophysical and geological data from Precambrian Svecofennian orogen in Fennoscandia. The comparison suggest

  15. Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits

    Science.gov (United States)

    Person, M.; Banerjee, A.; Hofstra, A.; Sweetkind, D.; Gao, Y.

    2008-01-01

    The Great Basin region in the western United States contains active geothermal systems, large epithermal Au-Ag deposits, and world-class Carlin-type gold deposits. Temperature profiles, fluid inclusion studies, and isotopic evidence suggest that modern and fossil hydrothermal systems associated with gold mineralization share many common features, including the absence of a clear magmatic fluid source, discharge areas restricted to fault zones, and remarkably high temperatures (>200 ??C) at shallow depths (200-1500 m). While the plumbing of these systems varies, geochemical and isotopic data collected at the Dixie Valley and Beowawe geothermal systems suggest that fluid circulation along fault zones was relatively deep (>5 km) and comprised of relatively unexchanged Pleistocene meteoric water with small (horizons. Those with minimal fluid ?? 18O shifts are restricted to high-permeability fault zones and relatively small-scale (???5 km), single-pass flow systems (e.g., Beowawe). Those with intermediate to large isotopic shifts (e.g., epithermal and Carlin-type Au) had larger-scale (???15 km) loop convection cells with a greater component of flow through marine sedimentary rocks at lower water/rock ratios and greater endowments of gold. Enthalpy calculations constrain the duration of Carlin-type gold systems to probably account for the amount of silica in the sinter deposits. In the Carlin trend, fluid circulation extended down into Paleozoic siliciclastic rocks, which afforded more mixing with isotopically enriched higher enthalpy fluids. Computed fission track ages along the Carlin trend included the convective effects, and ranged between 91.6 and 35.3 Ma. Older fission track ages occurred in zones of groundwater recharge, and the younger ages occurred in discharge areas. This is largely consistent with fission track ages reported in recent studies. We found that either an amagmatic system with more permeable faults (10-11 m2) or a magmatic system with less

  16. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. [Univ. of Michigan, Ann Arbor, MI (United States)

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  17. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Science.gov (United States)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  18. Patterning of oxide-hardened gold black by photolithography and metal lift-off

    Science.gov (United States)

    Panjwani, Deep; Yesiltas, Mehmet; Nath, Janardan; Maukonen, D. E.; Rezadad, Imen; Smith, Evan M.; Peale, R. E.; Hirschmugl, Carol; Sedlmair, Julia; Wehlitz, Ralf; Unger, Miriam; Boreman, Glenn

    2014-01-01

    A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at ˜1 Torr. SiO2 is then deposited as a protection layer by electron beam evaporation. Lift-off proceeds by dissolving the photoresist in acetone. The resulting sub-millimeter size gold black patterns that remain on the substrate retain high infrared absorption out to ˜5 μm wavelength and exhibit good mechanical stability. This technique allows selective application of gold black coatings to the pixels of thermal infrared imaging array detectors.

  19. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  20. Isotopic characteristics of two kinds of hydrothermal carbonation in the Maria Lazara gold deposit. Goias Estate of Central Brazil

    International Nuclear Information System (INIS)

    Pulz, G.; Fuck, R.

    1998-01-01

    In the hydrothermal halo of the Maria Lazara gold deposit, two kinds of carbonation were identified: pervasive carbonation, which corresponds to the disseminations of calcite in the hydrothermal halo represented by the biotite-sulfide and carbonate-chlorite zones and, venular carbonation expressed by quartz and calcite veins inserted in the inner biotite-sulfide zone show an organic carbon component depleted in C. In the carbonate-chlorite zone the calcite isotopic behavior reflects the Co2 derived from the metamorphism o the basic host-rocks. (author)

  1. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy)

    Science.gov (United States)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.

    2013-05-01

    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  2. Quantitative Mineral Resource Assessment of Copper, Molybdenum, Gold, and Silver in Undiscovered Porphyry Copper Deposits in the Andes Mountains of South America

    Science.gov (United States)

    Cunningham, Charles G.; Zappettini, Eduardo O.; Vivallo S., Waldo; Celada, Carlos Mario; Quispe, Jorge; Singer, Donald A.; Briskey, Joseph A.; Sutphin, David M.; Gajardo M., Mariano; Diaz, Alejandro; Portigliati, Carlos; Berger, Vladimir I.; Carrasco, Rodrigo; Schulz, Klaus J.

    2008-01-01

    Quantitative information on the general locations and amounts of undiscovered porphyry copper resources of the world is important to exploration managers, land-use and environmental planners, economists, and policy makers. This publication contains the results of probabilistic estimates of the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) in undiscovered porphyry copper deposits in the Andes Mountains of South America. The methodology used to make these estimates is called the 'Three-Part Form'. It was developed to explicitly express estimates of undiscovered resources and associated uncertainty in a form that allows economic analysis and is useful to decisionmakers. The three-part form of assessment includes: (1) delineation of tracts of land where the geology is permissive for porphyry copper deposits to form; (2) selection of grade and tonnage models appropriate for estimating grades and tonnages of the undiscovered porphyry copper deposits in each tract; and (3) estimation of the number of undiscovered porphyry copper deposits in each tract consistent with the grade and tonnage model. A Monte Carlo simulation computer program (EMINERS) was used to combine the probability distributions of the estimated number of undiscovered deposits, the grades, and the tonnages of the selected model to obtain the probability distributions for undiscovered metals in each tract. These distributions of grades and tonnages then can be used to conduct economic evaluations of undiscovered resources in a format usable by decisionmakers. Economic evaluations are not part of this report. The results of this assessment are presented in two principal parts. The first part identifies 26 regional tracts of land where the geology is permissive for the occurrence of undiscovered porphyry copper deposits of Phanerozoic age to a depth of 1 km below the Earth's surface. These tracts are believed to contain most of South America's undiscovered resources of copper. The

  3. Accretionary and collisional orogenesis in the south domain of the western Central Asian Orogenic Belt (CAOB)

    Science.gov (United States)

    Cai, Keda; Long, Xiaoping; Chen, Huayong; Sun, Min; Xiao, Wenjiao

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) was the result of long-lived multi-stage tectonic evolution, including Proterozoic to Paleozoic accretion and collision, Mesozoic intracontinental modification, and Cenozoic rapid deformation and uplift. The accretionary and collisional orogenesis of its early history generated a huge orogenic collage consisting of diverse tectonic units including island arcs, ophiolites, accretionary prisms, seamounts, oceanic plateaus and micro-continents. These incorporated orogenic components preserved valuable detailed information on orogenic process and continental crust growth, which make the CAOB a key region to understanding of continental evolution, mantle-crust interaction and associated mineralization. The western CAOB refers to the west region in North Xinjiang of China and circum-Balkash of Kazakhstan, with occurrences of the spectacular Kazakhstan orocline and its surrounding mountain belts. Because orogenic fabrics of this part mostly preserve their original features caused by the interactions among the southern Siberian active margin in the north and the Tarim Craton in the south, the western CAOB can be regarded as an ideal region to study the processes of the accretionary and collisional orogenesis and associated mineralization. Since a large number of researchers have been working on this region, research advances bloom strikingly in a short-time period. Therefore, we, in this special issue, focus on these new study advances on the south domain of the western CAOB, including the Kazakhstan collage system, Tianshan orogenic belt and Beishan region, and it is anticipated that this issue can draw more attention from the international research groups to be interested in the studies on orogenesis of the CAOB.

  4. General geology, alteration, and iron deposits in the Palaeoproterozoic Misi region, northern Finland

    Directory of Open Access Journals (Sweden)

    Tero Niiranen

    2003-01-01

    characteristic for the entire region. The styles of alteration in the region are: scapolitisation, regional and local albitisation, sericitisation and silicification associated with a major shear zone, and late carbonatisation and carbonate veining associated with brecciation of the ores and their wall rocks. Local intense albitisation and formation of skarnoids and magnetite ores took placeduring the pre-D1 or D1 faulting or shearing which postdate the intrusion of 2120 Ma gabbros. The iron was mobilized from the mafic to intermediate country rocks and/or marble sequence which possibly contained sedimentary iron formation. Regional alteration with the local intense albitisation and ore formation show similar features to the iron oxide-copper-gold type deposits, although the known deposits in the Misi region only contain trace amounts of gold and copper.

  5. Multiple and prolonged porphyry Cu–Au mineralization and alteration events in the Halasu deposit, Chinese Altai, Xinjiang, northwestern China

    Directory of Open Access Journals (Sweden)

    Chunji Xue

    2016-09-01

    Full Text Available The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cu–Mo–Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cu–Au deposit, which is currently under exploration. U–Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372–382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Re–Os dating of molybdenite from veinlet-dissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar–Ar dating of K-feldspar from K-feldspar–quartz–chalcopyrite veins produces ages of ca. 269 and ca. 198 Ma. The mineralization (and alteration ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the post-collisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to post-collisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.

  6. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.

    Science.gov (United States)

    Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E

    2014-05-20

    Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.

  7. Predictive mapping using GIS to locate epithermal gold deposits at Cabo de Gata (Prov. of Almeria, Spain); Cartografia predictiva mediante SIG de depositos epitermales de oro en Cabo de Gata, Almeria, Espana

    Energy Technology Data Exchange (ETDEWEB)

    Rogol-Sanchez, J. P.; Chica-Olmo, M.; Rodriguez-Galiano, V.; Pardo-Iguzquiza, E.

    2011-07-01

    The main aim of mineral potential mapping is to generate predictive maps showing the spatial distribution of a numerical index of favour ability for the presence of a mineral deposit of the type sought. We have studied the mineral favorability for epithermal gold deposits in the Cabo de Gata volcanic field in the Province of Almeria in Spain. Predictive maps deriving from the models suggest the presence of several potentially favourable zones. The performance of predictive maps is similar in most cases. Nevertheless, data-driven methods are able to capture more readily the spatial distribution of known gold occurrences in the area. (Author) 32 refs.

  8. Gold Nanostructures for Surface-Enhanced Raman Spectroscopy, Prepared by Electrodeposition in Porous Silicon

    Directory of Open Access Journals (Sweden)

    Yukio H. Ogata

    2011-04-01

    Full Text Available Electrodeposition of gold into porous silicon was investigated. In the present study, porous silicon with ~100 nm in pore diameter, so-called medium-sized pores, was used as template electrode for gold electrodeposition. The growth behavior of gold deposits was studied by scanning electron microscope observation of the gold deposited porous silicon. Gold nanorod arrays with different rod lengths were prepared, and their surface-enhanced Raman scattering properties were investigated. We found that the absorption peak due to the surface plasmon resonance can be tuned by changing the length of the nanorods. The optimum length of the gold nanorods was ~600 nm for surface-enhanced Raman spectroscopy using a He-Ne laser. The reason why the optimum length of the gold nanorods was 600 nm was discussed by considering the relationship between the absorption peak of surface plasmon resonance and the wavelength of the incident laser for Raman scattering.

  9. Rare Earth Elements (REE Deposits Associated with Great Plain Margin Deposits (Alkaline-Related, Southwestern United States and Eastern Mexico

    Directory of Open Access Journals (Sweden)

    Virginia T. McLemore

    2018-01-01

    Full Text Available W.G. Lindgren in 1933 first noted that a belt of alkaline-igneous rocks extends along the eastern edge of the Rocky Mountains and Basin and Range provinces from Alaska and British Columbia southward into New Mexico, Trans-Pecos Texas, and eastern Mexico and that these rocks contain relatively large quantities of important commodities such as, gold, fluorine, zirconium, rare earth elements (REE, tellurium, gallium, and other critical elements. In New Mexico, these deposits were called Great Plain Margin (GPM deposits, because this north-south belt of alkaline-igneous rocks roughly coincides with crustal thickening along the margin between the Great Plains physiographic province with the Basin and Range (including the Rio Grande rift and Rocky Mountains physiographic provinces, which extends into Trans-Pecos Texas and eastern Mexico. Since 1996, only minor exploration and development of these deposits in New Mexico, Texas, and eastern Mexico has occurred because of low commodity prices, permitting issues, and environmental concerns. However, as the current demand for gold and critical elements, such as REE and tellurium has increased, new exploration programs have encouraged additional research on the geology of these deposits. The lack of abundant quartz in these systems results in these deposits being less resistant to erosion, being covered, and not as well exposed as other types of quartz-rich deposits, therefore additional undiscovered alkaline-related gold and REE deposits are likely in these areas. Deposits of Th-REE-fluorite (±U, Nb epithermal veins and breccias are found in the several GPM districts, but typically do not contain significant gold, although trace amounts of gold are found in most GPM districts. Gold-rich deposits in these districts tend to have moderate to low REE and anomalously high tungsten and sporadic amounts of tellurium. Carbonatites are only found in New Mexico and Mexico. The diversity of igneous rocks, including

  10. Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature

    International Nuclear Information System (INIS)

    Ishida, Tadashi; Nakajima, Yuuki; Fujita, Hiroyuki; Endo, Junji; Collard, Dominique

    2009-01-01

    Gold diffusion into silicon at room temperature was observed in real time with atomic resolution. Gold nanoclusters were formed on a silicon surface by an electrical discharge between a silicon tip and a gold coated tip inside an ultrahigh-vacuum transmission electron microscope (TEM) specimen chamber. At the moment of the gold nanocluster deposition, the gold nanoclusters had a crystalline structure. The crystalline structure gradually disappeared due to the interdiffusion between silicon and gold as observed after the deposition of gold nanoclusters. The shape of the nanocluster gradually changed due to the gold diffusion into the damaged silicon. The diffusion front between silicon and gold moved toward the silicon side. From the observations of the diffusion front, the gold diffusivity at room temperature was extracted. The extracted activation energy, 0.21 eV, matched the activation energy in bulk diffusion between damaged silicon and gold. This information is useful for optimizing the hybridization between solid-state and biological nanodevices in which gold is used as an adhesive layer between the two devices.

  11. Chemistry of Selected Core Samples, Concentrate, Tailings, and Tailings Pond Waters: Pea Ridge Iron (-Lanthanide-Gold) Deposit, Washington County, Missouri

    Science.gov (United States)

    Grauch, Richard I.; Verplanck, Philip L.; Seeger, Cheryl M.; Budahn, James R.; Van Gosen, Bradley S.

    2010-01-01

    The Minerals at Risk and for Emerging Technologies Project of the U.S. Geological Survey (USGS) Mineral Resources Program is examining potential sources of lanthanide elements (rare earth elements) as part of its objective to provide up-to-date geologic information regarding mineral commodities likely to have increased demand in the near term. As part of the examination effort, a short visit was made to the Pea Ridge iron (-lanthanide-gold) deposit, Washington County, Missouri in October 2008. The deposit, currently owned by Wings Enterprises, Inc. of St. Louis, Missouri (Wings), contains concentrations of lanthanides that may be economic as a primary product or as a byproduct of iron ore production. This report tabulates the results of chemical analyses of the Pea Ridge samples and compares rare earth elements contents for world class lanthanide deposits with those of the Pea Ridge deposit. The data presented for the Pea Ridge deposit are preliminary and include some company data that have not been verified by the USGS or by the Missouri Department of Natural Resources, Division of Geology and Land Survey (DGLS), Geological Survey Program (MGS). The inclusion of company data is for comparative purposes only and does not imply an endorsement by either the USGS or MGS.

  12. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    Science.gov (United States)

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  13. 40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.

    Science.gov (United States)

    2010-07-01

    ... separation methods for recovering gold from placer deposits. (b) The provisions of this subpart M are not... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the gold... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold...

  14. Determination of gold and platinum in biological materials by radiochemical neutron activation analysis using electrolytic separation of gold

    International Nuclear Information System (INIS)

    Reitz, B.; Heydorn, K.

    1993-01-01

    A new method is presented for the determination of Au and Pt in biological materials based on neutron activation analysis with radiochemical separation of gold. Separation of gold by electrolytic deposition on a niobium cathode ascertains thee highest radiochemical purity without any interference from calcium or other major elements. With 199 Au as indicator for platinum the gold content of the sample not only strongly affects the limit of detection, but also causes interference by double neutron capture. Replicate analyses of BCR Certified Reference Materials No. 184, 185 and 186 were carried out. (author) 18 refs.; 3 figs.; 2 tabs

  15. Template assisted synthesis and optical properties of gold nanoparticles.

    Science.gov (United States)

    Fodor, Petru; Lasalvia, Vincenzo

    2009-03-01

    A hybrid nanofabrication method (interference lithography + self assembly) was explored for the fabrication of arrays of gold nanoparticles. To ensure the uniformity of the nanoparticles, a template assisted synthesis was used in which the gold is electrodeposited in the pores of anodized aluminum membranes. The spacing between the pores and their ordering is controlled in the first fabrication step of the template in which laser lithography and metal deposition are used to produce aluminum films with controlled strain profiles. The diameter of the pores produced after anodizing the aluminum film in acidic solution determines the diameter of the gold particles, while their aspect ratio is controlled through the deposition time. Optical absorbance spectroscopy is used to evaluate the ability to tune the nanoparticles plasmon resonance spectra through control over their size and aspect ratio.

  16. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    Correa-Puerta, Jonathan; Del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2014-01-01

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  17. Resistivity of thiol-modified gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Correa-Puerta, Jonathan [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso (Chile); Del Campo, Valeria [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Henríquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Häberle, Patricio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2014-11-03

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography.

  18. Cobalt—Styles of deposits and the search for primary deposits

    Science.gov (United States)

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and

  19. Control of surface quality of sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zheng Wei; Zhang Lin; Sun Jingyuan; Chen Jing

    2010-01-01

    The morphology, composition and causes of defects are analyzed to reduce defects on the gold layer prepared by electrochemical deposition from sulfite solution, and to improve the surface quality of sub-millimeter cylindrical gold targets, by means of SEM and EDS. The effects of current density, metallic impurity, organic pollution, pre-deposition parameters and mandrel quality on the quality of the gold plating are discussed, along with their mechanisms. The result indicates that the current density must be controlled strictly. The optimal current density ranges from 2.4 to 3.2 mA/cm 2 when the concentration of gold ranges from 13 to 22 g/L, and from 2.0 to 2.6 mA/ cm 2 when the concentration of gold ranges from 5 to 13 g/L. The parameters of predeposition must be optimized and the predeposition time should be no longer than 1 minute to improve the surface quality. In addition, organic pollution should be removed from the bath, and the mandrels should be of good quality without oxide on their surfaces. (authors)

  20. Temporal constraints on the kinematics of the destabilization of an orogen : syn- to post-orogenic extensional collapse of the Northern Aegean region

    NARCIS (Netherlands)

    Lips, A.L.W.

    1998-01-01

    The Mediterranean region is situated at the interface of the African and Eurasian plates and has been shaped by the Alpine Orogeny and the subsequent post-orogenic extension during the convergence and collision of the African and Eurasian plates. Numerous tectonic studies have focussed on the role

  1. Temporal constraints on the kinematics of the destabilization of an orogen : syn- to post-orogenic extensional collapse of the Northern Aegean region

    NARCIS (Netherlands)

    Lips, A.L.W.

    1998-01-01

    The Mediterranean region is situated at the interface of the African and Eurasian plates and has been shaped by the Alpine Orogeny and the subsequent post-orogenic extension during the convergence and collision of the African and Eurasian plates. Numerous tectonic studies have focussed on the

  2. The application of X-ray fluorescence spectrometry to prospecting potential gold deposits

    International Nuclear Information System (INIS)

    Shang Fengjun; Wang Haixia; Zhou Rongsheng

    2001-01-01

    The fieldwork high-sensitivity X-ray fluorescence analysis (FXFA) adopting miniaturized X-ray tube, Si-PIN detector with peltier cooler and notebook PC spectrometry is presented. Using this system, the authors carried out a preliminary research of its application to some gold mine in Sichuan. According to the close relationship between the high-grade element arsenic and gold in ore-forming components, X-ray fluorescence spectrometry can be used to reveal the existence of potential gold mineralization in fields rapidly. This is of great significance in guiding the field geological collection

  3. Evolving lithospheric flexure and paleotopography of the Pyrenean Orogen from 3D flexural modeling and basin analysis

    Science.gov (United States)

    Curry, M. E.; van der Beek, P.; Huismans, R. S.; Muñoz, J. A.

    2017-12-01

    The Pyrenees are an asymmetric, doubly-vergent orogen with retro- and pro- foreland basins that preserve a record of deformation since the Mesozoic. The extensive research and exploration efforts on the mountain belt and flanking foreland basins provide an exceptional dataset for investigating geodynamics and surface processes over large spatial and temporal scales in western Europe. We present the results of a numerical modeling study investigating the spatio-temporal variation in lithospheric flexure in response to the developing orogen. We employ a finite element method to model the 3D flexural deformation of the lithosphere beneath the Pyrenean orogen since the onset of convergence in the late Cretaceous. Using subsurface, geophysical, and structural data, we describe the evolving geometry of both the French Aquitaine and Spanish Ebro foreland basins at the present (post-orogenic), the mid-Eocene (peak orogenic), the Paleocene (early orogenic), and the end of the Cretaceous (pre- to early orogenic). The flexural modeling provides insight into how both the rigidity of the lithosphere and the paleotopographic load have varied over the course of orogenesis to shape the basin geometry. We find that the overriding European plate has higher rigidity than the subducting Iberian plate, with modern Effective Elastic Thickness (EET) values of 20 ± 2 and 12 ± 2 km, respectively. Modeling indicates that the modern rigidity of both plates decreases westward towards the Bay of Biscay. The lithospheric rigidity has increased by 50% since the Mesozoic with early Cenozoic EET values of 13 ± 2 and 8 ± 1 km for the European and Iberian plates, respectively. The topographic load began increasing with convergence in the late Cretaceous, reaching modern levels in the central and eastern Pyrenees by the Eocene. In contrast, the topographic load in the western Pyrenees was 70% of the modern value in the Eocene, and experienced topographic growth through the Oligo-Miocene. The

  4. New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment

    Science.gov (United States)

    Qiu, Xiao-bin; Wen, Jian-kang; Huang, Song-tao; Yang, Hong-ying; Liu, Mei-lin; Wu, Biao

    2017-10-01

    To extract gold from a low-grade (13.43 g/t) and high-sulfur (39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp (CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry (TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis (MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.

  5. Differential decay of the East-African Antarctic Orogen : an integrated examination of Northeastern Mozambique

    Science.gov (United States)

    Ueda, K.; Jacobs, J.; Emmel, B.; Thomas, R. J.; Matola, R.

    2009-04-01

    In Northeastern Mozambique, the late Proterozoic - early Paleozoic East African-Antarctic Orogen can be subdivided into two major blocks that exhibit some relevant differences. The line of divide is represented by the Lurio Belt, a kinematically poorly constrained shear zone that also marks the conceptual northern limit of frequent late-tectonic granitoid intrusions. Moreover, far-travelled granulite-facies nappes cover a much larger area north of this belt (Viola et. al, 2008), giving rise to the assumption of different exhumation and present exposure levels. U/Pb data from previous surveys (e.g., Norconsult consortium, 2007) show coeval high-grade metamorphism in the whole region between c. 610 - 550 Ma, while the block south of the Lurio Belt also shows continuing metamorphism until c. 490 Ma that can be related to extension. Geothermobarometry for samples from within the Lurio Belt (Engvik et. al, 2007) indicates rapid exhumation after high-pressure granulite facies metamorphism and is consistant with the assumption of long tectonic activity. A possible model for the outlined pattern is the delamination of the orogenic root only in the southern part, followed by rapid mechanical thinning as well as by isostatic accommodation along the Lurio Belt. A valuable marker was identified in the metasedimentary Mecuburi group that overlies the southern basement. U/Pb analysis of detrital zircons have yielded a maximum deposition age of c. 600 Ma, while metamorphism is recorded until c. 505 Ma. Investigations of the relationship between metasediments and older basement show that the basal contact is a fairly preserved depositional contact, allowing to suppose a conjoint post-depositional evolution. It is notable that the timing of deposition shortly follows the onset of the main, widespread high-grade metamorphism. Relatively high but variable degrees of migmatisation in the Mecuburi Group require a phase of burial from surface to deep levels after 600 Ma, followed by

  6. The susceptibility of large river basins to orogenic and climatic drivers

    Science.gov (United States)

    Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm

    2017-04-01

    Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect

  7. Application of fussy mathematics to the data processing of surface gamma spectrometry for gold exploration

    International Nuclear Information System (INIS)

    Huang Zheming.

    1990-01-01

    This paper introduces a new method by applying fuzzy mathematics to the data processing of uranium thorium and potassium, these data were detected from surface gamma spectrometry in the field and can be used to make quantitative interpretation for delineating gold mineralization in the favourable area. This method provides a rapid means for expanding and tracing gold deposits or occurrences and for prospecting gold deposits of the same kind and also provides an effective means for engineering design in uncovering exploration. It is of high efficiency, low cost and worth popularizing. It can be also used to look for other metallic and nonmetallic ore deposits

  8. SU-G-TeP3-13: The Role of Nanoscale Energy Deposition in the Development of Gold Nanoparticle-Enhanced Radiotherapy

    International Nuclear Information System (INIS)

    Kirkby, C; Koger, B; Suchowerska, N; McKenzie, D

    2016-01-01

    Purpose: Gold nanoparticles (GNPs) can enhance radiotherapy effects. The high photoelectric cross section of gold relative to tissue, particularly at lower energies, leads to localized dose enhancement. However in a clinical context, photon energies must also be sufficient to reach a target volume at a given depth. These properties must be balanced to optimize such a therapy. Given that nanoscale energy deposition patterns around GNPs play a role in determining biological outcomes, in this work we seek to establish their role in this optimization process. Methods: The PENELOPE Monte Carlo code was used to generate spherical dose deposition kernels in 1000 nm diameter spheres around 50 nm diameter GNPs in response to monoenergetic photons incident on the GNP. Induced “lesions” were estimated by either a local effect model (LEM) or a mean dose model (MDM). The ratio of these estimates was examined for a range of photon energies (10 keV to 2 MeV), for three sets of linear-quadratic parameters. Results: The models produce distinct differences in expected lesion values, the lower the alpha-beta ratio, the greater the difference. The ratio of expected lesion values remained constant within 5% for energies of 40 keV and above across all parameter sets and rose to a difference of 35% for lower energies only for the lowest alpha-beta ratio. Conclusion: Consistent with other work, these calculations suggest nanoscale energy deposition patterns matter in predicting biological response to GNP-enhanced radiotherapy. However the ratio of expected lesions between the different models is largely independent of energy, indicating that GNP-enhanced radiotherapy scenarios can be optimized in photon energy without consideration of the nanoscale patterns. Special attention may be warranted for energies of 20 keV or below and low alpha-beta ratios.

  9. SU-G-TeP3-13: The Role of Nanoscale Energy Deposition in the Development of Gold Nanoparticle-Enhanced Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kirkby, C [Jack Ady Cancer Centre, Lethbridge, AB (Canada); The University of Calgary, Calgary, AB (Canada); Koger, B [The University of Calgary, Calgary, AB (Canada); Suchowerska, N [Chris O’Brien Lifehouse Camperdown, NSW (Australia); McKenzie, D [University of Sydney, Sydney, NSW (Australia)

    2016-06-15

    Purpose: Gold nanoparticles (GNPs) can enhance radiotherapy effects. The high photoelectric cross section of gold relative to tissue, particularly at lower energies, leads to localized dose enhancement. However in a clinical context, photon energies must also be sufficient to reach a target volume at a given depth. These properties must be balanced to optimize such a therapy. Given that nanoscale energy deposition patterns around GNPs play a role in determining biological outcomes, in this work we seek to establish their role in this optimization process. Methods: The PENELOPE Monte Carlo code was used to generate spherical dose deposition kernels in 1000 nm diameter spheres around 50 nm diameter GNPs in response to monoenergetic photons incident on the GNP. Induced “lesions” were estimated by either a local effect model (LEM) or a mean dose model (MDM). The ratio of these estimates was examined for a range of photon energies (10 keV to 2 MeV), for three sets of linear-quadratic parameters. Results: The models produce distinct differences in expected lesion values, the lower the alpha-beta ratio, the greater the difference. The ratio of expected lesion values remained constant within 5% for energies of 40 keV and above across all parameter sets and rose to a difference of 35% for lower energies only for the lowest alpha-beta ratio. Conclusion: Consistent with other work, these calculations suggest nanoscale energy deposition patterns matter in predicting biological response to GNP-enhanced radiotherapy. However the ratio of expected lesions between the different models is largely independent of energy, indicating that GNP-enhanced radiotherapy scenarios can be optimized in photon energy without consideration of the nanoscale patterns. Special attention may be warranted for energies of 20 keV or below and low alpha-beta ratios.

  10. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    Science.gov (United States)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  11. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    Science.gov (United States)

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As

  12. Transmission electron microscopy study of ion energy deposition in gold: evidence for a spike threshold

    International Nuclear Information System (INIS)

    Ruault, M.O.; Bernas, H.; Chaumont, J.

    1978-01-01

    Nine different atomic species, from K to Yb, were implanted into gold at energies ranging from 20 to 150 keV. The nature and depth-distribution of the resultant defect clusters were studied by transmission electron microscopy techniques as well as a modification of the '2 1/2-D' stereo technique developed by Mitchell and Bell. The effect of implanted ion dose and sample purity were determined. The cluster depth distributions are in overall agreement with the damage distributions deduced from the energy deposition calculations of Winterbon, Sigmund, and Sanders. The nature of the defect clusters is found to depend on the mass and energy of the incoming ion, in agreement with our previously reported work. These results are suggested to provide evidence for the decisive influence of the deposited energy density on the nature of visible damage. We conclude that it is possible to distinguish between cascade and 'spike' effects, the latter setting in when the average energy per atom in the cascade is approximately 2 eV/atom. All results (obtained -at low doses on pure samples- for a variety of ion species in Au, Al, Cu, W, Mo and Ni) may be related to each other in this way

  13. Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent and its application

    International Nuclear Information System (INIS)

    Song, Y.Z.; Zhou, J.F.; Song, Y.; Cheng, Z.P.; Xu, J.

    2012-01-01

    Graphical abstract: Electrochemical deposition of netlike gold nanoparticles (GNPs) on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The catalytic properties of netlike gold nanoparticles on the glassy carbon electrode for dopamine were demonstrated. The results indicate that the netlike gold nanoparticle modified electrode has an excellent repeatability and reproducibility. Display Omitted Highlights: ► Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent. ► Excellent repeatability and reproducibility of netlike gold nanoparticle modified glassy carbon electrode. ► The catalytic properties of netlike gold nanoparticle for dopamine. -- Abstract: Electrochemical deposition of netlike gold nanoparticles on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The netlike gold nanoparticles were characterized by scanning electron microscope, transmission electron microscope, infrared spectrometer, UV spectrophotometer, powder X-ray diffractometer and electrochemical analyzer. The catalysis of the netlike gold nanoparticles on the glassy carbon electrode for dopamine was demonstrated. The results indicate that the gold nanoparticle modified electrode has an excellent repeatability and reproducibility.

  14. Electrodeposition of gold thin films with controlled morphologies and their applications in electrocatalysis and SERS

    International Nuclear Information System (INIS)

    Elias, Jamil; Brodard, Pierre; Michler, Johann; Philippe, Laetitia; Gizowska, Magdalena; DeHazan, Yoram; Graule, Thomas; Widmer, Roland

    2012-01-01

    Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition. (paper)

  15. Geology, geochemistry, and geochronology of the East Bay gold trend, Red Lake, Ontario, Canada

    Science.gov (United States)

    Gallagher, Shaun; Camacho, Alfredo; Fayek, Mostafa; Epp, Mark; Spell, Terry L.; Armstrong, Richard

    2018-01-01

    The Red Lake greenstone belt is situated in northwestern Ontario within the Uchi Subprovince, Superior Province. Most gold deposits therein are associated with major deformation corridors; the east-west oriented "Mine trend" hosts most of the large deposits and the northeast-southwest "East Bay trend" hosts several small deposits and showings. Gold along the East Bay trend typically occurs in quartz replacement veins that were emplaced into pre-existing quartz-carbonate veins. Gold can occur as free gold or along vein margins associated with pyrite and pyrrhotite. Most primary fluid inclusions, preserved in relatively undeformed portions of veins, are carbonaceous with lesser quantities of aqueous inclusions. The average homogenization temperature of aqueous fluids is 250 °C; however, the abundance of three-phase inclusions, variation in liquid-vapor ratios, and a wide range in homogenization temperatures indicate that immiscibility, effervescence, and fluid mixing are mechanisms associated with gold deposition. The age ( 2550 Ma) of alteration minerals in the Abino area is considerably younger (by 100 Myr) than alteration minerals in other deposits in the Red Lake district, indicating that the mineralizing fluid history was more protracted than previously thought. Along the East Bay trend, barren veins generally have lower δ18OVSMOW values (0.0 to 8.5‰) relative to auriferous veins (9.6 and 13.1‰). Consequently, the oxygen isotopic composition of quartz could be used as a vector for gold mineralization. The genetic model for the East Bay trend involves several stages of vein formation. Auriferous veins formed near the upper boundary of the mesozonal regime (depth of 5-6 km).

  16. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization

    Science.gov (United States)

    Kelley, D.L.; Kelley, K.D.; Coker, W.B.; Caughlin, B.; Doherty, M.E.

    2006-01-01

    Far field features of ore deposits include mineralogical, geochemical, or biological attributes that can be recognized beyond the obvious limits of the deposits. They can be primary, if formed in association with mineralization or alteration processes, or secondary, if formed from the interaction of ore deposits with the hydrosphere and biosphere. This paper examines a variety of far field features of different ore deposit types and considers novel applications to exploration and discovery. Primary far field features include mineral and rock chemistry, isotopic or element halos, fluid pathways and thermal anomalies in host-rock sequences. Examples include the use of apatite chemistry to distinguish intrusive rocks permissive for iron oxide copper gold (IOCG) and porphyry deposits; resistate mineral (e.g., rutile, tourmaline) chemistry in exploration for volcanogenic massive sulfide (VMS), orogenic gold, and porphyry deposits; and pyrite chemistry to vector toward sedimentary exhalative (sedex) deposits. Distinctive whole-rock geochemical signatures also can be recognized as a far field feature of porphyry deposits. For example, unique Sr/Y ratios in whole-rock samples, used to distinguish barren versus fertile magmas for Cu mineralization, result from the differentiation of oxidized hydrous melts. Anomalous concentrations of halogen elements (Cl, Br, and I) have been found for distances of up to 200 m away from some mineralized centers. Variations in isotopic composition between ore-bearing and barren intrusions and/or systematic vertical and lateral zonation in sulfur, carbon, or oxygen isotope values have been documented for some deposit types. Owing to the thermal aureole that extends beyond the area of mineralization for some deposits, detection of paleothermal effects through methods such as conodont alteration indices, vitrinite or bitumen reflectance, illite crystallinity, and apatite or zircon thermochronology studies also can be valuable, particularly for

  17. Using marine magnetic survey data to identify a gold ore-controlling fault: a case study in Sanshandao fault, eastern China

    Science.gov (United States)

    Yan, Jiayong; Wang, Zhihui; Wang, Jinhui; Song, Jianhua

    2018-06-01

    The Jiaodong Peninsula has the greatest concentration of gold ore in China and is characterized by altered tectonite-type gold ore deposits. This type of gold deposit is mainly formed in fracture zones and is strictly controlled by faults. Three major ore-controlling faults occur in the Jiaodong Peninsula—the Jiaojia, Zhaoping and Sanshandao faults; the former two are located on land and the latter is located near Sanshandao and its adjacent offshore area. The discovery of the world’s largest marine gold deposit in northeastern Sanshandao indicates that the shallow offshore area has great potential for gold prospecting. However, as two ends of the Sanshandao fault extend to the Bohai Sea, conventional geological survey methods cannot determine the distribution of the fault and this is constraining the discovery of new gold deposits. To explore the southwestward extension of the Sanshandao fault, we performed a 1:25 000 scale marine magnetic survey in this region and obtained high-quality magnetic survey data covering 170 km2. Multi-scale edge detection and three-dimensional inversion of magnetic anomalies identify the characteristics of the southwestward extension of the Sanshandao fault and the three-dimensional distribution of the main lithologies, providing significant evidence for the deployment of marine gold deposit prospecting in the southern segment of the Sanshandao fault. Moreover, three other faults were identified in the study area and faults F2 and F4 are inferred as ore-controlling faults: there may exist other altered tectonite-type gold ore deposits along these two faults.

  18. The electrical double layer on gold probed by electrokinetic and surface force measurements

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 m in diameter)

  19. The development of an ore reserve methodology for the Olympic Dam copper-uranium-gold deposit

    International Nuclear Information System (INIS)

    Scott, I.R.

    1987-01-01

    At the Olympic Dam copper-uranium-gold deposit in South Australia, evolution in the understanding of the controls on mineralisation coupled with the changing demands of the project have led to changes in the approach to reserve estimation. The project has moved into a phase where detailed stope mining reserves are now required as distinct from global ore reserves. To enable the selective manipulation of geological and assay information and its characterisation, a relational database has been developed. For reserve calculations themselves, initial computations were based on a system derived from that used for the Kambalda nickel orebodies. The Olympic Dam system differed mainly in the use of statistical analyses in the estimation of grade instead of the previous polygonal area of influence weighting method. Three dimensional weighting techniques are now being used for local reserve estimates

  20. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    International Nuclear Information System (INIS)

    Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Misawa, H.; Qiu, J.

    2012-01-01

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al 2 O 3 films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al 2 O 3 film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al 2 O 3 film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes

    International Nuclear Information System (INIS)

    Dominguez Renedo, Olga; Arcos Martinez, M. Julia

    2007-01-01

    Carbon screen-printed electrodes (CSPE) modified with gold nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry. Metallic gold nanoparticles deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV. The detection limit for Sb(III) obtained was 9.44 x 10 -10 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.69% (n = 10). The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations

  2. Trace elements and isotope data of the Um Garayat gold deposit, Wadi Allaqi district, Egypt

    Science.gov (United States)

    Zoheir, Basem; Emam, Ashraf; Pitcairn, Iain K.; Boskabadi, Arman; Lehaye, Yann; Cooper, Matthew J.

    2018-04-01

    Trace element composition of sulfides and O, C, Sr and S isotopic data are assessed to constrain the evolution and potential fluid and metal sources of the Um Garayat gold deposit. Ore microscopy and BSE investigations of quartz veins show blocky arsenopyrite and pyrite replaced in part by pyrrhotite, chalcopyrite, sphalerite, galena, and gersdorffite. Free-milling gold occurs commonly in close association with the late sulfides, and along fractures in pyrite. On the other hand, recrystallized pyrite is disseminated in host metavolcaniclastic/metasedimentary rocks that commonly contain carbonaceous material. In situ LA-ICP-MS analysis of sulfides shows the recrystallized pyrite enriched in most trace elements, while blocky pyrite contains only some traces of arsenic. Detected concentrations of gold (up to 17 ppm) were only reported in arsenopyrite disseminated in quartz veins. The δ34S values of blocky pyrite and pyrrhotite in quartz veins define a narrow range (1.6 to 3.7‰), suggesting a homogenous sulfur source which is consistent with the dominantly mafic host rocks. The recrystallized pyrite has a distinctive sulfur isotope composition (δ34S - 9.3 to - 10.6‰), which is rather comparable to diagenetic sulfides. Hydrothermal carbonate in quartz veins and wallrock have nearly constant values of δ18O (10.5 to 11.9‰) and δ13C (- 4.2 to - 5.5‰). Based on constraints from mineral assemblages and chlorite thermometry, data of six samples indicate that carbonate precipitation occurred at 280 °C from a homogenous hydrothermal fluid with δ18OH2O 4.4 ± 0.7‰ and δ13C = 3.7 ± 0.8‰. Strontium isotope values of two samples (87Sr/86Sr = 0.7024 and 0.7025) are similar to the initial 87Sr/86Sr ratios of island arc metabasalts ( 710 Ma) in the South Eastern Desert. The generally homogenous sulfur, C, O, Sr isotope data are suggestive of metamorphogenic fluids, likely produced from dominantly mafic volcanic rocks at the greenschist-amphibolite facies transition.

  3. Preparation and characterization of nano gold supported over montmorillonite clays

    International Nuclear Information System (INIS)

    Suraja, P.V.; Binitha, N.N.; Yaakob, Z.; Silija, P.P.

    2009-01-01

    Full text: The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl 4 ·3H 2 O by deposition-precipitation (DP) methods. However, it is difficult to prepare nano scale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. Here there is no need of increasing the pH of the solution to reduce the Au 3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-Vis Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method. (author)

  4. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Suraja, P V; Binitha, N N; Yaakob, Z; Silija, P P, E-mail: binithann@yahoo.co.in [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-02-15

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4{center_dot}3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  5. Nano Indentation Inspection of the Mechanical Properties of Gold Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Armen Verdyan

    2007-10-01

    Full Text Available The morphology and the local mechanical properties of gold nitride thin films were studied by atomic force microscope (AFM. Gold nitride films were deposited for the first time on silicon substrate without any buffer layer at room temperature by reactive pulsed laser ablation deposition (RPLD. The films were fabricated on (100 Si wafers by RPLD technique in which KrF excimer laser was used to ablate a gold target in N2 atmosphere (0.1 GPa-100 Pa and ambient temperature. Scanning electron microscopy (SEM and atomic force microscopy inspections showed that the films were flat plane with rms roughness in the range of 35.1 nm-3.6 nm, depending on the deposition pressure. Rutherford backscattering spectrometry (RBS and energy dispersion spectroscopy (EDS used to detect the nitrogen concentration in the films, have revealed a composition close to Au3N. The film

  6. Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2005-02-01

    Full Text Available Surface modification of the electrodes was conducted from sulfuric acid solutions containing the corresponding metal–chloride complexes using cyclic voltammetry. Comparing the charges of the hydrogen underpotential deposition region, and the corresponding oxide reduction regions, it is concluded that a platinum overlayer on gold forms 3D islands, while gold on platinum forms 2D islands. Foreign metals present in an amount of up to one monolayer exert an influence on the change in reaction rate with respect to both hydrogen evolution (HER and oxygen reduction (ORR reactions. Aplatinum overlayer on a gold substrate increases the activity forHER and for ORR, compared with pure gold. These results can be understood in terms of a simple model, in which the change in the H and OH binding energies are directly proportional to the shift of the d-bond center of the overlayer. On the contrary, a gold layer on platinum slightly decreases the activity for both reactions compared with pure platinum.

  7. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  8. Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode

    International Nuclear Information System (INIS)

    Sharma, Manoj K.; Ambolikar, Arvind S.; Aggarwal, Suresh K.

    2012-01-01

    The electrochemical template synthesis of gold nanorods within the cylindrical pores of track-etched polycarbonate (PC) membrane using a removable mercury cathode is reported. The novelty of this new approach is that it eliminates the requirement of coating an approximately 500 nm–1 μm-thick metallic layer, as conducting substrate, onto one surface of the insulating template membrane by the sputter deposition technique. A two-compartment electrochemical cell was designed and used for this work. The PC membrane was placed between the two compartments separating the aqueous solution of HAuCl 4 from mercury. Mercury, filled in one of the compartments, is in contact with one surface of the membrane (similar to sputter-deposited metallic layer) and serves as the conducting substrate/cathode for the electrochemical deposition of gold in the nanopores of track-etched PC membrane. Once the electrodeposition is completed, the mercury and the HAuCl 4 solution are removed from the compartments, and a malleable track-etched PC membrane embedded with free-standing gold nanorods is obtained. The ensemble of the metal nanorods grown in the template membrane is not attached to any conducting substrate, and gold nanorods can be freed from the template membrane after the dissolution. The Au-deposited PC membrane and free-standing Au nanorods were characterized by EDXRF, XRD, UV–Visible spectroscopy, AFM, and FEG-TEM. The EDXRF and XRD studies confirmed the deposition of the face-centered cubic phase of Au in the pores of the PC membrane. The TEM studies showed the formation of a cigar-shaped gold nanorod in the cylindrical pores of the PC membrane. The diameter of gold nanorods ranges from 100 to 200 nm. The new approach is simple, cost-effective, and saves time.

  9. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    Science.gov (United States)

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  10. ASSESSMENT OF THE CHEMICAL POLLUTION OF THE SOIL, GROUND AND BOTTOM SEDIMENTS AT KLEN GOLD AND SILVER DEPOSIT

    Directory of Open Access Journals (Sweden)

    Bryukhan' Fedor Fedorovich

    2012-10-01

    Full Text Available Currently, prospecting and design-related works are performed prior to the upcoming launch of mining operations at Klen gold and silver deposit in Chukot Autonomous District. The anthropogenic impact of the geological exploration in this intact territory has been produced since 1984. A considerable amount of borehole drilling, prospecting, road building, and temporary housing development has been performed. The engineering research, including ecological surveys, has been completed to assess the ecological impact of upcoming exploratory and mining operations at the deposit. Assessment of the geochemical condition of the landscape constituents, including the soil, ground and bottom sediments is of special importance in terms of their engineering protection and rational management of the natural environment. The above assessments were based on the field sampling made by «Sibgeoconsulting», CJSC (Krasnoyarsk and the laboratory research made by accredited laboratories of Federal State Unitary Geological Enterprise «Urangeolograzvedka» (Irkutsk and «Krasnoyarskgeologiya» (Krasnoyarsk. The analysis of the chemical pollution of soils, ground and bottom sediments is based on the examination of 30 samples. Peculiarities of the chemical composition of samples extracted at the deposit were identified. It has been discovered that pH values of the soil vary from 5.1 to 7.3. The concentration of metal in bottom sediments exceeds its concentration in the soil by far. Almost all irregular features of the sample water in the whole territory of the deposit are caused by the anthropogenic impact. In general, the metal content in soils, ground and bottom sediments within the territory of the deposit is slightly different from the regular clarke.

  11. Compositional studies on Transylvanian gold nuggets: Advantages and limitations of PIXE-PIGE analysis

    International Nuclear Information System (INIS)

    Bugoi, Roxana; Cojocaru, Viorel; Constantinescu, Bogdan; Calligaro, Thomas; Pichon, Laurent; Roehrs, Stefan; Salomon, Joseph

    2008-01-01

    Minute fragments from nine gold nuggets from Transylvania - two belonging to placer deposits and seven to primary deposits - were analyzed by PIXE and PIGE at the AGLAE tandem accelerator of the Centre de Recherche et de Restauration des Musees de France (C2RMF) with a 3 MeV proton beam extracted into air. This study was triggered by some archaeological provenance issues for which the elemental characterization of the Transylvanian gold source, exploited from the Antiquity, was required. All analyzed Transylvanian gold nuggets are characterized by a consistently high amount of Ag (18% on average). Au and Ag add up to roughly 99%, the other elements - Cu, Fe, Te, Pb - being detected only at a trace level. The obtained results are in good agreement with the previous analyses of Transylvanian gold

  12. Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen

    Science.gov (United States)

    Goscombe, Ben; Hand, Martin; Gray, David

    2003-07-01

    The Kaoko Belt portion of the Damara Orogen, Namibia, is the deeply eroded core of a sinistral transpressional orogen that has half-flower structure geometry centred on the major, 4-5-km-wide Purros Mylonite Zone. Formed between the Congo Craton in the east and Rio De La Plata Craton in Brazil, the Kaoko Belt represents the northern coastal arm of a triple junction within the Pan-African Orogenic System. Consisting of reworked Archaean, Palaeoproterozoic and Mesoproterozoic basement and a cover of Neoproterozoic Damara Sequence, the Kaoko Belt can be sub-divided structurally into three parallel NNW-trending zones. The Eastern Kaoko Zone comprises sub-greenschist facies shelf carbonates that have been uprightly folded. The Central Kaoko Zone contains a slope and deep basin facies succession that has experienced intense deformation, including pervasive reworking of basement into large-scale east-vergent nappes. The Western Kaoko Zone is predominantly deep basin facies of high metamorphic grade intruded by numerous granites. It has experienced intense wrench-style deformation with formation of upright isoclines and steep, crustal-scale shear zones. The Kaoko Belt evolved through three distinct phases of a protracted Pan-African Orogeny in the late Neoproterozoic to Cambrian. (1) An early Thermal Phase (M 1) was responsible for pervasive partial melting and granite emplacement in the Western Kaoko Zone from 656 Ma. (2) The Transpressional Phase produced the geometry of the belt by progressive sinistral shearing between 580 and 550 Ma. Deformation was continuously progressive through two stages and involved both temporal and spatial migration of deformation outwards towards the margin. The early strike-slip Wrench-Stage produced a high-strain L-S fabric by sub-horizontal transport. Deformation became progressively more transpressive, with high-angle convergence and flattening strains during the Convergent-Stage. In this stage, strike-slip movements evolved through

  13. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  14. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  15. Occurrence and significance of blueschist in the southern Lachlan Orogen

    International Nuclear Information System (INIS)

    Spaggiari, C.V.; Gray, D.R.; Foster, D.A.; Fanning, C.M.

    2002-01-01

    Serpentinite/talc-matrix melanges, bearing blocks of blueschist metavolcanics, occur within the Heathcote and Governor Fault Zones of the southern Lachlan Orogen. In the Heathcote Fault Zone, serpentinite-matrix melange consists of blocks or small pods of boninite, andesite, ultramafic rocks, chert and volcanogenic sandstone variably metamorphosed to prehnite-pumpellyite, greenschist, or greenschist to blueschist facies. In the Governor Fault Zone, blueschist metavolcanics occur as blocks within serpentinite/talc matrix that is interleaved with prehnite-pumpellyite to greenschist facies, intermediate pressure slate and phyllite. Ar/Ar dating of white mica from slaty mud-matrix (broken formation) indicates that the main fabric development occurred at 446 ± 2 Ma. U-Pb (SHRIMP) dating of titanite from blueschists in the Governor Fault Zone indicates that metamorphism occurred at approximately 450 Ma, close to the time of melange formation. Previously published, Ar/Ar dating of white mica from phyllite and biotite from metadiorite in the Heathcote Fault Zone suggest that blueschist metamorphism occurred at a similar time. These ages are supported by field relationships. Illite crystallinity and b 0 data from white mica, and the preservation of blueschist blocks indicate that these fault zones maintained low temperatures both during and after intermediate- to high-pressure metamorphism. Occurrences of blueschists in the Arthur Lineament of the Tyennan (Delamerian) Orogen in Tasmania, and in the New England Orogen, have different ages, and in conjunction with the occurrences described here, suggest that subduction-accretion processes contributed significantly to the development of the Tasmanides from Cambrian through to Carboniferous times. Copyright (2002) Geological Society of Australia

  16. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    Science.gov (United States)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  17. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2014-01-01

    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  18. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-01-01

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets

  19. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Grazielle O. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Joanni, Ednan, E-mail: ednan.joanni@cti.gov.br [Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Jesus, Dosil P. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil)

    2015-08-30

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  20. Electrical resistivity surveys for gold-bearing veins in the Yongjang mine, Korea

    International Nuclear Information System (INIS)

    Park, Jong-Oh; You, Young-June; Kim, Hee Joon

    2009-01-01

    The Yongjang mine is an Au–Ag deposit near Masan, located at the southernmost tip of the Korean Peninsula. The deposit lies within Cretaceous sedimentary rocks and contains many quartz veins which contain elements such as gold and silver, and sulfides. In the mine, the Yongjang, En and Ansan quartz veins have been found to be gold bearing. These veins have thicknesses of 2–40 cm and extents of 100–260 m. Electrical resistivity surveys were conducted to clarify the location of gold deposits at both prospect and detailed scales. Apparent resistivity data were collected with a dipole–dipole array on the ground surface and in boreholes, and with a pole–dipole array for surface-to-borehole surveys. The datasets derived from three-dimensional inversion of apparent resistivities are quite effective at delineating the geological structures related to gold-bearing quartz veins. These appear as a low-resistivity anomaly because almost all of the gold mineralization occurs in fractured areas associated with faults or shear zones. The surface-to-borehole survey had better resolution than the surface dipole–dipole survey when imaging gold-bearing quartz veins. The low-resistivity anomalies indicating the Yongjang and Ansan veins extend nearly vertically to sea level and dip steeply below sea level. They run NW–SE parallel to each other at a distance of about 70 m. The En vein is imaged near the Yonjang vein with a strike direction of N60°–70° W and a dip angle of about 45°

  1. The effect of flexural isostasy on the response time of orogenic systems

    Science.gov (United States)

    Braun, J.; Margirier, A.; Guerit, L.

    2017-12-01

    The concept of orogenic steady-state implies that mountain belts can reach a dynamic balance between uplift and erosion in order to maintain a quasi-constant shape. The final morphology of the mountain will be a function of the relative efficiency between uplift and erosion and is therefore likely to be modulated by climate. However, reaching such a steady-state cannot be instantaneous and there must exist a time lag between the onset of convergence and the full development of the mountain topography. Similarly, when an orogenic system is subject to a marked change in convergence rate or in climatic conditions, it takes a certain time for it to adapt to such a change and develop a new steady-state morphology. It is during these transient phases that the nature and efficiency of the interactions between tectonics and climate are most likely to be constrained by observations and understood. The duration of this transient stage remains, however, poorly constrained and understood. As shown by many authors (Whipple and Tucker, 1999, for example) the rate at which tectonic systems evolve to reach steady-state is likely controlled by climate and rock strength, which both determine the efficiency of erosional processes, and the rate of uplift. Here we show that isostasy also plays a very important role in determining the length of the transient phase and that, depending on the level of isostatic adjustment, which in turn depends on the flexural strength of the underlying lithosphere, isostasy can change the time it takes for an orogenic system to reach steady-state by an order of magnitude, i.,e. from a few millions to a few tens of millions of years. This has very important implications. It may explain why many young orogenic systems display an increase in uplift and erosion rate millions of years after the onset of collision and that, in these situations, such an increase does not require a steady change in tectonic and/or climate conditions/forcing. We also show that

  2. Deposition of thin layer (monoatomic layer) of barium on gold single crystal surfaces and studies of its oxidation employing X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ahmad, H.; Ahmad, R.; Khalid, M.; Alvi, R.A.

    2007-01-01

    Due to the high reactivity of barium with oxygen, some oxygen diffuse into the bulk to form bulk oxide and it is very difficult to differentiate the oxide over layer and the bulk oxide. To study the oxidation of barium surface layer, a thin layer (monolayer) of barium is developed over gold single crystal surface. Gold is selected as support because it is one of the least reactive metal in transition metal group and have very low probability of reaction with oxygen at room temperature (300K). Nitrous oxide (N/sub 2/O) was used as oxidant. Thin layer of barium was deposited on Au(100) surface. The barium coverage on gold surface was calculated that varied from 0.4 to 1.4 monolayer (ML). Photoelectron spectra for O(ls), N(ls), Ba (3d), and Au (4f) have been recorded on X-ray photoelectron spectrometer at different binding energy region specific for each element. The decomposition of nitrous oxide has been observed in all cases. It has found that nitrogen is evolved in the gaseous state and oxygen is adsorbed/chemisorbed on barium over layer. (author)

  3. Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens

    International Nuclear Information System (INIS)

    Haines, P.W.; Hand, M.; Sandiford, M.

    2001-01-01

    The Palaeozoic Alice Springs Orogeny was a major intraplate tectonic event in central and northern Australia. The sedimentological, structural and isotopic effects of the Alice Springs Orogeny have been well documented in the northern Amadeus Basin and adjacent exhumed Arunta lnlier, although the full regional extent of the event, as well as lateral variations in timing and intensity are less well known. Because of the lack of regional isotopic data, we take a sedimentological approach towards constraining these parameters, compiling the location and age constraints of inferred synorogenic sedimentation across a number of central and northern Australian basins. Such deposits are recorded from the Amadeus, Ngalia, Georgina, Wiso, Eastern Officer and, possibly, Warburton Basins. Deposits are commonly located adjacent to areas of significant basement uplift related to north-south shortening. In addition, similar aged orogenic deposits occur in association with strike-slip tectonism in the Ord and southern Bonaparte Basins of northwest Australia. From a combination of sedimentological and isotopic evidence it appears that localised convergent deformation started in the Late Ordovician in the eastern Arunta lnlier and adjacent Amadeus Basin. Synorogenic style sedimentation becomes synchronously widespread in the late Early Devonian and in most areas the record terminates abruptly close to the end of the Devonian. A notable exception is the Ngalia Basin in which such sedimentation continued until the mid-Carboniferous. In the Ord and Bonaparte Basins there is evidence of two discrete pulses of transcurrent activity in the Late Devonian and Carboniferous. The sedimentological story contrasts with the isotopic record from the southern Arunta lnlier, which has generally been interpreted in terms of continuous convergent orogenic activity spanning most of the Devonian and Carboniferous, with a suggestion that rates of deformation increased in the mid-Carboniferous. Either

  4. A discussion on the tectonic implications of Ediacaran late- to post-orogenic A-type granite in the northeastern Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Robinson, F. A.; Bonin, B.; Pease, V.; Anderson, J. L.

    2017-03-01

    The transition from late-orogenic to post-orogenic magmatism following major orogenic episodes such as the Neoproterozoic to Cambrian East African Orogen (EAO) is an important, yet not well-understood geological event marking the cessation of subduction-controlled magmatism between buoyant lithospheric fragments. Forming the northern part of the EAO in the Arabian-Nubian Shield are three granitic suites that successively intruded the same northeastern area and post-date the 640 Ma major orogenic episode: (1) 620-600 Ma alkali feldspar (hypersolvous) granite with alkaline/ferroan/A-type geochemistry, (2) 599 Ma granite cumulates (some garnet-bearing) with calc-alkaline/magnesian affinities, and (3) 584-566 Ma alkali feldspar (hypersolvous) granite (aegirine-bearing) with a distinctive peralkaline/ferroan/A-type signature. Combining whole-rock geochemistry from the southern and northern Arabian Shield, suites 1 and 2 are suggested to be products of late-orogenic slab tear/rollback inducing asthenospheric mantle injection and lower crustal melting/fractionation toward A-type/ferroan geochemistry. Suite 3, however, is suggested to be produced by post-orogenic lithospheric delamination, which replaced the older mantle with new asthenospheric (rare earth element-enriched) mantle that ultimately becomes the thermal boundary layer of the new lithosphere. Major shear zones, such as the 620-540 Ma Najd Fault System (NFS), are some of the last tectonic events recorded across the Arabian Shield. Data presented here suggest that the NFS is directly related to the late-orogenic (620-600 Ma) slab tear/rollback in the northeastern Shield as it met with opposing subduction polarity in the southern Shield. Furthermore, this study infers that east and west Gondwana amalgamation interacted with opposing convergence reflected by the NFS.

  5. A new route to gold nanoflowers

    Science.gov (United States)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  6. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  7. Extreme mass flux from the glaciated, collisional St. Elias Orogen: Preliminary results from IODP Expedition 341 (Invited)

    Science.gov (United States)

    Gulick, S. P.; Jaeger, J. M.

    2013-12-01

    recovery coupled with real-time stratigraphic correlation. The 800-m deep U1417 records Miocene to Recent deposition in the distal Surveyor Fan including the onset of glaciation at the Plio-Pleistocene boundary when accumulation rates doubled to ~100 m/Myr. Site U1418 contains an expanded middle to late Pleistocene sedimentary record that also includes significant increases in sediment accumulation from ~400 m/Myr in the middle Pleistocene to >1200 m/Myr in the late Pleistocene. Slope Site U1421 and shelf Site U1420, proximal to or overridden by the Bering Glacier during glaciations, provided cores penetrating thick sequences of poorly sorted, glacigenic sediments ranging from mud to boulders. All five sites include the middle Pleistocene to Holocene and demonstrate exceptional accumulation rates. The sediments are dominantly glacigenic while containing evidence for direct interaction of tectonic and glacial erosion and sedimentation. Glacial ice, glacigenic sediment routing and glacial extents are driven by tectonic morphology at the orogen and individual thrust-sheet scales. Sediment accumulation, tempered by accommodation, perturbs fault patterns and drives positive feedback within the orogen to produce an extreme example of mass flux from orogen to deep-sea.

  8. Facile method for the synthesis of gold nanoparticles using an ion coater

    Science.gov (United States)

    Lee, Seung Han; Jung, Hyun Kyu; Kim, Tae Cheol; Kim, Chang Hee; Shin, Chang Hwan; Yoon, Tae-Sik; Hong, A.-Ra; Jang, Ho Seong; Kim, Dong Hun

    2018-03-01

    Herein we report a metal nanoparticle synthesis method based on a physical vapor deposition process instead of the conventional wet process of chemical reactions in liquids. A narrow size distribution of synthesized gold nanoparticles was obtained using an ion coater on glycerin at low vapor pressure. The nanoparticle size could be modulated by controlling the sputtering conditions especially the discharge current. Due to the formation of gold nanoparticles, a surface plasmon resonance peak appeared at ∼530 nm in the absorption spectrum. The surface plasmon resonance peak exhibited red-shift with increasing size of the gold nanoparticles. Our results provide a simple, environmental friendly method for the synthesis of metal nanoparticles by combine low-cost deposition apparatus and a liquid medium, which is free from toxic reagents.

  9. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    Science.gov (United States)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  10. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  11. Improved Adhesion of Gold Thin Films Evaporated on Polymer Resin: Applications for Sensing Surfaces and MEMS

    Directory of Open Access Journals (Sweden)

    Behrang Moazzez

    2013-05-01

    Full Text Available We present and analyze a method to improve the morphology and mechanical properties of gold thin films for use in optical sensors or other settings where good adhesion of gold to a substrate is of importance and where controlled topography/roughness is key. To improve the adhesion of thermally evaporated gold thin films, we introduce a gold deposition step on SU-8 photoresist prior to UV exposure but after the pre-bake step of SU-8 processing. Shrinkage and distribution of residual stresses, which occur during cross-linking of the SU-8 polymer layer in the post-exposure baking step, are responsible for the higher adhesion of the top gold film to the post-deposition cured SU-8 sublayer. The SU-8 underlayer can also be used to tune the resulting gold film morphology. Our promoter-free protocol is easily integrated with existing sensor microfabrication processes.

  12. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  13. In situ X-ray study of the structural evolution of gold nano-domains by spray deposition on thin conductive P3HT films.

    Science.gov (United States)

    Al-Hussein, M; Schindler, M; Ruderer, M A; Perlich, J; Schwartzkopf, M; Herzog, G; Heidmann, B; Buffet, A; Roth, S V; Müller-Buschbaum, P

    2013-02-26

    Gold (Au) nanoparticles are deposited from aqueous solution onto one of the most used conductive polymers, namely poly(3-hexylthiophene) (P3HT), using airbrush deposition. We report on the structure formation and packing of the Au nanoparticles after a 5 s spray cycle. In situ grazing incidence small-angle X-ray scattering (GISAXS) measurements with 20 ms time resolution allow a real-time observation of the emergence and evolution of the microstructure during a spray cycle and subsequent solvent evaporation. The results reveal multistage nanoscale ordering of the Au nanoparticles during the spray cycle. Further ex situ atomic force microscopy measurements of the sprayed films showed the formation of Au monolayer islands on top of the polymer film. Our study suggests that the solvent-substrate interaction as well as solvent evaporation kinetics are important factors that need to be taken into consideration in order to grow a compact uniform monolayer film for the fabrication of ultrathin films using airbrush deposition.

  14. Compositional Variation of Tourmaline from the Paleoproterozoic Bhukia Gold Prospect of Aravalli Supergroup, Western India: Implications for the Provenance and Gold Metallogeny

    Science.gov (United States)

    Mukherjee, R.; Venkatesh, A. S.; Fareeduddin, F.

    2016-12-01

    Bhukia is a unique gold prospect in terms of its host lithologies such as albitite and carbonates with respect to greenstone hosted Archean gold deposits from India. Tourmaline occurs along with apatite, magnetite, graphite, chalcopyrite and gold-sulfide association in Bhukia gold prospect preserve geochemical record of changing physico-chemical conditions during its growth. Tourmalinization is one of the distinct hydrothermal alterations present in the study area. Chemical composition of two varieties of tourmalines presents as significant amounts within albitite and carbonate rocks from Bhukia gold prospect. EPMA analysis of two varieties of tourmalines viz. 1) rounded to sub-rounded, euhedral, green colored tourmalines and 2) elongated, zoned, brown colored tourmalines unlocks their chemical compositions as well as variations from core to rim. In some albitite litho-units, tourmaline occurs as major constituents (>15%), present as layers, termed as tourmalinites. Al-Fe-Mg and Na/ (Na+Ca) vs Fe/ (Fe+Mg) suggests that tourmalines from the Bhukia gold prospect are Mg-rich dravite to Fe-rich schrol in composition. Tourmalines present within the albitite rocks show variations in iron and sodium content from core to rim whereas similarity exist from core to rim in case of carbonate rocks. Presence of albite confirms the role of Na-rich fluids during the formation of tourmalines. Tourmalines present in Bhukia gold prospect is mainly influenced by boron influx and the source may be boron bearing hydrothermal fluid or boron bearing minerals. Dewatering of original un-metamorphosed rock during progressive metamorphism may remove boron from the metasedimentary rocks. Due to the mobile nature of boron, it dispersed and mixed with hydrothermal fluids and alumina that is required for the formation of the tourmaline might have been leached from metasedimentary rocks present in Bhukia gold prospect. Presence of hydrothermal alterations such as tourmalinization and albitization

  15. Rubidium-strontium isotoppe study of Muruntan deposit. 1.Ore vien dating by isochrone technique

    International Nuclear Information System (INIS)

    Kostitsyn, Yu.A.

    1993-01-01

    Hydrothermal viens of Muruntau gold-ore deposit (Central Kyzylkum) have been studies by the isochrone technique. The ages obtained for the quartz-tourmaline (257+13 Ma), quartz-arsenopyrite (230.3+-3.5 Ma) and quartz-adularia (219.4+-4.2 Ma) hydrothermal viens reflect the different stages of the deposit evolution: gold-ore and gold-silver one. Strontium isotope analysis reveals that the matter of hydrothermal viens is originated from the surrounding black schists

  16. Geometallurgical Study of a Gravity Recoverable Gold Orebody

    Directory of Open Access Journals (Sweden)

    Simon C. Dominy

    2018-04-01

    Full Text Available Sheeted vein gold deposits are often characterised by multiple sub-parallel veins and free-milling coarse gold. Inherent mineralisation heterogeneity results in grade and process parameter variability, which increases project risk if not quantified. Measured grade variability is often exacerbated by poorly designed sampling and testwork protocols. Protocols that are optimised within the framework of the Theory of Sampling (TOS to suit the ore type, together with quality assurance/quality control systems, will reduce variability and provide fit-for-purpose results. Geometallurgy can be broadly split into two key approaches: strategic and tactical (or operational. The strategic approach focuses on the whole orebody and long-term life-of-mine view, whereas tactical geometallurgy relates to a more short- to medium-term view during mining. The geometallurgical approach requires spatially distributed samples within a deposit to support variability modelling. Diverse attributes from core logging, mineralogical/textural determination and small-scale tests are used to measure variability. This contribution presents a case study that emphasises an early-stage strategic geometallurgical programme applied to a gravity recoverable gold (GRG dominated deposit. It exemplifies how data can be acquired from a well-designed and planned programme to support resource estimation, a pre-feasibility study, trial mining and fast-track to production. A tactical geometallurgical programme is embedded into the mine operation.

  17. Changes in dip and frictional properties of the basal detachment controlling orogenic wedge propagation and frontal collapse: The external central Betics case

    Science.gov (United States)

    Jimenez-Bonilla, A.; Torvela, T.; Balanyá, J. C.; Expósito, I.; Díaz-Azpiroz, M.

    2016-12-01

    Thin-skinned fold-and-thrust belts (FTBs) have been extensively studied through both field examples and modeling. The overall dynamics of FTBs are, therefore, well understood. One less understood aspect is the combined influence of across-strike changes in the detachment properties and the basement topography on the behavior of an orogenic wedge. In this paper, we use field data together with reflection seismic interpretation from the external zones of the central Betics FTB, southern Spain, to identify a significant increase in the wedge basal dip (a basement "threshold") coinciding with the pinch-out of a weak substrate. This induced both changes to the wedge geometry and to the basal friction, which in turn influenced the wedge dynamics. The changing dynamics led to a transient "stagnation" of the FTB propagation, topographic buildup, and subsequent collapse of the FTB front. This in turn fed an important Langhian depocenter made up of mass transport deposits. Coevally with the FTB propagation, extension took place both parallel and perpendicular to the orogenic trend. This case study illustrates how across-strike changes in wedge basal properties can control the detailed behavior of a developing FTB front, but questions remain regarding the time-space interaction and relative importance of the basal parameters.

  18. A study of VMS ore deposits by the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Large, R.R.; Bottril, R.S.; Sie, S.H.; Ryan, C.G.

    1991-01-01

    As part of studies into the mineralogical distribution of gold in volcanogenic massive sulfide (VMS) ore deposits PIXE analysis by the proton microprobe has been used to determine the gold content of pyrite and arsenopyrite from the Rosebery, Mt. Chalmers and Mt. Lyell deposits. In addition, the concentrations of Co, Ni, Cu, Zn, As, Sr, Y, Zr, Mo, Ag, Sb, Te, Au, Tl, Pb and Bi were also determined. 4 refs., 1 tab

  19. Fault Dating in the US Rockies and Large Regional Extent of Deformation Pulses Along the Sevier Orogen of North America.

    Science.gov (United States)

    van der Pluijm, B.; Lynch, E. A.; Pana, D.; Yonkee, A.

    2017-12-01

    Recent Ar dating of clay-rich fault rock in the Canadian Rockies identified multiple orogenic pulses: Late Jurassic (163-146 Ma), Mid-Cretaceous (103-99 Ma), Late Cretaceous (76-72 Ma) and Eocene (54-52 Ma; Pana and van der Pluijm, GSAB 2015). New dating in the US Rockies combined with ages in the most frontal section along an Idaho-Wyoming transect show a remarkably similar age pattern: Meade Thrust, 108-102 Ma; (S)Absaroka Thrust, 73 Ma; Darby-Bear Thrust, 56-50 Ma. These radiometric fault ages in the US Rockies match field and tectono-stratigraphic predictions, analogues to those in the Canadian Rockies. Thus, a remarkably long (>1500km) lateral tract along the North American Sevier orogen is characterized by at least three major orogenic pulses that are structurally contiguous. These orogenic pulses are progressively younger in the direction of easterly thrust fault motion (toward cratonic interior) and are separated by long periods of relative tectonic quiescence. We interpret the extensive regional continuity of deformation pulses and tectonic quiescence along the Sevier Orogen as the result of three plate reorganization events in western North America since the Late Jurassic.

  20. THE ROLE OF DYNAMOMETAMORPHISM IN THE FORMATION OF THE MUKODEK GOLD FIELD (NORTH PRIBAIKALIE

    Directory of Open Access Journals (Sweden)

    V. A. Vanin

    2017-01-01

    Full Text Available The Mukodek gold field is discussed as an example proving that dynamometamorphism is a major factor in the formation of gold deposits in the Abchad fault zone. This deposit belongs to the gold‐silver‐ore zones of mylonitization and schistosity. The ore source is related to the original host rocks with an increased geochemical background concentration of Au. Due to dynamometamorphism processes, gold particles are abundant and mostly enlarged. From the primary rocks, the dynamometamorphites inherit a positive correlation between the number of particles and the concentrations of gold. The dynamometamorphic complex of the ore field developed in two stages, as a minimum. At the early stage (321.0±1.9 Ma, the host rocks were mechanochemically deformed and transformed into the gold‐ bearing mineralized dynamometamorphites containing sericite, chlorite, ankerite, albite, and quartz. In the second stage (280±15 Ma, the albite‐dolomite‐quartz ore veins were formed. Such veins have industrial gold contents.

  1. Geochronological framework of the early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications

    Science.gov (United States)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu

    2017-08-01

    The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu

  2. A radiochemical study of gold electrodeposition kinetics in alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Poshkus, D.; Agafonovas, G.; Zhebrauskas, A.

    1995-01-01

    Kinetics of gold electrodeposition from alkaline cyanide solutions was investigated by the use of labelled gold 195 atoms. The absorption of cyanide containing species from alkaline cyanide and dicyanoaurate solutions on a gold electrode by the use of labelled carbon atoms was investigated. Polarization curves of anodic dissolution and cathodic deposition of gold in alkaline cyanide solutions were obtained. The values of standard potential, exchange current density, transfer coefficient and standard polarization rate were determined from polarization curves. The errors in current density caused by the nuclear disintegration statistics were evaluated. 28 refs., 1 tab., 4 figs

  3. Evidences for an orogenic-induced global cooling at the Frasnian-Famennian boundary (ca 376 Ma BP)

    Science.gov (United States)

    Averbuch, O.; Tribovillard, N.; Devleeschouwer, X.; Riquier, L.

    2003-04-01

    Late Devonian time (Famennian, 376--362 Ma BP) is a period of both intense orogenic activity and drastic climatic variations with the onset of a major glaciation event upon parts of the Gondwanian Southern America and Africa situated in high southern latitudes. This global cooling event is coeval with a significant fall in the atmospheric CO_2 content as suggested both by stomatal data and modelling. In the stratigraphic record, the Frasnian-Famennian transition is characterized by a great loss of biotic diversity and pronounced environmental changes with the demise of reefal carbonate platforms and the deposition of extensive organic-rich levels (Kellwasser levels) in Late Frasnian times followed by a rapid global scale sea-level fall and an increase in detrital input in the basal Famennian. We propose to relate the Famennian global cooling and the associated environnmental changes to the development of major mountain cordilleras extending on one hand from the Urals to South America (including the Central Asian, the European, the Northern African, the Appalachian belts) and on the other hand from the western American Antler to the Arctic Ellesmerian belt. Extensive high pressure metamorphic rocks dated between ca 380 and 360 Ma BP, pervasive deformations distributed along the belt (Eo-Variscan phase) and synorogenic molassic rocks trapped within the flexural foreland basins indicate a major collisional event in Late Frasnian-Famennian times inducing an important crustal thickening and associated high continental relief. The major drop in the atmospheric CO2 content would be driven by the conjunction of two orogenic-induced mechanisms : (1) the intensification of silicate weathering on the continental areas as attested by a major rise in the 87Sr/86Sr composition of sea water at the Frasnian-Famennian boundary ; the coeval development of vascular plants on emerged lands is also probably an important factor in enhanced chemical weathering of continental soils (2

  4. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Cruz, V.; Gonzalez, I.; Oropeza, M.T

    2004-10-01

    The selective electro-recovery of gold and silver values from cyanide leaching solutions containing copper was accomplished in a three-dimensional (3D) electrochemical reactor. This case let to contrast three different points of view when dealing with a composed metallic solution: First, the thermodynamic predictions; second, the microelectrolysis approach and finally, the macroelectrolysis experiments. Standard electrode potentials for the study solution would indicate a tendency for gold to deposit first. However, microelectrolysis studies of the three-metallic solution indicated that gold and silver are co-deposited onto a Vitreous carbon (VC) electrode without copper interference in a narrow potential range. Mass balances during the macroelectrolysis experiments (batch model assuming mass transfer control) indicated a preferential deposition of silver during the first ten minutes, even if gold deposition also occurred. On the other hand, values of Stanton (St) for different linear flow velocity corroborated that metals concentration gradients may establish a limit to make profitable the fluid velocity increase in an electrochemical flow cell. Electrolysis experiments were carried out under potentiostatic (at -1400 mV versus SCE) and galvanostatic (at -3.9 Am{sup -2}) conditions in the FM-01 LC flow cell.

  5. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor

    International Nuclear Information System (INIS)

    Reyes-Cruz, V.; Gonzalez, I.; Oropeza, M.T.

    2004-01-01

    The selective electro-recovery of gold and silver values from cyanide leaching solutions containing copper was accomplished in a three-dimensional (3D) electrochemical reactor. This case let to contrast three different points of view when dealing with a composed metallic solution: First, the thermodynamic predictions; second, the microelectrolysis approach and finally, the macroelectrolysis experiments. Standard electrode potentials for the study solution would indicate a tendency for gold to deposit first. However, microelectrolysis studies of the three-metallic solution indicated that gold and silver are co-deposited onto a Vitreous carbon (VC) electrode without copper interference in a narrow potential range. Mass balances during the macroelectrolysis experiments (batch model assuming mass transfer control) indicated a preferential deposition of silver during the first ten minutes, even if gold deposition also occurred. On the other hand, values of Stanton (St) for different linear flow velocity corroborated that metals concentration gradients may establish a limit to make profitable the fluid velocity increase in an electrochemical flow cell. Electrolysis experiments were carried out under potentiostatic (at -1400 mV versus SCE) and galvanostatic (at -3.9 Am -2 ) conditions in the FM-01 LC flow cell

  6. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping

    Science.gov (United States)

    Dubosq, R.; Lawley, C. J. M.; Rogowitz, A.; Schneider, D. A.; Jackson, S.

    2018-06-01

    The metamorphic transition of pyrite to pyrrhotite results in the liberation of lattice-bound and nano-particulate metals initially hosted within early sulphide minerals. This process forms the basis for the metamorphic-driven Au-upgrading model applied to many orogenic Au deposits, however the role of syn-metamorphic pyrite deformation in controlling the retention and release of Au and related pathfinder elements is poorly understood. The lower amphibolite facies metamorphic mineral assemblage (Act-Bt-Pl-Ep-Alm ± Cal ± Qz ± Ilm; 550 °C) of Canada's giant Detour Lake deposit falls within the range of pressure-temperature conditions (450 °C) for crystal plastic deformation of pyrite. We have applied a complementary approach of electron backscatter diffraction (EBSD) mapping and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 2D element mapping on pyrite from the Detour Lake deposit. Chemical element maps document an early generation of Au-rich sieve textured pyrite domains and a later stage of syn-metamorphic oscillatory-zoned Au-poor pyrite. Both pyrite types are cut by Au-rich fractures as a consequence of remobilization of Au with trace element enrichment of first-row transition elements, post-transition metals, chalcogens and metalloids during a late brittle deformation stage. However, similar enrichment in trace elements and Au can be observed along low-angle grain boundaries within otherwise Au-poor pyrite, indicating that heterogeneous microstructural misorientation patterns and higher strain domains are also relatively Au-rich. We therefore propose that the close spatial relationship between pyrite and Au at the microscale, features typical of orogenic Au deposits, reflects the entrapment of Au within deformation-induced microstructures in pyrite rather than the release of Au during the metamorphic transition from pyrite to pyrrhotite. Moreover, mass balance calculations at the deposit scale suggest that only a small percentage

  7. Evidence for de-sulfidation to form native electrum in the Fire Creek epithermal gold-silver deposit, north-central Nevada

    Science.gov (United States)

    Perez, J.; Day, J. M.; Cook, G. W.

    2012-12-01

    The Fire Creek property is a newly developed and previously unstudied epithermal Au-Ag deposit located in the Northern Shoshone range of north central Nevada. The mineralization occurs within and above en echelon N-NW trending basaltic dykes that are hosted within a co-genetic and bimodal suite of mid-Miocene basalts and andesites formed in association with the Yellowstone hotspot-track. Previous studies of Au-Ag mineralization in the Great Basin have focused primarily on extensively mined and/or low-grade deposits. Therefore, the ability for unrestricted sampling of a major Au-Ag deposit early in its exploration and development represents an opportunity for refined understanding of epithermal ore genesis processes. New petrology reveals at least two distinct pulses of mineralization that in relative order of timing are: 1) S-rich veins which are associated with initial host-rock alteration; 2) quartz- and/or calcite-rich veins which vary from fine-grained to lath-like quartz crystals with large calcite crystals in vein centers. Native electrum occurs only within the second phase of mineralization and typically occurs within quartz and adjacent to cross-cut first-phase S-rich veins. In places the electrum appears to replace or form overgrowths around existing sulfide phases. High levels of gold and silver are found in both the first (0.8 g Au/tonne) and second-phase pulses (37 g Au/tonne). Fire Creek shares many similarities with its northern neighbor, the Mule Canyon Au-Ag deposit, with high Fe sulfide contents for some of the ores, altered wall-rocks and the presence of narrow and discontinuous gold-bearing siliceous veins. Like Fire Creek, Mule Canyon possesses two distinct mineralizing phases, a sulfide rich and a late stage calcite/silica assemblage. The first pulse appears to be identical in both locations with a variation of disseminated to euhedral iron-sulfides and associated intense alteration of host rock. However, Fire Creek differs from Mule Canyon in

  8. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  9. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance

    Science.gov (United States)

    Bettencourt, Jorge Silva; Juliani, Caetano; Xavier, Roberto P.; Monteiro, Lena V. S.; Bastos Neto, Artur C.; Klein, Evandro L.; Assis, Rafael R.; Leite, Washington Barbosa, Jr.; Moreto, Carolina P. N.; Fernandes, Carlos Marcello Dias; Pereira, Vitor Paulo

    2016-07-01

    The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04-2.97 Ga), metavolcanic-sedimentary units (2.76-2.74 Ga), granitoids (3.07-2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74-2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb-Y-Sn-Be-U. The latter, as well as Sn-W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0-1.87 Ga), two calc-alkaline volcanic sequences (2.0-1.95 Ga to 1.89-1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu-Au and Cu-Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98-1.75 Ga), generated in ocean-ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Col

  10. Regional distribution regularity of sandstone uranium deposits in Asian continent and prospecting strategy for sandstone uranium deposits in China

    International Nuclear Information System (INIS)

    Chen Zuyi

    2002-01-01

    Since the 1980's, after the discovery of numerous sandstone uranium deposits in Middle Asia (Kazakhstan, Uzbekistan) many large sandstone uranium deposits have been found in both Russia and Mongolia. So that Asia has become the most concentrated region of sandstone uranium deposits. The known sandstone uranium deposits occur mostly in a arcual tectonic belt constrained from the north by the Siberian continental block, and the Tarim-North China continental block from the south. This belt is named by Russian geologists as the Central Asian Mobile Belt, and some Chinese geologists call it the 'Mongolian Arc'. A lot of large and super large metallic, non-metallic, gold, polymetallic, porphyry copper and gold, massive sulphide and uranium deposits (of sandstone and volcanic types) with different origin and various types concentrated occur in this belt. The abundant and colourful mineral resources in the region are closely associated with the specific geologic-tectonic evolution of the above belt. It is necessary to strengthen the detailed geologic research and uranium prospecting in the region

  11. Geological characters and petrological characters of metamorphosed medium-acidic intrusive complexes in Ludong Orogenic Belt,China

    Institute of Scientific and Technical Information of China (English)

    凌贤长; 胡庆立; 王丽霞

    2002-01-01

    Ludong orogenic belt in China is an importantal continent collision orogenic belt in eastern Asia, between Sino-Korean landmass and Yangtze landmass. The host rock of the orogenic belt is metamorphosed medium-acidic intrusive complexes, which can be divided into four types, that's, quartz dioritz, granite dioritz, monzonitic granite and undertint monzonitic granite, principal minerals are plagioclases, potassium feldspars and quartzs, minor minerals are hornblendes, biotites, clinopyxenes and garnets, accessory mineral types and assemblages are very similar, specially, various rocks are mainly fine-grained textures. They have the history of regional amphibolite facies metamorphism and deep-middle-shallow structural layer deformation, and are changed into various gneiss and tectonic system. There are many xenolithes of middle Proterozoic eclogite-host rock extrahigh-high pressure metamorphic complexes, a small xenolithes of early Proterozoic layered metamorphite system and granulites, and ultrabasic-basic rocks of various epoches in the metamorphosed medium-acidic intrusive complexes.

  12. Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies

    Science.gov (United States)

    Kueter, Nico; Soesilo, Joko; Fedortchouk, Yana; Nestola, Fabrizio; Belluco, Lorenzo; Troch, Juliana; Wälle, Markus; Guillong, Marcel; Von Quadt, Albrecht; Driesner, Thomas

    2016-11-01

    a kimberlitic origin unfavorable with respect to the regional geological history. Rather, trace elemental analyses (U, Th and Eu) suggest an eclogitic source for these zircons. The age distribution of detrital zircons allows in general a better understanding of collisional events that formed the Meratus orogen and identifies various North Australian Orogens as potential Pre-Mesozoic sediment sources. Our data support a model whereby the majority of Kalimantan diamonds were emplaced within the North Australian Craton by volcanic processes. Partly re-deposited into paleo-collectors or residing in their primary host, these diamond-deposits spread passively throughout Southeast Asia by terrane migration during the Gondwana breakup. Terrane amalgamation events largely metamorphosed these diamond-bearing lithologies while destroying the indicative mineral content. Orogenic uplift finally liberated their diamond-content into new, autochthonous placer deposits.

  13. The Voltammetric Analysis of Selenium Electrodeposition from H2SeO3 Solution on Gold Electrode

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-04-01

    Full Text Available The different voltammetry techniques were applied to understand the process of selenium deposition from sulfate solution on gold polycrystalline electrode. By applying the cycling voltammetry with different scan limits as well as the chronoamper-ometry combined with the cathodic and anodic linear stripping voltammetry, the different stages of the deposition of selenium were revealed. It was found that the process of reduction of selenous acid on gold surface exhibits a multistage character. The cyclic voltammetry results showed four cathodic peaks which are related to the surface limited phenomena and which coincide with the bulk deposition process. The fifth cathodic peak is related to the reduction of bulk deposited Se0 to Se-2 ions. Furthermore, the connection of anodic peaks with cathodic ones confirmed the surface limited process of selenium deposition, bulk deposition and reduction to Se-2. Additionally, the cathodic linear stripping voltammetry confirms the process of H2SeO3 adsorption on gold surface. The experiments confirmed that classical voltammetry technique proved to be a very powerful tool for analyzing the electrochemical processes related with interfacial phenomena and electrodeposition.

  14. Surface-enhanced Raman scattering from graphene covered gold nanocap arrays

    Science.gov (United States)

    Long, Kailin; Luo, Xiaoguang; Nan, Haiyan; Du, Deyang; Zhao, Weiwei; Ni, Zhenhua; Qiu, Teng

    2013-11-01

    This work reports an efficient method to fabricate large-area flexible substrates for surface enhanced Raman scattering (SERS) application. Our technique is based on a single-step direct imprint process via porous anodic alumina stamps. Periodic hexagonal arrangements of porous anodic alumina stamps are transferred to the polyethylene terephthalate substrates by mechanically printing process. Printed nanocaps will turn into "hot spots" for electromagnetic enhancement with a deposited gold film by high vacuum evaporation. The gaps between the nanocaps are controllable with a tight correspondence to the thickness of the deposited gold, which dramatically influence the enhancement factor. After covered with a single-layer graphene sheet, the gold nanocap substrate can be further optimized with an extra enhancement of Raman signals, and it is available for the trace detection of probe molecules. This convenient, simple, and low-cost method of making flexible SERS-active substrates potentially opens a way towards biochemical analysis and disease detection.

  15. Fabrication of atomic-scale gold junctions by electrochemical plating using a common medical liquid

    Science.gov (United States)

    Umeno, A.; Hirakawa, K.

    2005-04-01

    Fabrication of nanometer-separated gold junctions has been performed using "iodine tincture," a medical liquid known as a disinfectant, as an etching/deposition electrolyte. In the gold-dissolved iodine tincture, gold electrodes were grown or eroded slowly enough to form quantum point contacts in an atomic scale. The resistance evolution during the electrochemical deposition showed plateaus at integer multiples of the resistance quantum, (2e2/h)-1, at room temperature (e: the elementary charge, h: the Planck constant). Iodine tincture is a commercially available common material, which makes the fabrication process to be simple and cost effective. Moreover, in contrast to the conventional electrochemical approaches, this method is free from highly toxic cyanide compounds or extraordinarily strong acids.

  16. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... of the device. At the same time, metal films of different thicknesses are needed for different applications and, since these films are polycrystalline, their internal properties and surface roughness can greatly vary from one thickness to another. In this work, we study, using atomic force microscopy...

  17. Study on metallogenetic prospect of interlayer oxidation zone sandstone type uranium deposit in Shanganning basin

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    As Compared with orogenic zone basin, which the interlayer oxidation zone sandstone type uranium deposits are found, the Shanganning basin a continental platform type basin is distinct either in the geodynamic background and the post-basin hydrogeological evolution or in the appearance of the metallogenetic dynamics-orogenesis. The prediction criteria summarized for interlayer oxidation zone type U-deposits in Middle Asia therefore can not be completely applied in such a basin. Based on analysis of the typical regional geological setting, the hydrogeology of the Meso-Cenozoic cover is studied in detail. Three hydrogeological cycles have been divided, and prospects of uranium deposits have been clarified and the most promising target have been proposed

  18. Ion induced segregation in gold nanostructured thin films on silicon

    International Nuclear Information System (INIS)

    Ghatak, J.; Satyam, P.V.

    2008-01-01

    We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au 2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 x 10 13 , 1 x 10 14 and 5 x 10 14 ions cm -2 at a high beam flux of 6.3 x 10 12 ions cm -2 s -1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 x 10 13 ions cm -2 ) transport has been found to be associated with the formation of gold silicide (Au 5 Si 2 ). At a high fluence value of 5 x 10 14 ions cm -2 , disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.

  19. Magnetic fabric transposition in folded granite sills in Variscan orogenic wedge

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Calassou, T.; Schulmann, K.; Hrouda, F.; Štípská, P.; Hasalová, Pavlína; Míková, J.; Magna, T.; Mixa, P.

    2017-01-01

    Roč. 94, January (2017), s. 166-183 ISSN 0191-8141 R&D Projects: GA ČR GA14-15632S Institutional support: RVO:67985530 Keywords : orogenic sill * AMS fabric * folding Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.408, year: 2016

  20. The Case of Carpathian (Transylvanian) Gold and its Use for Archaeological Items

    Science.gov (United States)

    Stan, D.; Constantinescu, B.; Vasilescu, A.; Radtke, M.; Reinholz, U.; Pop, D.; Ionescu, C.

    2009-04-01

    Romania was one of Europe's main gold-producing areas since the antiquity, especially through the ore deposits in the "Golden Quadrilateral" of the Western Carpathians. The Babeş-Bolyai University in Cluj-Napoca hosts a gold collection consisting of about 500 samples, most of them from Roşia Montană. The geochemical investigation of Romanian gold by using SR-XRF and micro-PIXE is currently in progress; some preliminary results point to interesting features. The goal of the study is to verify if Transylvanian gold was used to manufacture Romanian archaeological objects. This is realized by using information related to trace elements: Sb, Te, Pb - recognized fingerprints for Carpathian Mountains mines and Sn characteristic for the panned river-bed (alluvional) gold. To solve these issues, samples (grains, nuggets, fine gold "sand") from various Transylvanian mines and rivers and some very small (few milligrams) fragments of archaeological objects are measured. Another outcome of this SR-XRF experiment is to obtain the elemental characterization (Au, Ag and Cu) of representative gold mines, subject of interest for the assignement of any other archaeological artifacts to one of the Central European gold sources. During the experiment, point spectra for 22 natural gold samples and 18 "micronic" samples from archaeological objects were acquired at 34 keV excitation SR energy, using a spatially resolved SR-XRF set-up mounted for analyses at the hard X-ray beam line - BAMline at BESSY, Berlin. A summary for the characterization of Transylvanian native gold is the following: high (8 - 30%) Ag amounts and low (0.2 - 1%) Cu amounts; placer deposits contain as fingerprint Sn (150-300 ppm) - most probably from river bed cassiterite; primary deposits present as fingerprints Te (200-2000 ppm), Sb (150-300 ppm) - however, the samples are very inhomogeneous. The micro-PIXE experiment was performed at the AN 2000 Van de Graaff accelerator of Laboratori Nazionali di Legnaro

  1. Surface Engineering of Triboelectric Nanogenerator with an Electrodeposited Gold Nanoflower Structure.

    Science.gov (United States)

    Park, Sang-Jae; Seol, Myeong-Lok; Jeon, Seung-Bae; Kim, Daewon; Lee, Dongil; Choi, Yang-Kyu

    2015-09-14

    A triboelectric nanogenerator composed of gold nanoflowers is demonstrated. The proposed triboelectric nanogenerator creates electricity by contact-separation-based electrification between an anodic metal and a cathodic polymer. For the improvement of output power via the enlargement of the effective surface area in the anodic metal, gold nanoflowers that produce a hierarchical morphology at a micro-to-nano scale by electrodeposition are utilized. The hierarchical morphology is controlled by the applied voltage and deposition time. Even though the triboelectric coefficient of gold is inferior to those of other metals, gold is very attractive to make a flower-like structure by electrodeposition. Moreover, gold is stable against oxidation by oxygen in air. From a reliability and practicality point of view, the aforementioned stability against oxidation is preferred.

  2. On the formation of protected gold nanoparticles from AuCl4- by the reduction using aromatic amines

    International Nuclear Information System (INIS)

    Subramaniam, Chandramouli; Tom, Renjis T.; Pradeep, T.

    2005-01-01

    Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen. Taking 2-methyl aniline as an example, we show that metal reduction is followed by polymerization of the amine, while part of it covers the nanoparticle surface another fraction deposits in the solution. It is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles. The gold nanoparticles thus formed have a mean diameter of 20 nm. The polymerized amine encapsulates the gold nanoparticle forming a robust shell of about 5 nm thickness, making the gold core inert towards mineralizing agents such as chloroform, bromoform, sodium cyanide, benzylchloride, etc. which react with the naked gold nanoparticles. The deposited polymer is largely protonated, taking up protons from the medium during its formation. Similar results have been observed in the case of aniline also. The materials have been fully characterized by spectroscopy and microscopy

  3. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.

  4. Differences in the calcification of preosteoblast cultured on sputter-deposited titanium, zirconium, and gold.

    Science.gov (United States)

    Chen, Peng; Nagai, Akiko; Tsutsumi, Yusuke; Ashida, Maki; Doi, Hisashi; Hanawa, Takao

    2016-03-01

    In this study, osteogenic differentiation and calcification of preosteoblast (MC3T3-E1) cultured on sputter-deposited titanium (Ti), zirconium (Zr), and gold (Au) on cover glasses were evaluated to understand the differences in bone formation ability among these three metals; these metals show the same high corrosion resistance, but Ti and Zr are covered by surface passive oxide film while Au is not covered by the oxide film. Ti and Zr promoted cellular proliferation without osteogenic differentiation. Cells cultured on Ti and Zr expressed higher levels of Runx2, Col1α1, and Akp2 at an earlier stage, which indicated faster promotion of osteogenic differentiation, as compared to those cultured on Au. Moreover, after 21 days of culture, the Bglap1 and Ifitm5 expression peaks in cells cultured on Ti and Zr were higher than those in cells cultured on Au, which indicated faster promotion of calcification. Cells cultured on Ti showed an advantage in osteogenic differentiation at an early stage, while cells on Zr showed better calcification promotion with a long-term culture. The amount of extracellular calcified deposits was in good agreement with the gene expression results. On the other hand, the intracellular calcium content of cells on Au specimens was higher than that of cells on Ti and Zr specimens. The results indicate that preosteoblasts on Ti and Zr showed faster osteogenic differentiation and calcification than those on Au, whereas Au improved the intracellular calcium content. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 639-651, 2016. © 2015 Wiley Periodicals, Inc.

  5. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan-Tianshan orogenic collages (NW China)

    Science.gov (United States)

    Tian, Zhonghua; Xiao, Wenjiao; Windley, Brian F.; Zhang, Ji'en; Zhang, Zhiyong; Song, Dongfang

    2017-10-01

    The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.

  6. Mercury pollution from the artisanal mining in Yani gold district, Northern Bolivia

    Science.gov (United States)

    Alfonso, Pura; Freixas, Anna; Bascompta, Marc; María Aranibar, Ana; Villegas, Karla; María García-Noguero, Eva; Higueras, Pablo; Cielito Saraiva, Angela

    2016-04-01

    Artisanal gold mining is the main economic activity in the Yani district, Northern Bolivia. In this area abundant orogenic gold deposits constituted by quartz veins hosted in paleozoic turbiditic series that contain either free gold or associated with pyrite. Gold is recovered in processing plants by gravimetric methods using shaking tables in several communities of this district. Previously, miners ground the mineral in ball mills together with mercury. The present study aims to evaluate the effect of mercury used in the gold recovering process to the environment and human health in the Yani district. The assessment was based on the analysis of human hair, sediments and water from the river nearby the processing plant and drinking water from the fountain that supplies these communities. 47 samples of hair from miners and other people from the Yani and Señor de Mayo communities were obtained in 2014 and 52 samples in 2015. All were analysed to evaluate the mercury exposure in these places. The results from the 2014 sampling show a wide range of Hg concentration in hair, especially in Señor de Mayo, with values up to 136 μg/g THg. However, in 2015 among the 43 residents in Señor de Mayo, 29 (67%) exhibit concentrations higher than 2 μg/g THg, with an average value of 5.36 μg/g THg. On the other hand, in Yani only 40% have concentrations above 2 μg/g THg, with an average value of 2.34 μg/g THg. The content in Hg in most of the hair samples exhibit values above the tolerable limits established by the US Environmental Protection Agency (1 μg/g Hg) and the World Health Organisation (WHO, 2 μg/g Hg). These high Hg concentrations are found not only in miners but also in the other members of the community, in spite of low fish consumption in this area. Part of the hair was analysed before and after cleaning. Usually in the second case the content of Hg is reduced, but still show high Hg levels, then probably the atmosphere is polluted with Hg and population is

  7. Formation and optical characterisation of colloidal gold monolayers

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    We study the deposition of charge-stabilised gold nanocolloids on silicon substrates, which have been derivatised with (aminopropyl)triethoxysilane. Atomic force microscopy (AFM) and spectroscopic ellipsometry are employed to investigate the nanocrystal monolayers ex situ. Analysis of AFM images

  8. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar

    Science.gov (United States)

    Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.

    2010-01-01

    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.

  9. A climate signal in exhumation patterns revealed by porphyry copper deposits

    Science.gov (United States)

    Yanites, Brian J.; Kesler, Stephen E.

    2015-06-01

    The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.

  10. Investigation of the effect of support thermal treatment on gold-based catalysts' activity towards propene total oxidation

    International Nuclear Information System (INIS)

    Lamallem, M.; Cousin, R.; Thomas, R.; Siffert, St.; Aissi, F.; Aboukais, A.

    2009-01-01

    This paper reports a study on the effect of support thermal treatment on the activity of gold-based catalysts for the total oxidation of propene. Ce 0.3 Ti 0.7 O 2 supports were prepared using sol-gel method. These compounds are calcined at 400, 500 and 600 C. Physico-chemical properties of synthesized materials were characterized by means of XRD, DR/UV-vis and H 2 -TPR. Then gold was deposited on these supports by the deposition precipitation method. Thus the catalytic activity of these solids in the propene oxidation was evaluated. On the basis of the catalytic results, a better activity is obtained when gold is deposited on Ce 0.3 Ti 0.7 O 2 support previously calcined at 400 C under air. (authors)

  11. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition

    Science.gov (United States)

    Kim, Sun-I.; Thiyagarajan, Pradheep; Jang, Ji-Hyun

    2014-09-01

    In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications. The specific capacitance of Au/Ni(OH)2 reached 1927 F g-1 at 1 A g-1, which is close to the theoretical capacitance and retained 66% and 80% of the maximum value at a high current density of 20 A g-1 and 5000 cycles while that of pristine Ni(OH)2 was 1363 F g-1 and significantly decreased to 48% and 30%, respectively, under the same conditions. The outstanding performance of Au/Ni(OH)2 as a supercapacitor is attributed to the presence of metal Au NPs on the surface of semiconductor Ni(OH)2; this permits the creation of virtual 3D conducting networks via metal/semiconductor contact, which induces fast electron and ion transport by acting as a bridge between Ni(OH)2 nanostructures, thus eventually leading to significantly improved electrochemical capacitive behaviors, as confirmed by the EIS and I-V characteristic data.In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for

  12. The Voltammetric Analysis of Selenium Electrodeposition from H2SeO3 Solution on Gold Electrode

    OpenAIRE

    Kowalik R.

    2015-01-01

    The different voltammetry techniques were applied to understand the process of selenium deposition from sulfate solution on gold polycrystalline electrode. By applying the cycling voltammetry with different scan limits as well as the chronoamper-ometry combined with the cathodic and anodic linear stripping voltammetry, the different stages of the deposition of selenium were revealed. It was found that the process of reduction of selenous acid on gold surface exhibits a multistage character. T...

  13. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China

    Science.gov (United States)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang

    2017-07-01

    An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite-facies reworking of the ultrahigh-pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U-Pb ages are clearly categorized into two groups at 122-127 Ma and 188 ± 2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of garnet + clinopyroxene ± quartz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains only contain a few quartz inclusions and the garnet-clinopyroxene-plagioclase-quartz barometry yields pressures of 4.9 to 12.5 kb. In addition, the clinopyroxene-garnet Fe-Mg exchange thermometry gives temperatures of 738-951 °C. Therefore, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite-facies metamorphic age is in agreement not only with the adjacent diorite at 125 ± 1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite-facies metaigneous rocks in the Dabie orogen. In combination with major-trace elements and zircon Lu-Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab-mantle interface in the continental subduction channel

  14. Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes

    Science.gov (United States)

    Wegmann, S.F.G.; Franke, K.L.; Hughes, S.; Lewis, R.Q.; Lyons, N.; Paris, P.; Ross, K.; Bauer, J.B.; Witt, A.C.

    2011-01-01

    The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post-orogenic landscape remain enigmatic. The non-glaciated Cullasaja River basin of south-western North Carolina, with uniform lithology, frequent debris flows, and the availability of high-resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post-orogenic landscape through the lens of hillslope-channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris-flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint-driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area-elevation and slope distributions is presented that may be representative of post-orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel- hillslope coupling is an important factor in tectonically-inactive (i

  15. Grafting of gold nanoparticles on polyethyleneterephthalate using dithiol interlayer

    International Nuclear Information System (INIS)

    Reznickova, A.; Kolska, Z.; Zaruba, K.; Svorcik, V.

    2014-01-01

    Two different procedures of grafting of polyethyleneterephthalate (PET), modified by plasma treatment, with gold nanoparticles (nanospheres) are studied. In the first procedure the PET foil was grafted with biphenyl-4,4′-dithiol and subsequently with gold nanoparticles. In the second one the PET foil was grafted with gold nanoparticles previously coated by the same dithiol. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Gold nanoparticles were characterized by ultraviolet–visible spectroscopy. The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma activated PET and it mediates subsequent grafting of the gold nanoparticles. - Highlights: • Two different techniques were used for coating of PET with gold nanoparticles. • Grafted GNPs were characterized by XPS, FTIR, UV–vis, zeta potential, AFM. • More effective coating is achieved by deposition of GNPs earlier grafted with thiol. • The studied structures may have potential application in electronics or biomedicine

  16. Basic electrochemical properties of sputtered gold film electrodes

    International Nuclear Information System (INIS)

    Libansky, Milan; Zima, Jiri; Barek, Jiri; Reznickova, Alena; Svorcik, Vaclav; Dejmkova, Hana

    2017-01-01

    Gold nanolayers made by sputtering of pure gold (physical vapour deposition) are commonly used for many biophysical and material applications. However, the use of sputtering method for fabrication of working electrodes for electroanalytical purposes is less common. This paper focuses on the testing and characterization of sputtered working roughened gold nanostructured film electrodes, which fall into category of upcoming desirable new generation of nanostructured gold working electrodes. Gold nanostructured films (80 nm thin) were sputtered onto 50 μm thin PTFE substrates with three different types of treatment: pristine, plasma treated, and plasma treated and subsequently spontaneously grafted with biphenyl-4,4′-dithiol. The characterization of gold nanostructured film electrodes was carried out by examination of the electrode reaction of standard redox probes (ferrocyanide/ferricyanide, hydroquinone/benzoquinone) in different types of supporting electrolytes (BR buffers of various pH, KCl, KNO 3 , H 2 SO 4 ), by exploration of the electrode surface by scanning electron microscopy, by atomic force microscopy accompanied by elementary analysis and contact angle measurements. The testing of electrodes was complemented by an attempt to calculate their real surface areas from Randles-Sevcik equation. All results were compared to conventional bulk gold electrode. The practical applicability of the nanostructured gold electrodes as sensors for the determination of environmental pollutants was verified by voltammetric determination of hydroquinone as a model electrochemically oxidisable organic environmental pollutant.

  17. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2018-01-01

    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  18. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    Science.gov (United States)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  19. Flower-shaped gold nanoparticles: Preparation, characterization, and electro

    Directory of Open Access Journals (Sweden)

    Islam M. Al-Akraa

    2017-09-01

    Full Text Available The modification of a glassy carbon electrode with gold nanoparticles was pursued, characterized, and examined for electrocatalytic applications. The fabrication process of this electrode involved assembling the gold nanoparticles atop of amino group grafted glassy carbon electrode. The scanning electron microscopy indicated the deposition of gold nanoparticles in flower-shaped nanostructures with an average particle size of ca. 150 nm. Interestingly, the electrode exhibited outstanding enhancement in the electrocatalytic activity toward the oxygen evolution reaction, which reflected from the large negative shift (ca. 0.8 V in its onset potential, in comparison with that observed at the bulk unmodified glassy carbon and gold electrodes. Alternatively, the Tafel plot of the modified electrode revealed a significant increase (∼one order of magnitude in the apparent exchange current density of the oxygen evolution reaction upon the modification, which infers a faster charge transfer. Kinetically, gold nanoparticles are believed to facilitate a favorable adsorption of OH− (fundamental step in oxygen evolution reaction, which allows the charge transfer at reasonably lower anodic polarizations.

  20. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada

    Science.gov (United States)

    Yang, Xue-Ming; Lentz, David R.; Sylvester, Paul J.

    2006-07-01

    The abundance of gold and selected trace elements in magmatic sulfide and rock-forming minerals from Silurian-Devonian granitoids in southwestern New Brunswick were quantitatively analyzed by laser-ablation inductively coupled plasma mass-spectrometry. Gold is mainly hosted in sulfide minerals (i.e., chalcopyrite, pyrrhotite, and pyrite), in some cases perhaps as submicron inclusions (nanonuggets). Gold is below detection (caca % qGTbGaaeyzaiaabYgacaqG0baaaOGaeyypa0JaaGymaiaaiwdacaaI % WaGaeyySaeRaaGioaiaaiodacaGGSaGaaeiiaiaabggacaqGUbGaae % izaiaabccacaWGebWaa0baaSqaaiaabgeacaqG1baabaGaaeiCaiaa % bMhacaqGVaGaaeyBaiaabwgacaqGSbGaaeiDaaaakiabg2da9iaaio % dacaaI2aGaaGOmaiabgglaXkaaiMdacaaI2aaaaa!6E8F! D^{{{text{cpy/melt}}}}_{{{text{Au}}}}= 948 ± 269,{text{ }}D^{{{text{po/melt}}}}_{{{text{Au}}}} = 150 ± 83,{text{ and }}D^{{{text{py/melt}}}}_{{{text{Au}}}} = 362 ± 96. This result suggests that gold behavior in the granitoid systems is controlled by the conditions of sulfur saturation during magmatic evolution; the threshold of physiochemical conditions for sulfur saturation in the melts is a key factor affecting gold activity. Gold behaves incompatibly prior to the formation of sulfide liquids or minerals, but it becomes compatible at their appearance. Gold would be enriched in sulfur-undersaturated granitoid magmas during fractionation, partitioning into evolved magmatic fluids and favoring the formation of intrusion-related gold deposits. However, gold becomes depleted in residual melts if these melts become sulfur-saturated during differentiation, leading to gold precipitation in the early sulfide phases of a granitoid suite. Late-stage Cl-bearing magmatic-hydrothermal fluids with low pH and relatively high oxidation state derived from either progressively cooling magmas at depth or convective circulation of meteoric water buffered by reduced carbon-bearing sediments, may scavenge gold from early sulfide minerals. If a significant amount of gold produced in this

  1. MERCURY AND ARSENIC CONTAMINATION FROM SMALL SCALE GOLD MINING ACTIVITIES AT SELOGIRI AREA, CENTRAL JAVA, INDONESIA

    OpenAIRE

    Harijoko, Agung; Htun, Tin May; Saputra, Rodhie; Warmada, I Wayan; Setijadji, Lucas Donny; Imai, Akira; Watanabe, Koichiro

    2015-01-01

    Small scale gold mines discussed here are located at Selogiri area, Central Java, Indonesia which was mined by local community mainly during gold rush in 1990s. This Selogiri gold deposit genetically is characterized by porphyry mineralization overprinted by epithermal system. The ore minerals assemblage consists of pyrite, sphalerite, chalcopyrite, galena, chalcocite and rare arsenopyrite. Chemical analysis of soil and stream sediment sampled over 1.5 km across at the Selogiri gold extra...

  2. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Song Yan; Ma Yuting; Wang Yuan [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.c [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2010-07-01

    Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.

  3. Geologic map of the Zarkashan-Anguri copper and gold deposits, Ghazni Province, Afghanistan, modified from the 1968 original map compilation of E.P. Meshcheryakov and V.P. Sayapin

    Science.gov (United States)

    Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geological map of the area of Zarkashan-Anguri gold deposits, scale 1:50,000, which was compiled by E.P. Meshcheryakov and V.P. Sayapin in 1968. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original document and related reports and also visited the field area in April 2010. This modified map, which includes a cross section, illustrates the geologic setting of the Zarkashan-Anguri copper and gold deposits. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross section and includes modifications based on our examination of that and other documents, and based on observations made and sampling undertaken during our field visit. (Refer to the Introduction and the References in the Map PDF for an explanation of our methodology and for complete citations of the original map and related reports.) Elevations on the cross section are derived from the original Soviet topography and may not match the newer topography used on the current map.

  4. Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong

    2003-01-01

    In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metamorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intrucontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie-Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts us a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must account

  5. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan; Caps, Valerie; Tuel, Alain

    2010-01-01

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional

  6. Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    International Nuclear Information System (INIS)

    Lavayen, V.; O'Dwyer, C.; Ana, M.A. Santa; Mirabal, N.; Benavente, E.; Cardenas, G.; Gonzalez, G.; Torres, C.M. Sotomayor

    2007-01-01

    This work explores the functionalization of an organic-inorganic MoS 2 lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of ∼5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ∼85 days, and a zeta potential measured to be ζ -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS 2 . SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS 2

  7. Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lavayen, V. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland) and Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile)]. E-mail: vlavayen@tyndall.ie; O' Dwyer, C. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland); Ana, M.A. Santa [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Mirabal, N. [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Benavente, E. [Department of Chemistry, Universidad Tecnologica Metropolitana, P.O. Box 9845, Santiago (Chile); Cardenas, G. [Department of Polymers, Faculty of Chemistry Science, Universidad de Concepcion, P.O. Box 160-C, Concepcion (Chile); Gonzalez, G. [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Torres, C.M. Sotomayor [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-01-30

    This work explores the functionalization of an organic-inorganic MoS{sub 2} lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of {approx}5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of {approx}85 days, and a zeta potential measured to be {zeta} -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS{sub 2}. SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS{sub 2}.

  8. Gold in the hills: patterns of placer gold accumulation under dynamic tectonic and climatic conditions

    Science.gov (United States)

    Roy, Sam; Upton, Phaedra; Craw, Dave

    2018-01-01

    Formation of placer accumulations in fluvial environments requires 103-106 or even greater times concentration of heavy minerals. For this to occur, regular sediment supply from erosion of adjacent topography is required, the river should remain within a single course for an extended period of time and the material must be reworked such that a high proportion of the sediment is removed while a high proportion of the heavy minerals remains. We use numerical modeling, constrained by observations of circum-Pacific placer gold deposits, to explore processes occurring in evolving river systems in dynamic tectonic environments. A fluvial erosion/transport model is used to determine the mobility of placer gold under variable uplift rate, storm intensity, and rock mass strength conditions. Gold concentration is calculated from hydraulic and bedload grain size conditions. Model results suggest that optimal gold concentration occurs in river channels that frequently approach a threshold between detachment-limited and transport-limited hydraulic conditions. Such a condition enables the accumulation of gold particles within the framework of a residual gravel lag. An increase in transport capacity, which can be triggered by faster uplift rates, more resistant bedrock, or higher intensity storm events, will strip all bedload from the channel. Conversely, a reduction in transport capacity, triggered by a reduction in uplift rate, bedrock resistance, or storm intensity, will lead to a greater accumulation of a majority of sediments and a net decrease in gold concentration. For our model parameter range, the optimal conditions for placer gold concentration are met by 103 times difference in strength between bedrock and fault, uplift rates between 1 and 5 mm a-1, and moderate storm intensities. Fault damage networks are shown to be a critical factor for high Au concentrations and should be a target for exploration.

  9. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China

    Science.gov (United States)

    Zhang, Wen-Xiang; Zhu, Liu-Qin; Wang, Hao; Wu, Yuan-Bao

    2018-01-01

    Post-collisional granites are generally generated by partial melting of continental crust during orogenic extension. The occurrence of normal calc-alkaline granites following adakitic granites in a collisional orogen is frequently supposed as a sign of tectonic regime transition from compression to extension, which has been debated yet. In this paper, we present a comprehensive study of zircon U-Pb ages, Hf-O isotopes, as well as whole-rock major and trace elements and Sr-Nd isotopes, for Tongbai and Jigongshan post-collisional granitic plutons in the Tongbai orogen. Zircon U-Pb dating yields intrusion ages of ca. 140 and 135 Ma for the Tongbai and Jigongshan plutons, respectively, suggesting they are post-collisional granites. These granites are high-K calc-alkaline series, metaluminous to weakly peraluminous with A/CNK ratios of 0.85-1.08. The Tongbai gneissic granites are normal calc-alkaline granite, having variable SiO2 (61.93-76.74 wt%) and Sr/Y (2.9-38.9) and (La/Yb)N (1.7-30.1) ratios with variably negative Eu anomalies (0.41-0.92). They have relatively high initial Sr isotope ratios of 0.707571 to 0.710317, and low εNd(t) (- 15.74 to - 11.09) and εHf(t) (- 17.6 to - 16.9) values. Their Nd and Hf model ages range from 2.2 to 1.8 Ga and 2.3 to 2.2 Ga. On the contrary, the Jigongshan granites show higher SiO2 (66.56-72.11 wt%) and Sr/Y (30.1-182.0) and (La/Yb)N (27.4-91.4) ratios with insignificant Eu anomalies (0.73-1.00), belonging to adakitic granite. They have Isr = 0.707843-0.708366, εNd(t) = - 19.83 to - 17.59, and εHf(t) = - 26.0 to - 23.5. Their Nd and Hf model ages vary from ca. 2.5 to 2.4 Ga and ca. 2.8 to 2.6 Ga. The Tongbai and Jigongshan granites are characterized by mantle-like zircon δ18O values (5.17-5.46‰). These geochemical features suggest that the Tongbai and Jigongshan granites were derived from partial melting of Paleoproterozoic and Archean continental crust, respectively. Fractional crystallization affected the geochemical

  10. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Science.gov (United States)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  11. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  12. First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts

    Science.gov (United States)

    Erdős, Zoltán.; Huismans, Ritske S.; van der Beek, Peter

    2015-07-01

    The first-order characteristics of collisional mountain belts and the potential feedback with surface processes are predicted by critical taper theory. While the feedback between erosion and mountain belt structure has been fairly extensively studied, less attention has been given to the potential role of synorogenic deposition. For thin-skinned fold-and-thrust belts, recent studies indicate a strong control of syntectonic deposition on structure, as sedimentation tends to stabilize the thin-skinned wedge. However, the factors controlling basement deformation below fold-and-thrust belts, as evident, for example, in the Zagros Mountains or in the Swiss Alps, remain largely unknown. Previous work has suggested that such variations in orogenic structure may be explained by the thermotectonic "age" of the deforming lithosphere and hence its rheology. Here we demonstrate that sediment loading of the foreland basin area provides an additional control and may explain the variable basement involvement in orogenic belts. When examining the role of sedimentation, we identify two end-members: (1) sediment-starved orogenic systems with thick-skinned basement deformation in an axial orogenic core and thin-skinned deformation in the bordering forelands and (2) sediment-loaded orogens with thick packages of synorogenic deposits, derived from the axial basement zone, deposited on the surrounding foreland fold-and-thrust belts, and characterized by basement deformation below the foreland. Using high-resolution thermomechanical models, we demonstrate a strong feedback between deposition and crustal-scale thick-skinned deformation. Our results show that the loading effects of syntectonic sediments lead to long crustal-scale thrust sheets beneath the orogenic foreland and explain the contrasting characteristics of sediment-starved and sediment-loaded orogens, showing for the first time how both thin- and thick-skinned crustal deformations are linked to sediment deposition in these

  13. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    International Nuclear Information System (INIS)

    Gomes, Inês; Feio, Maria J.; Santos, Nuno C.; Eaton, Peter; Serro, Ana Paula; Saramago, Benilde; Pereira, Eulália; Franco, Ricardo

    2012-01-01

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV– visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  14. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ines [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal); Feio, Maria J. [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Santos, Nuno C. [Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular (Portugal); Eaton, Peter [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Serro, Ana Paula; Saramago, Benilde [Centro de Quimica Estrutural, Instituto Superior Tecnico (Portugal); Pereira, Eulalia [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Franco, Ricardo, E-mail: ricardo.franco@fct.unl.pt [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal)

    2012-12-15

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  15. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.

    2008-01-01

    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  16. Causes and consequences of a tropical forest gold rush in the Guiana Shield, South America.

    Science.gov (United States)

    Hammond, David S; Gond, Valéry; de Thoisy, Benoit; Forget, Pierre-Michel; DeDijn, Bart P E

    2007-12-01

    Statistical and spatial analyses of both historical time series and remotely sensed data show a link between the spatial distribution and growth of gold production across the Guiana Shield in northeast Amazonia. Results indicate that an exponential rise in production across an expanding area is primarily a delayed response to the 1971-1978 market flotation of international gold prices. The subsequent 10-fold (2-fold) average nominal (real) price increase has provided a compelling economic incentive to mass exploitation of lower-grade gold deposits. The ground-based and remotely sensed distributions of mining activity are strongly attached to these deposits that dominate the region's gold geology. The presence of these gold-bearing formations in conservation and sustainable timber zones has sparked social conflict and environmental degradation across the region. Left unmanaged, more than a quarter-million square-kilometer area of tropical forest zoned for protection and sustainable management could ultimately be compromised by the price-driven boom in gold mining through poorly integrated resource use planning, lack of reclamation effort, and control of illegal operations. Serious public health issues propagated through the unregulated mining environment further erode the financial benefits achieved through gold extraction. This study demonstrates in part how international economic policies successfully stabilizing more conspicuous centers of the global economy can have unintended but profound environmental and social impacts on remote commodity frontiers.

  17. Sources of Matter and Ore-Producing Fluid of the Tamunyer Gold-Sulfide Deposit (Northern Urals): Isotope Results

    Science.gov (United States)

    Zamyatina, D. A.; Murzin, V. V.

    2018-02-01

    The Tamunyer deposit is a typical example of gold-sulfide mineralization located in the lower lithologic-stratigraphic unit (S2-D1) of the Auerbach volcanic-plutonic belt. The latter comprises island-arc andesitic volcano-sediments, volcanics, and comagmatic intrusive formations. Carbonates have demonstrated intermediate values of δ13C between marine limestone and mantle. The quartz δ18O is in the range of 15.3-17.2‰. The δ34S of sulfides from the beresitized volcano-sedimentary rocks and ores varies widely from -7.5 to 12‰. The calculated isotope compositions of H2O, CO2, and H2S of the ore-bearing fluid imply two major sources of matter contributing to ore genesis: local rocks and foreign fluid. The ore-bearing fluid was formed by interaction and isotope equilibration between a deep magmatic fluid and marine carbonates (W/R 1), with the contribution of sulfur from the volcano-sedimentary rocks.

  18. Voltammetric Determination of Guanine on the Electrode Modified by Gold Deposit and Nafion Film

    Directory of Open Access Journals (Sweden)

    L.G. Shaidarova

    2016-09-01

    Full Text Available Electrodeposited gold and Nafion-gold composite on the surface of glassy carbon electrodes (GCE have shown electrocatalytic activity during guanine oxidation. In comparison with the unmodified electrode, decreasing of the oxidation potential by 100 mV and increasing of the current of organic compound oxidation have been observed. When the Nafion (NF film is applied to the surface of the glassy carbon electrode with electrodeposited gold, a five-fold increase of guanine oxidation current has been achieved compared to its oxidation on the modified electrode without the NF film. Conditions have been found for electrodeposition of gold on the surface of the glassy carbon electrode, including that one covered with the NF film, as well as for registration of the maximum catalytic current on these electrodes. Linear dependence of the electrocatalytic response of the modified electrode from the guanine concentration has been observed in the range from 5·10–6 to 5·10–3 mol·L–1 (for Au GCE and from 5·10–7 to 5·10–3 mol·L–1 (for NF-Au GCE.

  19. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  20. Genetic Affiliation of Gold and Uranium Mineralization in El-Missikat Granite, Central Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ammar, F.A.; Omar, S.A.M.; El Sawey, El.H.

    2016-01-01

    Gabal El-Missikat granitic pluton is affected by two fault systems trending NW-SE (the oldest) and ENE-WSW directions. It is one of the uranium occurrences in the Eastern Desert of Egypt. The northwestern margins of El-Missikat pluton, along its contact with the gneissose quartz diorite, are dissected by numerous reactivated fractured shear zones running generally ENE-WSW to NE-SW and dipping about 60°-70° to SE. Many white (oldest), smoky or black and jasperoid (youngest) silica veinlets fill the fractures of these shear zones. These veins are of irregular shape and variable thickness ranging from few centimeters to about three meters. They are chiefly affected by silicification, sericitization, hematitization , kaolinization and hydrothermal alterations processes. The smoky black veins are hosting secondary uranium and fluorite-, sulphide-gold mineralizations. Polished surface studies, ICP-ES and Atomic Absorption as well as Scanning Electron Microscope measurements recorded galena, pyrite chalcopyrite, sphalerite and molybdenite in the black and jasperoid mineralized veins. Gold associated with ore mineral assemblage as pyrite, chalcopyrite, sphalerite, galena, sheelite and iron oxides. The identified sulphide minerals not bearing gold are recorded. Gold are relatively coarse-grained, massive and metallic yellow or stretched bronze colored particles. The recorded secondary U minerals associates the sulphide gold-mineralization in the black and jasperoid silica veins. Regarding the mobility of both uranium and gold, U 4+ mobilized in oxidizing medium and migrate and transport as U 6+ , then deposited later as U 4+ when the medium changes to be reducing characterized by high /O 2 . On contrary, gold mobilized when the medium is complex AuCl 3- ion bearing. Consequently, El- Missikat granitic pluton affected by oxidizing Au and Cl 3- bearing high temperature hydrothermal solutions that leached U 4+ , W and Mo from the granitic mass as U 6 + , later decrease of

  1. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.

    Science.gov (United States)

    Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K

    2014-02-01

    Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Supported nano gold as a recyclable catalyst for green, selective and efficient oxidation of alcohol using molecular oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Dar

    2011-09-01

    Full Text Available The myth that gold cannot act as a catalyst has been discarded in view of recent studies, which have demonstrated the high catalytic efficiency of pure nano-gold and supported nano-gold catalysts. In recent years, numerous papers have described the use of supported nano-gold particles for catalysis in view of their action on CO and O2 to form CO2, as well as a variety of other reactions. Special emphasis is placed on the oxidation studies undertaken on model nano-Au systems. In this work a solvent free oxidation of 1-phenyl ethanol was carried out using gold supported on ceria-silica, ceria-titania, ceria- zirconia and ceria-alumina at 160 0C. Almost 88-97% conversion was obtained with >99% selectivity. Temperature screening was done from 70 to 160 0C.Catalysts were prepared by deposition co-precipitation method and deposition was determined by EDEX analysis.

  3. Fabrication Of Atomic-scale Gold Junctions By Electrochemical Plating Technique Using A Common Medical Disinfectant

    Science.gov (United States)

    Umeno, Akinori; Hirakawa, Kazuhiko

    2005-06-01

    Iodine tincture, a medical liquid familiar as a disinfectant, was introduced as an etching/deposition electrolyte for the fabrication of nanometer-separated gold electrodes. In the gold dissolved iodine tincture, the gold electrodes were grown or eroded slowly in atomic scale, enough to form quantum point contacts. The resistance evolution during the electrochemical deposition showed plateaus at integer multiples of the resistance quantum, (2e2/h)-1, at the room temperature. The iodine tincture is a commercially available common material, which makes the fabrication process to be the simple and cost effective. Moreover, in contrast to the conventional electrochemical approaches, this method is free from highly toxic cyanide compounds or extraordinary strong acid. We expect this method to be a useful interface between single-molecular-scale structures and macroscopic opto-electronic devices.

  4. A statistical analysis of mineral relationships in a Witwatersrand gold placer at Randfontein Estates

    International Nuclear Information System (INIS)

    Tucker, R.F.

    1983-01-01

    The Proterozoic 'Composite Reef' on the Randfontein Estates Gold Mine, is a proximal Witwatersrand braided-stream placer, in which pyrite, chromite, zircon, uraninite, and gold are the more common detrital minerals. They range in concentration from a few ppm to over 3 per cent. Optimum concentration of these minerals occurs on scour- and pebble-armoured surfaces, in conglomerate gravel bars, and in trough cross-bedded quartz-arenites. The distribution of gold is, however, complex and the relative proportions of the detrital minerals change from one depositional situation to another. The abundance of detrital and other related minerals was monitored geochemically and quantitatively indicates the prevalence of optimal placer concentration situations in preserved depositional subenvironments of the 'Composite Reef'. The relationships between 20 elements were determined by using an R-mode factor-analysis of the geochemical data. The elements load on to chalcophile, detrital oxide, hydrothermal and clay factors, suggesting the consanguinity of four subsets of elements. A multiple linear regression of gold against the other elements provides the framework for an improved prediction of gold where only very small or single samples are available. The method uses many elements in a single sample to achieve statistical reliability, as opposed to the geostatistical method where many samples of a single element are analysed. The regression equation demonstrates the geochemical validity of the geological-response model for optimum gold mineralization

  5. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    Science.gov (United States)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  6. Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jan; Dunn, C. E.; Gryndler, Milan; Mihaljevič, M.; Jelínek, E.; Rohovec, Jan; Rohošková, M.; Řanda, Zdeněk

    2010-01-01

    Roč. 42, č. 1 (2010), s. 83-91 ISSN 0038-0717 R&D Projects: GA AV ČR IAA600480801 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z50200510; CEZ:AV0Z10480505 Keywords : bioaccumulation * Ectomycorrhiza * EDTA extraction * Fungi * gold * mobility Subject RIV: EF - Botanics Impact factor: 3.242, year: 2010

  7. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    Science.gov (United States)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often

  8. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    Science.gov (United States)

    Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.

    2011-08-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  9. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    International Nuclear Information System (INIS)

    Wahl, A; Dawson, K; Sassiat, N; Quinn, A J; O'Riordan, A

    2011-01-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H 2 SO 4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu 2+ nanomolar concentrations. Linear correlations were observed for increasing Cu 2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  10. Bulk Copper Electrodeposition on Gold Imaged by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1996-01-01

    Electrochemical measurements were carried out simultaneously with acquisition of in situ STM images of copper electrodeposition at low cathodic overpotentials and subsequent dissolution from the underlying polycrystalline gold surfaces. The morphologies of the copper deposits were examined...

  11. Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (Se Brazil): U-Pb and Lu-Hf provenance data

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Gabriel Lamounier de F. [Servico Geologico do Estado do Rio de Janeiro (DRM-RJ), Niteroi, RJ (Brazil); Schmitt, Renata; Bongiolo, Everton M.; Mendes, Julio [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Basei, Miguel S. [Universidade de Sao Paulo (USP), SP (Brazil)

    2015-07-01

    Full text: The Neoproterozoic-Ordovician Central Ribeira Orogen, in SE Brazil, presents two contrasting tectonic domains in its southern portion: (a) The Arc Domain constituted of Neoproterozoic to Paleozoic magmatic rocks and low P-high T metamorphic para (Sao Fidelis Group) - and ortho- derived units (in Oriental Terrane); and (b) The Basement Domain, constituted of a Paleoproterozoic and Neoproterozoic medium P-high T metamorphic para (Palmital-Buzios Succession)- and ortho-derived units (in Cabo Frio Tectonic Domain). Our work focuses on paraderived rocks sequences from both domains. The provenance analysis using U-Pb and Lu-Hf in zircon grains is presented here as an effective tool to unravel the paleogeography and nature of the pre-collisional sedimentary basins. We performed 505 analyses (U-Pb) on detrital zircon grains and some metamorphic overgrowths from six paragneiss samples. Besides, 141 analyses (Lu-Hf) in six samples only on the detrital zircon grains domains. All samples present a main peak from Neoproterozoic sources (750-570 Ma) and the other minor peak in the Stenian/Tonian periods (1200-850Ma), this indicate an orogenic contribution for this basin. Scarce register from the Mesoproterozoic and two peaks in the Archean/Paleoproterozoic (2.6 and 1.9 Ga) are recognized as a contribution from an ancient continent. The Lu-Hf data reveals a juvenile source for the detrital zircon grains from Buzios Succession while Palmital and Sao Fidelis Group units show a main crustal signature for their detrital zircon population. Based on the U-Pb and Lu-Hf data presented here, plus petrological data, geological correlations, and compilation of data from literature, we propose a tectonic model for the origin of para-derived rocks from the eastern part of the Ribeira Orogen. Starting with an extensional environment of ca. 600 Ma in a back-arc basin (Buzios succession deposition) and continuing as an active margin between 570 and 550 Ma in the fore-arc and prism

  12. Characteristics of the streak clays of the hyacinth gold deposit by the techniques of DRX and AT

    International Nuclear Information System (INIS)

    Trueba Gaetano, R.; Cabrera Diaz, I.; Casanova Gomez, A.; Aguila Terry, A.; Martinez Montalvo, A.; Canel Carreras, L.; Rodriguez Garcia, J. C.; Alonso Perez, J. A.

    2016-01-01

    It is exposed the investigative work of the mineralogical characteristics of different types of clays present in the veins of the Oro Jacinto deposit through the use of XRD and TA analytical techniques, supported by a study of particle size in the range of 2 mm to 63 μm. Significant feature of these samples is that being crushed they generated high content of fine material below 0.074 mm. This size particles range is presented between 17.68% and 50.78% of samples volume, majority particles being smaller than 0.063 mm, this interstratificated fine material with different types of clay makes the fraction below 74 μm present characteristics of clayey material. The results of XRD analysis and comparative Thermo gravimetric that are achieved for samples of 'Jacinto' gold vein deposit indicate that the clays presented in the fine fractions are: chlorite-montmorillonite; illite; hidromoscovite and muscovite, which turned out to be higher in samples of the grain B eatriz . During the ores formation process of the veins S ur Elena , it is evident that the hydrothermal fluids that led to the formation of the rocks, experienced greater degree of alteration during its transformation into argillite, which is manifested in three mineralogical regularities: Low crystallinity of the chlorite-montmorillonite clay. Transformation of muscovite - hidromoscovite into illite. Presence of abundant calcite in some samples. Higher concentrations of iron oxides (goethite). (Author)

  13. A pre-burial adsorption model for the genesis of gold in the Witwatersrand

    International Nuclear Information System (INIS)

    Davidson, R.J.

    1990-01-01

    The chemistry related to the adsorption of gold and uranium onto algal biomass (activated carbon) is related to the genesis of the Witwatersrand. Detrital gold, together with cyanide solubilized as the stable aurocyanide complex. With the subsequent decomposition of the algal deposits, it is surmized that carbon-rich layers having adsorptive properties formed in the conglomerates. Under these conditions, gold (silver) in solution would be adsorbed selectively as the cyanide complex, together with uranium as the carbonate complex. The subsequent burial and compression of the gold-rich conglomerate with temperatures rising to about 400 degrees C would then have reduced the adsorbed gold to the metal in a single segregated gold-silver metal phase. An adsorption model would explain the very consistent trends in the gold-to-silver ratios of individual reefs in the Witwatersrand, which suggest an extensive hydrothermal system approaching isothermal equilibrium. Also, as gold grades increase, so silver grades generally decrease, indicating the sequential displacement of silver by gold as classically obtained with activated carbon. 11 refs., 2 figs., 1 tab

  14. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens

    Science.gov (United States)

    Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin

    2018-04-01

    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and

  15. Isolated single-molecule magnets on native gold.

    Science.gov (United States)

    Zobbi, Laura; Mannini, Matteo; Pacchioni, Mirko; Chastanet, Guillaume; Bonacchi, Daniele; Zanardi, Chiara; Biagi, Roberto; Del Pennino, Umberto; Gatteschi, Dante; Cornia, Andrea; Sessoli, Roberta

    2005-03-28

    The incorporation of thioether groups in the structure of a Mn12 single-molecule magnet, [Mn12(O12)(L)16(H2O)4] with L = 4-(methylthio)benzoate, is a successful route to the deposition of well-separated clusters on native gold surfaces and to the addressing of individual molecules by scanning tunnelling microscopy.

  16. Uranium deposits of the Asian sector of Pacific ocean ore belt

    International Nuclear Information System (INIS)

    Kazanskij, V.I.

    1995-01-01

    Brief description of three basic types of uranium ore deposits in the Asian sector of the Pacific Ocean ore belt, namely uranium-molybdenum vein deposits in the continental volcanic depressions, proper uranium-molybdenum vein deposits in the mesozoic granites and gold-brannerite deposits of the rejuvenated early-proterosoic fractures is given. Schemes of various deposits are presented, petrological and isotope data (K-Ar method) are considered and petro- and oregenesis are analyzed. refs., 9 figs

  17. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  18. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  19. Electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interfaces as studied by photoemission spectroscopy

    International Nuclear Information System (INIS)

    Dessau, D.S.; Shen, Z.; Wells, B.O.; Spicer, W.E.; List, R.S.; Arko, A.J.; Bartlett, R.J.; Fisk, Z.; Cheong, S.; Mitzi, D.B.; Kapitulnik, A.; Schirber, J.E.

    1990-01-01

    High-resolution photoemission has been used to probe the electronic structure of the gold/Bi 2 Sr 2 CaCu 2 O 8 and gold/EuBa 2 Cu 3 O 7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa 2 Cu 3 O 7-δ substrate in the near surface region (∼5 A) is essentially destroyed by the gold deposition, while the near surface region of Bi 2 Sr 2 CaCu 2 O 8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices

  20. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    Science.gov (United States)

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  1. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Ruzicka, V.; LeCheminant, G.M.

    1984-01-01

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  2. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  3. Gold tailings as a source of waterborne uranium contamination of ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    Apr 2, 2004 ... Dissolved uranium (U) from the tailings deposits of various gold mines in South Africa has .... tivity), probes for measuring hydro-chemical (pH, Eh), physical ... Due to the pumping scheme, rain events in the catchment do not.

  4. Map showing reconnaissance geochemistry in the gold-pyrophyllite belt of northwestern Moore County, North Carolina

    Science.gov (United States)

    Lesure, Frank G.

    1981-01-01

    Traces of gold and molybdenum are widely disseminated in an area approximately 35 km long and 10 km wide in northwestern Moore County, N.C.  At least 2540 oz. of gold were recovered from 16 or more mines and prospects between 1880 and 1910.  One hundred and ninety rock samples out of 244 collected from old gold mines, pyrophyllite deposits and along roads contain gold quantities ranging from 0.02 to 2.4 parts per million.  In addition, 43 samples out of the 244 taken contain molybdenum in amounts ranging from 4 to 500 parts per million.

  5. Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model

    Science.gov (United States)

    Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu

    2014-09-01

    The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.

  6. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry

    Science.gov (United States)

    Richards, Jeremy P.; McCulloch, Malcolm T.; Chappell, Bruce W.; Kerrich, Robert

    1991-02-01

    The Porgera gold deposit is spatially and temporally associated with the Late Miocene, mafic, alkalic, epizonal Porgera Intrusive Complex (PIC), located in the highlands of Papua New Guinea (PNG). The highlands region marks the site of a Tertiary age continent-island-arc collision zone, located on the northeastern edge of the Australasian craton. The PIC was emplaced within continental crust near the Lagaip Fault Zone, which represents an Oligocene suture between the craton and volcano-sedimentary rocks of the Sepik terrane. Magmatism at Porgera probably occurred in response to the Late Miocene elimination of an oceanic microplate, and subsequent Early Pliocene collision between the craton margin and an arc system located on the Bismarck Sea plate. Gold mineralization occurred within 1 Ma of the time of magmatism. Metasomatism accompanying early disseminated Au mineralization in igneous host rocks resulted in additions of K, Rb, Mn, S, and CO 2, and depletions of Fe, Mg, Ca, Na, Ba, and Sr; rare-earth and high-field-strength elements remained largely immobile. Pervasive development of illite-K-feldspar-quartz-carbonate alteration assemblages suggests alteration by mildly acidic, 200 to 350°C fluids, at high water/ rock ratios. Strontium and lead isotopic compositions of minerals from early base-metal sulphide veins associated with K-metasomatism, and later quartz-roscoelite veins carrying abundant free gold and tellurides, are remarkably uniform (e.g., 87Sr /86Sr = 0.70745 ± 0.00044 [n = 10] , 207Pb /204Pb = 15.603 ± 0.004 [n = 15] ). These compositions fall between those of unaltered igneous and sedimentary host rocks, and specifically sedimentary rocks from the Jurassic Om Formation which underlies the deposit (igneous rocks: 87Sr /86Sr ≈ 0.7035 , 207Pb /204Pb ≈ 15.560 ; Om Formation: 87Sr /86Sr |t~ 0.7153 , 207Pb /204Pb ≈ 15.636 ). It is therefore suggested that the hydrothermal fluids acquired their Sr and Pb isotopic signatures by interaction with, or

  7. Gold Investment Account in Kuwait Finance House (M Berhad and Maybank Berhad

    Directory of Open Access Journals (Sweden)

    Mohamed Kamil, M. M.

    2013-06-01

    Full Text Available Banks in Malaysia offer gold investment accounts to customers who will make deposits when prices of gold are low and withdraw ata profit when prices rise. The objective of this paper is to determine the major differences and similarities between the nature of gold investment accounts operation in Islamic bank, Kuwait Finance House (M Berhad (KFH and the conventional bank, Maybank Berhad tocome up with the best options between their two products. This research adopts the qualitative method as the main research methodology. The information on gold investment accounts are gained from semi-structured interviews conducted with bankers in these two banks that are directly involved in the operation. This research discovered that the gold investment account offered by KFH is the best choice as compared to Maybank Berhad because the subject matter which is gold exists during the transaction between the depositor and the bank. Thus, it provides safety for the customer to possess a real physical gold. The clarification in this research will help the public to decide the best preference in gold investment either inIslamic or conventional bank.

  8. Linking orogen and peripheral foreland basin: conceptual model and application to the Southalpine-Dinaric (Friuli) orocline

    Science.gov (United States)

    Heberer, Bianca; Neubauer, Franz

    2010-05-01

    Surface uplift and rock exhumation within an orogen are generally a consequence of convergence, and can often be linked with subsidence in a peripheral foreland. Since vertical loads act on the entire lithosphere, these processes can, therefore, be considered as plate-scale processes. Here, we propose a conceptual model for this linkage for the Friuli orocline and its surrounding units. The Friuli orocline stretches from the ENE-trending Southern Alps to the SE-trending Dinarides. There, two Neogene stages of convergence and associated deformation can be differentiated: (1) a Mid-Late Miocene phase of increased surface uplift and intra-orogenic subsidence of sedimentary basins reflecting intra-orogenic crustal-scale folding. Depocentres are e.g. the flexural Belluno, Ljubljana and Klagenfurt basins. (2) A second stage of convergence during Late Pliocene-Pleistocene times led to overall surface uplift in the orogen and contemporaneous pronounced subsidence in the peripheral foreland basin (Venetian platform and the northern Adriatic Sea). We propose, that the spatially variable extent of subsidence originates in variably strong orogen-basin coupling, i.e. weak coupling during stage 1 vs. strong coupling during stage 2. This interpretation is based on the apatite fission track age pattern, the distribution of intra-orogenic Neogene sediment basins and subsidence analyses in the foreland basin (Barbieri et al., 2007). Available low-temperature thermochronological data for the Southern Alps and the NW Dinarides are sparse, in contrast to a dense network of primarily apatite fission track ages north of the Periadriatic lineament (e.g. summarized by Luth & Willingshofer, 2008). AFT ages adjacent to the eastern Periadriatic Lineament mainly range from 15 to 25 Ma (Hejl, 1997; Fodor et al., 2008). Detrital studies on Oligocene to Miocene sediments from the Venetian foreland basin yielded dominant age groups clustering roughly around 20 and 30 Ma (Stefani et al., 2008

  9. Bald Mountain gold mining district, Nevada: A Jurassic reduced intrusion-related gold system

    Science.gov (United States)

    Nutt, C.J.; Hofstra, A.H.

    2007-01-01

    The Bald Mountain mining district has produced about 2 million ounces (Moz) of An. Geologic mapping, field relationships, geochemical data, petrographic observations, fluid inclusion characteristics, and Pb, S, O, and H isotope data indicate that An mineralization was associated with a reduced Jurassic intrusion. Gold deposits are localized within and surrounding a Jurassic (159 Ma) quartz monzonite porphyry pluton and dike complex that intrudes Cambrian to Mississippian carbonate and clastic rocks. The pluton, associated dikes, and An mineralization were controlled by a crustal-scale northwest-trending structure named the Bida trend. Gold deposits are localized by fracture networks in the pluton and the contact metamorphic aureole, dike margins, high-angle faults, and certain strata or shale-limestone contacts in sedimentary rocks. Gold mineralization was accompanied by silicification and phyllic alteration, ??argillic alteration at shallow levels. Although An is typically present throughout, the system exhibits a classic concentric geochemical zonation pattern with Mo, W, Bi, and Cu near the center, Ag, Pb, and Zn at intermediate distances, and As and Sb peripheral to the intrusion. Near the center of the system, micron-sized native An occurs with base metal sulfides and sulfosalts. In peripheral deposits and in later stages of mineralization, Au is typically submicron in size and resides in pyrite or arsenopyrite. Electron microprobe and laser ablation ICP-MS analyses show that arsenopyrite, pyrite, and Bi sulfide minerals contain 10s to 1,000s of ppm Au. Ore-forming fluids were aqueous and carbonic at deep levels and episodically hypersaline at shallow levels due to boiling. The isotopic compositions of H and O in quartz and sericite and S and Pb in sulfides are indicative of magmatic ore fluids with sedimentary sulfur. Together, the evidence suggests that Au was introduced by reduced S-bearing magmatic fluids derived from a reduced intrusion. The reduced

  10. Nanodiamond-Gold Nanocomposites with the Peroxidase-Like Oxidative Catalytic Activity.

    Science.gov (United States)

    Kim, Min-Chul; Lee, Dukhee; Jeong, Seong Hoon; Lee, Sang-Yup; Kang, Eunah

    2016-12-21

    Novel nanodiamond-gold nanocomposites (NDAus) are prepared, and their oxidative catalytic activity is examined. Gold nanoparticles are deposited on carboxylated nanodiamonds (NDs) by in situ chemical reduction of gold precursor ions to produce NDAus, which exhibit catalytic activity for the oxidation of o-phenylenediamine in the presence of hydrogen peroxide similarly to a peroxidase. This remarkable catalytic activity is exhibited only by the gold nanoparticle-decorated NDs and is not observed for either Au nanoparticles or NDs separately. Kinetic oxidative catalysis studies show that NDAus exhibit a ping-pong mechanism with an activation energy of 93.3 kJ mol -1 , with the oxidation reaction rate being proportional to the substrate concentration. NDAus retain considerable activity even after several instances of reuse and are compatible with a natural enzyme, allowing the detection of xanthine using cascade catalysis. Association with gold nanoparticles makes NDs a good carbonic catalyst due to charge transfer at the metal-carbon interface and facilitated substrate adsorption. The results of this study suggest that diverse carbonic catalysts can be obtained by interfacial incorporation of various metal/inorganic substances.

  11. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  12. Geochemical and mineralogical controls on mine tailings rehabilitation and vegetation, Otago Schist, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Rufaut, C.

    2017-01-01

    Large areas (square kilometre scale) of mine tailings have been deposited from placer gold mines in Central Otago, and are being deposited at Macraes orogenic gold mine in east Otago. Establishment of vegetation on these tailings involves at least some provision of plant nutrients from the rock. Phosphorus is the principal limiting nutrient, as the c. 1000 mg/kg P in accessory apatite, most abundant in micaceous schist, is only sparingly bioavailable on timescales of weeks to months. Nitrogen is an important limiting nutrient but schist, especially micaceous schist, typically contains 500-1000 mg/kg N, and this nitrogen is readily leachable with water on timescales of weeks to months. Arsenic uptake from tailings by pasture species is significant (< 90 mg/kg dry weight), but elevated As in tailings substrates (c. 1500 mg/kg) does not adversely affect plant health. Capping of tailings with variably oxidised schist is the most effective way of facilitating revegetation, and some addition of phosphatic fertiliser is desirable but other nutrients, including nitrogen, are adequately bioavailable in a schist cap and underlying tailings. (author).

  13. Tamper indicating gold nanocup plasmonic films

    Energy Technology Data Exchange (ETDEWEB)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Alvine, Kyle J.

    2017-02-13

    The spectral signature of nanoplasmonic films are both robust and tailorable with optical responses ranging from the visible to the near-infrared. We present the development of flexible, elastomeric nanoplasmonic films consisting of periodic arrays of gold nanocups as tamper indicating films. Gold nanocups have polarization-sensitive optical properties that may be manufactured into films that offer unique advantages for tamper indication. These flexible films can be made quickly and at low-cost using commercially available monodisperse polystyrene nanospheres through self-assembly followed by plasma etching, metal deposition, and lift-off from a sacrificial substrate. Polarization- and angle-dependent optical spectroscopic measurements were performed to characterize the fabricated films. Using polarization-sensitive hyperspectral imaging, we demonstrate how these films can be applied to tamper indication and counterfeit resistance applications.

  14. Granite ascent and emplacement during contractional deformation in convergent orogens

    Science.gov (United States)

    Brown, Michael; Solar, Gary S.

    1998-09-01

    Based on a case study in the Central Maine Belt of west-central Maine, U.S.A., it is proposed that crustal-scale shear zone systems provide an effective focussing mechanism for transfer of granite melt through the crust in convergent orogens. During contractional deformation, flow of melt in crustal materials at depths below the brittle-plastic transition is coupled with plastic deformation of these materials. The flow is driven by pressure gradients generated by buoyancy forces and tectonic stresses. Within the oblique-reverse Central Maine Belt shear zone system, stromatic migmatite and concordant to weakly discordant irregular granite sheets occur in zones of higher strain, which suggests percolative flow of melt to form the migmatite leucosomes and viscous flow of melt channelized in sheet-like bodies, possibly along fractures. Cyclic fluctuations of melt pressure may cause instantaneous changes in the effective permeability of the flow network if self-propagating melt-filled tensile and/or dilatant shear fractures are produced due to melt-enhanced embrittlement. Inhomogeneous migmatite and schlieric granite occur in zones of lower strain, which suggests migration of partially-molten material through these zones en masse by granular flow, and channelized flow of melt carrying entrained residue. Founded on the Central Maine Belt case study, we develop a model of melt extraction and ascent using the driving forces, stress conditions and crustal rheologies in convergent, especially transpressive orogens. Ascent of melt becomes inhibited with decreasing depth as the solidus is approached. For intermediate a(H 2O) muscovite-dehydration melting, the water-saturated solidus occurs between 400 and 200 MPa, near the brittle-plastic transition during high- T-low- P metamorphism, where the balance of forces favors (sub-) horizontal fracture propagation. Emplacement of melt may be accommodated by ductile flow and/or stoping of wall rock, and inflation may be accommodated

  15. Calcite twinning strain variations across the Proterozoic Grenville orogen and Keweenaw-Kapuskasing inverted foreland, USA and Canada

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2017-11-01

    Full Text Available We report the calcite twinning strain results of a traverse across the Grenville orogen from Parry Sound, Ontario (NW to Ft. Ann, New York (SE, including the younger, adjacent Ordovician Taconic allochthon. Fifty four carbonates (marbles, calcite veins, Ordovician limestone were collected resulting in 68 strain analyses on mechanically twinned calcite (n = 2337 grains across the Central Gneiss Belt (CGB; 3 samples, the Central Metasedimentary Belt (CMB; 27 samples, the Central Granulite Terrane (CGT; Adirondack's; 13 samples and the Ottawan Orogenic Lid (OOL; 11 samples. Twinning strains in the greenschist-grade OOL marbles preserve N–S shortening and U-Pb titanite ages (∼1150 Ma; n = 4 document these marbles formed during the Shawinigan (1190–1140 Ma part of the Grenville orogen. From northwest to southeast, the Ottawan (1095–1020 Ma twinning strain is dominantly a layer-parallel shortening fabric oriented N–S (Parry Sound, then becomes parallel to the Grenville thrust direction (NW–SE across the CMB to the Adirondack Highlands where the sub-horizontal shortening strain becomes margin-parallel (SW–NE. Within the regional sample suite there are two areas studied in detail, the Bancroft shear zone (n = 11 and a roadcut on the southeast side of the Adirondack Mountains (Ft. Ann, NY; n = 8. Marbles from the Bancroft shear zone contain calcite grains with 2 sets of twin lamellae (e1 and e2. The better-developed e1 sets (n = 406 record a horizontal fabric oriented NW–SE whereas the younger e2 lamellae (n = 146 preserve a margin-parallel (SW–NE horizontal fabric. Both the e1 and e2 strains record an overprint vertical shortening strain (NEV, perhaps related to extensional orogenic collapse. We also report an Ottawan orogen-aged granoblastic mylonite (1093 Ma, U-Pb zircon; 1102 Ma Ar-Ar biotite in the Keweenaw thrust hanging wall 500 km inboard of the Grenville front and interpret the relations of Grenville

  16. The stibian mustard gold from the Kriván¿ Au deposit,Tatry Mts., Slovak Republic

    DEFF Research Database (Denmark)

    Makovicky, Emil; Martin, Chovan; František, Bakos

    2007-01-01

    The Kriván Au-Sb mineralization is hosted in several subhorizontal variscan mylonite zones located in granitoid rocks. Ore minerals occur in thin lens-shaped quartz veinlets. Albite, chlorite, calcite, muscovite and tourmaline are minor gangue minerals. Four mineral assemblages have been recognized...... - (1) pyrite-arsenopyrite-gold, (2) stibnite-sulfosalts-sphalerite, (3) tetrahedrite- chalcopyrite-electrum, (4) supergene minerals. Isometric and irregular grains of mustard gold are 0.X mm in size. In refl ected light it is isotropic with low refl ectivity and orange-red or brown-yellow color...... with pores more or less fi lled by oxidation products of Sb and Fe. Compositionally it does not conform with stibian mustard gold from Yakutia and Bolivia, approximately AuSb1.4O2.1, derived from decomposition of aurostibite, but it conforms with mustard gold from Krásná Hora, Czech Republic. For this type...

  17. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China

    Science.gov (United States)

    Chen, Lei; Wang, Zongqi; Yan, Zhen; Gong, Jianghua; Ma, Shouxian

    2018-01-01

    A number of Sn deposits associated with Neoproterozoic granites are located in the western Jiangnan Orogen of northern Guangxi. The distribution of Sn mineralization is controlled by faults occurring within and around the Neoproterozoic granites. The hydrothermal alteration and mineralization of these Sn deposits exhibit zoning from the granite to the wall rock. The laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb ages of the cassiterite and zircon from ore-bearing granite in the Menggongshan Sn deposit are 829 ± 19 Ma and 822 ± 4 Ma, respectively, indicating that the Sn mineralization and granites formed in the Neoproterozoic and can considered to be products of coeval magmatic and hydrothermal activities. The ore-bearing granite and Neoproterozoic granites in northern Guangxi are high-K, calc-alkaline, peraluminous, S-type granites that are depleted in Nb, Ti, Sr and Ba and highly enriched in Rb, U and Pb. All the granites show steep fractionated light rare earth element (LREE) and flat heavy rare earth element (HREE) patterns, with strongly negative Eu anomalies. The ɛHf(t) values of the ore-bearing granite vary from - 9.0 to - 1.7, with an average value of - 4.1. Additionally, the ore-bearing granite exhibits low oxygen fugacity values. The magmatic source experienced partial melting during their evolution, and the source was dominated by recycled heterogeneous continental crustal materials. Our evidence confirms that the Neoproterozoic granites in northern Guangxi formed in a collisional tectonic setting. The collision between the Cathaysia and Yangtze blocks or between the Sibao arc (Jiangnan arc) and the Yangtze Block caused asthenospheric upwelling, leading to partial melting and recycling of the crust, forming the peraluminous S-type granites in the Neoproterozoic. The Sn mineralization has a close genetic relationship with the Neoproterozoic granite. The highly differentiated, peraluminous, B-enriched, crustally derived

  18. Vulnerability of soils towards mining operations in gold-bearing sands in Chile

    Science.gov (United States)

    Jordán, Manuel Miguel; González, Irma; Bech, Jaume; Sanfeliu, Teófilo; Pardo, Francisco

    2015-04-01

    The contamination levels in handicraft mining, despite less production and processing less equipment, have high repercussions upon the environment in many cases. High-grade ore extraction, flotation, gravity concentration, acid leaching cementation and mercury amalgamation are the main metallurgical technologies employed. Gold recovery involving milling and amalgamation appears to the most contamination source of mercury. This research work is only a starting point for carrying out a risk probability mapping of pollutants of the gold bearing sands. In southern Chile, with a mild and rainy climate, high levels of pollutants have been detected in some gold placer deposits. The handicraft gold-bearing sands studied are located in X Region of "Los Lagos" in southern Chile. A great quantity of existing secondary deposits in the X Region is located in the coastal mountain range. The lithological units that are found in this range correspond with metamorphic rocks of a Paleozoic crystalline base that present an auriferous content liberated from the successive erosive processes suffered. Metasedimentary and metavolcanic rocks also make up part of this range, but their auriferous load is much smaller. The methodology used in the characterization of the associated mineralization consists of testing samples with a grain size distribution, statistical parameter analysis and mineralogical analysis using a petrographic microscope, XRD and SEM/EDX. The chemical composition was determined by means of XRF and micro-chemical analysis. The major concentrations of heavy minerals are located in areas of dynamic river energy. In the studied samples, more the 75 % of the heavy minerals were distributed among grain sizes corresponding to thin sand (0.25-0.05 mm) with good grain selection. The main minerals present in the selected analysed samples were gold, zircon, olivine, ilmenite, hornblende, hematite, garnet, choromite, augite, epidote, etc. The main heavy metals found were mercury

  19. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.

  20. Uraniferous alaskitic granites with special reference to the Damara Orogenic Belt

    International Nuclear Information System (INIS)

    Toens, P.D.; Corner, B.

    1980-10-01

    The control and patterns of uranium mineralisation in the alaskitic granites of the Damara Orogenic Belt are discussed. The polyphase Damara metamorphism produced high-grade metamorphic assemblages, migmatites and syn-, late-, and post-tectonic anatectic granites through reactivation of the basement and overlying Damara rocks. During anatexis the incompatible elements, particularly the uranium derived from these formations, were incorporated into the melts which then rose, in an attempt to attain gravitational equilibrium, by varying distances depending on the depth of origin of the melts, on their water content and on the availability of tensional environments. Fractional crystallisation during ascent and increased water content concentrated the uranium into residual melts which finally crystallised as alaskitic pegmatitic granite. Structural episodes played an important part in the emplacement of the uraniferous granites and the presence of marble bands was an important factor in not only providing a structural trap for the alaskitic melts and associated uranium-rich volatiles, but also by leading to the boiling of the magma and the subsequent deposition of uranium. The present-day level of erosion is considered to be an important factor contributing to the preservation of many of the uraniferous granite bodies. In addition it is suggested that secondary enrichment occurring above the water-table in the prevailing desert environment is an important criterion in enriching the tenor of mineralisation to ore grades. The exploration techniques necessary for the location of uraniferous granite bodies are briefly outlined [af