WorldWideScience

Sample records for orifices inlet pressure

  1. Experimental study of the core grid by-pass orifices inlet pressure drop of the new core of the R A 6 reactor

    International Nuclear Information System (INIS)

    Masson, V. P; Garcia, J. C; Delmastro, D. F

    2006-01-01

    In this work the core grid by-pass orifices inlet pressure drop of the new core of the R A6 reactor are experimentally studied.The experiments are performed using a 1:1 scale mock-up of an external fuel element cell.Different gaps between fuel elements are considered in order to take into account the design allowances. Different flows are considered to take into account the normal operation flow range.Measurement uncertainties are included.The results will be used to calculate the core flow distribution [es

  2. Numerical simulation of progressive BWR fuel inlet orifices

    International Nuclear Information System (INIS)

    Sara Lundgren; Hernan Tinoco; Aleksander Pohl; Wiktor Frid

    2005-01-01

    Full text of publication follows: A 'progressive' orifice is characterized by an edge-shaped hole that gives a Reynolds number dependent resistance coefficient. For Reynolds numbers smaller than a critical one, the resistance coefficient has a high constant value that drops to a much lower value for Reynolds numbers greater than this critical value. A similar effect is widely known for external flows around bodies of different shapes, i. e. spheres, cylinders, etc., and the sudden drop in drag coefficient is due to the shift from laminar to turbulent boundary-layer flow. Experimentally, progressive orifices have been investigated under high-pressure and high-temperature conditions by Akiba et al. (2001) for a reduced set of geometrical parameters. Using the sparse experimental data, a core stability study was carried out by Forsmaks Kraftgrupp AB that showed an improvement in core stability but without the expected reduction in pump power at normal operation. The reason for this partial success was the impossibility of optimizing the fuel inlet pressure drop owing to the limited amount of available data. Due to the high costs associated with the experimental generation of high-pressure, high-temperature data, it was considered that, if possible, the lacking data could be generated numerically at much lower cost. Therefore, the present work deals with the possibility of numerically simulate the flow through progressive orifices, and with the conditions under which to reproduce and generate resistance coefficient data by means of a commercial CFD-code. The results obtained with a two-dimensional, axisymmetric approximation show that Reynolds Averaged Navier-Stokes (RANS) turbulence models are able to qualitatively capture the physics of the phenomenon but with an earlier transition to turbulent boundary-layer flow and with an underestimation of the resistance coefficient by approximately 20 %. This underestimation of the resistance coefficient is related to the two

  3. Numerical simulation of progressive BWR fuel inlet orifices

    Energy Technology Data Exchange (ETDEWEB)

    Sara Lundgren; Hernan Tinoco [Forsmarks Kraftgrupp AB, 742 03 Oesthammar (Sweden); Aleksander Pohl; Wiktor Frid [The Royal Institute of Technology, Dept. Energy Technology, SE-100 44 Stockholm (Sweden)

    2005-07-01

    Full text of publication follows: A 'progressive' orifice is characterized by an edge-shaped hole that gives a Reynolds number dependent resistance coefficient. For Reynolds numbers smaller than a critical one, the resistance coefficient has a high constant value that drops to a much lower value for Reynolds numbers greater than this critical value. A similar effect is widely known for external flows around bodies of different shapes, i. e. spheres, cylinders, etc., and the sudden drop in drag coefficient is due to the shift from laminar to turbulent boundary-layer flow. Experimentally, progressive orifices have been investigated under high-pressure and high-temperature conditions by Akiba et al. (2001) for a reduced set of geometrical parameters. Using the sparse experimental data, a core stability study was carried out by Forsmaks Kraftgrupp AB that showed an improvement in core stability but without the expected reduction in pump power at normal operation. The reason for this partial success was the impossibility of optimizing the fuel inlet pressure drop owing to the limited amount of available data. Due to the high costs associated with the experimental generation of high-pressure, high-temperature data, it was considered that, if possible, the lacking data could be generated numerically at much lower cost. Therefore, the present work deals with the possibility of numerically simulate the flow through progressive orifices, and with the conditions under which to reproduce and generate resistance coefficient data by means of a commercial CFD-code. The results obtained with a two-dimensional, axisymmetric approximation show that Reynolds Averaged Navier-Stokes (RANS) turbulence models are able to qualitatively capture the physics of the phenomenon but with an earlier transition to turbulent boundary-layer flow and with an underestimation of the resistance coefficient by approximately 20 %. This underestimation of the resistance coefficient is related to

  4. Experimental study of the correction factor for the grid by-pass orifices inlet pressure drop for the new core of the RA 6 reactor

    International Nuclear Information System (INIS)

    Masson, Viviana P.; Garcia, Juan C.; Delmastro, Dario F.

    2007-01-01

    It is necessary to determine the pressure drop in the different components in order to calculate the total pressure drop of RA-6 reactor core. Some of these components have simple geometries and the calculation of its pressure drop is relatively easy. But in some cases, the sub-channels where the cooling water flows have non uniform cross sections and its geometries are not in the handbook. Due to changes in the design of components of the new nucleus of the RA-6 it was necessary to perform a new set of full-scale experiments to determine the pressure drop in some affected subchannels. Different gaps between fuel elements are considered in order to take into account the design allowances. With the obtained results we calculate correction coefficients for the pressure loss coefficients. These coefficients allow fitting the model of calculation with the results obtained in the experiments and they were used to calculate the flow distribution in the core. (author) [es

  5. Numerical simulation of progressive inlet orifices in boiling water reactor fuel

    International Nuclear Information System (INIS)

    Lundgren, Sara

    2004-07-01

    This thesis was carried out at Forsmark Nuclear Power Plant. The power plant in Forsmark consists of three boiling water reactors (BWR) which produce about 17% of Swedish electricity. In a BWR the nuclear reactions are used to boil water inside the reactor vessel. The water works both as a coolant and as a moderator and the resulting steam is used directly to run the turbines. A problem when running a BWR at low flow conditions is the density wave oscillations that might occur to the water flow inside the fuel assemblies. These oscillations arise due to the connection between power and flow rate in a heated channel with two-phase flow. In order to improve the stability performance of the channel an orifice plate is placed at the inlet of each fuel assembly. Today these orifice plates have sharp edges and a constant resistance coefficient. Experimental work has been done with progressive orifices, the edge of which is half-oval in shape. The advantage of progressive orifices is the lower pressure losses with an increase of the Reynolds number, a similar phenomenon that appears in external flow around curved bodies. Since there are high costs associated with experimental generation of high- temperature and high-pressure data, it is of some interest to be able to reproduce and generate data using Computational Fluid Dynamics (CFD). This work deals with the possibility to use the CFD-code Fluent to do numerical simulations of the flow through progressive orifices. The following conclusions may be drawn from the numerical results: All simulations using Reynolds-Averaged Navier-Stokes (RANS) turbulence models, two-dimensional and three-dimensional, capture an abrupt decrease of the resistance coefficient at higher Reynolds numbers. Two-equation models seem to under-predict the critical Reynolds number. The five-equation Reynolds Stress Model (RSM) gives a critical Reynolds number of the same order of magnitude of that measured in experiments. No major differences have

  6. Sizing of high-pressure restriction orifices

    International Nuclear Information System (INIS)

    Casado Flores, E.

    1995-01-01

    Constant up-grading of power plants sometimes requires the modification of components which form part of suppliers' packages. In order to protect technology they have developed, however, the suppliers do not supply their calculation criteria. In order to reduce the costs of such improvements, and so as to be able to undertake the modification without having to rely on the original supplier, this paper describes the basic criteria applicable to the study of high-pressure restriction orifices, which can be considered to be representative of the components in question. The restriction orifices discussed are: - Insert - Multiplates in series with one perforation in each plate - Multiplates in series with several perforations in each plate For each type, an explanation of their sizing is given, together with the equations relating the corresponding flow and pressure drop. (Author)

  7. Minimum wall pressure coefficient of orifice plate energy dissipater

    Directory of Open Access Journals (Sweden)

    Wan-zheng Ai

    2015-01-01

    Full Text Available Orifice plate energy dissipaters have been successfully used in large-scale hydropower projects due to their simple structure, convenient construction procedure, and high energy dissipation ratio. The minimum wall pressure coefficient of an orifice plate can indirectly reflect its cavitation characteristics: the lower the minimum wall pressure coefficient is, the better the ability of the orifice plate to resist cavitation damage is. Thus, it is important to study the minimum wall pressure coefficient of the orifice plate. In this study, this coefficient and related parameters, such as the contraction ratio, defined as the ratio of the orifice plate diameter to the flood-discharging tunnel diameter; the relative thickness, defined as the ratio of the orifice plate thickness to the tunnel diameter; and the Reynolds number of the flow through the orifice plate, were theoretically analyzed, and their relationships were obtained through physical model experiments. It can be concluded that the minimum wall pressure coefficient is mainly dominated by the contraction ratio and relative thickness. The lower the contraction ratio and relative thickness are, the larger the minimum wall pressure coefficient is. The effects of the Reynolds number on the minimum wall pressure coefficient can be neglected when it is larger than 105. An empirical expression was presented to calculate the minimum wall pressure coefficient in this study.

  8. High Pressure Water Stripping Using Multi-Orifice Nozzles

    Science.gov (United States)

    Hoppe, David

    1999-01-01

    The use of multi-orifice rotary nozzles greatly increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with its transverse velocity as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Orifices at the outer edge of the nozzle head move at a faster rate than the orifices located near the center. The energy transmitted to the surface from the impact force of the water stream from an outer orifice is therefore spread over a larger area than energy from an inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the total energy transmitted from the outer orifice to compensate for the wider distribution of energy. The total flow rate from the combination of all orifices must be monitored and should be kept below the pump capacity while choosing orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all the orifices in the nozzle head pass through the center section. All orifices contribute to the stripping in the center of the path while only the outer most orifice contributes to the stripping at the edge of the nozzle. Additional orifices contribute to the stripping from the outer edge toward the center section. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation graphically indicates the cumulative affect from each parameter selected. The result from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  9. Pressure atomizer having multiple orifices and turbulent generation feature

    Science.gov (United States)

    VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane

    2002-01-01

    A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.

  10. Oxide deposition in the orifices of AGR boiler inlet ferrule assemblies

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1988-08-01

    In experiments designed to study the erosion-corrosion behaviour of AGR boiler inlet ferrules using the CERL high velocity circulating isothermal water rig, oxide deposition was frequently found within the flow control orifices. The present investigation was carried out as a preliminary to a programme of experiments addressed specifically to this problem. Analysis shows the deposits to be predominantly magnetite (or possible maghemite) with traces of α-haematite. Calculations indicate that the maximum rate of magnetite deposition is mass transfer limited, although in some experiments no deposition occurred in cases where mass transfer would have allowed substantial deposition. Thus the occurrence of deposition is thought to depend on the rig potential as this varies with experimental conditions. In these experiments the surface potential is not found to be governed by the hydrogen level. Metallographic cross-sections through the ferrule control bores show the deposits to be found in regions of separated flow, and the flow markings in the deposits show that the flow is turbulent in these zones. The exact morphology is thought to be influenced by machining marks within the control bore. (author)

  11. Pressure heat pumping in the orifice pulse-tube refrigerator

    International Nuclear Information System (INIS)

    Boer, P.C.T. de

    1996-01-01

    The mechanism by which heat is pumped as a result of pressure changes in an orifice pulse-tube refrigerator (OPTR) is analyzed thermodynamically. The thermodynamic cycle considered consists of four steps: (1) the pressure is increased by a factor π 1 due to motion of a piston in the heat exchanger at the warm end of the regenerator; (2) the pressure is decreased by a factor π 2 due to leakage out of the orifice; (3) the pressure is further decreased due to motion of the piston back to its original position; (4) the pressure is increased to its value at the start of the cycle due to leakage through the orifice back into the pulse tube. The regenerator and the heat exchangers are taken to be perfect. The pressure is assumed to be uniform during the entire cycle. The temperature profiles of the gas in the pulse tube after each step are derived analytically. Knowledge of the temperature at which gas enters the cold heat exchanger during steps 3 and 4 provides the heat removed per cycle from this exchanger. Knowledge of the pressure as a function of piston position provides the work done per cycle by the piston. The pressure heat pumping mechanism considered is effective only in the presence of a regenerator. Detailed results are presented for the heat removed per cycle, for the coefficient of performance, and for the refrigeration efficiency as a function of the compression ratio π 1 and the expansion ratio π 2 . Results are also given for the influence on performance of the ratio of specific heats. The results obtained are compared with corresponding results for the basic pulse-tube refrigerator (BPTR) operating by surface heat pumping

  12. Design and analysis of throttle orifice applying to small space with large pressure drop

    International Nuclear Information System (INIS)

    Li Yan; Lu Daogang; Zeng Xiaokang

    2013-01-01

    Throttle orifices are widely used in various pipe systems of nuclear power plants. Improper placement of orifices would aggravate the vibration of the pipe with strong noise, damaging the structure of the pipe and the completeness of the system. In this paper, effects of orifice diameter, thickness, eccentric distance and chamfering on the throttling are analyzed applying CFD software. Based on that, we propose the throttle orifices which apply to small space with large pressure drop are multiple eccentric orifices. The results show that the multiple eccentric orifices can effectively restrain the cavitation and flash distillation, while generating a large pressure drop. (authors)

  13. A Study of System Pressure Transients Generated by Isolation Valve Open/Closure in Orifice Manifold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M. [KEPCO, Daejeon (Korea, Republic of); Bae, S. W.; Kim, J. I.; Park, S. J. [KHNP, Abu Dhabi (United Arab Emirates)

    2016-05-15

    In this study, we explore the effects of pressure transients on peak and minimal pressures caused by the actuation of isolation valve and control valve reacting to the combined orifice operation of orifice manifold with motor-operated valve installed in the rear of the orifice. We then use the collected data to direct our effort towards cause analysis and propose improvements to efficiency and safety of operation. This formation is used to by domestic and foreign nuclear power plants as a mean to control flow rate, producing required flow rate jointly together by combination of the orifices. No significant impacts on the internals of manifold orifice due to peak pressure has been observed, although chance of cavitation at the outlet of control valve is significant. Considering the peak pressure, as well as minimum pressure occurs in low flow rate conditions, the pressure transient is more so affected by the characteristics (modified equal percentage) of control valve. Isolation valve of the orifice and control valve operate organically, therefore stroke time for valves need to be applied in order for both valves to cooperatively formulate an optimized operation.

  14. Fabrication and Characterization of Device Pressure Regulation System Orifice of Manufacturing Process Gel Uranium Column Gelation External

    International Nuclear Information System (INIS)

    Triyono; Sutarni; Indra Suryawan

    2009-01-01

    The device pressure regulation orifice system of manufacturing process gel uranium on external column gelation has been made and characterized. The device consists : compressor 5.75-6.75 kg / cm 2 , air container tank, power supply 24 volts dc, solenoid valve 24 volts dc, pressure indicator 0-100 mbar, pressure indicator 0-250 mbar, mechanical valve and power electric 380 volts 50 Hz. The activity includes: installation device system and characterization with pressure variation orifice 5-75 mbar on the compressor 5.75-6.5 kg/cm 2 continuously for 1 minute. The method of installation i.e: wiring and piping to first component and support component (compressor and pressure air indicator, air container tank and pressure air indicator, solenoid valve, power supply 220 volts / 24 volts dc and orifice). After apparatus installed has been tested by the characterization without feed under air pressure varied to orifice of 5-75 mbar and device characterization with variation diameter orifice of 0.5-1 mm and orifice pressure of 5-75 mbar. The result in the characterization an every component good function, can be operation by input pressure range of 15-185 mbar orifice pressure range of 5-75 mbar. The characterization result device pressure regulation orifice system showed that: the system can be good operation of air pressure regulation orifice between 5-75 mbar with diameter orifice 0.5 mm to result gelation range of 10-25 piece / minute with variation air pressure input between 15-185 mbar of air pressure compressor 5.75-6.5 kg cm 2 . (author)

  15. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  16. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility

    Science.gov (United States)

    Bozak, Richard F.

    2018-01-01

    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  17. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  18. A comphrehensive model for the amplification of acoustic pressure waves by single hole orifices

    NARCIS (Netherlands)

    Moussou, P.; Testud, Ph.; Auregan, Y.; Hirschberg, A.

    2008-01-01

    Using a parallel flow approximation, a simple model of hydrodynamic instability is proposed for describing the behavior of an orifice as an acoustic amplifier. It is shown that the growing of perturbations in the vena contracta can generate negative damping for Strouhal numbers of the order of

  19. Occurrence and prevention of enhanced oxide deposition in boiler flow control orifices

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Thomas, D.M.; Garbett, K.; Bignold, G.J.

    1989-10-01

    Once-through boilers, such as those of the AGRs, incorporate flow control orifices at the boiler inlet to ensure a satisfactory flow distribution and stability in the parallel flow paths of the boiler. Deposition of corrosion products in the flow control orifice leads to changes in the orifice pressure loss characteristics, which could lead to problems of flow maldistribution within the boiler, and any adverse consequences resulting from this, such as tube overheating. To date, AGR boiler inlet orifices have not suffered significant fouling due to corrosion products in the boiler feedwater. However, oxide deposition in orifices has been observed in other plants, and in experimental loops operating under conditions very similar to those at inlet to AGR boilers. The lack of deposition in AGR flow control orifices is therefore somewhat surprising. This Report describes studies carried out to examine the factors controlling oxide deposition in flow control orifices, the intention of the work being to explain why deposition has not occurred in AGR boilers to date, and to provide means of preventing deposition in the future should this prove necessary. (author)

  20. Pressure drop calculation using a one-dimensional mathematical model for two-phase flow through an orifice

    DEFF Research Database (Denmark)

    Petkov, K.P.; Puton, M; Madsen, Søren Peder

    2014-01-01

    are accounted for through both friction and acceleration as in a conventional formulation. However, in this analysis the acceleration term is both attributed geometrical effects through the area change and fluid dynamic effects through the expansion of the two-phase flow. The comparison of numerical...... is a one dimensional formulation in space and the equations incorporates the change in tubes and orifice diameter as formulated in (S. Madsen et.al., Dynamic Modeling of Phase Crossings in Two-Phase Flow, Communications in Computational Physics 12 (4), 1129-1147). The pressure changes in the flow...

  1. An Investigation of the Drag and Pressure Recovery of a Submerged Inlet and a Nose Inlet in the Transonic Flight Range with Free-fall Models

    Science.gov (United States)

    Selna, James; Schlaff, Bernard A

    1951-01-01

    The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.

  2. The influence of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices

    International Nuclear Information System (INIS)

    Idris, A; Pullen, K

    2013-01-01

    The effects of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices are presented in this paper. Both experimental and CFD results show that chamfering and corner radiusing improve the discharge coefficient of rotating orifices. For non-inclined rotating orifices, the discharge coefficient reduces with increasing speed, but chamfered and radiused orifices manage to have higher discharge coefficient (C d ) than the straight edge orifices. Comparing between chamfering and corner radiusing, the radiused corner orifice has the highest C d at every rotational speed. This is because the inlet radius helps guiding the flow into the orifice and avoiding flow separation at the inlet.

  3. Comparison of Engine/Inlet Distortion Measurements with MEMS and ESP Pressure Sensors

    Science.gov (United States)

    Soto, Hector L.; Hernandez, Corey D.

    2004-01-01

    A study of active-flow control in a small-scale boundary layer ingestion inlet was conducted at the NASA Langley Basic Aerodynamic Research Tunnel (BART). Forty MEMS pressure sensors, in a rake style configuration, were used to examine both the mean (DC) and high frequency (AC) components of the total pressure across the inlet/engine interface plane. The mean component was acquired and used to calculate pressure distortion. The AC component was acquired separately, at a high sampling rate, and is used to study the unsteady effects of the active-flow control. An identical total pressure rake, utilizing an Electronically Scanned Pressure (ESP) system, was also used to calculate distortion; a comparison of the results obtained using the two rakes is presented.

  4. RNL NDT studies related to PWR pressure vessel inlet nozzle inspection

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.

    1984-01-01

    Non-destructive examinations of the Reactor Pressure Vessel (RPV) of a Pressurized Water Reactor (PWR) play an important role in assuring vessel integrity throughout its operational life. Automated ultrasonic techniques for the detection and sizing of flaws in thick-section seam welds and near-surface regions in a PWR RPV have been under development at RNL for some time. Techniques for the inspection of complex geometry welds and other regions of the vessel are now being assessed and further developed as part of the UK NDT development programme in support of the Sizewell PWR. One objective of this programme is to demonstrate that the range of ultrasonic techniques already shown to be effective for the inspection of seam welds and inlet nozzle corner regions, through exercises such as the Defect Detection Trials, can also be effective for inspection of these other vessel regions. The nozzle-to-vessel welds and nozzle crotch corners associated with the RPV water inlet and outlet nozzles are two such regions being examined in this programme. In this paper, a review is given of the work performed at RNL in the development of a laboratory-based inspection system for inlet nozzle inspection. The main features of the system in its current stage of development are explained. (author)

  5. Chaotic oscillations in a low pressure two-phase natural circulation loop under low power and high inlet subcooling conditions

    International Nuclear Information System (INIS)

    Wu, C.Y.; Wang, S.B.; Pan, C.

    1996-01-01

    The oscillation characteristics of a low pressure two-phase natural circulation loop have been investigated experimentally in this study. Experimental results indicate that the characteristics of the thermal hydraulic oscillations can be periodic, with 2-5 fundamental frequencies, or chaotic, depending on the heating power and inlet subcooling. The number of fundamental frequencies of oscillation increases if the inlet subcooling is increased at a given heating power or the heating power is decreased at a given inlet subcooling; chaotic oscillations appear if the inlet subcooling is further increased and/or the heating power is further decreased. A map of the oscillation characteristics is thus established. The change in oscillation characteristics is evident from the time evolution and power spectrum of a thermal hydraulic parameter and the phase portraits of two thermal hydraulic parameters. These results reveal that a strange attractor exists in a low pressure two-phase natural circulation loop with low power and very high inlet subcooling. (orig.)

  6. Numerical study on coolant flow distribution at the core inlet for an integral pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Peng, Min Jun; Xia, Genglei; Lv, Xing; Li, Ren [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-02-15

    When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

  7. Experimental and numerical investigations of microwave return loss of aircraft inlets with low-pressure plasma

    Science.gov (United States)

    Zhang, Yachun; He, Xiang; Chen, Jianping; Chen, Hongqing; Chen, Li; Zhang, Hongchao; Ni, Xiaowu; Lu, Jian; Shen, Zhonghua

    2018-03-01

    The relationships between return losses of the cylindrical inlet and plasma discharge parameters are investigated experimentally and numerically. The return losses are measured using a high dynamic range measurement system and simulated by COMSOL Multiphysics when the frequency band of the microwaves is in the range 1-4 GHz. The profiles of the plasma density are estimated using Epstein and Bessel functions. Results show that the incident microwaves can be absorbed by plasma efficaciously. The maximal return loss can reach -13.84 dB when the microwave frequency is 2.3 GHz. The increase of applied power implies augmentation of the return loss, which behaves conversely for gas pressure. The experimental and numerical results display reasonable agreement on return loss, suggesting that the use of plasma is effective in the radar cross section reduction of aircraft inlets.

  8. Experimental modal analysis of the steam inlet pipe to the Chooz B1 high pressure turbine

    International Nuclear Information System (INIS)

    Guihot, O.; Anne, J.P.; Chartain, G.; Le Pironnec, D.

    1993-05-01

    This report presents the results of the modal analysis carried out on one of the steam inlet pipe of the high pressure turbine of the Chooz B1 power plant. This experimental analysis is made within the frame of the research and development project ''dynamical, acoustical and aerodynamical behaviour of the turbogenerator N4''. This research program provides amongst others, numerical studies with the software CIRCUS and ASTER, in order to verify the dynamical behaviour of the designed inlet pipe. The numerical models will be updated from results of the experimental modal analysis to improve the numerical representation of this pipe. All the identified modes in the frequency band [5.2000] Hz are presented in the report. The modal characteristics of the main modes are detailed. Further analysis have been made, in order ease the updating of the numerical models. They consisted in an analysis of the evolution of the dynamical behaviour due to a change of the boundary conditions of the inlet valve frame on one hand and resulting from the presence of an additional mass on the pipe, at the level of the middle flange, on the other hand. The analysis made in low frequency range shows that the pipe is thoroughly embedded in the frame of the high pressure turbine. On the other hand, the boundary conditions on the inlet valve frame are more difficult to determine, because the dynamical behaviour of the valve frame and the upper pipe can not be uncoupled from the considered pipe. The main shell modes of ranks 2, 3 and 4 have been very accurately identified. The most relevant modes to update the numerical models are given. (authors). 48 figs., 18 tabs., 4 refs

  9. Prediction of the relationship between flow of tubular pump and differential pressure within inlet passage with CFD method

    International Nuclear Information System (INIS)

    Yu, Y H; Cheng, B

    2012-01-01

    The measurement of flow of tubular pump, in which the differential pressure of two measuring points within inlet passage is replaced by the mean differential pressure of two specified section of inlet passage to calibrate the relationship between flow and differential pressure, is developed. The numerical simulation on differential pressure of two measuring points within inlet passage, which is started before the pump set test, is carried out with the standard k-ε turbulence model and SIMPLEC algorithm. The comparison of the relationships between flow and differential pressure fitted respectively with the data from numerical simulation and pump set test shows that the calibration accuracy about two different sources of data is nearly same. The conclusion can be drawn that the calibration of the relationship between flow and differential pressure with CFD is feasible. The CFD-based flow measurement method, as a more simple and convenient way, can be applied in tubular pumps.

  10. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    Science.gov (United States)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  11. Prediction of flow rates through an orifice at pressures corresponding to the transition between molecular and isentropic flow

    International Nuclear Information System (INIS)

    DeMuth, S.F.; Watson, J.S.

    1985-01-01

    A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab

  12. The penetration of aerosols through fine orifices

    International Nuclear Information System (INIS)

    Marshall, I.A.; Latham, L.J.; Ball, M.H.E.; Mitchell, J.P.

    1991-07-01

    A novel experimental technique has been extended to study the migration of gas-borne glass microspheres in the size range from about 1 to 15 μm volume equivalent diameter through orifices with bores and thicknesses in the range from 2 to 100 μm and 12.7 to 509 μm respectively. The penetration of these particles was significant with all orifices greater than 10 μm bore at a constant driving pressure of 100 kPa. However, few particles penetrated the 5 μm bore orifice, while virtually no particles penetrated the 2 μm bore orifice. Particle size distributions determined after penetration through the orifices were very similar to that of the upstream aerosol except when significant attenuation occurred. (author)

  13. Compressor Research Facility F100 High Pressure Compressor Inlet Total Pressure and Swirl Profile Simulation.

    Science.gov (United States)

    1984-10-01

    1627 VANE ANGLE- U SCREE 4 S,,, L53 S 6 4 NSW, 153 Figure 139. Total Pressure Profile Figure 140. Total Pressure Profile (Phase III), PSV = 250 (Phase...STATION 2.5 , PT. 1-1574- 1585 VANE ANGLE- 15 PT. 0-IMB 8- 150 VANE ANGLE= 21SCREENS- 4 I 54 SDIENS-4 X L53 Figure 137. Total Pressure Profile Figure 138...A 53: if 1-4;2.A 54: for L-10 to 16;wrt 709,"ASVN5SOIVFIVSIVT3VS"for J-l to 5 *55: r!-’ 709,E[A,L,J);nex~t ,I-r~eXt f! *56: if 1-1;wrt 709," TD )"red

  14. Tubular heat exchangers, preferably for hot ashes and the like with two inlet chambers for hot ashes at different pressures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, B P; Borisov, N L; Semenov, M K; Ponomarev, I K; Tyryshkina, B G; Gorbatenko, I V

    1985-10-28

    The stand and the tubes are encased in a structure where the space between the stand and the structure is divided into a collector chamber and a distribution chamber. Ashes of shale are introduced at different pressures into a special inlet where equalizing takes place and the ashes will flow homogeneously through the heat exchanger.

  15. Noise generated by cavitating single-hole and multi-hole orifices in a water pipe

    NARCIS (Netherlands)

    Testud, P.; Moussou, P.; Hirschberg, A.; Aurégan, Y.

    2007-01-01

    This paper presents an experimental study of the acoustical effects of cavitation caused by a water flow through an orifice. A circular-centered single-hole orifice and a multi-hole orifice are tested. Experiments are performed under industrial conditions: the pressure drop across the orifice varies

  16. Flow-throttling orifice nozzle

    International Nuclear Information System (INIS)

    Sletten, H.L.

    1975-01-01

    A series-parallel-flow type throttling apparatus to restrict coolant flow to certain fuel assemblies of a nuclear reactor is comprised of an axial extension nozzle of the fuel assembly. The nozzle has a series of concentric tubes with parallel-flow orifice holes in each tube. Flow passes from a high pressure plenum chamber outside the nozzle through the holes in each tube in series to the inside of the innermost tube where the coolant, having dissipated most of its pressure, flows axially to the fuel element. (U.S.)

  17. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung [Hong-Ik University, Seoul (Korea, Republic of); Chun, Myung-Suk [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of)

    2014-02-15

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

  18. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    International Nuclear Information System (INIS)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung; Chun, Myung-Suk

    2014-01-01

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference

  19. Preliminary Data on the Effects of Inlet Pressure Distortions on the J57-P-1 Turbojet Engine

    Science.gov (United States)

    Wallner, Lewis E.; Lubick, Robert J.; Einstein, Thomas H.

    1954-01-01

    An investigation to determine the steady-state and surge characteristics of the J57-P-1 two-spool turbojet engine with various inlet air-flow distortions was conducted in the altitude wind tunnel at the NACA Lewis laboratory. Along with a uniform inlet total-pressure distribution, one circumferential and three radial pressure distortions were investigated. Data were obtained over a complete range of compressor speeds both with and without intercompressor air bleed at a flight Mach number of 0.8 and at altitudes of 35,000 and 50,000 feet. Total-pressure distortions of the magnitudes investigated had very little effect on the steady-state operating line for either the outer or inner compressor. The small radial distortions investigated also had engine over that obtained with the uniform inlet pressure distribution. The circumferential distortion, however, raised the minimum speed at which the engine could operate without encountering surge when the intercompressor bleeds were closed. This increase in minimum speed resulted in a substantial reduction in the operable speed range accompanied by a reduction in the altitude operating limit.

  20. Preliminary Results of the Determination of Inlet-Pressure Distortion Effects on Compressor Stall and Altitude Operating Limits of the J57-P-1 Turbojet Engine

    Science.gov (United States)

    Wallner, L. E.; Lubick, R. J.; Chelko, L. J.

    1955-01-01

    During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.

  1. The effect of orifice plate insertion on low NOx radial swirl burner performances (simulated variable area burner)

    International Nuclear Information System (INIS)

    Mohammad Nazri Mohd Jaafar

    2000-01-01

    The effect of inserting an outlet orifice plate of different sizes at the exit plane of the swirler outlet were studied for small radial swirler with fixed curves vanes. Tests were carried out using two different sizes flame tubes of 76 mm and 140 mm inside diameter, respectively and 330 mm in length. The system was fuelled via eight vane passage fuel nozzles of 3.5 mm diameter hole. This type of fuel injection helps in mixing the fuel and air better prior to ignition. Tests were carried out at 20 mm W.G. pressure loss which is representative of gas burners for domestic central heating system operating conditions. Tests were also carried out at 400 K preheated inlet air temperature and using only natural gas as fuel. The aim of the insertion of orifice plate was to create the swirler pressure loss at the swirler outlet phase so that the swirler outlet shear layer turbulence was maximize to assist with fuel/air mixing. For the present work, the smallest orifice plate exhibited a very low NO x emissions even at 0.7 equivalence ratio were NO x is well below 10 ppm corrected at 0% oxygen at dry basis. Other emissions such as carbon monoxide and unburned hydrocarbon were below 10 ppm and 100 ppm, respectively, over a wide range of operating equivalence ratios. The implies that good combustion was achieved using the smallest orifice plate. (Author)

  2. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    Science.gov (United States)

    Wang, Y. C.; Shi, M.; Cao, S. L.; Li, Z. H.

    2013-12-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided.

  3. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    International Nuclear Information System (INIS)

    Wang, Y C; Shi, M; Cao, S L; Li, Z H

    2013-01-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided

  4. Orifice design for the control of coupled region flow

    International Nuclear Information System (INIS)

    Atherton, R.; Spadaro, P.R.; Brummerhop, F.G.

    1975-01-01

    A fluid system arrangement for nuclear reactors is described comprising a triplate orifice apparatus which simultaneously controls core flow distribution, flow rate ratio between hydraulically coupled regions of the blanket and radial static pressure gradients entering and leaving the blanket fuel region. The design of the apparatus is based on the parameters of the diameter of the orifice holes, the friction factor, and expansion, contraction and turning pressure loss coefficients of the geometry of each orifice region. These above parameters are properly matched to provide the desired pressure drop, flow split and negligible cross flow at the interface of standard and power-flattened open lattice blanket regions. (U.S.)

  5. Experimental and numerical investigations of BWR fuel bundle inlet flow

    International Nuclear Information System (INIS)

    Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S

    2009-01-01

    We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)

  6. Wall-resolved Large Eddy Simulation of a flow through a square-edged orifice in a round pipe at Re = 25,000

    Energy Technology Data Exchange (ETDEWEB)

    Benhamadouche, S., E-mail: sofiane.benhamadouche@edf.fr; Arenas, M.; Malouf, W.J.

    2017-02-15

    Highlights: • Wall-resolved LES can predict the flow through a square-edged orifice at Re = 25,000. • LES results are compared with the available experimental data and ISO 5167-2. • Pressure loss and discharge coefficients are in very good agreement with ISO 5167-2. • The present wall-resolved LES could be used as reference data for RANS validation. - Abstract: The orifice plate is a pressure differential device frequently used for flow measurements in pipes across different industries. The present study demonstrates the accuracy obtainable using a wall-resolved Large Eddy Simulation (LES) approach to predict the velocity, the Reynolds stresses, the pressure loss and the discharge coefficient for a flow through a square-edged orifice in a round pipe at a Reynolds number of 25,000. The ratio of the orifice diameter to the pipe diameter is β = 0.62, and the ratio of the orifice thickness to the pipe diameter is 0.11. The mesh is sized using refinement criteria at the wall and preliminary RANS results to ensure that the solution is resolved beyond an estimated Taylor micro-scale. The inlet condition is simulated using a recycling method, and the LES is run with a dynamic Smagorinsky sub-grid scale (SGS) model. The sensitivity to the SGS model and to the pressure–velocity coupling is shown to be small in the present study. The LES is compared with the available experimental data and ISO 5167-2. In general, the LES shows good agreement with the velocity from the experimental data. The profiles of the Reynolds stresses are similar, but an offset is observed in the diagonal stresses. The pressure loss and discharge coefficients are shown to be in very good agreement with the predictions of ISO 5167-2. Therefore, the wall-resolved LES is shown to be highly accurate in simulating the flow across a square-edged orifice.

  7. Wall-resolved Large Eddy Simulation of a flow through a square-edged orifice in a round pipe at Re = 25,000

    International Nuclear Information System (INIS)

    Benhamadouche, S.; Arenas, M.; Malouf, W.J.

    2017-01-01

    Highlights: • Wall-resolved LES can predict the flow through a square-edged orifice at Re = 25,000. • LES results are compared with the available experimental data and ISO 5167-2. • Pressure loss and discharge coefficients are in very good agreement with ISO 5167-2. • The present wall-resolved LES could be used as reference data for RANS validation. - Abstract: The orifice plate is a pressure differential device frequently used for flow measurements in pipes across different industries. The present study demonstrates the accuracy obtainable using a wall-resolved Large Eddy Simulation (LES) approach to predict the velocity, the Reynolds stresses, the pressure loss and the discharge coefficient for a flow through a square-edged orifice in a round pipe at a Reynolds number of 25,000. The ratio of the orifice diameter to the pipe diameter is β = 0.62, and the ratio of the orifice thickness to the pipe diameter is 0.11. The mesh is sized using refinement criteria at the wall and preliminary RANS results to ensure that the solution is resolved beyond an estimated Taylor micro-scale. The inlet condition is simulated using a recycling method, and the LES is run with a dynamic Smagorinsky sub-grid scale (SGS) model. The sensitivity to the SGS model and to the pressure–velocity coupling is shown to be small in the present study. The LES is compared with the available experimental data and ISO 5167-2. In general, the LES shows good agreement with the velocity from the experimental data. The profiles of the Reynolds stresses are similar, but an offset is observed in the diagonal stresses. The pressure loss and discharge coefficients are shown to be in very good agreement with the predictions of ISO 5167-2. Therefore, the wall-resolved LES is shown to be highly accurate in simulating the flow across a square-edged orifice.

  8. Orifice jet brazing process development, qualification, and initial application

    International Nuclear Information System (INIS)

    1971-05-01

    Experiments were carried out to develop acceptable procedures for brazing molybdenum alloy orifices to fuel element channel inlets of the NERVA R-1 reactor core. Results achieved with various procedures are described, and qualification tests of the selected process are documented. The recommended procedure includes preplacing of Au-Ni-Cr alloy washers and induction heating to 1600 0 F, holding two minutes, heating further to 2400 0 F, holding one minute, and allowing to cool. Inert atmosphere is used, and fixturing maintains proper positioning of the orifices. Leak testing of the joints has demonstrated reproducibly satisfactory sealing. Repair brazing is feasible if needed. (auth)

  9. High Viscosity Liquid Flow through the Round Orifices at Small Reynold’s Numbe rs

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available The paper presents research results of the mineral oil flow process with viscosity of 30 cSt through a round orifice with the sharp inlet edge of 0.9 mm in diameter. Pilot studies were conducted using a module from the transparent plexiglas that allowed to visualize hydrodynamic processes. The intake and off-take channels of the module with their sufficient extension had diameter of 20 mm (24 diameters of an orifice that allows us to consider compression of a stream as perfect. Drawing the enameled nichrome wire with a mark as a stripping isolation of 0.1 mm width enabled sounding of electric processes in the stream sections. Intensive high- frequency electric processes were revealed in cavitation stream. The paper gives experimental values of coefficientsof volumetric and mass flow at low (150 orifice. Free jet at a speed exceeding 50 m/s strikes a wall, barrier, installed at a distance of 100 diameters of the orifice: the reflection from walls, barriers shot blast, which caused intense foaming and conversion of oil into the two-phase mixture "fluid- combined air." We investigate the "life cycle" of a two-phase mixture: flotation bubbles in a viscous medium, and there was no air passes completely evolved in the dissolved state in a time not exceeding 30 minutes. Volumetric analysis of the foam allowed us to estimate the percentage of volumetric gas content of oil, which was 9% at 240С and atmospheric pressure of 97.5 kPa. An explanation of the possible cause cavitation edge at the end of a viscous fluid through an orifice with a sharp edge - appearance in fluid large tensile forces due to the centrifugal force on the particles of the fluid streams in passing peripheral sharp edge. Experimental research data flow of a viscous fluid in the annular orifice formed sharp edge and the surface of the string. Detected failure mode expiration free jet and conversion shareware transparent

  10. Estimation on the Flow Phenomena and the Pressure Loss for the Inlet Part of a Research Reactor Vessel

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Oh, Jae Min; Seo, Jae Kwang; Yoon, Ju Hyeon; Lee, Doo Jeong

    2009-01-01

    For a research reactor, a conceptual primary cooling system (PCS) was designed for an adequate cooling to the reactor core. The developed primary cooling circuit consisted of decay tanks, pumps, heat exchangers, vacuum breakers, some isolation and check valves, connection piping, and instruments. The main function of the primary cooling pumps (PCPs) of the PCS was to circulate the reactor coolant through the fuel core and the heat exchangers during a normal operation. The head according to the design flow rate which was determined by the thermal hydraulic design analysis for the core should be estimated to design the PCPs in the fluid system. The pressure loss in the PCS can be calculated by the dimensional analysis of the pipe flow and the head loss coefficient of the components. However, it is insufficient to estimate the pressure loss for 3-dimensional flow phenomena such as the flow path in the reactor with the theoretical dimensional analysis based on experimental data. The purpose of this research is to evaluate the pressure loss of the part of a research reactor vessel. For evaluating the pressure loss, the commercially available CFD computer model, FLUENT, was employed. First, for validating the application of FLUENT to the pressure loss, a simple case was calculated and compared with the Idelchik empirical correlation. Secondly, several cases for the inlet part of a research reactor vessel were estimated by a FLUENT 3- dimensional calculation

  11. Pressure-gradient-driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system

    Science.gov (United States)

    Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.

    2011-01-01

    The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.

  12. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    Science.gov (United States)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  13. Numerical analysis for the flow field past a two-staged conical orifice

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Kim, You Gon

    2001-01-01

    The objective of the paper was to measure the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron and Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of 2x10 4 . The effective parameters for the pressure drop and the recirculation region were the conical orifice's inclined angle (θ) against the wall, the interval(L) between orifices, the relative angle of rotation(α) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area. It was found that the shape of the orifice's hold affected the pressure drop and the flow field a lot. But the other parameters did not make much differences to the pressure drop. The PISO algorithm with FLUENT code was employed

  14. A mathematical model for erosion-corrosion downstream of an orifice

    International Nuclear Information System (INIS)

    Thomas, R.M.

    1989-08-01

    In certain types of nuclear plant, the internal surfaces of the steel high-pressure boiler tubes become covered with magnetite. This normal growth of protective magnetite may, in unfavourable circumstances, be replaced by rapid attack on the tube wall. Particularly at risk are the regions downstream of the orifice plates commonly fitted near the boiler inlet. An attempt is made to construct a mathematical model for this erosion-corrosion which is considerably more complete than those available hitherto. A systematic synthesis is developed of the various aspects of the phenomenon, namely the mechanism of the topotactic oxidation at the interface between magnetite and metal, the kinetics of the electrode reactions at the magnetite/solution interface, the thermodynamics of magnetite solubility and the calculation of mass transfer in solution. With one choice of parameters and some simplification, the treatment reduces to the original theory of Bignold. (author)

  15. Evaluation of RF properties by orifice design for IFMIF RFQ

    International Nuclear Information System (INIS)

    Maebara, Sunao; Sugimoto, Masayoshi

    2005-03-01

    Orifices for the IFMIF RFQ have been designed and fabricated, and RF properties have been evaluated by a network analyzer. The designed orifices were installed into a vacuum port of the 1.1m-long RFQ mock-up module, and the resonant frequency and the phase difference between cavities were measured for a quadrupole operation mode of TE 210 . It was found that the RF properties are not affected on condition that slit direction with the same direction of current flow at the RFQ wall. Orifice conductance from 0.22 to 0.25 m 3 /sec by nitrogen conversion at room temperature was designed, and an ultimate pressure level of 5x10 -7 [Pa] was evaluated for the 4.1m-long central module for the IFMIF RFQ. It was concluded that the designed orifices are effective for RF properties and vacuum conductance in the IFMIF RFQ. (author)

  16. Calibration and use of filter test facility orifice plates

    Science.gov (United States)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  17. Thermal-hydraulic oscillations in a low pressure two-phase natural circulation loop at low powers and high inlet subcoolings

    International Nuclear Information System (INIS)

    Wang, S.B.; Wu, J.Y.; Chin Pan; Lin, W.K.

    2004-01-01

    The stability of a natural circulation boiling loop is of great importance and interests for both academic researches and many industrial applications, such as next generation boiling water reactors. The present study investigated the thermal-hydraulic oscillation behavior in a low pressure two-phase natural circulation loop at low powers and high inlet subcoolings. The experiments were conducted at atmospheric pressure with heating power ranging from 4 to 8 kW and inlet subcooling ranging from 27 to 75 deg. C. Significant oscillations in loop mass flow rate, pressure drop in each section, and heated wall and fluid temperatures are present for all the cases studied here. The oscillation is typically quasi-periodic and with flow reversal with magnitudes smaller than forward flows. The magnitude of wall temperature oscillation could be as high as 60 deg. C, which will be of serious concern for practical applications. It is found that the first fundamental oscillation (large magnitude oscillation) frequency increases with increase in heated power and with decrease in inlet subcooling. (author)

  18. Gaseous Nitrogen Orifice Mass Flow Calculator

    Science.gov (United States)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  19. Mass independent kinetic energy reducing inlet system for vacuum environment

    Science.gov (United States)

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  20. Cavitating Orifice: Flow regime transitions and low frequency sound production

    NARCIS (Netherlands)

    Testud, P.; Moussou, P.; Hirschberg, A.; Aurégan, Y.

    2005-01-01

    Detailed data are provided for the broadband noise in a cavitating pipe flow through a circular orifice in water. Experiments are performed under industrial conditions, i.e., with a pressure drop varying from 3 to 30 bars and a cavitation number in the range 0.10 = s = 0.77. The speed of sound

  1. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  2. Effects of lower plenum flow structure on core inlet flow of ABWR

    International Nuclear Information System (INIS)

    Watanabe, Shun; Abe, Yutaka; Kaneko, Akiko; Watanabe, Fumitoshi; Tezuka, Kenichi

    2010-01-01

    The evaluation of coolant flow structure at a lower plenum of an advanced boiling water reactor (ABWR) in which there are many structures is very important in order to improve generating power. Although the simulation results by CFD (Computational Fluid Dynamics) codes can predict such complicated flow in the lower plenum, it is required to establish the database of flow structure in lower plenum of ABWR experimentally for the benchmark of the CFD codes. In the model of the lower plenum, we measured velocity profiles with LDV and PIV. And differential pressure of constructed model is measured with differential pressure instrument. It was identified that the velocity and differential pressure profiles also showed the tendency to be flat in the core inlet. Moreover, vortexes were observed around side entry orifice by PIV measurement. (author)

  3. A study on variations of the low cycle fatigue life of a high pressure turbine nozzle caused by inlet temperature profiles and installation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Aero-propulsion Research Office, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [School of Mechanical and Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  4. A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [Pusan National Univ., Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  5. The Influence of Swirl Brakes and a Tip Discharge Orifice on the Rotordynamic Forces Generated by Discharge-to-Suction Leakage Flows in Shrouded Centrifugal Pumps

    Science.gov (United States)

    Sivo, Joseph M.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1993-01-01

    Recent experiments conducted in the Rotor Force Test Facility at the California Institute of Technology have examined the effects of a tip leakage restriction and swirl brakes on the rotordynamic forces due to leakage flows on an impeller undergoing a prescribed circular whirl. The experiments simulate the leakage flow conditions and geometry of the Alternate Turbopump Design (ATD) of the Space Shuttle High Pressure Oxygen Turbopump and are critical to evaluating the pump's rotordynamic instability problems. Previous experimental and analytical results have shown that discharge-to-suction leakage flows in the annulus of a shrouded centrifugal pump contribute substantially to the fluid induced rotordynamic forces. Also, previous experiments have shown that leakage inlet (pump discharge) swirl can increase the cross-coupled stiffness coefficient and hence increase the range of positive whirl for which the tangential force is destabilizing. In recent experimental work, the present authors demonstrated that when the swirl velocity within the leakage path is reduced by the introduction of ribs or swirl brakes, then a substantial decrease in both the destabilizing normal and tangential forces could be achieved. Motivation for the present research is that previous experiments have shown that restrictions such as wear rings or orifices at pump inlets affect the leakage forces. Recent pump designs such as the Space Shuttle Alternate Turbopump Design (ATD) utilize tip orifices at discharge for the purpose of establishing axial thrust balance. The ATD has experienced rotordynamic instability problems and one may surmise that these tip discharge orifices may also have an important effect on the normal and tangential forces in the plane of impeller rotation. The present study determines if such tip leakage restrictions contribute to undesirable rotordynamic forces. Additional motivation for the present study is that the widening of the leakage path annular clearance and the

  6. Effect of mitral orifice shape on intra-ventricular filling fluid dynamics

    Science.gov (United States)

    Okafor, Ikechukwu; Angirish, Yagna; Yoganathan, Ajit; Santhanakrishnan, Arvind

    2013-11-01

    The natural geometry of the mitral orifice is D-shaped. However, most current designs of prosthetic valves employ O-shaped orifice geometry. The goal of this study was to compare the effect of geometrical modification between the D and O orifice on the intra-ventricular fluid dynamics during diastolic filling. The different mitral orifice geometries were incorporated into an in vitro left heart simulator consisting of a flexible-walled anatomical left ventricle (LV) physical model enclosed in an acrylic housing. Physiological flow rates and pressures were obtained via tuning systemic resistance and compliance elements in the flow loop. A programmable piston pump was used to generate the LV model wall motion. 2D Particle image velocimetry measurements were conducted along multiple longitudinal planes perpendicular to the annulus plane. During peak diastole, the incoming jet width at the LV central plane was smaller for the D-orifice than that of the O-orifice. Further, the core of the vortex ring in the D-orifice was reduced in size compared to that of the O-orifice. The spatiotemporal spreading of the inflow jet as well as the propagation of the vortex ring will be discussed. This study was funded by a grant from the National Heart, Lung and Blood Institute (RO1HL70262).

  7. Effect of Ovality in Inlet Pigtail Pipe Bends Under Combined Internal Pressure and In-Plane Bending for Ni-Fe-Cr B407 Material

    Directory of Open Access Journals (Sweden)

    Ramaswami P.

    2017-09-01

    Full Text Available The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h. By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.

  8. Comparison of the Viscous Liquids Spraying by the OIG and the Oil Configurations of an Effervescent Atomizer at Low Inlet Pressures

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2016-07-01

    Full Text Available In this work we studied the influence of the fluid injection configuration (OIG: outside-in-gas, OIL: outside-in-liquid on the internal flows and external sprays parameters. We sprayed the viscous aqueous maltodextrin solutions (μ = 60 mPa·s at a constant inlet pressure of the gas and the gas to the liquid mass flow ratio (GLR within the range 2.5 to 20%. We found that the fluids injection has a crucial influence on the internal flows. The internal flows patterns for the OIG atomizer were the slug flows, the internal flow of the OIL device was annular which led to the significant improvement of the spray quality: Smaller droplets, faster atomization, fewer pulsations.

  9. Review on pressure swirl injector in liquid rocket engine

    Science.gov (United States)

    Kang, Zhongtao; Wang, Zhen-guo; Li, Qinglian; Cheng, Peng

    2018-04-01

    The pressure swirl injector with tangential inlet ports is widely used in liquid rocket engine. Commonly, this type of pressure swirl injector consists of tangential inlet ports, a swirl chamber, a converging spin chamber, and a discharge orifice. The atomization of the liquid propellants includes the formation of liquid film, primary breakup and secondary atomization. And the back pressure and temperature in the combustion chamber could have great influence on the atomization of the injector. What's more, when the combustion instability occurs, the pressure oscillation could further affects the atomization process. This paper reviewed the primary atomization and the performance of the pressure swirl injector, which include the formation of the conical liquid film, the breakup and atomization characteristics of the conical liquid film, the effects of the rocket engine environment, and the response of the injector and atomization on the pressure oscillation.

  10. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    International Nuclear Information System (INIS)

    Papell, S.S.; Nyland, T.W.; Saiyed, N.H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band. 3 refs

  11. Inlet Geomorphology Evolution

    Science.gov (United States)

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  12. Comparison of turbulent flow through hexagram and hexagon orifices in circular pipes using large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Nicolleau, Franck C G A; Qin, Ning, E-mail: n.qin@sheffield.ac.uk [Department of Mechanical Engineering, The University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-04-15

    Characteristics of turbulent flow through a circular, a hexagon and a hexagram orifice with the same flow area in circular pipes are investigated using wall-modelled large-eddy simulation. Good agreements to available experimental data were obtained in both the mean velocity and turbulent kinetic energy. The hexagram orifice with alternating convex and concave corners introduces outwards radial velocity around the concave corners downstream of the orifice plate stronger than the hexagon orifice. The stronger outwards radial velocity transfers high momentum from the pipe centre towards the pipe wall to energize the orifice-forced vortex sheet rolling-up and leads to a delayed vortex break-down. Correspondingly, the hexagram has a more gradual flow recovery to a pipe flow and a reduced pressure drop than the hexagon orifice. Both the hexagon and hexagram orifices show an axis-switching phenomenon, which is observed from both the streamwise velocity and turbulent kinetic energy contours. To the best knowledge of the authors, this is the first comparison of orifice-forced turbulence development, mixing and flow dynamics between a regular and a fractal-based polygonal orifice. (paper)

  13. Development of honeycomb type orifices for flow zoning in PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G.K., E-mail: gkpandey@igcar.gov.in; Ramdasu, D.; Padmakumar, G.; Prakash, V.; Rajan, K.K.

    2013-09-15

    Highlights: • Cavitation free flow zoning devices are developed for reactor core in PFBR. • These devices are experimentally investigated for their hydraulic characteristics. • Pressure drop and cavitation are two main characteristics to be investigated. • Various configurations of devices utilized in different zones are discussed. • Loss coefficient for each configuration is compared and reported. -- Abstract: The prototype fast breeder reactor (PFBR) is in its advanced phase of construction at Kalpakkam, India. It is a sodium cooled, pool type reactor with two loop concept where each loop have one primary sodium pump (PSP), one secondary sodium pump (SSP) and two intermediate heat exchangers (IHX). PFBR core subassemblies (SA) are supported vertically inside the sleeves provided in the grid plate (GP). The GP acts as a coolant header through which flow is distributed among the SA to remove fission heat. Since the power profile of the reactor core is not uniform, it is necessary to distribute the coolant flow (called flow zoning) to each subassembly according to their power levels to get maximum mean outlet temperature of sodium at core outlet. To achieve this, PFBR core is divided into 15 zones such as fuel, blanket, reflector, storage, etc. according to their respective power levels. The flow zoning in the different SAs of the reactor core is achieved by installing permanent pressure dropping devices in the foot of the subassembly. Orifices having honey-comb type geometry were developed to meet the flow zoning requirements of fuel zone. These orifices being of very complex geometry requires precision methods of manufacturing to achieve the desired shape under specified tolerances. Investment casting method was optimized to manufacture this orifice plate successfully. Hydraulics of these orifices is important in achieving the required pressure drop without cavitation. The pressure drop across these orifice geometries depends mainly on geometrical

  14. Numerical study to invistigate the effect of inlet gas velocity and Reynolds number on bubble formation in a viscous liquid

    Directory of Open Access Journals (Sweden)

    Islam Tariqul

    2015-01-01

    Full Text Available Bubble formation dynamics has great value in mineral recovery and the oil industry. In this paper, a single bubble formation process through an orifice in a rectangle domain is modelled to study the bubble formation characteristics using the volume of fluid (VOF with the continuum surface force (CSF method. The effect of gas inlet velocities, Ug ~ 0.1 - 0.3 m/s on bubble formation stages (i.e., expansion, elongation and pinch off, bubble contact angle, dynamics and static pressure, bubble departure diameter etc. was investigated through an orifice diameter of 1 mm. The method was also used to study the effect of Reynolds number, Reμ ~ 1.32 - 120 on bubble formation when all other parameters were kept constant. It is found that a high inlet gas velocity accelerated the reducing of the bubble contact angle from an obtuse angle to an acute angle and the faster development of hemispherical shape of the bubble. It is also found that an increasing of Reynolds number caused speeding up of the bubble pinch-off and formed a smaller bubble neck height due to stronger vortex ring around the bubble neck.

  15. Influence of the coupling between an atmospheric pressure ion mobility spectrometer and the low pressure ion inlet of a mass spectrometer on the mobility measurement

    Directory of Open Access Journals (Sweden)

    Gunzer Frank

    2016-01-01

    Full Text Available Ion mobility spectrometers (IMS are versatile gas analyzers. Due to their small size and robustness, combined with a very high sensitivity, they are often used in gas sensing applications such as environmental monitoring. In order to improve the selectivity, they are typically combined with a mass spectrometer (MS. Since IMS works at atmospheric pressure, and MS works at vacuum, a special interface reducing the pressure over normally two stages has to be used. In this paper the influence of this coupling of different pressure areas on the IMS signal will be analyzed with help of finite elements method simulations.

  16. Mass transfer coefficient in disturbed flow due to orifice for flow accelerated corrosion in nuclear power plant

    International Nuclear Information System (INIS)

    Prasad, Mahendra; Gaikwad, Avinash J.; Sridharan, Arunkumar; Parida, Smrutiranjan

    2015-01-01

    The flow of fluid in pipes cause corrosion wherein the inner surface of pipe becomes progressively thinner and susceptible to failure. This form of corrosion dependent on flow dynamics is called Flow Accelerated Corrosion (FAC) and has been observed in Nuclear Power Plants (NPPs). Mass transfer coefficient (MTC) is related to extent of wall thinning and it changes from its value in a straight pipe (with same fluid parameters) for flow in orifices, bends, junctions etc. due to gross disturbance of the velocity profile. This paper presents two-dimensional computational fluid dynamics (CFD) simulations for an orifice configuration in a straight pipe. Turbulent model K- ω with shear stress transport and transition flow was the model used for simulation studies. The mass transfer boundary layer (MTBL) thickness δ mtbl is related to the Schmidt number (Sc) and hydrodynamic boundary layer thickness δ h , as δ mtbl ~ δh/(Sc 1/3 ). MTBL is significantly smaller than δ h and hence boundary layer meshing was carried out deep into δ mtbl . Uniform velocity profile was applied at the inlet. Post orifice fluid shows large recirculating flows on the upper and lower wall. At various locations after orifice, mass transfer coefficient is calculated and compared with the value in straight pipe with fully developed turbulent flow. The MTC due to the orifice increases and it is correlated with enhanced FAC in region after orifice. (author)

  17. The impact assessment of eccentric installation and roughness change in piping on the orifice flow measurement

    International Nuclear Information System (INIS)

    Nishi, Y.; Eguchi, Y.; Nishihara, T.; Kanai, T.; Kondo, M.

    2012-01-01

    In orifice flowmeters used in nuclear power plants, requirements for the inner surface roughness of upstream piping and eccentric installation exist depending on certain standards. If these cannot be satisfied based on the installation condition, an appropriate error margin must be considered, although this remains to be clarified. In this research, quantitative data concerning the relative error of orifice flowmeters were obtained during experiments with the parameters of the inner surface roughness of upstream piping and the installation eccentricity of the orifice hole. The maximum Reynolds number of the experimental facility is about 1.6x10 6 . In orifice flowmeters, the flow rate is calculated based on the differential pressure between upstream and downstream orifices and the peculiar discharge coefficient C. The latter value shows an upward trend with increasing roughness of piping, while change of 0.3% of C was observed in terms of roughness (case 2), which approaches the limits of the JIS standard. With significant roughness (Case 3) that exceeds five times the JIS standard, C is shown to have increased by about 1%. No influence was observed by varying the direction of eccentric installation, hence this was fixed and the amount of eccentricity was considered. Change in C of about 0.25% was observed when around twice the standard level of eccentricity was applied. The error margin data under conditions exceeding the JIS standard for the orifice flowmeter was obtained. (authors)

  18. Choked flow mechanism of HFC-134a flowing through short-tube orifices

    Energy Technology Data Exchange (ETDEWEB)

    Nilpueng, Kitti; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok (Thailand)

    2011-02-15

    This paper is a continuation of the author's previous work. New experimental data on the occurrence of choked flow phenomenon and mass flow rate of HFC-134a inside short-tube orifices under choked flow condition are presented. Short-tube orifices diameters ranging from 0.406 mm to 0.686 mm with lengths ranging from 1 mm to 3 mm which can be applied to a miniature vapour-compression refrigeration system are examined. The experimental results indicated that the occurrence of choked flow phenomena inside short-tube orifices is different from that obtained from short-tube orifice diameters of greater than 1 mm, which are typically used in air-conditioner. The beginning of choked flow is dependent on the downstream pressure, degree of subcooling, and length-to-diameter ratio. Under choked flow condition, the mass flow rate is greatly varied with the short-tube orifice dimension, but it is slightly affected by the operating conditions. A correlation of mass flow rate through short-tube orifices is proposed in terms of the dimensionless parameters. The predicted results show good agreement with experimental data with a mean deviation of 4.69%. (author) transfer coefficient was also proposed. (author)

  19. Extended fuel cycle operation for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1978-01-01

    A nuclear steam turbine power plant system having an arrangement therein for extended fuel cycle operation is described. The power plant includes a turbine connected at its inlet to a source of motive fluid having a predetermined pressure associated therewith. The turbine has also connected thereto an extraction conduit which extracts steam from a predetermined location therein for use in an associated apparatus. A bypass conduit is provided between a point upstream of the inlet and the extraction conduit. A flow control device is provided within the bypass conduit and opens when the pressure of the motive steam supply drops beneath the predetermined pressure as a result of reactivity loss within the nuclear reactor. Opening of the bypass conduit provides flow to the associated apparatus and at the same time provides an increased flow orifice to maintain fluid flow rate at a predetermined level

  20. Cavitation and primary atomization in real injectors at low injection pressure condition

    Science.gov (United States)

    Dumouchel, Christophe; Leboucher, Nicolas; Lisiecki, Denis

    2013-06-01

    This experimental work investigates the influence of the geometry of GDI devices on primary atomization processes under low injection pressure and reduced back pressure. These pressure conditions ensure cavitating flows and observable atomization processes. Measurements include mass flux, structure velocity from high-speed visualizations and spray characterization with a laser diffraction technique. Super-cavitation regime and cavitation string, which have their own influence on the mass flux, develop independently in different injector regions. These regimes impact the flow pattern in the orifice and the subsequent atomization process. A possible interaction between cavitation string and super-cavitation is found to promote a hydraulic-flip-like regime and to deteriorate atomization quality. As far as the geometry of the injector is concerned, the profile of the orifice inlet and the roughness of the sac volume region are found to be important geometrical characteristics.

  1. Variable orifice using an iris shutter

    International Nuclear Information System (INIS)

    Beeman, R.; Brajkovich, S.J.

    1978-01-01

    A variable orifice forming mechanism is described that utilizes shutter arrangement adapted to control gas flow, conductance in vacuum systems, as a heat shield for furnace windows, as a beam shutter in sputtering operations, and in any other application requiring periodic or continuously-variable control of material, gas, or fluid flow

  2. Evaluation of effect of inlet distortion on aerodynamic performance of helium gas compressor for gas turbine high temperature reactor (GTHTR300). Contract research

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Yan, Xing; Kurokouchi, Naohiro; Kunitomi, Kazuhiko

    2006-02-01

    Because the main pipe is connected perpendicular to the flow direction inside the distributing header in the inlet casing of the helium gas compressor design of GTHTR300, the main flow flowing into the header tends to separate from the header wall and to cause reverse flow, which increases flow resistance in the header. This phenomenon increases the total pressure loss in the header and inlet distortion, which is considered to deteriorate the aerodynamic performance of the compressor. Tests were carried out to evaluate the effects of inlet distortion on aerodynamic performance of compressor by using a 1/3-scale helium gas compressor model by varying a level of inlet distortion. Flow was injected from the wall of header to make circumferential velocities uniform before and after the reverse flow region to dissipate the separation and reverse flow. At the design point, inlet distortion was reduced by 2-3% by injection, which resulted in increasing adiabatic efficiency of blade section by 0.5%. A modified flow rate at surge point was lowered from 10.0 kg/s to 9.6 kg/s. At the same time, pressure loss of the inlet casing was reduced by 3-5 kPa, which is equivalent to adiabatic efficiency improvement around 0.8%. By setting orifice at the inlet of the inlet casing, the level of inlet distortion became 3% higher and the adiabatic efficiency of blade section became 1% higher at the design point. The modified flow rate at surge point increased from 10.6 to 10.9 kg/s. A new correlation between inlet distortion and adiabatic efficiency of blade section at the rated flow rate was derived based on compressor-in-parallel model and fitted to the test results. An overall adiabatic efficiency of full-scale compressor was predicted 90.2% based on the test results of efficiency and Reynolds number correlation, which was close to 89.7% that was predicted by test calibrated design through-flow code. (author)

  3. INLET STRATIFICATION DEVICE

    DEFF Research Database (Denmark)

    2006-01-01

    An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...... formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous...

  4. Experimental investigation of hydrodynamic cavitation through orifices of different geometries

    Science.gov (United States)

    Rudolf, Pavel; Kubina, Dávid; Hudec, Martin; Kozák, Jiří; Maršálek, Blahoslav; Maršálková, Eliška; Pochylý, František

    Hydrodynamic cavitation in single and multihole orifices was experimentally investigated to assess their hydraulic characteristics: loss coefficients, inception cavitation number, cavitation number for transition to supercavitation. Significant difference for singlehole and multihole orifices was observed in terms of the measured loss coefficient. It is significantly more effective to use multihole orifices, where energy dissipation is much lower.It was found that using scaling factor given by ratio of orifice thickness suggests linear behaviour of both loss coefficient and inception cavitation number. Orifices seem to be convenient choice as flow constriction devices inducing cavitation due to their simplicity.

  5. Experimental investigation of hydrodynamic cavitation through orifices of different geometries

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2017-01-01

    Full Text Available Hydrodynamic cavitation in single and multihole orifices was experimentally investigated to assess their hydraulic characteristics: loss coefficients, inception cavitation number, cavitation number for transition to supercavitation. Significant difference for singlehole and multihole orifices was observed in terms of the measured loss coefficient. It is significantly more effective to use multihole orifices, where energy dissipation is much lower.It was found that using scaling factor given by ratio of orifice thickness suggests linear behaviour of both loss coefficient and inception cavitation number. Orifices seem to be convenient choice as flow constriction devices inducing cavitation due to their simplicity.

  6. Motion of a single quantized vortex in an orifice

    International Nuclear Information System (INIS)

    Schwarz, K.W.

    1993-01-01

    Discrete phase-slip events are observed when superfluid 4 He moves through a microscopic orifice. In order to understand such behavior, one must know (a) how a quantized vortex is introduced into the orifice, and (b) how such a vortex evolves fluid dynamically so as to absorb energy from the applied flow field. To begin the study of the latter question, the authors present calculations done with an idealized orifice geometry. It is found that vortex loops larger than a critical size are carried out of the orifice and stretched by the diverging flow. As it stretches, such a vortex will cross the orifice, the energy required to stretch the vortex being absorbed from the flow field. Both a vortex loop introduced directly into the orifice and a remanent vortex extending to infinity will be discussed

  7. [Natural Orifice Transluminal Endoscopic Surgery (NOTES)].

    Science.gov (United States)

    Kim, Yong Sik; Kim, Chul Young; Chun, Hoon Jai

    2008-03-01

    Recently, the field of gastrointestinal endoscopy is developing rapidly. Once limited to the gastroinstestinal lumen, the endoscopic technology is now breaking the barriers and extending its boundary to peritoneal and pleural space. In 2004, Dr. Kalloo, a gastroenterologist, observed intraperitoneal organs of a pig using a conventional endoscope through the stomach wall. Since then, new endoscopic technique of intraperitoneal intervention with transluminal approach named the Natural Orifice Transluminal Endoscopic Surgery or NOTES has been introduced. NOTES reaches the target organ by inserting the endoscope through a natural orifice (e.g. mouth, anus, vagina, urethra) and entering the peritoneal lumen by means of making an incision on the luminal wall. After a series of successful experiences in animal studies, NOTES are now being tried on human subjects. There are still many obstacles to overcome, but bright future for this new technology is expected because of its proposed advantages of less pain, lower complication rate, short recovery time, and scarless access. In this review, we plan to learn about NOTES.

  8. A Mandibular Second Premolar with Three Canals and Atypical Orifices

    Directory of Open Access Journals (Sweden)

    Neha Agarwal

    2013-01-01

    Full Text Available Background: Mandibular second premolars with three canals (Type V, Vertucci and separate foramina are very rare. The anatomy of the pulp chamber floor in these premolars usually reveals one lingual and two buccal orifices at the same level. This case report describes a second premolar with three canals and an unusual pulpal floor anatomy with one mesiobuccal and one distobuccal orifice at the same level and an orifice on the distolingual wall. Very careful examination of the pulpal space with an optical device and preoperative spiral computed tomography is recommended to locate any unusual orifices.

  9. Inlet Geomorphology Evolution Work Unit

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...morphologic response. Presently, the primary tool of the Inlet Geomorphology Evolution work unit is the Sediment Mobility Tool (SMT), which allows the user

  10. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  11. Cavitation in flow through a micro-orifice inside a silicon microchannel

    Science.gov (United States)

    Mishra, Chandan; Peles, Yoav

    2005-01-01

    Hydrodynamic cavitation in flows through a micro-orifice entrenched in a microchannel has been detected and experimentally investigated. Microfabrication techniques have been employed to design and develop a microfluidic device containing an 11.5μm wide micro-orifice inside a 100.2μm wide and 101.3μm deep microchannel. The flow of de-ionized water through the micro-orifice reveals the presence of multifarious cavitating flow regimes. This investigation divulges both similarities and differences between cavitation in micro-orifices and cavitation in their macroscale counterparts. The low incipient cavitation number obtained from the current experiments suggests a dominant size scale effect. Choking cavitation is observed to be independent of any pressure or velocity scale effects. However, choking is significantly influenced by the small stream nuclei residence time at such scales. Flow rate choking leads to the establishment of a stationary cavity. Large flow and cavitation hysteresis have been detected at the microscale leading to very high desinent cavitation numbers. The rapid transition from incipient bubbles to choking cavitation and subsequent supercavitation suggests the presence of radically different flow patterns at the microscale. Supercavitation results in a thick cavity, which extends throughout the microchannel, and is encompassed by the liquid. Cavitation at the microscale is expected to considerably influence the design of innovative high-speed microfluidic systems.

  12. Experiment of cavitation erosion at the exit of a long orifice

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yoshinori; Murase, Michio [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    We performed experiments to clarify mechanism of cavitation erosion and to predict cavitation erosion rate at the exit of a long orifice equipped at the chemical and volume control system in a pressurized water reactor (PWR). In order to find this mechanism, we used a high speed video camera. As the result, we observed bubble collapses near the exit of the orifice when flow condition was oscillating. So the bubble collapses due to the oscillation might cause the first stage erosion at the exit of the orifice. Using the orifice which had the cone-shaped exit, we observed that bubbles collapsed near the exit and then they collapsed at the upstream like a chain reaction. So this bubble collapse mechanism could be explained as follows: shock wave was generated by the bubble collapse near the exit, then it propagated upwards, consequently it caused the bubble collapse at the upstream. And we predicted erosion rate by evaluating the effect of the velocity and comparing the erosion resistance between the test speciment (aluminum) and the plant material (stainless steel) by means of vibratory tests. We compared the predicted erosion rate with that of the average value estimated from plant investigation, then we examined the applicability of these method to the plant evaluations. (author)

  13. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  14. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  15. Jet Inlet Efficiency

    Science.gov (United States)

    2013-08-08

    AFRL-RW-EG-TR-2014-044 Jet Inlet Efficiency Nigel Plumb Taylor Sykes-Green Keith Williams John Wohleber Munitions Aerodynamics Sciences...CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Nigel Plumb Taylor Sykes-Green Keith Williams John

  16. CFD study of a simple orifice pulse tube cooler

    Science.gov (United States)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  17. Pressure Effect on Entrance Flow

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Couch, Mark

    1997-01-01

    The paper reports on experimentally determined pressure drops associated with orifice and capillary dies, where the exit pressure is elevated. The effect of hydrostatic pressure up to 70 MPa is reported for PS, LDPE and PP melts.......The paper reports on experimentally determined pressure drops associated with orifice and capillary dies, where the exit pressure is elevated. The effect of hydrostatic pressure up to 70 MPa is reported for PS, LDPE and PP melts....

  18. Decolorization of Acid Orange 7 by an electric field-assisted modified orifice plate hydrodynamic cavitation system: Optimization of operational parameters.

    Science.gov (United States)

    Jung, Kyung-Won; Park, Dae-Seon; Hwang, Min-Jin; Ahn, Kyu-Hong

    2015-09-01

    In this study, the decolorization of Acid Orange 7 (AO-7) with intensified performance was obtained using hydrodynamic cavitation (HC) combined with an electric field (graphite electrodes). As a preliminary step, various HC systems were compared in terms of decolorization, and, among them, the electric field-assisted modified orifice plate HC (EFM-HC) system exhibited perfect decolorization performance within 40 min of reaction time. Interestingly, when H2O2 was injected into the EFM-HC system as an additional oxidant, the reactor performance gradually decreased as the dosing ratio increased; thus, the remaining experiments were performed without H2O2. Subsequently, an optimization process was conducted using response surface methodology with a Box-Behnken design. The inlet pressure, initial pH, applied voltage, and reaction time were chosen as operational key factors, while decolorization was selected as the response variable. The overall performance revealed that the selected parameters were either slightly interdependent, or had significant interactive effects on the decolorization. In the verification test, complete decolorization was observed under statistically optimized conditions. This study suggests that EFM-HC is a useful method for pretreatment of dye wastewater with positive economic and commercial benefits. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Periodic cavitation shedding in a cylindrical orifice

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, C.; Barber, T.; Milton, B.; Rosengarten, G. [University of New South Wales, School of Mechanical and Manufacturing Engineering, Sydney (Australia)

    2011-11-15

    Cavitation structures in a large-scale (D = 8.25 mm), plain orifice style nozzle within a unique experimental rig are investigated using high-speed visualisation and digital image processing techniques. Refractive index matching with an acrylic nozzle is achieved using aqueous sodium iodide for the test fluid. Cavitation collapse length, unsteady shedding frequency and spray angles are measured for cavitation conditions from incipient to supercavitation for a range of Reynolds numbers, for a fixed L/D ratio of 4.85. Periodic cavitation shedding was shown to occur with frequencies between 500 and 2,000 Hz for conditions in which cavitation occupied less than 30% of the nozzle length. A discontinuity in collapse length was shown to occur once the cavitation exceeded this length, coinciding with a loss of periodic shedding. A mechanism for this behaviour is discussed. Peak spray angles of approximately {theta} {approx} 14 were recorded for supercavitation conditions indicating the positive influence of cavitation bubble collapse on the jet atomisation process. (orig.)

  20. Experimental and numerical investigation of coolant mixing in a model of reactor pressure vessel down-comer and in cold leg inlets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2017-01-01

    Full Text Available Thermal fatigue and pressurized thermal shock phenomena are the main problems for the reactor pressure vessel and the T-junctions both of them depend on the mixing of the coolant. The mixing process, flow and temperature distribution has been investigated experimentally using particle image velocimetry, laser induced fluorescence, and simulated by CFD tools. The obtained results showed that the ratio of flow rate between the main pipe and the branch pipe has a big influence on the mixing process. The particle image velocimetry/planar laser-induced fluorescence measurements technologies proved to be suitable for the investigation of turbulent mixing in the complicated flow system: both velocity and temperature distribution are important parameters in the determination of thermal fatigue and pressurized thermal shock. Results of the applied these techniques showed that both of them can be used as a good provider for data base and to validate CFD results.

  1. Investigation of wall mass transfer characteristics downstream of an orifice

    International Nuclear Information System (INIS)

    El-Gammal, M.; Ahmed, W.H.; Ching, C.Y.

    2012-01-01

    Highlights: ► Numerical simulations were performed for the mass transfer downstream of an orifice. ► The Low Reynolds Number K-ε turbulence model was used. ► The numerical results were in good agreement with existing experimental results. ► The maximum Sherwood number downstream of the orifice was significantly affected by the Reynolds number. ► The Sherwood number profile was well correlated with the turbulence kinetic energy profile close to the wall. - Abstract: Numerical simulations were performed to determine the effect of Reynolds number and orifice to pipe diameter ratio (d o /d) on the wall mass transfer rate downstream of an orifice. The simulations were performed for d o /d of 0.475 for Reynolds number up to 70,000. The effect of d o /d was determined by performing simulations at a Reynolds number of 70,000 for d o /d of 0.375, 0.475 and 0.575. The momentum and mass transport equations were solved using the Low Reynolds Number (LRN) K-ε turbulence model. The Sherwood number (Sh) profile downstream of the orifice was in relatively good agreement with existing experimental results. The Sh increases sharply downstream of the orifice, reaching a maximum within 1–2 diameters downstream of the orifice, before relaxing back to the fully developed pipe flow value. The Sh number well downstream of the orifice was in good agreement with results for fully developed pipe flow estimated from the correlation of . The peak Sh numbers from the simulations were higher than that predicted from and .

  2. Fabrication of small-orifice fuel injectors for diesel engines.

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  3. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    Science.gov (United States)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  4. Flow Control in a Compact Inlet

    Science.gov (United States)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  5. Energy dissipation characteristics of sharp-edged orifice plate

    Directory of Open Access Journals (Sweden)

    Ai Wanzheng

    2015-08-01

    Full Text Available The energy loss coefficient, relating directly to the energy dissipation ratio, is an important index of this energy dissipater. In this article, this coefficient and its affecting parameters were analyzed by theoretical considerations, and their relationships were obtained by numerical simulations. It could be concluded that the energy loss coefficient of sharp-edged orifice plate and its backflow region length were mainly dominated by the contraction ratio of the orifice plate. Sharp-edged orifice plate’s energy loss coefficient and its backflow region length all increase slightly with the increase in its thickness. When Reynolds number is in the range of 9.00×104–10.3×106, Reynolds number has little impacts on energy loss coefficient and backflow region length. Two empirical expressions, relating to backflow region length and energy loss coefficient, respectively, were presented.

  6. A pulse-tube refrigerator using variable-resistance orifice

    Science.gov (United States)

    Huang, B. J.; Sun, B. W.

    2003-01-01

    In the present study, we propose a new design of orifice pulse-tube refrigerator (VROPT) using a variable-resistance valve to replace the conventional orifice. The variable-resistance orifice (VRO) is basically a high-speed solenoidal valve similar to the fuel jet device widely used in automobile engines. By changing the frequency and periods of ON and OFF of the valve through an electronic device, we can change the flow resistance of the VRO. This thus provides a possibility for an OPT to be controlled on-line during operation. From the results obtained in the present study, we have shown that VROPT is able to achieve on-line control by regulating the duty cycle d or frequency fv of the VRO. We also show that VROPT will not loss its thermal performance as compared to conventional OPT.

  7. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  8. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  9. Pressure drop in ET-RR-1

    International Nuclear Information System (INIS)

    Khattab, M.; Mina, A.R.

    1990-01-01

    Measurements of pressure drop through a bundle comprising 16 rods and their lower arrangement grid as well as orifices similar to those of ET-RR-1 core have been done. Experiments are carried out under adiabatic turbulent flow conditions at about 35 degree C. Bundle Reynolds number range is 4 x 10 -2 x 10. Orifices of diameters 4.5, 3.25 or 2.5 cm. are mounted underneath the bundle. The bundle and lower grid pressure drop coefficients are 3.75 and 1.8 respectively. Orifices pressure drop coefficients are 2.65, 19.67 and 53.55 respectively. The ratio of bundle pressure drop to that of 4.5 cm. Orifice diameter is 1.415. The pressure drop coefficients are utilizer to calculate flow through bundles. The flow rate per bundle is 39.1, 20.4 or 13.1 m 3 /hr. Depending on orifice diameter

  10. The Performance Test for Reactor Coolant Pump (RCP) adopting Variable Restriction Orifice Type Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Bae, B. U.; Cho, Y. J. and others

    2014-05-15

    The design values of the RCPTF are 17.2 MPa, 343 .deg. C, 11.7 m{sup 3}/s, and 13 MW in the maximum pressure, temperature, flow rate, and electrical power, respectively. In the RCPTF, various types of tests can be performed including a hydraulic performance test to acquire a H-Q curve as well seal transient tests, thrust bearing transient test, cost down test, NPSHR verification test, and so on. After a commissioning startup test was successfully perfomed, mechanical structures are improved including a flow stabilizer and variable restriction orifice. Two- branch pipe (Y-branch) was installed to regulate the flow rate in the range of performance tests. In the main pipe, a flow restrictor (RO: Restriction Orifice) for limiting the maximum flow rate was installed. In the branch pipe line, a globe valve and a butterfly valves for regulating the flow rate was located on the each branch line. When the pressure loss of the valve side is smaller than that of the RO side, the flow rate of valve side was increasing and the flow disturbance was occurred in the lower pipe line. Due to flow disturbnace, it is to cause an error when measuring RCP head and flow measurement of the venturi flow meter installed in the lower main pipe line, and thus leading to a decrease in measurement accuracy as a result. To increase the efficiency of the flow control availability of the test facility, the variable restriction orifice (VRO) type flow control valve was designed and manufactured. In the RCPTF in KAERI, the performance tests and various kinds of transient tests of the RCP were successfully performed. In this study, H-Q curve of the pump using the VRO revealed a similar trend to the result from two ROs. The VRO was confirmed to effectively cover the full test range of the flow rate.

  11. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  12. Flow resistance of orifices and spacers of BWR thermal-hydraulic and neutronic coupling loop

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Asaka, Hideaki; Nakamura, Hideo

    2002-03-01

    Authors are performing THYNC experiments to study thermal-hydraulic instability under neutronic and thermal-hydraulic coupling. In THYNC experiments, the orifices are installed at the exit of the test section and the spacers are installed in the test section, in order to properly simulate in-core thermal-hydraulics in the reactor core. It is necessary to know the flow resistance of the orifices and spacers for the analysis of THYNC experimental results. Consequently, authors measured the flow resistance of orifice and spacer under single-phase and two-phase flows. Using the experimental results, authors investigated the dependency of the flow resistances on the parameters, such as pressure, mass flux, an geometries. Furthermore, authors investigated the applicability of the basic two-phase flow models, for example the separate flow model, to the two-phase flow multiplier. As the result of the investigation on the single-phase flow experiment, it was found (1) that the effects of pressure and mass flux flow resistance are described by a function of Reynolds number, and (2) that flow resistances of the orifice and the spacer are calculated with the previous prediction methods. However, it was necessary to introduce an empirical coefficient, since it was difficult to predict accurately the flow resistance only with the previous prediction method due to the complicated geometry dependency, for example a flow area blockage ratio. On the other hand, according to the investigation on two-phase flow experiment, the followings were found. (1) Relation between the two-phase flow multiplier and the quality is regarded to be linear under pressure of 2MPa - 7MPa. The relation is dependent on pressure and geometry, and is little dependent on mass flux. (2) Relation between the two-phase flow multiplier and void fraction is little dependent on pressure, mass flux, and geometry under pressure of 0.2MPa - 7MPa and void fraction less than 0.6. The relation is less dependent on

  13. Patient and physician perception of natural orifice transluminal endoscopic appendectomy

    Czech Academy of Sciences Publication Activity Database

    Hucl, T.; Saglová, A.; Beneš, M.; Kocík, M.; Oliverius, M.; Valenta, Zdeněk; Špičák, J.

    2012-01-01

    Roč. 18, č. 15 (2012), s. 1800-1805 ISSN 1007-9327 Institutional research plan: CEZ:AV0Z10300504 Keywords : natural orifice transluminal endoscopic surgery * patient perception * physician perception * appendectomy * laparoscopy Subject RIV: FJ - Surgery incl. Transplants Impact factor: 2.547, year: 2012

  14. Wave-driven fluxes through New River Inlet, NC

    Science.gov (United States)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2012-12-01

    The importance of wave forcing to inlet circulation is examined using observations of waves, water levels, and currents collected in and near New River Inlet, NC during April and May, 2012. A boat-mounted system was used to measure current profiles along transects across the inlet mouth during three 14-hr periods, providing information on cross-inlet current structure, as well as discharge. Additionally, an array of 13 colocated pressure gages and profilers were deployed along 2 km of the inlet channel (5 to 10 m water depths) and ebb shoal channel (2 to 3 m water depths) and 19 colocated pressure gages and acoustic Doppler velocimeters were deployed across and offshore of the ebb shoal (1 to 5 m water depths) (Figure 1). The inlet is well mixed and tidal currents ranged from +/- 1.5 m/s, maximum discharge rates at peak ebb and flood were about 700 to 900 m3/s, offshore significant wave heights Hsig were 0.5 to 2.5 m, and wind speeds ranged from 0 to 14 m/s. Time-integrated residual discharge over semi-diurnal tidal cycles with similar ranges was ebb dominant during calm conditions (May 11, net out-of-inlet discharge ~ 55 m3, Hsig ~ 0.5 m, NW winds ~ 3 m/s) and flood dominant during stormier conditions (May 14, net into-inlet discharge ~ 15 m3, Hsig ~ 1.2 m, S winds ~ 6.5 m/s). Low-pass filtered in situ profiler data suggest wave-forcing affects the fluxes into and out of the inlet. The observations will be used to examine the momentum balance governing the temporal and cross-inlet (channel vs. shoal) variation of these fluxes, as well as the effect of waves on ebb and flood flow dominance. Funding provided by the Office of Naval Research and a National Security Science and Engineering Faculty Fellowship.; Figure 1: Google Earth image of New River Inlet, NC. Colors are depth contours (scale on the right, units are m relative to mean sea level) and symbols are locations of colocated current meters and pressure gages.

  15. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    Science.gov (United States)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure

  16. Dual discharge from a stratified two-phase region through side orifices oriented horizontally

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, I G; Soliman, H M; Sims, G E [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Mechanical Engineering; Kowalski, J E [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    Experimental data are presented for the mass flow rate and quality of two-phase (air-water) discharge from a stratified region through two side orifices (6.35 mm i.d.) with their parallel centre lines located in a horizontal plane. These data correspond to different values of the interface level between the onsets of gas and liquid entrainments for test-section pressures of 316 and 517 kPa, test-section-to-separators pressure difference ranging from 40 to 235 kPa, orifice separating distance to diameter ratio ranging from 1.5 to 8 and different hydraulic resistances of the lines connecting the test section to the separators. Influences of these independent variables on the deviation between the present results (of mass flow rate and quality) and those corresponding to a single discharge are presented and discussed. Normalized plots are presented showing that the present data of dual discharge and those of a single discharge can be collapsed for the whole test range when specific definition for the dimensionless height of the interface and mass flow rate are used. Excellent agreement is demonstrated between single-discharge correlations and the present data using these dimensionless quantities. (author). 12 refs., 1 tab., 16 figs.

  17. Dual discharge from a stratified two-phase region through side orifices oriented horizontally

    International Nuclear Information System (INIS)

    Hassan, I.G.; Soliman, H.M.; Sims, G.E.; Kowalski, J.E.

    1995-01-01

    Experimental data are presented for the mass flow rate and quality of two-phase (air-water) discharge from a stratified region through two side orifices (6.35 mm i.d.) with their parallel centre lines located in a horizontal plane. These data correspond to different values of the interface level between the onsets of gas and liquid entrainments for test-section pressures of 316 and 517 kPa, test-section-to-separators pressure difference ranging from 40 to 235 kPa, orifice separating distance to diameter ratio ranging from 1.5 to 8 and different hydraulic resistances of the lines connecting the test section to the separators. Influences of these independent variables on the deviation between the present results (of mass flow rate and quality) and those corresponding to a single discharge are presented and discussed. Normalized plots are presented showing that the present data of dual discharge and those of a single discharge can be collapsed for the whole test range when specific definition for the dimensionless height of the interface and mass flow rate are used. Excellent agreement is demonstrated between single-discharge correlations and the present data using these dimensionless quantities. (author). 12 refs., 1 tab., 16 figs

  18. Experimental study of cooling performance of pneumatic synthetic jet with singular slot rectangular orifice

    Science.gov (United States)

    Yu, Roger Ho Zhen; Ismail, Mohd Azmi bin; Ramdan, Muhammad Iftishah; Mustaffa, Nur Musfirah binti

    2017-03-01

    Synthetic Jet generates turbulence flow in cooling the microelectronic devices. In this paper, the experiment investigation of the cooling performance of pneumatic synthetic jet with single slot rectangular orifices at low frequency motion is presented. The velocity profile at the end of the orifice was measured and used as characteristic performance of synthetic jet in the present study. Frequencies of synthetic jet and the compressed air pressure supplied to the pneumatic cylinder (1bar to 5bar) were the parameters of the flow measurement. The air velocity of the synthetic jet was measured by using anemometer air flow meter. The maximum air velocity was 0.5 m/s and it occurred at frequency motion of 8 Hz. The optimum compressed air supplied pressure of the synthetic jet study was 4 bar. The cooling performance of synthetic jet at several driven frequencies from 0 Hz to 8 Hz and heat dissipation between 2.5W and 9W were also investigate in the present study. The results showed that the Nusselt number increased and thermal resistance decreased with both frequency and Reynolds number. The lowest thermal resistance was 5.25°C/W and the highest Nusselt number was 13.39 at heat dissipation of 9W and driven frequency of 8Hz.

  19. Energy Efficiency for Biodiesel Production by Combining Two Orifices in Hydrodynamic Cavitation Reactor

    OpenAIRE

    Mahlinda, Mahlinda; Djafar, Fitriana

    2014-01-01

    Research of energy efficiency for biodiesel production process by combining two orifices on  hydrodynamic cavitation reactor had been carried out. The aim of this reseach was to studied effect of the number of orifices toward increasing temperature without using external energy source to produce biodiesel that generated by cavitation effects on orifices. The results of preliminary research showed by combining two orifices arranged in series can produce the highest thermal energy reached 48oC....

  20. Complication related to colostomy orifice: intestinal evisceration

    Directory of Open Access Journals (Sweden)

    Valdemir José Alegre Salles

    2011-12-01

    Full Text Available Intestinal evisceration at the site of a stoma is a rare event, with high morbimortality. Its clinical manifestation often occurs between the sixth and seventh days after surgery. The risk factors most frequently related to evisceration are: increased intra-abdominal pressure, digestive tract cancer surgery, emergency surgery and stomas in the surgical incision. The authors report the case of a male patient, aged 62, suffering from adenocarcinoma of the rectum with obstructive acute abdomen, who underwent loop transversotomy for decompression. On the fourth day after surgery, he had a bronchospasm crisis, with evisceration of ileum and colon through the colostomic hole. The association of some triggering factors, such as emergency surgery, colorectal malignant neoplasm, increased intra-abdominal pressure and technical failure of colostomy were decisive in the development of this rare peri-colostomy complication.A evisceração intestinal desenvolvida no sítio de um estoma é um evento raro, tendo elevada morbimortalidade. Sua manifestação clínica ocorre frequentemente entre o sexto e o sétimo dias de pós-operatório. Os fatores de risco mais frequentemente relacionados à evisceração são: aumento da pressão intra-abdominal, câncer do aparelho digestório, cirurgia de urgência e estomias na incisão cirúrgica. Os autores relatam o caso de um paciente do sexo masculino, com 62 anos, portador de adenocarcinoma do reto médio com abdômen agudo obstrutivo, sendo submetido à transversostomia em alça, com finalidade descompressiva. No quarto dia de pós-operatório com crise de broncoespasmo, apresentou evisceração do cólon e íleo pelo orifício abdominal colostômico. A associação de alguns fatores desencadeantes, como a cirurgia de urgência, a doença neoplásica colorretal maligna, o aumento da pressão intra-abdominal e a falha técnica na confecção da colostomia, foram determinantes para o desenvolvimento desta rara

  1. Laboratory evaluation of a vibrating orifice monodisperse aerosol generator

    International Nuclear Information System (INIS)

    Everitt, N.M.; Snelling, K.W.

    1985-02-01

    The Berglund-Liu vibrating orifice aerosol generator is capable of producing monodisperse particles in the diameter range 5 to 50 μm. Experiments have been carried out to set up and evaluate such a generator for the preparation of standard liquid (olive oil) and solid (methylene blue) aerosols in the size range 8 to 13 μm. Modifications have been made to the apparatus to improve its performance and increase its particle output. (author)

  2. Preparation of spherical particles by vibrating orifice technique

    Science.gov (United States)

    Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki

    2000-05-01

    Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.

  3. Killing rate of colony count by hydrodynamic cavitation due to square multi-orifice plates

    Science.gov (United States)

    Dong, Zhiyong; Zhao, Wenqian

    2018-02-01

    Currently,in water supply engineering, the conventional technique of disinfection by chlorination is employed to kill pathogenic microorganisms in raw water. However, chlorine reacts with organic compounds in water and generates disinfection byproducts (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs) etc. These byproducts are of carcinogenic, teratogenic and mutagenic effects, which seriously threaten human health. Hydrodynamic cavitation is a novel technique of drinking water disinfection without DBPs. Effects of orifice size, orifice number and orifice layout of multi-orifice plate, cavitation number, cavitation time and orifice velocity on killing pathogenic microorganisms by cavitation were investigated experimentally in a self-developed square multi-orifice plate-type hydrodynamic cavitation device. The experimental results showed that cavitation effects increased with decrease in orifice size and increase in orifice number, cavitation time and orifice velocity. Along with lowering in cavitation number, there was an increase in Reynolds shear stress,thus enhancing the killing rate of pathogenic microorganism in raw water. In addition, the killing rate by staggered orifice layout was greater than that by checkerboard-type orifice layout.

  4. Viscous flow considerations in the design of the Busemann hypersonic air inlet

    International Nuclear Information System (INIS)

    Walsh, P.C.; Tahir, R.B.; Molder, S.

    2002-01-01

    A cost effective means of traveling to a low earth orbit is using an aircraft that relies on air-breathing engine technology for most of its trajectory while in the atmosphere. The scramjets that would be used to provide propulsion require inlet air diffusion with minimal total pressure losses to maintain efficiency. The Busemann inlet was designed using inviscid flow assumptions specifically for such purposes. This paper presents an investigation into the effects of viscosity on inlet performance in terms of static pressure rise and internal shockwave configuration. The viscous effects within the inlet can alter the design pressure ratio as much as 50%. It was shown that a correction based on a displacement radius calculation was sufficient to restore the static pressure performance of the inviscid design. An improvement of 16% in total pressure losses was observed with the corrected Busemann profile. Results are compared to experimentally determined surface pressure values. (author)

  5. Performance study for inlet installations

    Science.gov (United States)

    Bingaman, Donald C.

    1992-01-01

    A conceptual design trade study was conducted by McDonnell Aircraft Company (MCAIR) and NASA LARC PAB to determine the impact of inlet design features incorporated for reduced detectability on inlet performance, weight, and cost, for both fighter and attack-type aircraft. Quality Function Deployment (QFD) techniques were used to prioritize trade study issues, and select 'best' air induction system configurations for each of two notional aircraft, the Multi-Role Fighter (MRF) and the Advanced Medium Attack (AMA) bomber. Database deficiencies discovered in the trade study process were identified, and technology roadmaps were developed to address these deficiencies. Finally, two high speed inlet wind tunnel model concepts were developed for follow-on wind tunnel investigations.

  6. Validation of helium inlet design for ITER toroidal field coil

    International Nuclear Information System (INIS)

    Boyer, C.; Seo, K.; Hamada, K.; Foussat, A.; Le Rest, M.; Mitchell, N.; Decool, P.; Savary, F.; Sgobba, S.; Weiss, K.P.

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb 3 Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are preparing the helium inlet mock-up for a qualification test. (authors)

  7. Combined experimental and computational investigation of the cavitating flow in an orifice plate with special emphasis on surrogate-based optimization method

    International Nuclear Information System (INIS)

    Li, XianLin; Huang, Biao; Chen, Tairan; Liu, Ying; Qiu, Si Cong; Zhao, Jing

    2017-01-01

    We investigated the influence of geometrical parameters of the orifice plate on the cavitation structures, and optimized these parameters by using a surrogate-based model with special emphasis on the concentration of hydroxyl radical released. The results show that for the orifice plate of the hydrodynamic cavitation system, the possible location of the inception of the cavity spreads to throat and divergent section of the venturi geometry. Based on the surrogate model and global sensitivity assessment, the diameter of throat Dt and diameter of inlet Din significantly influenced the size of the cavity, while the length of throat Lt had little effect on both cavitation intensity and flow rate. It should be noted that when Lt is decreased, the size of cavity would be slightly decreased but the flow rate increased clearly. The increase of the diverging section is in favor of the size of cavity. By comparing the experimental measurements on the concentration of Methylene blue, the optimum geometry of the orifice plate for best cavitational activity is proposed

  8. Combined experimental and computational investigation of the cavitating flow in an orifice plate with special emphasis on surrogate-based optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Li, XianLin; Huang, Biao; Chen, Tairan; Liu, Ying; Qiu, Si Cong [School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing (China); Zhao, Jing [China Academy of Launch Vehicle Technology, Beijing (China)

    2017-01-15

    We investigated the influence of geometrical parameters of the orifice plate on the cavitation structures, and optimized these parameters by using a surrogate-based model with special emphasis on the concentration of hydroxyl radical released. The results show that for the orifice plate of the hydrodynamic cavitation system, the possible location of the inception of the cavity spreads to throat and divergent section of the venturi geometry. Based on the surrogate model and global sensitivity assessment, the diameter of throat Dt and diameter of inlet Din significantly influenced the size of the cavity, while the length of throat Lt had little effect on both cavitation intensity and flow rate. It should be noted that when Lt is decreased, the size of cavity would be slightly decreased but the flow rate increased clearly. The increase of the diverging section is in favor of the size of cavity. By comparing the experimental measurements on the concentration of Methylene blue, the optimum geometry of the orifice plate for best cavitational activity is proposed.

  9. Parametric Data from a Wind Tunnel Test on a Rocket-Based Combined-Cycle Engine Inlet

    Science.gov (United States)

    Fernandez, Rene; Trefny, Charles J.; Thomas, Scott R.; Bulman, Mel J.

    2001-01-01

    A 40-percent scale model of the inlet to a rocket-based combined-cycle (RBCC) engine was tested in the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT). The full-scale RBCC engine is scheduled for test in the Hypersonic Tunnel Facility (HTF) at NASA Glenn's Plum Brook Station at Mach 5 and 6. This engine will incorporate the configuration of this inlet model which achieved the best performance during the present experiment. The inlet test was conducted at Mach numbers of 4.0, 5.0, 5.5, and 6.0. The fixed-geometry inlet consists of an 8 deg.. forebody compression plate, boundary layer diverter, and two compressive struts located within 2 parallel sidewalls. These struts extend through the inlet, dividing the flowpath into three channels. Test parameters investigated included strut geometry, boundary layer ingestion, and Reynolds number (Re). Inlet axial pressure distributions and cross-sectional Pitot-pressure surveys at the base of the struts were measured at varying back-pressures. Inlet performance and starting data are presented. The inlet chosen for the RBCC engine self-started at all Mach numbers from 4 to 6. Pitot-pressure contours showed large flow nonuniformity on the body-side of the inlet. The inlet provided adequate pressure recovery and flow quality for the RBCC cycle even with the flow separation.

  10. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  11. An experimental study of the effects of bodyside compression on forward swept sidewall compression inlets ingesting a turbulent boundary layer

    Science.gov (United States)

    Rodi, Patrick E.

    1993-01-01

    Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.

  12. The Impact of Manifold-to-Orifice Turning Angle on Sharp-Edge Orifice Flow Characteristics in both Cavitation and Non-Cavitation Turbulent Flow Regimes (Preprint)

    Science.gov (United States)

    2007-06-01

    varies as the cavitation number is lowered. The third is supercavitation where the vapor pocket attachment has moved to the orifice exit and beyond but...the flow still acts as attached. For this study only the 90 degree orifice angle configuration experienced supercavitation . For all other angles

  13. JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION

    Directory of Open Access Journals (Sweden)

    Jiří Pečinka

    2017-02-01

    Full Text Available Total pressure distortion is one of the three basic flow distortions (total pressure, total temperature and swirl distortion that might appear at the inlet of a gas turbine engine (GTE during operation. Different numerical parameters are used for assessing the total pressure distortion intensity and extent. These summary descriptors are based on the distribution of total pressure in the aerodynamic interface plane. There are two descriptors largely spread around the world, however, three or four others are still in use and can be found in current references. The staff at the University of Defence decided to compare the most common descriptors using basic flow distortion patterns in order to select the most appropriate descriptor for future department research. The most common descriptors were identified based on their prevalence in widely accessible publications. The construction and use of these descriptors are reviewed in the paper. Subsequently, they are applied to radial, angular, and combined distortion patterns of different intensities and with varied mass flow rates. The tests were performed on a specially designed test bench using an electrically driven standalone industrial centrifugal compressor, sucking air through the inlet of a TJ100 small turbojet engine. Distortion screens were placed into the inlet channel to create the desired total pressure distortions. Of the three basic distortions, only the total pressure distortion descriptors were evaluated. However, both total and static pressures were collected using a multi probe rotational measurement system.

  14. Geomorphic Analysis of Mattituck Inlet and Goldsmith Inlet, Long Island, New York

    National Research Council Canada - National Science Library

    Morgan, Michael J; Kraus, Nicholas C; McDonald, Jodi M

    2005-01-01

    This study of Mattituck Inlet and Goldsmith Inlet, Long Island, NY, covers the historic and geomorphic background, literature, field measurements, numerical modeling of tidal circulation, and analysis...

  15. Optimization of inlet plenum of A PBMR using surrogate modeling

    International Nuclear Information System (INIS)

    Lee, Sang-Moon; Kim, Kwang-Yong

    2009-01-01

    The purpose of present work is to optimize the design of inlet plenum of PBMR type gas cooled nuclear reactor numerically using a combining of three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. Shear stress transport (SST) turbulence model is used as a turbulence closure. Three geometric design variables are selected, namely, rising channel diameter to plenum height ratio, aspect ratio of the plenum cross section, and inlet port angle. The objective function is defined as a linear combination of uniformity of three-dimensional flow distribution term and pressure drop in the inlet plenum and rising channels of PBMR term with a weighting factor. Twenty design points are selected using Latin-hypercube method of design of experiment and objective function values are obtained at each design point using RANS solver. (author)

  16. Characterization of surface position in a liquid dispensing orifice

    Energy Technology Data Exchange (ETDEWEB)

    Farahi, R H [ORNL; Passian, Ali [ORNL; Thundat, Thomas George [ORNL; Lereu, Aude L [ORNL; Tetard, Laurene [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Jones, Yolanda [ORNL

    2009-01-01

    Precision microdispencing technology delivers picoliter amounts of fluid for printing, electronic, optical, chemical and biomedical applications. In particular, microjetting is capable of accurate, flexible, and non-contact coating with polymers, thus allowing the functionalization of delicate microsensors such as microcantilevers. Information on various phases of droplet formation are important to control volume, uniformity, velocity and rate. One such aspect is the ringing of the meniscus after droplet breakoff which can affect subsequent drop formation. We present analysis of an optical characterization technique and experimental results on the behaviour of menisus oscillations in an orifice of a piezoelectric microjet.

  17. Surgery via natural orifices in human beings: yesterday, today, tomorrow.

    Science.gov (United States)

    Moris, Demetrios N; Bramis, Konstantinos J; Mantonakis, Eleftherios I; Papalampros, Efstathios L; Petrou, Athanasios S; Papalampros, Alexandros E

    2012-07-01

    We performed an evaluation of models, techniques, and applicability to the clinical setting of natural orifice surgery (mainly natural orifice transluminal endoscopic surgery [NOTES]) primarily in general surgery procedures. NOTES has attracted much attention recently for its potential to establish a completely alternative approach to the traditional surgical procedures performed entirely through a natural orifice. Beyond the potentially scar-free surgery and abolishment of dermal incision-related complications, the safety and efficacy of this new surgical technology must be evaluated. Studies were identified by searching MEDLINE, EMBASE, Cochrane Library, and Entrez PubMed from 2007 to February 2011. Most of the references were identified from 2009 to 2010. There were limitations as far as the population that was evaluated (only human beings, no cadavers or animals) was concerned, but there were no limitations concerning the level of evidence of the studies that were evaluated. The studies that were deemed applicable for our review were published mainly from 2007 to 2010 (see Methods section). All the evaluated studies were conducted only in human beings. We studied the most common referred in the literature orifices such as vaginal, oral, gastric, esophageal, anal, or urethral. The optimal access route and method could not be established because of the different nature of each procedure. We mainly studied procedures in the field of general surgery such as cholecystectomy, intestinal cancers, renal cancers, appendectomy, mediastinoscopy, and peritoneoscopy. All procedures were feasible and most of them had an uneventful postoperative course. A number of technical problems were encountered, especially as far as pure NOTES procedures are concerned, which makes the need of developing new endoscopic instruments, to facilitate each approach, undeniable. NOTES is still in the early stages of development and more robust technologies will be needed to achieve reliable

  18. Return to axi-symmetry for pipe flows generated after a fractal orifice

    Energy Technology Data Exchange (ETDEWEB)

    Nicolleau, F C G A, E-mail: F.Nicolleau@Sheffield.ac.uk [SFMG, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2013-12-15

    We present experimental results obtained from pipe flows generated by fractal shaped orifices or openings. We compare different fractal orifices and their efficiencies to re-generate axi-symmetric flows and to return to the standard flow generated by a perforated plate or a circular orifice plate. We consider two families of fractal openings: mono-orifice and complex orifice and emphasize the differences between the two fractal families. For the Reynolds number we used, we found that there is an optimum iteration for the fractal level above which no improvement for practical applications such as flowmetering is to be expected. The main parameters we propose for the characterization of the fractal orifice are the connexity parameter, the symmetry angle and the gap to the wall {delta}*{sub g}. The results presented here are among the first for flows forced through fractal openings and will serve as a reference for future studies and benchmarks for numerical applications. (paper)

  19. Return to axi-symmetry for pipe flows generated after a fractal orifice

    International Nuclear Information System (INIS)

    Nicolleau, F C G A

    2013-01-01

    We present experimental results obtained from pipe flows generated by fractal shaped orifices or openings. We compare different fractal orifices and their efficiencies to re-generate axi-symmetric flows and to return to the standard flow generated by a perforated plate or a circular orifice plate. We consider two families of fractal openings: mono-orifice and complex orifice and emphasize the differences between the two fractal families. For the Reynolds number we used, we found that there is an optimum iteration for the fractal level above which no improvement for practical applications such as flowmetering is to be expected. The main parameters we propose for the characterization of the fractal orifice are the connexity parameter, the symmetry angle and the gap to the wall δ* g . The results presented here are among the first for flows forced through fractal openings and will serve as a reference for future studies and benchmarks for numerical applications. (paper)

  20. Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow

    Science.gov (United States)

    Giuliani, James Edward

    Future civil transport designs may incorporate engines integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlets ingest the lower momentum boundary layer flow that develops along the surface of the aircraft. Previous studies have shown, however, that the efficiency benefits of Boundary Layer Ingesting (BLI) inlets are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This project represents an effort to extend the modeling capabilities of TURBO, an existing rotating turbomachinery unsteady analysis code, to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations. Extending TURBO to simulate the external and inlet flow field upstream of the fan will allow accurate pressure distortions that result from BLI inlet configurations to be computed and used to analyze fan aerodynamics and structural response. To validate the modifications for the BLI inlet flow field, an experimental NASA project to study flush-mounted S-duct inlets with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Once the inlet modifications were validated, a hypothetical compressor fan was connected to the inlet, matching the inlet operating conditions so that the effect on the distortion could be evaluated. Although the total pressure distortion upstream of the fan was symmetrical for this geometry, the pressure rise generated by the fan blades was not, because of the velocity non-uniformity of the distortion

  1. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    Science.gov (United States)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  2. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  3. Multiple shell pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1988-01-01

    A method is described of fabricating a pressure vessel comprising the steps of: attaching a first inner pressure vessel having means defining inlet and outlet openings to a top flange, placing a second inner pressure vessel, having means defining inlet and outlet opening, concentric with and spaced about the first inner pressure vessel and attaching the second inner pressure vessel to the top flange, placing an outer pressure vessel, having inlet and outlet openings, concentric with and spaced apart about the second inner pressure vessel and attaching the outer pressure vessel to the top flange, attaching a generally cylindrical inner inlet conduit and a generally cylindrical inner outlet conduit respectively to the inlet and outlet openings in the first inner pressure vessel, attaching a generally cylindrical outer inlet conduit and a generally cylindrical outer outlet conduit respectively to the inlet and outlet opening in the second inner pressure vessel, heating the assembled pressure vessel to a temperature above the melting point of a material selected from the group, lead, tin, antimony, bismuth, potassium, sodium, boron and mixtures thereof, filling the space between the first inner pressure vessel and the second inner pressure vessel with material selected from the group, filling the space between the second inner pressure vessel and the outer pressure vessel with material selected from the group, and pressurizing the material filling the spaces between the pressure vessels to a predetermined pressure, the step comprising: pressurizing the spaces to a pressure whereby the wall of the first inner pressure vessel is maintained in compression during steady state operation of the pressure vessel

  4. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  5. Critical flashing flows in nozzles with subcooled inlet conditions

    International Nuclear Information System (INIS)

    Abuaf, N.; Jones, O.C. Jr.; Wu, B.J.C.

    1983-01-01

    Examination of a large number of experiments dealing with flashing flows in converging and converging-diverging nozzles reveals that knowledge of the flashing inception point is the key to the prediction of critical flow rates. An extension of the static flashing inception correlation of Jones [16] and Alamgir and Lienhard [17] to flowing systems has allowed the determination of the location of flashing inception in nozzle flows with subcooled inlet conditions. It is shown that in all the experiments examined with subcooled inlet regardless of the degree of inlet subcooling, flashing inception invariably occurred very close to the throat. A correlation is given to predict flashing inception in both pipes and nozzles which matches all data available, but is lacking verification in intermediate nozzle geometries where turbulence may be important. A consequence of this behavior is that the critical mass flux may be correlated to the pressure difference between the nozzle inlet and flashing inception, through a single phase liquid discharge coefficient and an accurate prediction of the flashing inception pressure at the throat. Comparison with the available experiments indicate that the predicted mass fluxes are within 5 percent of the measurements

  6. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb$_{3}$Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, a...

  7. Improved Hypersonic Inlet Performance Using Validated Strut Compression Designs

    Science.gov (United States)

    Bulman, M. J.; Stout, P. W.; Fernandez, R.

    1997-01-01

    Aerojet is currently executing two Strutjet propulsion contracts: one a Rocket Based Combined Cycle (RBCC) engine for a NASA-Marshall Space Flight Center (MSFC) Advanced Reusable Transportation Technology (ARTT) program, the second a Dual Mode Ram/Scramjet engine for a USAF Wright Laboratories Storable Fuel Scramjet Flow Path Concepts program. The engines employed in both programs operate at supersonic and low hypersonic speeds and use inlets employing forebody external and sidewall compression. Aerojet has developed and validated a successful design methodology applicable to these inlet types. Design features include an integrated vehicle forebody, external side compression struts, strut sidewall and throat bleed, a throat shock trap, and variable geometry internal contraction. Computation Fluid Dynamic (CFD) predictions and test data show these inlets allow substantially increased flow turning angles over other designs. These increased flow turning angles allow shorter and lighter engines than current designs, which in turn enables higher performing vehicles with broad operating characteristics. This paper describes the designs of two different inlets evaluated by the NASA-MSFC and USAF programs, discusses the results of wind tunnel tests performed by NASA-Lewis Research Center, and provides correlations of test data with CFD predictions. Parameters of interest include low Mach number starting capability, start sensitivity as a function of back pressure at various contraction ratios, flow turning angles, strut and throat bleed effects, and pressure recovery at various Mach numbers.

  8. Microjet flow control in an ultra-compact serpentine inlet

    Directory of Open Access Journals (Sweden)

    Da Xingya

    2015-10-01

    Full Text Available Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interface plane (AIP face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the momentum coefficient affects the control effectiveness in a dual stepping manner.

  9. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  10. The counter-current flooding limit in vertical tubes with and without orifices

    International Nuclear Information System (INIS)

    Tye, P.; Davidson, M.; Teyssedou, A.; Tapucu, A.; Matuszkiewicz, A.; Midvidy, W.

    1993-01-01

    For hypothetical loss of coolant accidents in nuclear reactors, rapid reflooding of the core is desirable. In CANDU reactors the cooling water is injected into the headers which are connected to the fuel channels by the feeder pipes. These pipes consist of vertical and horizontal runs; in some feeders, orifices and/or venturi flow meters are installed for flow adjustments and measurements respectively. For certain postulated accident scenarios, steam coming from the fuel channels and/or generated in the hot feeders may flow in the direction opposite to that of the cooling water thereby, creating a vertical or horizontal counter-current two-phase flow. Under these conditions, the rate at which cooling water can enter the fuel channels may be limited by the flooding phenomena. This phenomena is greatly affected by the geometry of the feeder pips, shape and number of fittings, and the flow area restrictions located in the feeders. In this paper the influence that orifice type flow area restrictions have on the counter-current flooding limit (CCFL) in a vertical tube is examined. air and water at close to atmospheric conditions are used as the working fluids. The data collected on the counter-current flooding limit in a vertical tube both with and without flow area restrictions is compared against some of the most commonly used correlations that are available in the open literature. Data on the two-phase counter-current pressure drop below the flooding point are also presented. 12 refs., 10 figs., 1 tab

  11. Determination of a test section parameters for Iris nuclear reactor pressurizer

    International Nuclear Information System (INIS)

    Silva, Mario A.B. da; Lira, Carlos A.B. de O.

    2009-01-01

    An integral, modular and medium size nuclear reactor, known as IRIS, is being developed by Westinghouse and by research centers. IRIS is characterized by having most of its components inside the pressure vessel, eliminating the probability of accidents. Due to its integral configuration, there is no spray system for boron homogenization, which may cause power transients. Thus, boron mixing must be investigated. The aim of this paper is to establish the conditions under which a test section has to be built for boron dispersion analysis inside IRIS reactor pressurizer. Through Fractional Scaling Analysis, which is a new methodology of similarity, the main parameters for a test section are obtained. By combining Fractional Scaling Analysis with local scaling for the densimetric Froude number and a previously established volumetric scale factor, the values of recirculation orifices, inlet water temperature, time scale factor and recirculation flow for the test section (model) are determined so that boron distribution is well represented in IRIS reactor pressurizer (prototype). Analytical solutions were used to validate the adopted methodology and when the results simulated in the model are compared to those that characterize the prototype, the agreement for both systems is absolute. The thermal power also influences boron distribution inside the test section. This power is determined by condensation laws in the vapor region and by suitable correlations for free convection. The fractions for rising inlet recirculation water enthalpy and vapor formation are also considered. (author)

  12. Inlet design for high-speed propfans

    Science.gov (United States)

    Little, B. H., Jr.; Hinson, B. L.

    1982-01-01

    A two-part study was performed to design inlets for high-speed propfan installation. The first part was a parametric study to select promising inlet concepts. A wide range of inlet geometries was examined and evaluated - primarily on the basis of cruise thrust and fuel burn performance. Two inlet concepts were than chosen for more detailed design studies - one apropriate to offset engine/gearbox arrangements and the other to in-line arrangements. In the second part of this study, inlet design points were chosen to optimize the net installed thrust, and detailed design of the two inlet configurations was performed. An analytical methodology was developed to account for propfan slipstream effects, transonic flow efects, and three-dimensional geometry effects. Using this methodology, low drag cowls were designed for the two inlets.

  13. Evaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motor

    International Nuclear Information System (INIS)

    Li, Baoren; Gao, Longlong; Yang, Gang

    2013-01-01

    Highlights: ► A novel energy saving high-pressure electro-pneumatic servo valve is presented. ► An evaluated method for steady gas flow forces on pneumatic valves is proposed. ► Gas jet angles at the orifices for the valve are larger than 69° commonly used. ► The steady gas flow force is strongly nonlinear with valve opening. ► The steady gas flow force is compensated and the aim at energy saving is realized. - Abstract: A novel voice coil motor (VCM) direct drive single stage high-pressure pneumatic servo valve is designed, and then the steady gas flow force acting on the spool of the servo valve is investigated by numerical simulation and experimental methods in this paper. At present, many studies about flow force are concentrated mainly on hydraulic valves, but rarely on pneumatic valves. However, the velocity of gas is up to sonic when high-pressure gas flows through the servo valve orifice. And therefore, the steady gas flow force, generated by high pressure and high speed gas flow, cannot be neglected and is an important disturbance for the VCM direct-drive single stage high-pressure pneumatic servo valve. Consequently, the numerical simulation with computational fluid dynamics (CFD) is adopted to analyze the flow filed, jet angles, and steady gas flow forces for the servo valve with different valve openings and inlet pressures. The experimental study is performed to evaluate and confirm the numerical analysis. Then the compensated approach is proposed to reduce the steady gas flow force for the servo valve, changing the angle of non-metering port designed in the valve sleeve to the spool axis. The results demonstrate that the presented numerical analysis method is validated, the gas jet angle for the servo valve orifice is more than 69° and varies with different spool openings, and the steady gas flow force is nonlinear with valve opening and linear with inlet pressure when the outlet boundary is atmospheric pressure. Moreover, the steady gas

  14. Transport phenomena of macro and micro flows behind orifice and flow accelerated corrosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Hayase, Toshiyuki; Ohara, Taku; Ikohagi, Toshiaki

    2008-01-01

    This paper describes experiment and numerical simulations for macro and micro flows behind an orifice model in a square pipe, which are carried from the viewpoint of flow accelerated corrosion (FAC). The measurements of velocity field behind the orifice model were carried out using particle image velocimetry, and the variations of velocity field with respect to the accuracy of the orifice position were studied. It is found that the reattachment behavior of the flow is highly influenced by the orifice position, which is a critical problem for predicting the pipe thinning phenomena by FAC. The DNS simulation was also conducted for calculating the macro flow behind the orifice. The result suggests that the DNS simulation is applicable to the prediction of pipe thinning macro flow for highly aged nuclear plant. The micro flow simulation can predict the pipe thinning phenomena near the wall. (author)

  15. Theoretical and Experimental Analysis of Low-Drag Supersonic Inlets Having a Circular Cross Section and a Central Body at Mach Numbers 3.30, 2.75, and 2.45

    Science.gov (United States)

    Ferri, Antonio; Nucci, Louis M

    1954-01-01

    Contains theoretical and experimental analysis of circular inlets having a central body at Mach numbers of 3.30, 2.75, and 2.45. The inlets have been designed in order to have low drag and high pressure recovery. The pressure recoveries obtained are of the same order of magnitude as those previously obtained by inlets having very large external drag.

  16. Numerical Simulation of Boundary Layer Ingesting (BLI) Inlet-Fan Interaction

    Science.gov (United States)

    Giuliani, James; Chen, Jen-Ping; Beach, Timothy; Bakhle, Milind

    2014-01-01

    Future civil transport designs may incorporate engine inlets integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlet ingests the lower momentum boundary layer flow. Previous studies have shown, however, that efficiency benefits of Boundary Layer Ingesting (BLI) ingestion are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This paper presents an effort to extend the modeling capabilities of an existing rotating turbomachinery unsteady analysis code to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations, such as the development of rotating stall and inlet distortion through compressor stages. This paper describes the first phase of an effort to extend the TURBO model to calculate the external and inlet flowfield upstream of fan so that accurate pressure distortions that result from BLI configurations can be computed and used to analyze fan aerodynamics and structural response. To validate the TURBO program modifications for the BLI flowfield, experimental test data obtained by NASA for a flushmounted S-duct with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Quantitative data is presented that indicates good predictive capability of the model in the upstream flow. A representative fan is attached to the inlet and results are presented for the coupled inlet/fan model. The impact on the total pressure distortion at the AIP after the fan is attached is examined.

  17. Quantitative characterization of near-field fuel sprays by multi-orifice direct injection using ultrafast x-tomography technique

    International Nuclear Information System (INIS)

    Liu, X.; Im, K.S.; Wang, Y.; Wang, J.; Hung, D.L.S.; Winkelman, J.R.; Tate, M.W.; Ercan, A.; Koerner, L.J.; Caswell, T.; Chamberlain, D.; Schuette, D.R.; Philipp, H.; Smilgies, D.M.; Gruner, S.M.

    2006-01-01

    A low-pressure direct injection fuel system for spark ignition direct injection engines has been developed, in which a high-turbulence nozzle technology was employed to achieve fine fuel droplet size at a low injection pressure around 2 MPa. It is particularly important to study spray characteristics in the near-nozzle region due to the immediate liquid breakup at the nozzle exit. By using an ultrafast x-ray area detector and intense synchrotron x-ray beams, the interior structure and dynamics of the direct injection gasoline sprays from a multi-orifice turbulence-assisted nozzle were elucidated for the first time in a highly quantitative manner with μs-temporal resolution. Revealed by a newly developed, ultrafast computed x-microtomography technique, many detailed features associated with the transient liquid flows are readily observable in the reconstructed spray. Furthermore, an accurate 3-dimensional fuel density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. The time-dependent fuel density distribution revealed that the fuel jet is well broken up immediately at the nozzle exits. These results not only reveal the near-field characteristics of the partial atomized fuel sprays with unprecedented detail, but also facilitate the development of an advanced multi-orifice direct injector. This ultrafast tomography capability also will facilitate the realistic computational fluid dynamic simulations in highly transient and multiphase fuel spray systems.

  18. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

    International Nuclear Information System (INIS)

    Kitto, J.B. Jr.

    1986-01-01

    An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

  19. Sediment Budget Analysis; Masonboro Inlet, North Carolina

    Science.gov (United States)

    2017-08-15

    ER D C/ CH L TR -1 7- 13 Regional Sediment Management (RSM) Program Sediment Budget Analysis; Masonboro Inlet, North Carolina Co as ta...ERDC/CHL TR-17-13 August 2017 Sediment Budget Analysis; Masonboro Inlet, North Carolina Kevin B. Conner U.S. Army Engineer District, Wilmington P...Engineers Washington, DC 20314-1000 Under Project 454632, “Sediment Budget Analysis, Masonboro Inlet, NC” ERDC/CHL TR-17-13 ii Abstract A

  20. Investigation on Hydrodynamic Cavitation of a Restriction Orifice and Static Mixer on Crud-like Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Man; Lee, Seung Won; Park, Seong Dae; Kang, Sa Rah; Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-05-15

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core have shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice and static mixer fundamentally

  1. Effects of Hydrodynamic Cavitation of a Restriction Orifice on Crud-like Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Man; Lee, Seung Won; Park, Sung Dae; Kang, Sarah; Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2011-10-15

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core has shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice fundamentally

  2. Investigation on Hydrodynamic Cavitation of a Restriction Orifice and Static Mixer on Crud-like Deposits

    International Nuclear Information System (INIS)

    Kim, Seong Man; Lee, Seung Won; Park, Seong Dae; Kang, Sa Rah; Seo, Han; Bang, In Cheol

    2012-01-01

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core have shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice and static mixer fundamentally

  3. Effects of Hydrodynamic Cavitation of a Restriction Orifice on Crud-like Deposits

    International Nuclear Information System (INIS)

    Kim, Seong Man; Lee, Seung Won; Park, Sung Dae; Kang, Sarah; Seo, Han; Bang, In Cheol

    2011-01-01

    Axial Offset Anomaly (AOA) referring to an unexpected neutron flux depression is also known as Crud Induced Power Shift (CIPS). Fuel assemblies removed from an AOA core has shown a thick porous deposition layer of crud on fuel clad surface. The deposition layer was induced by precipitation reactions of both boron species and crud during sub-cooled nucleate boiling. Therefore, to resolve the AOA issues, a fuel cleaning technology using ultrasonic cavitation has been developed by EPRI and applied to the domestic NPPs by KNF. However, the performance of crud removal during maintenance of NPPs is known to be not enough. Hydrodynamic cavitation is the process of vaporization, bubble generation and bubble implosion which occurs in a flowing liquid as a result of decrease and subsequent increase in pressure. Hydrodynamic cavitation generates shock pressure of a few tens MPa due to bubble collapse like the cavitation generated by Ultrasonics. It is well known that the cavitation can erode the metal surface. The idea of the current study is that such energetic cavitation bubble collapses could help to remove the crud from the fuel assembly. Therefore, the current study first investigates effects of hydrodynamic cavitation occurred from a single hole orifice fundamentally

  4. Interactions Between Wetlands and Tidal Inlets

    National Research Council Canada - National Science Library

    Sanchez, Alejandro

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note (CHETN) presents numerical simulations investigating how the loss of wetlands in estuaries modifies tidal processes in inlet navigation channels...

  5. A numerical analysis on the effect of inlet parameters for condensation induced water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Priyankan [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Chakravarty, Aranyak [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); School of Nuclear Studies & Application, Jadavpur University, Kolkata (India); Ghosh, Koushik, E-mail: kghosh@mech.jdvu.ac.in [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Mukhopadhyay, Achintya; Sen, Swarnendu [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Dutta, Anu; Goyal, Priyanshu [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    2016-08-01

    Highlights: • Condensation induced water hammer phenomenon is analysed with RELAP5/Mod 3.4. • Effect of various inlet conditions on the occurrence of CIWH are investigated. • Pressure peak amplitude and location has strong dependency on water subcooling. • Superheated steam does not have significant impact on pressure amplitude. • Presence of dry saturated steam is the necessary condition for CIWH. - Abstract: Direct contact condensation (DCC) is almost an inevitable phenomenon during accidental condition for all LWRs. Rapid condensation caused by the direct contact of steam and subcooled water can lead to condensation induced water hammer (CIWH). The present work explores the underlying physics of CIWH phenomenon in a horizontal pipe under different inlet conditions such as inlet water temperature, pressure difference between steam and water section, steam superheating, steam quality and duration of valve opening using RELAP5/Mod 3.4. This work emphasises on the prediction of pressure peak magnitude in conjunction with its location of occurrence under different parametric conditions. The stratified to slug flow transition is presented in terms of the ‘flow regime map’ which is identified as the primary cause for pressure wave generation. The strongest pressure wave amplitude due to CIWH is found to be 116.6 bar for ΔP = 10 bar. Observation reveals that peak pressure location shifts towards the subcooled water injection point for higher inlet water temperature. For the lowest inlet water temperature (T{sub in} = 20 °C), the peak pressure is found at a distance of 47.5 cm away from the water inlet whereas, for the high water temperature (T{sub in} = 120 °C), peak pressure is observed at 6.25 cm away from the injection point. It is also observed that the duration of valve opening significantly affects the location of peak pressure occurrence. This study also reveals that the presence of superheated or wet steam could possibly avoid the occurrence of

  6. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  7. Coolant mixing in pressurized water reactors. Proceedings

    International Nuclear Information System (INIS)

    Hoehne, T.; Grunwald, G.; Rohde, U.

    1998-10-01

    For the analysis of boron dilution transients and main steam like break scenarios the modelling of the coolant mixing inside the reactor vessel is important. The reactivity insertion due to overcooling or deboration depends strongly on the coolant temperature and boron concentration. The three-dimensional flow distribution in the downcomer and the lower plenum of PWR's was calculated with a computational fluid dynamics (CFD) code (CFX-4). Calculations were performed for the PWR's of SIEMENS KWU, Westinghouse and VVER-440 / V-230 type. The following important factors were identified: exact representation of the cold leg inlet region (bend radii etc.), extension of the downcomer below the inlet region at the PWR Konvoi, obstruction of the flow by the outlet nozzles penetrating the downcomer, etc. The k-ε turbulence model was used. Construction elements like perforated plates in the lower plenum have large influence on the velocity field. It is impossible to model all the orifices in the perforated plates. A porous region model was used to simulate perforated plates and the core. The porous medium is added with additional body forces to simulate the pressure drop through perforated plates in the VVER-440. For the PWR Konvoi the whole core was modelled with porous media parameters. The velocity fields of the PWR Konvoi calculated for the case of operation of all four main circulation pumps show a good agreement with experimental results. The CFD-calculation especially confirms the back flow areas below the inlet nozzles. The downcomer flow of the Russian VVER-440 has no recirculation areas under normal operation conditions. By CFD calculations for the downcomer and the lower plenum an analytical mixing model used in the reactor dynamic code DYN3D was verified. The measurements, the analytical model and the CFD-calculations provided very well agreeing results particularly for the inlet region. The difficulties of analytical solutions and the uncertainties of turbulence

  8. Inactivation of Heterosigma akashiwo in ballast water by circular orifice plate-generated hydrodynamic cavitation.

    Science.gov (United States)

    Feng, Daolun; Zhao, Jie; Liu, Tian

    2016-01-01

    The discharge of alien ballast water is a well-known, major reason for marine species invasion. Here, circular orifice plate-generated hydrodynamic cavitation was used to inactivate Heterosigma akashiwo in ballast water. In comparison with single- and multihole orifice plates, the conical-hole orifice plate yielded the highest inactivation percentage, 51.12%, and consumed only 6.84% energy (based on a 50% inactivation percentage). Repeating treatment, either using double series-connection or circling inactivation, elevated the inactivation percentage, yet consumed much more energy. The results indicate that conical-hole-generated hydrodynamic cavitation shows great potential as a pre-inactivation method for ballast water treatment.

  9. Estimation of the measurement error of eccentrically installed orifice plates

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Neil; Hodgkinson, Edwin; Reader-Harris, Michael

    2005-07-01

    The presentation discusses methods for simulation and estimation of flow measurement errors. The main conclusions are: Computational Fluid Dynamics (CFD) simulation methods and published test measurements have been used to estimate the error of a metering system over a period when its orifice plates were eccentric and when leaking O-rings allowed some gas to bypass the meter. It was found that plate eccentricity effects would result in errors of between -2% and -3% for individual meters. Validation against test data suggests that these estimates of error should be within 1% of the actual error, but it is unclear whether the simulations over-estimate or under-estimate the error. Simulations were also run to assess how leakage at the periphery affects the metering error. Various alternative leakage scenarios were modelled and it was found that the leakage rate has an effect on the error, but that the leakage distribution does not. Correction factors, based on the CFD results, were then used to predict the system's mis-measurement over a three-year period (tk)

  10. Hybrid natural orifice transluminal endoscopic cholecystectomy: prospective human series.

    Science.gov (United States)

    Cuadrado-Garcia, Angel; Noguera, Jose F; Olea-Martinez, Jose M; Morales, Rafael; Dolz, Carlos; Lozano, Luis; Vicens, Jose-Carlos; Pujol, Juan José

    2011-01-01

    Natural orifice transluminal endoscopic surgery (NOTES) makes it possible to perform intraperitoneal surgical procedures with a minimal number of access points in the abdominal wall. Currently, it is not possible to perform these interventions without the help of abdominal wall entryways, so these procedures are hybrids fusing minilaparoscopy and transluminal endoscopic surgery. This report presents a prospective clinical series of 25 patients who underwent transvaginal hybrid cholecystectomy for cholelithiasis. The study comprised a clinical series of 25 consecutive nonrandomized women who underwent a fusion transvaginal NOTES and minilaparoscopy procedure with two trocars for cholelithiasis: one 5-mm umbilical trocar and one 3-mm trocar in the upper left quadrant. The study had no control group. The scheduled surgical intervention was performed for all 25 women. No intraoperative complications occurred. One patient had mild hematuria that resolved in less than 12 h, but no other complications occurred during an average follow-up period of 140 days. Of the 25 women, 20 were discharged in 24 h, and 5 were discharged less than 12 h after the procedure. Hybrid transvaginal cholecystectomy, combining NOTES and minilaparoscopy, is a good surgical model for minimally invasive surgery. It can be performed in surgical settings where laparoscopy is practiced regularly using the instruments normally used for endoscopy and laparoscopic surgery. Due to the reproducibility of the intervention and the ease of vaginal closure, hybrid transvaginal cholecystectomy will permit further development of NOTES in the future.

  11. Brazos Santiago Inlet, Texas, Shoaling Study

    Science.gov (United States)

    2018-02-01

    Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Final report Approved for public release; distribution is unlimited. Prepared...focus of this study was to understand the shoaling process in the BSI and to suggest sand management alternatives to reduce inlet maintenance ...Santiago Inlet Entrance Channel maintenance dredging quantities (normal distribution). ........................................................ 20

  12. Comparative Performance of a Non-recessed Hole-entry Hybrid/Hydrostatic Conical Journal Bearing Compensated with Capillary and Orifice Restrictors

    Directory of Open Access Journals (Sweden)

    P.G. Khakse

    2016-06-01

    Full Text Available This research paper deals with the theoretical study of comparison of capillary and orifice compensated non-recess hole-entry hydrostatic/ hybrid conical journal bearing. Modified Reynolds equation governing the flow of lubricant in the clearance space of conical journal and bearing has been solved using FEM, Newton-Raphson method and Gauss elimination method. Spherical coordinate system has been employed to obtain the results. The results have been computed for uniform distribution of holes in the circumferential direction with the range of restrictor design parameter C ̅_s2 = 0.02 - 0.1. The numerically simulated result shows, the use of orifice restrictor is to increase bearing stiffness, threshold speed and maximum pressure compared to capillary restrictor for applied radial load.

  13. Impact of inlet coherent motions on compressor performance

    Science.gov (United States)

    Forlese, Jacopo; Spoleti, Giovanni

    2017-08-01

    Automotive engine induction systems may be characterized by significant flow angularity and total pressure distortion at the compressor inlet. The impact of the swirl on compressor performance should be quantified to guide the design of the induction systems. In diesel engines, the presence of a valve for flow reduction and control of low pressure EGR recirculation could generate coherent motion and influence the performance of the compressor. Starting from experimental map, the compressor speed-lines have been simulated using a 3D CFD commercial code imposing different concept motion at the inlet. The swirl intensity, the direction and the number of vortices have been imposed in order to taking into account some combinations. Finally, a merit function has been defined to evaluate the performance of the compressor with the defined swirl concepts. The aim of the current work is to obtain an indication on the effect of a swirling motion at the compressor inlet on the engine performance and provide a guideline to the induction system design.

  14. Dynamics of the inlet system of a four-stroke engine

    Science.gov (United States)

    Boden, R H; Schecter, Harry

    1944-01-01

    Tests were run on a single-cylinder and a multicylinder four-stroke engine in order to determine the effect of the dynamics of the inlet system upon indicated mean effective pressure. Tests on the single-cylinder engine were made at various speeds, inlet valve timings, and inlet pipe lengths. These tests indicated that the indicated mean effective pressure could be raised considerably at any one speed by the use of a suitably long inlet pipe. Tests at other speeds with this length of pipe showed higher indicated mean effective pressure than with a very short pipe, although not so high as could be obtained with the pipe length adjusted for each speed. A general relation was discovered between optimum time of inlet valve closing and pipe length; namely, that longer pipes require later inlet valve closing in order to be fully effective. Tests were also made on three cylinders connected to a single pipe. With this arrangement, increased volumetric efficiency at low speed was obtainable by using a long pipe, but only with a sacrifice of volumetric efficiency at high speed. Volumetric efficiency at high speed was progressively lower as the pipe length was increased.

  15. Inlet effects on vertical-downward air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Shouxu; Mena, Daniel; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • Inlet effects on two-phase flow parameters in vertical-downward flow are studied. • Flow regimes in the vertical-downward two-phase flow are defined. • Vertical-downward flow regime maps for three inlet configurations are developed. • Frictional pressure loss analysis for three different inlets is performed. • Database of local two-phase flow parameters for each inlet configuration. - Abstract: This paper focuses on investigating the geometric effects of inlets on global and local two-phase flow parameters in vertical-downward air–water two-phase flow. Flow visualization, frictional pressure loss analysis, and local experiments are performed in a test facility constructed from 50.8 mm inner diameter acrylic pipes. Three types of inlets of interest are studied: (1) two-phase flow injector without a flow straightener (Type A), (2) two-phase flow injector with a flow straightener (Type B), and (3) injection through a horizontal-to-vertical-downward 90° vertical elbow (Type C). A detailed flow visualization study is performed to characterize flow regimes including bubbly, slug, churn-turbulent, and annular flow. Flow regime maps for each inlet are developed and compared to identify the effects of each inlet. Frictional pressure loss analysis shows that the Lockhart–Martinelli method is capable of correlating the frictional loss data acquired for Type B and Type C inlets with a coefficient value of C = 25, but additional data may be needed to model the Type A inlet. Local two-phase flow parameters measured by a four-sensor conductivity probe in four bubbly and near bubbly flow conditions are analyzed. It is observed that vertical-downward two-phase flow has a characteristic center-peaked void profile as opposed to a wall-peaked profile as seen in vertical-upward flow. Furthermore, it is shown that the Type A inlet results in the most pronounced center-peaked void fraction profile, due to the coring phenomenon. Type B and Type C inlets

  16. Inlet for fuel assembly having finger control rods

    International Nuclear Information System (INIS)

    Berglund, A.; Suvanto, A.; Tornblom, L.

    1975-01-01

    A nuclear reactor with vertically arranged fuel assemblies positioned on supporting members and with control rods displaceably arranged in guide tubes between the fuel rods inside the fuel assemblies is described. The supporting plate is provided with a transverse end piece with throttling means for the liquid flow which passes from below up through the supporting member and past the fuel rods in the fuel assembly. The inlets for the guide tubes for the control rods are located below the end piece and the throttling means. In this way a higher pressure prevails at the inlet to the guide tubes than above the end piece, so that a stronger flow of coolant is produced through guide tubes than through the fuel assembly. (U.S.)

  17. New piezo driven gas inlet valve for fusion experiments

    International Nuclear Information System (INIS)

    Usselmann, E.; Hemmerich, J.L.; How, J.; Holland, D.; Orchard, J.; Winkel, T.; Schargitz, U.; Pocheim, N.

    1989-01-01

    The gas inlet valves used at the JET experiment are described and their performances are discussed. A new gas-valve development suitable to replace the existing valves at JET and for future use in large fusion experiments is presented. The new valve is equipped with a piezo-electric translator and has a dosing range of 0-800 mbarls -1 for D 2 . The operating mode of the valve is fail-safe closed with a leak-rate of ≤ 10 -9 mbarls -1 . The design, the test results and throughput values in dependence of filling pressure and control voltage are presented and experiences with the prototype valve as a new gas inlet valve for the JET operation are described

  18. Silicon Microleaks for Inlets of Mass Spectrometers

    Science.gov (United States)

    Harpold, Dan; Hasso, Niemann; Jamieson, Brian G.; Lynch, Bernard A.

    2009-01-01

    Microleaks for inlets of mass spectrometers used to analyze atmospheric gases can be fabricated in silicon wafers by means of photolithography, etching, and other techniques that are commonly used in the manufacture of integrated circuits and microelectromechanical systems. The microleaks serve to limit the flows of the gases into the mass-spectrometer vacuums to specified very small flow rates consistent with the capacities of the spectrometer vacuum pumps. There is a need to be able to precisely tailor the dimensions of each microleak so as to tailor its conductance to a precise low value. (As used here, "conductance" signifies the ratio between the rate of flow in the leak and the pressure drop from the upstream to the downstream end of the leak.) To date, microleaks have been made, variously, of crimped metal tubes, pulled glass tubes, or frits. Crimped-metal and pulled-glass-tube microleaks cannot readily be fabricated repeatably to precise dimensions and are susceptible to clogging with droplets or particles. Frits tend to be differentially chemically reactive with various gas constituents and, hence, to distort the gas mixtures to be analyzed. The present approach involving microfabrication in silicon largely overcomes the disadvantages of the prior approaches.

  19. Urethral orifice hyaluronic acid injections: a novel animal model of bladder outlet obstruction.

    Science.gov (United States)

    Wang, Yongquan; Xiong, Zhiyong; Gong, Wei; Zhou, Zhansong; Lu, Gensheng

    2015-02-21

    We produced a novel model of bladder outlet obstruction (BOO) by periurethral injection of hyaluronic acid and compared the cystometric features, postoperative complications, and histopathological changes of that model with that of traditional open surgery. Forty female Sprague-Dawley rats were divided into three groups. Fifteen rats were subcutaneously injected with 0.2 ml hyaluronic acid at 5, 7, and 12 o'clock around the urethral orifice. Another fifteen rats underwent traditional open partial proximal urethral obstruction surgery, and 10 normal rats used as controls. After 4 weeks, filling cystometry, postoperative complications, and histopathological features were evaluated in each group. Three rats were also observed for 12 weeks after hyaluronic acid injection to evaluate the long-term effect. Hyaluronic acid periurethral injection caused increased maximum cystometric capacity, maximum bladder pressure, micturition interval, and post-void residual urine volume compared with control (p injection group had significantly shorter operative time, less incidence of incision infection and bladder stone formation compared with the surgery group (p injection and surgery bladders; these were not observed in the control group. Bladder weight and thickness of smooth muscle in the injection and surgery groups were significantly greater than those in the control group (p injection or control groups. Rats periurethrally injected hyaluronic acid were stable the compound was not fully absorbed in any rat after 12 weeks. Hyaluronic acid periurethral injection generates a simple, effective, and persistent animal model of BOO with lower complications, compared with traditional surgery.

  20. THE PERFORMANCE ANALYSIS OF A PACKED COLUMN : CALIBRATION OF AN ORIFICE

    Directory of Open Access Journals (Sweden)

    Aynur ŞENOL

    2003-01-01

    Full Text Available Investigations to develop data for this study were made using a pilot scale glass column of 9 cm inside diameter randomly filled to a depth of 1.90 cm with a Raschig type ring at a slightly modified geometry. The geometrical characteristics of packing are: the total area of a single particle ad = 2.3 cm2; specific area ap = 10.37 cm2/cm3; voidage ? = 0.545 m3/m3. The efficiency tests were run using trichloroethylene/n-heptane system under total reflux conditions. Using the modified versions of the Eckert flooding model and the Bravo effective area (ae approach, as well as the Onda wetted area (aw and individual mass transfer coefficient models, it has been attempted to estimate the packing efficiency theoretically. This article also deals with the design strategies attributed to a randomly packed column. Emphasis is mainly placed on the way to formulate an algorithm of designing a pilot scale column through the models being attributed to the film theory. Using the column dry pressure drop properties based on the air flowing it has been achieved a generalized flow rate approach for calibrating of an orifice through which the air passes.

  1. [Fourth branchial cleft deformity with skin orifice: a series of 10 cases].

    Science.gov (United States)

    Huang, S L; Zhang, B; Chen, L S; Liang, L; Luo, X N; Lu, Z M; Zhang, S Y

    2016-10-07

    Objective: To report rare cases of congenital neck cutaneous sinus with an orifice near the sternoclavicular joint and to investigate their origins and managements. Methods: A total of ten patients with congenital neck cutaneous sinus having an orifice near the sternoclavicular joint treated in the Guangdong General Hospital from January 2010 to June 2015 were retrospectively analyzed. Results: There four boys and six girls, aging from 11 months to 96 months with an average of 33.4 months, and they had a common feature showing a congenital cutaneous sinus with an orifice near sternoclavicular joint. Discharge of pus from the orifice or abscess formation was commonly seen soon after infection. With bacteriological study, staphylococcus aureus was positive in five cases and klebsiella pneumonia in a case. Another orifice of fistula/sinus was not depicted in pyriform with barium swallow X-ray in five cases Ultrasound studies of three cases demonstrated anechoic (i.e., nearly black) and solid-cystic lesion near sternoclavicular joint with posterior acoustic enhancement. Magnetic resonance imaging (MRI) showed isointensity of the lesion on T1 and T2 weighted images with heterogeneous enhancement and a close relationship with sternoclavicular joint. All patients underwent laryngoscopic examination, which showed no orifice of sinus in pyriform at same side. Surgical resection of fistula/sinus was performed in all cases. The lengths of the fistula varied from 5 mm to 22 mm with an average of 11 mm. Postoperative pathological examination showed all specimens were accordance with fistula. No complications were noticed. Recurrence was not observed in the cases by following-up of 6 months to 70 months (median: 33 months). Conclusion: Congenital neck cutaneous sinus with orifice near the sternoclavicular joint maybe a special clinical phenotype of the fourth branchial cleft sinus with skin orifice in cervicothoracic junction. Differential diagnoses between low cervical diseases

  2. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  3. Experimental Investigation of Inlet Distortion in a Multistage Axial Compressor

    Science.gov (United States)

    Rusu, Razvan

    The primary objective of this research is to present results and methodologies used to study total pressure inlet distortion in a multi-stage axial compressor environment. The study was performed at the Purdue 3-Stage Axial Compressor Facility (P3S) which models the final three stages of a production turbofan engine's high-pressure compressor (HPC). The goal of this study was twofold; first, to design, implement, and validate a circumferentially traversable total pressure inlet distortion generation system, and second, to demonstrate data acquisition methods to characterize the inter-stage total pressure flow fields to study the propagation and attenuation of a one-per-rev total pressure distortion. The datasets acquired for this study are intended to support the development and validation of novel computational tools and flow physics models for turbomachinery flow analysis. Total pressure inlet distortion was generated using a series of low-porosity wire gauze screens placed upstream of the compressor in the inlet duct. The screens are mounted to a rotatable duct section that can be precisely controlled. The P3S compressor features fixed instrumentation stations located at the aerodynamic interface plane (AIP) and downstream and upstream of each vane row. Furthermore, the compressor features individually indexable stator vanes which can be traverse by up to two vane passages. Using a series of coordinated distortion and vane traverses, the total pressure flow field at the AIP and subsequent inter-stage stations was characterized with a high circumferential resolution. The uniformity of the honeycomb carrier was demonstrated by characterizing the flow field at the AIP while no distortion screens where installed. Next, the distortion screen used for this study was selected following three iterations of porosity reduction. The selected screen consisted of a series of layered screens with a 100% radial extent and a 120° circumferential extent. A detailed total

  4. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  5. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  6. Exchange inlet optimization by genetic algorithm for improved RBCC performance

    Science.gov (United States)

    Chorkawy, G.; Etele, J.

    2017-09-01

    A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.

  7. Piezo pump and pressurized circuit provided therewith

    NARCIS (Netherlands)

    Van Es, Johannes; Wits, Wessel Willems

    2015-01-01

    A piezo pump for use in a pressurized circuit includes a pump chamber with an inlet provided with a one way inlet valve, for connection to a feeding line of the pressurized circuit and an outlet provided with a one way outlet valve, for connection to a discharge line of the pressurized circuit and a

  8. Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

    Directory of Open Access Journals (Sweden)

    A. R. Rahmati

    2016-12-01

    Full Text Available Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the accommodation coefficient significantly, but there is not an explicitly relationship between properties at wall and accommodation coefficient. In the present wok, Langmuir slip model is used beside LBM to simulate micro-channel and micro-orifice flows. Slip velocity and nonlinear pressure drop profiles are presented as two major effects in such flows. The results are in good agreement with existing results in the literature.

  9. Localization of root canal orifices in mandibular second molars in relation to occlusal dimension.

    Science.gov (United States)

    Gorduysus, O; Nagas, E; Cehreli, Z C; Gorduysus, M; Yilmaz, Z

    2009-11-01

    To evaluate the localization and distribution of canal orifices of mandibular second molar teeth in relation to the mesio-distal and bucco-lingual dimensions of coronal tissue. Fifty extracted mandibular second molar teeth were embedded into plaster blocks with their vertical axes aligned perpendicular to the horizontal plane. The teeth were photographed digitally from the occlusal aspect under 12 x magnification. Thereafter, the occlusal halves of crowns were sectioned off to expose the root canal orifices. The teeth were than photographed under the same magnification, after which the pre- and post-sectioning images of each specimen were stacked into a single file. To plot the coordinate of each canal orifice, a 0.5-mm grid analytical plane was mounted digitally on the stack so that the x- and y-axes of the plane were superimposed on the mesiodistal and buccolingual axes (bisectors) of the tooth crowns. Localization and distribution of the coordinates of the canal orifices were evaluated using the chi-square test (P = 0.05). Only one tooth displayed a single root canal orifice, located in the mesiobuccal-distolingual 'centre' of the occlusal surface. The majority of mandibular second molars had three orifices (72%), followed by those with two (16%) and four (10%). The distal canal was located lingual to the centre of the occlusal plane. The distal canal was located lingual to the centre of the occlusal plane of mandibular second molars. The possibility of observing more divergent localizations and orifice numbers should not be overlooked in clinical practice.

  10. Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct

    Science.gov (United States)

    Kroll, J. T.; Sowa, W. A.; Samuelsen, G. S.

    1996-01-01

    Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of the jet injection in combustors is largely based on practical experience. The emergence of NO(x) regulations for stationary gas turbines and the anticipation of aero-engine regulations requires an improved understanding of jet mixing as new combustor concepts are introduced. For example, the success of the staged combustor to reduce the emission of NO(x) is almost entirely dependent upon the rapid and complete dilution of the rich zone products within the mixing section. It is these mixing challenges to which the present study is directed. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of a conventional design. An experimental test matrix was designed around three variables: the number of orifices, the orifice length-to- width ratio, and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that the best mixing orifice geometry tested involves eight orifices with a long-to-short side aspect ratio of 3.5 at a twenty-three degree inclination from the center-line of the mixing section.

  11. 20% inlet header break analysis of Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Srivastava, A.; Gupta, S.K.; Venkat Raj, V.; Singh, R.; Iyer, K.

    2001-01-01

    The proposed Advanced Heavy Water Reactor (AHWR) is a 750 MWt vertical pressure tube type boiling light water cooled and heavy water moderated reactor. A passive design feature of this reactor is that the heat removal is achieved through natural circulation of primary coolant at all power levels, with no primary coolant pumps. Loss of coolant due to failure of inlet header results in depressurization of primary heat transport (PHT) system and containment pressure rise. Depressurization activates various protective and engineered safety systems like reactor trip, isolation condenser and advanced accumulator, limiting the consequences of the event. This paper discusses the thermal hydraulic transient analysis for evaluating the safety of the reactor, following 20% inlet header break using RELAP5/MOD3.2. For the analysis, the system is discretized appropriately to simulate possible flow reversal in one of the core paths during the transient. Various modeling aspects are discussed in this paper and predictions are made for different parameters like pressure, temperature, steam quality and flow in different parts of the Primary Heat Transport (PHT) system. Flow and energy discharges into the containment are also estimated for use in containment analysis. (author)

  12. Analytical and Experimental Investigation of Inlet-engine Matching for Turbojet-powered Aircraft at Mach Numbers up to 2.0

    Science.gov (United States)

    Esenwein, Fred T; Schueller, Carl F

    1952-01-01

    An analysis of inlet-turbojet-engine matching for a range of Mach numbers up to 2.0 indicates large performance penalties when fixed-geometry inlets are used. Use of variable-geometry inlets, however, nearly eliminates th The analysis was confirmed experimentally by investigating at Mach numbers of 0, 0.63, and 1.5 to 2.0 two single oblique-shock-type inlets of different compression-ramp angles, which simulated a variable-geometry configuration. The experimental investigation indicated that total-pressure recoveries comparable withose attainable with well designed nose inlets were obtained with the side inlets when all the boundary layer ahead of the inlets was removed. Serious drag penalties resulted at a Mach number of 2.0 from the use of blunt-cowl leading edges. However, sharp-lip inlets produced large losses in thrust for the take-off condition. These thrust penalties which are associated with the the low-speed operation of the sharp-lip inlet designs can probably be avoided without impairing the supersonic performance of the inlet by the use of auxiliary inlets or blow-in doors.

  13. Neutron Imaging study of bubble behaviors in Nanofluid Through Engineered Orifices

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Bang, In Cheol; Kim, Tae Joo

    2014-01-01

    Most studies focused on the change of surface parameters through deposited nanoparticles, while Vafaei and Wen firstly discussed modification of bubble dynamics by dispersed nanoparticles in fluid as well as deposited ones. The boiling mechanism, as an effective heat transfer mode, includes bubble generation, growth, departure, and coalescence. Therefore the change of bubble dynamics can lead to the change of boiling heat transfer condition. That is, not only surface characteristics but the dispersed nanoparticles would be the essential parameters of boiling mechanism in terms of bubble dynamics. For advanced visualization of opaque fluids, the neutron imaging technique is introduced. In the present study, the bubble dynamics in nanofluid through engineered orifices was studied. The main parameters of engineered orifices are size and geometry. Photographic analysis of bubble departure frequency and averaged bubble departure volume provides as follows: With increasing orifice diameter, averaged bubble departure volume increases, while bubble departure frequency decreases. The results are attributed to enhanced capillary force by increasing contact perimeter. Averaged bubble departure volume and bubble departure frequency remain similar for three different types of orifices. But edges of the triangle and square orifice produce small bubbles which interrupts bubble generation. The converged triple contact line due to the edge may be a reason for the emerged baby bubbles. Nanofluid shows less averaged bubble departure volume and higher bubble departure frequency. Considering little change in physical properties of the fluid, interaction between bubble interface and nanoparticles may be in charge of the results

  14. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  15. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    Science.gov (United States)

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  16. Microcomputed tomography analysis of mesiobuccal orifices and major apical foramen in first maxillary molars.

    Science.gov (United States)

    Spagnuolo, Gianrico; Ametrano, Gianluca; D'Antò, Vincenzo; Formisano, Anna; Simeone, Michele; Riccitiello, Francesco; Amato, Massimo; Rengo, Sandro

    2012-01-01

    Aim of the study was to determined by microcomputed tomography (µCT) the horizontal distance between the main (MB1) and the second mesiobuccal canal (MB2) orifices, the vertical distance between the MB1 and MB2 orifices planes, and the distance between the anatomic apex and major apical foramen (AF). Furthermore, we characterized the entire internal and external anatomy of the MB, distalbuccal (DB) and palatal (P) maxillary first molars roots. Twenty-two intact extracted first maxillary molars were scanned by X-ray computed transaxial µCT and then 2D and 3D images were processed and analyzed. The results showed that 77.27% of the mesiobuccal (MB) roots presented a second MB canal, and 29.41% of the MB2 were independent from the MB1 canals. In 15 teeth, there were three root canal orifices on the chamber floor, and 10 of these teeth presented MB2 canals. The mean vertical distance between the MB1 and MB2 planes was 1.68 ± 0.83 mm. Seven teeth had four orifices. The mean horizontal interorificial distance between the MB1 and MB2 orifices was 1.21 ± 0.5 mm. Accessory canals were observed in 33.33% of the roots, loops in 6.06%, while isthmuses were found in 15 of the 22 MB roots. Of the total roots, 74.24% presented one foramen, while all of the roots showed a major apical foramen that was not coincident with the anatomic apex. Our µCT analysis provided interesting features on the horizontal and vertical distance between the MB1 and MB2 orifices and on the distance of AF and anatomic apex. These results have an important clinical value because might support the endodontist in the recruitment, negotiation and obturation of maxillary first molar canal system.

  17. MR imaging of the entry, the abdominal communicating orifice, and the retrograde dissection in aortic dissections

    International Nuclear Information System (INIS)

    Yoshida, Y.; Mukohara, N.; Nakamura, K.; Sugimura, K.; Kono, M.

    1986-01-01

    MR imaging (1.5 T) was performed on 41 patients with aortic dissection. Entries were clearly visualized on the MR images as partial defects of the intimal flap in 18 of 21 patients (85.7%). In eight of ten patients, the locations of abdominal communicating orifices corresponded to the lowest signal intensities of the false lumina. Retrograde disections were diagnosed in all six patients from gradual increases in signal intensities of the false lumina toward the heart. MR imaging was very useful in diagnosing entries of the thoracic aorta, abdominal communicating orifices between true and false lumina, and retrograde dissections

  18. An acoustic criterion for the whistling of orifices in pipes

    NARCIS (Netherlands)

    Moussou, P.; Testud, Ph.; Auregan, Y.; Hirschberg, A.; Hasegawa, K.; Scarth, D.A.

    2008-01-01

    Whistling due to vortex shedding has been extensively studied in the case of cylinders in cross-flows, of flow separation above cavities and of shear layers with flow impingement feedback. Less attention has been given to pressure drop devices in piping systems, which are known to generate high

  19. Preliminary analysis in support to the experimental activities on the mixing process in the pressurizer of a small modular reactor integrated primary system

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Samira R.V.; Lira, Carlos A.B.O.; Bezerra, Jair L.; Silva, Mario A.B.; Silva, Willdauany C.F., E-mail: samiraruana@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Lima, Fernando R.A., E-mail: falima@crcn.gov.br [Centro Regional de Ciencias Nucleares (CRCN/CNEN-NE), Recife, PE (Brazil); Otero, Maria E.M.; Hernandez, Carlos R.G., E-mail: mmontesi@instec.cu [Department of Nuclear Engineering, InSTEC/CUBA, Higher Institute of Technology and Applied Science, La Habana (Cuba)

    2015-07-01

    Nowadays, there is a renewed interest in the development of advanced/innovative small and medium sized modular reactors (SMRs). The SMRs are variants of the Generation IV systems and usually have attractive characteristics of simplicity, enhanced safety and require limited financial resources. The concept of the integrated primary system reactor (IPSR) is characterized by the inclusion of the entire primary system within a single pressure vessel, including the steam generator and pressurizer. The pressurizer is located within the reactor vessel top, this configuration involves changes on the techniques and is necessary investigate the boron mixing. The present work represents a contribution to the design of an experimental facility planned to provide data relevant for the mixing phenomena in the pressurizer of a compact modular reactor. In particular, in order to evaluate the boron concentration in the surge orifices to simulate the in-surge and out-surge in a facility, scaled 1:200, respect to the ¼ of the pressurizer. The facility behavior studied from one inlet and one outlet of the test section with represent one in-surge e one out-surge the pressurizer of a small modular reactor integrated primary system. (author)

  20. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    International Nuclear Information System (INIS)

    Han, Feng Hui; Mao, Yi Jun; Tan, Ji Jian

    2016-01-01

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets

  1. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng Hui; Mao, Yi Jun [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an (China); Tan, Ji Jian [Dept. of Research and Development, Shenyang Blower Works Group Co., Ltd., Shenyang (China)

    2016-11-15

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets.

  2. Performance of a high-work, low-aspect-ratio turbine stator tested with a realistic inlet radial temperature gradient

    Science.gov (United States)

    Stabe, Roy G.; Schwab, John R.

    1991-01-01

    A 0.767-scale model of a turbine stator designed for the core of a high-bypass-ratio aircraft engine was tested with uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The principal measurements were radial and circumferential surveys of stator-exit total temperature, total pressure, and flow angle. The stator-exit flow field was also computed by using a three-dimensional Navier-Stokes solver. Other than temperature, there were no apparent differences in performance due to the inlet conditions. The computed results compared quite well with the experimental results.

  3. Detectability of Middle Mesial Root Canal Orifices by Troughing Technique in Mandibular Molars: A Micro-computed Tomographic Study.

    Science.gov (United States)

    Keleş, Ali; Keskin, Cangül

    2017-08-01

    The objective of the present study was to measure the orifice depth of middle mesial canals (MMCs) and evaluate the detectability of orifices using troughing preparation. For this study, 85 mandibular molar teeth with MMCs were selected from the scanned micro-computed tomographic images. The MMCs were categorized, and the distances between the MMC orifices and the cementoenamel junctions (CEJ) were recorded as the depth of the orifice. Data were evaluated with frequency analysis and a chi-square test using SPSS (SPSS Inc, Chicago, IL), and the results indicated a 5% significance level. It was found that 77.41% of the MMC orifices were at the CEJ level, whereas 5.38% and 9.69% of the MMC orifices were detectable within 1-mm and 2-mm depths from the CEJ, respectively. Of the specimens, 7.52% had MMC orifices deeper than 2 mm from the CEJ. Confluent anatomy was the most frequent configuration. No significant relation was detected between the orifice depth and MMC configuration (P > .05). It was concluded that 77.41% of the specimens did not require troughing preparation, the remaining 15.07% would require troughing, and 7.52% could not be accessed even with the troughing preparation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Requirements for Vertically Installed Runoff Control Boards for the “Paddy Field Dam” and Appropriate Orifice Shapes

    Science.gov (United States)

    Natsuki, Yoshikawa; Hideyuki, Koide; Shin-Ichi, Misawa

    While the “Paddy Field Dam” project has been recognized as an effective flood control measure, there are some cases in which the runoff control boards are vertically installed on the opening of the drainage boxes without careful consideration of the orifice shape and size. The important criteria for the runoff control boards to be satisfied are: 1. to maintain a sufficient peak runoff control function, 2. to avoid excessive ponding causing overflow, 3. to minimize the influence to the ordinary water management, and 4. to reserve sufficient orifice area to avoid blockage of the orifice with floating litters. The purpose of this study is to examine proper shapes and sizes of the orifice to satisfy the criteria for the vertically installed runoff control boards through experiments and simulations. Given the condition that the orifice has sufficient area to avoid overflow with 10 and 20 year return period rainfall event (criteria 2), the simulation results show that the orifice with horizontally wider shapes has advantages over the square or circular shapes in terms of the criteria 1 and 3. The disadvantage of the horizontally wider shapes is the blockage of the orifice with floating litters (criteria 4). In conclusion, we proposed to secure sufficient vertical distance to avoid this problem by setting a lower limit on the vertical distance and then determine the widest horizontal distance to optimize all the criteria. In addition, we have constructed the “Orifice Design Assist Tool” on the basis of the examinations in this study.

  5. Structure of gas pressure signal at two-orifice bubbling from a common plenum

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek; Drahoš, Jiří; Zahradník, Jindřich; Thomas, N. H.

    2000-01-01

    Roč. 55, č. 2 (2000), s. 421-429 ISSN 0009-2509 R&D Projects: GA ČR GA104/98/1435; GA AV ČR KSK2040602 Grant - others:INCO-COPERNICUS(XE) ERB IC15-CT98-0904 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.053, year: 2000

  6. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the rat...

  7. Miniature piezo electric vacuum inlet valve

    Science.gov (United States)

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  8. Energy considerations in spraying process of a spill-return pressure-swirl atomizer

    International Nuclear Information System (INIS)

    Jedelsky, Jan; Jicha, Miroslav

    2014-01-01

    Graphical abstract: - Highlights: • We analyse energy conversion in simplex and spill-return pressure-swirl atomizer. • Inlet (pressure) energy converts into liquid motion with nozzle efficiency ∼58%. • Kinetic energy of developed spray at closed spill line is ∼33% of the inlet energy. • It consists of energy of droplets (∼2/3) and entrained air (1/3). • Atomization efficiency is <0.3%; it declines with inlet pressure and spill opening. - Abstract: The work focuses on energy conversion during the internal flow, discharge and formation of the spray from a pressure-swirl (PS) atomizer in the simplex as well as spill-return mode. Individual energy forms are described in general and assessed experimentally for a particular PS atomizer and light heating oil as a medium. The PS spray was observed at various loads to investigate the liquid breakup process and the spray characteristics. Spatially resolved diameters and droplet velocities, measured by means of phase-Doppler anemometry, served for estimation of the energy characteristics in the PS spray. The input energy given by the potential energy of the supplied liquid partially converts into the kinetic energy (KE) in the swirling ports with hydraulic loss in per cent scale. Most of the pressure drop is associated with rotational motion in the swirl chamber with total conversion efficiency at the exit orifice ∼58%. The rest of the input energy ends up as friction loss, leaving room for improvement. The overall value (ID 32 ) of the Sauter mean diameter of droplets in the spray, D 32 , varies with pressure drop Δp l powered to −0.1. The radial profiles of D 32 widen with the increase in spill/feed ratio (SFR), but the ID 32 remain almost constant within the studied SFR range. The spray KE at closed spill line covers the droplet KE (21–26%) and that of entrained air (10–13%), both moderately varying with Δp l . The specific KEs of both the liquid and air markedly drop down with the spill line

  9. A double parameters measurement of steam-water two-phase flow with single orifice

    International Nuclear Information System (INIS)

    Zhong Shuoping; Tong Yunxian; Yu Meiying

    1992-08-01

    A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%

  10. Orifice microreactor for the production of an organic peroxide – non-reactive and reactive characterization

    NARCIS (Netherlands)

    Illg, T.; Hessel, V.; Löb, P.; Schouten, J.C.

    2012-01-01

    In this article, the transfer of a two-step, biphasic, and exothermic peroxide synthesis into a microreactor assisted process is discussed as well as the non-reactive and reactive characterization of the developed orifice microreactor. Residence time distribution measurements showed nearly ideal

  11. Natural orifice transluminal endoscopic surgery vs laparoscopic ovariectomy: Complications and inflammatory response

    Czech Academy of Sciences Publication Activity Database

    Martínek, J.; Ryska, O.; Filípková, T.; Doležel, R.; Juhás, Štefan; Motlík, Jan; Holubová, Monika; Nosek, V.; Rotnáglová, B.; Zavoral, M.; Ryska, M.

    2012-01-01

    Roč. 18, č. 27 (2012), s. 3558-3564 ISSN 1007-9327 Institutional research plan: CEZ:AV0Z50450515 Keywords : Natural orifice transluminal endoscopic surgery * Laparoscopy * Ovariectomy Subject RIV: FP - Other Medical Disciplines Impact factor: 2.547, year: 2012

  12. A case of ectopic ureteral orifice with hypoplastic kidney diagnosed by enhanced computed tomography

    International Nuclear Information System (INIS)

    Kishi, Mikio; Yoshimoto, Jun; Matsumura, Yosuke; Ohmori, Hiroyuki

    1983-01-01

    A case of ectopic ureteral orifice, 6 year old girl with urinary incontinece, is herein reported. Cystoscopy and excretory urogram showed absense of right half of trigone and non visualizing kidney. By enhanced computed tomography, right hypoplastic kidney was found and right nephrectomy was performed. We emphasize that enhanced computed tomography is very usefull for diagnosis of localization of hypoplastic kidney. (author)

  13. Flow through a cylindrical pipe with a periodic array of fractal orifices

    NARCIS (Netherlands)

    van Melick, P.A.J.; Geurts, Bernardus J.

    2013-01-01

    We apply direct numerical simulation (DNS) of the incompressible Navier–Stokes equations to predict flow through a cylindrical pipe in which a periodic array of orifice plates with a fractal perimeter is mounted. The flow is simulated using a volume penalization immersed boundary method with which

  14. Flow through a cylindrical pipe with a periodic array of fractal orifices

    NARCIS (Netherlands)

    van Melick, P.A.J.; Geurts, B.J.

    2013-01-01

    We apply direct numerical simulation (DNS) of the incompressible Navier-Stokes equations to predict flow through a cylindrical pipe in which a periodic array of orifice plates with a fractal perimeter is mounted. The flow is simulated using a volume penalization immersed boundary method with which

  15. Energy Efficiency for Biodiesel Production by Combining Two Orifices in Hydrodynamic Cavitation Reactor

    Directory of Open Access Journals (Sweden)

    Mahlinda Mahlinda

    2014-12-01

    Full Text Available Research of energy efficiency for biodiesel production process by combining two orifices on  hydrodynamic cavitation reactor had been carried out. The aim of this reseach was to studied effect of the number of orifices toward increasing temperature without using external energy source to produce biodiesel that generated by cavitation effects on orifices. The results of preliminary research showed by combining two orifices arranged in series can produce the highest thermal energy reached 48oC. Result of biodiesel production showed that yield of the highest biodiesel was 96.34% using molar ratio a methanol:oil with comparison 6:1, KOH as catalyst (1% for 50 minutes processing time. For biodiesel quality testing showed all selected parameter met the requirements of the Indonesian National Standard (SNI 04-7182:2006. Identification of biodiesel compound using GCMS showed the biodiesel compounds consisted of methyl oleate, methyl palmitate, acid linoleid, methyl stearate, palmitic acid and oleic acid with the total contents 98.39%.

  16. The whistling potentiality of an orifice in a confined flow using an energetic criterion

    NARCIS (Netherlands)

    Testud, P.; Aurégan, Y.; Moussou, P.; Hirschberg, A.

    2009-01-01

    Using a two-source method, the scattering matrices of 10 sharp-edged thin orifices are measured under different subsonic flow conditions. The data are analysed in terms of net acoustical energy balance: the potential whistling frequency range is defined as the one associated with acoustical energy

  17. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    Science.gov (United States)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  18. Two-Dimensional Bifurcated Inlet Variable Cowl Lip Test Completed in 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Hoffman, T. R.

    2000-01-01

    Researchers at the NASA Glenn Research Center at Lewis Field successfully tested a variable cowl lip inlet at simulated takeoff conditions in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) as part of the High-Speed Research Program. The test was a follow-on to the Two-Dimensional Bifurcated (2DB) Inlet/Engine test. At the takeoff condition for a High-Speed Civil Transport aircraft, the inlet must provide adequate airflow to the engine with an acceptable distortion level and high-pressure recovery. The test was conducted to study the effectiveness of installing two rotating lips on the 2DB Inlet cowls to increase mass flow rate and eliminate or reduce boundary layer flow separation near the lips. Hardware was mounted vertically in the test section so that it extended through the tunnel ceiling and that the 2DB Inlet was exposed to the atmosphere above the test section. The tunnel was configured in the aerodynamic mode, and exhausters were used to pump down the tunnel to vacuum levels and to provide a maximum flow rate of approximately 58 lb/sec. The test determined the (1) maximum flow in the 2DB Inlet for each variable cowl lip, (2) distortion level and pressure recovery for each lip configuration, (3) boundary layer conditions near variable lips inside the 2DB Inlet, (4) effects of a wing structure adjacent to the 2DB Inlet, and (5) effects of different 2DB Inlet exit configurations. It also employed flow visualization to generate enough qualitative data on variable lips to optimize the variable lip concept. This test was a collaborative effort between the Boeing Company and Glenn. Extensive inhouse support at Glenn contributed significantly to the progress and accomplishment of this test.

  19. Large Eddy Simulation and the effect of the turbulent inlet conditions in the mixing Tee

    International Nuclear Information System (INIS)

    Ndombo, Jean-Marc; Howard, Richard J.A.

    2011-01-01

    Highlights: → LES of Tee junctions can easily reproduce the bulk flow. → The presence or absence of a turbulent inlet condition has an affect on the wall heat transfer. → The maximum heat transfer moves 1 cm and reduces by 10% when a turbulent inlet is used. - Abstract: Thermal fatigue in Pressurized Water Reactor plants has been found to be very acute in some hot/cold Tee junction mixing zones. Large Eddy Simulation (LES) can be used to capture the unsteadiness which is responsible for the large mechanical stresses associated with thermal fatigue. Here one LES subgrid model is studied, namely the Dynamic Smagorinsky model. This paper has two goals. The first is to demonstrate some results obtained using the EDF R and D Code Saturne applied to the Vattenfall Tee junction benchmark (version 2006) and the second is to look at the effect of including synthetic turbulence at the Tee junction pipe inlets. The last goal is the main topic of this paper. The Synthetic Eddy Method is used to create the turbulent inlet conditions and is applied to two kinds of grids. One contains six million cells and the other ten million. The addition of turbulence at the inlet does not seem to have much effect on the bulk flow and all computations are in good agreement with the experimental data. However, the inlet turbulence does have an effect on the near wall flow. All cases show that the wall temperature fluctuation and the wall temperature/velocity correlation are not the same when a turbulent inlet condition is used. Inclusion of the turbulent inlet condition moves the downstream location of the maximum temperature/velocity correlation by 1 cm and reduces its magnitude by 10%. This result is very important because the temperature/velocity correlation is closely related to the turbulent heat transfer in the flow, which is in turn responsible for the mechanical stresses on the structure. Finally we have studied in detail the influence of the turbulent inlet condition just

  20. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet

    Science.gov (United States)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined, where the second cone of a two cone center body collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  1. Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Jet

    Science.gov (United States)

    Chima, Rodrick V.; Conners, Timothy R.; Wayman, Thomas R.

    2010-01-01

    A computational analysis of a Gulfstream isentropic external compression supersonic inlet coupled to a Rolls-Royce fan has been completed. The inlet was designed for a small, low sonic boom supersonic vehicle with a design cruise condition of M = 1.6 at 45,000 ft. The inlet design included an annular bypass duct that routed flow subsonically around an engine-mounted gearbox and diverted flow with high shock losses away from the fan tip. Two Reynolds-averaged Navier-Stokes codes were used for the analysis: an axisymmetric code called AVCS for the inlet and a three dimensional (3-D) code called SWIFT for the fan. The codes were coupled at a mixing plane boundary using a separate code for data exchange. The codes were used to determine the performance of the inlet/fan system at the design point and to predict the performance and operability of the system over the flight profile. At the design point the core inlet had a recovery of 96 percent, and the fan operated near its peak efficiency and pressure ratio. A large hub radial distortion generated in the inlet was not eliminated by the fan and could pose a challenge for subsequent booster stages. The system operated stably at all points along the flight profile. Reduced stall margin was seen at low altitude and Mach number where flow separated on the interior lips of the cowl and bypass ducts. The coupled analysis gave consistent solutions at all points on the flight profile that would be difficult or impossible to predict by analysis of isolated components.

  2. Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Aircraft

    Science.gov (United States)

    Chima, Rodrick V.; Conners, Timothy R.; Wayman, Thomas R.

    2009-01-01

    A computational analysis of a Gulfstream isentropic external compression supersonic inlet coupled to a Rolls-Royce fan was completed. The inlet was designed for a small, low sonic boom supersonic vehicle with a design cruise condition of M = 1.6 at 45,000 feet. The inlet design included an annular bypass duct that routed flow subsonically around an engine-mounted gearbox and diverted flow with high shock losses away from the fan tip. Two Reynolds-averaged Navier-Stokes codes were used for the analysis: an axisymmetric code called AVCS for the inlet and a 3-D code called SWIFT for the fan. The codes were coupled at a mixing plane boundary using a separate code for data exchange. The codes were used to determine the performance of the inlet/fan system at the design point and to predict the performance and operability of the system over the flight profile. At the design point the core inlet had a recovery of 96 percent, and the fan operated near its peak efficiency and pressure ratio. A large hub radial distortion generated in the inlet was not eliminated by the fan and could pose a challenge for subsequent booster stages. The system operated stably at all points along the flight profile. Reduced stall margin was seen at low altitude and Mach number where flow separated on the interior lips of the cowl and bypass ducts. The coupled analysis gave consistent solutions at all points on the flight profile that would be difficult or impossible to predict by analysis of isolated components.

  3. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    Science.gov (United States)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  4. A Tale of Two Inlets: Tidal Currents at Two Adjacent Inlets in the Indian River Lagoon

    Science.gov (United States)

    Webb, B. M.; Weaver, R. J.

    2012-12-01

    The tidal currents and hydrography at two adjacent inlets of the Indian River Lagoon estuary (Florida) were recently measured using a personal watercraft-based coastal profiling system. Although the two inlets—Sebastian Inlet and Port Canaveral Inlet—are separated by only 60 km, their characteristics and dynamics are quite unique. While Sebastian Inlet is a shallow (~4 m), curved inlet with a free connection to the estuary, Port Canaveral Inlet is dominated by a deep (~13 m), straight ship channel and has limited connectivity to the Banana River through a sector gate lock. Underway measurements of tidal currents were obtained using a bottom tracking acoustic Doppler current profiler; vertical casts of hydrography were obtained with a conductivity-temperature-depth profiling instrument; and continuous underway measurements of surface water hydrography were made using a Portable SeaKeeper system. Survey transects were performed to elucidate the along-channel variability of tidal flows, which appears to be significant in the presence of channel curvature. Ebb and flood tidal currents in Sebastian Inlet routinely exceeded 2.5 m/s from the surface to the bed, and an appreciable phase lag exists between tidal stage and current magnitude. The tidal currents at Port Canaveral Inlet were much smaller (~0.2 m/s) and appeared to be sensitive to meteorological forcing during the study period. Although the lagoon has free connections to the ocean 145 km to the north and 45 km to the south, Sebastian Inlet likely drains much of the lagoon to its north, an area of ~550 sq. km.

  5. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  6. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  7. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Kim, H. S.; Kim, W. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  8. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    International Nuclear Information System (INIS)

    Lee, J. W.; Kim, H. S.; Kim, W. S.

    2016-01-01

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  9. The Double-Orifice Valve Technique to Treat Tricuspid Valve Incompetence.

    Science.gov (United States)

    Hetzer, Roland; Javier, Mariano; Delmo Walter, Eva Maria

    2016-01-01

    A straightforward tricuspid valve (TV) repair technique was used to treat either moderate or severe functional (normal valve with dilated annulus) or for primary/organic (Ebstein's anomaly, leaflet retraction/tethering and chordal malposition/tethering, with annular dilatation) TV incompetence, and its long-term outcome assessed. A double-orifice valve technique was employed in 91 patients (mean age 52.6 ± 23.2 years; median age 56 years; range: 0.6-82 years) with severe tricuspid regurgitation. Among the patients, three had post-transplant iatrogenic chordal rupture, five had infective endocarditis, 11 had mitral valve insufficiency, 23 had Ebstein's anomaly, and 47 had isolated severe TV incompetence. The basic principle was to reduce the distance between the coapting leaflets, wherein the most mobile leaflet could coapt to the opposite leaflet, by creating two orifices, ensuring valve competence. The TV repair was performed through a median sternotomy or right anterior thoracotomy in the fifth intercostal space under cardiopulmonary bypass. The degree and extent of creating a double-valve orifice was determined by considering the minimal body surface area (BSA)-related acceptable TV diameter. Repair was accomplished by passing pledgeted mattress sutures from the middle of the true anterior annulus to a spot on the opposite septal annulus, located approximately two-thirds of the length of the septal annulus to avoid injury to the bundle of His. The annular apposition divides the TV into a larger anterior and a smaller posterior orifices, enabling valve closure, on both sides. In adults, the diameter of the anterior valve orifice should be 23-25 mm, and the posterior orifice 15-18 mm; thus, the total valve orifice area is 5-6 cm2. In children, the total valve orifice should be a standard deviation of 1.7 mm for a BSA of 1.0m2. During a mean follow up of 8.7 ± 1.34 years (median 10 years; range: 1.5-25.9 years) there have been no reoperations for TV insufficiency

  10. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions

    International Nuclear Information System (INIS)

    Ahmed, Wael H.; Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam

    2012-01-01

    Highlights: ► Mass transfer downstream of orifices was numerically and experimentally investigated. ► The surface wear pattern is measured and used to validate the present numerical results. ► The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. ► The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. ► The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO 4 ·½H 2 O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice. The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. The current study found to offer very

  11. Organic compounds generated after the flow of water through micro-orifices: Were they synthesized?

    Directory of Open Access Journals (Sweden)

    Tomiichi Hasegawa

    2017-08-01

    Full Text Available Micro-fluid mechanics is an important area of research in modern fluid mechanics because of its many potential industrial and biological applications. However, the field is not fully understood yet. In previous work, when passing ultrapure water (UPW in which air was dissolved (UPW* through micro-orifices, we found that the flow velocity decreased and stopped over time, and membranes were frequently formed in the orifice when the flow stopped. The membrane came from the dissolved air in UPW*, and membrane formation was closely related to electric charges generated in orifices by the flow. In the present paper, we clarified the components of the membrane and suggested a mechanism for membrane formation. We examined the effect of contaminants on the membrane formation and confirmed our previous results. We identified the chemical components of the membrane and those present in the UPW* itself by using an electron probe microanalyzer and found that the proportion of each element differed between the membrane and UPW*. Raman and infrared (IR spectroscopy showed that the membrane consisted of organic substances such as carotenoids, amides, esters, and sugars. We irradiated UPW* with ultraviolet light to cut organic chains that may be left in UPW* as contaminants. We found a similar membrane and organic compounds as in nonirradiated UPW*. Furthermore, although the UPW that was kept from contact with air after it was supplied from the UPW maker (UPW0 and bubbled with Ar gas (UPW0 bubbled with Ar formed no membrane, the UPW0 bubbled with CO2 formed thin membranes, and Raman and IR analysis showed that this membrane contained carboxylic acid salts, carotenoids, or a mixture of both. We found that electric grounding of the orifice reduces the probability of membrane formation and that the jets issuing from an aperture bear negative charges, and we assumed that the micro-orifices possess positive charges generated by flows. Consequently, we suggest that

  12. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    Science.gov (United States)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  13. CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model

    Science.gov (United States)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  14. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    Ogawa, Masahide.

    1993-01-01

    The present invention concerns a control rod driving hydraulic device of a BWR type reactor, and provides an improvement for a means for supplying mechanical seal flashing water of a pump. That is, a mechanical seal flashing pipeline is branched at the downstream of a pressure-reducing orifice and connected to a minimum flow pipeline. With such a constitution, the minimum flow pipeline is connected to a minimum flow pipeline of an auxiliary pump at the downstream of the pressure-reducing orifice and returned to a suction pipeline of the pump. Pressure at the downstream of the pressure-reducing orifice is set, in the orifice, to a pressure required for mechanical seal flashing. Accordingly, the mechanical seal flashing pipeline is connected and a part of minimum flow rate is utilized, thereby enabling to cool mechanical seals. As a result, flow rate of the mechanical flashing water which has been flown out can be saved. The exhaustion amount from the pump can be reduced, to decrease the shaft power and reduce the capacity of the motor. (I.S.)

  15. Unsteady supercritical/critical dual flowpath inlet flow and its control methods

    Directory of Open Access Journals (Sweden)

    Jun LIU

    2017-12-01

    Full Text Available The characteristics of unsteady flow in a dual-flowpath inlet, which was designed for a Turbine Based Combined Cycle (TBCC propulsion system, and the control methods of unsteady flow were investigated experimentally and numerically. It was characterized by large-amplitude pressure oscillations and traveling shock waves. As the inlet operated in supercritical condition, namely the terminal shock located in the throat, the shock oscillated, and the period of oscillation was about 50 ms, while the amplitude was 6 mm. The shock oscillation was caused by separation in the diffuser. This shock oscillation can be controlled by extending the length of diffuser which reduces pressure gradient along the flowpath. As the inlet operated in critical condition, namely the terminal shock located at the shoulder of the third compression ramp, the shock oscillated, and the period of oscillation was about 7.5 ms, while the amplitude was 12 mm. At this condition, the shock oscillation was caused by an incompatible backpressure in the bleed region. It can be controlled by increasing the backpressure of the bleed region. Keywords: Airbreathing hypersonic vehicle, Dual flowpath inlet, Terminal shock oscillation, Turbine based combined cycle, Unsteady flow

  16. Repair of Double Orifice Left AV Valve (DOLAVV with Endocardial Cushion Defect in Adult

    Directory of Open Access Journals (Sweden)

    Vivek Velayudhan Pillai

    Full Text Available Abstract Double orifice left atrioventricular valve (DOLAVV or double orifice mitral valve (DOMV is a rare congenital cardiac anomaly manifesting either as an isolated lesion (mitral stenosis or mitral insufficiency or in association with other congenital cardiac defects. Signs of mitral valve disease are usually present along with the symptoms of associated coexistent congenital heart diseases. Mitral insufficiency due to annular dilatation is seen when DOLAVV is associated with endocardial cushion defects. Surgical intervention like mitral valve repair or replacement is required in 50% of patients and yields good results. We report a case of a 56-year-old lady who successfully underwent surgical correction of DOLAVV with partial atrioventricular canal defect.

  17. Burnout experiments in freon 12 using different types of orifices to simulate the core grids

    International Nuclear Information System (INIS)

    Ladeira, L.; Katsaounis, A.; Orlowski, R.; Fulfs, H.; Hofmann, K.

    1978-01-01

    This paper will report on burnout experiments carried out in freon 12 mainly at steady state and further at mass flow or power transient conditions with annular test sections axially uniformly heating either the inside or both the inside and outside rod. The runs are performed without orifice and using three different types of orifices simulating the reactor spacer grid. An important influence of the flow restriction on burnout position and value is measured. Furthermore, the comparison between the burnout correlations W2, W3, B and W2 and GE and experimental results from the literature using simple test section geometries in water and freon 12 demonstrate, that the accuracy is more or less comparable for both fluids. (orig.) [de

  18. Natural orifice translumenal endoscopic surgery (NOTES) for innovation in hepatobiliary and pancreatic surgery: preface.

    Science.gov (United States)

    Sugimoto, Maki

    2009-01-01

    Natural orifice translumenal endoscopic surgery (NOTES) has captured the interest of interventional endoscopists and may represent the next stage of evolution of minimally invasive surgery. It provides the potential for performance of incisionless operations. It is gaining momentum both in the animal laboratory and in human case reports. Developments in the field of NOTES have led to the formation of the Natural Orifice Surgery Consortium for Assessment and Research (NOSCAR) in 2006. In this special issue, the current trends in NOTES in the field of hepatobiliary and pancreatic surgery are featured, including NOTES cholecystectomy, hepatectomy splenectomy, pancreatic necrosectomy, and the future of NOTES. In this issue, we discuss the potential benefits of these procedures in hepatobiliary and pancreatic surgery. We have just started the evaluation process for this new technology. The concept of NOTES is becoming established and is enormously advantageous for the patient. Both the surgeon and gastroenterologist should contribute to developing NOTES in making use of their specialties.

  19. Investigation of side wall effects on an inward scramjet inlet at Mach number 8.6

    Science.gov (United States)

    Rolim, Tiago Cavalcanti

    Experimental and computational studies were conducted to evaluate the performance of a scramjet inlet as the side cowl length is changed. A slender inward turning inlet of a total length of 304.8 mm, a span of 50.8 mm with the compression at 11.54 deg and CR = 4.79 was used. The side cowl lengths were of 0, 50.8 and 76.2 mm. The UTA Hypersonic Shock Tunnel facility was used in the reflected mode. The model was instrumented with nine piezoelectric pressure transducers, for static and total pressure measurements. A wedge was mounted at the rear of the inlet in order to accommodate a Pitot pressure rake. The driven tube was instrumented with three pressure transducers. Two of them were used to measure the incident shock wave speed, and a third one was used for stagnation pressure measurements during a test. Furthermore, a Pitot probe was installed below the model in order to measure the impact pressure on each run, this reading along with the driven sensor readings, allowed us for the calculation of freestream properties. During the experiments, nominal stagnation enthalpy of 0.67 MJ/kg and stagnation pressure of 3.67 MPa were achieved. Freestream conditions were Mach number 8.6 and Reynolds number of 1.94 million per m. Test times were 300 - 500 microseconds. Numerical simulations using RANS with the Wilcox K-w turbulence model were performed using ANSYS Fluent. The results from the static pressure measurements presented a good agreement with CFD predictions. Moreover, the uniformity at the inlet exit was achieved within the experimental precision. The experiments showed that the cowl length has a pronounced effect in the pressure distribution on the inlet and a minor effect in the exit flow Mach number. The numerical results confirmed these trends and showed that a complex flow structure is formed in the cowl-ramp corners; a non-uniform transverse shock structure was found to be related to the cowl leading edge position. Cross flow due to the side expansion

  20. Technical skill set training in natural orifice transluminal endoscopic surgery: how should we approach it?

    LENUS (Irish Health Repository)

    Nugent, Emmeline

    2011-03-01

    The boundaries in minimally invasive techniques are continually being pushed further. Recent years have brought new and exciting changes with the advent of natural orifice transluminal endoscopic surgery. With the evolution of this field of surgery come challenges in the development of new instruments and the actual steps of the procedure. Included in these challenges is the idea of developing a proficiency-based curriculum for training.

  1. Method for generating small and ultra small apertures, slits, nozzles and orifices

    Science.gov (United States)

    Khounsary, Ali M [Hinsdale, IL

    2012-05-22

    A method and device for one or more small apertures, slits, nozzles and orifices, preferably having a high aspect ratio. In one embodiment, one or more alternating layers of sacrificial layers and blocking layers are deposited onto a substrate. Each sacrificial layer is made of a material which preferably allows a radiation to substantially pass through. Each blocking layer is made of a material which substantially blocks the radiation.

  2. Variable geometry for supersonic mixed-compression inlets

    Science.gov (United States)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  3. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  4. A study on the root cause identification of local wall thinning caused by deflected turbulent flow inside orifice of carbon steel components

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, K. H.; Hwang, K. M.

    2010-01-01

    When components made of carbon steel in nuclear, fossil, and industry plants are exposed to flowing fluid, wall thinning caused by FAC (flow accelerated corrosion) can be generated and eventually ruptured at the portion of pressure boundary. A study to identify the locations generating local wall thinning and to disclose turbulence coefficients related to the local wall thinning was performed. Experiments and numerical analyses for orifice of down-scaled piping components were performed and the results were compared. Based on the results that the flow behaviors inside piping components can be simulated by numerical analysis, numerical analyses for magnified models to actual size of plants were performed. To disclose the relationship between turbulence coefficients and local thinning rate, numerical analyses were preformed for orifice components included in the main feedwater systems. The turbulence coefficients based on the numerical analyses were compared with the local wear rate based on the measured data. From the comparison of the results, the vertical flow velocity component (Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning. (authors)

  5. Coronal microleakage of three different dental biomaterials as intra-orifice barrier during nonvital bleaching

    Directory of Open Access Journals (Sweden)

    Nafiseh Zarenejad

    2015-01-01

    Full Text Available Background: This study was designed to assess the microleakage of glass-ionomer (GI, mineral trioxide aggregate (MTA, and calcium-enriched mixture (CEM cement as coronal orifice barrier during walking bleaching. Materials and Methods: In this experimental study, endodontic treatment was done for 70 extracted human incisors without canal calcification, caries, restoration, resorption, or cracks. The teeth were then divided into three experimental using "Simple randomization allocation" (n = 20 and two control groups (n = 5. The three cements were applied as 3-mm intra-orifice barrier in test groups, and bleaching process was then conducted using a mixture of sodium perborate powder and distilled water, for 9 days. For leakage evaluation, bovine serum albumin marker was traced in a dual-chamber technique with Bradford indicator. The Kruskal-Wallis and Mann-Whitney tests were used for statistical analysis. Results: The mean ± standard deviation leakage of samples from negative control, positive control, GI, MTA, and CEM cement groups were 0.0, 8.9 ± 0.03, 0.47 ± 0.02, 0.48 ± 0.02, and 0.49 ± 0.02 mg/mL, respectively. Statistical analysis showed no significant difference between three experimental groups (P > 0.05. Conclusion: It is concluded that GI, MTA, and CEM cements are considered as suitable intra-orifice barrier to provide coronal seal during walking bleaching.

  6. In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives.

    Science.gov (United States)

    Forgione, A

    2009-06-01

    The possibility to operate inside the peritoneal cavity through small holes performed in hollow organs that is presented by Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a major paradigm shift in general surgery. While this new approach seems very appealing from patients' perspectives because it eliminates completely abdominal wall aggression and promises to reduce postoperative pain, it is very challenging for surgeons because of the major constraints imposed by both the mode of access and the limited technology currently available. For this reason NOTES applications at the present time are performed by only a few surgeons and mainly to perform non-complex procedures. While new devices are under development, many of them are trying mainly to simply improve current endoscopic platforms and seem not to offer breakthrough solutions. The numerous challenges introduced by natural orifice approaches require a radical shift in the conception of new technologies in order to make this emerging operative access safe and reproducible. The convergence of several enabling technologies in the field of miniaturization, communication and micro-mechatronics brings the possibility to realize on a large scale the revolutionary concept of miniature in vivo co-operative robots. These robots provide vision and task assistance without the constraints of the entry incision and have been shown in experimental settings to possess many qualities that could be ideal to partner with Natural Orifice Surgery. This article explores the current status of microrobotics as well as presents potential future scenarios of their applications in NOTES.

  7. Performance of an Orifice Compensated Two-Lobe Hole-Entry Hybrid Journal Bearing

    Directory of Open Access Journals (Sweden)

    J. Sharana Basavaraja

    2008-01-01

    Full Text Available The work presented in this paper aims to study the performance of a two-lobe hole-entry hybrid journal bearing system compensated by orifice restrictors. The Reynolds equation governing the flow of lubricant in the clearance space between the journal and bearing together with the equation of flow through an orifice restrictor has been solved using FEM and Galerkin's method. The bearing performance characteristics results have been simulated for an orifice compensated nonrecessed two-lobe hole-entry hybrid journal bearing symmetric configuration for the various values of offset factor (, restrictor design parameter (2, and the value of external load (0. Further, a comparative study of the performance of a two-lobe hole-entry hybrid journal bearing system with a circular hole-entry symmetric hybrid journal bearing system has also been carried out so that a designer has a better flexibility in choosing a suitable bearing configuration. The simulated numerical results indicate that for the two-lobe symmetric hole-entry hybrid journal bearing system with an offset factor ( greater than one provides 30 to 50 percent larger values of direct stiffness and direct damping coefficients as compared to a circular symmetric hole-entry hybrid journal bearing system.

  8. A study on flow development in an APU-style inlet and its effect on centrifugal compressor performance

    Science.gov (United States)

    Lou, Fangyuan

    The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication

  9. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    Science.gov (United States)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  10. Evaluation of the flow-accelerated corrosion downstream of an orifice. 1. Measurements and numerical analysis of flow field

    International Nuclear Information System (INIS)

    Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), an orifice flow was measured and calculated. The diameter of pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity in a water loop was set at 2.41 m/s. Flow field was measured by laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), and compared with a calculation for the same flow conditions. Measurements of wall shear stress downstream of the orifice was also planed. The calculated velocity distribution of standard k-□ agreed qualitatively with PIV data and quantitatively with LDV data. Instantaneous flow field measured by PIV showed vortices around the jet from the orifice and some of them reached near the pipe wall. (author)

  11. Impact of L/D on 90 Degree Sharp-Edge Orifice Flow with Manifold Passage Cross Flow (Preprint)

    Science.gov (United States)

    2007-04-30

    that are observed by measurement as the flow transitions from non-cavitation to cavitation (turbulent flow), supercavitation , and finally separation in...include inception of cavitation, supercavitation , and separation. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...cavitation to cavitation (turbulent flow), supercavitation , and finally separation in sharp-edge 90 degree orifices. This study includes orifice L/D from

  12. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  13. Rocket Based Combined Cycle Exchange Inlet Performance Estimation at Supersonic Speeds

    Science.gov (United States)

    Murzionak, Aliaksandr

    A method to estimate the performance of an exchange inlet for a Rocket Based Combined Cycle engine is developed. This method is to be used for exchange inlet geometry optimization and as such should be able to predict properties that can be used in the design process within a reasonable amount of time to allow multiple configurations to be evaluated. The method is based on a curve fit of the shocks developed around the major components of the inlet using solutions for shocks around sharp cones and 2D estimations of the shocks around wedges with blunt leading edges. The total pressure drop across the estimated shocks as well as the mass flow rate through the exchange inlet are calculated. The estimations for a selected range of free-stream Mach numbers between 1.1 and 7 are compared against numerical finite volume method simulations which were performed using available commercial software (Ansys-CFX). The total pressure difference between the two methods is within 10% for the tested Mach numbers of 5 and below, while for the Mach 7 test case the difference is 30%. The mass flow rate on average differs by less than 5% for all tested cases with the maximum difference not exceeding 10%. The estimation method takes less than 3 seconds on 3.0 GHz single core processor to complete the calculations for a single flight condition as oppose to over 5 days on 8 cores at 2.4 GHz system while using 3D finite volume method simulation with 1.5 million elements mesh. This makes the estimation method suitable for the use with exchange inlet geometry optimization algorithm.

  14. Geometry of tidal inlet systems : A key factor for the net sediment transport in tidal inlets

    NARCIS (Netherlands)

    Ridderinkhof, W.; de Swart, H. E.; van der Vegt, M.; Alebregtse, N. C.; Hoekstra, P.

    2014-01-01

    The net transport of sediment between the back-barrier basin and the sea is an important process for determining the stability of tidal inlet systems. Earlier studies showed that in a short basin, tidal flats favor peak ebb-currents stronger than peak flood currents, implying export of coarse

  15. Evaluation of inlet sampling integrity on NSF/NCAR airborne platforms

    Science.gov (United States)

    Campos, T. L.; Stith, J. L.; Stephens, B. B.; Romashkin, P.

    2017-12-01

    An inlet test project was conducted during IDEAS-IV-GV (2013), to evaluate the sampling integrity of two inlet designs. Use of a single CO2 sensor provided a high precision detector and a large difference in the mean cabin and external concentrations (500-700 ppmv in the cabin). The original HIAPER Modular InLet (HIMIL) is comprised of a tapered flow straightening flow through `cigar' mounted to a strut. The cigar center sampling line sits 12" from the fuselage skin. An o-ring seals the feedthrough plate coupling sampling lines from the strut into the cigar. However, there is no seal to prevent air inside the strut from seeping out around the cigar body. A pressure-equalizing drain hole in the strut access panel; it was positioned at an approximate distance of 4" from the fuselage to ensure that air from any source that drained out of the strut was confined to a low release point. A second aft-facing inlet design was also evaluated. The sampling center line was moved farther from the fuselage at a height of 16". A similar approach was also applied to sampling locations on the C-130 in 2015. The results of these tests and recommendations for best practices will be presented.

  16. Study on the relationship between uranium mine cage hoisting system and quality of inlet air

    International Nuclear Information System (INIS)

    Hu Penghua; Li Xianjie; Hong Changshou; Li Xiangyang

    2014-01-01

    Those skip hoisting shafts and cage hoisting shafts with over 100000-ton hoisting capacity per year can not be designed as air inlet shafts is particularly emphasized in nuclear industrial standard Technical Regulations for Radon Exhaustion and Ventilation in Underground Uranium Mine (EJ/T 359-2006) referring to previous production experiences of the former Soviet Union's uranium mines. Cage hoisting shafts are generally served as the main air inlet shafts for the widely adopted of exhaust ventilation in terms of uranium mines in China. Nevertheless, the above-mentioned standard has been considered as a constraint on designing and producing of China's prospective large uranium mines. Through theoretical analysis and field experiments on the main influencing factors over the quality of inlet air of selected experimental uranium mines hoisting system such as piston wind pressure, ore heap's radon emanation of shaft station, radon contamination of loaded mine cars etc, we finally established the calculation model of inlet air contamination deriving from ore heap and loaded mine cars' radon emanation in vertical shaft station. The acquired research achievements would lav a theoretical foundation for further works on revising relevant standards. (authors)

  17. Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator

    Directory of Open Access Journals (Sweden)

    Azam Che Idris

    2014-04-01

    Full Text Available Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.

  18. Performance modeling of industrial gas turbines with inlet air filtration system

    Directory of Open Access Journals (Sweden)

    Samuel O. Effiom

    2015-03-01

    Full Text Available The effect of inlet air filtration on the performance of two industrial gas turbines (GT is presented. Two GTs were modeled similar to GE LM2500+ and Alstom GT13 E2-2012, using TURBOMATCH and chosen to operate at environmental conditions of Usan offshore oilfield and Maiduguri dessert in Nigeria. The inlet pressure recovered (Precov from the selected filters used in Usan offshore, and Maiduguri ranged between 98.36≤Precov≤99.51% and 98.67≤Precov≤99.56% respectively. At reduced inlet Precov by 98.36% (1.66 kPa and, at a temperature above 15 °C (ISA, a reduction of 16.9%, and 7.3% of power output and efficiency was obtained using GT13 E2-2012, while a decrease of 14.8% and 4.7% exist for power output and efficiency with GE LM2500+. In addition, a reduction in mass flow rate of air and fuel under the same condition was between 4.3≤mair≤10.6% and 10.4≤mfuel≤11.5% for GT13 E2-2012 and GE LM2500+, correspondingly. However, the GE LM2500+ was more predisposed to intake pressure drops since it functioned at a higher overall pressure ratio. The results obtained were found worthwhile and could be the basis for filter selection and efficient compressor housing design in the locations concerned.

  19. Assessing transgastric Natural Orifice Transluminal Endoscopic Surgery prior to clinical implementation

    DEFF Research Database (Denmark)

    Donatsky, Anders Meller

    2014-01-01

    The objective was to investigate whether transgastric Natural Orifice Transluminal Endoscopic Surgery (NOTES) could be implemented safely in clinical practice. The experimental studies proved ultrasonography guided access through the stomach to be feasible and safe without iatrogenic complications......-abdominal abscess formation as a result of contamination from the access route was still present. To reduce this contamination, mouthwash with chlorhexidine was effective in a human randomised study. The same study also found significant higher bacterial load in the stomach of patients using proton pump inhibitor...

  20. Numerical simulation of trans-critical carbon dioxide (R744) flow through short tube orifices

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O. [Centro de Investigacion en Energia de la Universidad Nacional Autonoma de Mexico, Privada Xochicalco S/N, Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)

    2006-02-01

    A detailed one-dimensional numerical simulation of the fluid-dynamic behaviour of short tube orifices expansion devices working with trans-critical carbon dioxide (CO{sub 2} or R744) has been developed. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region and equilibrium two-phase region). The numerical model allows analysis of aspects such as geometry, different working conditions, critical or non-critical flow conditions, etc. Comparison of the numerical simulation with experimental data presented in the technical literature will be shown in the present article. (author)

  1. Development of a Virtual Reality Simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) Cholecystectomy Procedure.

    Science.gov (United States)

    Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu

    2014-01-01

    The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.

  2. Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Chen, Chuan; Yu, Yu-Song; Gao, Guo-Xi

    2015-01-01

    Highlights: • The cavitation characteristics within nozzle were numerical studied. • The studied nozzle is from high pressure common-rail injection system. • The effects of nozzle’s geometrical parameters were considered. - Abstract: In the present paper, the influences of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle have been numerically investigated on basis of a high-pressure common-rail DI diesel engine. For obtaining more beneficial information, five essential parameters (the pressure difference on the nozzle, circular bead of nozzle’s inlet, orifice coefficient, the ratio of nozzle’s length to orifice’s diameter, and the roughness of orifice’s inner wall) have been investigated. The variation regulations of the flow and the cavitation characteristics induced by the mentioned parameters have been observed and analysed in terms of the distributions of essential physical fields (including statistic pressure field, velocity magnitude field, turbulent kinetic energy field, mass transfer coefficient field, and vapour’s volume fraction field) and the variation regulations of crucial physical parameters (including mass flow rate, flow coefficient, average vapour’s volume fraction, average flow velocity at orifice’s outlet, and average turbulent kinetic energy at orifice’s outlet). The main results obtained in the present investigation have illustrated how the cavitation occurs, develops and extinguishes within nozzle; meanwhile, how each geometric parameter affects the flow and the cavitation characteristics within nozzle have been explored

  3. Use of Vortex Generators to Reduce Distortion for Mach 1.6 Streamline-Traced Supersonic Inlets

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank; Slater, John W.; Trefny, Chuck

    2016-01-01

    Reduce the total pressure distortion at the engine-fan face due to low-momentum flow caused by the interaction of an external terminal shock at the turbulent boundary layer along a streamline-traced external-compression (STEX) inlet for Mach 1.6.

  4. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet. [Supersonic Cruise Aircraft Research

    Science.gov (United States)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined where the second cone of a two cone centerbody collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  5. EFFECTS OF NATURAL ORIFICE SECRETIONS IN PERITONEAL CAVITY IN THE BACKGROUND OF NATURAL ORIFICE TRANSLUMINAL ENDOSCOPIC SURGERY (NOTES AN EXPERIMENTAL STUDY IN ANIMALS

    Directory of Open Access Journals (Sweden)

    Devendra

    2015-03-01

    Full Text Available Natural Orifice Transluminal Endoscopic Surgery (NOTES is a new form of minimally invasive surgery which eliminates traditional skin incisions by accessing internal body cavities through natural orifices. In our experimental animal study, we compared the incidences intraperitoneal abscess formation , culture swab of peritoneal cavity positive for organism, intraperitoneal adhesion formation and mean adhesion score before and after lavaging the portal of entry of albino rat , i.e. transgastric and transvaginal. On vaginal route as a portal of entry into peritoneal cavity , on the 7th day , 66% rats developed abscesses , 88% rats had culture swab positive and 88% rats developed intraperitoneal adhesion (grade - 2 before any cleansing of vaginal cavity with antiseptic solution . Now after lavage with povidone iodine solution, only 11% developed abscesses , 22% were peritoneal swab culture positive and 33% had interbowel and parietal adhesion of (grade 0 - 1. On 21 st day , the complication observed was adhesion formation in pre lavage group of 66% incidence and 16% after vaginal lavage. The incidence of complications were reduced significantly after lavage with antiseptic solution as shown by p values (p<0.01 for abscess formation, p< 0.01 for culture positivity and p< 0.01 for adhesions formation. Also the mean adhesion scoring was significantly reduced (p <0.02 after vaginal lavage on the 7 th day. Gastric route as the portal of entry into the peritoneal cavity, again the same variables were compared on the 7th and the 21st day , but wash was given with antibiotic solution (Cefazolin. On the 7th day , 44% had abscesses, 77% were culture positive and 66% had adhesions (Grade 1 - 2 before gastric lavage with antibiotic solution . After wash of stomach, 11% were culture positive and 44% developed adhesions (Grade 0 - 1. Here, abscess formation (p<0.02 and mean adhesion scoring (p<0.05 were significantly reduced after stomach wash. On the 21st day

  6. General Investigation of Tidal Inlets: Stability of Selected United States Tidal Inlets

    Science.gov (United States)

    1991-09-01

    characteristics in relation to the variability of the hydr; aulic parameters. An inlet can fall into any of four "stability" classes 48 Orientation Parameter 80...nlot he ~ :Ke(: t 93. If a fairly straight coast with uniform offshore slopes and a regionally homogeneous wave climate is considered, a reasonable...expectation is LhaL the longshore transport quantities and directions are homogeneous. Given a long-term variability in wave climate , a corresponding

  7. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.; Breward, C. J. W.; Howell, P. D.; Oliver, J. M.

    2012-01-01

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown

  8. Seasonal behaviour of tidal inlets in a tropical monsoon area

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2008-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic

  9. Long time durability tests of fabric inlet stratification pipes

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    and that this destroys the capability of building up thermal stratification for the fabric inlet stratification pipe. The results also show that although dirt, algae etc. are deposited in the fabric pipes in the space heating tank, the capability of the fabric inlet stratifiers to build up thermal stratification...

  10. The German registry for natural orifice translumenal endoscopic surgery: report of the first 551 patients.

    Science.gov (United States)

    Lehmann, Kai S; Ritz, Jörg P; Wibmer, Andreas; Gellert, Klaus; Zornig, Carsten; Burghardt, Jens; Büsing, Martin; Runkel, Norbert; Kohlhaw, Kay; Albrecht, Roland; Kirchner, Tom G; Arlt, Georg; Mall, Julian W; Butters, Michael; Bulian, Dirk R; Bretschneider, Jörgen; Holmer, Christoph; Buhr, Heinz J

    2010-08-01

    To analyze patient outcome in the first 14 months of the German natural orifice translumenal endoscopic surgery (NOTES) registry (GNR). NOTES is a new surgical concept, which permits scarless intra-abdominal operations through natural orifices, such as the mouth, vagina, rectum, or urethra. The GNR was established as a nationwide outcome database to allow the monitoring and safe introduction of this technique in Germany. The GNR was designed as a voluntary database with online access. All surgeons in Germany who performed NOTES procedures were requested to participate in the registry. The GNR recorded demographical and therapy data as well as data on the postoperative course. A total of 572 target organs were operated in 551 patients. Cholecystectomies accounted for 85.3% of all NOTES procedures. All procedures were performed in female patients using transvaginal hybrid technique. Complications occurred in 3.1% of all patients, conversions to laparoscopy or open surgery in 4.9%. In cholecystectomies, institutional case volume, obesity, and age had substantial effect on conversion rate, operation length, and length of hospital stay, but no effect on complications. Despite the fact that NOTES has just recently been introduced, the technique has already gained considerable clinical application. Transvaginal hybrid NOTES cholecystectomy is a practicable and safe alternative to laparoscopic resection even in obese or older patients.

  11. Disinfection of Escherichia coli bacteria using hybrid method of ozonation and hydrodynamic cavitation with orifice plate

    Science.gov (United States)

    Karamah, Eva F.; Ghaudenson, Rioneli; Amalia, Fitri; Bismo, Setijo

    2017-11-01

    This research aims to evaluate the performance of hybrid method of ozonation and hydrodynamic cavitation with orifice plate on E.coli bacteria disinfection. In this research, ozone dose, circulation flowrate, and disinfection method were varied. Ozone was produced by commercial ozonator with ozone dose of 64.83 mg/hour, 108.18 mg/hour, and 135.04 mg/hour. Meanwhile, hydrodynamic cavitation was generated by an orifice plate. The disinfection method compared in this research were: hydrodynamic cavitation, ozonation, and the combination of both. The best result on each method was achieved on the 60th minutes and with a circulation flowrate of 7 L/min. The hybrid method attained final concentration of 0 CFU/mL from the initial concentration of 2.10 × 105 CFU/mL. The ozonation method attained final concentration of 0 CFU/mL from the initial concentration of 1.32 × 105 CFU/mL. Cavitation method gives the least disinfection with final concentration of 5.20 × 104 CFU/mL from the initial concentration of 2.17 × 105 CFU/mL. In conclusion, hybrid method gives a faster and better disinfection of E.coli than each method on its own.

  12. NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator.

    Science.gov (United States)

    Korzeniowski, Przemyslaw; Barrow, Alastair; Sodergren, Mikael H; Hald, Niels; Bello, Fernando

    2016-12-01

    Natural orifice transluminal endoscopic surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. We developed NOViSE-the first force-feedback-enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom-built, and the behaviour of the virtual flexible endoscope is based on an established theoretical framework-the Cosserat theory of elastic rods. We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES. VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype, and the initial results indicate that it provides promising foundations for further development.

  13. Laparoscopic sleeve gastrectomy for morbid obesity with natural orifice specimen extraction (NOSE).

    Science.gov (United States)

    Gunkova, P; Gunka, I; Zonca, P; Dostalik, J; Ihnat, P

    2015-01-01

    An experience with laparoscopic sleeve gastrectomy using the natural orifice specimen extraction (NOSE) technique. Bariatric surgery is nowadays the only long term effective obesity treatment method. Twenty one consecutive patients underwent laparoscopic sleeve gastrectomy with the use of natural orifice specimen extraction (NOSE) in the Surgical Clinic of Faculty Hospital Ostrava between May 2012 and August 2012. Inclusion criteria were the body mass index (BMI) higher than 35 kg/m2 or higher than 32 kg/m2 accompanied with relevant comorbidities. Among 21 patients in this series, there were three men (14.3%) and 18 women (85.7%). Their mean age was 40.9±10.2 years. Their mean preoperative BMI was 40.4±4.6 kg/m2. No patient had previous bariatric surgery, one patient had laparoscopic fundoplication. All operations were completed laparoscopically with no conversions to an open procedure. In two cases, laparoscopic cholecystectomy was performed and the gallbladder was extracted along with the gastric specimen by transgastric approach. Laparoscopic sleeve gastrectomy is a safe and effective bariatric procedure with low morbidity and mortality. Based on our initial experiences it could be an indication for NOSE with transgastric approach. Obese patients would benefit from this approach due to the elimination of wound complications (Tab. 2, Fig. 3, Ref. 22).

  14. Two cases of laparoscopic total colectomy with natural orifice specimen extraction and review of the literature.

    Science.gov (United States)

    Gundogan, Ersin; Aktas, Aydin; Kayaalp, Cuneyt; Gonultas, Fatih; Sumer, Fatih

    2017-09-01

    We present two cases of natural orifice specimen extraction (NOSE) after laparoscopic total colectomy and ileorectal anastomosis (TC-IRA), and we also review all of the previously reported cases. Our aim was to focus on patient selection for NOSE after TC-IRA. The PubMed and Google Scholar databases were scanned. Demographic features, surgical indications, and techniques were analyzed. Basic calculations were used for statistical analysis. A total of 13 cases were detected in addition to our 2 cases. All of the specimens were removed through the natural orifices successfully. No case required a diverting ileostomy. No patients were converted to open surgery or to conventional laparoscopy. Complications were reported in three patients. Transanal extractions were performed in 12 cases (10 colonic inertia, 2 polyposis), and transvaginal extractions were performed in 3 cases (2 malignancy, 1 colonic inertia). Both transanal and transvaginal specimen extractions after laparoscopic TC-IRA can be preferred. However, transanal extraction seems to be feasible in cases of TC for benign disease with a limited mesenteric-omental resection. If the indication is a malignancy requiring a mesenteric-omental resection, a transvaginal route should be preferred for a voluminous specimen.

  15. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    Science.gov (United States)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  16. Pressure drop in flashing flow through obstructions

    International Nuclear Information System (INIS)

    Weinle, M.E.; Johnston, B.S.

    1985-01-01

    An experiment was designed to investigate the pressure drop for flashing flow across obstructions of different geometries at various flow rates. Tests were run using two different orifices to determine if the two-phase pressure drop could be characterized by the single phase loss coefficient and the general behavior of the two-phase multiplier. For the geometries studied, it was possible to correlate the multiplier in a geometry-independent fashion

  17. Wave effects on a pressure sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; DeSa, E; Desa, E; McKeown, J.; Peshwe, V.B.

    Wave flume experiments indicated that for waves propagating on quiescent waters the sensor's performance improved (i.e. the difference Delta P between the average hydrostatic and measured pressures was small and positive) when the inlet...

  18. Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2013-01-01

    Full Text Available The growth rate and uniformity of Carbon Nano Tubes (CNTs based on Chemical Vapor Deposition (CVD technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon atoms are grown as CNTs on the iron catalysts at the reactor hot walls. The effect of inlet gas-mixture flow rate, on CNTs growth rate and its uniformity is discussed. In addition the velocity and temperature profile and also species concentrations throughout the reactor are presented.

  19. Active Control of Jet Engine Inlet Flows

    National Research Council Canada - National Science Library

    Rediniotis, Othon; Bowersox, Rodney; Kirk, Aaron; Kumar, Abhinav; Tichenor, Nathan

    2007-01-01

    ...), flow visualization tests, particle image velocimetry (PIV), pressure probe and wall static tap experiments at various locations, the development and evolution of the secondary flow structures were observed...

  20. Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2016-04-15

    It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

  1. [Urethroplasty with transection of urethral orifice and preservation and lengthening of urethral plate: highly applicable to the treatment of hypospadias].

    Science.gov (United States)

    Wang, Wen-Min; Qiu, Wei-Feng; Qian, Chong

    2010-07-01

    To explore the feasibility of urethroplasty with transection of the urethral orifice and preservation and lengthening of the urethral plate in the treatment of hypospadias. Forty-eight patients with hypospadias (18 of the coronal type, 21 the penile type, 8 the penoscrotal type and 1 the perineal type) underwent urethroplasty with transection of the urethral orifice and preservation and lengthening of the urethral plate. The surgical effects were observed by following up the patients for 3-27 months. One-stage surgical success was achieved in 44 of the cases, with satisfactory functional and cosmetic results but no complications. Two cases developed urinary fistula and another 2 urethral stricture, but all cured by the second surgery. Urethroplasty with transection of the urethral orifice and preservation and lengthening of the urethral plate is a simple, safe and effective surgical procedure for the treatment of hypospadias.

  2. Tests Of Array Of Flush Pressure Sensors

    Science.gov (United States)

    Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III

    1992-01-01

    Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.

  3. Smart actuation of inlet guide vanes for small turbine engine

    Science.gov (United States)

    Rusovici, Razvan; Kwok Choon, Stephen T.; Sepri, Paavo; Feys, Joshuo

    2011-04-01

    Unmanned Aerial Vehicles (UAVs) have gained popularity over the past few years to become an indispensable part of aerial missions that include reconnaissance, surveillance, and communication [1]. As a result, advancements in small jet-engine performance are needed to increase the performance (range, payload and efficiency) of the UAV. These jet engines designed especially for UAV's are characterized by thrust force on the order of 100N and due to their size and weight limitations, may lack advanced flow control devices such as IGV [2]. The goal of the current study was to present a conceptual design of an IGV smart-material based actuation mechanism that would be simple, compact and lightweight. The compressor section of an engine increases the pressure and conditions the flow before the air enters the combustion chamber [3]. The airflow entering the compressor is often turbulent due to the high angle of incidence between engine inlet and free-stream velocity, or existing atmospheric turbulence. Actuated IGV are used to help control the relative angle of incidence of the flow that enters the engine compressor, thereby preventing flow separation, compressor stall and thus extending the compressor's operating envelope [4]. Turbine jet- engines which employ variable IGV were developed by Rolls Royce (Trent DR-900) and General Electric (J79).

  4. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu

    2010-01-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  5. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  6. Impact of valve prosthesis-patient mismatch estimated by echocardiographic-determined effective orifice area on long-term outcome after aortic valve replacement.

    Science.gov (United States)

    Florath, Ines; Albert, Alexander; Rosendahl, Ulrich; Ennker, Ina Carolin; Ennker, Jrgen

    2008-06-01

    The impact of valve prosthesis-patient mismatch on long-term outcome after aortic valve replacement estimated by various variables such as projected indexed effective orifice area and internal geometric orifice area obtained from in vivo or in vitro published data is still controversial. The effective orifice area was measured by echocardiography in 533 patients. The mean age of the patients was 71 +/- 9 years; mean follow-up time was 4.7 +/- 2.2 years. The impact of severe (indexed effective orifice area regression. Severe mismatch (hazard ratio: 1.9 [1.08-3.21]) was a significant predictor of survival time after adjustment for age, left ventricular ejection fraction, atrial fibrillation, New York Heart Association class, serum creatinine, and hemoglobin level. The 5- and 7-year survival rates were 71% +/- 4% and 54% +/- 8% for patients with severe mismatch and 83% +/- 4% and 80% +/- 8% for patients with mild mismatch, respectively. The correlation between projected and measured indexed effective orifice area was of medium strength (r = 0.49), and the frequency of observed mismatch depended linearly on the projected indexed effective orifice area. Although projected indexed effective orifice area and indexed internal geometric orifice area were significant predictors of severe mismatch, the sensitivity and specificity for severe prosthesis-patient mismatch were only 75% and 52%, using an optimal threshold of projected indexed effective orifice area defined by the Youden index. Severe prosthesis-patient mismatch estimated by effective orifice area measured within 10 days was an independent risk factor of survival time. Projected indexed effective orifice area determined at surgery does not sufficiently predict mismatch.

  7. Parametric Analysis of a Hypersonic Inlet using Computational Fluid Dynamics

    Science.gov (United States)

    Oliden, Daniel

    For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be

  8. A review on the status of natural orifice transluminal endoscopic surgery (NOTES cholecystectomy: techniques and challenges

    Directory of Open Access Journals (Sweden)

    Michael C Meadows

    2010-09-01

    Full Text Available Michael C Meadows1,3, Ronald S Chamberlain1,2,31Department of Surgery, Saint Barnabas Medical Center, Livingston, NJ, USA; 2Department of Surgery, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA; 3Saint George’s University, School of Medicine, West Indies, GrenadaIntroduction: The evolution of techniques for the performance of a cholecystectomy over the last 25 years has been swift. The laparoscopic approach is now the gold standard for removal of the gall bladder and is the most frequently performed minimally invasive procedure globally. Currently in its infancy stage, natural orifice transluminal endoscopy surgery, or NOTES, is purported to be the next leap forward in minimally invasive approaches. The safety, feasibility, and effectiveness of this procedure, as well as the significance of potential benefits to patients beyond current surgical approaches are yet undetermined.Methods: A comprehensive literature search was conducted using PubMed, a search engine ­created by the National Library of Medicine. Keywords used in the search included “natural orifice transluminal endoscopic surgery”, “NOTES”, “cholecystectomy”, “transcolonic”, “transvaginal”, and “transgastric”. The accumulated literature was critically analyzed and reviewed.Results: One-hundred and eighty-six cases of NOTES cholecystectomies have been published to date. Of these, 174 have been performed through a transvaginal approach. The remainder of the procedures were performed transgastrically. There are no published reports of ­transcolonic cholecystectomies performed in humans. Four of 186 cases (2.15% were converted to traditional laparoscopy due to intraoperative complications. No significant complications or mortalities have been reported.Conclusion: NOTES cholecystectomy appears to be a feasible procedure. However, technical, safety, and ethical issues remain relatively unresolved. Besides improved cosmesis, whether additional

  9. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo...

  10. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  11. Should we attempt global (inlet engine airframe) control design?

    Science.gov (United States)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  12. Simultaneous mass detection for direct inlet mass spectrometry

    International Nuclear Information System (INIS)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament

  13. Fabrication and Application of Mono-sized Spherical Micro Particles by Pulsated Orifice Ejection Method

    Directory of Open Access Journals (Sweden)

    DONG Wei

    2018-02-01

    Full Text Available A novel technology called pulsated orifice ejection method(POEM and used for preparing mono-sized and high-precision spherical micro particles was introduced in this article. The working principle of the technique was illustrated and it was in two modes:low-melting point diaphragm mode and high-melting point rod mode, depending on the different melting points of materials. The particles prepared by POEM have the advantages of mono-sized, uniform and controllable particle size, high sphericity, and consistent thermal history. By introducing the application of particles prepared by this method, showing the huge application prospects of this technology in electronic packaging, bioengineering, micro-fabrication, rapid solidification analysis of metal droplets, additive manufacturing and so on.With the development of POEM, this technology is predicted to have wider prospects due to its unique characteristics.

  14. Restenosis after stenting in symptomatic vertebral arterial orifice disease and considerations for better outcome

    Science.gov (United States)

    Chang, Jun Young; Park, Hyun; Kwon, Oki

    2017-01-01

    We have performed stenting in 11 patients with symptomatic vertebral arterial orifice stenosis refractory to medical treatment or impairment in anterior circulation. Three of the 11 patients experienced asymptomatic severe in-stent restenosis or occlusion. Bare metal stents were used in those three patients, two of whom received revascularization therapy. Development of sufficient cervical collateral channels reconstituting the distal vertebral artery was the common feature in patients with asymptomatic in-stent restenosis. In selecting appropriate stents, consideration of mechanical strength and drug-eluting properties of a stent according to characteristics of the target vessel is important to reduce the risk of in-stent restenosis. Any decision to perform revascularization should be based on the presence of abundant cervical collaterals as well as clinical symptoms of vertebrobasilar ischemia. PMID:28304206

  15. Evaluation of effective regurgitant orifice area of mitral valvular regurgitation by multislice cardiac computed tomography

    International Nuclear Information System (INIS)

    Vural, M.; Ucar, O.; Celebi, O.O.; Cicekcioglu, H.; Durmaz, H.A.; Selvi, N.A.; Koparal, S.; Aydogdu, S.

    2010-01-01

    The purpose of our study was to assess the diagnostic accuracy of multislice computed tomography (MSCT) for the identification and quantification of mitral valve regurgitation in comparison with transthoracic echocardiography (TTE). Twenty-six patients (15 females, 11 males with a mean age of 44.6±14.1 years) who were in follow-up with the diagnosis of mitral regurgitation and those who were referred for MSCT were enrolled. MSCT results were compared with TTE measurements. The mean effective mitral regurgitant orifice area at MSCT was 23.1±13.0 mm 2 and at echocardiography was 24.4±16.0mm 2 . Bland-Altman analysis showed good agreement between the two imaging methods. MSCT provides reliable and good results for the evaluation of mitral regurgitation. (author)

  16. Feasibility study of natural orifice transluminal endoscopic surgery inguinal hernia repair.

    Science.gov (United States)

    Sherwinter, Danny A; Eckstein, Jeremy G

    2009-07-01

    A potentially less-invasive technique, transluminal surgery, may reduce or eliminate pain and decrease time to full return of activities after abdominal operations. Inguinal hernia repair is perfectly suited to the transgastric endoscopic approach and has not been previously reported. Our purpose was to evaluate the feasibility of transgastric bilateral inguinal herniorrhaphy (BIH). Feasibility study with a nonsurvival canine model. Under general anesthesia, male mongrel dogs weighing 20 to 30 kg had a dual-channel endoscope introduced into the peritoneal cavity over a percutaneously placed guidewire. An overtube with an insufflation channel was used. Peritoneoscopy was performed, and bilateral deep and superficial inguinal rings were identified. The endoscope was removed, premounted with a 4 x 6 cm acellular human dermal implant and then readvanced intraperitoneally through the overtube. The implant was then deployed across the entire myopectineal orifice and draped over the cord structures. Bioglue was then applied endoscopically, and the implant was attached to the peritoneum. After completion of bilateral repairs, the animals were killed and necropsy performed. Five dogs underwent pure natural orifice transluminal endoscopic surgery (NOTES) intraperitoneal onlay mesh (IPOM) BIH. Accurate placement and adequate myopectineal coverage was accomplished in all subjects. At necropsy no injuries to the major structures were noted but Bioglue misapplication with contamination of unintended sites did occur. Our study involved only a small number of subjects in nonsurvival experiments, and no gastric closure was used. Many of the characteristics of inguinal hernia repair are especially well suited to the transgastric approach. The repair is in line with the transgastric endoscope vector, bilateral defects are adjacent, and the IPOM technique does not require significant manipulation or novel instrumentation.

  17. Analysis of Simultaneous Gas-Liquid Flow Through an Orifice and Its Application to Flow Metering Etude de l'écoulement simultané d'un mélange gaz-liquide à travers un orifice et son application à la mesure du débit

    Directory of Open Access Journals (Sweden)

    Pascal H.

    2006-11-01

    Full Text Available The purpose of this article is to show a more accurate orifice equation for a two-phase flow, such a compressible mixture of gas and liquid. The orifice equation given here con be used for the measurement of a gas-liquid mixture of fine emulsions by the orificemeter method. From the thermodynamic point of view, an equation of state has been formulated which provides the relationship between the specific mass of the mixture and pressure, under conditions of adiabatic expansion. The results obtained enable the mass flow rates of gas and liquid ta be determined without separation of the phases, provided thot the gas liquid mass ratio is known. The critical pressure ratio corresponding ta sonic velocity is also determined. Cet article présente une relation plus précise pour l'écoulement d'un système à deux phases, tel qu'un mélange compressible gaz-liquide, à travers un diaphragme. Cette relation peut être utilisée pour des mesures de mélanges gaz-liquide très finement divisés, c'est-à-dire des émulsions ou brouillards, par la méthode du diaphragme en paroi mince. Du point de vue thermodynamique, on a formulé une équation d'état donnant la relation entre la masse spécifique du mélange et la pression dans des conditions d'expansion adiabatique. Les résultats obtenus per-mettent de déterminer le débit massique du gaz et du liquide, sans séparation des deux phases, à condition que le rapport de masse gaz-liquide soit connu. On détermine également le rapport de pression critique correspondantà la vitesse du son.

  18. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    Science.gov (United States)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study

  19. Continuous synthesis of tert.-butyl peroxypivalate using a single channel micro reactor equipped with orifices as emulsification units

    NARCIS (Netherlands)

    Illg, T.; Hessel, V.; Löb, P.; Schouten, J.C.

    2011-01-01

    The two-step synthesis of tert-butyl peroxypivalate is performed in a single-channel microreactor. The first step, the deprotonation of tert-butyl hydroperoxide, is done in a simple mixer tube setup. The residence time section for the second reaction step is equipped with orifices for interfacial

  20. Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness

    International Nuclear Information System (INIS)

    Pozrikidis, C.

    1994-01-01

    Shear flow over a plane wall that contains an axisymmetric depression or pore is studied using a new boundary integral method which is suitable for computing three-dimensional Stokes flow within axisymmetric domains. Numerical results are presented for cavities in the shape of a section of a sphere or a circular cylinder of finite length, and for a family of pores or orifices with finite thickness. The results illustrate the distribution of shear stresses over the plane wall and inside the cavities or pores. It is found that in most cases, the distribution of shear stresses over the plane wall, around the depressions, is well approximated with that for flow over an orifice of infinitesimal thickness for which an exact solution is available. The kinematic structure of the flow is discussed with reference to eddy formation and three-dimensional flow reversal. It is shown that the thickness of a circular orifice or depth of a pore play an important role in determining the kinematical structure of the flow underneath the orifice in the lower half-space

  1. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, V.G.; Goncalves, J.A.S. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil); Coury, J.R. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil)], E-mail: jcoury@ufscar.br

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  2. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    International Nuclear Information System (INIS)

    Guerra, V.G.; Goncalves, J.A.S.; Coury, J.R.

    2009-01-01

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets

  3. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    Science.gov (United States)

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  4. Appendiceal Abscesses Reduced in Size by Drainage of Pus from the Appendiceal Orifice during Colonoscopy: A Report of Three Cases

    Directory of Open Access Journals (Sweden)

    Shinjiro Kobayashi

    2014-11-01

    Full Text Available Interval appendectomy (IA for appendiceal abscesses is useful for avoiding extended surgery and preventing postoperative complications. However, IA has problems in that it takes time before an abscess is reduced in size in some cases and in that elective surgery may result in a delay in treatment in patients with a malignant tumor of the appendix. In order to rule out malignancy, we performed colonoscopy on three patients with an appendiceal abscess that did not decrease in size 5 or more days after IA. After malignancy had been ruled out by examination of the area of the appendiceal orifice, the appendiceal orifice was compressed with a colonoscope, and a catheter was inserted through the orifice. Then, drainage of pus was observed from the appendiceal orifice into the cecal lumen. Computed tomography performed 3 days after colonoscopy revealed a marked reduction in abscess size in all patients. No endoscopy-related complication was noted. Colonoscopy in patients with an appendiceal abscess may not only differentiate malignant tumors, but also accelerate reduction in abscess size.

  5. Simplified one-orifice venoplasty for middle hepatic vein reconstruction in adult living donor liver transplantation using right lobe grafts.

    Science.gov (United States)

    Kim, Joo Dong; Choi, Dong Lak; Han, Young Seok

    2014-05-01

    Middle hepatic vein (MHV) reconstruction is often essential to avoid hepatic congestion and serious graft dysfunction in living donor liver transplantation (LDLT). The aim of this report was to introduce evolution of our MHV reconstruction technique and excellent outcomes of simplified one-orifice venoplasty. We compared clinical outcomes with two reconstruction techniques through retrospective review of 95 recipients who underwent LDLT using right lobe grafts at our institution from January 2008 to April 2012; group 1 received separate outflow reconstruction and group 2 received new one-orifice technique. The early patency rates of MHV in group 2 were higher than those in group 1; 98.4% vs. 88.2% on postoperative day 7 (p = 0.054) and 96.7% vs. 82.4% on postoperative day 14, respectively (p = 0.023). Right hepatic vein (RHV) stenosis developed in three cases in group 1, but no RHV stenosis developed because we adopted one-orifice technique (p = 0.043). The levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in group 2 were significantly lower than those in group 1 during the early post-transplant period. In conclusion, our simplified one-orifice venoplasty technique could secure venous outflow and improve graft function during right lobe LDLT. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Pure natural orifice transluminal endoscopic surgery (NOTES) with ultrasonography-guided transgastric access and over-the-scope-clip closure

    DEFF Research Database (Denmark)

    Donatsky, Anders Meller; Andersen, Luise; Nielsen, Ole Lerberg

    2012-01-01

    Most natural orifice transluminal endoscopic surgery (NOTES) procedures to date rely on the hybrid technique with simultaneous laparoscopic access to protect against access-related complications and to achieve adequate triangulation for dissection. This is done at the cost of the potential benefi...

  7. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Eon [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of); Park, Seul Hyun [Dept. of Mechanical Systems Engineering, Chosun University, Gwangju (Korea, Republic of); Hwang, Cheol Hong [Dept. of Fire and Disaster Prevention, Daejeon University, Daejeon (Korea, Republic of)

    2016-11-15

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics.

  8. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    International Nuclear Information System (INIS)

    Lee, Chang Eon; Park, Seul Hyun; Hwang, Cheol Hong

    2016-01-01

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics

  9. Experimental and numerical study on inlet and outlet conditions of a bulb turbine with considering free surface

    International Nuclear Information System (INIS)

    Zhao, Y P; Liao, W L; Feng, H D; Ruan, H; Luo, X Q

    2012-01-01

    For a bulb turbine, it has a low head and a big runner diameter, and the free surface influences the flow at the inlet and outlet of the turbine, which bring many problems such as vibration, cracks and cavitation to the turbine. Therefore, it is difficult to get the precise internal flow characteristics through a numerical simulation with conventional ideal flow conditions. In this paper, both numerical and experimental methods are adopted to investigate the flow characteristics at the inlet and outlet of the bulb turbine with considering free surface. Firstly, experimental and numerical studies in a low head pressure pipeline are conducted, and the corresponding boundary condition according with reality is obtained through the comparison between the model test result and the CFD simulation result. Then, through an analysis of the velocity and pressure fields at the inlet of the bulb turbine at different heads, the flow characteristics and rules at the entrance of the bulb turbine have been revealed with considering free surface; Finally, the performance predictions for a bulb turbine have been conducted by using the obtained flow rules at the inlet as the boundary condition of a turbine, and the causes that lead to non-uniform forces on blades, cavitation and vibration have been illustrated in this paper, which also provide a theory basis for an accurate numerical simulation and optimization design of a bulb turbine.

  10. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  11. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  12. Cook Inlet and Kenai Peninsula, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  13. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  14. Cook Inlet and Kenai Peninsula, Alaska ESI: INDEX (Index Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet and Kenai...

  15. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    Department of Water Resources Development and Management, Indian Institute ... on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). ... nature of flows is clearly understood with the help of advanced instrumentation.

  16. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  17. Status of the variable diameter centerbody inlet program

    Science.gov (United States)

    Saunders, John D.; Linne, A. A.

    1992-01-01

    The Variable Diameter Centerbody (VDC) inlet is an ongoing research program at LeRC. The VDC inlet is a mixed compression, axisymmetric inlet that has potential application on the next generation supersonic transport. This inlet was identified as one of the most promising axisymmetric concepts for supersonic cruise aircraft during the SCAR program in the late 1970's. Some of its features include high recovery, low bleed, good angle-of-attack tolerance, and excellent engine airflow matching. These features were demonstrated at LeRC in the past by the design and testing of fixed hardware models. A current test program in the LeRC 10' x 10' Supersonic Wind Tunnel (SWT) will attempt to duplicate these features on model hardware that actually incorporates a flight-like variable diameter centerbody mechanism.

  18. Cook Inlet and Kenai Peninsula, Alaska ESI: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  19. AFSC/REFM: Cook Inlet Beluga Whale Economic Survey 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project was to collect data to understand the publics preferences for protecting the Cook Inlet beluga whale (CIBW), a distinct population...

  20. Cook Inlet and Kenai Peninsula, Alaska ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for razor clams in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

  1. Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...

  2. Cook Inlet and Kenai Peninsula, Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Cook Inlet and Kenai Peninsula, Alaska. Vector lines in this data set represent...

  3. Energy efficient air inlet humidity control; Energiezuinige inblaasvochtregeling

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, J.H. [C Point, DLV Plant, Horst (Netherlands)

    2005-03-15

    This project report describes the results of research conducted on the control of the inlet, humidification and dehumidification, based on the air inlet humidity rate. The project was carried out at a mushroom cultivation business in Heijen, the Netherlands [Dutch] Deze projectrapportage geeft de resultaten van het onderzoek naar het regelen van de luchtklep, bevochtiging en ontvochtiging, op basis van het inblaasvochtgehalte. Het project werd uitgevoerd op een champignonkwekerij in Heijen.

  4. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    Science.gov (United States)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  6. The Scale Effects of Engineered Inlets in Urban Hydrologic Processes

    Science.gov (United States)

    Shevade, L.; Montalto, F. A.

    2017-12-01

    Runoff from urban surfaces is typically captured by engineered inlets for conveyance to receiving water bodies or treatment plants. Normative hydrologic and hydraulic (H&H) modeling tools generally assume 100% efficient inlets, though observations by the authors suggest this assumption is invalid. The discrepancy is key since the more efficiently the inlet, the more linearly hydrologic processes scale with catchment area. Using several years of remote sensing, the observed efficiencies of urban green infrastructure (GI) facility inlets in New York City are presented, as a function of the morphological and climatological properties of their catchments and events. The rainfall-runoff response is modeled with EPA to assess the degree of inaccuracy that the assumption of efficient inlets introduces in block and neighborhood-scale simulations. Next, an algorithm is presented that incorporates inlet efficiency into SWMM and the improved predictive skill evaluated using Nash-Sutcliffe and root-mean-square error (RMSE). The results are used to evaluate the extent to which decentralized green stormwater management facilities positioned at the low points of urban catchments ought to be designed with larger capacities than their counterparts located further upslope.

  7. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    Science.gov (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  8. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    International Nuclear Information System (INIS)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan; Yu, Weiping

    2008-01-01

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m 3 min -1 .min -1 and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-ε turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  9. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan [Tsinghua University, Beijing (China); Yu, Weiping [Zhejiang Pump Works, Zhejiang (China)

    2008-10-15

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m{sup 3}min{sup -1}.min{sup -1} and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-{epsilon} turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  10. Pressure Fluctuations in a Common-Rail Fuel Injection System

    Science.gov (United States)

    Rothrock, A M

    1931-01-01

    This report presents the results of an investigation to determine experimentally the instantaneous pressures at the discharge orifice of a common-rail fuel injection system in which the timing valve and cut-off valve were at some distance from the automatic fuel injection valve, and also to determine the methods by which the pressure fluctuations could be controlled. The results show that pressure wave phenomena occur between the high-pressure reservoir and the discharge orifice, but that these pressure waves can be controlled so as to be advantageous to the injection of the fuel. The results also give data applicable to the design of such an injection system for a high-speed compression-ignition engine.

  11. An electrokinetic pressure sensor

    International Nuclear Information System (INIS)

    Kim, Dong-Kwon; Kim, Sung Jin; Kim, Duckjong

    2008-01-01

    A new concept for a micro pressure sensor is demonstrated. The pressure difference between the inlet and the outlet of glass nanochannels is obtained by measuring the electrokinetically generated electric potential. To demonstrate the proposed concept, experimental investigations are performed for 100 nm wide nanochannels with sodium chloride solutions having various concentrations. The proposed pressure sensor is able to measure the pressure difference within a 10% deviation from linearity. The sensitivity of the electrokinetic pressure sensor with 10 −5 M sodium chloride solution is 18.5 µV Pa −1 , which is one order of magnitude higher than that of typical diaphragm-based pressure sensors. A numerical model is presented for investigating the effects of the concentration and the channel width on the sensitivity of the electrokinetic pressure sensor. Numerical results show that the sensitivity increases as the concentration decreases and the channel width increases

  12. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  13. Transcatheter pledget-assisted suture tricuspid annuloplasty (PASTA) to create a double-orifice valve.

    Science.gov (United States)

    Khan, Jaffar M; Rogers, Toby; Schenke, William H; Greenbaum, Adam B; Babaliaros, Vasilis C; Paone, Gaetano; Ramasawmy, Rajiv; Chen, Marcus Y; Herzka, Daniel A; Lederman, Robert J

    2018-02-06

    Pledget-assisted suture tricuspid valve annuloplasty (PASTA) is a novel technique using marketed equipment to deliver percutaneous trans-annular sutures to create a double-orifice tricuspid valve. Tricuspid regurgitation is a malignant disease with high surgical mortality and no commercially available transcatheter solution in the US. Two iterations of PASTA were tested using trans-apical or trans-jugular access in swine. Catheters directed paired coronary guidewires to septal and lateral targets on the tricuspid annulus under fluoroscopic and echocardiographic guidance. Guidewires were electrified to traverse the annular targets and exchanged for pledgeted sutures. The sutures were drawn together and knotted, apposing septal and lateral targets, creating a double orifice tricuspid valve. Twenty-two pigs underwent PASTA. Annular and chamber dimensions were reduced (annular area, 10.1 ± 0.8 cm 2 to 3.8 ± 1.5 cm 2 (naïve) and 13.1 ± 1.5 cm 2 to 6.2 ± 1.0 cm 2 (diseased); septal-lateral diameter, 3.9 ± 0.3 mm to 1.4 ± 0.6 mm (naïve) and 4.4 ± 0.4 mm to 1.7 ± 1.0 mm (diseased); and right ventricular end-diastolic volume, 94 ± 13 ml to 85 ± 14 ml (naïve) and 157 ± 25 ml to 143 ± 20 ml (diseased)). MRI derived tricuspid regurgitation fraction fell from 32 ± 12% to 4 ± 5%. Results were sustained at 30 days. Pledget pull-through force was five-fold higher (40.6 ± 11.7N vs 8.0 ± 2.6N, P PASTA reduces annular dimensions and tricuspid regurgitation in pigs. It may be cautiously applied to selected patients with severe tricuspid regurgitation and no options. This is the first transcatheter procedure, to our knowledge, to deliver standard pledgeted sutures to repair cardiac pathology. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  14. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  15. Experimental study on effects of inlet boundary layer thickness and boundary layer fence in a turbine cascade

    International Nuclear Information System (INIS)

    Jun, Y. M.; Chung, J. T.

    2000-01-01

    The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency, It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the following research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than end wall loss so that it dominates secondary loss. In these cases the proper fence height is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations

  16. Left ventricular mass regression is independent of gradient drop and effective orifice area after aortic valve replacement with a porcine bioprosthesis.

    Science.gov (United States)

    Sádaba, Justo Rafael; Herregods, Marie-Christine; Bogaert, Jan; Harringer, Wolfgang; Gerosa, Gino

    2012-11-01

    The question of whether left ventricular mass (LVM) regression following aortic valve replacement (AVR) is affected by the prosthesis indexed effective orifice area (IEOA) and transprosthetic gradient has not been fully elucidated. Data from a prospective, core-laboratory-reviewed echocardiography and magnetic resonance imaging (MRI) study was used to determine if the degree of LVM regression following AVR with two types of porcine bioprosthesis in patients suffering from predominant aortic valve stenosis (AS) was related to the prosthesis IEOA and transprosthetic gradient. Over a two-year period, 149 patients enrolled at eight centers received either an Epic or an Epic Supra aortic bioprosthesis (St. Jude Medical, MN, USA). Preoperative valve dysfunction was pure AS in 54 patients (36%) and mixed valve disease (primarily stenosis) in 95 patients (64%). LVM was determined preoperatively and at six months postoperatively, using MRI. The prosthesis IEOA and transprosthetic gradient were calculated at six months by means of echocardiography. Data were available for 111 patients at both enrolment and six months postoperatively. The LVM at enrolment and at follow up was 154.96 +/- 42.50 g and 114.83 +/- 29.20 g, respectively (p regression methods, showed LVM regression to be independent of the mean systolic pressure gradient, peak systolic pressure and prosthesis IEOA at six months (p = 0.53, 0.43, and 0.15, respectively). At six months after AVR with a porcine bioprosthesis to treat AS, there was a significant LVM regression that was independent of the prosthesis IEOA and the mean systolic pressure gradient and peak systolic pressure.

  17. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    International Nuclear Information System (INIS)

    Mothilal, T.; Pitchandi, K.

    2015-01-01

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%

  18. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Mothilal, T. [T. J. S. Engineering College, Gummidipoond (India); Pitchandi, K. [Sri Venkateswara College of Engineering, Sriperumbudur (India)

    2015-10-15

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%.

  19. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    Science.gov (United States)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  20. Effect of inlet straighteners on centrifugal fan performance

    Energy Technology Data Exchange (ETDEWEB)

    Bayomi, N.N.; Abdel Hafiz, A. [Faculty of Engineering, Mataria, Helwan University, 11718 Masaken, El-Helmia, Cairo (Egypt); Osman, A.M. [Faculty of Engineering, Shoubra, Zagazig University, Cairo (Egypt)

    2006-11-15

    The use of straighteners in the inlet duct of centrifugal fans is suggested for eliminating any inlet distortion. An experimental investigation was performed to study the effect of inlet straighteners on the performance characteristics of centrifugal fans. Two types of straighteners were used, circular tubes and zigzag cross section, with different lengths. Circular tubes with different diameters have been investigated. The study was conducted on three types of fans, namely radial, backward with exit blade angles 60{sup o} and 75{sup o} and forward with 105{sup o} and 120{sup o}. The results confirm that the inlet straighteners exhibit different effects on the fan performance for the different blade angles. Accordingly, the results indicate the selection of long circular tube straighteners with large diameter for radial blades, long zigzag type for backward 60{sup o} blade angle and short zigzag type for backward 75{sup o} blade angle. Generally, good improvements in efficiency are observed for radial and backward blades on account of a slight drop in static head. In addition, an increase in the flow margin up to 12% and a decrease in the noise level from 3 to 5dB are indicated compared to the free inlet condition. On the contrary, unfavorable influences are exerted on the forward fan performance. (author)

  1. Complications of transvaginal natural orifice transluminal endoscopic surgery: a series of 102 patients.

    Science.gov (United States)

    Wood, Stephanie G; Panait, Lucian; Duffy, Andrew J; Bell, Robert L; Roberts, Kurt E

    2014-04-01

    To review the complications encountered in our facility and in previously published studies of transvaginal (TV) natural orifice transluminal endoscopic surgery (NOTES) to date. TV NOTES is currently observed with critical eyes from the surgical community, despite encouraging data to suggest improved short-term recovery and pain. All TV NOTES procedures performed in female patients between 18 and 65 years of age were included. The median follow-up was 90 days. The TV appendectomies and ventral hernia repairs were pure NOTES, through a SILS port in the vagina, whereas TV cholecystectomies were hybrid procedures with the addition of a 5-mm port in the umbilicus. A total of 102 TV NOTES procedures, including 72 TV cholecystectomies, 24 TV appendectomies, and 6 TV ventral hernia repairs, were performed. The average age was 37 years old and body mass index was 29 kg/m. Three major and 7 minor complications occurred. The first major complication was a rectal injury during a TV access port insertion. The second major complication was an omental vessel bleed after a TV cholecystectomy. The third complication was an intra-abdominal abscess after a TV appendectomy. Seven minor complications were urinary retention (4), transient brachial plexus injury, dislodgement of an intrauterine device, and vaginal granulation tissue. As techniques in TV surgery are adopted, inevitably, complications may occur due to the inherent learning curve. Laparoscopic instruments, although adaptable to TV approaches, have yet to be optimized. A high index of suspicion is necessary to identify complications and optimize outcomes for patients.

  2. Natural orifice translumenal endoscopic surgery: Progress in humans since white paper

    Institute of Scientific and Technical Information of China (English)

    Byron F Santos; Eric S Hungness

    2011-01-01

    Since the first description of the concept of natural orifice translumenal endoscopic surgery (NOTES), a substantial number of clinical NOTES reports have appeared in the literature. This editorial reviews the available human data addressing research questions originally proposed by the white paper, including determining the optimal method of access for NOTES, developing safe methods of lumenal closure, suturing and anastomotic devices,advanced multitasking platforms, addressing the risk of infection, managing complications, addressing challengeswith visualization, and training for NOTES procedures.An analysis of the literature reveals that so far transvaginal access and closure appear to be the most feasible techniques for NOTES, with a limited, but growing transgastric, transrectal, and transesophageal NOTES experience in humans. The theoretically increased risk of infection as a result of NOTES procedures has not been substantiated in transvaginal and transgastric procedures so far. Development of suturing and anastomotic devices and advanced platforms for NOTES has progressed slowly,with limited clinical data on their use so far. Data on the optimal management and incidence of intraoperative complications remain sparse, although possible factorscontributing to complications are discussed. Finally, this editorial discusses the likely direction of future NOTES development and its possible role in clinical practice.

  3. Does bladder outlet obstruction affect distance between the ureteric orifices in patients with benign prostate hyperplasia?

    Directory of Open Access Journals (Sweden)

    Cüneyt Özden

    2009-01-01

    Full Text Available Objectives: Many morphological changes occur in the bladder due to bladder outlet obstruction (BOO in pa-tients with benign prostate hyperplasia (BPH. In the present study we evaluated the relationship between in-terureteric distance (IUD of the orifices and BOO in BPH patients.Materials and methods: Thirty-seven consecutive pa-tients with lower urinary tract symptoms at the urology polyclinic included in the study. Patients divided into 2 groups according to maximal flow rate (Qmax. The first group constituted of 18 patients with Qmax 15ml/s. The IUD measurement was performed with Doppler ultrasonography.Results: There was no significant difference between the groups regarding mean age and prostate volume. Mean IUD in the first group was 32.7±5.4 mm and mean IUD in the second group was 31.5±5.1 mm. There was no statistically significant difference between the groups regarding the IUD.Conclusions: Data obtained from the study revealed that measurement of IUD with Doppler ultrasonography not significantly related to BOO.

  4. Experimental study of mixed convection flow through a horizontal orifice or vent linking two compartments

    International Nuclear Information System (INIS)

    Varrall, Kevin

    2016-01-01

    To answer building issues and fire safety challenges, this thesis deals with the mixed convection flow through a horizontal orifice or vent linking two compartments. The aim is to improve the understanding and the modeling of the exchange of gas through the opening. A small scale experimental study and a theoretical approach are proposed. The study focuses first on the influence of the geometrical ratio L/D of the opening on the flow rate at the vent for free convection regime. Non-intrusive measurements, via the tracking of the interface between two non miscible liquids in an isothermal approach, and thanks to the SPIV in a thermal approach, permit to describe the bidirectional exchange process and to consolidate existing correlations. Experiments for mixed convection regime aim to study the impact of mechanical ventilation (in blowing and extracting modes) on the exchanged flow rates. The comparison between existing correlations and experimental data shows large differences. A modification of the correlation of Cooper is proposed. A theoretical approach from the simplified Navier Stokes equations and with the Boussinesq approximation permits to discuss the construction of existing correlations. From this theory, a more accurate model than those available in the literature is proposed thanks to an adjustment of discharge coefficients from experimental data. (author)

  5. Feasibility analysis of gas turbine inlet air cooling by means of liquid nitrogen evaporation for IGCC power augmentation

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Vaccari, Anna; Venturini, Mauro

    2015-01-01

    Integrated Gasification Combined Cycles (IGCC) are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as the oxidant, an Air Separation Unit (ASU) is also part of the plant. In this paper, a system for power augmentation in IGCC is evaluated. The system is based on gas turbine inlet air cooling by means of liquid nitrogen spray. In fact, nitrogen is a product of the ASU, but is not always exploited. In the proposed plant, the nitrogen is first liquefied to be used for inlet air cooling or stored for later use. This system is not characterized by the limits of water evaporative cooling systems (the lower temperature is limited by air saturation) and refrigeration cooling (the effectiveness is limited by the pressure drop in the heat exchanger). A thermodynamic model of the system is built by using a commercial code for energy conversion system simulation. A sensitivity analysis on the main parameters is presented. Finally the model is used to study the capabilities of the system by imposing the real temperature profiles of different sites for a whole year and by comparing to traditional inlet air cooling strategies. - Highlights: • Gas turbine inlet air cooling by means of liquid nitrogen spray. • Humidity condensation may form a fog which provides further power augmentation. • High peak and off peak electric energy price ratios make the system profitable

  6. The Effects of Inlet Box Aerodynamics on the Mechanical Performance of a Variable Pitch in Motion Fan

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available This paper describes research involving an in-service failure of a “variable pitch in motion” fan’s blade bearing. Variable pitch in motion fans rotate at a constant speed, with the changing blade angle varying the load. A pitch-change mechanism facilitates the change in blade angle. A blade bearing supports each blade enabling it to rotate. The author observed that as the fan aerodynamic stage loading progressively increased, so did the rate of blade-bearing wear. The reported research addressed two separate, but linked, needs. First, the ongoing need to increase fan pressure development capability required an increase in fan loading. This increase was within the context of an erosive operating regime which systematically reduced fan pressure development capability. The second need was to identify the root cause of blade-bearing failures. The author addressed the linked needs using a computational analysis, improving the rotor inflow aerodynamic characteristics through an analysis of the inlet box and design of inlet guide vanes to control flow nonuniformities at the fan inlet. The results of the improvement facilitated both an increase in fan-pressure-developing capability and identification of the root cause of the blade-bearing failures.

  7. Natural orifice transluminal endoscopic surgery gastrotomy closure with an over-the-endoscope clip: a randomized, controlled porcine study (with videos).

    Science.gov (United States)

    von Renteln, Daniel; Schmidt, Arthur; Vassiliou, Melina C; Gieselmann, Maria; Caca, Karel

    2009-10-01

    Secure endoscopic closure of transgastric natural orifice transluminal endoscopic surgery (NOTES) access is of paramount importance. The over-the-scope clip (OTSC) system has previously been shown to be effective for NOTES gastrotomy closure. To compare OTSC gastrotomy closure with surgical closure. Randomized, controlled animal study. Animal facility laboratory. Thirty-six female domestic pigs. Gastrotomies were created by using a needle-knife and an 18-mm balloon. The animals were subsequently randomized to either open surgical repair with interrupted sutures or endoscopic repair with 12-mm OTSCs. In addition, pressurized leak tests were performed in ex vivo specimens of 18-mm scalpel incisions closed with suture (n = 14) and of intact stomachs (n = 10). The mean time for endoscopic closure was 9.8 minutes (range 3-22, SD 5.5). No complications occurred during either type of gastrotomy closure. At necropsy, examination of all OTSC and surgical closures demonstrated complete sealing of gastrotomy sites without evidence of injury to adjacent organs. Pressurized leak tests showed a mean burst pressure of 83 mm Hg (range 30-140, SD 27) for OTSC closures and 67 mm Hg (range 30-130, SD 27.7) for surgical sutures. Ex vivo hand-sewn sutures of 18-mm gastrotomies (n = 14) exhibited a mean burst pressure of 65 mm Hg (range 20-140, SD 31) and intact ex vivo stomachs (n = 10) had a mean burst pressure of 126 mm Hg (range 90-170, SD 28). The burst pressure of ex vivo intact stomachs was significantly higher compared with OTSC closures (P < .01), in vivo surgical closures (P < .01), and ex vivo hand-sewn closures (P < .01). There was a trend toward higher burst pressures in the OTSC closures compared with surgical closures (P = .063) and ex vivo hand-sewn closures (P = .094). In vivo surgical closures demonstrated similar burst pressures compared with ex vivo hand-sewn closures (P = .848). Nonsurvival setting. Endoscopic closure by using the OTSC system is comparable to

  8. Local flow measurements at the inlet spike tip of a Mach 3 supersonic cruise airplane

    Science.gov (United States)

    Johnson, H. J.; Montoya, E. J.

    1973-01-01

    The flow field at the left inlet spike tip of a YF-12A airplane was examined using at 26 deg included angle conical flow sensor to obtain measurements at free-stream Mach numbers from 1.6 to 3.0. Local flow angularity, Mach number, impact pressure, and mass flow were determined and compared with free-stream values. Local flow changes occurred at the same time as free-stream changes. The local flow usually approached the spike centerline from the upper outboard side because of spike cant and toe-in. Free-stream Mach number influenced the local flow angularity; as Mach number increased above 2.2, local angle of attack increased and local sideslip angle decreased. Local Mach number was generally 3 percent less than free-stream Mach number. Impact-pressure ratio and mass flow ratio increased as free-stream Mach number increased above 2.2, indicating a beneficial forebody compression effect. No degradation of the spike tip instrumentation was observed after more than 40 flights in the high-speed thermal environment encountered by the airplane. The sensor is rugged, simple, and sensitive to small flow changes. It can provide accurate imputs necessary to control an inlet.

  9. Investigation of corner shock boundary layer interactions to understand inlet unstart

    Science.gov (United States)

    Funderburk, Morgan

    2015-11-01

    Inlet unstart is a detrimental phenomenon in dual-mode ramjet/scramjet engines that causes severe loss of thrust, large transient structural load, and potentially a loss of the aircraft. In order to analyze the effects that the corner shock boundary layer interaction (SBLI) has on initiating and perpetuating inlet unstart, a qualitative and quantitative investigation into mean and dynamic features of corner SBLI at various Mach numbers is made. Surface streakline visualization showed that the corner SBLI is highly three-dimensional with a dominant presence of corner separation vortex. Further, the peak r.m.s. pressure was located at the periphery of corner separation vortex, suggesting that the unsteady loading is caused by the corner vortex. Power spectral densities of wall-pressure fluctuations in the peak r.m.s. location were analyzed in order to characterize the dominant frequencies of oscillation of the flow structures and to unravel the dynamic interactions between them in order to expand the operating margin of future hypersonic air breathing vehicles.

  10. Performance prediction and flow field calculation for airfoil fan with impeller inlet clearance

    International Nuclear Information System (INIS)

    Kang, Shin Hyoung; Cao, Renjing; Zhang, Yangjun

    2000-01-01

    The performance prediction of an airfoil fan using a commercial code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub

  11. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  12. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  13. An Intestinal Occlusion Device for Prevention of Small Bowel Distention During Transgastric Natural Orifice Transluminal Endoscopic Surgery

    OpenAIRE

    Tomasko, Jonathan M.; Mathew, Abraham; Moyer, Matthew T.; Haluck, Randy S.; Pauli, Eric M.

    2013-01-01

    Background and Objectives: Bowel distention from luminal gas insufflation reduces the peritoneal operative domain during natural orifice transluminal endoscopic surgery (NOTES) procedures, increases the risk for iatrogenic injury, and leads to postoperative patient discomfort. Methods: A prototype duodenal occlusion device was placed in the duodenum before NOTES in 28 female pigs. The occlusion balloon was inflated and left in place during the procedure, and small bowel distension was subject...

  14. Micro Coriolis mass flow sensor with integrated resistive pressure sensors

    NARCIS (Netherlands)

    Groenesteijn, Jarno; Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on novel resistive pressure sensors, integrated on-chip at the inlet- and outlet-channels of a micro Coriolis mass flow sensor. The pressure sensors can be used to measure the pressure drop over the Coriolis sensor which can be used to compensate pressure-dependent behaviour that might

  15. Pressure vessel and method therefor

    Science.gov (United States)

    Saunders, Timothy

    2017-09-05

    A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.

  16. Evaluation of magnetic resonance imaging in thoracic inlet tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Eiro (Kobe Univ. (Japan). School of Medicine)

    1993-06-01

    To evaluate the detectability of tumor invasion to the thoracic inlet, MRI was performed in 57 patients with thoracic inlet tumor, and the diagnostic accuracy of MRI was compared with that of CT concerning the utility for thoracic inlet lesions. And we assessed abnormal findings in comparison with surgical or autopsy findings. In the local extent of the tumor, the accuracy for tumor invasion to the vessels such as subclavian artery and vein was 94.9% for MRI, and 83.5% for CT, and to the brachial plexus was 95.0% for MRI, and 60.0% for CT. MRI was superior to CT, but MRI was equivalent to CT with regard to invasion to the base of the neck, lateral chest wall, ribs, and vertebral bodies. However on MRI, it is easier to understand the longitudinal tumor extent than on CT. CT has superior spatial resolusion but CT has also disadvantages, such as streak artifact caused by shoulder joints, resulting in image degradation. In contrast, MRI has inherent advantages, and multiple images which facilitate the relationship between tumor and normal structures. Coronal and sagittal MR images facilitated three-dimensional observation of tumor of invasion in the thoracic inlet. Furthermore to improve image quality of MRI for the thoracic inlet, we newly devised a high molecular polyester shell for fixing a surface coil. On the high resolution MR (HR-MR) imaging using our shell, normal lymph nodes, muscles, blood vessels and the branches of the branchial plexus were clearly visualized in detail. Our shell was simple to process and facilitated immobilization of a surface coil. HR-MR technique produces images of high resolution after simple preparation. In conclusion, MRI was very useful for detecting lesions of the thoracic inlet and in deciding surgical indication and the planning for radiotherapy. (author).

  17. Low-pressure water-cooled inductively coupled plasma torch

    Science.gov (United States)

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  18. Tangential inlet supersonic separators: a novel apparatus for gas purification

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yang, Yan

    2016-01-01

    A novel supersonic separator with a tangential inlet is designed to remove the condensable components from gas mixtures. The dynamic parameters of natural gas in the supersonic separation process are numerically calculated using the Reynolds stress turbulence model with the Peng-Robinson real gas...... be generated by the tangential inlet, and it increases to the maximum of 200 m/s at the nozzle throat due to decrease of the nozzle area of the converging part. The tangential velocity can maintain the value of about 160 m/s at the nozzle exit, and correspondingly generates the centrifugal acceleration of 3...

  19. The effect of inclusion of inlets in dual drainage modelling

    Science.gov (United States)

    Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.; Djordjević, Slobodan

    2018-04-01

    In coupled sewer and surface flood modelling approaches, the flow process in gullies is often ignored although the overland flow is drained to sewer network via inlets and gullies. Therefore, the flow entering inlets is transferred to the sewer network immediately, which may lead to a different flood estimation than the reality. In this paper, we compared two modelling approach with and without considering the flow processes in gullies in the coupled sewer and surface modelling. Three historical flood events were adopted for model calibration and validation. The results showed that the inclusion of flow process in gullies can further improve the accuracy of urban flood modelling.

  20. Bedform evolution in a tidal inlet referred from wavelet analysis

    DEFF Research Database (Denmark)

    Fraccascia, Serena; Winter, Christian; Ernstsen, Verner Brandbyge

    2011-01-01

    Bedforms are common morphological features in subaqueous and aeolian environments and their characterization is commonly the first step to better understand forcing factors acting in the system. The aim of this study was to investigate the spectral characteristics of compound bedforms in a tidal...... inlet and evaluate how they changed over consecutive years, when morphology was modified and bedforms migrated. High resolution bathymetric data from the Grådyb tidal inlet channel (Danish Wadden Sea) from seven years from 2002 to 2009 (not in 2004) were analyzed. Continuous wavelet transform of bed...

  1. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    Science.gov (United States)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  2. Evaluation of the flow-accelerated corrosion downstream of an orifice. 2. Measurement of corrosion rate and evaluation on the effects of the flow field

    International Nuclear Information System (INIS)

    Nagaya, Yukinori; Utanohara, Yoichi; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), a corrosion rate downstream of an orifice was measured using the electric resistance method. The diameter of the pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity of the experimental loop was set at 5m/s, and the temperature of water was controlled within ±1 at 150deg-C. There were no significant circumferential difference in measured corrosion rate, and the maximum corrosion rate was observed at 1D or 2D downstream from the orifice. The ratios of the measured corrosion rate and the calculated wall shear stress at the 1D downstream from the orifice to the value at upstream under well developed flow agreed well. (author)

  3. Experimental Research on Optimizing Inlet Airflow of Wet Cooling Towers under Crosswind Conditions

    Science.gov (United States)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    A new approach of installing air deflectors around tower inlet circumferentially was proposed to optimize the inlet airflow and reduce the adverse effect of crosswinds on the thermal performance of natural draft wet cooling towers (NDWCT). And inlet airflow uniformity coefficient was defined to analyze the uniformity of circumferential inlet airflow quantitatively. Then the effect of air deflectors on the NDWCT performance was investigated experimentally. By contrast between inlet air flow rate and cooling efficiency, it has been found that crosswinds not only decrease the inlet air flow rate, but also reduce the uniformity of inlet airflow, which reduce NDWCT performance jointly. After installing air deflectors, the inlet air flow rate and uniformity coefficient increase, the uniformity of heat and mass transfer increases correspondingly, which improve the cooling performance. In addition, analysis on Lewis factor demonstrates that the inlet airflow optimization has more enhancement of heat transfer than mass transfer, but leads to more water evaporation loss.

  4. Asian-Chinese patient perceptions of natural orifice transluminal endoscopic surgery cholecystectomy.

    Science.gov (United States)

    Teoh, Anthony Yuen Bun; Ng, Enders Kwok Wai; Chock, Alana; Swanstrom, Lee; Varadarajulu, Shyam; Chiu, Philip Wai Yan

    2014-05-01

    Patient and physician perceptions of natural orifice transluminal endoscopic surgery (NOTES) have been reported for the Western population. However, whether Asian-Chinese patients share the same perspectives as compared to the Western population is unknown. This was a cross-sectional survey carried out in the surgical outpatient's clinic at the Prince of Wales Hospital between June and September 2011. Patients were provided with an information leaflet and asked to complete a questionnaire regarding their perceptions of and preferences for NOTES cholecystectomy. Female patients attending the clinic were given an additional questionnaire regarding attitudes towards transvaginal surgery. Two hundred patients were recruited to complete the questionnaire(s) and the male to female ratio was 1:1. One hundred and fourteen patients (57%) preferred to undergo NOTES cholecystectomy for cosmetic reasons (P=0.009). Oral and anal routes were both acceptable for NOTES accesses in males and females. Forty-one percent of the female patients would consider transvaginal NOTES. Of these patients, significantly more patients indicated that the reason for choosing transvaginal NOTES was to minimize the risk of hernia (P=0.016) and to reduce pain associated with the procedure (P=0.017). The risk of complications (84.5%) and the cost of the procedure (58%) were considered the most important aspects when choosing a surgical approach by Asian-Chinese patients. Asian-Chinese preferred NOTES mainly for cosmetic reasons. However, the transvaginal route was less acceptable to females. Significant differences in patient perception on NOTES were observed between Asian-Chinese and Western patients. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  5. Oophorectomy by natural orifice transluminal endoscopic surgery: feasibility study in dogs.

    Science.gov (United States)

    Freeman, Lynetta J; Rahmani, Emad Y; Sherman, Stuart; Chiorean, Michael V; Selzer, Don J; Constable, Peter D; Snyder, Paul W

    2009-06-01

    Natural orifice transluminal endoscopic surgery (NOTES) represents a potentially less-invasive alternative to conventional or laparoscopic surgery. Our purpose was to develop a canine oophorectomy model for prospective evaluation of intraoperative complications, surgical stress, and postoperative pain and recovery with NOTES. Feasibility study. Academic preclinical research. Ten healthy female dogs. NOTES procedures were performed through gastric access with an electrocautery snare to resect and retrieve the ovaries. The gastrotomy was closed with prototype T-fasteners. Operative time; complications; postoperative pain scores, and nociceptive threshold; surgical stress markers (interleukin-6 [IL-6], C-reactive protein); systemic stress parameters (cortisol, glucose); necropsy evaluation at 10 to 14 days. The mean operative time was 154 minutes (SD +/- 58 minutes) and no animals died as a result of complications from the procedure. The primary difficulty was incomplete ovarian excision and conversion to an open procedure in 1 dog. Serum glucose concentrations increased after surgery and remained elevated for at least 36 hours. The serum cortisol concentration was transiently increased from baseline at 2 hours after surgery. The serum IL-6 concentration peaked at 2 hours after surgery and returned to the baseline value by 18 hours. The serum C-reactive protein concentration increased significantly from baseline, peaked at 12 hours after surgery, and then slowly declined toward baseline but remained elevated at 72 hours after surgery. Nociceptive threshold measurements indicated increased sensitivity to pain for 2 to 24 hours after surgery. At necropsy, surgical sites were healing uneventfully with no significant damage to surrounding organs, no significant growth on bacterial cultures, and no evidence of peritonitis. Small number of animals, single center. The NOTES approach to oophorectomy in dogs appears to be a reasonable alternative to traditional surgery

  6. Gas-ion laser with gas pressure maintenance means

    International Nuclear Information System (INIS)

    Thatcher, J.B.

    1975-01-01

    A gas-ion laser is described including means to maintain the ionizable gas in the laser cavity at a rather constant pressure over an extended period of time to significantly increase the useful life of the gas-ion laser. The gas laser includes a gas makeup system having a high pressure source or storage container and a regulating valve. The valve has a permeable solid state orifice member through which the gas flows from the high pressure source to the laser cavity to replenish the gas in the laser cavity and maintain the gas pressure in the cavity rather constant. The permeable orifice member is selected from a solid state material having a permeability that is variable in relation to the magnitude of the energy applied to the orifice member. The gas-ion laser has a valve operating means such as a heater for varying the applied energy such as thermal energy to the member to regulate the gas flow. Additionally, the gas-ion laser has a valve control means that is responsive to the gas pressure in the laser cavity for controlling the valve control means to maintain the pressure at a desired level. (U.S.)

  7. The calculation of dryout during flow and pressure transients

    International Nuclear Information System (INIS)

    James, P.W.; Whalley, P.B.

    1981-01-01

    The method for predicting dryout in a round tube by means of an annular flow model (Whalley et al 1974) is extended to cover the case where both inlet mass flux and pressure are time-dependent. The qualitative effects of an inlet pressure transient are assessed by performing a 'numerical experiment' and it is found that the predictions of the model represent reasonable physical trends. The relative merits of wo numerical solution schemes are also discussed

  8. 77 FR 420 - Drawbridge Operation Regulation; Corson Inlet, Stathmere, NJ

    Science.gov (United States)

    2012-01-05

    ... the course of the project, while the railings on the moveable span portion of the bridge are replaced... deviation from the regulations governing the operation of the Corson Inlet Bridge (County Route 619), across... INFORMATION: The Cape May County Bridge Commission, who owns and operates this bascule drawbridge, has...

  9. 76 FR 63840 - Drawbridge Operation Regulation; Corson Inlet, Strathmere, NJ

    Science.gov (United States)

    2011-10-14

    ... during the project while the railings on the moveable span portion of the bridge are replaced. DATES... deviation from the regulations governing the operation of the Corson Inlet Bridge (County Route 619), at.... SUPPLEMENTARY INFORMATION: The Cape May County Bridge Commission, who owns and operates this bascule drawbridge...

  10. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  11. Boussinesq Modeling for Inlets, Harbors & Structures (Bouss-2D)

    Science.gov (United States)

    2014-10-27

    circulation in surf and swash zone; wave-current interaction in channels and inlets; generation and impacts of infra-gravity waves on ports and...Guam, Samoa, Korea, Japan, Canada, EU countries, South Africa, Brazil, Peru, India, Indonesia , and Persian Gulf states. BMT helps the Corps evaluate

  12. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given...

  13. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  14. Potential for spatial displacement of Cook Inlet beluga whales by anthropogenic noise in critical habitat

    Science.gov (United States)

    Small, Robert J.; Brost, Brian M.; Hooten, Mevin B.; Castellote, Manuel; Mondragon, Jeffrey

    2017-01-01

    The population of beluga whales in Cook Inlet, Alaska, USA, declined by nearly half in the mid-1990s, primarily from an unsustainable harvest, and was listed as endangered in 2008. In 2014, abundance was ~340 whales, and the population trend during 1999-2014 was -1.3% yr-1. Cook Inlet beluga whales are particularly vulnerable to anthropogenic impacts, and noise that has the potential to reduce communication and echolocation range considerably has been documented in critical habitat; thus, noise was ranked as a high potential threat in the Cook Inlet beluga Recovery Plan. The current recovery strategy includes research on effects of threats potentially limiting recovery, and thus we examined the potential impact of anthropogenic noise in critical habitat, specifically, spatial displacement. Using a subset of data on anthropogenic noise and beluga detections from a 5 yr acoustic study, we evaluated the influence of noise events on beluga occupancy probability. We used occupancy models, which account for factors that affect detection probability when estimating occupancy, the first application of these models to examine the potential impacts of anthropogenic noise on marine mammal behavior. Results were inconclusive, primarily because beluga detections were relatively infrequent. Even though noise metrics (sound pressure level and noise duration) appeared in high-ranking models as covariates for occupancy probability, the data were insufficient to indicate better predictive ability beyond those models that only included environmental covariates. Future studies that implement protocols designed specifically for beluga occupancy will be most effective for accurately estimating the effect of noise on beluga displacement.

  15. Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm

    International Nuclear Information System (INIS)

    Ehyaei, Mehdi A.; Tahani, Mojtaba; Ahmadi, Pouria; Esfandiari, Mohammad

    2015-01-01

    In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year. - Highlights: • To model the combined cycle power plant equipped with fog inlet air cooling method. • To conduct both exergy and economic analyses for better understanding. • To conduct a complete optimization using a genetic algorithm to determine the optimal design parameters of the system

  16. Investigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow

    Directory of Open Access Journals (Sweden)

    Seyed mohammadjavad Zeidi

    2015-04-01

    Full Text Available Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001. Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results include the effects of contraction inside nozzle’s orifice, effect of compressibility; effect of injection pressures and several orifice entries are also simulated in this study. For considering the effect of compressibility a user defined function used in this simulation. Cavitation model which is used in this simulation is Singhal et al. cavitation model. Presto discretization method is used for Pressure equation and second upwind discretization method is used for Momentum equation. Converging Singhal et al. cavitation model is very challenging and it needs several efforts and simulations.

  17. Experimental and numerical analysis on the effect of inlet distortion on the performance of a centrifugal fan with a mixing chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liang; Wang, Tong; Yang, Bo; Gu, Chuangang [Shanghai Jiao Tong University, Shanghai (China)

    2013-02-15

    Inlet flow distortions, which are caused by fluid mixing, cause a significant deterioration in fan performance. An experimental test rig for an industrial fan with dual inlets and a mixing chamber was constructed. The flow fields in the mixing chamber of the fan were numerically investigated. Consequently, impact parameters, including the length of the mixing chamber (100, 200, and 300 mm) and the mass flow rate ratio (1 to 10), as well as their effects on fan performance, were discussed. A generalized formula considering the Reynolds number, hydraulic diameter, and mixing length was proposed to predict the pressure drop in dual inlets. Results show that the efficiency of and pressure in the fan decreased by 6.5% and 203 Pa, respectively, under mixing inlet condition. Optimum fan performance is achieved at a flow rate ratio of 5 under the same mass flow rate. The increase in the flow rate ratio kept the fan performance almost constant. At the design stage, fan performance and pressure decrease by an average of 2% and 70 Pa in increments of 100 mm mixing length, respectively. The results presented in this paper provide a basis in the design optimization of mixing structures.

  18. Experimental and numerical analysis on the effect of inlet distortion on the performance of a centrifugal fan with a mixing chamber

    International Nuclear Information System (INIS)

    Ding, Liang; Wang, Tong; Yang, Bo; Gu, Chuangang

    2013-01-01

    Inlet flow distortions, which are caused by fluid mixing, cause a significant deterioration in fan performance. An experimental test rig for an industrial fan with dual inlets and a mixing chamber was constructed. The flow fields in the mixing chamber of the fan were numerically investigated. Consequently, impact parameters, including the length of the mixing chamber (100, 200, and 300 mm) and the mass flow rate ratio (1 to 10), as well as their effects on fan performance, were discussed. A generalized formula considering the Reynolds number, hydraulic diameter, and mixing length was proposed to predict the pressure drop in dual inlets. Results show that the efficiency of and pressure in the fan decreased by 6.5% and 203 Pa, respectively, under mixing inlet condition. Optimum fan performance is achieved at a flow rate ratio of 5 under the same mass flow rate. The increase in the flow rate ratio kept the fan performance almost constant. At the design stage, fan performance and pressure decrease by an average of 2% and 70 Pa in increments of 100 mm mixing length, respectively. The results presented in this paper provide a basis in the design optimization of mixing structures.

  19. Reflooding Experiment on BETA Test Loop: The Effects of Inlet Temperature on the Rewetting Velocity

    International Nuclear Information System (INIS)

    Khairul H; Anhar R Antariksawan; Edy Sumarno; Kiswanta; Giarno; Joko P; Ismu Handoyo

    2003-01-01

    Loss of Coolant Accident (LOCA) on Nuclear Reactor Plant is an important topic because this condition is a severe accident that can be postulated. The phenomenon of LOCA on Pressurized Water Reactor (PWR) can be divided in three stages, e.g.: blowdown, refill and reflood. In the view of Emergency Coolant System evaluation, the reflood is the most important stage. In this stage, an injection of emergency water coolant must be done in a way that the core can be flooded and the overheating can be avoid. The experiment of rewetting on BETA Test Loop had been conducted. The experiment using one heated rod of the test section to study effects of inlet temperature on the wetting velocity. Results of the series of experiments on 2,5 lt/min flow rate and variable of temperature : 28 o C, 38 o C, 50 o C, 58 o C it was noticed that for 58 o C inlet temperature of test section and 572 o C rod temperature the rewetting phenomenon has been observed. The time of refill was 32.81 sec and time of rewetting was 42.87 sec. (author)

  20. Flow control in axial fan inlet guide vanes by synthetic jets

    Directory of Open Access Journals (Sweden)

    Wurst P.

    2013-04-01

    Full Text Available Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV, rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz – 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 – 12 mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  1. Flow control in axial fan inlet guide vanes by synthetic jets

    Science.gov (United States)

    Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.

    2013-04-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  2. Influence of gas inlet angle on the mixing process in a Venturi mixer

    Directory of Open Access Journals (Sweden)

    Romańczyk Mathias

    2017-01-01

    Full Text Available In this paper numerical analysis were performed to investigate the influence of gas inlet angle on mixing process in a Venturi mixer. Performance of an industrial gas engine depends significantly on the quality of mixing air and fuel; therefore, on the homogeneity of the mixture. In addition, there must be a suitable, adapted to the current load of fuel, air ratio. Responsible for this fact, among others, is the mixer located before entering the combustion chamber of the engine. Incorrect mixture proportion can lead to unstable operation of the engine, as well as higher emissions going beyond current environmental standards in the European Union. To validate the simulation the Air-Fuel Ratio (AFR was mathematically calculated for the air-fuel mixture of lean combustion gas engine. In this study, an open source three-dimensional computational fluid dynamics (CFD modelling software OpenFOAM has been used, to investigate and analyse the influence of different gas inlet angles on mixer characteristics and their performances. Attention was focused on the air-fuel ratio changes, pressure loss, as well as improvement of the mixing quality in the Venturi mixer.

  3. Heat transfer and pressure drop amidst frost layer presence for the full geometry of fin-tube heat exchanger

    International Nuclear Information System (INIS)

    Kim, Sung Jool; Choi, Ho Jin; Ha, Man Yeong; Kim, Seok Ro; Bang, Seon Wook

    2010-01-01

    The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness

  4. Validation of the Predicted Circumferential and Radial Mode Sound Power Levels in the Inlet and Exhaust Ducts of a Fan Ingesting Distorted Inflow

    Science.gov (United States)

    Koch, L. Danielle

    2012-01-01

    Fan inflow distortion tone noise has been studied computationally and experimentally. Data from two experiments in the NASA Glenn Advanced Noise Control Fan rig have been used to validate acoustic predictions. The inflow to the fan was distorted by cylindrical rods inserted radially into the inlet duct one rotor chord length upstream of the fan. The rods were arranged in both symmetric and asymmetric circumferential patterns. In-duct and farfield sound pressure level measurements were recorded. It was discovered that for positive circumferential modes, measured circumferential mode sound power levels in the exhaust duct were greater than those in the inlet duct and for negative circumferential modes, measured total circumferential mode sound power levels in the exhaust were less than those in the inlet. Predicted trends in overall sound power level were proven to be useful in identifying circumferentially asymmetric distortion patterns that reduce overall inlet distortion tone noise, as compared to symmetric arrangements of rods. Detailed comparisons between the measured and predicted radial mode sound power in the inlet and exhaust duct indicate limitations of the theory.

  5. A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles

    International Nuclear Information System (INIS)

    Molina, S.; Salvador, F.J.; Carreres, M.; Jaramillo, D.

    2014-01-01

    Highlights: • The influence of elliptical orifices on the inner nozzle flow is compared. • Five nozzles with different elliptical and circular orifices are simulated. • Differences in the flow coefficients and cavitation morphology are observed. • Horizontal axis orifices are ease to cavitate, with a higher discharge coefficient. • A better mixing process quality is expected for the horizontal major axis nozzles. - Abstract: In this paper a computational study was carried out in order to investigate the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development. With this aim, a large number of injection conditions have been simulated and analysed for 5 different nozzles: four nozzles with different elliptical orifices and one standard nozzle with circular orifices. The four elliptical nozzles differ from each other in the orientation of the major axis (vertical or horizontal) and in the eccentricity value, but keeping the same outlet section in all cases. The comparison has been made in terms of mass flow, momentum flux and other important non-dimensional parameters which help to describe the behaviour of the inner nozzle flow: discharge coefficient (C d ), area coefficient (C a ) and velocity coefficient (C v ). The simulations have been done with a code able to simulate the flow under either cavitating or non-cavitating conditions. This code has been previously validated using experimental measurements over the standard nozzle with circular orifices. The main results of the investigation have shown how the different geometries modify the critical cavitation conditions as well as the discharge coefficient and the effective velocity. In particular, elliptical geometries with vertically oriented major axis are less prone to cavitate and have a lower discharge coefficient, whereas elliptical geometries with horizontally oriented major axis are more prone to cavitate and show a higher discharge coefficient

  6. Long-term survival in children with atrioventricular septal defect and common atrioventricular valvar orifice in Sweden.

    Science.gov (United States)

    Frid, Christina; Björkhem, Gudrun; Jonzon, Anders; Sunnegårdh, Jan; Annerén, Göran; Lundell, Bo

    2004-02-01

    The survival for patients with atrioventricular septal defect has improved markedly over the last decades and, during the same period, the survival of children with Down's syndrome has also increased. The aim of our study was to investigate long-term survival in patients having atrioventricular septal defect with common valvar orifice, but without associated significant congenital heart defects, in the setting of Down's syndrome, comparing the findings to those in chromosomally normal children with the same malformation. In a population-based retrospective study, we scrutinised the medical records from 801 liveborn children with atrioventricular septal defect born in Sweden during the period 1973 through 1997. Data on gender, presence or absence of Down's syndrome, associated congenital heart defects, date of birth, operation and death were recorded and followed up until 2001. An isolated atrioventricular septal defect with common atrioventricular valvar orifice was present in 502 children, of whom 86% had Down's syndrome. We found a significant reduc tion over time in age at operation, and in postoperative mortality at 30 days, from 28 to 1%. Using a multiple logistic regression model, we found no significant differences in mortality between genders, nor between those with or without Down's syndrome. Early corrective surgery could not be identified as a significant independent factor for survival. The 5-year postoperative survival in patients with Down's syndrome increased from 65% over the period from 1973 through 1977, to about 90% in the period 1993 through 1997, and the same trend was observed in chromosomally normal patients. Survival in uncomplicated atrioventricular septal defect with common atrioventricular valvar orifice has greatly increased, and surgical correction is now equally successful in patients with Down's syndrome and chromosomally normal patients, and for both genders. Death in connection with surgery is no longer the major threat, and focus

  7. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air Quality...

  8. 76 FR 24513 - Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida

    Science.gov (United States)

    2011-05-02

    ...] Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida AGENCY... as part of the Jupiter Inlet Lighthouse Outstanding Natural Area. DATES: Effective Date: May 2, 2011... U.S.C. 1787), which created the Jupiter Inlet Lighthouse Outstanding Natural Area, and which...

  9. A Combined CFD/Characteristic Method for Prediction and Design of Hypersonic Inlet with Nose Bluntness

    Science.gov (United States)

    Gao, Wenzhi; Li, Zhufei; Yang, Jiming

    Leading edge bluntness is widely used in hypersonic inlet design for thermal protection[1]. Detailed research of leading edge bluntness on hypersonic inlet has been concentrated on shock shape correlation[2], boundary layer flow[3], inlet performance[4], etc. It is well known that blunted noses cause detached bow shocks which generate subsonic regions around the noses and entropy layers in the flowfield.

  10. Modelling Morphological Response of Large Tidal Inlet Systems to Sea Level Rise

    NARCIS (Netherlands)

    Dissanayake, P.K.

    2011-01-01

    This dissertation qualitatively investigates the morphodynamic response of a large inlet system to IPCC projected relative sea level rise (RSLR). Adopted numerical approach (Delft3D) used a highly schematised model domain analogous to the Ameland inlet in the Dutch Wadden Sea. Predicted inlet

  11. Stability analysis for tidal inlets of Thuan An and Tu Hien using Escoffier diagram

    NARCIS (Netherlands)

    Lam, N.T.; Verhagen, H.J.; Van der Wegen, M.

    2004-01-01

    Stability analysis of tidal inlets is very important in providing knowledge on the behaviour of tidal inlet and lagoon systems. The analysis results can help to plan and manage the system effectively as well as to provide information for stability design of the inlets. This paper presents a method

  12. 36 CFR 13.320 - Preference to Cook Inlet Region, Incorporated.

    Science.gov (United States)

    2010-07-01

    ... Region, Incorporated. 13.320 Section 13.320 Parks, Forests, and Public Property NATIONAL PARK SERVICE... to Cook Inlet Region, Incorporated. (a) The Cook Inlet Region, Incorporated (CIRI), in cooperation with village corporations within the Cook Inlet region when appropriate, will have a right of first...

  13. Predictions of Bedforms in Tidal Inlets and River Mouths

    Science.gov (United States)

    2016-07-31

    including suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate {0704-0188). Respondents should be aware...temporally varying roughness. 15. SUBJECT TERMS Bedforms, hydraulic roughness, tidal inlets, rivers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a...fluctuation representing local turbulence. However, once bedforms are created, the local flow around the bedforms is altered via feedback: flow is reduced in

  14. Integral Engine Inlet Particle Separator. Volume 2. Design Guide

    Science.gov (United States)

    1975-08-01

    herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines. Apprupriate technical personnel...into the comprensor at some future date. 5. A typical scavenge vane design Js; shown in Figures 85 and 86. The important features of the scavenge...service passageweys, for cooling of oil, and for directing sand and air into the scroll. Orientetion of the vanes is set by collection efficiency

  15. Bedload transport in an inlet channel during a tidal cycle

    DEFF Research Database (Denmark)

    Ernstsen, V. B.; Becker, M.; Winter, C.

    2007-01-01

      Based on high-resolution swath bathymetry measurements at centimetre-scale precision conducted during a tidal cycle in a dune field in the Grådyb tidal inlet channel in the DanishWadden Sea, a simple tool to calculate bedload transport is presented. Bedload transport was related to simultaneous...... variations in grain-size composition of the mobilised sediment should be taken into account by sediment transport formulae....

  16. Long-term Morphological Modeling at Coastal Inlets

    Science.gov (United States)

    2015-05-15

    that of Humboldt Bay, CA. The model reproduces reasonably well several geomorphic and hydrodynamic features of the inlet at Humboldt Bay. The...geometries, and model setup (e.g., sediment transport formulas) to investigate the controlling geomorphic parameters and the applicability of the CMS...2015 9 The model reproduces the general geomorphic features of Humboldt Bay. The ebb shoal volume is in the lower range of the estimated amount

  17. Reconstruction of paleo-inlet dynamics using sedimentologic analyses, geomorphic features, and benthic foraminiferal assemblages: former ephemeral inlets of Cedar Island, Virginia, USA

    Science.gov (United States)

    McBride, R.; Wood, E. T.

    2017-12-01

    Cedar Island, VA is a low-profile, washover-dominated barrier island that has breached at least three times in the past sixty years. Cedar Island Inlet, a former wave-dominated tidal inlet, was open for the following time periods: 1) 1956-1962, 2) 1992-1997, and 3) 1998-2007. Air photos, satellite imagery, and geomorphic features (i.e., relict flood tidal deltas, recurved-spit ridges) record the spatial and temporal extent of the three ephemeral inlets. Based on three sediment vibracores, benthic foraminiferal and sedimentologic analyses offer high resolution insights of inlet dynamics and lifecycle evolution. Four foraminiferal biofacies are completely dominated by Elphidium excavatum (54-100%) and contain unique assemblages of accessory species based on cluster analyses: tidal inlet floor (low abundance estuarine and shelf species; 23% Haynesina germanica); flood tidal delta/inlet fill (high abundance estuarine and shelf species; 2% Buccella frigida, 2% Ammonia parkinsoniana, and 2% Haynesina germanica); high-energy inlet fill (low abundance, low diversity shelf species; 9% Elphidium gunteri); and washover/beach/aeolian (low abundance, predominantly shelf species; 3% Buccella frigida and 3% Ammonia parkinsoniana). The estuarine biofacies is barren of all foraminifera. Grain size trends indicate a first order coarsening-upward succession with second order coarsening- and fining-upwards packages in inlet throat deposits, while a first order fining-upward succession is observed in flood tidal delta deposits with two second order coarsening-upward packages in the proximal flood tidal delta. Contrary to typical wave-dominated tidal inlets that open, migrate laterally in the direction of net longshore transport, and close, the 1998-2007 tidal inlet, and possibly the 1956-1962 inlet, migrated laterally and rotated, whereas the 1992-1997 inlet remained stationary and did not rotate. In the vicinity of the vibracores, preserved deposits are attributed to the 1956-1962 and

  18. Characterizing Interferences in an NOy Thermal Dissociation Inlet

    Science.gov (United States)

    Womack, C.; Veres, P. R.; Brock, C. A.; Neuman, J. A.; Eilerman, S. J.; Zarzana, K. J.; Dube, W. P.; Wild, R. J.; Wooldridge, P. J.; Cohen, R. C.; Brown, S. S.

    2016-12-01

    Nitrogen oxides (NOx = NO and NO2) are emitted into the troposphere by various anthropogenic and natural sources, and contribute to increased levels of ambient ozone. Reactive nitrogen species (NOy), which include nitric acid, peroxy acetyl and organic nitrates, and other species, serve as reservoirs and sinks for NOx, thus influencing O3 production. Their detection is therefore critical to understanding ozone chemistry. However, accurate measurements of NOy have proven to be difficult to obtain, and measurements of total NOy sometimes do not agree with the sum of measurements of its individual components. In recent years, quartz thermal dissociation (TD) inlets have been used to thermally convert all NOy species to NO2, followed by detection by techniques such as laser induced fluorescence (LIF) or cavity ringdown spectroscopy (CRDS). Here we discuss recent work in characterizing the NOy channel of our four-channel TD-CRDS instrument. In particular, we have examined the thermal conversion efficiency of several representative NOy species under a range of experimental conditions. We find that under certain conditions, the conversion efficiency is sensitive to inlet residence time and to the concentration of other trace gases found in ambient sampling, such as ozone. We also report the thermal dissociation curves of N2O5 and ammonium nitrate aerosol, and discuss the interferences observed when ammonia and ozone are co-sampled in the inlet.

  19. Thermography of the New River Inlet plume and nearshore currents

    Science.gov (United States)

    Chickadel, C.; Jessup, A.

    2012-12-01

    As part of the DARLA and RIVET experiments, thermal imaging systems mounted on a tower and in an airplane captured water flow in the New River Inlet, NC, USA. Kilometer-scale, airborne thermal imagery of the inlet details the ebb flow of the estuarine plume water mixing with ocean water. Multiple fronts, corresponding to the preferred channels through the ebb tidal delta, are imaged in the aerial data. A series of internal fronts suggest discreet sources of the tidal plume that vary with time. Focused thermal measurements made from a tower on the south side of the inlet viewed an area within a radius of a few hundred meters. Sub-meter resolution video from the tower revealed fine-scale flow features and the interaction of tidal exchange and wave-forced surfzone currents. Using the tower and airborne thermal image data we plan to provide geophysical information to compare with numerical models and in situ measurements made by other investigators. From the overflights, we will map the spatial and temporal extent of the estuarine plume to correlate with tidal phase and local wind conditions. From the tower data, we will investigate the structure of the nearshore flow using a thermal particle image velocimetry (PIV) technique, which is based on tracking motion of the surface temperature patterns. Long term variability of the mean and turbulent two-dimensional PIV currents will be correlated to local wave, tidal, and wind forcing parameters.

  20. Pressure drops in low pressure local boiling

    International Nuclear Information System (INIS)

    Courtaud, Michel; Schleisiek, Karl

    1969-01-01

    For prediction of flow reduction in nuclear research reactors, it was necessary to establish a correlation giving the pressure drop in subcooled boiling for rectangular channels. Measurements of pressure drop on rectangular channel 60 and 90 cm long and with a coolant gap of 1,8 and 3,6 mm were performed in the following range of parameters. -) 3 < pressure at the outlet < 11 bars abs; -) 25 < inlet temperature < 70 deg. C; -) 200 < heat flux < 700 W/cm 2 . It appeared that the usual parameter, relative length in subcooled boiling, was not sufficient to correlate experimental pressure losses on the subcooled boiling length and that there was a supplementary influence of pressure, heat flux and subcooling. With an a dimensional parameter including these terms a correlation was established with an error band of ±10%. With a computer code it was possible to derive the relation giving the overall pressure drop along the channel and to determine the local gradients of pressure drop. These local gradients were then correlated with the above parameter calculated in local conditions. 95 % of the experimental points were computed with an accuracy of ±10% with this correlation of gradients which can be used for non-uniform heated channels. (authors) [fr

  1. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    Science.gov (United States)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  2. Tidal asymmetries of velocity and stratification over a bathymetric depression in a tropical inlet

    Science.gov (United States)

    Waterhouse, Amy F.; Valle-Levinson, Arnoldo; Morales Pérez, Rubén A.

    2012-10-01

    Observations of current velocity, sea surface elevation and vertical profiles of density were obtained in a tropical inlet to determine the effect of a bathymetric depression (hollow) on the tidal flows. Surveys measuring velocity profiles were conducted over a diurnal tidal cycle with mixed spring tides during dry and wet seasons. Depth-averaged tidal velocities during ebb and flood tides behaved according to Bernoulli dynamics, as expected. The dynamic balance of depth-averaged quantities in the along-channel direction was governed by along-channel advection and pressure gradients with baroclinic pressure gradients only being important during the wet season. The vertical structure of the along-channel flow during flood tides exhibited a mid-depth maximum with lateral shear enhanced during the dry season as a result of decreased vertical stratification. During ebb tides, along-channel velocities in the vicinity of the hollow were vertically sheared with a weak return flow at depth due to choking of the flow on the seaward slope of the hollow. The potential energy anomaly, a measure of the amount of energy required to fully mix the water column, showed two peaks in stratification associated with ebb tide and a third peak occurring at the beginning of flood. After the first mid-ebb peak in stratification, ebb flows were constricted on the seaward slope of the hollow resulting in a bottom return flow. The sinking of surface waters and enhanced mixing on the seaward slope of the hollow reduced the potential energy anomaly after maximum ebb. The third peak in stratification during early flood occurred as a result of denser water entering the inlet at mid-depth. This dense water mixed with ambient deep waters increasing the stratification. Lateral shear in the along-channel flow across the hollow allowed trapping of less dense water in the surface layers further increasing stratification.

  3. Investigation into the impacts of distributed inlet temperature on thermal limit during LFWH event in Chinshan plant

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shao-Shih; Hsu, Keng-Hsien; Chen, Bo-Yan; Hsu, Shi-Sen [Institute of Nuclear Energy Research, Taoyuan City (China)

    2017-12-15

    The Condensate and Feedwater System of the Chinshan BWR units is used to provide reliable and high-quality water to maintain the reactor water level during operation. If a Loss of Feedwater Heating (LFWH) event occurs, the core inlet subcooling increases and then induces corresponding power excursion and the reactor pressure rise. In the Chinshan Final Safety Analysis Report (FSAR), a loss of the feedwater temperature of 55.6 C (100 F) is conservatively assumed in the event. This study analyzes the integral reactor system response with RETRAN. Furthermore, a partial vessel model (PVM) of CFD is used to acquire the conditions of the fuel channel inlet to compensate the weakness of the RETRAN system model to generate detailed thermal-hydraulic conditions. The evaluation shows that the feedwater temperature drop is about 40 C which is lower than the FSAR value. In addition, the sensitivity study shows that the hot channel method underestimates the ΔCPR about 0.025, and there is no direct relation between ΔCPR and either of inlet subcooling or power fraction in transient, which is quite different from the conclusion of the hot channel method. Finally, the sensitivity study also proves the ΔT of 55.6 C (100 F) used in FSAR analysis conservative enough to cover the worst channel with a margin of 0.015 in ΔCPR.

  4. Effects of Gravity and Inlet/Outlet Location on a Two-Phase Cocurrent Imbibition in Porous Media

    Directory of Open Access Journals (Sweden)

    M. F. El-Amin

    2011-01-01

    Full Text Available We introduce 2D numerical investigations of the problem of gravity and inlet/outlet location effects of water-oil two-phase cocurrent imbibition in a porous medium. Three different cases of side-, top-, and bottom-inlet location are considered. Two-dimensional computations are carried out using the finite element method. Intensive comparisons are done between considering and neglecting gravity effect on water saturation, pressures of water and oil as well as water velocity. Results are introduced either in curves or as 2D visualization graphs. The results indicate that the buoyancy effects due to gravity force take place depending on inlet location. So, the buoyancy force in the momentum equations of the co-current imbibition model cannot be neglected as done by several previous studies. Also, we note that the 2D zero gravity model has a uniform flow and may be represented as 1D flow unlike the 2D nonzero gravity model showing a nonuniform flow.

  5. Effects of gravity and inlet/outlet location on a two-phase cocurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2011-01-01

    We introduce 2D numerical investigations of the problem of gravity and inlet/outlet location effects of water-oil two-phase cocurrent imbibition in a porous medium. Three different cases of side-, top-, and bottom-inlet location are considered. Two-dimensional computations are carried out using the finite element method. Intensive comparisons are done between considering and neglecting gravity effect on water saturation, pressures of water and oil as well as water velocity. Results are introduced either in curves or as 2D visualization graphs. The results indicate that the buoyancy effects due to gravity force take place depending on inlet location. So, the buoyancy force in the momentum equations of the co-current imbibition model cannot be neglected as done by several previous studies. Also, we note that the 2D zero gravity model has a uniform flow and may be represented as 1D flow unlike the 2D nonzero gravity model showing a nonuniform flow. Copyright 2011 M. F. El-Amin and Shuyu Sun.

  6. Diversion cross-flow mixing at the inlet of a simulated rod bundle using a gamma camera

    International Nuclear Information System (INIS)

    Sedaghat, A.; Macduff, R.; Castellana, F.

    1986-01-01

    The prediction of diversion cross-flow and turbulent mixing interests reactor vendors and nuclear fuel suppliers because of the effect on critical heat flux. In single-phase flow with uniform inlet conditions, flow diversion occurs primarily near the inlet. Prior work by Bowring and Levy and Lahey estimated diversion length by comparing the axial pressure differential at the channel exit using isokinetic (natural flow split) and nonisokinetic (forced flow split) sampling and by using a mathematical model. The present work, sponsored by Exxon Nuclear Company, Inc., represents the first study in which flow distribution and diversion cross flow were investigated at the inlet of a clean geometry. The parameters investigated were diversion length and the effective cross-flow velocity was determined by analysis. The results of this work were compared to theoretical values predicted by the COBRA IIIC subchannel computer code. The difference between experimental data and COBRA IIIC suggests that a more comprehensive transverse momentum balance is desired as mass flux ratios become large. The inclusion of transverse inertia and acceleration terms in the transverse momentum balance become important

  7. Development of an optimization technique of CETOP-D inlet flow factor for reactor core thermal margin improvement

    International Nuclear Information System (INIS)

    Hong, Sung Duk; Im, Jong Sun; Yoo, Yun Jong; Kwon, Jung Taek; Park, Jong Ryool

    1995-01-01

    The recent ABB/CE(Asea Brown Boveri Combustion Engineering) type pressurized water reactors have the on-line monitoring system, i.e., the COLSS(core operating limit supervisory system), to prevent the specified acceptable fuel design limits from being violated during normal operation and anticipated operational occurrences. One of the main functions of COLSS is the on-line monitoring of the DNB(departure from nucleate boiling) overpower margin by calculating the MDNBR(minimum DNB ratio) for the measured operating condition at every second. The CETOP-D model, used in the MDNBR calculation of COLSS, is benchmarked conservatively against the TORC model using an inlet flow factor of hot assembly in CETOP-D as an adjustment factor for TORC. In this study, a technique to optimize the CETOP-D inlet flow factor has been developed by eliminating the excessive conservatism in the ABB/CE's. A correlation is introduced to account for the actual variation of the CETOP-D inlet flow factor within the core operating limits. This technique was applied to the core operating range of the Yonggwang Units 3 and 4 Cycle 1, which results in the increase of 2% in the DNB overpower margin at the normal operating condition, compared with that from the ABB/CE method. 7 figs., 2 tabs., 10 refs. (Author)

  8. Assessing Fan Flutter Stability in Presence of Inlet Distortion Using One-Way and Two-Way Coupled Methods

    Science.gov (United States)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  9. Control Volume Analysis of Boundary Layer Ingesting Propulsion Systems With or Without Shock Wave Ahead of the Inlet

    Science.gov (United States)

    Kim, Hyun Dae; Felder, James L.

    2011-01-01

    The performance benefit of boundary layer or wake ingestion on marine and air vehicles has been well documented and explored. In this article, a quasi-one-dimensional boundary layer ingestion (BLI) benefit analysis for subsonic and transonic propulsion systems is performed using a control volume of a ducted propulsion system that ingests the boundary layer developed by the external airframe surface. To illustrate the BLI benefit, a relationship between the amount of BLI and the net thrust is established and analyzed for two propulsor types. One propulsor is an electric fan, and the other is a pure turbojet. These engines can be modeled as a turbofan with an infinite bypass ratio for the electric fan, and with a zero bypass ratio for the pure turbojet. The analysis considers two flow processes: a boundary layer being ingested by an aircraft inlet and a shock wave sitting in front of the inlet. Though the two processes are completely unrelated, both represent a loss of total pressure and velocity. In real applications, it is possible to have both processes occurring in front of the inlet of a transonic vehicle. Preliminary analysis indicates that the electrically driven propulsion system benefits most from the boundary layer ingestion and the presence of transonic shock waves, whereas the benefit for the turbojet engine is near zero or negative depending on the amount of total temperature rise across the engine.

  10. Cirugía endoscópica transluminal por orificios naturales: NOTES Natural orifice transluminal endoscopic surgery: NOTES

    Directory of Open Access Journals (Sweden)

    M. J. Varas Lorenzo

    2009-04-01

    Full Text Available Se presenta una revisión actual, puesta al día, y punto de vista de los autores sobre un tema sumamente novedoso y atractivo, como es la Cirugía Endoscópica Transluminal por Orificios Naturales (NOTES: Natural Orifice Translumenal Endoscopic Surgery. La mayoría de los trabajos revisados se han realizado en animales de experimentación, pero la publicación de la colecistectomía por vía transvaginal, y la aparición de editoriales y artículos de revisión sobre el tema, nos llevan a realizar una serie de preguntas no resueltas actualmente sobre este tipo de cirugía, que representa un avance potencial para conseguir "una cirugía endoscópica sin cicatrices, sin infecciones, con mínimos requerimientos de anestesia y una inmediata recuperación".A current review and update of an exceedingly novel and appealing topic, namely natural orifice transluminal endoscopic surgery (NOTES, is discussed, as well as the authors' viewpoint thereon. Most reviewed studies were performed in laboratory animals, but reports on transvaginal cholecystectomy and the emergence of editorials and review articles on this topic pose a number of as yet unanswered questions on this type of surgery, which represents a potential advance towards "endoscopic surgery with no scars, no infection, minimal anesthesia requirements, and immediate recovery".

  11. Experimental otitis media with effusion induced by electron beam irradiation to pharyngeal orifice of auditory tube in guinea pig

    International Nuclear Information System (INIS)

    Kokubu, Michiyo; Amatsu, Mutsuo

    1984-01-01

    The purpose of the present study was to obtain a more natural tubal insufficiency than that obtained by the conventional methods to clarify the middle ear pathology associated with tubal dysfunction. For this purpose, the pharyngeal orifice of the auditory tube in the guinea pigs was irradiated with electron beam with a dose of 2,000 rad following the preliminary experiments to determine the appropriate dose. The guinea pigs with intact drum and normal Pryer reflex were used for the present experiment series. A specially devised apparatus was used for avoiding the dipersing beam. Histopathological changes of the middle ear and auditory tube were observed in a series of single specimen with H-E staining 1, 2, 3, 6, 12 months after irradiation. In this study, middle ear with effusion was used to clarify the dynamic process of the pathological changes between the auditory tube and the middle ear. In summary, the present study revealed that the electron beam irradiation to the pharyngeal orifice caused various grades of otitis media with effusion which could be classified into three groups. Of these groups 1) and 2), 3) were likely to be corresponding with so-called serous and purulent otitis media with effusion in human respectively. Infection due to the malfunction caused by the epithelial damage of the auditory tube was an important promoting factor to change the serous type effusion for the purulent type effusion. (J.P.N.)

  12. Endoscopic management of intraoperative small bowel laceration during natural orifice translumenal endoscopic surgery: a blinded porcine study.

    Science.gov (United States)

    Fyock, Christopher J; Forsmark, Chris E; Wagh, Mihir S

    2011-01-01

    Natural orifice translumenal endoscopic surgery (NOTES) has recently gained great enthusiasm, but there is concern regarding the ability to endoscopically manage complications purely via natural orifices. To assess the feasibility of endoscopically managing enteral perforation during NOTES using currently available endoscopic accessories. Twelve pigs underwent transgastric or transcolonic endoscopic exploration. Full-thickness enterotomies were intentionally created to mimic accidental small bowel lacerations during NOTES. These lacerations were then closed with endoclips. In the blinded arm of the study, small bowel repair was performed by a second blinded endoscopist. Adequate closure of the laceration was confirmed with a leak test. Primary access sites were closed with endoclips or T-anchors. At necropsy, the peritoneal cavity was inspected for abscesses, bleeding, or damage to surrounding structures. The enterotomy site was examined for adequacy of closure, adhesions, or evidence of infection. Fifteen small bowel lacerations were performed in 12 animals. Successful closure was achieved in all 10 cases in the nonblinded arm. Survival animals had an uncomplicated postoperative course and all enterotomy sites were well healed without evidence of necrosis, adhesions, abscess, or bleeding at necropsy. Leak test was negative in all animals. In the blinded arm, both small intestinal lacerations could not be identified by the blinded endoscopist. Necropsy revealed open small bowel lacerations. Small intestinal injuries are difficult to localize with currently available flexible endoscopes and accessories. Endoscopic clips, however, may be adequate for closure of small bowel lacerations if the site of injury is known.

  13. Effect of the inlet throttling on the thermal-hydraulic instability of the natural circulation BWR

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Inada, Fumio; Yoneda, Kimitoshi

    1997-01-01

    Although it is well-established that inlet restriction has a stabilizing for forced circulation BWR, the effect of inlet on the thermal-hydraulic stability of natural circulation BWR remains unknown since increasing inlet restriction affect thermal-hydraulic stability due to reduction of the recirculation flow rate. Therefore experiments have been conducted to investigate the effect of inlet restriction on the thermal-hydraulic stability. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation was described as a function of heat flux and inlet subcooling independent of inlet restriction. Stability maps in reference to the channel inlet subcooling, heat flux were presented for various inlet restriction which were carried out by an analysis based on the homogeneous flow various using this function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (author)

  14. Experimental Investigation of a Large-Scale Low-Boom Inlet Concept

    Science.gov (United States)

    Hirt, Stefanie M.; Chima, Rodrick V.; Vyas, Manan A.; Wayman, Thomas R.; Conners, Timothy R.; Reger, Robert W.

    2011-01-01

    A large-scale low-boom inlet concept was tested in the NASA Glenn Research Center 8- x 6- foot Supersonic Wind Tunnel. The purpose of this test was to assess inlet performance, stability and operability at various Mach numbers and angles of attack. During this effort, two models were tested: a dual stream inlet designed to mimic potential aircraft flight hardware integrating a high-flow bypass stream; and a single stream inlet designed to study a configuration with a zero-degree external cowl angle and to permit surface visualization of the vortex generator flow on the internal centerbody surface. During the course of the test, the low-boom inlet concept was demonstrated to have high recovery, excellent buzz margin, and high operability. This paper will provide an overview of the setup, show a brief comparison of the dual stream and single stream inlet results, and examine the dual stream inlet characteristics.

  15. Quantitative analysis of the side-branch orifice after bifurcation stenting using en-face processing of OCT images: a comparison between Xience V and Resolute Integrity stents.

    Science.gov (United States)

    Minami, Yoshiyasu; Wang, Zhao; Aguirre, Aaron D; Lee, Stephen; Uemura, Shiro; Soeda, Tsunenari; Vergallo, Rocco; Raffel, Owen C; Barlis, Peter; Itoh, Tomonori; Lee, Hang; Fujimoto, James; Jang, Ik-Kyung

    2016-01-01

    Methods for intravascular assessment of the side-branch (SB) orifice after stenting are not readily available. The aim of this study was to assess the utility of an en-face projection processing for optical coherence tomography (OCT) images for SB evaluation. Measurements of the SB orifice obtained using en-face OCT images were validated using a phantom model. Linear regression modeling was applied to estimated area measurements made on the en-face images. The SB orifice was then analyzed in 88 patients with bifurcation lesions treated with either Xience V (everolimus-eluting stent) or Resolute Integrity [zotarolimus-eluting stent (ZES)]. The SB orifice area (A) and the area obstructed by struts (B) were calculated, and the %open area was evaluated as (A-B)/A*100. Linear regression modeling demonstrated that the observed departures of the intercept and slope were not significantly different from 0 (-0.12 ± 0.22, P=0.59) and 1 (1.01 ± 0.06, R(2)=0.88, P=0.87), respectively. In cases without SB dilatation, the %open area was significantly larger in the everolimus-eluting stent group (n=25) than in the ZES group [n=32; 89.2% (83.7-91.3) vs. 84.3% (78.9-87.8), P=0.04]. A significant difference in %open area between cases with and those without SB dilatation was demonstrated in the ZES group [91.4% (86.1-94.0) vs. 84.3% (78.9-87.8), P=0.04]. The accuracy of SB orifice measurement on an en-face OCT image was validated using a phantom model. This novel approach enables quantitative evaluation of the differences in SB orifice area free from struts among different stent types and different treatment strategies in vivo.

  16. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K

    2016-04-01

    A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.

  17. Results of Low Power Deicer tests on a swept inlet component in the NASA Lewis Icing Research Tunnel

    Science.gov (United States)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection system were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  18. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    International Nuclear Information System (INIS)

    Guo Changjuan; Huang Zhengxu; Gao Wei; Nian Huiqing; Chen Huayong; Dong Junguo; Shen Guoying; Fu Jiamo; Zhou Zhen

    2008-01-01

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with this instrument

  19. Condensers for measuring steam quality at the inlet of back-pressure units of the Los Azufres, Mich., geothermal field; Condensadores para medir la calidad del vapor a la entrada de las turbinas a contrapresion del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Medina, Fernando; Gonzalez Gonzalez, Rubi; Reyes Delgado, Lisette; Medina Martinez, Moises [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia de Los Azufres (Mexico)]. E-mail: fernando.sandoval@cfe.gob.mx

    2007-01-15

    Electrical conductivity is an indirect measurement of the quality of the steam supplied to power units. In the Los Azufres, Mich., geothermal field, the electrical conductivity once was measured in a discrete and periodic way by condensing steam samples through a water-cooled condenser. In an attempt to continuously measure conductivity, conductivity meters were installed where the units discharged, but the values proved unstable and unrepresentative. Thereafter, taking into account that steam quality should be measured at the steam delivery-reception point, equipment was designed and tested for continuously condensing steam. Finally it was possible to get an air-cooled condenser able to condense 500 milliliters per minute, enough to collect a representative flow of the steam and to measure its electrical conductivity. The equipment was installed in all seven back-pressure units operating in the field and to date has been operating in an optimal manner. [Spanish] La conductividad electrica es una medida indirecta de la calidad del vapor que se suministra a las unidades turbogeneradoras. En el campo geotermico de Los Azufres, Mich., la conductividad electrica se media en forma puntual y periodica, condensando muestras de vapor por medio de un serpentin enfriado con agua. Despues, ante la necesidad de medirla en forma continua, se instalaron conductivimetros en las descargas de las unidades, pero los valores resultaron muy inestables y poco representativos. Considerando, ademas, que la calidad del vapor debe medirse en el punto de entrega-recepcion, se disenaron y probaron equipos para condensar vapor de manera continua, lograndose construir un condensador enfriado por aire que logra condensar un flujo de 500 mililitros por minuto, cantidad suficiente para tener un flujo representativo del vapor que alimenta a las turbinas y medirle su conductividad electrica. Se instalaron estos equipos en las siete unidades turbogeneradoras a contrapresion que funcionan en el campo

  20. Chronostratigraphic Analysis of Geomorphic Features within the Former Sinepuxent Inlet: A Wave-Dominated Tidal Inlet along Assateague Island, MD, USA

    Science.gov (United States)

    Seminack, C.; McBride, R.; Petruny, L. M.

    2017-12-01

    The former Sinepuxent Inlet, located along the mixed-energy, wave-dominated Assateague Island, MD-VA, USA, contains some of the most robust recurved-spit ridges along the span of the barrier island. In addition, this former tidal inlet exhibits a poorly developed flood-tidal delta containing at least two sets of curvilinear ridges known as "washarounds". Historical maps and nautical charts indicate that the former Sinepuxent Inlet was open from 1755 to 1832. However, previous studies conducted at the former Sinepuxent Inlet hypothesized that the site was exposed to episodic breaching events because of the extensive width of the former inlet throat, constrained by the northern and southern recurved-spit ridges. A total of 16 sediment cores, 10 optically stimulated luminescence (OSL) samples, and three 14C samples (mixed benthic foraminifera and eastern mud snail [Ilyanassa obsolete]) were collected from the former Sinepuxent Inlet to place morphostratigraphic units into a chronological context. Six OSL samples were collected from the northern and southern recurved-spit ridges at mean sea level (MSL) to constrain genesis ages. Southern recurved-spit ages varied more than their northern counterparts, ranging from 1640 to 1990 AD. The northern recurved-spit ridges varied in age from 1770 to 1900 AD. Two OSL samples collected from flood-tidal delta ridges yielded ages from 1680 to 2000 AD. In addition, two 14C samples collected at 128 and 101 cm below MSL within the inlet throat yielded ages between 1720 and post-1950 AD. Ultimately, these dates overlap with the inlet activity phase as indicated in historical documents. Conversely, two OSL samples (155 and 201 cm below MSL) and one 14C sample (134 cm below MSL) collected from the inlet throat returned ages between 760 and 1465 AD. The contrast in ages between the older inlet throat and subaerial ridge samples supports the hypothesis that the former Sinepuxent Inlet was reactivated numerous times. Thus, the three age

  1. Titanium Aluminide Scramjet Inlet Flap Subelement Benchmark Tested

    Science.gov (United States)

    Krause, David L.; Draper, Susan L.

    2005-01-01

    A subelement-level ultimate strength test was completed successfully at the NASA Glenn Research Center (http://www.nasa.gov/glenn/) on a large gamma titanium aluminide (TiAl) inlet flap demonstration piece. The test subjected the part to prototypical stress conditions by using unique fixtures that allowed both loading and support points to be located remote to the part itself (see the photograph). The resulting configuration produced shear, moment, and the consequent stress topology proportional to the design point. The test was conducted at room temperature, a harsh condition for the material because of reduced available ductility. Still, the peak experimental load-carrying capability exceeded original predictions.

  2. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  3. Experimental study on low pressure flow instability

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin; Wu Shaorong; Bo Jinhai; Zhang Youjie

    1997-05-01

    The experiment was performed on the test loop (HRTL-5), which simulates the geometry and system design of the 5 MW reactor. The flow behavior for a wide range of inlet subcooling, in which the flow undergoes from single phase to two phase, is described in a natural circulation system at low pressure (p = 0.1, 0.24 MPa). Several kinds of flow instability, e.g. subcooled boiling instability, subcooled boiling induced flashing instability, pure flashing instability as well as flashing coupled density wave instability and high frequency flow oscillation, are investigated. The mechanism of flashing and flashing concerned flow instability, which has never been studied well in this field, is especially interpreted. The experimental results show that, firstly, for a low pressure natural circulation system the two phase flow is unstable in most of inlet subcooling conditions, the two phase stable flow can only be reached at very low inlet subcooling; secondly, at high inlet subcooling the flow instability is dominated by subcooled boiling in the heated section, and at middle inlet subcooling is dominated by void flashing in the adiabatic long riser; thirdly, in two phase stable flow region the condition for boiling out of the core, namely, single phase flow in the heated section, two phase flow in the riser due to vapor flashing, can be realized. The experimental results are very important for the design and accident analysis of the vessel and swimming pool type natural circulation nuclear heating reactor. (7 refs., 10 figs., 1 tab.)

  4. Current status of natural orifice trans-endoscopic surgery (NOTES and laparoendoscopic single site surgery (LESS in urologic surgery

    Directory of Open Access Journals (Sweden)

    Rafael E. Sanchez-Salas

    2010-08-01

    Full Text Available Laparoendoscopic single site surgery (LESS and natural orifice transluminal endoscopic surgery (NOTES represent novel approaches in urological surgery. To perform a review of the literature in order describe the current status of LESS and NOTES in Urology. References for this manuscript were obtained by performing a review of the available literature in PubMed from 01-01-02 to 15-05-09. Search terms included single port, single site, NOTES, LESS and single incision. A total of 412 manuscripts were initially identified. Out of these, 64 manuscripts were selected based in their urological content. The manuscript features subheadings for experimental and clinical studies, as NOTES-LESS is a new surgical technique and its future evolution will probably rely in initial verified feasibility. A subheading for reviews presents information regarding common language and consensus for the techniques. The issue of complications published in clinical series and the future needs of NOTES-LESS, are also presented.

  5. Current status and future perspectives in laparoendoscopic single-site and natural orifice transluminal endoscopic urological surgery.

    Science.gov (United States)

    Autorino, Riccardo; Stein, Robert J; Lima, Estevão; Damiano, Rocco; Khanna, Rakesh; Haber, Georges-Pascal; White, Michael A; Kaouk, Jihad H

    2010-05-01

    Objective of this study is to provide an evidence-based analysis of the current status and future perspectives of scarless urological surgery. A PubMed search has been performed for all relevant urological literature regarding natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single-site surgery (LESS). In addition, experience with LESS and NOTES at our own institution has been considered. All clinical and investigative reports for LESS and NOTES procedures in the urological literature have been considered. A wide variety of clinical procedures in urology have been successfully completed by using LESS techniques. Thus far, experience with NOTES has largely been investigational, although early clinical reports are emerging. Further development of instrumentation and platforms is necessary for both techniques to become more widely adopted throughout the urological community.

  6. Office hysteroscopic treatment of a vanishing external uterine orifice in a postmenopausal woman with an obstetrical history of 44 abortions

    Directory of Open Access Journals (Sweden)

    Maurizio Guida

    2015-11-01

    Full Text Available Cervical stenosis, defined as cervical scarring of variable degree, represents a significant anatomical impediment to hysteroscopic procedures. Acquired cervical stenoses are more common than congenital forms and they are mainly associated with aging, estrogen–progesteron drugs, cervical trauma or carcinoma. The overcoming of cervical stenosis at office hysteroscopy is challenging and it often fails requiring the scheduling of the patient for an in-patient treatment under general anesthesia. We report the office hysteroscopy treatment of a vanishing external uterine orifice in a postmenopausal woman with an ultrasonographic report of a heterogeneous and thick endometrium suggestive of endometrial pathology, focusing on the main surgical steps to perform an adequate management.

  7. Effects of inlet boundary conditions, on the computed flow in the Turbine-99 draft tube, using OpenFOAM and CFX

    Science.gov (United States)

    Nilsson, H.; Cervantes, M. J.

    2012-11-01

    The flow in the Turbine-99 Kaplan draft tube was thoroughly investigated at three workshops (1999, 2001, 2005), which aimed at determining the state of the art of draft tube simulations. The flow is challenging due to the different flow phenomena appearing simultaneously such as unsteadiness, separation, swirl, turbulence, and a strong adverse pressure gradient. The geometry and the experimentally determined inlet boundary conditions were provided to the Turbine-99 workshop participants. At the final workshop, angular resolved inlet velocity boundary conditions were provided. The rotating non-axi-symmetry of the inlet flow due to the runner blades was thus included. The effect of the rotating angular resolution was however not fully investigated at that workshop. The first purpose of this work is to further investigate this effect. Several different inlet boundary conditions are applied - the angular resolved experimental data distributed at the Turbine-99 workshop, the angular resolved results of a runner simulation with interpolated values using different resolution in the tangential and radial directions, and an axi-symmetric variant of the same numerical data. The second purpose of this work is to compare the results from the OpenFOAM and CFX CFD codes, using as similar settings as possible. The present results suggest that the experimental angular inlet boundary conditions proposed to the workshop are not adequate to simulate accurately the flow in the T-99 draft tube. The reason for this is that the experimental phase-averaged data has some important differences compared to the previously measured time-averaged data. Using the interpolated data from the runner simulation as inlet boundary condition however gives good results as long as the resolution of that data is sufficient. It is shown that the difference between the results using the angular-resolved and the corresponding symmetric inlet data is very small, suggesting that the importance of the angular

  8. Effects of inlet boundary conditions, on the computed flow in the Turbine-99 draft tube, using OpenFOAM and CFX

    International Nuclear Information System (INIS)

    Nilsson, H; Cervantes, M J

    2012-01-01

    The flow in the Turbine-99 Kaplan draft tube was thoroughly investigated at three workshops (1999, 2001, 2005), which aimed at determining the state of the art of draft tube simulations. The flow is challenging due to the different flow phenomena appearing simultaneously such as unsteadiness, separation, swirl, turbulence, and a strong adverse pressure gradient. The geometry and the experimentally determined inlet boundary conditions were provided to the Turbine-99 workshop participants. At the final workshop, angular resolved inlet velocity boundary conditions were provided. The rotating non-axi-symmetry of the inlet flow due to the runner blades was thus included. The effect of the rotating angular resolution was however not fully investigated at that workshop. The first purpose of this work is to further investigate this effect. Several different inlet boundary conditions are applied – the angular resolved experimental data distributed at the Turbine-99 workshop, the angular resolved results of a runner simulation with interpolated values using different resolution in the tangential and radial directions, and an axi-symmetric variant of the same numerical data. The second purpose of this work is to compare the results from the OpenFOAM and CFX CFD codes, using as similar settings as possible. The present results suggest that the experimental angular inlet boundary conditions proposed to the workshop are not adequate to simulate accurately the flow in the T-99 draft tube. The reason for this is that the experimental phase-averaged data has some important differences compared to the previously measured time-averaged data. Using the interpolated data from the runner simulation as inlet boundary condition however gives good results as long as the resolution of that data is sufficient. It is shown that the difference between the results using the angular-resolved and the corresponding symmetric inlet data is very small, suggesting that the importance of the angular

  9. Rotor boundary layer development with inlet guide vane (IGV) wake impingement

    Science.gov (United States)

    Jia, Lichao; Zou, Tengda; Zhu, Yiding; Lee, Cunbiao

    2018-04-01

    This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake's high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake's arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

  10. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    Science.gov (United States)

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  11. Flow distribution in the inlet plenum of steam generator

    International Nuclear Information System (INIS)

    Khadamakar, H.P.; Patwardhan, A.W.; Padmakumar, G.; Vaidyanathan, G.

    2011-01-01

    Highlights: → Various flow distribution devices have been studied to make the flow distribution uniform in axial as well as tangential direction. → Experiments were performed using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV). → CFD modeling has been carried out to give more insights. → Various flow distribution devices have been compared. - Abstract: The flow distribution in a 1/5th and 1/8th scale models of inlet plenum of steam generator (SG) has been studied by a combination of experiments and Computational Fluid Dynamics (CFD) simulations. The distribution of liquid sodium in the inlet plenum of the SG strongly affects the thermal as well as mechanical performance of the steam generator. Various flow distribution devices have been used to make the flow distribution uniform in axial as well as tangential direction in the window region. Experiments have been conducted to measure the radial velocity distribution using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV) under a variety of conditions. CFD modeling has been carried out for various configurations to give more insight into the flow distribution phenomena. The various flow distribution devices have been compared on the basis of a non-uniformity index parameter.

  12. Progressive and cumulative fabric effects of multiple hydroentangling impacts at different water pressures on greige cotton substrate

    Science.gov (United States)

    A practical study was conducted to determine the effects of the hydroentangling jet strip’s orifice size and the hydroentangling water pressure on the energy expended and the properties of the resulting nonwoven fabrics produced on a commercial-grade hydro-entanglement (HE) system, using greige cott...

  13. Studi Numerik Karakterisasi Aliran 3 Dimensi Multifase (Gas-Solid Pada Gravity Settling Chamber Dengan Variasi Kecepatan Inlet Dan Diameter Partikel Pada Aliran Dilute Phase

    Directory of Open Access Journals (Sweden)

    Adi Mochammad Isa’i

    2013-09-01

    Full Text Available Kegiatan  pemilahan pada aktivitas produksi merupakan salah satu kegiatan yang banyak dilakukan pada dunia industri. Penggunaan gravity settling chamber merupakan teknologi pemilahan partikel yang paling sedehana dan murah. Maka dalam perancangan suatu gravity settling chamber perlu diketahui parameter yang mempengaruhi kinerja dari alat tersebut. Analisa karakteristik aliran pada gravity settling chamber dilakukan dengan metode simulasi numerik menggunakan persamaan Eularian-Lagrangian. Sebuah aliran multifase udara  dan partikel abu terbang batu bara (fly ashberdiameter 100 μm mengalir melalui sebuah  gravity settling chamber dengan variasi diameter hidrolis saluran inlet sebesar 1/3 1/5 dan 1/7  kali dari diameter hidrolis  ruang pengendap dengan laju kapasitas aliran yang sama . Selain divariasikan kecepatan inlet aliran, juga dilakukan variasi distribusi diameter dengan ukuran partikel kurang dari 50 μm, ukuran 50 -100 μm dan ukuran 100-200 μm.  Hasil yang didapatkan dari penelitian ini adalah semakin kecil ukuran diameter partikel maka akan efisiensi partikel yang ditangkap oleh gravity settling chamber semakin rendah. Ukuran partikel tidak berpengaruh terhadap posisi jatuh dari partikel tersebut. Semakin besar kecepatan inlet tidak memiliki hubungan dengan efisiensi penangkapan partikel. Pressure drop yang terjadi akan semakin besar sebanding dengan rasio perbandingan diameter hidrolis inlet dan ruang pengendapan, serta jumlah dan posisi secondary flow berperan signifikan pada efisiensi penangkapan partikel.

  14. Calculation of external-internal flow fields for mixed-compression inlets

    Science.gov (United States)

    Chyu, W. J.; Kawamura, T.; Bencze, D. P.

    1987-01-01

    Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.

  15. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.R. [National Oceanic and Atmospheric Administration, Silver Springs, MD (United States); Pietrafesa, L.J. [North Carolina State Univ., Raleigh, NC (United States). Department of Marine, Earth and Atmospheric Sciences

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  16. Conical Probe Calibration and Wind Tunnel Data Analysis of the Channeled Centerbody Inlet Experiment

    Science.gov (United States)

    Truong, Samson Siu

    2011-01-01

    For a multi-hole test probe undergoing wind tunnel tests, the resulting data needs to be analyzed for any significant trends. These trends include relating the pressure distributions, the geometric orientation, and the local velocity vector to one another. However, experimental runs always involve some sort of error. As a result, a calibration procedure is required to compensate for this error. For this case, it is the misalignment bias angles resulting from the distortion associated with the angularity of the test probe or the local velocity vector. Through a series of calibration steps presented here, the angular biases are determined and removed from the data sets. By removing the misalignment, smoother pressure distributions contribute to more accurate experimental results, which in turn could be then compared to theoretical and actual in-flight results to derive any similarities. Error analyses will also be performed to verify the accuracy of the calibration error reduction. The resulting calibrated data will be implemented into an in-flight RTF script that will output critical flight parameters during future CCIE experimental test runs. All of these tasks are associated with and in contribution to NASA Dryden Flight Research Center s F-15B Research Testbed s Small Business Innovation Research of the Channeled Centerbody Inlet Experiment.

  17. RNL automated ultrasonic inspection of the PISC II PWR inlet nozzle (Plate 3)

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.G.

    1987-01-01

    In June 1984, Risley Nuclear Laboratories (RNL) performed an automated ultrasonic inspection of the Pressurized Water Reactor (PWR) inlet nozzle (plate 3) from the international Programme of Inspection of Steel Components (PISC II) round-robin inspection programme. High-sensitivity pulse-echo detection and predominantly time-of-flight diffraction sizing techniques were employed from the clad inner surface of the nozzle using digital data collection, analysis, and display facilities developed at RNL. RNL detected 30 out of 31 intended weld flaws, achieved one hundred per cent correct acceptance of all acceptable flaws and had a correct rejection frequency on all rejectable flaws of 0.86. The results confirm that well-conceived automated inspection procedures, similar to those used by RNL in this nozzle inspection, could form the basis of a PSI/ISI procedure for reactor pressure vessel nozzle regions. Analysis of the RNL results with regard to the influence of flaw characteristics on inspection performance lends strong support to the general conclusions drawn by the PISC Data Analysis Group. In particular, the most difficult flaws to accurately size were circular smooth and rough flaws. Examination of the RNL results on individual flaws reveals valuable information on the strengths and weaknesses of the adopted procedures and points towards procedural changes that would improve inspection performance. This report describes the procedures adopted by RNL, in the inspection, and reviews the results in the light of definitive flaw information. (author)

  18. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    Science.gov (United States)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  19. U-Pb zircon age for a volcanic suite in the Rankin Inlet Group, Rankin Inlet map area, District of Keewatin, Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    Tella, S; Roddick, J C; VanBreemen, O [Geological Survey of Canada, Ottawa, ON (Canada)

    1997-12-31

    U-Pb zircon analyses from a felsic band within dominantly mafic volcanics of the Rankin Inlet Group yields a U-Pb upper concordia intercept age of 2663 {+-} 3 Ma. These supracrustals at Rankin Inlet appear to be 15-20 Ma younger than volcanics of the Kaminak Group in the Tavani area, 70 km to the southwest. The 2.68-2.66 Ga volcanism in the Tavani and Rankin Inlet areas coincided with the last stage of the main phase of magmatism in the Slave Structural Province. (author). 16 refs., 1 tab., 3 figs.

  20. U-Pb zircon age for a volcanic suite in the Rankin Inlet Group, Rankin Inlet map area, District of Keewatin, Northwest Territories

    International Nuclear Information System (INIS)

    Tella, S.; Roddick, J.C.; VanBreemen, O.

    1996-01-01

    U-Pb zircon analyses from a felsic band within dominantly mafic volcanics of the Rankin Inlet Group yields a U-Pb upper concordia intercept age of 2663 ± 3 Ma. These supracrustals at Rankin Inlet appear to be 15-20 Ma younger than volcanics of the Kaminak Group in the Tavani area, 70 km to the southwest. The 2.68-2.66 Ga volcanism in the Tavani and Rankin Inlet areas coincided with the last stage of the main phase of magmatism in the Slave Structural Province. (author). 16 refs., 1 tab., 3 figs

  1. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  2. Tidal and subtidal exchange flows at an inlet of the Wadden Sea

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Stanev, Emil; Badewien, Thomas H.

    2018-03-01

    Observations of underway velocity profiles during complete spring and neap tidal cycles were used to determine whether the spatial structures of tidal and subtidal flows at a tidal inlet in a multiple-inlet embayment are consistent with those observed at single-inlet embayments. Measurements were obtained at the Otzumer Balje, one of the multiple inlets among the East Frisian Islands of the Wadden Sea. The 1.5 km-wide inlet displayed a bathymetric profile consisting of a channel ∼15 m deep flanked by tide observations spanned 36 h in the period May 11-12, 2011, while spring tide measurements exceeded 48 h from May 17 to May 19, 2011. Analysis of observations indicate that frictional effects from bathymetry molded tidal flows. Spatial distributions of semidiurnal tidal current amplitude and phase conform to those predicted by an analytical model for a basin with one inlet. Maximum semidiurnal flows appear at the surface in the channel, furthest away from bottom friction effects. Therefore, Otzumer Balje displays tidal hydrodynamics that are independent of the other inlets of the embayment. Subtidal exchange flows are laterally sheared, with residual inflow in the channel combined with outflow over shoals. The spatial distribution of these residual flows follow theoretical expectations of tidally driven flows interacting with bathymetry. Such distribution is similar to the tidal residual circulation at other inlets with only one communication to the ocean, suggesting that at subtidal scales the Otzumer Balje responds to tidal forcing independently of the other inlets.

  3. Performance and Adaptive Surge-Preventing Acceleration Prediction of a Turboshaft Engine under Inlet Flow Distortion

    Directory of Open Access Journals (Sweden)

    Cao Dalu

    2017-01-01

    Full Text Available The intention of this paper is to research the inlet flow distortion influence on overall performance of turboshaft engine and put forward a method called Distortion Factor Item (DFI to improve the fuel supply plan for surge-preventing acceleration when turboshaft engine suddenly encounters inlet flow distortion. Based on the parallel compressor theory, steady-state and transition-state numerical simulation model of turboshaft engine with sub-compressor model were established for researching the influence of inlet flow distortion on turboshaft engine. This paper made a detailed analysis on the compressor operation from the aspects of performance and stability, and then analyzed the overall performance and dynamic response of the whole engine under inlet flow distortion. Improved fuel supply plan with DFI method was applied to control the acceleration process adaptively when encountering different inlet flow distortion. Several simulation examples about extreme natural environments were calculated to testify DFI method’s environmental applicability. The result shows that the inlet flow distortion reduces the air inflow and decreases the surge margin of compressor, and increase the engine exhaust loss. Encountering inlet flow distortion has many adverse influences such as sudden rotor acceleration, turbine inlet temperature rise and power output reduction. By using improved fuel supply plan with DFI, turboshaft engine above-idle acceleration can avoid surge effectively under inlet flow distortion with environmental applicability.

  4. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  5. Observations of Seafloor Roughness in a Tidally Modulated Inlet

    Science.gov (United States)

    Lippmann, T. C.; Hunt, J.

    2014-12-01

    The vertical structure of shallow water flows are influenced by the presence of a bottom boundary layer, which spans the water column for long period waves or mean flows. The nature of the boundary is determined in part by the roughness elements that make up the seafloor, and includes sometimes complex undulations associated with regular and irregular shaped bedforms whose scales range several orders of magnitude from orbital wave ripples (10-1 m) to mega-ripples (100 m) and even larger features (101-103) such as sand waves, bars, and dunes. Modeling efforts often parameterize the effects of roughness elements on flow fields, depending on the complexity of the boundary layer formulations. The problem is exacerbated by the transient nature of bedforms and their large spatial extent and variability. This is particularly important in high flow areas with large sediment transport, such as tidally dominated sandy inlets like New River Inlet, NC. Quantification of small scale seafloor variability over large spatial areas requires the use of mobile platforms that can measure with fine scale (order cm) accuracy in wide swaths. The problem is difficult in shallow water where waves and currents are large, and water clarity is often limited. In this work, we present results from bathymetric surveys obtained with the Coastal Bathymetry Survey System, a personal watercraft equipped with a Imagenex multibeam acoustic echosounder and Applanix POS-MV 320 GPS-aided inertial measurement unit. This system is able to measure shallow water seafloor bathymetry and backscatter intensity with very fine scale (10-1 m) resolution and over relatively large scales (103 m) in the presence of high waves and currents. Wavenumber spectra show that the noise floor of the resolved multibeam bathymetry is on the order of 2.5 - 5 cm in amplitude, depending on water depths ranging 2 - 6 m, and about 30 cm in wavelength. Seafloor roughness elements are estimated from wavenumber spectra across the inlet

  6. Measurement of pressure distributions and velocity fields of water jet intake flow

    International Nuclear Information System (INIS)

    Jeong, Eun Ho; Yoon, Sang Youl; Kwon, Seong Hoon; Chun, Ho Hwan; Kim, Mun Chan; Kim, Kyung Chun

    2002-01-01

    Waterjet propulsion system can avoid cavitation problem which is being arised conventional propeller propulsion system. The main issue of designing waterjet system is the boundary layer separation at ramp and lib of water inlet. The flow characteristics are highly depended on Jet to Velocity Ratio(JVR) as well as the intake geometry. The present study is conducted in a wind tunnel to provide accurate pressure destribution at the inlet wall and velocity field of the inlet and exit planes. Particle image velocimetry technique is used to obtain detail velocity fields. Pressure distributions and velocity field are discussed with accelerating and deaccelerating flow zones and the effect of JVR

  7. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  8. Moderator inlet line hanger replacement for Pickering nuclear power station

    International Nuclear Information System (INIS)

    Kirkpatrick, R.A.; Bowman, J.M.; Symmons, W.R.; El-Nesr, S.

    1988-01-01

    Ontario Hydro's Pickering Nuclear Generating Station (PNGS), Units 1 and 2 were shutdown for large scale fuel channel replacement. Other nonroutine inspection and maintenance activities were performed to determine the overall condition of the units and it was seen that a moderator inlet line hanger (identified as HR-29) had failed in both units. Subsequent inspections during planned maintenance outages of Pickering NGS Units 3 and 4 revealed that hanger HR-29 had failed and required replacement. A research program was conducted to find a suitable technique. These problems included accessing tooling through small inspection ports, manipulating tooling from a significant distance and the high radiation fields within the vault. This paper describes the program undertaken to replace hanger HR-29. (author)

  9. Mitigation of thermal transients by tube bundle inlet plenum design

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1984-06-01

    A multiphase program aimed at investigating the importance of thermal buoyancy to LMFBR steam-generator and heat-exchanger thermal hydraulics under low-flow transient conditions is being conducted in the Argonne Mixing Components Test Facility (MCTF) on a 60 0 sector shell-side flow model of the Westinghouse straight-tube steam generator being developed under the US/DOE large-component development program. A series of shell-side constant-flow thermal-downramp transient tests have been conducted focusing on the phenomenon of thermal-buoyancy-induced-flow channeling. In addition, it was discovered that a shell-inlet flow-distribution plenum can play a significant role in mitigating the severity of a thermal transient entering a steam generator or heat exchanger

  10. Inlet throttling effect on the boiling two-phase flow stability in a natural circulation loop with a chimney

    International Nuclear Information System (INIS)

    Furuya, M.; Inada, F.; Yasuo, A.

    2001-01-01

    Experiments have been conducted to investigate an effect of inlet restriction on the thermal-hydraulic stability. A Test facility used in this study was designed and constructed to have non-dimensional values that are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation at the stability boundary was described as a function of heat flux and inlet subcooling independent of inlet restriction. In order to extend experimental database regarding thermal-hydraulic stability to different inlet restriction, numerical analysis was carried out based on the homogeneous flow model. Stability maps in reference to the core inlet subcooling and heat flux were presented for various inlet restrictions using the above-mentioned function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (orig.)

  11. North Inlet • Winyah Bay (NIW) National Estuarine Research Reserve Meteorological Data, North Inlet Estuary, Georgetown, South Carolina: 1997 • 1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve System...

  12. Long-Term Ecological Research (LTER) Climate Data with Water Parameters from North Inlet Meteorological Station, North Inlet Estuary, Georgetown, South Carolina: 1982-1996.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Meteorological data with water parameters were collected on an hourly basis from June 3, 1982 through April 29, 1996 in the North Inlet Estuary, Georgetown County,...

  13. Phosphorus mass balance in a highly eutrophic semi-enclosed inlet near a big metropolis: a small inlet can contribute towards particulate organic matter production.

    Science.gov (United States)

    Asaoka, Satoshi; Yamamoto, Tamiji

    2011-01-01

    Terrigenous loading into enclosed water bodies has been blamed for eutrophic conditions marked by massive algal growth and subsequent hypoxia due to decomposition of dead algal cells. This study aims to describe the eutrophication and hypoxia processes in a semi-enclosed water body lying near a big metropolis. Phosphorus mass balance in a small inlet, Ohko Inlet, located at the head of Hiroshima Bay, Japan, was quantified using a numerical model. Dissolved inorganic phosphorous inflow from Kaita Bay next to the inlet was five times higher than that from terrigenous load, which may cause an enhancement of primary production. Therefore, it was concluded that not only the reduction of material load from the land and the suppression of benthic flux are needed, but also reducing the inflow of high phosphorus and oxygen depleted water from Kaita Bay will form a collective alternative measure to remediate the environmental condition of the inlet. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. North Inlet-Winyah Bay National Estuarine Research Reserve's (NERR) Estuarine Water Quality Data for the North Inlet and Winyah Bay Estuaries, Georgetown, South Carolina: 1993-2002

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of the Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve...

  15. Performance of low pressure mechanical ventilation concept with diffuse ceiling inlet for renovation of school classrooms

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    In a great portion of Danish primary schools the mechanical ventilation systems is outdated or simply rely on opening of windows to ventilate the classrooms. This leads to high energy consumption for fans and/or ventilation heat losses and poor indoor environment, as the ventilation systems cannot...... provide a sufficient ventilation rate. A recent study with 750 Danish classrooms show that 56 % had CO2-concentrations over a 1000 ppm, which is the recommended limit by the Danish working environment authority and this adversely affects the performance and well being of the pupils. This paper describes...... a mechanical ventilation concept to lower energy consumption and improve the indoor environment, developed for refurbishment of school classrooms. The performance of the concept is investigated through computer simulations and measurements of energy consumption and indoor environment. The measurements are made...

  16. Aerodynamic performance of winglets covering the tip gap inlet in a turbine cascade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Woo, E-mail: swlee@kumoh.ac.kr [Department of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Kim, Seon Ung; Kim, Kyoung Hoon [Department of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We test aerodynamics of PS and LEPS winglets for three winglet widths. Black-Right-Pointing-Pointer PS winglet reduces tip leakage loss but increases loss in the passage vortex region. Black-Right-Pointing-Pointer Mass-averaged loss reductions by PS and LEPS winglets are marginal. Black-Right-Pointing-Pointer The loss reductions are much smaller than that by a cavity squealer tip. - Abstract: The aerodynamic performance of two different kinds of winglets covering the tip gap inlet of a plane tip, a 'pressure-side' (PS) winglet and a 'leading-edge and pressure-side' (LEPS) winglet, has been investigated in a turbine cascade. For a tip gap height-to-chord ratio of h/c = 2.0%, their width-to-pitch ratio is changed to be w/p = 2.64, 5.28, and 10.55%. The PS winglet reduces aerodynamic loss in the tip leakage vortex region as well as in an area downstream of the winglet-pressure surface corner, whereas it increases aerodynamic loss in the central area of the passage vortex region. The additional leading-edge winglet portion of the LEPS winglet reduces aerodynamic loss considerably on the casing wall side of the passage vortex region but delivers a noticeable aerodynamic loss increase on its mid-span side. These local trends are deepened with increasing w/p. However, the mass-averaged aerodynamic loss reductions by installing the PS and LEPS winglets in comparison with the baseline no winglet data are only marginal even for w/p = 10.55% and found much smaller than that by employing a cavity squealer tip.

  17. Aerodynamic performance of winglets covering the tip gap inlet in a turbine cascade

    International Nuclear Information System (INIS)

    Lee, Sang Woo; Kim, Seon Ung; Kim, Kyoung Hoon

    2012-01-01

    Highlights: ► We test aerodynamics of PS and LEPS winglets for three winglet widths. ► PS winglet reduces tip leakage loss but increases loss in the passage vortex region. ► Mass-averaged loss reductions by PS and LEPS winglets are marginal. ► The loss reductions are much smaller than that by a cavity squealer tip. - Abstract: The aerodynamic performance of two different kinds of winglets covering the tip gap inlet of a plane tip, a “pressure-side” (PS) winglet and a “leading-edge and pressure-side” (LEPS) winglet, has been investigated in a turbine cascade. For a tip gap height-to-chord ratio of h/c = 2.0%, their width-to-pitch ratio is changed to be w/p = 2.64, 5.28, and 10.55%. The PS winglet reduces aerodynamic loss in the tip leakage vortex region as well as in an area downstream of the winglet-pressure surface corner, whereas it increases aerodynamic loss in the central area of the passage vortex region. The additional leading-edge winglet portion of the LEPS winglet reduces aerodynamic loss considerably on the casing wall side of the passage vortex region but delivers a noticeable aerodynamic loss increase on its mid-span side. These local trends are deepened with increasing w/p. However, the mass-averaged aerodynamic loss reductions by installing the PS and LEPS winglets in comparison with the baseline no winglet data are only marginal even for w/p = 10.55% and found much smaller than that by employing a cavity squealer tip.

  18. 33 CFR 110.170 - Lockwoods Folly Inlet, N.C.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lockwoods Folly Inlet, N.C. 110.170 Section 110.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.170 Lockwoods Folly Inlet, N.C. (a) Explosives...

  19. Evaluation of PM-10 commercial inlets for new surveillance air sampler

    International Nuclear Information System (INIS)

    Langer, G.

    1987-01-01

    The purpose of this project is to adapt an existing sampling inlet or develop a new one to collect airborne dust particles <10-μm aerodynamic equivalent diameter. These inlets are necessary to meet new EPA and DOE guidelines for surveillance of nuclear facilities

  20. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    Science.gov (United States)

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  1. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC inlet mode transition

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-09-01

    Full Text Available A turbine based combined cycle (TBCC propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition, at which point, the propulsion system performs a “mode transition” from the turbine to ramjet engine. Smooth inlet mode transition is accomplished when flow is diverted from one flowpath to the other, without experiencing unstart or buzz. The smooth inlet mode transition is a complex unsteady process and it is one of the enabling technologies for combined cycle engine to become a functional reality. In order to unveil the unsteady process of inlet mode transition, the research of over/under TBCC inlet mode transition was conducted through a numerical simulation. It shows that during the mode transition the terminal shock oscillates in the inlet. During the process of inlet mode transition mass flow rate and Mach number of turbojet flowpath reduce with oscillation. While in ramjet flowpath the flow field is non-uniform at the beginning of inlet mode transition. The speed of mode transition and the operation states of the turbojet and ramjet engines will affect the motion of terminal shock. The result obtained in present paper can help us realize the unsteady flow characteristic during the mode transition and provide some suggestions for TBCC inlet mode transition based on the smooth transition of thrust.

  2. The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.

  3. 77 FR 6065 - Proposed Information Collection; Comment Request; Cook Inlet Beluga Whale Economic Survey

    Science.gov (United States)

    2012-02-07

    ... Collection; Comment Request; Cook Inlet Beluga Whale Economic Survey AGENCY: National Oceanic and Atmospheric... beluga whales found in the Cook Inlet of Alaska is one of five distinct population segments in United... beluga whale, such as population increases, are primarily the result of the non- consumptive value people...

  4. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  5. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  6. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Science.gov (United States)

    2010-07-01

    ... Section 77.303 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  7. Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2016-01-01

    Full Text Available An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex – in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD and the sound pressure level (SPL were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600–18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.

  8. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    Science.gov (United States)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    tool, final verification of the dewar pressure vessel design requires a complete, detailed real fluid compressible flow model of the vent stack. The wall heat flux resulting from a loss of vacuum insulation increases the dewar pressure, which actuates the pressure relief mechanism and results in high-speed flow through the dewar vent stack. At high pressures, the flow can be choked at the vent stack inlet, at the exit, or at an intermediate transition or restriction. During previous SOFIA analyses, it was observed that there was generally a readily identifiable section of the vent stack that would limit the flow – e.g., a small diameter entrance or an orifice. It was also found that when the supercritical helium was approximated as an ideal gas at the dewar condition, the calculated mass flow rate based on choking at the limiting entrance or transition was less than the mass flow rate calculated using the detailed real fluid model2. Using this lower mass flow rate would yield a conservative prediction of the dewar’s wall heat flux capability. The simplified method of the current work was developed by building on this observation.

  9. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    OpenAIRE

    Machrafi, Hatim; Cavadias

    2008-01-01

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured, The inlet temperature was changed from 25 to 70 degrees C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels t...

  10. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  11. Selective catalytic reduction converter design: The effect of ammonia nonuniformity at inlet

    International Nuclear Information System (INIS)

    Paramadayalan, Thiyagarajan; Pant, Atul

    2013-01-01

    A three-dimensional CFD model of SCR converter with detailed chemistry is developed. The model is used to study the effects of radial variation in inlet ammonia profile on SCR emission performance at different temperatures. The model shows that radial variation in inlet ammonia concentration affects the SCR performance in the operating range of 200-400 .deg. C. In automotive SCR systems, ammonia is non-uniformly distributed due to evaporation/reaction of injected urea, and using a 1D model or a 3D model with flat ammonia profile at inlet for these conditions can result in erroneous emission prediction. The 3D SCR model is also used to study the effect of converter design parameters like inlet cone angle and monolith cell density on the SCR performance for a non-uniform ammonia concentration profile at the inlet. The performance of SCR is evaluated using DeNO x efficiency and ammonia slip

  12. Can barrier islands survive sea level rise? Tidal inlets versus storm overwash

    Science.gov (United States)

    Nienhuis, J.; Lorenzo-Trueba, J.

    2017-12-01

    Barrier island response to sea level rise depends on their ability to transgress and move sediment to the back barrier, either through flood-tidal delta deposition or via storm overwash. Our understanding of these processes over decadal to centennial timescales, however, is limited and poorly constrained. We have developed a new barrier inlet environment (BRIE) model to better understand the interplay between tidal dynamics, overwash fluxes, and sea-level rise on barrier evolution. The BRIE model combines existing overwash and shoreface formulations [Lorenzo-Trueba and Ashton, 2014] with alongshore sediment transport, inlet stability [Escoffier, 1940], inlet migration and flood-tidal delta deposition [Nienhuis and Ashton, 2016]. Within BRIE, inlets can open, close, migrate, merge with other inlets, and build flood-tidal delta deposits. The model accounts for feedbacks between overwash and inlets through their mutual dependence on barrier geometry. Model results suggest that when flood-tidal delta deposition is sufficiently large, barriers require less storm overwash to transgress and aggrade during sea level rise. In particular in micro-tidal environments with asymmetric wave climates and high alongshore sediment transport, tidal inlets are effective in depositing flood-tidal deltas and constitute the majority of the transgressive sediment flux. Additionally, we show that artificial inlet stabilization (via jetty construction or maintenance dredging) can make barrier islands more vulnerable to sea level rise. Escoffier, F. F. (1940), The Stability of Tidal Inlets, Shore and Beach, 8(4), 114-115. Lorenzo-Trueba, J., and A. D. Ashton (2014), Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model, J. Geophys. Res. Earth Surf., 119(4), 779-801, doi:10.1002/2013JF002941. Nienhuis, J. H., and A. D. Ashton (2016), Mechanics and rates of tidal inlet migration: Modeling and application to

  13. A three-dimensional semi-analytical solution for predicting drug release through the orifice of a spherical device.

    Science.gov (United States)

    Simon, Laurent; Ospina, Juan

    2016-07-25

    Three-dimensional solute transport was investigated for a spherical device with a release hole. The governing equation was derived using the Fick's second law. A mixed Neumann-Dirichlet condition was imposed at the boundary to represent diffusion through a small region on the surface of the device. The cumulative percentage of drug released was calculated in the Laplace domain and represented by the first term of an infinite series of Legendre and modified Bessel functions of the first kind. Application of the Zakian algorithm yielded the time-domain closed-form expression. The first-order solution closely matched a numerical solution generated by Mathematica(®). The proposed method allowed computation of the characteristic time. A larger surface pore resulted in a smaller effective time constant. The agreement between the numerical solution and the semi-analytical method improved noticeably as the size of the orifice increased. It took four time constants for the device to release approximately ninety-eight of its drug content. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An Assessment on Temperature Profile of Jet-A/Biodiesel Mixture in a Simple Combustion Chamber with Plain Orifice Atomiser

    Science.gov (United States)

    Ng, W. X.; Mazlan, N. M.; Ismail, M. A.; Rajendran, P.

    2018-05-01

    The preliminary study to evaluate influence of biodiesel/kerosene mixtures on combustion temperature profile is explored. A simple cylindrical combustion chamber configuration with plain orifice atomiser is used for the evaluation. The evaluation is performed under stoichiometric air to fuel ratio. Six samples of fuels are used: 100BD (pure biodiesel), 100KE (pure Jet-A), 20KE80BD (20% Jet-A/80% Biodiesel), 40KE60BD (40% Jet-A/60% Biodiesel), 60KE40BD (60% Jet-A/40% Biodiesel), and 80KE20BD (80% Jet-A/20% Biodiesel). Results showed that the oxygen content, viscosity, and lower heating value are key parameters in affecting the temperature profile inside the chamber. Biodiesel is known to have higher energy content, higher viscosity and lower heating value compared to kerosene. Mixing biodiesel with kerosene improves viscosity and caloric value but reduces oxygen content of the fuel. High oxygen content of the biodiesel resulted to the highest flame temperature. However the flame temperature reduce as the percentage of biodiesel in the fuel mixture reduces.

  15. Comparison of pain and postoperative stress in dogs undergoing natural orifice transluminal endoscopic surgery, laparoscopic, and open oophorectomy.

    Science.gov (United States)

    Freeman, Lynetta J; Rahmani, Emad Y; Al-Haddad, Mohammad; Sherman, Stuart; Chiorean, Michael V; Selzer, Don J; Snyder, Paul W; Constable, Peter D

    2010-08-01

    Few studies are available to compare the potential benefits of natural orifice transluminal endoscopic surgery (NOTES) approaches to traditional surgery. To compare complications, surgical stress, and postoperative pain. Prospective study in dogs. Research laboratory. Thirty dogs. Oophorectomy procedures were performed via NOTES and laparoscopic and traditional open surgery. Operative time, pain scores, systemic stress parameters (cortisol, glucose), surgical stress markers (interleukin 6, C-reactive protein), 3-day observation. Median operative times were 76, 44, and 35 minutes for the NOTES, laparoscopic, and open procedures, respectively, with the NOTES procedure being significantly longer than the other 2 procedures. All ovaries were completely excised, and all the animals survived without complications. The NOTES animals had greater increases in serum cortisol concentrations at 2 hours but no statistically significant differences in glucose concentrations compared with the other groups. Serum interleukin 6 and C-reactive protein concentrations were significantly increased at specific times compared with baseline in the NOTES group, but not in the open or laparoscopic surgery groups. Based on the cumulative pain score and nociceptive thresholds, the animals in the NOTES group demonstrated less evidence of pain. Small sample size, limited follow-up. Although the NOTES oophorectomy procedures took approximately twice as long and there may be more evidence of tissue damage as judged by increases in serum cortisol and interleukin 6 concentrations, the dogs in the NOTES group had lower pain scores, especially when compared with animals undergoing open surgery. Copyright 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  16. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  17. The Evolution of Utilizing Manual Throttles to Avoid Low LH2 NPSP at the SSME Inlet

    Science.gov (United States)

    Henfling, Rick

    2011-01-01

    Even before the first flight of the Space Shuttle, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) can have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System could result in a low LH2 NPSP condition. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs, which alleviated the low LH2 NPSP condition. A throttling down of the SSME resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at a lower throttle setting. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of these additional capabilities. Currently the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now would result in a nominal Main Engine Cut Off (MECO) and no loss of mission objectives.

  18. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  19. Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser

    International Nuclear Information System (INIS)

    Pinarbasi, Ali

    2009-01-01

    Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.

  20. Burnout experiments in freon 12 using different types of orifices to simulate the core grids - comparision between measured and predicted burnout values

    International Nuclear Information System (INIS)

    Katsaounis, A.; Orlowski, R.; Fulfs, H.; Hofmann, K.; Ladeira, L.C.D.

    1978-06-01

    This paper will report on burnout experiments carried out in freon 12 mainly at steady state and further at mass flow or power transient conditions with annular test sections axially uniformly heating either the inside or both the inside and outside rod. The runs are performed without orifice and using three different types of orifices simulating the reactor spacer grid. An important influence of the flow restriction on burnout position and value is measured. Furthermore, the comparison between the burnout correlations W2, W3, BandW2 and GE and experimental results from the literature using simple test section geometries in water and freon 12 demonstrate, that the accuracy is more or less comparable for both fluids

  1. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement

    Directory of Open Access Journals (Sweden)

    Ayoub Abdollahi

    2017-03-01

    Full Text Available The fluid flow and heat transfer characteristics of laminar nanofluid flow in microchannel heat sink (MCHS with V-Type inlet/outlet arrangement are numerically studied. A constant heat flux boundary condition is applied on the base plate of MCHS and all the other surfaces of MCHS are insulated. Four different kinds of nanofluids are utilized as working fluids which are SiO2, Al2O3, ZnO and CuO dispersed in pure water as a base fluid. Three different volume fractions of 1%, 1.5% and 2% and three distinctive nanoparticle diameters of 30 nm, 40 nm and 60 nm were employed. The results specify that the SiO2 nanofluid has the uppermost heat transfer rate compared to other tested nanofluids. Increasing the nanoparticles volume fraction together with decreasing the nanoparticles diameter enhances the Nusselt number value. The pressure drop coefficient did not change significantly by using nanofluid with various volume fractions and varied nanoparticle diameters. Moreover, the results indicate that nanofluid can enhance the performance of MCHS with V-shaped inlet/outlet arrangement.

  2. The Otto-Atkinson engine. A study of fluid flow and combustion with early and late inlet valve closing

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Henrik

    1999-10-01

    This report contains results of measurements on an Otto engine. The purpose for this work has been to do measurements of the flow in the cylinder but also measurements of the cylinder pressure have been performed. The flow measurements are made with the method Laser Doppler Velocimetry, LDV. The reason why these measurements are made at all are the pump losses that implies a lower efficiency for the Otto engine at part load. In this work two alternative ways that highly reduces the pump losses are examined. These are early inlet valve closing and late inlet valve closing. To further increase the efficiency at part load an increased compression ratio has been used together with the different valve strategies. With these two ways of operation, at a part load of about 4 - 5 IMEP{sub net}, increases of about 20% of the net indicated efficiency has been obtained. Additionally this report contains a chapter about the possible use of a variable valve actuation or timing system, VVA or VVT. Many conditions for the Otto cycle can be improved by the use of a variable valve actuation and in this chapter it is dealt with the most important ones.

  3. Steam generator for a pressurized-water coolant nuclear reactor

    International Nuclear Information System (INIS)

    Schroeder, H.J.; Berger, W.

    1975-01-01

    A description is given of a steam generator which has a vertical cylindrical housing having a steam output outlet, a horizontal tube sheet closing the lower end of this housing, and an inverted U-shaped tube bundle inside of the housing and having vertical inlet and outlet legs with their ends mounted in the tube sheet. Beneath the tube sheet there are inlet and outlet manifolds for the respective ends of the tube bundle so that pressurized-water coolant from a pressurized-water coolant nuclear reactor can be circulated through the tube bundle

  4. Rotary Speed Sensor for Antilocking Brakes

    Science.gov (United States)

    Berdahl, C. M.

    1986-01-01

    Sensor based on fluidic principles produces negative pressure approximately proportional to rotational speed. Sensor developed as part of antilocking brake system for motorcycles. Uses inlet pressure rather than outlet pressure as braking-control signal, eliminating pressure pulsations caused by pump vanes and ensuring low-noise signal. Sensor is centrifugal air pump turned by one of motorcycle wheels. Air enters pump through orifice plates, and suction taken off through port in pump inlet plenum.

  5. Thermal stratification in the pressurizer

    International Nuclear Information System (INIS)

    Baik, S.J.; Lee, K.W.; Ro, T.S.

    2001-01-01

    The thermal stratification in the pressurizer due to the insurge from the hot leg to the pressurizer has been studied. The insurge flow of the cold water into the pressurizer takes place during the heatup/cooldown and the normal or abnormal transients during power operation. The pressurizer vessel can undergo significant thermal fatigue usage caused by insurges and outsurges. Two-dimensional axisymmetric transient analysis for the thermal stratification in the pressurizer is performed using the computational fluid dynamics code, FLUENT, to get the velocity and temperature distribution. Parametric study has been carried out to investigate the effect of the inlet velocity and the temperature difference between the hot leg and the pressurizer on the thermal stratification. The results show that the insurge flow of cold water into the pressurizer does not mix well with hot water, and the cold water remains only in the lower portion of the pressurizer, which leads to the thermal stratification in the pressurizer. The thermal load on the pressurizer due to the thermal stratification or the cyclic thermal transient should be examined with respect to the mechanical integrity and this study can serve the design data for the stress analysis. (authors)

  6. Water resources of the Cook Inlet Basin, Alaska

    Science.gov (United States)

    Freethey, Geoffrey W.; Scully, David R.

    1980-01-01

    Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)

  7. Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications

    Science.gov (United States)

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil

    2015-02-01

    A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.

  8. Detecting Extracellular Carbonic Anhydrase Activity Using Membrane Inlet Mass Spectrometry

    Science.gov (United States)

    Delacruz, Joannalyn; Mikulski, Rose; Tu, Chingkuang; Li, Ying; Wang, Hai; Shiverick, Kathleen T.; Frost, Susan C.; Horenstein, Nicole A.; Silverman, David N.

    2010-01-01

    Current research into the function of carbonic anhydrases in cell physiology emphasizes the role of membrane-bound carbonic anhydrases, such as carbonic anhydrase IX that has been identified in malignant tumors and is associated with extracellular acidification as a response to hypoxia. We present here a mass spectrometric method to determine the extent to which total carbonic anhydrase activity is due to extracellular carbonic anhydrase in whole cell preparations. The method is based on the biphasic rate of depletion of 18O from CO2 measured by membrane inlet mass spectrometry. The slopes of the biphasic depletion are a sensitive measure of the presence of carbonic anhydrase outside and inside of the cells. This property is demonstrated here using suspensions of human red cells in which external carbonic anhydrase was added to the suspending solution. It is also applied to breast and prostate cancer cells which both express exofacial carbonic anhydrase IX. Inhibition of external carbonic anhydrase is achieved by use of a membrane impermeant inhibitor that was synthesized for this purpose, p-aminomethylbenzenesulfonamide attached to a polyethyleneglycol polymer. PMID:20417171

  9. Southern Salish Sea Habitat Map Series: Admiralty Inlet

    Science.gov (United States)

    Cochrane, Guy R.; Dethier, Megan N.; Hodson, Timothy O.; Kull, Kristine K.; Golden, Nadine E.; Ritchie, Andrew C.; Moegling, Crescent; Pacunski, Robert E.; Cochrane, Guy R.

    2015-01-01

    In 2010 the Environmental Protection Agency, Region 10 initiated the Puget Sound Scientific Studies and Technical Investigations Assistance Program, designed to support research in support of implementing the Puget Sound Action Agenda. The Action Agenda was created in response to Puget Sound having been designated as one of 28 estuaries of national significance under section 320 of the U.S. Clean Water Act, and its overall goal is to restore the Puget Sound Estuary's environment by 2020. The Southern Salish Sea Mapping Project was funded by the Assistance Program request for proposals process, which also supports a large number of coastal-zone- and ocean-management issues. The issues include the recommendations of the Marine Protected Areas Work Group to the Washington State Legislature (Van Cleve and others, 2009), which endorses a Puget Sound and coast-wide marine conservation needs assessment, gap analysis of existing Marine Protected Areas (MPA) and recommendations for action. This publication is the first of four U.S. Geological Survey Scientific Investigation Maps that make up the Southern Salish Sea Mapping Project. The remaining three map blocks to be published in the future, located south of Admiralty Inlet, are shown in figure 1.

  10. Characterization of Gatewell Orifice Lighting at the Bonneville Dam Second Powerhouse and Compendium of Research on Light Guidance with Juvenile Salmonids

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Robert P.; Simmons, Mary Ann

    2007-12-29

    The goal of the study described in this report is to provide U.S. Army Corps of Engineers (USACE) biologists and engineers with general design guidelines for using artificial lighting to enhance the passage of juvenile salmonids into the collection channel at the Bonneville Dam second powerhouse (B2). During fall 2007, Pacific Northwest National Laboratory (PNNL) researchers measured light levels in the field at one powerhouse orifice through which fish must pass to reach the collection channel. Two light types were evaluated—light-emitting diode (LED) lights and halogen spot lights. Additional measurements with mercury lamps were made at the PNNL Aquatic Research Laboratory to determine baseline intensity of the current lighting. A separate chapter synthesizes the relevant literature related to light and fish guidance for both field and laboratory studies. PNNL will also review the Corps plans for existing lighting protocol at all of the Portland District projects and help develop a uniform lighting scheme which could be implemented. The specific objectives for this study are to 1. Create a synthesis report of existing lighting data for juvenile salmonid attraction and deterrence and how the data are used at fish bypass facilities. 2. Evaluate current B2 orifice lighting conditions with both LED and halogen sources. 3. Make recommendations as to what lighting intensity, source, and configuration would improve passage at the B2 orifices. 4. Review USACE plans for retrofit of existing systems (to be assessed at a later date).

  11. Active Control of Inlet Noise on the JT15D Turbofan Engine

    Science.gov (United States)

    Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.

    1999-01-01

    This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage

  12. Interpreting Aerodynamics of a Transonic Impeller from Static Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Fangyuan Lou

    2018-01-01

    Full Text Available This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.

  13. Evaluation and performance enhancement of a pressure transducer under flows, waves, and a combination of flows and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, J.A.E.; Foden, P.; Taylor, K.; McKeown, J.; Desa, E.

    plate. This enhancement is likely to have been achieved because of the isolation of the pressure inlet from the separated flows and vortices generated by the transducer housing. Flow disturbances, generated by nearby solid structures, deteriorated...

  14. Study on the design of inlet and exhaust system of a stationary internal combustion engine

    International Nuclear Information System (INIS)

    Kesgin, Ugur

    2005-01-01

    The design and operational variables of inlet and exhaust systems are decisive to determine overall engine performance. The best engine overall performance can be obtained by proper design of the engine inlet and exhaust systems and by matching the correct turbocharger to the engine. This paper presents the results of investigations to design the inlet and exhaust systems of a stationary natural gas engine family. To do this, a computational model is verified in which zero dimensional phenomena within the cylinder and one dimensional phenomena in the engine inlet and exhaust systems are used. Using this engine model, the effects of the parameters of the inlet and exhaust systems on the engine performance are obtained. In particular, the following parameters are chosen: valve timing, valve diameter, valve lift profiles, diameter of the exhaust manifold, inlet and exhaust pipe lengths, and geometry of pipe junctions. Proper sizing of the inlet and exhaust pipe systems is achieved very precisely by these investigations. Also, valve timing is tuned by using the results obtained in this study. In general, a very high improvement potential for the engines studied here is presented

  15. Classifier utility modeling and analysis of hypersonic inlet start/unstart considering training data costs

    Science.gov (United States)

    Chang, Juntao; Hu, Qinghua; Yu, Daren; Bao, Wen

    2011-11-01

    Start/unstart detection is one of the most important issues of hypersonic inlets and is also the foundation of protection control of scramjet. The inlet start/unstart detection can be attributed to a standard pattern classification problem, and the training sample costs have to be considered for the classifier modeling as the CFD numerical simulations and wind tunnel experiments of hypersonic inlets both cost time and money. To solve this problem, the CFD simulation of inlet is studied at first step, and the simulation results could provide the training data for pattern classification of hypersonic inlet start/unstart. Then the classifier modeling technology and maximum classifier utility theories are introduced to analyze the effect of training data cost on classifier utility. In conclusion, it is useful to introduce support vector machine algorithms to acquire the classifier model of hypersonic inlet start/unstart, and the minimum total cost of hypersonic inlet start/unstart classifier can be obtained by the maximum classifier utility theories.

  16. Experimental Investigation of a Forward Swept Rotor in a Multistage Fan with Inlet Distortion

    Directory of Open Access Journals (Sweden)

    Aspi R. Wadia

    2011-01-01

    Full Text Available Previous studies of transonic swept rotors in single stage fans have demonstrated the potential of significant improvements in both efficiency and stall margin with forward swept blading. This paper extends the assessment of the payoff derived from forward sweep to multistage configurations. The experimental investigation compare two builds of an advanced two-stage fan configuration tested alternately with a radial and a forward swept stage 1 blade. In the two-stage evaluations, the testing was extended to include the effect on inlet flow distortion. While the common second stage among the two builds prevented the overall fan from showing clean inlet performance and stability benefits with the forward swept rotor 1, this configuration did demonstrate superior front stage efficiency and tolerance to inlet distortion. Having obtained already low distortion sensitivity with the radial rotor 1 configuration relative to current production military fan standards, the sensitivity to inlet distortion was halved with the forward swept rotor 1 configuration. In the case of the 180-degree one-per-rev distortion pattern, the two-stage configuration was evaluated both with and without inlet guide vanes (IGVs. The presence of the inlet guide vanes had a profound impact in lowering the two-stage fan's sensitivity with inlet distortion.

  17. 75 FR 1582 - Endangered and Threatened Species; Designation of Critical Habitat for the Cook Inlet Beluga Whale

    Science.gov (United States)

    2010-01-12

    ... Cook Inlet Beluga Whale AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... designate critical habitat for the endangered Cook Inlet beluga whale, Delphinapterus leucas, under the... the Cook Inlet beluga whale can be found on our Web site at: http://www.fakr.noaa.gov/ FOR FURTHER...

  18. Background-Oriented Schlieren used in a hypersonic inlet test at NASA GRC

    Science.gov (United States)

    Clem, Michelle; Woike, Mark; Saunders, John

    2016-01-01

    Background Oriented Schlieren (BOS) is a derivative of the classical schlieren technology, which is used to visualize density gradients, such as shock wave structures in a wind tunnel. Changes in refractive index resulting from density gradients cause light rays to bend, resulting in apparent motion of a random background pattern. The apparent motion of the pattern is determined using cross-correlation algorithms (between no-flow and with-flow image pairs) producing a schlieren-like image. One advantage of BOS is its simplified setup which enables a larger field-of-view (FOV) than traditional schlieren systems. In the present study, BOS was implemented into the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) in the 10x10 Supersonic Wind Tunnel at NASA Glenn Research Center. The model hardware for the CCE LIMX accommodates a fully integrated turbine based combined cycle propulsion system. To date, inlet mode transition between turbine and ramjet operation has been successfully demonstrated. High-speed BOS was used to visualize the behavior of the flow structures shock waves during unsteady inlet unstarts, a phenomenon known as buzz. Transient video images of inlet buzz were recorded for both the ramjet flow path (high speed inlet) and turbine flow path (low speed inlet). To understand the stability limits of the inlet, operation was pushed to the point of unstart and buzz. BOS was implemented in order to view both inlets simultaneously, since the required FOV was beyond the capability of the current traditional schlieren system. An example of BOS data (Images 1-6) capturing inlet buzz are presented.

  19. Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube

    Science.gov (United States)

    Leslie, Ian H.

    1989-01-01

    Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from

  20. Analysis of pressure distribution originated over the external plate window of the RA-10 nuclear fuel

    International Nuclear Information System (INIS)

    Gramajo, M A; Garcia, J.C

    2012-01-01

    The RA10 is a pool type multipurpose research reactor. The core consists of a rectangular array of MTR fuel type. The refrigeration system at full power and normal operations conditions is carried out by an ascendant flow through the core. To ensure the refrigeration in the sub-channel formed between two adjacent fuels, there is a window orifice over the outer fuel plate. Part of the coolant flow that gets into the fuel will be derived by the window orifice to the sub-channel. Due to the change in the coolant flow direction is necessary to establish the pressure distribution originated over the window In order to achieve this goal a CFD commercial code (FLUENT v6.3.26) was used to perform numerical simulations to obtain the pressure distribution over the window. A quarter of the fuel was modeled using proper symmetry and boundaries conditions (author)