WorldWideScience

Sample records for oriented samples rotating

  1. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation

    International Nuclear Information System (INIS)

    Zandomeneghi, Giorgia; Tomaselli, Marco; Williamson, Philip T.F.; Meier, Beat H.

    2003-01-01

    Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by 31 P NMR under variable-angle sample-spinning (VAS) conditions, confirming that the orientation of the liquid-crystalline director can be influenced by sample spinning. The director is perpendicular to the rotation axis when Θ (the angle between the sample-spinning axis and the magnetic field direction) is smaller than the magic angle, and is parallel to the rotation axis when Θ is larger than the magic angle. The new 31 P NMR VAS data presented are considerably more sensitive to the orientation of the bicelle than earlier 2 H studies and the analysis of the sideband pattern allows the determination of the orientation of the liquid-crystal director and its variation over the sample, i.e., the mosaic spread. Under VAS, the mosaic spread is small if Θ deviates significantly from the magic angle but becomes very large at the magic angle

  2. Applications of the rotating orientation XRD method to oriented materials

    International Nuclear Information System (INIS)

    Guo Zhenqi; Li Fei; Jin Li; Bai Yu

    2009-01-01

    The rotating orientation x-ray diffraction (RO-XRD) method, based on conventional XRD instruments by a modification of the sample stage, was introduced to investigate the orientation-related issues of such materials. In this paper, we show its applications including the determination of single crystal orientation, assistance in crystal cutting and evaluation of crystal quality. The interpretation of scanning patterns by RO-XRD on polycrystals with large grains, bulk material with several grains and oriented thin film is also presented. These results will hopefully expand the applications of the RO-XRD method and also benefit the conventional XRD techniques. (fast track communication)

  3. A low-temperature sample orienting device for single crystal spectroscopy at the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Sherline, T E; Solomon, L; Roberts, C K II; Bruce, D; Gaulin, B; Granroth, G E, E-mail: sherlinete@ornl.gov

    2010-11-01

    A low temperature sample orientation device providing three axes of rotation has been successfully built and is in testing for use on several spectrometers at the spallation neutron source (SNS). Sample rotation about the vertical ({omega}) axis of nearly 360 deg. and out of plane tilts ({phi} and v) of from -3.4 deg. to 4.4 deg. and from -2.8 deg. to 3.5 deg., respectively, are possible. An off-the-shelf closed cycle refrigerator (CCR) is mounted on a room temperature sealed rotary flange providing {omega} rotations of the sample. Out-of-plane tilts are made possible by piezoelectric actuated angular positioning devices mounted on the low temperature head of the CCR. Novel encoding devices based on magnetoresistive sensors have been developed to measure the tilt stage angles. This combination facilitates single crystal investigations from room temperature to 3.1 K. Commissioning experiments of the rotating CCR for both powder and single crystal samples have been performed on the ARCS spectrometer at the SNS. For the powder sample this device was used to continuously rotate the sample and thus average out any partial orientation of the powder. The powder rings observed in S(Q) are presented. For the single crystal sample, the rotation was used to probe different regions of momentum transfer (Q-space). Laue patterns obtained from a single crystal sample at two rotation angles are presented.

  4. Lunar Rotation, Orientation and Science

    Science.gov (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  5. Rotation of vertically oriented objects during earthquakes

    Science.gov (United States)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  6. Large sexual-orientation-related differences in performance on mental rotation and judgment of line orientation tasks.

    Science.gov (United States)

    Rahman, Qazi; Wilson, Glenn D

    2003-01-01

    This study examined the performance of heterosexual and homosexual men and women on 2 tests of spatial processing, mental rotation (MR) and Benton Judgment of Line Orientation (JLO). The sample comprised 60 heterosexual men, 60 heterosexual women, 60 homosexual men, and 60 homosexual women. There were significant main effects of gender (men achieving higher scores overall) and Gender x Sexual Orientation interactions. Decomposing these interactions revealed large differences between the male groups in favor of heterosexual men on JLO and MR performance. There was a modest difference between the female groups on MR total correct scores in favor of homosexual women but no differences in MR percentage correct. The evidence suggests possible variations in the parietal cortex between homosexual and heterosexual persons.

  7. Statistical orientation fluctuations: constant angular momentum versus constant rotational frequency constraints

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A L [Tulane Univ., New Orleans, LA (United States)

    1992-08-01

    Statistical orientation fluctuations are calculated with two alternative assumptions: the rotational frequency remains constant as the shape orientation fluctuates; and, the average angular momentum remains constant as the shape orientation fluctuates. (author). 2 refs., 3 figs.

  8. Axis of eye rotation changes with head-pitch orientation during head impulses about earth-vertical.

    Science.gov (United States)

    Migliaccio, Americo A; Schubert, Michael C; Clendaniel, Richard A; Carey, John P; Della Santina, Charles C; Minor, Lloyd B; Zee, David S

    2006-06-01

    The goal of this study was to assess how the axis of head rotation, Listing's law, and eye position influence the axis of eye rotation during brief, rapid head rotations. We specifically asked how the axis of eye rotation during the initial angular vestibuloocular reflex (VOR) changed when the pitch orientation of the head relative to Earth-vertical was varied, but the initial position of the eye in the orbit and the orientation of Listing's plane with respect to the head were fixed. We measured three-dimensional eye and head rotation axes in eight normal humans using the search coil technique during head-and-trunk (whole-body) and head-on-trunk (head-only) "impulses" about an Earth-vertical axis. The head was initially oriented at one of five pitch angles (30 degrees nose down, 15 degrees nose down, 0 degrees, 15 degrees nose up, 30 degrees nose up). The fixation target was always aligned with the nasooccipital axis. Whole-body impulses were passive, unpredictable, manual, rotations with peak-amplitude of approximately 20 degrees , peak-velocity of approximately 80 degrees /s, and peak-acceleration of approximately 1000 degrees /s2. Head-only impulses were also passive, unpredictable, manual, rotations with peak-amplitude of approximately 20 degrees , peak-velocity of approximately 150 degrees /s, and peak-acceleration of approximately 3000 degrees /s2. During whole-body impulses, the axis of eye rotation tilted in the same direction, and by an amount proportional (0.51 +/- 0.09), to the starting pitch head orientation (P rotation could be predicted from vectorial summation of the gains (eye velocity/head velocity) obtained for rotations about the pure yaw and roll head axes. Thus, even when the orientation of Listing's plane and eye position in the orbit are fixed, the axis of eye rotation during the VOR reflects a compromise between the requirements of Listing's law and a perfectly compensatory VOR.

  9. Heat transfer from rotating finned heat exchangers with different orientation angles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Adel Abdalla [Suez Canal University, Marine Engineering and Naval Architecture Department, Faculty of Engineering, Port Said (Egypt)

    2010-03-15

    The local and average heat transfer characteristics of spoke like fins that extend outward from a rotating shaft have been determined experimentally. The experiments encompassed a number of geometrical parameters, including the length and chord of the fins, the number of fins deployed around the circumference of the shaft and the orientation angles of the fin. The experiments cover a wider range of rotational speeds, which varies from 25 up to 2,000 rpm. Three wire heat flux sensors have been used in conjunction with a slip ring apparatus to evaluate the local and average heat transfer coefficients. The output results indicated that, the heat transfer transition on rotating fins occurs at Reynolds number lower than encountered on the stationary rectangular fins in crossflow. In general, with non zero incidence angle, the rotating system acts as a fan and creates axial air motion, which enhance the heat transfer rate. However, the effect of orientation angle reduces with increasing the rotational speed. The Nusselt number data are independent of the number of fins in the circumferential array at high rotational speed and are weakly dependent at low Reynolds numbers. To facilitate the use of the results for design, correlations were developed which represent the fin heat transfer coefficient as a continuous function of the investigated independent parameters. (orig.)

  10. Measurement of magnetic properties of grain-oriented silicon steel using round rotational single sheet tester (RRSST)

    International Nuclear Information System (INIS)

    Gorican, Viktor; Hamler, Anton; Jesenik, Marko; Stumberger, Bojan; Trlep, Mladen

    2004-01-01

    The magnetic properties of grain-oriented material under rotational magnetic flux condition were measured, using two different pairs of B coils with different angle with respect to the rolling direction. It is known that induced voltages in two perpendicularly positioned B coils do not represent the actual amplitude and the angular speed of vector B in the measuring region. Consequently, the control of the induced voltages in the B coils at different positions means that the sample is measured under different magnetic flux condition. This leads to a difference between the results of vector H and the rotational loss

  11. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf

    2017-07-31

    Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.

  12. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals

    International Nuclear Information System (INIS)

    Lynden-Bell, R.M.; Michel, K.H.

    1994-01-01

    Many of the properties of orientationally disordered crystals are profoundly affected by the coupling (known as translation-rotation coupling) between translation displacements and molecular orientation. The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary throughout the Brillouin zone. One result is an indirect coupling between the orientations of different molecules, which plays an important role in the order/disorder phase transition, especially in ionic orientationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants and affects phonon spectra. This article describes the theory of the coupling from the point of view of the microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding of experimental observations. The application of the theory to phase transitions is described. The softening of elastic constants is discussed and shown to be universal. However, anomalies associated with the order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order parameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the recently observed dielectric behavior of ammonium compounds is discussed. Throughout the article examples from published experiments are used to illustrate the application of the theory including well known examples such as the alkali metal cyanides and more recently discovered orientationally disordered crystals such as the fullerite, C 60

  13. Titan's interior from its rotation axis orientation and its Love number

    Science.gov (United States)

    Baland, Rose-Marie; Gabriel, Tobie; Axel, Lefèvre

    2013-04-01

    The tidal Love number k2 of Titan has been recently estimated from Cassini flybys radio-tracking and is consistent with the presence of a global ocean in Titan's interior, located between two ice layers (Iess et al. 2012), in accordance with prediction from interior and evolutionary models for Titan. Previously, the orientation of the rotation axis of Titan has been measured on the basis of radar images from Cassini (Stiles et al. 2008). Titan's obliquity, is about 0.3. The measured orientation is more consistent with the presence of a global internal liquid ocean than with an entirely solid Titan (Baland et al. 2011). The global topography data of Titan seem to indicate some departure from the hydrostatic shape expected for a synchronous satellite under the influence of its rotation and the static tides raised by the central planet (Zebker et al. 2009). This may be explained by a differential tidal heating in the ice shell which flattens the poles (Nimmo and Bills 2010). A surface more flattened than expected implies compensation in depth to explain the measured gravity coefficients C20 and C22 of Iess et al. (2012). Here, all layers are assumed to have a tri-axial ellipsoid shape, but with polar and equatorial flattenings that differ from the hydrostatic expected ones. We assess the influence of this non-hydrostatic shape on the conclusions of Baland et al. (2011), which developped a Cassini state model for the orientation of the rotation axis of a synchronous satellite having an internal liquid layer. We assess the possibility to constrain Titan's interior (and particularly the structure of the water/ice layer) from both the rotation axis orientation and the Love number. We consider a range of internal structure models consistent with the mean density and the mean radius of Titan, and made of a shell, an ocean, a mantle, and a core, from the surface to the center, with various possible compositions (e.g. ammonia mixed with water for the ocean). The internal

  14. Rotating magnetizations in electrical machines: Measurements and modeling

    Science.gov (United States)

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  15. Rotating magnetizations in electrical machines: Measurements and modeling

    Directory of Open Access Journals (Sweden)

    Andreas Thul

    2018-05-01

    Full Text Available This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  16. Effect of Pelvic Tilt and Rotation on Cup Orientation in Both Supine and Standing Positions.

    Science.gov (United States)

    Yun, Hohyun; Murphy, William S; Ward, Daniel M; Zheng, Guoyan; Hayden, Brett L; Murphy, Stephen B

    2018-05-01

    The purpose of this study is to analyze the effect of pelvic tilt and rotation on radiographic measurement of cup orientation. A total of 68 patients (79 hips) were included in this study. The patients had a computed tomography study and approximately 3 months of postoperative standing anteroposterior pelvic radiographs in both supine and standing positions. We used 2-dimensional (2D)/3-dimensional (3D) matching to measure pelvic tilt and rotation, and cup orientation. There was a wide range of pelvic tilt between individuals in both supine and standing positions. Supine pelvic tilt was different from standing pelvic tilt (P cup anteversion before and after 2D/3D matching in both supine and standing positions (P cup anteversion before and after 2D/3D matching. When all 79 hips were separated into right and left side, pelvic rotation inversely correlated with the pelvic tilt-adjusted difference in anteversion before and after 2D/3D matching of the right side but directly correlated with that of the left side in both supine and standing positions. This study demonstrated that the measurement of cup anteversion on anteroposterior radiographs is significantly affected by both pelvic tilt and pelvic rotation (depending on the side). Improved understanding of pelvic orientation and improved ability to measure pelvic orientation may eventually allow for desired cup positioning to potentially protect against complications associated with malposition of the cup. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of rotational diffusion in an orientational potential well on the point spread function of electric dipole emitters.

    Science.gov (United States)

    Stallinga, Sjoerd

    2015-02-01

    A study is presented of the point spread function (PSF) of electric dipole emitters that go through a series of absorption-emission cycles while the dipole orientation is changing due to rotational diffusion within the constraint of an orientational potential well. An analytical expression for the PSF is derived valid for arbitrary orientational potential wells in the limit of image acquisition times much larger than the rotational relaxation time. This framework is used to study the effects of the direction of incidence, polarization, and degree of coherence of the illumination. In the limit of fast rotational diffusion on the scale of the fluorescence lifetime the illumination influences only the PSF height, not its shape. In the limit of slow rotational diffusion on the scale of the fluorescence lifetime there is a significant effect on the PSF shape as well, provided the illumination is (partially) coherent. For oblique incidence, illumination asymmetries can arise in the PSF that give rise to position offsets in localization based on Gaussian spot fitting. These asymmetries persist in the limit of free diffusion in a zero orientational potential well.

  18. Manipulator for rotating and translating a sample holder

    Science.gov (United States)

    van de Water, Jeroen [Breugel, NL; van den Oetelaar, Johannes [Eindhoven, NL; Wagner, Raymond [Gorinchem, NL; Slingerland, Hendrik Nicolaas [Venlo, NL; Bruggers, Jan Willem [Eindhoven, NL; Ottevanger, Adriaan Huibert Dirk [Malden, NL; Schmid, Andreas [Berkeley, CA; Olson, Eric A [Champaign, IL; Petrov, Ivan G [Champaign, IL; Donchev, Todor I [Urbana, IL; Duden, Thomas [Kensington, CA

    2011-02-08

    A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.

  19. Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields.

    Directory of Open Access Journals (Sweden)

    Assaf Rotem

    Full Text Available Transcranial Magnetic Stimulation (TMS is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback and will enable stimulation in brain regions where a preferred axonal orientation does not exist.

  20. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  1. Interaction of z component of magnetic field between two samples of GO material in the round rotational single sheet tester (RRSST)

    International Nuclear Information System (INIS)

    Gorican, Viktor; Hamler, Anton; Jesenik, Marko; Stumberger, Bojan; Trlep, Mladen

    2006-01-01

    The magnetic properties of two grain-oriented (GO) samples of the same grade were measured under alternating and rotational magnetic flux conditions. Two samples were measured separately and then together in different arrangement to each other. The interaction of magnetic field between two samples were measured by using a coil, which was placed in between. The results show that the H z component influence measured magnetic properties in the x-y plane

  2. ROTATION AND MAGNETIC ACTIVITY IN A SAMPLE OF M-DWARFS

    International Nuclear Information System (INIS)

    Browning, Matthew K.; Basri, Gibor; Marcy, Geoffrey W.; Zhang Jiahao; West, Andrew A.

    2010-01-01

    We have analyzed the rotational broadening and chromospheric activity in a sample of 123 M-dwarfs, using spectra taken at the W.M. Keck Observatory as part of the California Planet Search program. We find that only seven of these stars are rotating more rapidly than our detection threshold of v sin i ∼ 2.5 km s -1 . Rotation appears to be more common in stars later than M3 than in the M0-M2.5 mass range: we estimate that less than 10% of early-M stars are detectably rotating, whereas roughly a third of those later than M4 show signs of rotation. These findings lend support to the view that rotational braking becomes less effective in fully convective stars. By measuring the equivalent widths of the Ca II H and K lines for the stars in our sample, and converting these to approximate L Ca /L bol measurements, we also provide constraints on the connection between rotation and magnetic activity. Measurable rotation is a sufficient, but not necessary condition for activity in our sample: all the detectable rotators show strong Ca II emission, but so too do a small number of non-rotating stars, which we presume may lie at high inclination angles relative to our line of sight. Our data are consistent with a 'saturation-type' rotation-activity relationship, with activity roughly independent of rotation above a threshold velocity of less than 6 km s -1 . We also find weak evidence for a 'gap' in L Ca /L bol between a highly active population of stars, which typically are detected as rotators, and another much less active group.

  3. Amplified Head Rotation in Virtual Reality and the Effects on 3D Search, Training Transfer, and Spatial Orientation.

    Science.gov (United States)

    Ragan, Eric D; Scerbo, Siroberto; Bacim, Felipe; Bowman, Doug A

    2017-08-01

    Many types of virtual reality (VR) systems allow users to use natural, physical head movements to view a 3D environment. In some situations, such as when using systems that lack a fully surrounding display or when opting for convenient low-effort interaction, view control can be enabled through a combination of physical and virtual turns to view the environment, but the reduced realism could potentially interfere with the ability to maintain spatial orientation. One solution to this problem is to amplify head rotations such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the entire surrounding environment with small head movements. This solution is attractive because it allows semi-natural physical view control rather than requiring complete physical rotations or a fully-surrounding display. However, the effects of amplified head rotations on spatial orientation and many practical tasks are not well understood. In this paper, we present an experiment that evaluates the influence of amplified head rotation on 3D search, spatial orientation, and cybersickness. In the study, we varied the amount of amplification and also varied the type of display used (head-mounted display or surround-screen CAVE) for the VR search task. By evaluating participants first with amplification and then without, we were also able to study training transfer effects. The findings demonstrate the feasibility of using amplified head rotation to view 360 degrees of virtual space, but noticeable problems were identified when using high amplification with a head-mounted display. In addition, participants were able to more easily maintain a sense of spatial orientation when using the CAVE version of the application, which suggests that visibility of the user's body and awareness of the CAVE's physical environment may have contributed to the ability to use the amplification technique while keeping track of orientation.

  4. Keeping It in Three Dimensions: Measuring the Development of Mental Rotation in Children with the Rotated Colour Cube Test (RCCT)

    Science.gov (United States)

    Lutke, Nikolay; Lange-Kuttner, Christiane

    2015-01-01

    This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters…

  5. Validity and Psychometric Properties of Malay Translated Religious Orientation Scale-Revised among Malaysian Adult Samples

    Directory of Open Access Journals (Sweden)

    Mohammad Rahim Kamaluddin

    2017-08-01

    Full Text Available Religious Orientation Scale-Revised (ROS-R has been used increasingly as an important measure in psychology of religion based researches and widely administered in cross-cultural settings. Unfortunately, there is no valid and reliable ROS-R available in Malay language to assess religious orientations among Malaysians. With that in mind, the present study aims to validate and document the psychometric properties of Malay translated ROS-R (henceforth, M-ROS-R among sample of Malaysian adults. This study commenced with Forward-Backward translations and was followed by content and face validities. Subsequently, a cross-sectional study was conducted among Malaysian adults (n = 226 using convenience sampling method for the purpose of construct and factorial validations. Later, construct and factorial validity was performed via Exploratory Factor Analysis using Principal Component Analysis with Varimax rotation. Finally, reliability testing was performed to determine the internal consistency of the items which was achieved using Cronbach’s Alpha coefficient method (α. The factor loading consisted of three factors with a total variance of 64.76%. The final version of M-ROS-R consisted of 14 items with Factor 1 (Intrinsic Orientation comprised of 8 items, Factor 2 (Extrinsic-Socially Orientated with 3 items while Factor 3 (Extrinsic-Personally Orientated constituted 3 items. The internal consistency values of the factors ranged between 0.68 and 0.86, indicating the scale is reliable. The intercorrelations between factors were also significant with each other. M-ROS-R was concluded as a valid and reliable scale to measure and assess religious orientations among Malaysians.

  6. Improved orientation sampling for indexing diffraction patterns of polycrystalline materials

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Schmidt, Søren

    2017-01-01

    to that of optimally distributing points on a four‐dimensional sphere. In doing so, the number of orientation samples needed to achieve a desired indexing accuracy is significantly reduced. Orientation sets at a range of sizes are generated in this way for all Laue groups and are made available online for easy use.......Orientation mapping is a widely used technique for revealing the microstructure of a polycrystalline sample. The crystalline orientation at each point in the sample is determined by analysis of the diffraction pattern, a process known as pattern indexing. A recent development in pattern indexing...... in the presence of noise, it has very high computational requirements. In this article, the computational burden is reduced by developing a method for nearly optimal sampling of orientations. By using the quaternion representation of orientations, it is shown that the optimal sampling problem is equivalent...

  7. Texture orientation of glancing angle deposited copper nanowire arrays

    International Nuclear Information System (INIS)

    Alouach, H.; Mankey, G.J.

    2004-01-01

    Self-assembled copper nanowires were deposited on native oxide Si(100) substrates using glancing angle deposition with and without substrate rotation. Wire morphology, texture and crystallographic orientation are strongly dependent on the deposition parameters. A method for determining the preferred crystal orientation is described. This orientation is found to be different from what is expected from the geometric orientation of the wires. For wires deposited without substrate rotation, the face-centered-cubic (fcc)(111) crystal orientation, which corresponds to the close-packed, low surface energy (111) plane of copper, lies between the long axis of the wire and that normal to the substrate. X-ray diffraction data show that the wires exhibit bundling behavior perpendicular to the plane of incidence. For samples deposited with azimuthal rotation of the substrate, the fcc(111) directions in the wires are evenly distributed in a cone around the long axis of the wires, which point normal to the substrate. When the substrate is rotated during deposition at an angle of 75 deg., the wires exhibit a strong fcc(220) texture. These observations show that wires deposited with substrate rotation are highly textured and have random orientations in the plane of the substrate

  8. Open source laboratory sample rotator mixer and shaker

    Directory of Open Access Journals (Sweden)

    Karankumar C. Dhankani

    2017-04-01

    Full Text Available An open-source 3-D printable laboratory sample rotator mixer is developed here in two variants that allow users to opt for the level of functionality, cost saving and associated complexity needed in their laboratories. First, a laboratory sample rotator is designed and demonstrated that can be used for tumbling as well as gentle mixing of samples in a variety of tube sizes by mixing them horizontally, vertically, or any position in between. Changing the mixing angle is fast and convenient and requires no tools. This device is battery powered and can be easily transported to operate in various locations in a lab including desktops, benches, clean hoods, chemical hoods, cold rooms, glove boxes, incubators or biological hoods. Second, an on-board Arduino-based microcontroller is incorporated that adds the functionality of a laboratory sample shaker. These devices can be customized both mechanically and functionally as the user can simply select the operation mode on the switch or alter the code to perform custom experiments. The open source laboratory sample rotator mixer can be built by non-specialists for under US$30 and adding shaking functionality can be done for under $20 more. Thus, these open source devices are technically superior to the proprietary commercial equipment available on the market while saving over 90% of the costs.

  9. Image classification independent of orientation and scale

    Science.gov (United States)

    Arsenault, Henri H.; Parent, Sebastien; Moisan, Sylvain

    1998-04-01

    The recognition of targets independently of orientation has become fairly well developed in recent years for in-plane rotation. The out-of-plane rotation problem is much less advanced. When both out-of-plane rotations and changes of scale are present, the problem becomes very difficult. In this paper we describe our research on the combined out-of- plane rotation problem and the scale invariance problem. The rotations were limited to rotations about an axis perpendicular to the line of sight. The objects to be classified were three kinds of military vehicles. The inputs used were infrared imagery and photographs. We used a variation of a method proposed by Neiberg and Casasent, where a neural network is trained with a subset of the database and a minimum distances from lines in feature space are used for classification instead of nearest neighbors. Each line in the feature space corresponds to one class of objects, and points on one line correspond to different orientations of the same target. We found that the training samples needed to be closer for some orientations than for others, and that the most difficult orientations are where the target is head-on to the observer. By means of some additional training of the neural network, we were able to achieve 100% correct classification for 360 degree rotation and a range of scales over a factor of five.

  10. Spin imaging in solids using synchronously rotating field gradients and samples

    International Nuclear Information System (INIS)

    Wind, R.A.; Yannoni, C.S.

    1983-01-01

    A method for spin-imaging in solids using nuclear magnetic resonance (NMR) spectroscopy is described. With this method, the spin density distribution of a two- or three-dimensional object such as a solid can be constructed resulting in an image of the sample. This method lends itself to computer control to map out an image of the object. This spin-imaging method involves the steps of placing a solid sample in the rf coil field and the external magnetic field of an NMR spectrometer. A magnetic field gradient is superimposed across the sample to provide a field gradient which results in a varying DC field that has different values over different parts of the sample. As a result, nuclei in different parts of the sample have different resonant NMR frequencies. The sample is rotated about an axis which makes a particular angle of 54.7 degrees with the static external magnetic field. The magnetic field gradient which has a spatial distribution related to the sample spinning axis is then rotated synchronously with the sample. Data is then collected while performing a solid state NMR line narrowing procedure. The next step is to change the phase relation between the sample rotation and the field gradient rotation. The data is again collected as before while the sample and field gradient are synchronously rotated. The phase relation is changed a number of times and data collected each time. The spin image of the solid sample is then reconstructed from the collected data

  11. The degrees of tri-axial orientation in RE-doped Bi2212 powders aligned in a modulated rotation magnetic field

    International Nuclear Information System (INIS)

    Nagai, R.; Horii, S.; Maeda, T.; Haruta, M.; Shimoyama, J.

    2013-01-01

    Highlights: •Tri-axial magnetic alignment of Bi2212 with rare-earth (RE) doping was attempted. •Magnetization axes depended on the type of doped RE ions. •RE-doping increased degrees of inplane orientation and inplane magnetic anisotropy. -- Abstract: We report relationship between the degrees of tri-axial orientation and doping level of rare earth (RE) ions in Bi 2 Sr 2 (Ca 1−x RE x )Cu 2 O y (RE-doped Bi2212; RE = Dy, Ho, Er and Tm) powder samples aligned under a modulated rotation magnetic field (MRF) of 10 T. Tri-axial magnetic alignment of the RE-doped Bi2212 with x = 0–0.5 was achieved by single-ion magnetic anisotropy of RE 3+ and tri-axial magnetic anisotropy induced by modulation microstructure in a grain level. The degrees of in-plane and c-axis orientation with ∼3° were achieved for the case of the Tm-doped Bi2212 with x = 0.5. The findings in the present study give us important information for the fabrication of triaxially oriented Bi-based cuprate superconductor materials by the magneto-scientific process

  12. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    Science.gov (United States)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  13. Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos.

    Science.gov (United States)

    Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning

    2012-01-17

    The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.

  14. Orientational order and rotational relaxation in the plastic crystal phase of tetrahedral molecules.

    Science.gov (United States)

    Rey, Rossend

    2008-01-17

    A methodology recently introduced to describe orientational order in liquid carbon tetrachloride is extended to the plastic crystal phase of XY4 molecules. The notion that liquid and plastic crystal phases are germane regarding orientational order is confirmed for short intermolecular distances but is seen to fail beyond, as long range orientational correlations are found for the simulated solid phase. It is argued that, if real, such a phenomenon may not to be accessible with direct (diffraction) methods due to the high molecular symmetry. This behavior is linked to the existence of preferential orientation with respect to the fcc crystalline network defined by the centers of mass. It is found that the dominant class accounts, at most, for one-third of all configurations, with a feeble dependence on temperature. Finally, the issue of rotational relaxation is also addressed, with an excellent agreement with experimental measures. It is shown that relaxation is nonhomogeneous in the picosecond range, with a slight dispersion of decay times depending on the initial orientational class. The results reported mainly correspond to neopentane over a wide temperature range, although results for carbon tetrachloride are included, as well.

  15. Langevin equation method for the rotational Brownian motion and orientational relaxation in liquids: II. Symmetrical top molecules

    CERN Document Server

    Coffey, W T; Titov, S V

    2003-01-01

    A theory of orientational relaxation for the inertial rotational Brownian motion of a symmetric top molecule is developed using the Langevin equation rather than the Fokker-Planck equation. The infinite hierarchy of differential-recurrence relations for the orientational correlation functions for the relaxation behaviour is derived by averaging the corresponding Euler-Langevin equations. The solution of this hierarchy is obtained using matrix continued fractions allowing the calculation of the correlation times and the spectra of the orientational correlation functions for typical values of the model parameters.

  16. Ligand pose and orientational sampling in molecular docking.

    Directory of Open Access Journals (Sweden)

    Ryan G Coleman

    Full Text Available Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10 to 4×10(10 to 1×10(11 to 2×10(11 to 5×10(11 mean atoms scored per target, since multiple conformations are sampled per orientation, the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.

  17. Effect of Channel Orientation and Rib Pitch-to-Height Ratio on Pressure Drop in a Rotating Square Channel with Ribs on Two Opposite Surfaces

    Directory of Open Access Journals (Sweden)

    Prabhu S. V.

    2005-01-01

    Full Text Available The effect of channel orientation and rib pitch-to-height ratio on the pressure drop distribution in a rib-roughened channel is an important issue in turbine blade cooling. The present investigation is a study of the overall pressure drop distribution in a square cross-sectioned channel, with rib turbulators, rotating about an axis normal to the free stream. The ribs are configured in a symmetric arrangement on two opposite surfaces with a rib angle of 90 ∘ to the mainstream flow. The study has been conducted for three Reynolds numbers, namely, 13 000, 17 000, and 22 000 with the rotation number varying from 0– 0.38 . Experiments have been carried out for various rib pitch-to-height ratios ( P/e with a constant rib height-to-hydraulic diameter ratio ( e/D of 0.1 . The test section in which the ribs are placed on the leading and trailing surfaces is considered as the base case ( orientation angle= 0 ∘ , Coriolis force vector normal to the ribbed surfaces. The channel is turned about its axis in steps of 15 ∘ to vary the orientation angle from 0 ∘ to 90 ∘ . The overall pressure drop does not change considerably under conditions of rotation for the base case. However, for the other cases tested, it is observed that the overall pressure drop increases with an increase in the rotation number for a given orientation angle and also increases with an increase in the orientation angle for a given rotation number. This change is attributed to the variation in the separation zone downstream of the ribs due to the presence of the Coriolis force—local pressure drop data is presented which supports this idea. At an orientation angle of 90 ∘ (ribs on the top and bottom surfaces, Coriolis force vector normal to the smooth surfaces, the overall pressure drop is observed to be maximum during rotation. The overall pressure drop for a case with a rib pitch-to-height ratio of 5 on both surfaces is found to be the highest

  18. License plate localization in complex scenes based on oriented FAST and rotated BRIEF feature

    Science.gov (United States)

    Wang, Ran; Xia, Yuanchun; Wang, Guoyou; Tian, Jiangmin

    2015-09-01

    Within intelligent transportation systems, fast and robust license plate localization (LPL) in complex scenes is still a challenging task. Real-world scenes introduce complexities such as variation in license plate size and orientation, uneven illumination, background clutter, and nonplate objects. These complexities lead to poor performance using traditional LPL features, such as color, edge, and texture. Recently, state-of-the-art performance in LPL has been achieved by applying the scale invariant feature transform (SIFT) descriptor to LPL for visual matching. However, for applications that require fast processing, such as mobile phones, SIFT does not meet the efficiency requirement due to its relatively slow computational speed. To address this problem, a new approach for LPL, which uses the oriented FAST and rotated BRIEF (ORB) feature detector, is proposed. The feature extraction in ORB is much more efficient than in SIFT and is invariant to scale and grayscale as well as rotation changes, and hence is able to provide superior performance for LPL. The potential regions of a license plate are detected by considering spatial and color information simultaneously, which is different from previous approaches. The experimental results on a challenging dataset demonstrate the effectiveness and efficiency of the proposed method.

  19. SIMULATION OF TRANSLATIONAL - ROTATIONAL MOTION OF WOOD PARTICLES DURING THE PROCESS OF PARTICLE ORIENTATION

    Directory of Open Access Journals (Sweden)

    Sergey PLOTNIKOV

    2014-09-01

    Full Text Available The simulation from the motion of flat particle revealed that the fall depends on the height of the drop, the thickness and density of the particles and does not depend on its length and width. The drop in air is about 20% longer than in vacuum. During orientation from angular particles the velocity of rotating particles with a length of 150mm is reduced by 18%, for particles with a length of 75mm by 12%. This reduction increases linearly with decreasing density of particles. A velocity field acting on the particle in the fall and rotation was presented. The results of the study prove the possibility to reduce the scatter of the particles during the mat's formation, that in turns can increase the board’s bending strength.

  20. Analysis of Orientation Relations Between Deformed Grains and Recrystallization Nuclei

    DEFF Research Database (Denmark)

    West, Stine S.; Winther, Grethe; Juul Jensen, Dorte

    2011-01-01

    Nucleation in 30 pct rolled high-purity aluminum samples was investigated by the electron backscattering pattern method before and after annealing. A total of 29 nuclei including two twins were observed, and approximately one third of these nuclei had orientations not detected in the deformed state....... Possible orientation relations between these nuclei and the deformed state were by 20 to 55 deg rotation around axes. These axes were compared with the active slip systems, and the crystallographic features of the deformation-induced dislocation boundaries. Good agreement was found between the rotation...

  1. Effect of rotation on convective mass transfer in rotating channels

    International Nuclear Information System (INIS)

    Pharoah, J.G.; Djilali, N.

    2002-01-01

    Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)

  2. Operator theory of angular momentum nad orientational auto-correlation functions

    International Nuclear Information System (INIS)

    Evans, M.W.

    1982-01-01

    The rigorous relation between the orientational auto-correlation function and the angular momentum autocorrelation function is described in two cases of interest. First when description of the complete zero THz- spectrum is required from the Mori continued fraction expansion for the angular momentum autocorrelation function and second when rotation/translation effects are important. The Mori-Evans theory of 1976, relying on the simple Shimizu relation is found to be essentially unaffected by the higher order corrections recently worked out by Ford and co-workers in the Markov limit. The mutual interaction of rotation and translation is important in determining the details of both the orientational and angular momentum auto-correlation function's (a.c.f.'s) in the presence of sample anisotropy or a symmetry breaking field. In this case it is essential to regard the angular momentum a.c.f. as non-Markovian and methods are developed to relate this to the orientational a.c.f. in the presence of rotation/translation coupling. (author)

  3. The rotation of P/Halley

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Szegoe, K.; Kondor, A.; Merenyi, E.; Smith, B.A.; Larson, S.; Toth, I.

    1987-11-01

    The nucleus of the comet Halley rotates as a slightly asymmetric top, the orientation of the rotation axis (the orientation of the angular momentum vector) is b=54 deg +-15 deg, l=219 deg +-15 deg in the ecliptic system. In the case of the rotation of an asymmetric top the rotation axis is not fixed rigidly to the body, which means that while the nucleus rotates around the axis with a period of 2.2+-0.05 d, its long axis 'nods' periodically with a period of 7.4+-0.05 d. The amplitude of the 'nodding' is about 15 deg +-3 deg in both directions relative to a plane perpendicular to the rotation axis. (author) 21 refs.; 6 figs.; 2 tabs

  4. Economic impacts of short-rotation woody crops for energy or oriented strand board: a Minnesota case study

    Science.gov (United States)

    William F. Lazarus; Douglas G. Tiffany; Ronald S. Zalesny Jr.; Don E. Riemenschneider

    2011-01-01

    Short-rotation woody crops (SRWC) such as hybrid poplars are becoming increasingly competitive with agriculture on marginal land. The trees can be grown for energy and for traditional uses such as oriented strandboard. Using IMPLAN (Impact Analysis for Planning) software, we modeled the impacts of shifting land use from hay and pasture for cow-calf beef operations to...

  5. Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition

    Directory of Open Access Journals (Sweden)

    Ozlem Durmaz Incel

    2015-10-01

    Full Text Available Phone placement, i.e., where the phone is carried/stored, is an important source of information for context-aware applications. Extracting information from the integrated smart phone sensors, such as motion, light and proximity, is a common technique for phone placement detection. In this paper, the efficiency of an accelerometer-only solution is explored, and it is investigated whether the phone position can be detected with high accuracy by analyzing the movement, orientation and rotation changes. The impact of these changes on the performance is analyzed individually and both in combination to explore which features are more efficient, whether they should be fused and, if yes, how they should be fused. Using three different datasets, collected from 35 people from eight different positions, the performance of different classification algorithms is explored. It is shown that while utilizing only motion information can achieve accuracies around 70%, this ratio increases up to 85% by utilizing information also from orientation and rotation changes. The performance of an accelerometer-only solution is compared to solutions where linear acceleration, gyroscope and magnetic field sensors are used, and it is shown that the accelerometer-only solution performs as well as utilizing other sensing information. Hence, it is not necessary to use extra sensing information where battery power consumption may increase. Additionally, I explore the impact of the performed activities on position recognition and show that the accelerometer-only solution can achieve 80% recognition accuracy with stationary activities where movement data are very limited. Finally, other phone placement problems, such as in-pocket and on-body detections, are also investigated, and higher accuracies, ranging from 88% to 93%, are reported, with an accelerometer-only solution.

  6. Effect of Aspect Ratio, Channel Orientation, Rib Pitch-to-Height Ratio, and Number of Ribbed Walls on Pressure Drop Characteristics in a Rotating Channel with Detached Ribs

    Directory of Open Access Journals (Sweden)

    K. Arun

    2007-01-01

    Full Text Available The present work involves experimental investigation of the effects of aspect ratio, channel orientation angle, rib pitch-to-height ratio (P/e, and number of ribbed walls on friction factor in orthogonally rotating channel with detached ribs. The ribs are separated from the base wall to provide a small region of flow between the base wall and the ribs. Experiments have been conducted at Reynolds number ranging from 10000–17000 with rotation numbers varying from 0–0.38. Pitch-to-rib height ratios (P/e of 5 and 10 at constant rib height-to-hydraulic diameter ratio (e/D of 0.1 and a clearance ratio (C/e of 0.38 are considered. The rib angle of attack with respect to mainstream flow is 90∘. The channel orientation at which the ribbed wall becomes trailing surface (pressure side on which the Coriolis force acts is considered as the 0∘ orientation angle. For one-wall ribbed case, channel is oriented from 0∘ to 180∘ about its axis in steps of 30∘ to change the orientation angle. For two-wall ribbed case, the orientation angle is changed from 0∘ to 90∘ in steps of 30∘. Friction factors for the detached ribbed channels are compared with the corresponding attached ribbed channel. It is found that in one-wall detached ribbed channel, increase in the friction factor ratio with the orientation angle is lower for rectangular channel compared to that of square channel for both the pitch-to-rib height ratios of 5 and 10 at a given Reynolds number and rotation number. Friction factor ratios of two-wall detached ribbed rectangular channel are comparable with corresponding two-wall detached ribbed square channel both under stationary and rotating conditions.

  7. Acquisition and Retaining Granular Samples via a Rotating Coring Bit

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2013-01-01

    This device takes advantage of the centrifugal forces that are generated when a coring bit is rotated, and a granular sample is entered into the bit while it is spinning, making it adhere to the internal wall of the bit, where it compacts itself into the wall of the bit. The bit can be specially designed to increase the effectiveness of regolith capturing while turning and penetrating the subsurface. The bit teeth can be oriented such that they direct the regolith toward the bit axis during the rotation of the bit. The bit can be designed with an internal flute that directs the regolith upward inside the bit. The use of both the teeth and flute can be implemented in the same bit. The bit can also be designed with an internal spiral into which the various particles wedge. In another implementation, the bit can be designed to collect regolith primarily from a specific depth. For that implementation, the bit can be designed such that when turning one way, the teeth guide the regolith outward of the bit and when turning in the opposite direction, the teeth will guide the regolith inward into the bit internal section. This mechanism can be implemented with or without an internal flute. The device is based on the use of a spinning coring bit (hollow interior) as a means of retaining granular sample, and the acquisition is done by inserting the bit into the subsurface of a regolith, soil, or powder. To demonstrate the concept, a commercial drill and a coring bit were used. The bit was turned and inserted into the soil that was contained in a bucket. While spinning the bit (at speeds of 600 to 700 RPM), the drill was lifted and the soil was retained inside the bit. To prove this point, the drill was turned horizontally, and the acquired soil was still inside the bit. The basic theory behind the process of retaining unconsolidated mass that can be acquired by the centrifugal forces of the bit is determined by noting that in order to stay inside the interior of the bit, the

  8. Design, Analysis, Hybrid Testing and Orientation Control of a Floating Platform with Counter-Rotating Vertical-Axis Wind Turbines

    Science.gov (United States)

    Kanner, Samuel Adam Chinman

    The design and operation of two counter-rotating vertical-axis wind turbines on a floating, semi-submersible platform is studied. The technology, called the Multiple Integrated and Synchronized Turbines (MIST) platform has the potential to reduce the cost of offshore wind energy per unit of installed capacity. Attached to the platform are closely-spaced, counter-rotating turbines, which can achieve a higher power density per planform area because of synergistic interaction effects. The purpose of the research is to control the orientation of the platform and rotational speeds of the turbines by modifying the energy absorbed by each of the generators of the turbines. To analyze the various aspects of the platform and wind turbines, the analysis is drawn from the fields of hydrodynamics, electromagnetics, aerodynamics and control theory. To study the hydrodynamics of the floating platform in incident monochromatic waves, potential theory is utilized, taking into account the slow-drift yaw motion of the platform. Steady, second-order moments that are spatially dependent (i.e., dependent on the platform's yaw orientation relative to the incident waves) are given special attention since there are no natural restoring yaw moment. The aerodynamics of the counter-rotating turbines are studied in collaboration with researchers at the UC Berkeley Mathematics Department using a high-order, implicit, large-eddy simulation. An element flipping technique is utilized to extend the method to a domain with counter-rotating turbines and the effects from the closely-spaced turbines is compared with existing experimental data. Hybrid testing techniques on a model platform are utilized to prove the controllability of the platform in lieu of a wind-wave tank. A 1:82 model-scale floating platform is fabricated and tested at the UC Berkeley Physical-Model Testing Facility. The vertical-axis wind turbines are simulated by spinning, controllable actuators that can be updated in real-time of

  9. The effect of the rotational orientation of circular photomultipliers in a PET camera block detector design

    International Nuclear Information System (INIS)

    Uribe, J.; Wong, Wai-Hoi; Hu, Guoju

    1996-01-01

    This is a study of the effects of geometric asymmetries in circular photomultipliers (PMT) on the design of PET position-sensitive block detectors. The dynodes of linear-focus circular PMT's are asymmetric relative to the axis of the photocathode, despite the rotational symmetry of the photocathode. Hence, there are regional photocathode differences in the anode signal, which affect the decoding characteristics of position sensitive block detectors. This orientation effect, as well as the effect of introducing light diffusers, are studied in a block detector design (BGO) using the PMT-quadrant-sharing configuration. The PMT studied is the Philips XP-1911 (19mm diameter). Seven symmetrical and representative orientations of the four decoding PMT were investigated, as well as one asymmetric orientation. The measurements performed include block-composite pulse-height spectra and crystal decoding maps. Two orientation effects were observed: (A) distortion variation in decoding maps, and (B) decoding resolution variation. The introduction of circular plastic pieces, used as light diffusers, prove to be useful by improving the decoding of crystals on the periphery of the detector block and minimizing distortion in the decoding map. These measurements have shown optimal PMT orientations for the PMT-quadrant-sharing design, as well as for conventional block designs

  10. A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Francesco; Scalia, Cesare; Gangi, Manuele; Giarrusso, Marina [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I-95123 Catania (Italy); Munari, Matteo; Scuderi, Salvatore; Trigilio, Corrado [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Stift, Martin J. [Armagh Observatory, College Hill, Armagh BT61 9DG. Northern Ireland (United Kingdom)

    2017-10-20

    Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transverse component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.

  11. Controlling Sample Rotation in Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.

    1985-01-01

    Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.

  12. Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy.

    Science.gov (United States)

    Muzikant, A L; Henriquez, C S

    1998-04-01

    A bidomain model of cardiac tissue was used to examine the effect of transmural fiber rotation during bipolar stimulation in three-dimensional (3-D) myocardium. A 3-D tissue block with unequal anisotropy and two types of fiber rotation (none and moderate) was stimulated along and across fibers via bipolar electrodes on the epicardial surface, and the resulting steady-state interstitial (phi e) and transmembrane (Vm) potentials were computed. Results demonstrate that the presence of rotated fibers does not change the amount of tissue polarized by the point surface stimuli, but does cause changes in the orientation of phi e and Vm in the depth of the tissue, away from the epicardium. Further analysis revealed a relationship between the Laplacian of phi e, regions of virtual electrodes, and fiber orientation that was dependent upon adequacy of spatial sampling and the interstitial anisotropy. These findings help to understand the role of fiber architecture during extracellular stimulation of cardiac muscle.

  13. Strong orientational coordinates and orientational order parameters for symmetric objects

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Glotzer, Sharon C

    2015-01-01

    Recent advancements in the synthesis of anisotropic macromolecules and nanoparticles have spurred an immense interest in theoretical and computational studies of self-assembly. The cornerstone of such studies is the role of shape in self-assembly and in inducing complex order. The problem of identifying different types of order that can emerge in such systems can, however, be challenging. Here, we revisit the problem of quantifying orientational order in systems of building blocks with non-trivial rotational symmetries. We first propose a systematic way of constructing orientational coordinates for such symmetric building blocks. We call the arising tensorial coordinates strong orientational coordinates (SOCs) as they fully and exclusively specify the orientation of a symmetric object. We then use SOCs to describe and quantify local and global orientational order, and spatiotemporal orientational correlations in systems of symmetric building blocks. The SOCs and the orientational order parameters developed in this work are not only useful in performing and analyzing computer simulations of symmetric molecules or particles, but can also be utilized for the efficient storage of rotational information in long trajectories of evolving many-body systems. (paper)

  14. Effect of spaceflight on the spatial orientation of the vestibulo-ocular reflex during eccentric roll rotation: A case report.

    Science.gov (United States)

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-01-01

    Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.

  15. Active retroreflector to measure the rotational orientation in conjunction with a laser tracker

    Science.gov (United States)

    Hofherr, O.; Wachten, C.; Müller, C.; Reinecke, H.

    2012-10-01

    High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) can determine accurately x-y-z coordinates of passive retroreflectors. Next-generation systems answer the additional need to measure an object's rotational orientation (pitch, yaw, roll). These devices are based on photogrammetry or on enhanced retroreflectors. However, photogrammetry relies on camera systems and time-consuming image processing. Enhanced retroreflectors analyze the LT's beam but are restricted in roll angle measurements. Here we present an integrated laser based method to evaluate all six degrees of freedom. An active retroreflector directly analyzes its orientation to the LT's beam path by outcoupling laser light on detectors. A proof of concept prototype has been designed with a specified measuring range of 360° for roll angle measurements and +/-15° for pitch and yaw angle respectively. The prototype's optical design is inspired by a cat's eye retroreflector. First results are promising and further improvements are under development. We anticipate our method to facilitate simple and cost-effective six degrees of freedom measurements. Furthermore, for industrial applications wide customizations are possible, e.g. adaptation of measuring range, optimization of accuracy, and further system miniaturization.

  16. The Orientation of Gastric Biopsy Samples Improves the Inter-observer Agreement of the OLGA Staging System.

    Science.gov (United States)

    Cotruta, Bogdan; Gheorghe, Cristian; Iacob, Razvan; Dumbrava, Mona; Radu, Cristina; Bancila, Ion; Becheanu, Gabriel

    2017-12-01

    Evaluation of severity and extension of gastric atrophy and intestinal metaplasia is recommended to identify subjects with a high risk for gastric cancer. The inter-observer agreement for the assessment of gastric atrophy is reported to be low. The aim of the study was to evaluate the inter-observer agreement for the assessment of severity and extension of gastric atrophy using oriented and unoriented gastric biopsy samples. Furthermore, the quality of biopsy specimens in oriented and unoriented samples was analyzed. A total of 35 subjects with dyspeptic symptoms addressed for gastrointestinal endoscopy that agreed to enter the study were prospectively enrolled. The OLGA/OLGIM gastric biopsies protocol was used. From each subject two sets of biopsies were obtained (four from the antrum, two oriented and two unoriented, two from the gastric incisure, one oriented and one unoriented, four from the gastric body, two oriented and two unoriented). The orientation of the biopsy samples was completed using nitrocellulose filters (Endokit®, BioOptica, Milan, Italy). The samples were blindly examined by two experienced pathologists. Inter-observer agreement was evaluated using kappa statistic for inter-rater agreement. The quality of histopathology specimens taking into account the identification of lamina propria was analyzed in oriented vs. unoriented samples. The samples with detectable lamina propria mucosae were defined as good quality specimens. Categorical data was analyzed using chi-square test and a two-sided p value <0.05 was considered statistically significant. A total of 350 biopsy samples were analyzed (175 oriented / 175 unoriented). The kappa index values for oriented/unoriented OLGA 0/I/II/III and IV stages have been 0.62/0.13, 0.70/0.20, 0.61/0.06, 0.62/0.46, and 0.77/0.50, respectively. For OLGIM 0/I/II/III stages the kappa index values for oriented/unoriented samples were 0.83/0.83, 0.88/0.89, 0.70/0.88 and 0.83/1, respectively. No case of OLGIM IV

  17. The effects of sex, sexual orientation, and digit ratio (2D:4D) on mental rotation performance.

    Science.gov (United States)

    Peters, Michael; Manning, John T; Reimers, Stian

    2007-04-01

    In spite of the reduced level of experimental control, this large scale study brought some clarity into the relation between mental rotation task (MRT) performance and a number of variables where contradictory associations had previously been reported in the literature. Clear sex differences in MRT were observed for a sample of 134,317 men and 120,783 women, with men outperforming women. There were also MRT differences as a function of sexual orientation: heterosexual men performed better than homosexual men and homosexual women performed better than heterosexual women. Although bisexual men performed better than homosexual men but less well than heterosexual men, no significant differences were observed between bisexual and homosexual women. MRT performance in both men and women peaked in the 20-30 year range, and declined significantly and markedly thereafter. Both men and women showed a significant negative correlation between left and right digit finger ratio and MRT scores, such that individuals with smaller digit ratios (relatively longer ring finger than index finger) performed better than individuals with larger digit ratios.

  18. Different slip systems controlling crystallographic preferred orientation and intracrystalline deformation of amphibole in mylonites from the Neyriz mantle diapir, Iran

    Science.gov (United States)

    Elyaszadeh, Ramin; Prior, David J.; Sarkarinejad, Khalil; Mansouri, Hadiseh

    2018-02-01

    A deformed layered gabbro and a mylonitic gabbro sample from the marginal shear zone of the Neyriz mantle diapir in Iran were analyzed using electron backscatter diffraction (EBSD). Both samples have the common amphibole crystallographic preferred orientation (CPO) in which (100) lies perpendicular to foliation and parallel to lineation. Amphibole grains in the layered gabbro sample have little internal deformation, whereas in the mylonitic gabbro sample the amphibole grains are strongly distorted and contain low angle grain boundaries. There is a subtle change in CPO as a function of grain size in the mylonitic gabbro. Coarse grains (porphyroclasts) have a (100) CPO oriented with the main foliation reference frame whilst fine grains have a (100) CPO oriented with the C‧ shear bands. Detailed analysis of porphyroclast distortions and subgrain boundary trace analysis suggests that hard slip systems, most particularly (110) control intracrystalline deformation. Schmid factor analysis suggest that these slip systems are not involved in foliation formation but are linked kinematically to C‧ shear bands. It is unlikely that the slip systems that control intracrystalline deformation are important in CPO formation. We interpret that subgrain rotation recrystallization lead to grain size reduction and the elongate recrystallized grains were rotated towards the C‧ shear bands by grain boundary sliding. This rigid body rotation, possibly in combination with easy slip on (100) are considered the main cause of CPO formation. Amphibole zonation patterns in the layered gabbro sample suggest that oriented growth of amphibole may have contributed to CPO.

  19. Effect of substrate crystallographic orientation of garnet-ferrite film properties

    International Nuclear Information System (INIS)

    Burym, Yu.A.; Dubinko, S.V.; Mitsaj, Yu.N.; Borovitskaya, L.N.; Prokopov, A.P.

    1992-01-01

    Samples of garnet-ferrite films with a composition (YbGdPrBi) 3 (FeAlGa) 5 O 12 grown under identical conditions on variously oriented substrates, have been studied. The substrate orientation was changed in such a way that the vector of the substrate normal was in the [110] plane between the [111] and [112] directions. We have found that the substrate misorientation leads to an inclined position of the easy magnetization axis (EMA) and a reduction of the film growth rate. The change of the film physical properties (Faraday rotation, Curie temperature, magnetization) indicates the film composition variation with the substrate orientation change. The temperature dependence of the EMA slope angle in the studied samples is determined by the magnetoelastic contribution to the anisotropy constants. (author)

  20. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  1. Long-range active retroreflector to measure the rotational orientation in conjunction with a laser tracker

    Science.gov (United States)

    Hofherr, O.; Wachten, Christian; Müller, C.; Reinecke, H.

    2014-11-01

    High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) accurately determine x-y-z coordinates of passive retroreflectors. Next-generation systems answer the need to measure an object`s rotational orientation (pitch, yaw, roll). So far, these devices are based either on photogrammetry or on enhanced retroreflectors. Here we present a new method to measure all six degrees of freedom in conjunction with a LT. The basic principle is to analyze the orientation to the LT's beam path by coupling-out laser radiation. The optical design is inspired by a cat's eye retroreflector equipped with an integrated beam splitter layer. The optical spherical aberration is compensated, which reduces the divergence angle for the reflected beam by one order of magnitude compared to an uncompensated standard system of the same size. The wave front distortion is reduced to less than 0.1 λ @ 633 nm for beam diameters up to 8 mm. Our active retroreflector is suitable for long-range measurements for a distance > 10 m.

  2. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    Science.gov (United States)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  3. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    Science.gov (United States)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  4. Highly oriented Bi-system bulk sample prepared by a decomposition-crystallization process

    International Nuclear Information System (INIS)

    Xi Zhengping; Zhou Lian; Ji Chunlin

    1992-01-01

    A decomposition-crystallization method, preparing highly oriented Bi-system bulk sample is reported. The effects of processing parameter, decomposition temperature, cooling rate and post-treatment condition on texture and superconductivity are investigated. The method has successfully prepared highly textured Bi-system bulk samples. High temperature annealing does not destroy the growing texture, but the cooling rate has some effect on texture and superconductivity. Annealing in N 2 /O 2 atmosphere can improve superconductivity of the textured sample. The study on the superconductivity of the Bi(Pb)-Sr-Ca-Cu-O bulk material has been reported in numerous papers. The research on J c concentrates on the tape containing the 2223 phase, with very few studies on the J c of bulk sample. The reason for the lack of studies is that the change of superconducting phases at high temperatures has not been known. The authors have reported that the 2212 phase incongruently melted at about 875 degrees C and proceeded to orient the c-axis perpendicular to the surface in the process of crystallization of the 2212 phase. Based on that result, a decomposition-crystallization method was proposed to prepare highly oriented Bi-system bulk sample. In this paper, the process is described in detail and the effects of processing parameters on texture and superconductivity are reported

  5. Passive RFID Rotation Dimension Reduction via Aggregation

    Science.gov (United States)

    Matthews, Eric

    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.

  6. Characterization of the crystal orientation in mono-oriented films of HDPE/LLDPE blends by IR dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Canevarolo, Sebastião V., E-mail: caneva@ufscar.br; Ravazzi, Camila; Silva, Jorge, E-mail: jorge.silva@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos Rod. Washington Luiz Km 235, 13565-905, SãoCarlos, SP - Brazil (Brazil); Elias, Marcelo [Motechfilm Produtos Plásticos, Estrada Municipal do Bonfim, 100, Pinhal, Cabreúva, SP - Brazil (Brazil)

    2016-03-09

    Polyethylene films are a common packaging material. The level and type of chain orientation in these films are a very important property which is of great care and concern of the converter personnel during the conformation process. Usually bi-orientation is the conventional procedure but when easy tear in one direction is needed mono-orientation is sought. This paper deal with the characterization of the crystalline orientation in films of polyethylene blends (HDPE/LLDPE) which have being oriented in two steps: initially the polymer was bi-oriented via extrusion-blown, cooled, and then in a second process hot stretched along the machine direction in order to produce mono-oriented films. In order to evaluate the orientation of the film, the polarization of the FT-IR beam was rotated 360° in steps of 5° by rotating the polarizer. In each step the absorbance spectrum was recorded and the corresponding dichroic ratio (DR) calculated after subtracting the baseline. With differential scanning calorimetry (DSC) was possible to infer about the changes in the morphology caused by the stretching.

  7. Validating the Orientations to Happiness Scale in a Chinese Sample of University Students

    Science.gov (United States)

    Chen, Guo-Hai

    2010-01-01

    This paper examined the reliability and validity of the Orientation to Happiness Scale with a sample of Chinese correspondents. Chinese translation of the Orientation to Happiness Scale, Satisfaction with Life Scale, Temporal Satisfaction with Life Scale, and General Life Satisfaction Scale, were administered to 671 Chinese university students…

  8. Collective rotations of active particles interacting with obstacles

    Science.gov (United States)

    Mokhtari, Zahra; Aspelmeier, Timo; Zippelius, Annette

    2017-10-01

    We consider active particles in a heterogeneous medium, modeled by static, random obstacles. In accordance with the known tendency of active particles to cluster, we observe accumulation and crystallization of active particles around the obstacles which serve as nucleation sites. In the limit of high activity, the crystals start to rotate spontaneously, resembling a rotating rigid body. We trace the occurrence of these oscillations to the enhanced attraction of particles whose orientation points along the rotational velocity as compared to those whose orientation points in the opposite direction.

  9. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  10. Theoretical calculations of rotationally inelastic collisions of He with NaK(A {sup 1}Σ{sup +}): Transfer of population, orientation, and alignment

    Energy Technology Data Exchange (ETDEWEB)

    Malenda, R. F.; Price, T. J.; Stevens, J.; Uppalapati, S. L.; Fragale, A.; Weiser, P. M.; Kuczala, A.; Hickman, A. P., E-mail: aph2@lehigh.edu [Department of Physics, Lehigh University, 16 Memorial Dr. East, Bethlehem, Pennsylvania 18015 (United States); Talbi, D. [Laboratoire Univers et Particules de Montpellier, UMR 5299, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier (France)

    2015-06-14

    We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A{sup 1}Σ{sup +}) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B{sub λ}(j, j′) for each j → j′ transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j′ between 0 and 50, and total (translational and rotational) energies in the range 0.0002–0.0025 a.u. (∼44–550 cm{sup −1}). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j′. Finally, we compare the exact quantum results for j → j′ transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.

  11. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  12. Stress rotation along pre-Cenozoic basement structures

    Science.gov (United States)

    Reiter, K.; Heidbach, O.; Henk, A.

    2017-12-01

    The in-situ stress state of the Earth's crust is under investigation since decades for both, scientific and economic purposes. Several methods have been established to indicate the contemporary orientation of the maximum compressive horizontal stress (SHmax). It is assumed that the same forces that drive plate motion are the first order stress sources and one could presume that SHmax is always parallel to plate motion, which is the case for some regions. However, deviations from this general trend occur in many regions. Therefore, second and third order sources of stress have been identified that potentially cause regional and local stress rotation with respect to the long wave-length trend imposed by plate tectonic forces. One group of such subordinate stress sources are lateral heterogeneities based on structures, petrothermal or petrophysical properties. The World Stress Map (WSM) project compiles systematically data records of the present day SHmax orientation. The increasing amount of stress orientation data allows to investigate areas with consistent stress rotation, divergent to the regional stress pattern. In our work we analyse the stress pattern variability and its causes beneath Germany. In the Molasse Basin in the Alpine foreland the SHmax orientation is perpendicular to the Alpine front as a consequence of gravitational potential energy of the orogen. SHmax is oriented in N-S direction in the central Alpine foreland and within the North German Basin. Between both, within the Mid-German Crystalline High, SHmax is divergent oriented in SE-NW direction. Neither gravitational potential energy nor petrothermal effects can be indicated as stress source. But when comparing the stress pattern with the Variscan basement structures it is obvious that SHmax is perpendicular oriented to this Palaeozoic basement structures. Therefore, petrophysical heterogeneities can be expected as reason for the observed stress rotation. Two assumptions can be made for the Mid

  13. Principles and biophysical applications of single particle super-localization and rotational tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yan [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    for the first time. The rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport was also visualized using high-speed SPORT with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause. To improve the localization precision of the SPT technique with DIC microscopy, a precise three-dimensional (3D) localization method of spherical gold nanoparticle probes using model-based correlation coefficient mapping was introduced. To accomplish this, a stack of sample images at different z-positions are acquired, and a 3D intensity profile of the probe serving as the model is used to map out the positions of nanoparticles in the sample. By using this model-based correlation imaging method, precise localization can be achieved in imaging techniques with complicated point spread functions (PSF) such as differential interference contrast (DIC) microscopy. The 3D superlocalization method was applied to tracking gold nanospheres during live endocytosis events. Finally, a novel dual-modality imaging technique has been developed to super-localize a single gold nanorod while providing its orientation and rotational information. The super-localization of the gold nanorod can be accomplished by curve fitting the modified bright-field images generated by one of the two beams laterally shifted by the first Nomarski prism in a DIC microscope. The orientation and rotational information is derived from the DIC images of gold nanorods. The new imaging setup has been applied to study

  14. Principles and biophysical applications of single particle super-localization and rotational tracking

    Science.gov (United States)

    Gu, Yan

    for the first time. The rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport was also visualized using high-speed SPORT with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause. To improve the localization precision of the SPT technique with DIC microscopy, a precise three-dimensional (3D) localization method of spherical gold nanoparticle probes using model-based correlation coefficient mapping was introduced. To accomplish this, a stack of sample images at different z-positions are acquired, and a 3D intensity profile of the probe serving as the model is used to map out the positions of nanoparticles in the sample. By using this model-based correlation imaging method, precise localization can be achieved in imaging techniques with complicated point spread functions (PSF) such as differential interference contrast (DIC) microscopy. The 3D superlocalization method was applied to tracking gold nanospheres during live endocytosis events. Finally, a novel dual-modality imaging technique has been developed to super-localize a single gold nanorod while providing its orientation and rotational information. The super-localization of the gold nanorod can be accomplished by curve fitting the modified bright-field images generated by one of the two beams laterally shifted by the first Nomarski prism in a DIC microscope. The orientation and rotational information is derived from the DIC images of gold nanorods. The new imaging setup has been applied to study the

  15. Calorimetric method of ac loss measurement in a rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  16. Updating of visual orientation in a gravity-based reference frame.

    Science.gov (United States)

    Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter

    2017-10-01

    The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.

  17. Sexual Orientation and Borderline Personality Disorder Features in a Community Sample of Adolescents.

    Science.gov (United States)

    Reuter, Tyson R; Sharp, Carla; Kalpakci, Allison H; Choi, Hye J; Temple, Jeff R

    2016-10-01

    Empirical literature demonstrates that sexual minorities are at an increased risk of developing psychopathology, including borderline personality disorder (BPD). The specific link between sexual orientation and BPD has received significantly less attention in youth, and it remains unclear what drives this relation. Given that there are higher rates of psychopathology in both sexual minorities and individuals with BPD, the present study aimed to determine if sexual orientation uniquely contributes to borderline personality pathology, controlling for other psychopathology. An ethnically diverse sample of 835 adolescents completed self-report measures of borderline features, depression, anxiety, and sexual orientation. Sexual minorities scored higher on borderline features compared to heterosexual adolescents. When controlling for depression and anxiety, sexual orientation remained significantly associated with borderline features. The relation between sexual orientation and BPD cannot fully be explained by other psychopathology. Future research is necessary to understand potential mechanisms underlying this relation.

  18. Field-free molecular orientation of nonadiabatically aligned OCS

    Science.gov (United States)

    Sonoda, Kotaro; Iwasaki, Atsushi; Yamanouchi, Kaoru; Hasegawa, Hirokazu

    2018-02-01

    We investigate an enhancement of the orientation of OCS molecules by irradiating them with a near IR (ω) ultrashort laser pulse for alignment followed by another ultrashort laser pulse for orientation, which is synthesized by a phase-locked coherent superposition of the near IR laser pulse and its second harmonic (2ω). On the basis of the asymmetry in the ejection direction of S3+ fragment ions generated by the Coulomb explosion of multiply charged OCS, we show that the extent of the orientation of OCS is significantly enhanced when the delay between the alignment pulse and the orientation pulse is a quarter or three quarters of the rotational period. The recorded enhanced orientation was interpreted well by a numerical simulation of the temporal evolution of a rotational wave packet prepared by the alignment and orientation pulses.

  19. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rasskazov, Alexander; Merritt, David [School of Physics and Astronomy and Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2017-03-10

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  20. Sexual orientation and treatment-seeking for depression in a multilingual worldwide sample.

    Science.gov (United States)

    Rutter, Tara M; Flentje, Annesa; Dilley, James W; Barakat, Suzanne; Liu, Nancy H; Gross, Margaret S; Muñoz, Ricardo F; Leykin, Yan

    2016-12-01

    Prior research has found higher rates of mental health problems among sexual minority individuals. We examine treatment-seeking for depression, as well as its relationship with sexual orientation, in a large, multilingual, international sample. Participants in an automated, quintilingual internet-based depression screening tool were screened for depression, and completed several background measures, including sexual orientation (with an option to decline to state) and past and current depression treatment seeking. 3695 participants screened positive for current or past depression and responded to the sexual orientation question. Those who declined to state their sexual orientation were far less likely to seek any treatment than individuals endorsing any orientation; they were especially unlikely to seek psychotherapy. Individuals identifying as bisexual sought both psychotherapy and alternative treatments at a higher rate than other groups. An interaction was observed between sexual orientation and gender, such that lesbian women were especially likely to have used psychotherapy. Other variables that emerged as significant predictors of treatment-seeking for depression included age and participant's language. Limitations include possible misinterpretation of translated terms due to regional differences, and possible limits to generalizability due to this study being conducted on the internet. Our results suggest that individuals who decline to state their sexual orientation may be more likely to forgo effective treatments for depression. Further studies of depression service utilization should focus on developing treatment modalities that could better engage sexual minority individuals, especially those who are reluctant to disclose their orientation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  2. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    Science.gov (United States)

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  3. The relationship between sexual orientation and depression in a national population sample.

    Science.gov (United States)

    Scott, Roger L; Lasiuk, Gerri; Norris, Colleen

    2016-12-01

    The aim of this study was to examine the relationship between sexual orientation and depression in a nationally representative population to determine if sexual minorities report higher levels of depression than the remainder of the population. Depression is a highly prevalent and disabling chronic disorder worldwide. Prior research utilizing national population samples have reported that members of sexual minorities are at higher risk for depression when compared to heterosexual people. More recent studies have revealed differences in depression risk based on sexual orientation, sexual activity and sex. There have been significant shifts in societal attitudes towards sexual minorities in recent decades. Continuing research into predictors for reporting depression amongst sexual minorities is needed. National Health and Nutrition Examination Survey cycles 2005-2012 were used to identify sexual minority status based on declared sexual orientation and presence of same-sex sexual activity. Complex samples logistic and multivariate regression models were used to predict depression adjusted for sexual orientation, sexual activity, age, sex, marital status, education, income, race/ethnicity, employment and health status. Sexual orientation was not a significant independent predictor of depressive symptoms overall. Gay men reported lower levels of depressive symptoms than heterosexual men. In the sex stratified analyses, men who reported having sex with men were five times more likely to report depressive symptomatology compared to men who reported opposite sex partners (2005-2008 adjusted odds ratios: 5·00; 95% confidence interval: 1·44-17·38; 2009-2012 adjusted odds ratios: 5·10; 95% confidence interval: 1·33-19·54) after controlling for sexual orientation. Results of our analyses indicate that homosexually experienced heterosexual men appear to be at highest risk for depression. Furthermore, reported physical health status was a significant independent predictor

  4. Sexual health behaviors and sexual orientation in a U.S. national sample of college students.

    Science.gov (United States)

    Oswalt, Sara B; Wyatt, Tammy J

    2013-11-01

    Many studies have examined differences in sexual behavior based on sexual orientation with results often indicating that those with same-sex partners engage in higher risk sexual behavior than people with opposite sex partners. However, few of these studies were large, national sample studies that also include those identifying as unsure. To address that gap, this study examined the relationship of sexual orientation and sexual health outcomes in a national sample of U.S. college students. The Fall 2009 American College Health Association-National College Health Assessment was used to examine sexual health related responses from heterosexual, gay, lesbian, bisexual, and unsure students (N = 25,553). Responses related to sexual behavior, safer sex behaviors, prevention and screening behaviors, and diagnosis of sexual health related conditions were examined. The findings indicated that sexual orientation was significantly associated with engaging in sexual behavior in the last 30 days. Sexual orientation was also significantly associated with the number of sexual partners in the previous 12 months, with unsure men having significantly more partners than gay, bisexual and heterosexual men and heterosexual men having significantly less partners than gay, bisexual and unsure men. Bisexual women had significantly more partners than females reporting other sexual orientations. Results examining the associations between sexual orientation and safer sex, prevention behaviors, and screening behaviors were mixed. Implications for practice, including specific programmatic ideas, were discussed.

  5. Staff rotation: implications for occupational therapy.

    Science.gov (United States)

    Taylor, A; Andriuk, M L; Langlois, P; Provost, E

    1995-10-01

    Occupational therapy departments of tertiary care hospitals can provide staff with opportunities to gain diverse clinical experience if they rotate through the various services such as surgery, medicine, geriatrics, plastic surgery and orthopaedics. The system of rotation offers both advantages and disadvantages for the staff and the institution. The Royal Victoria Hospital in Montreal, a large university teaching hospital, had traditionally offered staff the opportunity to rotate. Changes in staffing and their needs however, resulted in rotation becoming an important issue within the department. This article presents the pros and the cons of rotation and non-rotation systems as identified by therapists and administrators across Canada. Staff rotation was found to have an effect on job satisfaction and a therapist's career orientation. Given these findings, administrators may want to reconsider the role of the generalist and specialist in their facilities.

  6. Field-free orientation of molecules

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2001-01-01

    The excitation of angular motion, in particular, the creation of a wave packet in the angular degrees of freedom via short-pulse, off-resonant excitation with respect to rotational transitions, was examined. The key result was that field-free time-dependent orientation for a molecule like LiH can...... be generated after the turn-off of a state-of-the-art electromagnetic half-cycle pulse.......The excitation of angular motion, in particular, the creation of a wave packet in the angular degrees of freedom via short-pulse, off-resonant excitation with respect to rotational transitions, was examined. The key result was that field-free time-dependent orientation for a molecule like LiH can...

  7. (ajst) statistical mechanics model for orientational

    African Journals Online (AJOL)

    Science and Engineering Series Vol. 6, No. 2, pp. 94 - 101. STATISTICAL MECHANICS MODEL FOR ORIENTATIONAL. MOTION OF TWO-DIMENSIONAL RIGID ROTATOR. Malo, J.O. ... there is no translational motion and that they are well separated so .... constant and I is the moment of inertia of a linear rotator. Thus, the ...

  8. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  9. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading

    Energy Technology Data Exchange (ETDEWEB)

    Murtagh, P J; Basu, B; Broderick, B M [Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin (Ireland)

    2005-07-15

    This paper proposes an approach to investigate the along-wind forced vibration response of a wind turbine tower and rotating blades assembly subjected to rotationally sampled stationary wind loading. The wind turbine assembly consists of three rotating rotor blades connected to the top of a flexible annular tower, constituting a multi-body dynamic entity. The tower and rotating blades are each modelled as discretized multi-degree-of-freedom (MDOF) entities, allowing the free vibration characteristics of each to be obtained using a discrete parameter approach. The free vibration properties of the tower include the effect of a rigid mass at the top, representing the nacelle, and those of the blade include the effects of centrifugal stiffening due to rotation and blade gravity loadings. The blades are excited by drag force time-histories derived from discrete Fourier transform (DFT) representations of rotationally sampled wind turbulence spectra. Blade response time-histories are obtained using the mode acceleration method, which allows for the quantification of base shear forces due to flapping for the three blades to be obtained. This resultant base shear is imparted into the top of the tower. Wind drag loading on the tower is also considered, with a series of spatially correlated nodal force time-histories being derived using DFTs of wind force spectra. The tower/nacelle is then coupled with the rotating blades by combining their equations of motion and solving for the displacement at the top of the tower under compatibility conditions in the frequency domain. An inverse Fourier transform of the frequency domain response yields the response time-history of the coupled system. The response of an equivalent system that does not consider the blade/tower interaction is also investigated, and the results are compared. (Author)

  10. An electrophysiological study of the mental rotation of polygons.

    Science.gov (United States)

    Pierret, A; Peronnet, F; Thevenet, M

    1994-05-09

    Reaction times and event-related potentials (ERPs) were recorded during a task requiring subjects to decide whether two sequentially presented polygons had the same shape regardless of differences in orientation. Reaction times increased approximately linearly with angular departure from upright orientation, which suggests that mental rotation was involved in the comparison process. The ERPs showed, between 665 and 1055 ms, a late posterior negativity also increasing with angular disparity from upright, which we assumed to reflect mental rotation. Two other activities were exhibited, from 265 to 665 ms, which may be related either to an evaluation of the stimulus or a predetermination of its orientation, and from 1055 to 1600 ms attributed to the decision process.

  11. Dynamics of molecular stereochemistry via oriented molecule scattering

    International Nuclear Information System (INIS)

    Parker, D.H.; Jalink, H.; Stolte, S.

    1987-01-01

    Crossed-beam reactive scattering experiments employing electrostatic hexapole fields to control the initial collision geometry of chemical reactions are described. New results are presented on the reactions of oriented NO with ozone and oriented N 2 O with Ba. Preliminary results are also given for the oriented CH 3 F + Ca* → CaF* + CH 3 reaction. Recent technical advances in state selection and product detection are detailed. They discuss the effects of rotational coupling and nonzero impact parameters in changing the molecular precollisions orientation selected by the hexapole fields to a different in-collision orientation at the moment of impact with the reaction partner. Uncoupling of l doubling in N 2 O at strong orientation fields is demonstrated via the observed reactive anisotropy. Steric effects are found to govern many aspects of the reactions investigated thus far. Strong correlations are observed of the reactivity, product recoil, and rotational angular momentum distributions with the collisional orientation. These correlations ultimately provide information on the anisotropic part of the reaction potential energy surface. They conclude with a brief outline of possible future directions in oriented molecule scattering

  12. SymPix: A Spherical Grid for Efficient Sampling of Rotationally Invariant Operators

    Science.gov (United States)

    Seljebotn, D. S.; Eriksen, H. K.

    2016-02-01

    We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear operators. This grid is conceptually similar to the Gauss-Legendre (GL) grid, aligning sample points with iso-latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a preconditioner for a linear system that involves the operator \\widehat{{\\boldsymbol{D}}}+{\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}}, where \\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}} may be described as both local and rotationally invariant operators, and {\\boldsymbol{N}} is diagonal in the pixel domain. For a bandwidth limit of {{\\ell }}{max} = 3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for {\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}}, respectively, compared with the previous state-of-the-art implementation.

  13. Sub-keV secondary ion mass spectrometry depth profiling: comparison of sample rotation and oxygen flooding

    International Nuclear Information System (INIS)

    Liu, R.; Wee, A.T.S.

    2004-01-01

    Following the increasingly stringent requirements in the characterization of sub-micron IC devices, an understanding of the various factors affecting ultra shallow depth profiling in secondary ion mass spectrometry (SIMS) has become crucial. Achieving high depth resolution (of the order of 1 nm) is critical in the semiconductor industry today, and various methods have been developed to optimize depth resolution. In this paper, we will discuss ultra shallow SIMS depth profiling using B and Ge delta-doped Si samples using low energy 0.5 keV O 2 + primary beams. The relationship between depth resolution of the delta layers and surface topography measured by atomic force microscopy (AFM) is studied. The effect of oxygen flooding and sample rotation, used to suppress surface roughening is also investigated. Oxygen flooding was found to effectively suppress roughening and gives the best depth resolution for B, but sample rotation gives the best resolution for Ge. Possible mechanisms for this are discussed

  14. Orientation of KRb molecules in a switched electrostatic field

    International Nuclear Information System (INIS)

    Huang Yun-Xia; Xu Shu-Wu; Yang Xiao-Hua

    2013-01-01

    We theoretically investigate the orientation of the cold KRb molecules induced in a switched electrostatic field by numerically solving the full time-dependent Schrödinger equation. The results show that the periodic field-free molecular orientation can be realized for the KRb molecules by rapidly switching off the electrostatic field. Meanwhile, by varying the switching times of the electrostatic field, the adiabatic and nonadiabatic interactions of the molecules with the applied field can be realized. Moreover, the influences of the electrostatic field strength and the rotational temperature to the degree of the molecular orientation are studied. The investigations show that increasing the electrostatic field will increase the degree of the molecular orientation, both in the constant-field regime and in the field-free regime, while the increasing of the rotational temperature of the cold molecules will greatly decrease the degree of the molecular orientation. (atomic and molecular physics)

  15. A high-efficiency acoustic chamber and the anomalous sample rotation

    Science.gov (United States)

    Wang, Taylor G.; Allen, J. L.

    1992-01-01

    A high efficiency acoustic chamber for the levitation and manipulation of liquid or molten samples in a microgravity environment has been developed. The chamber uses two acoustic drivers that are mounted at opposite corners of the chamber; by driving these at the same frequency, with 18-deg phase shifts, an increase in force of a factor of 3-4 is obtainable relative to the force of a single-driver system that is operated at the same power level. This enhancement is due to the increased coupling between the sound driver and the chamber. An anomalous rotation is noted to be associated with the chamber; this is found to be eliminated by a physically as-yet inexplicable empirical solution.

  16. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  17. Evaluation of trauma service orientation.

    Science.gov (United States)

    Schott, Eric

    2010-02-01

    Orientation of residents to clinical services may be criticized as cumbersome, dull, and simplytoo much information. With the mandated resident-hour restrictions, the question arose: Do residents perceive the orientation to our trauma service as worthwhile? Residents attend a standardized orientation lecture on the first day of the rotation. Three weeks later, an eight-item, five-point Likert-scale survey is distributed to assess the residents' perceptions of the value of the orientation. Responses to each item were examined. Fifty-four (92%) of the residents completed the questionnaire between September 2005 and August 2006. Most indicated that orientation was helpful (85%), the Trauma Resuscitation DVD was informative (82%), the review of procedures was helpful (82%), and the instructor's knowledge was adequate (94%). Most (92%) disagreed with the statement that orientation should not be offered. Careful attention to orientation content and format is important to the perception that the orientation is worthwhile.

  18. Land cover mapping at very high resolution with rotation equivariant CNNs

    NARCIS (Netherlands)

    Marcos, Diego; Volpi, Michele; Kellenberger, Benjamin; Tuia, Devis

    2018-01-01

    In remote sensing images, the absolute orientation of objects is arbitrary. Depending on an object's orientation and on a sensor's flight path, objects of the same semantic class can be observed in different orientations in the same image. Equivariance to rotation, in this context understood as

  19. Reducing the orientation influence of Mueller matrix measurements for anisotropic scattering media

    Science.gov (United States)

    Sun, Minghao; He, Honghui; Zeng, Nan; Du, E.; He, Yonghong; Ma, Hui

    2014-09-01

    Mueller matrix polarimetry techniques contain rich micro-structural information of samples, such as the sizes and refractive indices of scatterers. Recently, Mueller matrix imaging methods have shown great potentials as powerful tools for biomedical diagnosis. However, the orientations of anisotropic fibrous structures in tissues have prominent influence on Mueller matrix measurements, resulting in difficulties for extracting micro-structural information effectively. In this paper, we apply the backscattering Mueller matrix imaging technique to biological samples with different microstructures, such as chicken heart muscle, bovine skeletal muscle, porcine liver and fat tissues. Experimental results show that the directions of the muscle fibers have prominent influence on the Mueller matrix elements. In order to reduce the orientation influence, we adopt the rotation-independent MMT and RLPI parameters, which were proposed in our previous studies, to the tissue samples. Preliminary results in this paper show that the orientation-independent parameters and their statistic features are helpful for analyzing the tissues to obtain their micro-structural properties. Since the micro-structure variations are often related to the pathological changes, the method can be applied to microscope imaging techniques and used to detect abnormal tissues such as cancer and other lesions for diagnosis purposes.

  20. The effect of orientation on prehension movement time

    NARCIS (Netherlands)

    van Bergen, E.; van Swieten, L.M.; Williams, J.H.G.; Mon-Williams, M.

    2007-01-01

    We explored the relationship between hand orientation and movement time. Three groups of participants (n = 8 per group) were asked to grasp an object rotated in one of the following planes: (1) coronal; (2) sagittal; (3) horizontal. In the coronal plane, the rotational requirements directly mapped

  1. The effect of orientation on prehension movement time

    NARCIS (Netherlands)

    Van Bergen, Elsje; van Swieten, Lisa M.; Williams, Justin H G; Mon-Williams, Mark A.

    We explored the relationship between hand orientation and movement time. Three groups of participants (n = 8 per group) were asked to grasp an object rotated in one of the following planes: (1) coronal; (2) sagittal; (3) horizontal. In the coronal plane, the rotational requirements directly mapped

  2. Coincidence orientations of grains in hexagonal materials

    International Nuclear Information System (INIS)

    Grimmer, H.; Warrington, D.H.

    1986-06-01

    The connection between the rotation matrix in hexagonal lattice coordinates and an angle-axis quadruple is given. The multiplication law of quadruples is derived. It corresponds to multiplying two matrices and gives the effect of two successive rotations. The relation is given between two quadruples that describe the same relative orientation of two lattices due to their hexagonal symmetry; a unique standard description of the relative orientation is proposed. The restrictions satisfied by rotations generating coincidence site lattices (CSLs) are derived for any value of the axial ratio rho = c/a. It is shown that the law for cubic lattices, where the multiplicity SIGMA of the CSL was equal to the least common denominator of the elements of the rotation matrix, does not always hold for hexagonal lattices. A generalisation of this law to lattices of arbitrary symmetry is given and another, quicker method to determine SIGMA for hexagonal lattices is derived. Finally, convenient algorithms are described for determining bases of the CSL and the DSC lattice. (author)

  3. Conjunct rotation: Codman's paradox revisited.

    Science.gov (United States)

    Wolf, Sebastian I; Fradet, Laetitia; Rettig, Oliver

    2009-05-01

    This contribution mathematically formalizes Codman's idea of conjunct rotation, a term he used in 1934 to describe a paradoxical phenomenon arising from a closed-loop arm movement. Real (axial) rotation is distinguished from conjunct rotation. For characterizing the latter, the idea of reference vector fields is developed to define the neutral axial position of the humerus for any given orientation of its long axis. This concept largely avoids typical coordinate singularities arising from decomposition of 3D joint motion and therefore can be used for postural (axial) assessment of the shoulder joint both clinically and in sports science in almost the complete accessible range of motion. The concept, even though algebraic rather complex, might help to get an easier and more intuitive understanding of axial rotation of the shoulder in complex movements present in daily life and in sports.

  4. Validity and Psychometric Properties of Malay Translated Religious Orientation Scale-Revised among Malaysian Adult Samples

    OpenAIRE

    Mohammad Rahim Kamaluddin; Rohany Nasir; Wan Shahrazad Wan Sulaiman; Rozainee Khairudin; Zainah Ahmad Zamani

    2017-01-01

    Religious Orientation Scale-Revised (ROS-R) has been used increasingly as an important measure in psychology of religion based researches and widely administered in cross-cultural settings. Unfortunately, there is no valid and reliable ROS-R available in Malay language to assess religious orientations among Malaysians. With that in mind, the present study aims to validate and document the psychometric properties of Malay translated ROS-R (henceforth, M-ROS-R) among sample of Malay...

  5. Spatial confinement governs orientational order in patchy particles

    Science.gov (United States)

    Iwashita, Yasutaka; Kimura, Yasuyuki

    2016-06-01

    Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli.

  6. Magnetism and Microwave Absorption Properties of Fe3O4 Microflake-Paraffin Composites Without and With Magnetic Orientation

    Science.gov (United States)

    Wang, Peng; Zhang, Junming; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Wang, Tao; Li, Fashen

    2018-01-01

    We have synthesized thin Fe3O4 microflakes by a simple hydrothermal method and prepared Fe3O4 microflake-paraffin composites without and with magnetic orientation using the method of simple ultrasonic mixing and rotating samples in a magnetic field. X-ray diffractometer, Mössbauer spectrum, scanning electron microscope and vibrating sample magnetometer were used to characterize the samples. The complex permittivity and permeability of Fe3O4 microflake-paraffin composites without and with magnetic orientation were measured in the frequency range of 0.1-18 GHz by a vector network analyzer using a coaxial method. The reflection loss (RL) was calculated by the measured electromagnetic parameters using transmission line theory. The measurement of electromagnetic parameters shows that magnetic orientation makes the complex permittivity and permeability increase. The calculated RL shows that the Fe3O4 microflake-paraffin composite with magnetic orientation has enhanced microwave absorption properties in the frequency range of 1-3 GHz and the thickness range of 2.9-3.5 mm, indicating that the Fe3O4 microflake-paraffin composite with magnetic orientation is a promising thin microwave absorption material in the L-S band.

  7. The interaction of birth order and parental age on sexual orientation: an examination in two samples.

    Science.gov (United States)

    Bogaert, Anthony F; Cairney, John

    2004-01-01

    A birth order and sexual orientation relationship has been demonstrated numerous times in men, but a related variable, parental age (i.e. age of parents when the participant was born), has been less studied and has demonstrated contradictory results. In this research, the relations among birth order, parental age and sexual orientation were examined in a national probability sample of the US (Kessler, 1994; Kessler et al., 1994) and in a Canadian sample of homosexual and heterosexual men closely matched on demographic characteristics (Blanchard & Bogaert, 1996a). In both studies, an interaction between birth order and parental age was observed in men, such that there was positive association between number of older siblings and the likelihood of homosexuality, but this association weakened with increasing parental age. No significant effects were observed for women. The results are discussed in relation to recent theories of the birth order/sexual orientation relationship.

  8. Mental object rotation in Parkinson's disease.

    Science.gov (United States)

    Crucian, Gregory P; Barrett, Anna M; Burks, David W; Riestra, Alonso R; Roth, Heidi L; Schwartz, Ronald L; Triggs, William J; Bowers, Dawn; Friedman, William; Greer, Melvin; Heilman, Kenneth M

    2003-11-01

    Deficits in visual-spatial ability can be associated with Parkinson's disease (PD), and there are several possible reasons for these deficits. Dysfunction in frontal-striatal and/or frontal-parietal systems, associated with dopamine deficiency, might disrupt cognitive processes either supporting (e.g., working memory) or subserving visual-spatial computations. The goal of this study was to assess visual-spatial orientation ability in individuals with PD using the Mental Rotations Test (MRT), along with other measures of cognitive function. Non-demented men with PD were significantly less accurate on this test than matched control men. In contrast, women with PD performed similarly to matched control women, but both groups of women did not perform much better than chance. Further, mental rotation accuracy in men correlated with their executive skills involving mental processing and psychomotor speed. In women with PD, however, mental rotation accuracy correlated negatively with verbal memory, indicating that higher mental rotation performance was associated with lower ability in verbal memory. These results indicate that PD is associated with visual-spatial orientation deficits in men. Women with PD and control women both performed poorly on the MRT, possibly reflecting a floor effect. Although men and women with PD appear to engage different cognitive processes in this task, the reason for the sex difference remains to be elucidated.

  9. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Directory of Open Access Journals (Sweden)

    Bianca Alert

    Full Text Available Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  10. Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields

    International Nuclear Information System (INIS)

    Storozhenko, A.M.; Stannarius, R.; Tantsyura, A.O.; Shabanova, I.A.

    2017-01-01

    We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field. - Highlights: • The experimental study of the rotational effect in the magnetic fluids is presented. • The torque density non-monotonously depends on the magnetic field frequency. • Experimental data can be explained assuming aggregation of magnetic nanoparticles.

  11. Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Storozhenko, A.M. [Southwest State University, Kursk, 305040 (Russian Federation); Stannarius, R. [Otto von Guericke University Magdeburg, Magdeburg, 39016 Germany (Germany); Tantsyura, A.O.; Shabanova, I.A. [Southwest State University, Kursk, 305040 (Russian Federation)

    2017-06-01

    We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field. - Highlights: • The experimental study of the rotational effect in the magnetic fluids is presented. • The torque density non-monotonously depends on the magnetic field frequency. • Experimental data can be explained assuming aggregation of magnetic nanoparticles.

  12. The rotational elements of Mars and its satellites

    Science.gov (United States)

    Jacobson, R. A.; Konopliv, A. S.; Park, R. S.; Folkner, W. M.

    2018-03-01

    The International Astronomical Union (IAU) defines planet and satellite coordinate systems relative to their axis of rotation and the angle about that axis. The rotational elements of the bodies are the right ascension and declination of the rotation axis in the International Celestial Reference Frame and the rotation angle, W, measured easterly along the body's equator. The IAU specifies the location of the body's prime meridian by providing a value for W at epoch J2000. We provide new trigonometric series representations of the rotational elements of Mars and its satellites, Phobos and Deimos. The series for Mars are from a least squares fit to the rotation model used to orient the Martian gravity field. The series for the satellites are from a least squares fit to rotation models developed in accordance with IAU conventions from recent ephemerides.

  13. Geometrical effects on western intensification of wind-driven ocean currents: The rotated-channel Stommel model, coastal orientation, and curvature

    Science.gov (United States)

    Boyd, John P.; Sanjaya, Edwin

    2014-03-01

    We revisit early models of steady western boundary currents [Gulf Stream, Kuroshio, etc.] to explore the role of irregular coastlines on jets, both to advance the research frontier and to illuminate for education. In the framework of a steady-state, quasigeostrophic model with viscosity, bottom friction and nonlinearity, we prove that rotating a straight coastline, initially parallel to the meridians, significantly thickens the western boundary layer. We analyze an infinitely long, straight channel with arbitrary orientation and bottom friction using an exact solution and singular perturbation theory, and show that the model, though simpler than Stommel's, nevertheless captures both the western boundary jet (“Gulf Stream”) and the “orientation effect”. In the rest of the article, we restrict attention to the Stommel flow (that is, linear and inviscid except for bottom friction) and apply matched asymptotic expansions, radial basis function, Fourier-Chebyshev and Chebyshev-Chebyshev pseudospectral methods to explore the effects of coastal geometry in a variety of non-rectangular domains bounded by a circle, parabolas and squircles. Although our oceans are unabashedly idealized, the narrow spikes, broad jets and stationary points vividly illustrate the power and complexity of coastal control of western boundary layers.

  14. Rotation of hard particles in a soft matrix

    Science.gov (United States)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  15. Rotational 3D printing of damage-tolerant composites with programmable mechanics.

    Science.gov (United States)

    Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A

    2018-02-06

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  16. Mixing on a spherical shell by cutting and shuffling with non-orthogonal rotation axes

    Science.gov (United States)

    Lynn, Thomas; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2017-11-01

    We examine a dynamical system that models the mixing of granular material in a half-filled spherical tumbler rotated about two horizontal alternating axes by using the machinery of cutting and shuffling through piecewise-isometries (PWI). Previous restrictions on how the domain is cut and shuffled are relaxed to allow non-orthogonal axes of rotation. Mixing is not only dependent on the amount of rotation used to induce mixing, but also on the relative orientation of the rotation axes. Well mixed regions within the PWI, which have a high density of cuts, typically interact with the periodic cutting boundary for both rotation axes. However, there are parameter combinations where the two rotations cut distinctly separate regions. The three-parameter space (a rotation about each axis and the relative orientation of the axes) is rich with detailed mixing features such as fractal boundaries and elliptic-like non-mixing regions. Supported by National Science Foundation Grant No. CMMI-1435065.

  17. Vertical axis rotation (or lack thereof) of the eastern Mongolian Altay Mountains: Implications for far-field transpressional mountain building

    Science.gov (United States)

    Gregory, Laura C.; Mac Niocaill, Conall; Walker, Richard T.; Bayasgalan, Gantulga; Craig, Tim J.

    2018-06-01

    The Altay Mountains of Western Mongolia accommodate 10-20% of the current shortening of the India-Asia collision in a transpressive regime. Kinematic models of the Altay require faults to rotate anticlockwise about a vertical axis in order to accommodate compressional deformation on the major strike slip faults that cross the region. Such rotations should be detectable by palaeomagnetic data. Previous estimates from the one existing palaeomagnetic study from the Altay, on Oligocene and younger sediments from the Chuya Basin in the Siberian Altay, indicate that at least some parts of the Altay have experienced up to 39 ± 8° of anticlockwise rotation. Here, we present new palaeomagnetic results from samples collected in Cretaceous and younger sediments in the Zereg Basin along the Har-Us-Nuur fault in the eastern Altay Mountains, Mongolia. Our new palaeomagnetic results from the Zereg Basin provide reliable declinations, with palaeomagnetic directions from 10 sites that pass a fold test and include magnetic reversals. The declinations are not significantly rotated with respect to the directions expected from Cretaceous and younger virtual geomagnetic poles, suggesting that faults in the eastern Altay have not experienced a large degree of vertical axis rotation and cannot have rotated >7° in the past 5 m.y. The lack of rotation along the Har-Us-Nuur fault combined with a large amount of rotation in the northern Altay fits with a kinematic model for transpressional deformation in which faults in the Altay have rotated to an orientation that favours the development of flower structures and building of mountainous topography, while at the same time the range widens at the edges as strain is transferred to better oriented structures. Thus the Har-Us-Nuur fault is a relatively young fault in the Altay, and has not yet accommodated significant rotation.

  18. Automatic Samples Selection Using Histogram of Oriented Gradients (HOG Feature Distance

    Directory of Open Access Journals (Sweden)

    Inzar Salfikar

    2018-01-01

    Full Text Available Finding victims at a disaster site is the primary goal of Search-and-Rescue (SAR operations. Many technologies created from research for searching disaster victims through aerial imaging. but, most of them are difficult to detect victims at tsunami disaster sites with victims and backgrounds which are look similar. This research collects post-tsunami aerial imaging data from the internet to builds dataset and model for detecting tsunami disaster victims. Datasets are built based on distance differences from features every sample using Histogram-of-Oriented-Gradient (HOG method. We use the longest distance to collect samples from photo to generate victim and non-victim samples. We claim steps to collect samples by measuring HOG feature distance from all samples. the longest distance between samples will take as a candidate to build the dataset, then classify victim (positives and non-victim (negatives samples manually. The dataset of tsunami disaster victims was re-analyzed using cross-validation Leave-One-Out (LOO with Support-Vector-Machine (SVM method. The experimental results show the performance of two test photos with 61.70% precision, 77.60% accuracy, 74.36% recall and f-measure 67.44% to distinguish victim (positives and non-victim (negatives.

  19. Person Appearance Modeling and Orientation Estimation using Spherical Harmonics

    NARCIS (Netherlands)

    Liem, M.C.; Gavrila, D.M.

    2013-01-01

    We present a novel approach for the joint estimation of a person's overall body orientation, 3D shape and texture, from overlapping cameras. Overall body orientation (i.e. rotation around torso major axis) is estimated by minimizing the difference between a learned texture model in a canonical

  20. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    Science.gov (United States)

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  1. An exploratory study of differences in views of factors affecting sexual orientation for a sample of lesbians and gay men.

    Science.gov (United States)

    Otis, Melanie D; Skinner, William F

    2004-06-01

    An exploratory study of lesbians (70) and gay men (118) from a rural state in the mid-South was conducted using a self-administered, mail-out survey. The nonrandom sample was drawn from organizational mailing lists, snowball sampling, and a convenience sample at a community event. Respondents were asked to indicate the extent to which each of the following affected sexual orientation: genetics, relationship between parents, relationship with parents, birth order, peers, growing up in a dysfunctional family, growing up in a single-parent family, negative experiences with the opposite sex, and positive experiences with the same sex. Similar to studies of heterosexual men and women, these gay men were more likely to view sexual orientation as a result of genetics than the lesbian respondents. Further, the lesbian group were more likely to view positive relationships with the same sex to have a great influence on sexual orientation. These data indicate there are sex differences in views on factors that affect sexual orientation.

  2. Influence of crystal orientation on magnetostriction waveform in grain orientated electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Kijima, Gou, E-mail: g-kijima@jfe-steel.co.jp [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, 210-0855 (Japan); Yamaguchi, Hiroi; Senda, Kunihiro; Hayakawa, Yasuyuki [Steel Research Laboratory, JFE Steel Corporation, Kurashiki, 712-8511 (Japan)

    2014-08-01

    Aiming to gain insight into the mechanisms of grain-oriented electrical steel sheet magnetostriction waveforms, we investigated the influence of crystal orientations. An increase in the β angle results in an increase in the amplitude of magnetostriction waveform, but does not affect the waveform itself. By slanting the excitation direction to simulate the change of the α angle, change in the magnetostriction waveform and a constriction–extension transition point in the steel plate was observed. The amplitude, however, was not significantly affected. We explained the nature of constriction–extension transition point in the magnetostriction waveform by considering the magnetization rotation. We speculated that the change of waveform resulting from the increase in the coating tensile stress can be attributed to the phenomenon of the magnetization rotation becoming hard to be generated due to the increase of magnetic anisotropy toward [001] axis. - Highlights: • β angle is related with the amplitude of magnetostriction waveform. • α angle is related with the magnetostriction waveform itself. • The effect of α angle can be controlled by the effect of coating tensile stress.

  3. Anomalies in the temperature dependence of Faraday rotation on yttrium iron garnets doped with Sn, Zr, or Sb

    International Nuclear Information System (INIS)

    D'Orazio, F.; Giammaria, F.; Lucari, F.

    1991-01-01

    Faraday rotation (FR) measurements on three thin single crystalline samples of yttrium iron garnet doped with Sn, Zr, and Sb as a function of temperature in the near infrared region show a monotonic variation of the magneto-optical signal as the temperature is decreased from 300 to about 50 K. At this point the FR signal levels off. Moreover, the slope of the plot for the sample, doped with Sn, changes sign below this temperature, at particular wavelengths. An explanation of the observed phenomena is given in terms of the energy levels of the Fe 2+ ions in the different sites of the crystal and the temperature dependence of their populations caused by the relative orientation between the local symmetry axis of the specific site and the direction of the sample magnetization. Hysteresis loops of the Faraday rotation as a function of applied magnetic field have been also measured showing the presence of a remanence of the sample magnetization

  4. Single molecule optical measurements of orientation and rotations of biological macromolecules.

    Science.gov (United States)

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-11-22

    Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.

  5. On the aspiration characteristics of large-diameter, thin-walled aerosol sampling probes at yaw orientations with respect to the wind

    International Nuclear Information System (INIS)

    Vincent, J.H.; Mark, D.; Smith, T.A.; Stevens, D.C.; Marshall, M.

    1986-01-01

    Experiments were carried out in a large wind tunnel to investigate the aspiration efficiencies of thin-walled aerosol sampling probes of large diameter (up to 50 mm) at orientations with respect to the wind direction ranging from 0 to 180 degrees. Sampling conditions ranged from sub-to super-isokinetic. The experiments employed test dusts of close-graded fused alumina and were conducted under conditions of controlled freestream turbulence. For orientations up to and including 90 degrees, the results were qualitatively and quantitatively consistent with a new physical model which takes account of the fact that the sampled air not only diverges or converges (depending on the relationship between wind speed and sampling velocity) but also turns to pass through the plane of the sampling orifice. The previously published results of Durham and Lundgren (1980) and Davies and Subari (1982) for smaller probes were also in good agreement with the new model. The model breaks down, however, for orientations greater than 90 degrees due to the increasing effect of particle impaction onto the blunt leading edge of the probe body. For the probe facing directly away from the wind (180 degree orientation), aspiration efficiency is dominated almost entirely by this effect. (author)

  6. Variation in orgasm occurrence by sexual orientation in a sample of U.S. singles.

    Science.gov (United States)

    Garcia, Justin R; Lloyd, Elisabeth A; Wallen, Kim; Fisher, Helen E

    2014-11-01

    Despite recent advances in understanding orgasm variation, little is known about ways in which sexual orientation is associated with men's and women's orgasm occurrence. To assess orgasm occurrence during sexual activity across sexual orientation categories. Data were collected by Internet questionnaire from 6,151 men and women (ages 21-65+ years) as part of a nationally representative sample of single individuals in the United States. Analyses were restricted to a subsample of 2,850 singles (1,497 men, 1,353 women) who had experienced sexual activity in the past 12 months. Participants reported their sex/gender, self-identified sexual orientation (heterosexual, gay/lesbian, bisexual), and what percentage of the time they experience orgasm when having sex with a familiar partner. Mean occurrence rate for experiencing orgasm during sexual activity with a familiar partner was 62.9% among single women and 85.1% among single men, which was significantly different (F1,2848  = 370.6, P sexual orientation: heterosexual men 85.5%, gay men 84.7%, bisexual men 77.6% (F2,1494  = 2.67, P = 0.07, η(2)  = 0.004). For women, however, mean occurrence rate of orgasm varied significantly by sexual orientation: heterosexual women 61.6%, lesbian women 74.7%, bisexual women 58.0% (F2,1350  = 10.95, P sexual orientation, have less predictable, more varied orgasm experiences than do men and that for women, but not men, the likelihood of orgasm varies with sexual orientation. These findings demonstrate the need for further investigations into the comparative sexual experiences and sexual health outcomes of sexual minorities. © 2014 International Society for Sexual Medicine.

  7. New orientation formation and growth during primary recrystallization in stable single crystals of three face-centred cubic metals

    International Nuclear Information System (INIS)

    Miszczyk, M.; Paul, H.; Driver, J.H.; Maurice, C.

    2015-01-01

    Graphical abstract: For Ni, Cu and Cu-2%Al and (1 1 0)[0 0 −1] and (1 1 0)[1 −1 −2] initial orientations at the initial stages of recrystallization, the appearance of a specific number of new orientation groups of new grains has been demonstrated. The orientation relations across the recrystallization front are characterized by a high proportion of angles in the range 25–35° and 45–55° around axes mostly grouped about the 〈1 2 2〉, 〈1 1 1〉, 〈1 2 3〉 and 〈1 1 2〉 directions. A local minimum was noted for the disorientation angle densities close to 40° in all cases. For a single isolated nucleus of uniform orientation, the rotation axes are usually grouped around one of the normals of all four {1 1 1} planes but do not (or only rarely) coincide with them. The orientation of the growing new grain quickly transforms through the formation of a first generation twins. The most frequent situation occurs when the normal of the twinning face plane is situated near the rotation axis, around which the crystal lattice of the ‘primary nuclei’ rotates. Based on the anisotropy of grain growth a possible mechanism of orientation generation and grain growth by thermally activation movement of dislocation families, on {1 1 1} planes is proposed. - Abstract: The early stages of recrystallization have been systematically characterized in single crystal metals of medium and low stacking fault energy. Goss {1 1 0}〈0 0 1〉 and brass {1 1 0}〈1 1 2〉 oriented samples of Ni, Cu and Cu–2 wt.% Al alloy were deformed in a channel die to a logarithmic strain of 0.51 to develop a homogeneous structure composed of two sets of symmetrical primary microbands and then lightly annealed. Scanning electron microscopy/electron backscattered diffraction analyses demonstrate a strong relation between as-deformed orientations and the limited number of recrystallized grain orientations. The disorientation angles across the recrystallization front are mostly grouped in

  8. In situ synchrotron analysis of lattice rotations in individual grains during stress-induced martensitic transformations in a polycrystalline CuAlBe shape memory alloy

    International Nuclear Information System (INIS)

    Berveiller, S.; Malard, B.; Wright, J.; Patoor, E.; Geandier, G.

    2011-01-01

    Highlights: → 3DXRD, Laue microdiffraction measurements of grain rotation in a shape memory alloy. → During stress-induced martensitic transformation, the austenite grains rotate. → This rotation reverses with the reverse transformation. → The austenite grains splits into various orientations with martensite formation. - Abstract: Two synchrotron diffraction techniques, three-dimensional X-ray diffraction and Laue microdiffraction, are applied to studying the deformation behaviour of individual grains embedded in a Cu 74 Al 23 Be 3 superelastic shape memory alloy. The average lattice rotation and the intragranular heterogeneity of orientations are measured during in situ tensile tests at room temperature for four grains of mean size ∼1 mm. During mechanical loading, all four grains rotate and the mean rotation angle increases with austenite deformation. As the martensitic transformation occurs, the rotation becomes more pronounced, and the grain orientation splits into several sub-domains: the austenite orientation varies on both sides of the martensite variant. The mean disorientation is ∼1 o . Upon unloading, the sub-domains collapse and reverse rotation is observed.

  9. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    Science.gov (United States)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  10. Vibrating sample magnetometer 2D and 3D magnetization effects associated with different initial magnetization states

    Directory of Open Access Journals (Sweden)

    Ronald E. Lukins

    2017-05-01

    Full Text Available Differences in VSM magnetization vector rotation associated with various initial magnetization states were demonstrated. Procedures and criteria were developed to select sample orientation and initial magnetization states to allow for the combination of two different 2D measurements runs (with the same field profiles to generate a dataset that can be representative of actual 3D magnetization rotation. Nickel, cast iron, and low moment magnetic tape media were used to demonstrate these effects using hysteresis and remanent magnetization test sequences. These results can be used to generate 2D and 3D magnetic properties to better characterize magnetic phenomena which are inherently three dimensional. Example applications are magnetic tape-head orientation sensitivity, reinterpretation of 3D coercivity and other standard magnetic properties, and multi-dimensional shielding effectiveness.

  11. Basic tests of a rotation seismograph; Kaiten jishinkei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsubayashi, H; Kawamura, S; Watanabe, F; Hirai, Y; Kasahara, K [Nippon Geophysical Prospecting Co. Ltd., Tokyo (Japan)

    1996-05-01

    For the purpose of developing a rotational seismograph capable of measuring the rotational component of seismic waves, vibratory gyroscopes were installed in the ground for the measurement of vibration of the ground, and the measurements were compared with the values obtained from tests using conventional velocity type seismographs. In the experiment, the plank was hammered on the east side and west side. The seismographs were arranged in two ways: one wherein they were installed at 7 spots at intervals of 1m toward the south beginning at a position 3m south of the vibration source with their rotation axes oriented vertical, with velocity type seismographs provided at the same spots; and the other wherein three rotational seismographs were installed 3m south of the vibration source with their rotation axes respectively oriented vertical, in the direction of N-S, and in the direction of E-W, with a velocity type seismograph provided at the same spot. It was found as the result that the rotational seismograph has a flat band on the lower frequency side and that it may be applied to elastic wave observation across a wide band. Accordingly, it is expected that it will be applied to exploration that uses the SH wave, to structural assessment that uses the Love wave, and to collecting knowledge about the features of natural earthquakes. 2 refs., 8 figs.

  12. Biodemographic and physical correlates of sexual orientation in men.

    Science.gov (United States)

    Schwartz, Gene; Kim, Rachael M; Kolundzija, Alana B; Rieger, Gerulf; Sanders, Alan R

    2010-02-01

    To better understand sexual orientation from an evolutionary perspective, we investigated whether, compared to heterosexual men, the fewer direct descendants of homosexual men could be counterbalanced by a larger number of other close biological relatives. We also investigated the extent to which three patterns generally studied separately--handedness, number of biological older brothers, and hair-whorl rotation pattern--correlated with each other, and for evidence of replication of previous findings on how each pattern related to sexual orientation. We surveyed at Gay Pride and general community festivals, analyzing data for 894 heterosexual men and 694 homosexual men, both groups predominantly (~80%) white/non-Hispanic. The Kinsey distribution of sexual orientation for men recruited from the general community festivals approximated previous population-based surveys. Compared to heterosexual men, homosexual men had both more relatives, especially paternal relatives, and more homosexual male relatives. We found that the familiality for male sexual orientation decreased with relatedness, i.e., when moving from first-degree to second-degree relatives. We also replicated the fraternal birth order effect. However, we found no significant correlations among handedness, hair whorl rotation pattern, and sexual orientation, and, contrary to some previous research, no evidence that male sexual orientation is transmitted predominantly through the maternal line.

  13. Dustiness test of nanopowders using a standard rotating drum with a modified sampling train

    International Nuclear Information System (INIS)

    Tsai, Chuen-Jinn; Wu, Chien-Hsien; Leu, Ming-Long; Chen, Sheng-Chieh; Huang, Cheng-Yu; Tsai, Perng-Jy; Ko, Fu-Hsiang

    2009-01-01

    The standard rotating drum tester was used to determine the dustiness of two nanopowders, nano-TiO 2 and fine ZnO, in standard 1-min tests. Then, the sampling train was modified to determine the number and mass distributions of the generated particles in the respirable size range using a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS) and a Multi-orifice Uniform Deposit Impactor (MOUDI) in the 30-min tests. It was found that very few particles below 100 nm were generated and the released rate of particles decreased with increasing rotation time for both nanopowders in the 30-min tests. Due to the fluffy structure of the released TiO 2 agglomerated particles, the mass distributions measured by the MOUDI showed large differences with those determined by the APS assuming the apparent bulk densities of the powders. The differences were small for the ZnO agglomerates, which were more compact than the TiO 2 agglomerates.

  14. Cassette-based in-situ TEM sample inspection in the dual-beam FIB

    International Nuclear Information System (INIS)

    Kendrick, A B; Moore, T M; Zaykova-Feldman, L; Amador, G; Hammer, M

    2008-01-01

    A novel method is presented, combining site-specific TEM sample preparation and in-situ STEM analysis in a dual-beam microscope (FIB/SEM) fitted with a chamber mounted nano-manipulator. TEM samples are prepared using a modified in-situ, lift-out method, whereby the samples are thinned and oriented for immediate in-situ STEM analysis using the tilt, translation, and rotation capabilities of a FIB/SEM sample stage, a nano-manipulator, and a novel cassette. This cassette can provide a second tilt axis, orthogonal to the stage tilt axis, so that the STEM image contrast can be optimized to reveal the structural features of the sample (true STEM imaging in the FIB/SEM). The angles necessary for stage rotation and probe shaft rotation are calculated based on the position of the nano-manipulator relative to the stage and door and the stage tilt angle. A FIB/SEM instrument, equipped with a high resolution scanning electron column, can provide sufficiently high image resolution to enable many failure analysis and process control applications to be successfully carried out without requiring the use of a separate dedicated TEM/STEM instrument. The benefits of this novel approach are increased throughput and reduced cost per sample. Comparative analysis of different sample preparation methods is provided, and the STEM images obtained are shown.

  15. Single molecule optical measurements of orientation and rotations of biological macromolecules

    OpenAIRE

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-01-01

    The subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measuring their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here...

  16. Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations

    Science.gov (United States)

    Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.

    2018-06-01

    In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111} orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001} orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123} slip systems were preferentially activated in these single crystals during deformation as well as {112} slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction ( orientation, associated with {123} slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.

  17. Laser Controlled Molecular Orientation Dynamics

    International Nuclear Information System (INIS)

    Atabek, O.

    2004-01-01

    Molecular orientation is a challenging control issue covering a wide range of applications from reactive collisions, high order harmonic generation, surface processing and catalysis, to nanotechnologies. The laser control scenario rests on the following three steps: (i) depict some basic mechanisms producing dynamical orientation; (ii) use them both as computational and interpretative tools in optimal control schemes involving genetic algorithms; (iii) apply what is learnt from optimal control to improve the basic mechanisms. The existence of a target molecular rotational state combining the advantages of efficient and post-pulse long duration orientation is shown. A strategy is developed for reaching such a target in terms of a train of successive short laser pulses applied at predicted time intervals. Each individual pulse imparts a kick to the molecule which orients. Transposition of such strategies to generic systems is now under investigation

  18. Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling

    International Nuclear Information System (INIS)

    Lu Jun; Guerrero, Thomas M.; Munro, Peter; Jeung, Andrew; Chi, P.-C. M.; Balter, Peter; Zhu, X. Ronald; Mohan, Radhe; Pan Tinsu

    2007-01-01

    We have developed a new four-dimensional cone beam CT (4D-CBCT) on a Varian image-guided radiation therapy system, which has radiation therapy treatment and cone beam CT imaging capabilities. We adapted the speed of gantry rotation time of the CBCT to the average breath cycle of the patient to maintain the same level of image quality and adjusted the data sampling frequency to keep a similar level of radiation exposure to the patient. Our design utilized the real-time positioning and monitoring system to record the respiratory signal of the patient during the acquisition of the CBCT data. We used the full-fan bowtie filter during data acquisition, acquired the projection data over 200 deg of gantry rotation, and reconstructed the images with a half-scan cone beam reconstruction. The scan time for a 200-deg gantry rotation per patient ranged from 3.3 to 6.6 min for the average breath cycle of 3-6 s. The radiation dose of the 4D-CBCT was about 1-2 times the radiation dose of the 4D-CT on a multislice CT scanner. We evaluated the 4D-CBCT in scanning, data processing and image quality with phantom studies. We demonstrated the clinical applicability of the 4D-CBCT and compared the 4D-CBCT and the 4D-CT scans in four patient studies. The contrast-to-noise ratio of the 4D-CT was 2.8-3.5 times of the contrast-to-noise ratio of the 4D-CBCT in the four patient studies

  19. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    Science.gov (United States)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  20. Evidence of Wigner rotation phenomena in the beam splitting experiment at the LCLS

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2016-07-01

    A result from particle tracking states that, after a microbunched electron beam is kicked, its trajectory changes while the orientation of the microbunching wavefront remains as before. Experiments at the LCLS showed that radiation in the kicked direction is produced practically without suppression. This could be explained if the orientation of the microbunching wavefront is readjusted along the kicked direction. In previous papers we showed that when the evolution of the electron beam modulation is treated according to relativistic kinematics, the orientation of the microbunching wavefront in the ultrarelativistic asymptotic is always perpendicular to the electron beam velocity. There we refrained from using advanced theoretical concepts to explain or analyze the wavefront rotation. For example, we only hinted to the relation of this phenomenon with the concept of Wigner rotation. This more abstract view of wavefront rotation underlines its elementary nature. The Wigner rotation is known as a fundamental effect in elementary particle physics. The composition of non collinear boosts does not result in a simple boost but, rather, in a Lorentz transformation involving a boost and a rotation, the Wigner rotation. Here we show that during the LCLS experiments, a Wigner rotation was actually directly recorded for the first time with a ultrarelativistic, macroscopic object: an ultrarelativistic electron bunch in an XFEL modulated at nm-scale of the size of about 10 microns. Here we point out the role of Wigner rotation in the analysis and interpretation of experiments with ultrarelativistic, microbunched electron beams in FELs. After the beam splitting experiment at the LCLS it became clear that, in the ultrarelativistic asymptotic, the projection of the microbunching wave vector onto the beam velocity is a Lorentz invariant, similar to the helicity in particle physics.

  1. Evidence of Wigner rotation phenomena in the beam splitting experiment at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-07-15

    A result from particle tracking states that, after a microbunched electron beam is kicked, its trajectory changes while the orientation of the microbunching wavefront remains as before. Experiments at the LCLS showed that radiation in the kicked direction is produced practically without suppression. This could be explained if the orientation of the microbunching wavefront is readjusted along the kicked direction. In previous papers we showed that when the evolution of the electron beam modulation is treated according to relativistic kinematics, the orientation of the microbunching wavefront in the ultrarelativistic asymptotic is always perpendicular to the electron beam velocity. There we refrained from using advanced theoretical concepts to explain or analyze the wavefront rotation. For example, we only hinted to the relation of this phenomenon with the concept of Wigner rotation. This more abstract view of wavefront rotation underlines its elementary nature. The Wigner rotation is known as a fundamental effect in elementary particle physics. The composition of non collinear boosts does not result in a simple boost but, rather, in a Lorentz transformation involving a boost and a rotation, the Wigner rotation. Here we show that during the LCLS experiments, a Wigner rotation was actually directly recorded for the first time with a ultrarelativistic, macroscopic object: an ultrarelativistic electron bunch in an XFEL modulated at nm-scale of the size of about 10 microns. Here we point out the role of Wigner rotation in the analysis and interpretation of experiments with ultrarelativistic, microbunched electron beams in FELs. After the beam splitting experiment at the LCLS it became clear that, in the ultrarelativistic asymptotic, the projection of the microbunching wave vector onto the beam velocity is a Lorentz invariant, similar to the helicity in particle physics.

  2. Summary remarks and future prospects for on-line nuclear orientation

    International Nuclear Information System (INIS)

    Krane, K.S.; Hamilton, J.H.

    1984-01-01

    Results from various groups which use on-line low temperature nuclear orientation techniques are presented. Several nuclear parameters have been successfully studied: rotational levels, nuclear deformation, and decay modes. Future prospects include multiparameter analysis, relaxation and pre-orientation, new separators, and alpha decay studies. 33 refs., 5 figs

  3. Effect of head pitch and roll orientations on magnetically induced vertigo.

    Science.gov (United States)

    Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L

    2016-02-15

    Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest

  4. Numerical evaluation of state boundary surface through rotation of principal stress axes in sand

    International Nuclear Information System (INIS)

    Sadrnejad, S. A.

    2001-01-01

    In applying shear stress to saturated soil with arbitrary stress paths, the prediction of the exact value of strains is difficult because of mainly its stress path dependent nature. Rotation of the principal stress axes during shearing of the soil is a feature of stress paths associated with many field loading situations. A proper understanding of the effects of principal stress rotation on soil behavior can be provided if the anisotropy existing prior to stress rotation and induced anisotropy due to plastic flow in soil are clearly understood and modeled. A multi laminate based model for soil is developed and used to compute and present the influence of rotation of principal stress axes on the plastic behavior of soil. This is fulfilled by distributing the effects of boundary condition changes into several predefined sampling orientations at one point and summing the micro-results up as the macro-result. The validity of the presented model examined by comparing numerical and test results showing the mentioned aspect. In this paper, the state boundary surface is numerically obtained by a multi laminate based model capable of predicting the behavior of sand under the influences of rotation of the direction of principal stress axes and induced anisotropy. the predicted numerical results are tally in agreement with experiments

  5. On the effects of rotation on interstellar molecular line profiles

    International Nuclear Information System (INIS)

    Adelson, L.M.; Chunming Leung

    1988-01-01

    Theoretical models are constructed to study the effects of systematic gas rotation on the emergent profiles of interstellar molecular lines, in particular the effects of optical depth and different velocity laws. Both rotational and radial motions (expansion or contraction) may produce similar asymmetric profiles, but the behaviour of the velocity centroid of the emergent profile over the whole cloud (iso-centroid maps) can be used to distinguish between these motions. Iso-centroid maps can also be used to determine the location and orientation of the rotation axis and of the equatorial axis. For clouds undergoing both radial and rotational motion, the component of the centroid due to the rotational motion can be separated from that due to the radial motion. Information on the form of the rotational velocity law can also be derived. (author)

  6. Crystal orientation and sample preparation effects on sputtering and lattice damage in 100 keV self-irradiated copper

    International Nuclear Information System (INIS)

    Sprague, J.A.; Malmberg, P.R.; Reynolds, G.W.; Lambert, J.M.; Treado, P.A.; Vincenz, A.M.

    1987-01-01

    Sputtering yields and angular distributions have been measured as functions of sample preparation techniques and incident ion-beam orientation with respect to the crystal axes for 100 keV Cu-ion beams on Cu crystals and polycrystalline samples. The angular distributions have structure requiring an nth order cosine with two Gaussians superimposed to fit the data; strong peaking is observed near the backscatter direction. The yield is dependent on the beam to crystal and beam to polycrystalline-rod axis orientation, on the grain size of the polycrystals and on sample-preparation techniques. Yield measurements vary by as much as a factor of 4. Lattice-damage differences, measured with alpha particle channeling, are much smaller and seem to be saturated by fluences of the order of 1x10 16 /cm 2 . (orig.)

  7. Two-dimensional shape recognition using oriented-polar representation

    Science.gov (United States)

    Hu, Neng-Chung; Yu, Kuo-Kan; Hsu, Yung-Li

    1997-10-01

    To deal with such a problem as object recognition of position, scale, and rotation invariance (PSRI), we utilize some PSRI properties of images obtained from objects, for example, the centroid of the image. The corresponding position of the centroid to the boundary of the image is invariant in spite of rotation, scale, and translation of the image. To obtain the information of the image, we use the technique similar to Radon transform, called the oriented-polar representation of a 2D image. In this representation, two specific points, the centroid and the weighted mean point, are selected to form an initial ray, then the image is sampled with N angularly equispaced rays departing from the initial rays. Each ray contains a number of intersections and the distance information obtained from the centroid to the intersections. The shape recognition algorithm is based on the least total error of these two items of information. Together with a simple noise removal and a typical backpropagation neural network, this algorithm is simple, but the PSRI is achieved with a high recognition rate.

  8. Femoral component rotation in patellofemoral joint replacement.

    Science.gov (United States)

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan

    2009-01-01

    it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form...

  10. The Existence and Structure of Rotational Systems in the Circle

    OpenAIRE

    Ramanathan, Jayakumar

    2018-01-01

    By a rotational system, we mean a closed subset X of the circle, T=R/Z, together with a continuous transformation f:X→X with the requirements that the dynamical system (X,f) be minimal and that f respect the standard orientation of T. We show that infinite rotational systems (X,f), with the property that map f has finite preimages, are extensions of irrational rotations of the circle. Such systems have been studied when they arise as invariant subsets of certain specific mappings, F:T→T. Beca...

  11. Molecular dynamics simulations on PGLa using NMR orientational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Ulrich, E-mail: ulrich.sternberg@partner.kit.edu; Witter, Raiker [Tallinn University of Technology, Technomedicum (Estonia)

    2015-11-15

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  12. Two-stage magnetic orientation of uric acid crystals as gout initiators

    Science.gov (United States)

    Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.

    2014-01-01

    The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.

  13. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  14. Fourier descriptors analysis of anisotropy and preferred Orientation in geological samples

    International Nuclear Information System (INIS)

    Santiago Buey, C. de

    2011-01-01

    This study focuses on the use of Fourier descriptors to evaluate and quantify two specific fabric characteristics of geological materials: anisotropy of particles or voids morphologies and particle orientation. To this end, a theoretical section of a rock was created, made of ellipses and rectangles of different axes ratios and different orientations. The Fourier descriptors method was applied to calculate the anisotropy and orientation of each particle and, finally, a rose diagram was constructed to represent the particles orientations distribution and to observe the presence or not of any preferred orientation. (Author) 15 refs.

  15. Stage-Rocked Electron Channeling for Crystal Orientation Mapping (Postprint)

    Science.gov (United States)

    2018-03-26

    and 0 degree rotation). (C) Z-axis-referenced inverse pole figure (IPFZ) map of the same area displaying the relative orientations of the member...received much attention, as the thermoelectric figure of merit is inversely proportional to the thermal conductivity. A set of tilted and rotated BSE...ECCI BSE images), significant potential for data mining/engineering exists. For complicated specimens with multi- ple defects existing simultaneously

  16. Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations.

    Science.gov (United States)

    Hart, Lewis; Dale, Sara; Hoye, Sarah; Webb, James L; Wolverson, Daniel

    2016-02-10

    The rhenium and technetium diselenides and disulfides are van der Waals layered semiconductors in some respects similar to more well-known transition metal dichalcogenides (TMD) such as molybdenum sulfide. However, their symmetry is lower, consisting only of an inversion center, so that turning a layer upside-down (that is, applying a C2 rotation about an in-plane axis) is not a symmetry operation, but reverses the sign of the angle between the two nonequivalent in-plane crystallographic axes. A given layer thus can be placed on a substrate in two symmetrically nonequivalent (but energetically similar) ways. This has consequences for the exploitation of the anisotropic properties of these materials in TMD heterostructures and is expected to lead to a new source of domain structure in large-area layer growth. We produced few-layer ReS2 and ReSe2 samples with controlled "up" or "down" orientations by micromechanical cleavage and we show how polarized Raman microscopy can be used to distinguish these two orientations, thus establishing Raman as an essential tool for the characterization of large-area layers.

  17. Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Mathias M., E-mail: Mathias.Beck@tum.de [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Lammel, Christian [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Gleich, Bernhard [Institute of Medical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching (Germany)

    2017-04-01

    Inductive heating of electrically insulating materials like fiberglass reinforced thermoplastics (FRTP) without susceptors is not possible. However, due to their low thermal conductivity a volumetric heat generation method is advisable to reach short heating times to melt this material for reshaping. This can be done with magnetic nanoparticles as susceptors within the thermoplastic of the FRTP using Néel relaxation. During the heating process the particle's magnetic moment rotates with the field while the particle itself is fixed within the thermoplastic. Therefore the heat dissipation of each particle depends on its orientation within the field. To achieve the maximum heat generation of the particles we pre-oriented the particles within a plastic at the best angle to the applied AC field for induction. To do this, five mass percent nanoparticles were dispersed in an epoxy resin, which was then hardened at room temperature in a static three Tesla magnetic field. After its solidification the heating behavior of the sample was compared to a reference sample, which was hardened without a field. The oriented particles showed an increased heating rate when oriented parallel to the applied AC field. The absorption rate was 3.3 times as high as the undirected reference sample. When the alternating electromagnetic field was perpendicular to the oriented particles, the specific absorption rate was similar to that of the reference sample. We compare this result with theory and with calculations from literature, and conduct a numerical simulation. - Highlights: • Magnetic nanoparticles are aligned using a static three tesla magnetic field. • Inductive heating depends on the particles pre-orientation in a solid matrix. • Alignment increases the heat generation significantly.

  18. Controllable Micro-Particle Rotation and Transportation Using Sound Field Synthesis Technique

    Directory of Open Access Journals (Sweden)

    Shuang Deng

    2018-01-01

    Full Text Available Rotation and transportation of micro-particles using ultrasonically-driven devices shows promising applications in the fields of biological engineering, composite material manufacture, and micro-assembly. Current interest in mechanical effects of ultrasonic waves has been stimulated by the achievements in manipulations with phased array. Here, we propose a field synthesizing method using the fewest transducers to control the orientation of a single non-spherical micro-particle as well as its spatial location. A localized acoustic force potential well is established and rotated by using sound field synthesis technique. The resultant acoustic radiation torque on the trapped target determines its equilibrium angular position. A prototype device consisting of nine transducers with 2 MHz center frequency is designed and fabricated. Controllable rotation of a silica rod with 90 μm length and 15 μm diameter is then successfully achieved. There is a good agreement between the measured particle orientation and the theoretical prediction. Within the same device, spatial translation of the silica rod can also be realized conveniently. When compared with the existing acoustic rotation methods, the employed transducers of our method are strongly decreased, meanwhile, device functionality is improved.

  19. A study of human performance in a rotating environment

    Science.gov (United States)

    Green, J. A.; Peacock, J. L.; Holm, A. P.

    1971-01-01

    Consideration is given to the lack of sufficient data relative to the response of man to the attendant oculovestibular stimulations induced by multi-directional movement of an individual within the rotating environment to provide the required design criteria. This was done to determine the overall impact of artificial gravity simulations on potential design configurations and crew operational procedures. Gross locomotion and fine motor performance were evaluated. Results indicate that crew orientation, rotational rates, vehicle design configurations, and operational procedures may be used to reduce the severity of the adverse effects of the Coriolis and cross-coupled angular accelerations acting on masses moving within a rotating environment. Results further indicate that crew selection, motivation, and short-term exposures to the rotating environment may be important considerations for future crew indoctrination and training programs.

  20. Rotation-invariant features for multi-oriented text detection in natural images.

    Directory of Open Access Journals (Sweden)

    Cong Yao

    Full Text Available Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes.

  1. Topological defect formation in rotating binary dipolar Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Zhang, Xiao-Fei; Han, Wei; Jiang, Hai-Feng; Liu, Wu-Ming; Saito, Hiroki; Zhang, Shou-Gang

    2016-01-01

    We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point out that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.

  2. Axially perpendicular offset Raman scheme for reproducible measurement of housed samples in a noncircular container under variation of container orientation.

    Science.gov (United States)

    Duy, Pham K; Chang, Kyeol; Sriphong, Lawan; Chung, Hoeil

    2015-03-17

    An axially perpendicular offset (APO) scheme that is able to directly acquire reproducible Raman spectra of samples contained in an oval container under variation of container orientation has been demonstrated. This scheme utilized an axially perpendicular geometry between the laser illumination and the Raman photon detection, namely, irradiation through a sidewall of the container and gathering of the Raman photon just beneath the container. In the case of either backscattering or transmission measurements, Raman sampling volumes for an internal sample vary when the orientation of an oval container changes; therefore, the Raman intensities of acquired spectra are inconsistent. The generated Raman photons traverse the same bottom of the container in the APO scheme; the Raman sampling volumes can be relatively more consistent under the same situation. For evaluation, the backscattering, transmission, and APO schemes were simultaneously employed to measure alcohol gel samples contained in an oval polypropylene container at five different orientations and then the accuracies of the determination of the alcohol concentrations were compared. The APO scheme provided the most reproducible spectra, yielding the best accuracy when the axial offset distance was 10 mm. Monte Carlo simulations were performed to study the characteristics of photon propagation in the APO scheme and to explain the origin of the optimal offset distance that was observed. In addition, the utility of the APO scheme was further demonstrated by analyzing samples in a circular glass container.

  3. Effects of Orientation on Recognition of Facial Affect

    Science.gov (United States)

    Cohen, M. M.; Mealey, J. B.; Hargens, Alan R. (Technical Monitor)

    1997-01-01

    The ability to discriminate facial features is often degraded when the orientation of the face and/or the observer is altered. Previous studies have shown that gross distortions of facial features can go unrecognized when the image of the face is inverted, as exemplified by the 'Margaret Thatcher' effect. This study examines how quickly erect and supine observers can distinguish between smiling and frowning faces that are presented at various orientations. The effects of orientation are of particular interest in space, where astronauts frequently view one another in orientations other than the upright. Sixteen observers viewed individual facial images of six people on a computer screen; on a given trial, the image was either smiling or frowning. Each image was viewed when it was erect and when it was rotated (rolled) by 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225 degrees and 270 degrees about the line of sight. The observers were required to respond as rapidly and accurately as possible to identify if the face presented was smiling or frowning. Measures of reaction time were obtained when the observers were both upright and supine. Analyses of variance revealed that mean reaction time, which increased with stimulus rotation (F=18.54, df 7/15, p (is less than) 0.001), was 22% longer when the faces were inverted than when they were erect, but that the orientation of the observer had no significant effect on reaction time (F=1.07, df 1/15, p (is greater than) .30). These data strongly suggest that the orientation of the image of a face on the observer's retina, but not its orientation with respect to gravity, is important in identifying the expression on the face.

  4. Muscle contributions to elbow joint rotational stiffness in preparation for sudden external arm perturbations.

    Science.gov (United States)

    Holmes, Michael W R; Keir, Peter J

    2014-04-01

    Understanding joint stiffness and stability is beneficial for assessing injury risk. The purpose of this study was to examine joint rotational stiffness for individual muscles contributing to elbow joint stability. Fifteen male participants maintained combinations of three body orientations (standing, supine, sitting) and three hand preloads (no load, solid tube, fluid filled tube) while a device imposed a sudden elbow extension. Elbow angle and activity from nine muscles were inputs to a biomechanical model to determine relative contributions to elbow joint rotational stiffness, reported as percent of total stiffness. A body orientation by preload interaction was evident for most muscles (Psafety.

  5. Who takes more sustainability-oriented entrepreneurial actions? The role of entrepreneurs' values, beliefs and orientations

    DEFF Research Database (Denmark)

    Jahanshahi, Asghar Afshar; Brem, Alexander; Bhattacharjee, Amitab

    2017-01-01

    We examine the relationships between entrepreneurs' values, beliefs and orientations with their firms' engagement in sustainability-oriented entrepreneurial actions, using a sample of 352 newly established businesses from two Asian countries (Bangladesh and Iran). Our results reveal a dual role o...... of sustainable entrepreneurship, by providing answers for recent calls for better understanding which entrepreneurial ventures engage more in sustainability-oriented actions.......We examine the relationships between entrepreneurs' values, beliefs and orientations with their firms' engagement in sustainability-oriented entrepreneurial actions, using a sample of 352 newly established businesses from two Asian countries (Bangladesh and Iran). Our results reveal a dual role...... of entrepreneurs' values, beliefs and orientations when taking sustainability-oriented actions. We confirm that individual differences in the set of values, beliefs and orientations can foster or hinder the sustainability-oriented actions across organizations. Our paper contributes to the growing literature...

  6. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2014-05-01

    Full Text Available In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs, which are measured by the integrated positioning and orientation system (POS of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.

  7. Development and applications of single particle orientation and rotational tracking in dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuangcai [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.

  8. Classical theory of rotational rainbow scattering from uncorrugated surfaces

    International Nuclear Information System (INIS)

    Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli

    2010-01-01

    A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.

  9. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    Science.gov (United States)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  10. Use of anisotropy of light transmittance in a system to measure the frequency of nanowires' rotation in a viscous liquid

    International Nuclear Information System (INIS)

    Lipiec, Wojciech; Sikora, Andrzej

    2015-01-01

    Fe nanowires with diameters of ca. 80 nm and lengths ranging from 1 to 3 μm were immersed in a viscous liquid and exposed to a static magnetic field in order to orient them in a specific direction. The nanowire suspension was illuminated with a laser beam. The light intensity was measured at the input and output. It was observed that the light transmittance of the nanowire system was strongly dependent on the nanowires' orientation in relation to the laser beam. The phenomenon was applied to measure the rotation frequency of the nanowires immersed in a liquid with a viscosity of 2 Pa·s. Rotation of the nanowires was enforced by a rotating magnetic field generated by a rotating magnet. On the basis of the obtained results it was observed that the highest frequency of the nanowires' rotation in the applied liquid, in a rotating magnetic field with induction of 46 mT, exceeded 382 Hz. - Highlights: • Measurement method of the light transmittance of the nanowire system was presented. • The light transmittance depends on orientation of the nanowire system. • An application of anisotropy of light transmittance of the nanowire system was shown. • Nanowires suspended in a liquid with a big viscosity were able to rotate

  11. Magnetometer and Gyroscope Calibration Method with Level Rotation

    Directory of Open Access Journals (Sweden)

    Zongkai Wu

    2018-03-01

    Full Text Available Micro electro mechanical system (MEMS gyroscopes and magnetometers are usually integrated into a sensor module or chip and widely used in a variety of applications. In existing integrated gyroscope and magnetometer calibration methods, rotation in all possible orientations is a necessary condition for a good calibration result. However, rotation around two or more axes is difficult to attain, as it is limited by the range of movement of vehicles such as cars, ships, or planes. To solve this problem, this paper proposes an integrated magnetometer and gyroscope calibration method with level rotation. The proposed method presents a redefined magnetometer output model using level attitude. New gyroscope and magnetometer calibration models are then deduced. In addition, a simplified cubature Kalman filter (CKF is established to estimate calibration parameters. This method possesses important value for application in actual systems, as it only needs level rotation for real-time calibration of gyroscopes and magnetometers. Theoretical analysis and test results verify the validity and feasibility of this method.

  12. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    Science.gov (United States)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  13. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    Science.gov (United States)

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  14. Ship detection based on rotation-invariant HOG descriptors for airborne infrared images

    Science.gov (United States)

    Xu, Guojing; Wang, Jinyan; Qi, Shengxiang

    2018-03-01

    Infrared thermal imagery is widely used in various kinds of aircraft because of its all-time application. Meanwhile, detecting ships from infrared images attract lots of research interests in recent years. In the case of downward-looking infrared imagery, in order to overcome the uncertainty of target imaging attitude due to the unknown position relationship between the aircraft and the target, we propose a new infrared ship detection method which integrates rotation invariant gradient direction histogram (Circle Histogram of Oriented Gradient, C-HOG) descriptors and the support vector machine (SVM) classifier. In details, the proposed method uses HOG descriptors to express the local feature of infrared images to adapt to changes in illumination and to overcome sea clutter effects. Different from traditional computation of HOG descriptor, we subdivide the image into annular spatial bins instead of rectangle sub-regions, and then Radial Gradient Transform (RGT) on the gradient is applied to achieve rotation invariant histogram information. Considering the engineering application of airborne and real-time requirements, we use SVM for training ship target and non-target background infrared sample images to discriminate real ships from false targets. Experimental results show that the proposed method has good performance in both the robustness and run-time for infrared ship target detection with different rotation angles.

  15. Exploring the diversity of gender and sexual orientation identities in an online sample of transgender individuals.

    Science.gov (United States)

    Kuper, Laura E; Nussbaum, Robin; Mustanski, Brian

    2012-01-01

    Although the term transgender is increasingly used to refer to those whose gender identity or expression diverges from culturally defined categories of sex and gender, less is known about the self-identities of those who fall within this category. Historically, recruitment of transgender populations has also been limited to specialized clinics and support groups. This study was conducted online, with the aim of exploring the gender identities, sexual orientation identities, and surgery and hormonal statuses of those who identify with a gender identity other than, or in addition to, that associated with their birth sex (n = 292). Genderqueer was the most commonly endorsed gender identity, and pansexual and queer were the most commonly endorsed sexual orientation identities. Participants indentified with a mean of 2.5 current gender identities, 1.4 past gender identities, and 2 past sexual orientation identities. The majority of participants either did not desire or were unsure of their desire to take hormones or undergo sexual reassignment surgery. However, birth sex and age were significant predictors of "bottom" surgery and hormone status/desire, along with several identities and orientations. This study explores explanations and implications for these patterns of identification, along with the potential distinctiveness of this sample.

  16. The effect of hand position on perceived finger orientation in left- and right-handers.

    Science.gov (United States)

    Fraser, Lindsey E; Harris, Laurence R

    2017-12-01

    In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.

  17. Mental Rotation in False Belief Understanding.

    Science.gov (United States)

    Xie, Jiushu; Cheung, Him; Shen, Manqiong; Wang, Ruiming

    2018-05-01

    This study examines the spontaneous use of embodied egocentric transformation (EET) in understanding false beliefs in the minds of others. EET involves the participants mentally transforming or rotating themselves into the orientation of an agent when trying to adopt his or her visuospatial perspective. We argue that psychological perspective taking such as false belief reasoning may also involve EET because of what has been widely reported in the embodied cognition literature, showing that our processing of abstract, propositional information is often grounded in concrete bodily sensations which are not apparently linked to higher cognition. In Experiment 1, an agent placed a ball into one of two boxes and left. The ball then rolled out and moved either into the other box (new box) or back into the original one (old box). The participants were to decide from which box they themselves or the agent would try to recover the ball. Results showed that false belief performance was affected by increased orientation disparity between the participants and the agent, suggesting involvement of embodied transformation. In Experiment 2, false belief was similarly induced and the participants were to decide if the agent would try to recover the ball in one specific box. Orientation disparity was again found to affect false belief performance. The present results extend previous findings on EET in visuospatial perspective taking and suggest that false belief reasoning, which is a kind of psychological perspective taking, can also involve embodied rotation, consistent with the embodied cognition view. Copyright © 2018 Cognitive Science Society, Inc.

  18. Message framing for health: moderation by perceived susceptibility and motivational orientation in a diverse sample of Americans.

    Science.gov (United States)

    Updegraff, John A; Brick, Cameron; Emanuel, Amber S; Mintzer, Roy E; Sherman, David K

    2015-01-01

    The present study examined how gain- and loss-framed informational videos about oral health influence self-reported flossing behavior over a 6-month period, as well as the roles of perceived susceptibility to oral health problems and approach/avoidance motivational orientation in moderating these effects. An age and ethnically diverse sample of 855 American adults were randomized to receive no health message, or either a gain-framed or loss-framed video presented on the Internet. Self-reported flossing was assessed longitudinally at 2 and 6 months. Among the entire sample, susceptibility interacted with frame to predict flossing. Participants who watched a video where the frame (gain/loss) matched perceived susceptibility (low/high) had significantly greater likelihood of flossing at recommended levels at the 6-month follow-up, compared with those who viewed a mismatched video or no video at all. However, young adults (18-24) showed stronger moderation by motivational orientation than by perceived susceptibility, in line with previous work largely conducted with young adult samples. Brief informational interventions can influence long-term health behavior, particularly when the gain- or loss-frame of the information matches the recipient's beliefs about their health outcome risks.

  19. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.

    Science.gov (United States)

    Zhu, Yunzeng; Chen, Yiqi; Meng, Xiangrui; Wang, Jing; Lu, Ying; Xu, Youchun; Cheng, Jing

    2017-09-05

    Centrifugal microfluidics has been widely applied in the sample-in-answer-out systems for the analyses of nucleic acids, proteins, and small molecules. However, the inherent characteristic of unidirectional fluid propulsion limits the flexibility of these fluidic chips. Providing an extra degree of freedom to allow the unconstrained and reversible pumping of liquid is an effective strategy to address this limitation. In this study, a wirelessly charged centrifugal microfluidic platform with two rotation axes has been constructed and the flow control strategy in such platform with two degrees of freedom was comprehensively studied for the first time. Inductively coupled coils are installed on the platform to achieve wireless power transfer to the spinning stage. A micro servo motor is mounted on both sides of the stage to alter the orientation of the device around a secondary rotation axis on demand during stage rotation. The basic liquid operations on this platform, including directional transport of liquid, valving, metering, and mixing, are comprehensively studied and realized. Finally, a chip for the simultaneous determination of hexavalent chromium [Cr(VI)] and methanal in water samples is designed and tested based on the strategy presented in this paper, demonstrating the potential use of this platform for on-site environmental monitoring, food safety testing, and other life science applications.

  20. Trapping, manipulation and rapid rotation of NBD-C8 fluorescent single microcrystals in optical tweezers

    International Nuclear Information System (INIS)

    GALAUP, Jean-Pierre; RODRIGUEZ-OTAZO, Mariela; AUGIER-CALDERIN, Angel; LAMERE; Jean-Francois; FERY-FORGUES, Suzanne

    2009-01-01

    We have built an optical tweezers experiment based on an inverted microscope to trap and manipulate single crystals of micro or sub-micrometer size made from fluorescent molecules of 4-octylamino-7-nitrobenzoxadiazole (NBD-C8). These single crystals have parallelepiped shapes and exhibit birefringence properties evidenced through optical experiments between crossed polarizers in a polarizing microscope. The crystals are uniaxial with their optical axis oriented along their largest dimension. Trapped in the optical trap, the organic micro-crystals are oriented in such a way that their long axis is along the direction of the beam propagation, and their short axis follows the direction of the linear polarization. Therefore, with linearly polarized light, simply rotating the light polarization can orient the crystal. When using circularly or only elliptically polarized light, the crystal can spontaneously rotate and reach rotation speed of several hundreds of turns per second. A surprising result has been observed: when the incident power is growing up, the rotation speed increases to reach a maximum value and then decreases even when the power is still growing up. Moreover, this evolution is irreversible. Different possible explanations can be considered. The development of a 3D control of the crystals by dynamical holography using liquid crystal spatial modulators will be presented and discussed on the basis of the most recent results obtained. (Author)

  1. Effects of seed orientation on the growth behavior of single grain REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-06-15

    This study presents a simple method to control the seed orientation which leads to the various growth characteristics of a single grain REBCO (RE: rare-earth elements) bulk superconductors. Seed orientation was varied systematically from c-axis to a-axis with every 30 degree rotation around b-axis. Orientations of a REBCO single grain was successfully controlled by placing the seed with various angles on the prismatic indent prepared on the surface of REBCO powder compacts. Growth pattern was changed from cubic to rectangular when the seed orientation normal to compact surface was varied from c-axis to a-axis. Macroscopic shape change has been explained by the variation of the wetting angle of un-reacted melt depending on the interface energy between YBa2Cu3O7-y (Y123) grain and melt. Higher magnetic levitation force was obtained for the specimen prepared using tilted seed with an angle of 30 degree rotation around b-axis.

  2. Relativistic generalization of the Van-Cittert-Zernike theorem and coherent properties of rotating star radiation

    International Nuclear Information System (INIS)

    Mandjos, A.V.; Khmil', S.V.

    1979-01-01

    The formula is derived for the complex coherence degree of radiation from the surface moving arbitrarily in the gravitational field. The calculations are carried out referina to the rotating star observed at the spectral line by the interferometric method. The possibility of determining interferometrically the star rotational velocity and axis orientation is grounded

  3. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  4. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  5. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  6. Spin-orientation phase transitions in cubic ferrimagnetic GdIG: magnetooptic and visual investigation

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Kharchenko, N.F.; Gnatchenko, S.L.

    1976-01-01

    The sharp and smooth magnetic transitions due to the magnetic field in the canting process of the magnetic sublattices of GdIG are investigated by measuring the Faraday rotation in the small section of the sample and by the visualization of the magnetic structure in the polarized light. The investigations were made near the magnetic compensation temperature at the orientation H along the [111] and [100] axes. The Faraday rotation of the different magnetic phases was measured in the vicinity of the phase transitions between the collinear and canted structures and also between different canted ones. The visual observations were used to construct the phase diagrams and the magnetic state coexistence regions. Particular attention was paid to the critical point (the case H parallel [100]). Above the definite field the transition between the low- and high-temperature noncollinear states occurs smoothly. The experimental results are compared with the calculations carried out in the molecular field approximation making allowance for the three-sublattice structure of GdIG

  7. Semi-analytical study of the rotational motion stability of artificial satellites using quaternions

    International Nuclear Information System (INIS)

    Dos Santos, Josué C; Zanardi, Maria Cecília; Matos, Nicholas

    2013-01-01

    This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion

  8. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy.

    Science.gov (United States)

    Blackman, S M; Cobb, C E; Beth, A H; Piston, D W

    1996-01-01

    The dominant motional mode for membrane proteins is uniaxial rotational diffusion about the membrane normal axis, and investigations of their rotational dynamics can yield insight into both the oligomeric state of the protein and its interactions with other proteins such as the cytoskeleton. However, results from the spectroscopic methods used to study these dynamics are dependent on the orientation of the probe relative to the axis of motion. We have employed polarized fluorescence confocal microscopy to measure the orientation of eosin-5-maleimide covalently reacted with Lys-430 of human erythrocyte band 3. Steady-state polarized fluorescence images showed distinct intensity patterns, which were fit to an orientation distribution of the eosin absorption and emission dipoles relative to the membrane normal axis. This orientation was found to be unchanged by trypsin treatment, which cleaves band 3 between the integral membrane domain and the cytoskeleton-attached domain. this result suggests that phosphorescence anisotropy changes observed after trypsin treatment are due to a rotational constraint change rather than a reorientation of eosin. By coupling time-resolved prompt fluorescence anisotropy with confocal microscopy, we calculated the expected amplitudes of the e-Dt and e-4Dt terms from the uniaxial rotational diffusion model and found that the e-4Dt term should dominate the anisotropy decay. Delayed fluorescence and phosphorescence anisotropy decays of control and trypsin-treated band 3 in ghosts, analyzed as multiple uniaxially rotating populations using the amplitudes predicted by confocal microscopy, were consistent with three motional species with uniaxial correlation times ranging from 7 microseconds to 1.4 ms. Images FIGURE 4 FIGURE 8 FIGURE 9 PMID:8804603

  9. Orientation Preferences and Motion Sickness Induced in a Virtual Reality Environment.

    Science.gov (United States)

    Chen, Wei; Chao, Jian-Gang; Zhang, Yan; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng

    2017-10-01

    Astronauts' orientation preferences tend to correlate with their susceptibility to space motion sickness (SMS). Orientation preferences appear universally, since variable sensory cue priorities are used between individuals. However, SMS susceptibility changes after proper training, while orientation preferences seem to be intrinsic proclivities. The present study was conducted to investigate whether orientation preferences change if susceptibility is reduced after repeated exposure to a virtual reality (VR) stimulus environment that induces SMS. A horizontal supine posture was chosen to create a sensory context similar to weightlessness, and two VR devices were used to produce a highly immersive virtual scene. Subjects were randomly allocated to an experimental group (trained through exposure to a provocative rotating virtual scene) and a control group (untrained). All subjects' orientation preferences were measured twice with the same interval, but the experimental group was trained three times during the interval, while the control group was not. Trained subjects were less susceptible to SMS, with symptom scores reduced by 40%. Compared with untrained subjects, trained subjects' orientation preferences were significantly different between pre- and posttraining assessments. Trained subjects depended less on visual cues, whereas few subjects demonstrated the opposite tendency. Results suggest that visual information may be inefficient and unreliable for body orientation and stabilization in a rotating visual scene, while reprioritizing preferences for different sensory cues was dynamic and asymmetric between individuals. The present findings should facilitate customization of efficient and proper training for astronauts with different sensory prioritization preferences and dynamic characteristics.Chen W, Chao J-G, Zhang Y, Wang J-K, Chen X-W, Tan C. Orientation preferences and motion sickness induced in a virtual reality environment. Aerosp Med Hum Perform. 2017

  10. The neural code for face orientation in the human fusiform face area.

    Science.gov (United States)

    Ramírez, Fernando M; Cichy, Radoslaw M; Allefeld, Carsten; Haynes, John-Dylan

    2014-09-03

    Humans recognize faces and objects with high speed and accuracy regardless of their orientation. Recent studies have proposed that orientation invariance in face recognition involves an intermediate representation where neural responses are similar for mirror-symmetric views. Here, we used fMRI, multivariate pattern analysis, and computational modeling to investigate the neural encoding of faces and vehicles at different rotational angles. Corroborating previous studies, we demonstrate a representation of face orientation in the fusiform face-selective area (FFA). We go beyond these studies by showing that this representation is category-selective and tolerant to retinal translation. Critically, by controlling for low-level confounds, we found the representation of orientation in FFA to be compatible with a linear angle code. Aspects of mirror-symmetric coding cannot be ruled out when FFA mean activity levels are considered as a dimension of coding. Finally, we used a parametric family of computational models, involving a biased sampling of view-tuned neuronal clusters, to compare different face angle encoding models. The best fitting model exhibited a predominance of neuronal clusters tuned to frontal views of faces. In sum, our findings suggest a category-selective and monotonic code of face orientation in the human FFA, in line with primate electrophysiology studies that observed mirror-symmetric tuning of neural responses at higher stages of the visual system, beyond the putative homolog of human FFA. Copyright © 2014 the authors 0270-6474/14/3412155-13$15.00/0.

  11. Observation of orientation- and k-dependent Zeeman spin-splitting in hole quantum wires on (100)-oriented AlGaAs/GaAs heterostructures

    International Nuclear Information System (INIS)

    Chen, J C H; Klochan, O; Micolich, A P; Hamilton, A R; Martin, T P; Ho, L H; Zuelicke, U; Reuter, D; Wieck, A D

    2010-01-01

    In this paper, We study the Zeeman spin-splitting in hole quantum wires oriented along the [011] and [01 1-bar] crystallographic axes of a high mobility undoped (100)-oriented AlGaAs/GaAs heterostructure. Our data show that the spin-splitting can be switched 'on' (finite g*) or 'off' (zero g*) by rotating the field from a parallel to a perpendicular orientation with respect to the wire, and the properties of the wire are identical for the two orientations with respect to the crystallographic axes. We also find that the g-factor in the parallel orientation decreases as the wire is narrowed. This is in contrast to electron quantum wires, where the g-factor is enhanced by exchange effects as the wire is narrowed. This is evidence for a k-dependent Zeeman splitting that arises from the spin-3/2 nature of holes.

  12. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene

    International Nuclear Information System (INIS)

    Huang, Jianzhang; Han, Qiang

    2016-01-01

    A controllable nanoscale rotating actuator system consisting of a double carbon nanotube and graphene driven by a temperature gradient is proposed, and its rotating dynamics performance and driving mechanism are investigated through molecular dynamics simulations. The outer tube exhibits stable pure rotation with certain orientation under temperature gradient and the steady rotational speed rises as the temperature gradient increases. It reveals that the driving torque is caused by the difference of atomic van der Waals potentials due to the temperature gradient and geometrical features of carbon nanotube. A theoretical model for driving torque is established based on lattice dynamics theory and its predicted results agree well with molecular dynamics simulations. Further discussion is taken according to the theoretical model. The work in this study would be a guide for design and application of controllable nanoscale rotating devices based on carbon nanotubes and graphene. (paper)

  13. Active retroreflector with in situ beam analysis to measure the rotational orientation in conjunction with a laser tracker

    Science.gov (United States)

    Hofherr, O.; Wachten, C.; Müller, C.; Reinecke, H.

    2013-04-01

    High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) can determine accurately x-y-z coordinates of passive retroreflectors. Next-generation systems answer the additional need to measure an object`s rotational orientation (pitch, yaw, roll). These devices are based either on photogrammetry or on enhanced retroreflectors. However, photogrammetry relies on costly camera systems and time-consuming image processing. Enhanced retroreflectors analyze the LT`s beam but are restricted in roll angle measurements. In the past we have presented a new method [1][2] to measure all six degrees of freedom in conjunction with a LT. Now we dramatically optimized the method and designed a new prototype, e.g. taking into consideration optical alignment, reduced power loss, highly optimized measuring signals and higher resolution. A method is described that allows compensating the influence of the LT's beam offset during tracking the active retroreflector. We prove the functionality of the active retroreflector with the LT and, furthermore, demonstrate the capability of the system to characterize the tracking behavior of a LT. The measurement range for the incident laser beam is +/-12° with a resolution of 0.6".

  14. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations.

    LENUS (Irish Health Repository)

    Colgan, Niall C

    2010-12-01

    The in-vivo mechanical response of neural tissue during impact loading of the head is simulated using geometrically accurate finite element (FE) head models. However, current FE models do not account for the anisotropic elastic material behaviour of brain tissue. In soft biological tissue, there is a correlation between internal microscopic structure and macroscopic mechanical properties. Therefore, constitutive equations are important for the numerical analysis of the soft biological tissues. By exploiting diffusion tensor techniques the anisotropic orientation of neural tissue is incorporated into a non-linear viscoelastic material model for brain tissue and implemented in an explicit FE analysis. The viscoelastic material parameters are derived from published data and the viscoelastic model is used to describe the mechanical response of brain tissue. The model is formulated in terms of a large strain viscoelastic framework and considers non-linear viscous deformations in combination with non-linear elastic behaviour. The constitutive model was applied in the University College Dublin brain trauma model (UCDBTM) (i.e. three-dimensional finite element head model) to predict the mechanical response of the intra-cranial contents due to rotational injury.

  15. Message Framing for Health: Moderation by Perceived Susceptibility and Motivational Orientation in a Diverse Sample of Americans

    Science.gov (United States)

    Updegraff, John A.; Brick, Cameron; Emanuel, Amber S.; Mintzer, Roy E.; Sherman, David K.

    2015-01-01

    Objective The present study examined how gain- and loss-framed informational videos about oral health influence self-reported flossing behavior over a 6-month period, as well as the roles of perceived susceptibility to oral health problems and approach/avoidance motivational orientation in moderating these effects. Method An age and ethnically diverse sample of 855 American adults were randomized to receive no health message, or either a gain-framed or loss-framed video presented on the Internet. Self-reported flossing was assessed longitudinally at 2 and 6 months. Results Among the entire sample, susceptibility interacted with frame to predict flossing. Participants who watched a video where the frame (gain/loss) matched perceived susceptibility (low/high) had significantly greater likelihood of flossing at recommended levels at the 6-month follow-up, compared with those who viewed a mismatched video or no video at all. However, young adults (18–24) showed stronger moderation by motivational orientation than by perceived susceptibility, in line with previous work largely conducted with young adult samples. Conclusion Brief informational interventions can influence long-term health behavior, particularly when the gain- or loss-frame of the information matches the recipient’s beliefs about their health outcome risks. PMID:25020153

  16. Beyond RPA in nuclear rotation and wobbling motion at high spin

    International Nuclear Information System (INIS)

    Kaneko, Kazunari

    1991-01-01

    A quantum mechanical method of the nuclear rotation and the wobbling motion at high spin beyond the small-oscillation approximation is represented within the framework of time-dependent mean-field theory with some constraints. The constraints which determine the choice of the rotating reference frame are considered in the spin-orientation frame and the principal-axis frame. The quantization under such constraints is performed by making use of the Dirac bracket. Then the commutation relations of the angular momentum are derived. (orig.)

  17. Inelastic neutron scattering study of methyl groups rotation in some methylxanthines

    Science.gov (United States)

    Prager, M.; Pawlukojc, A.; Wischnewski, A.; Wuttke, J.

    2007-12-01

    The three isomeric dimethylxanthines and trimethylxanthine are studied by neutron spectroscopy up to energy transfers of 100meV at energy resolutions ranging from 0.7μeV to some meV. The loss of elastic intensity with increasing temperature can be modeled by quasielastic methyl rotation. The number of inequivalent methyl groups is in agreement with those of the room temperature crystal structures. Activation energies are obtained. In the case of theophylline, a doublet tunneling band is observed at 15.1 and 17.5μeV. In theobromine, a single tunneling band at 0.3μeV is found. Orientational disorder in caffeine leads to a 2.7μeV broad distribution of tunneling bands around the elastic line. At the same time, broad low energy phonon spectra characterize an orientational glassy state with weak methyl rotational potentials. Librational energies of the dimethylxanthines are clearly seen in the phonon densities of states. Rotational potentials can be derived which explain consistently all observables. While their symmetry in general is threefold, theophylline shows a close to sixfold potential reflecting a mirror symmetry.

  18. Transformation of Image Positions, Rotations, and Sizes into Shift Parameters

    DEFF Research Database (Denmark)

    Skov Jensen, A.; Lindvold, L.; Rasmussen, E.

    1987-01-01

    An optical image processing system is described that converts orientation and size to shift properties and simultaneously preserves the positional information as a shift. The system is described analytically and experimentally. The transformed image can be processed further with a classical...... correlator working with a rotational and size-invariant. multiplexed match filter. An optical robot vision system designed on this concept would be able to look at several objects simultaneously and determine their shape, size, orientation, and position with two measurements on the input scene at different...

  19. Comparing non-invasive scapular tracking methods across elevation angles, planes of elevation and humeral axial rotations.

    Science.gov (United States)

    Grewal, T-J; Cudlip, A C; Dickerson, C R

    2017-12-01

    Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assigning Main Orientation to an EOH Descriptor on Multispectral Images.

    Science.gov (United States)

    Li, Yong; Shi, Xiang; Wei, Lijun; Zou, Junwei; Chen, Fang

    2015-07-01

    This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.

  1. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    Science.gov (United States)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  2. Synthesis under ambient pressure and tri-axial magnetic orientation in REBa2Cu4O8 (RE = Y, Sm, Eu, Gd, Dy, Ho, Er)

    International Nuclear Information System (INIS)

    Yamaki, M.; Horii, S.; Haruta, M.; Maeda, T.; Shimoyama, J.

    2011-01-01

    REBa 2 Cu 4 O 8 (RE124) was synthesized by a flux method in ambient pressure for RE = Y, Sm, Eu, Gd, Dy, Ho and Er. Tri-axial orientation of RE124 was achieved in a modulated rotating magnetic field of 10 T. Orientation axes in RE124 depended on the type of RE. Magnetization axes were determined from magnetic anisotropies of Cu and RE ions. We report the rare-earth (RE)-dependent magnetization axes of REBa 2 Cu 4 O 8 , which was synthesized by a flux method under ambient pressure, using powder samples tri-axially oriented in a modulated rotating magnetic field of 10 T. By optimizing the growth temperature and cooling rate, RE124 crystals were successfully grown for RE = Y, Sm, Eu, Gd, Dy, Ho, and Er. From the X-ray diffraction measurement, the magnetically oriented directions were largely dependent on the type of RE ions of RE124. However, the tri-axial magnetic anisotropies of RE124 could be qualitatively understood in terms of the magnitude relation between the single-ion magnetic anisotropy of RE 3+ ions and the magnetic anisotropy generated by the CuO 2 plane and Cu-O chain. For the practical use of this magneto-scientific process, the control of magnetization axes and tri-axial magnetic anisotropies through crystallochemical control is indispensable.

  3. System and method for extracting dominant orientations from a scene

    Science.gov (United States)

    Straub, Julian; Rosman, Guy; Freifeld, Oren; Leonard, John J.; Fisher, III; , John W.

    2017-05-30

    In one embodiment, a method of identifying the dominant orientations of a scene comprises representing a scene as a plurality of directional vectors. The scene may comprise a three-dimensional representation of a scene, and the plurality of directional vectors may comprise a plurality of surface normals. The method further comprises determining, based on the plurality of directional vectors, a plurality of orientations describing the scene. The determined plurality of orientations explains the directionality of the plurality of directional vectors. In certain embodiments, the plurality of orientations may have independent axes of rotation. The plurality of orientations may be determined by representing the plurality of directional vectors as lying on a mathematical representation of a sphere, and inferring the parameters of a statistical model to adapt the plurality of orientations to explain the positioning of the plurality of directional vectors lying on the mathematical representation of the sphere.

  4. Heterotaxy syndromes and abnormal bowel rotation

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Beverley [Stanford University, Lucile Packard Children' s Hospital, Department of Radiology, Stanford, CA (United States); Koppolu, Raji; Sylvester, Karl [Lucile Packard Children' s Hospital at Stanford, Department of Surgery, Stanford, CA (United States); Murphy, Daniel [Lucile Packard Children' s Hospital at Stanford, Department of Cardiology, Stanford, CA (United States)

    2014-05-15

    Bowel rotation abnormalities in heterotaxy are common. As more children survive cardiac surgery, the management of gastrointestinal abnormalities has become controversial. To evaluate imaging of malrotation in heterotaxy with surgical correlation and provide an algorithm for management. Imaging reports of heterotaxic children with upper gastrointestinal (UGI) and/or small bowel follow-through (SBFT) were reviewed. Subsequently, fluoroscopic images were re-reviewed in conjunction with CT/MR studies. The original reports and re-reviewed images were compared and correlated with surgical findings. Nineteen of 34 children with heterotaxy underwent UGI, 13/19 also had SBFT. In 15/19 reports, bowel rotation was called abnormal: 11 malrotation, 4 non-rotation, no cases of volvulus. Re-review, including CT (10/19) and MR (2/19), designated 17/19 (90%) as abnormal, 10 malrotation (abnormal bowel arrangement, narrow or uncertain length of mesentery) and 7 non-rotation (small bowel and colon on opposite sides plus low cecum with probable broad mesentery). The most useful CT/MR findings were absence of retroperitoneal duodenum in most abnormal cases and location of bowel, especially cecum. Abnormal orientation of mesenteric vessels suggested malrotation but was not universal. Nine children had elective bowel surgery; non-rotation was found in 4/9 and malrotation was found in 5/9, with discrepancies (non-rotation at surgery, malrotation on imaging) with 4 original interpretations and 1 re-review. We recommend routine, early UGI and SBFT studies once other, urgent clinical concerns have been stabilized, with elective laparoscopic surgery in abnormal or equivocal cases. Cross-sectional imaging, usually obtained for other reasons, can contribute diagnostically. Attempting to assess mesenteric width is important in differentiating non-rotation from malrotation and more accurately identifies appropriate surgical candidates. (orig.)

  5. Heterotaxy syndromes and abnormal bowel rotation

    International Nuclear Information System (INIS)

    Newman, Beverley; Koppolu, Raji; Sylvester, Karl; Murphy, Daniel

    2014-01-01

    Bowel rotation abnormalities in heterotaxy are common. As more children survive cardiac surgery, the management of gastrointestinal abnormalities has become controversial. To evaluate imaging of malrotation in heterotaxy with surgical correlation and provide an algorithm for management. Imaging reports of heterotaxic children with upper gastrointestinal (UGI) and/or small bowel follow-through (SBFT) were reviewed. Subsequently, fluoroscopic images were re-reviewed in conjunction with CT/MR studies. The original reports and re-reviewed images were compared and correlated with surgical findings. Nineteen of 34 children with heterotaxy underwent UGI, 13/19 also had SBFT. In 15/19 reports, bowel rotation was called abnormal: 11 malrotation, 4 non-rotation, no cases of volvulus. Re-review, including CT (10/19) and MR (2/19), designated 17/19 (90%) as abnormal, 10 malrotation (abnormal bowel arrangement, narrow or uncertain length of mesentery) and 7 non-rotation (small bowel and colon on opposite sides plus low cecum with probable broad mesentery). The most useful CT/MR findings were absence of retroperitoneal duodenum in most abnormal cases and location of bowel, especially cecum. Abnormal orientation of mesenteric vessels suggested malrotation but was not universal. Nine children had elective bowel surgery; non-rotation was found in 4/9 and malrotation was found in 5/9, with discrepancies (non-rotation at surgery, malrotation on imaging) with 4 original interpretations and 1 re-review. We recommend routine, early UGI and SBFT studies once other, urgent clinical concerns have been stabilized, with elective laparoscopic surgery in abnormal or equivocal cases. Cross-sectional imaging, usually obtained for other reasons, can contribute diagnostically. Attempting to assess mesenteric width is important in differentiating non-rotation from malrotation and more accurately identifies appropriate surgical candidates. (orig.)

  6. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  7. Characterizing Grain-Oriented Silicon Steel Sheet Using Automated High-Resolution Laue X-ray Diffraction

    Science.gov (United States)

    Lynch, Peter; Barnett, Matthew; Stevenson, Andrew; Hutchinson, Bevis

    2017-11-01

    Controlling texture in grain-oriented (GO) silicon steel sheet is critical for optimization of its magnetization performance. A new automated laboratory system, based on X-ray Laue diffraction, is introduced as a rapid method for large scale grain orientation mapping and texture measurement in these materials. Wide area grain orientation maps are demonstrated for both macroetched and coated GO steel sheets. The large secondary grains contain uniform lattice rotations, the origins of which are discussed.

  8. LEFT VENTRICULAR ROTATION, TWIST AND UNTWIST: PHYSIOLOGICAL ROLE AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    E. N. Pavlyukova

    2015-09-01

    Full Text Available The helical ventricular myocardial band of Torrent-Guasp is a new concept, which provides strong grounds for reconciliation of some important aspects in cardiovascular medicine. Oblique fiber orientation provides left ventricular rotation, which in addition to radial thickening and longitudinal shortening, is predicted as an essential component of the effective left ventricular pumping. Left ventricular rotation can be measured in clinical practice noninvasively using echocardiography and this provides new opportunities for the assessment of different aspects of left ventricular mechanical function.

  9. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    International Nuclear Information System (INIS)

    Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Yao Rutao; Deng Xiao

    2013-01-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme. (paper)

  10. Actomyosin contractility rotates the cell nucleus.

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  11. Metasurface for multi-channel terahertz beam splitters and polarization rotators

    Science.gov (United States)

    Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin

    2018-04-01

    Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.

  12. Hemispheric dominance during the mental rotation task in patients with schizophrenia.

    Science.gov (United States)

    Chen, Jiu; Yang, Laiqi; Zhao, Jin; Li, Lanlan; Liu, Guangxiong; Ma, Wentao; Zhang, Yan; Wu, Xingqu; Deng, Zihe; Tuo, Ran

    2012-04-01

    Mental rotation is a spatial representation conversion capability using an imagined object and either object or self-rotation. This capability is impaired in schizophrenia. To provide a more detailed assessment of impaired cognitive functioning in schizophrenia by comparing the electrophysiological profiles of patients with schizophrenia and controls while completing a mental rotation task using both normally-oriented images and mirror images. This electroencephalographic study compared error rates, reaction times and the topographic map of event-related potentials in 32 participants with schizophrenia and 29 healthy controls during mental rotation tasks involving both normal images and mirror images. Among controls the mean error rate and the mean reaction time for normal images and mirror images were not significantly different but in the patient group the mean (sd) error rate was higher for mirror images than for normal images (42% [6%] vs. 32% [9%], t=2.64, p=0.031) and the mean reaction time was longer for mirror images than for normal images (587 [11] ms vs. 571 [18] ms, t=2.83, p=0.028). The amplitude of the P500 component at Pz (parietal area), Cz (central area), P3 (left parietal area) and P4 (right parietal area) were significantly lower in the patient group than in the control group for both normal images and mirror images. In both groups the P500 for both the normal and mirror images was significantly higher in the right parietal area (P4) compared with left parietal area (P3). The mental rotation abilities of patients with schizophrenia for both normally-oriented images and mirror images are impaired. Patients with schizophrenia show a diminished left cerebral contribution to the mental rotation task, a more rapid response time, and a differential response to normal images versus mirror images not seen in healthy controls. Specific topographic characteristics of the EEG during mental rotation tasks are potential biomarkers for schizophrenia.

  13. Effects of static orientation upon human optokinetic afternystagmus

    Science.gov (United States)

    Wall, C. 3rd; Merfeld, D. M.; Zupan, L.

    1999-01-01

    "Normal" human subjects were placed in a series of 5 static orientations with respect to gravity and were asked to view an optokinetic display moving at a constant angular velocity. The axis of rotation coincided with the subject's rostro-caudal axis and produced horizontal optokinetic nystagmus and afternystagmus. Wall (1) previously reported that these optokinetic afternystagmus responses were not well characterized by parametric fits to slow component velocity. The response for nose-up, however, was larger than for nose-down. This suggested that the horizontal eye movements measured during optokinetic stimulation might include an induced linear VOR component as presented in the body of this paper. To investigate this hypothesis, another analysis of these data has been made using cumulative slow component eye position. Some subjects' responses had reversals in afternystagmus direction. These reversals were "filled in" by a zero slow component velocity. This method of analysis gives a much more consistent result across subjects and shows that, on average, responses from the nose-down horizontal (prone) orientation are greatly reduced (p the responses to post-rotatory nystagmus after earth horizontal axis rotation. Ten of 11 subjects had larger responses in their supine than their prone orientation. Application of horizontal axis optokinetic afternystagmus for clinical otolith function testing, and implications for altered gravity experiments are discussed.

  14. Photostop of iodine atoms from electrically oriented ICl molecules

    International Nuclear Information System (INIS)

    Bao Da-Xiao; Lian-Zhong Deng; Xu Liang; Yin Jian-Ping

    2015-01-01

    The dynamics of photostopping iodine atoms from electrically oriented ICl molecules was numerically studied based on their orientational probability distribution functions. Velocity distributions of the iodine atoms and their production rates were investigated for orienting electrical fields of various intensities. For the ICl precursor beams with an initial rotational temperature of ∼ 1 K, the production of the iodine atoms near zero speed will be improved by about ∼ 5 times when an orienting electrical field of ∼ 200 kV/cm is present. A production rate of ∼ 0.5‰ is obtained for photostopped iodine atoms with speeds less than 10 m/s, which are suitable for magnetic trapping. The electrical orientation of ICl precursors and magnetic trapping of photostopped iodine atoms in situ can be conveniently realized with a pair of charged ring magnets. With the maximal value of the trapping field being ∼ 0.28 T, the largest trapping speed is ∼ 7.0 m/s for the iodine atom. (paper)

  15. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    International Nuclear Information System (INIS)

    Szubiakowski, Jacek P.

    2014-01-01

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed

  16. Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He

    Science.gov (United States)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2018-02-01

    The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.

  17. Some remarks on the general theorem of the existence of iterative roots of homeomorphisms with a rational rotation number

    Directory of Open Access Journals (Sweden)

    Solarz Paweł

    2012-08-01

    Full Text Available We show that the theorem proved in [8] generalises the previous results concerning orientation-preserving iterative roots of homeomorphisms of the circle with a rational rotation number (see [2], [6], [10] and [7]. Nous montrons que le théorème prouvé dans [8] généralise les résultats précédents concernant les racines itérées préservant l’orientation d’homéomorphismes du cercle avec un nombre de rotation rationnel (voir [2], [6], [10] et [7].

  18. Magnetic loss and B(H) behaviour of non-oriented electrical sheets under a trapezoidal exciting field

    Science.gov (United States)

    Kedous-Lebouc, A.; Errard, S.; Cornut, B.; Brissonneau, P.

    1994-05-01

    The excess loss and hysteresis response of electrical steel are measured and discussed in the case of trapezoidal field excitation similar to the current provided by a current commutation supply of a self-synchronous rotating machine. Three industrial non-oriented SiFe samples of different magnetic grades and thicknesses are tested using an automatic Epstein frame equipment. The losses and the unusual observed B( H) loops are analysed in terms of the rate of change of the field, the diffusion of the induction inside the sheet and by the calculation of the theoretical hysteresis cycles due to the eddy currents.

  19. The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm.

    Science.gov (United States)

    Lamm, Claus; Windischberger, Christian; Moser, Ewald; Bauer, Herbert

    2007-07-15

    Subjects deciding whether two objects presented at angular disparity are identical or mirror versions of each other usually show response times that linearly increase with the angle between objects. This phenomenon has been termed mental rotation. While there is widespread agreement that parietal cortex plays a dominant role in mental rotation, reports concerning the involvement of motor areas are less consistent. From a theoretical point of view, activation in motor areas suggests that mental rotation relies upon visuo-motor rather than visuo-spatial processing alone. However, the type of information that is processed by motor areas during mental rotation remains unclear. In this study we used event-related fMRI to assess whether activation in parietal and dorsolateral premotor areas (dPM) during mental rotation is distinctively related to processing spatial orientation information. Using a newly developed task paradigm we explicitly separated the processing steps (encoding, mental rotation proper and object matching) required by mental rotation tasks and additionally modulated the amount of spatial orientation information that had to be processed. Our results show that activation in dPM during mental rotation is not strongly modulated by the processing of spatial orientation information, and that activation in dPM areas is strongest during mental rotation proper. The latter finding suggests that dPM is involved in more generalized processes such as visuo-spatial attention and movement anticipation. We propose that solving mental rotation tasks is heavily dependent upon visuo-motor processes and evokes neural processing that may be considered as an implicit simulation of actual object rotation.

  20. Entrepreneurial Orientation and Internationalisation

    DEFF Research Database (Denmark)

    Decker, Arnim; Rollnik-Sadowska, Ewa; Servais, Per

    Entrepreneurial orientation is a multidimensional construct that determines the strategic posture of a firm. In this study we investigate a sample of six manufacturing firms which are located both in a remote area and in a transition economy. Through interpreting the construct of entrepreneurial...... orientation as an attitude held by principals we investigate how entrepreneurial orientation affected the behaviour of these firms, specifically in terms of their internationalisation. Despite the fact that all firms have identical roots we find that entrepreneurial orientation held by their principals affect...

  1. Multi-person localization and orientation estimation in volumetric scene reconstructions

    NARCIS (Netherlands)

    Liem, M.C.

    2014-01-01

    Accurate localization of persons and estimation of their pose are important topics in current-day computer vision research. As part of the pose estimation, estimating the body orientation of a person (i.e. rotation around torso major axis) conveys important information about the person's current

  2. Assigning Main Orientation to an EOH Descriptor on Multispectral Images

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-07-01

    Full Text Available This paper proposes an approach to compute an EOH (edge-oriented histogram descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor. In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.

  3. Eulerian derivation of non-inertial Navier-Stokes equations for compressible flow in constant, pure rotation

    CSIR Research Space (South Africa)

    Combrinck, ML

    2015-07-01

    Full Text Available be either inertial or non-inertial depending on the cases analyzed. This frame shares an origin with the rotational frame Ô. Frame Ô is the non-inertial, rotational frame and is therefore not orientation preserving. Now consider a point P which can... Descriptions This point is described in frame O from where a modified Galilean transformation, GM, will be used to describe it in frame O’. The rotational transform, RΩt, will then be used to transform the resulting equations (as described in frame O...

  4. Piezo-voltage control of magnetization orientation in a ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, M.; Brandlmaier, A.; Gepraegs, S.; Opel, M.; Gross, R. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Bihler, C.; Brandt, M.S. [Walter Schottky Institut, Technische Universitaet Muenchen, 85748 Garching (Germany); Schoch, W.; Limmer, W. [Institut fuer Halbleiterphysik, Universitaet Ulm, 89069 Ulm (Germany); Goennenwein, S.T.B.

    2008-06-15

    The possibility to control magnetic properties via electrical fields is investigated in a piezoelectric actuator/ferromagnetic semiconductor thin film hybrid structure. Using anisotropic magnetoresistance techniques, the magnetic anisotropy and the magnetization orientation within the plane of the ferromagnetic film are measured quantitatively. The experiments reveal that the application of an electrical field to the piezoelectric actuator allows to continuously and reversibly rotate the magnetization orientation in the ferromagnet by about 70 . (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Using geometric algebra to understand pattern rotations in multiple mirror optical systems

    International Nuclear Information System (INIS)

    Hanlon, J.; Ziock, H.

    1997-01-01

    Geometric Algebra (GA) is a new formulation of Clifford Algebra that includes vector analysis without notation changes. Most applications of Ga have been in theoretical physics, but GA is also a very good analysis tool for engineering. As an example, the authors use GA to study pattern rotation in optical systems with multiple mirror reflections. The common ways to analyze pattern rotations are to use rotation matrices or optical ray trace codes, but these are often inconvenient. The authors use GA to develop a simple expression for pattern rotation that is useful for designing or tolerancing pattern rotations in a multiple mirror optical system by inspection. Pattern rotation is used in many optical engineering systems, but it is not normally covered in optical system engineering texts. Pattern rotation is important in optical systems such as: (1) the 192 beam National ignition Facility (NIF), which uses square laser beams in close packed arrays to cut costs; (2) visual optical systems, which use pattern rotation to present the image to the observer in the appropriate orientation, and (3) the UR90 unstable ring resonator, which uses pattern rotation to fill a rectangular laser gain region and provide a filled-in laser output beam

  6. A SCILAB Program for Computing General-Relativistic Models of Rotating Neutron Stars by Implementing Hartle's Perturbation Method

    Science.gov (United States)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.

  7. Decay and fission of the oriented nuclei

    CERN Document Server

    Kadmenskij, S G

    2002-01-01

    The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...

  8. Streaming potential near a rotating porous disk.

    Science.gov (United States)

    Prieve, Dennis C; Sides, Paul J

    2014-09-23

    Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.

  9. NMR system and method having a permanent magnet providing a rotating magnetic field

    Science.gov (United States)

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  10. Experimental simulation of the bubble membrane radiator using a rotating flat plate

    International Nuclear Information System (INIS)

    Al-Baroudi, H.; Klein, A.C.; Pauley, K.A.

    1991-01-01

    The Bubble Membrane Radiator (BMR), to be used in space reactor systems, uses artificial gravity imposed on the working fluid by means of the centrifugal force to pump the fluid from the radiator. Experimental and analytical studies have been initiated to understand the nature of fluid and heat transport under the conditions of rotation. An experiment is described which measures the condensation of vapor on a rotating flat plate which is oriented normal to the earth's gravity vector to simulate the BMR physics. The relationship between vapor flow rates and rotation speed of the flat plate and a number of physical parameters including amount of condensate, overall heat transfer coefficient, and condensate film thickness are studied experimentally

  11. Dizzy people perform no worse at a motor imagery task requiring whole body mental rotation; a case-control comparison

    Directory of Open Access Journals (Sweden)

    Sarah B Wallwork

    2013-06-01

    Full Text Available We wanted to find out whether people who suffer from dizziness take longer than people who do not, to perform a motor imagery task that involves implicit whole body rotation. Our prediction was that people in the ‘dizzy’ group would take longer at a left/right neck rotation judgment task but not a left/right hand judgment task, because actually performing the former, but not the latter, would exacerbate their dizziness. Secondly, we predicted that when dizzy participants responded to neck rotation images, responses would be greatest when images were in the upside-down orientation; an orientation with greatest dizzy-provoking potential. To test this idea, we used a case-control comparison design. One hundred and eighteen participants who suffered from dizziness and 118 age, gender, arm pain and neck pain matched controls took part in the study. Participants undertook two motor imagery tasks; a left/right neck rotation judgment task and a left/right hand judgment task. The tasks were completed using the Recognise program; an on-line reaction time task program. Images of neck rotation were shown in four different orientations; 0°, 90°, 180° and 270°. Participants were asked to respond to each ‘neck’ image identifying it as either ‘right neck rotation’ or a ‘left neck rotation’, or for hands, a right or a left hand. Results showed that participants in the ‘dizzy’ group were slower than controls at both tasks (p= 0.015, but this was not related to task (p= 0.498. Similarly, ‘dizzy’ participants were not proportionally worse at images of different orientations (p= 0.878. Our findings suggest impaired performance in dizzy people, an impairment that may be confined to motor imagery or may extend more generally.

  12. Rotational order–disorder structure of fluorescent protein FP480

    International Nuclear Information System (INIS)

    Pletnev, Sergei; Morozova, Kateryna S.; Verkhusha, Vladislav V.; Dauter, Zbigniew

    2009-01-01

    An analysis of the rotational order–disorder structure of fluorescent protein FP480 is presented. In the last decade, advances in instrumentation and software development have made crystallography a powerful tool in structural biology. Using this method, structural information can now be acquired from pathological crystals that would have been abandoned in earlier times. In this paper, the order–disorder (OD) structure of fluorescent protein FP480 is discussed. The structure is composed of tetramers with 222 symmetry incorporated into the lattice in two different ways, namely rotated 90° with respect to each other around the crystal c axis, with tetramer axes coincident with crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates a rotational OD structure with statistically averaged I422 symmetry, although the presence of very weak and diffuse additional reflections suggests that the randomness is only approximate

  13. Optofluidic laser scanner based on a rotating liquid prism.

    Science.gov (United States)

    Kopp, Daniel; Lehmann, Lukas; Zappe, Hans

    2016-03-20

    We demonstrate an electrowetting-actuated optofluidic system based on a rotatable liquid prism implemented as a two-dimensional laser scanner. The system is fabricated through a novel technology using a patterned flexible polymeric foil on which a high density of electrodes is structured and which is subsequently inserted into a cylindrical housing. The resulting radial electrode array is used for electrowetting actuation of two fluids filled into the cylinder, which allows a controllable tilt and orientation of the planar liquid interface and thus represents a tunable rotating prism. Finite element simulations and subsequent experimental verification show that this highly planar and precisely positionable liquid/liquid interface may be actuated to a deflection angle of ±6.4°, with a standard deviation of ±0.18°, and rotated 360° about the vertical axis. Power consumption is limited to several microwatts, and switching times of several hundred milliseconds were determined.

  14. Magnetic uni- and tri-axial grain-orientation in superconductors with layered structures

    International Nuclear Information System (INIS)

    Horii, S.; Yamaki, M.; Ogino, H.; Maeda, T.; Shimoyama, J.

    2010-01-01

    We report the grain-orientation effects under a modulated rotation magnetic field for Y-based cuprate superconductors and LaFeAsO (La1111). Tri-axial orientation has been successfully achieved only for orthorhombic Y 2 Ba 4 Cu 7 O y and YBa 2 Cu 4 O 8 powders without a twin microstructure, while separation of three crystallographic axes could not be observed in twinned YBa 2 Cu 3 O y (Y123) and tetragonal La1111 powders. The morphology of grains, in addition to the symmetry of crystal structures, seriously affects the degrees of tri-axial orientation, which means that the control of twin microstructures is required for the tri-axial magnetic orientation in Y123.

  15. Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study

    International Nuclear Information System (INIS)

    Tourret, D.; Song, Y.; Clarke, A.J.; Karma, A.

    2017-01-01

    We present the results of a comprehensive phase-field study of columnar grain growth competition in bi-crystalline samples in two dimensions (2D) and in three dimensions (3D) for small sample thicknesses allowing a single row of dendrites to form. We focus on the selection of grain boundary (GB) orientation during directional solidification in the steady-state dendritic regime, and study its dependence upon the orientation of two competing grains. In 2D, we map the entire orientation range for both grains, performing several simulations for each configuration to account for the stochasticity of GB orientation selection and to assess the average GB behavior. We find that GB orientation selection depends strongly on whether the primary dendrite growth directions have lateral components (i.e. components perpendicular to the axis of the temperature gradient) that point in the same or opposite directions in the two grains. We identify a range of grain orientations in which grain selection follows the classical description of Walton and Chalmers. We also identify conditions that favor unusual overgrowth of favorably-oriented dendrites at a converging GB. We propose a simple analytical description that reproduces the average GB orientation selection from 2D simulations within statistical fluctuations of a few degrees. In 3D, we find a similar GB orientation selection as in 2D when secondary branches grow in planes parallel and perpendicular to the sample walls. Remarkably, quasi-2D behavior is also observed even when those perpendicular sidebranching planes are rotated by a finite azimuthal angle about the primary dendrite growth axis as long as the absolute values of those azimuthal angles are equal in both grains. In contrast, when the absolute values of those azimuthal angles differ markedly, we find that unusual overgrowth events at a converging GB are promoted by a high azimuthal angle in the least-favorably-oriented grain. We also find that diverging GBs can be

  16. Development and characterization of highly oriented PAN nanofiber

    Directory of Open Access Journals (Sweden)

    M. Sadrjahani

    2010-12-01

    Full Text Available A simple and non-conventional electrospinning technique was employed for producing highly oriented Polyacrylonitrile (PAN nanofibers. The PAN nanofibers were electrospun from 14 wt% solution of PAN in dimethylformamid (DMF at 11 kv on a rotating drum with various linear speeds from 22.5 m/min to 67.7 m/min. The influence of take up velocity was investigated on the degree of alignment, internal structure and mechanical properties of collected PAN nanofibers. Using an image processing technique, the best degree of alignment was obtained for those nanofibers collected at a take up velocity of 59.5 m/min. Moreover, Raman spectroscopy was used for measuring molecular orientation of PAN nanofibers. Similarly, a maximum chain orientation parameter of 0.25 was determined for nanofibers collected at a take up velocity of 59.5 m/min.

  17. Novel technique for spatially resolved imaging of molecular bond orientations using x-ray birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Dolbnya, Igor P.; Collins, Stephen P. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Harris, Kenneth D. M., E-mail: HarrisKDM@cardiff.ac.uk; Edwards-Gau, Gregory R.; Kariuki, Benson M. [School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT (United Kingdom); Palmer, Benjamin A. [Department of Structural Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001 (Israel)

    2016-07-27

    Birefringence has been observed in anisotropic materials transmitting linearly polarized X-ray beams tuned close to an absorption edge of a specific element in the material. Synchrotron bending magnets provide X-ray beams of sufficiently high brightness and cross section for spatially resolved measurements of birefringence. The recently developed X-ray Birefringence Imaging (XBI) technique has been successfully applied for the first time using the versatile test beamline B16 at Diamond Light Source. Orientational distributions of the C–Br bonds of brominated “guest” molecules within crystalline “host” tunnel structures (in thiourea or urea inclusion compounds) have been studied using linearly polarized incident X-rays near the Br K-edge. Imaging of domain structures, changes in C–Br bond orientations associated with order-disorder phase transitions, and the effects of dynamic averaging of C–Br bond orientations have been demonstrated. The XBI setup uses a vertically deflecting high-resolution double-crystal monochromator upstream from the sample and a horizontally deflecting single-crystal polarization analyzer downstream, with a Bragg angle as close as possible to 45°. In this way, the ellipticity and rotation angle of the polarization of the beam transmitted through the sample is measured as in polarizing optical microscopy. The theoretical instrumental background calculated from the elliptical polarization of the bending-magnet X-rays, the imperfect polarization discrimination of the analyzer, and the correlation between vertical position and photon energy introduced by the monochromator agrees well with experimental observations. The background is calculated analytically because the region of X-ray phase space selected by this setup is sampled inefficiently by standard methods.

  18. Orientation of axes in the elbow and forearm for biomechanical modelling

    NARCIS (Netherlands)

    Veeger, H. E J; Yu, B.

    1996-01-01

    To determine the three-dimensional positions and orientations of axes of rotation for elbow flexion and forearm prosupination, the flexion-extension and prosupination movements were measured for five arms. Four right and one arm were taken from four fresh cadavers. Movement was measured with a

  19. Rotational Rebound Attacks on Reduced Skein

    DEFF Research Database (Denmark)

    Khovratovich, Dmitry; Nikolić, Ivica; Rechberger, Christian

    2014-01-01

    ciphers, including the new standard SHA-3 (Keccak). The rebound attack is a start-from-the-middle approach for finding differential paths and conforming pairs in byte-oriented designs like Substitution-Permutation networks and AES. We apply our new compositional attack to the reduced version of the hash...... number of rounds. We also use neutral bits and message modification methods from the practice of collision search in MD5 and SHA-1 hash functions. These methods push the rotational property through more rounds than previous analysis suggested, and eventually establish a distinguishing property...

  20. Impaired mental rotation in benign paroxysmal positional vertigo and acute vestibular neuritis.

    Directory of Open Access Journals (Sweden)

    Matteo eCandidi

    2013-11-01

    Full Text Available Vestibular processing is fundamental to our sense of orientation in space which is a core aspect of the representation of the self. Vestibular information is processed in a large subcortical-cortical neural network. Tasks requiring mental rotations of human bodies in space are known to activate neural regions within this network suggesting that vestibular processing is involved in the control of mental rotation. We studied whether mental rotation is impaired in patients suffering from two different forms of unilateral vestibular disorders (Vestibular Neuritis – VN- and Benign Paroxysmal positional Vertigo – BPPV with respect to healthy matched controls (C. We used two mental rotation tasks in which participants were required to: i mentally rotate their own body in space (egocentric rotation thus using vestibular processing to a large extent and ii mentally rotate human figures (allocentric rotation thus using own body representations to a smaller degree. Reaction times and accuracy of responses showed that VN and BPPV patients were impaired in both tasks with respect to C. Significantly, the pattern of results was similar in the three groups suggesting that patients were actually performing the mental rotation without using a different strategy from the control individuals. These results show that dysfunctional vestibular inflow impairs mental rotation of both own body and human figures suggesting that unilateral acute disorders of the peripheral vestibular input massively affect the cerebral processes underlying mental rotations.

  1. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.

    Science.gov (United States)

    Yurtman, Aras; Barshan, Billur

    2017-08-09

    Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.

  2. Effect of the sample annealing temperature and sample crystallographic orientation on the charge kinetics of MgO single crystals subjected to keV electron irradiation.

    Science.gov (United States)

    Boughariou, A; Damamme, G; Kallel, A

    2015-04-01

    This paper focuses on the effect of sample annealing temperature and crystallographic orientation on the secondary electron yield of MgO during charging by a defocused electron beam irradiation. The experimental results show that there are two regimes during the charging process that are better identified by plotting the logarithm of the secondary electron emission yield, lnσ, as function of the total trapped charge in the material QT. The impact of the annealing temperature and crystallographic orientation on the evolution of lnσ is presented here. The slope of the asymptotic regime of the curve lnσ as function of QT, expressed in cm(2) per trapped charge, is probably linked to the elementary cross section of electron-hole recombination, σhole, which controls the trapping evolution in the reach of the stationary flow regime. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  3. Dynamics of molecular rotors confined in two dimensions: transition from a 2D rotational glass to a 2D rotational fluid in a periodic mesoporous organosilica.

    Science.gov (United States)

    Vogelsberg, Cortnie S; Bracco, Silvia; Beretta, Mario; Comotti, Angiolina; Sozzani, Piero; Garcia-Garibay, Miguel A

    2012-02-09

    The motional behavior of p-phenylene-d(4) rotators confined within the 2D layers of a hierarchically ordered periodic mesoporous p-divinylbenzenesilica has been elucidated to evaluate the effects of reduced dimensionality on the engineered dynamics of artificial molecular machines. The hybrid mesoporous material, characterized by a honeycomb lattice structure, has arrays of alternating p-divinylbenzene rotors and siloxane layers forming the molecularly ordered walls of the mesoscopic channels. The p-divinylbenzene rotors are strongly anchored between two adjacent siloxane sheets, so that the p-phenylene rotators are unable to experience translational diffusion and are allowed to rotate about only one fixed axis. Variable-temperature (2)H NMR experiments revealed that the p-phenylene rotators undergo an exchange process between sites related by 180° and a non-Arrhenius temperature dependence of the dynamics, with reorientational rates ranging from 10(3) to 10(8) Hz between 215 to 305 K. The regime of motion changes rapidly at about 280 K indicating the occurrence of a dynamical transition. The transition was also recognized by a steep change in the heat capacity at constant pressure. As a result of the robust lamellar architecture comprising the pore walls, the orientational dynamic disorder related to the phase transition is only realized in two dimensions within the layers, that is in the plane perpendicular to the channel axis. Thus, the aligned rotors that form the organic layers exhibit unique anisotropic dynamical properties as a result of the architecture's reduced dimensionality. The dynamical disorder restricted to two dimensions constitutes a highly mobile fluidlike rotational phase at room temperature, which upon cooling undergoes a transition to a more rigid glasslike phase. Activation energies of 5.9 and 9.5 kcal/mol respectively have been measured for the two dynamical regimes of rotation. Collectively, our investigation has led to the discovery of an

  4. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    Science.gov (United States)

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less 'fixed' north-northeast-south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the 'fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head-body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier

  5. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  6. A Pseudo-Reversing Theorem for Rotation and its Application to Orientation Theory

    Science.gov (United States)

    2012-03-01

    and black hole theory. He holds a Bachelor of Science from the University of Auckland in pure and applied mathematics and physics, and a Master of...cannot be constructed in advance of the manoeuvres; the intermediate vectors must be calculated. This sort of calculation was done in [1]. Now, however...what a pilot flies; but such rotations are not always econom - ical to describe mathematically because of the need to calculate intermediate vectors to

  7. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    Directory of Open Access Journals (Sweden)

    Elisa Raffaella Ferrè

    Full Text Available Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  8. Laser-assisted molecular orientation in gaseous media: new possibilities and applications

    International Nuclear Information System (INIS)

    Zhdanov, Dmitry V; Zadkov, Victor N

    2009-01-01

    It was shown recently by us that an isotropic distribution of molecules in gaseous media can be drastically effected via their orientation-dependent selective excitation by a strong femtosecond multicomponent laser pulse. In the present paper, we analyze the specific effects accompanying the dynamical orientation of molecules driven this way. It is demonstrated that the peculiarities of the post-pulse transient angular distribution of molecules allow original proposals for the generation of pulsed terahertz radiation and also for the determination of the molecular rotational constants.

  9. Scattering phase functions of horizontally oriented hexagonal ice crystals

    International Nuclear Information System (INIS)

    Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.

    2006-01-01

    Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns

  10. Influence of orientation averaging on the anisotropy of thermal neutrons scattering on water molecules

    International Nuclear Information System (INIS)

    Markovic, M. I.; Radunovic, J. B.

    1976-01-01

    Determination of spatial distribution of neutron flux in water, most frequently used moderator in thermal reactors, demands microscopic scattering kernels dependence on cosine of thermal neutrons scattering angle when solving the Boltzmann equation. Since spatial orientation of water molecules influences this dependence it is necessary to perform orientation averaging or rotation-vibrational intermediate scattering function for water molecules. The calculations described in this paper and the obtained results showed that methods of orientation averaging do not influence the anisotropy of thermal neutrons scattering on water molecules, but do influence the inelastic scattering

  11. Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope

    Science.gov (United States)

    Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.

    2012-06-01

    We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].

  12. The fission yeast spindle orientation checkpoint: a model that generates tension?

    Science.gov (United States)

    Gachet, Yannick; Reyes, Céline; Goldstone, Sherilyn; Tournier, Sylvie

    2006-10-15

    In all eukaryotes, the alignment of the mitotic spindle with the axis of cell polarity is essential for accurate chromosome segregation as well as for the establishment of cell fate, and thus morphogenesis, during development. Studies in invertebrates, higher eukaryotes and yeast suggest that astral microtubules interact with the cell cortex to position the spindle. These microtubules are thought to impose pushing or pulling forces on the spindle poles to affect the rotation or movement of the spindle. In the fission yeast model, where cell division is symmetrical, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. In these cells, a bub1-dependent mitotic checkpoint, the spindle orientation checkpoint (SOC), is activated when the spindles fail to align with the cell polarity axis. In this paper we review the mechanism that orientates the spindle during mitosis in fission yeast, and discuss the consequences of misorientation on metaphase progression. Copyright 2006 John Wiley & Sons, Ltd.

  13. Performance study on the east-west oriented single-axis tracked panel

    International Nuclear Information System (INIS)

    Chang, Tian Pau

    2009-01-01

    A theoretical study on the performance of an east-west oriented single-axis tracked panel was originally proposed in this paper. Mathematic expressions applicable for calculating the angle that the tracked panel should rotate by to follow the Sun are derived. The incident angle of sunlight upon the panel as well as the instantaneous increments of solar energy captured by the panel relative to a fixed horizontal surface are then demonstrated graphically. To simulate different operation environments, three kinds of radiation sources will be considered, i.e. the extraterrestrial radiation, global radiation predicted by empirical models under clear sky situation and global radiation observed in Taiwan. Simulation results show that the yearly gains correlate positively with the radiation level, i.e. 21.2%, 13.5% and 7.4% for the extraterrestrial, predicted and observed radiations, respectively, which are far less than those obtained from a north-south oriented single-axis tracked panel. The irradiation increases with the maximum rotation angle of the panel, the benefit of increasing the rotation in overcast environment is not as good as in clear sky, for annual energy collection 45 o is recommended. The irradiation received decreases with latitude, but it has a greater gain in higher latitude zone.

  14. Rotating Machinery Predictive Maintenance Through Expert System

    Directory of Open Access Journals (Sweden)

    M. Sarath Kumar

    2000-01-01

    Full Text Available Modern rotating machines such as turbomachines, either produce or absorb huge amount of power. Some of the common applications are: steam turbine-generator and gas turbine-compressor-generator trains produce power and machines, such as pumps, centrifugal compressors, motors, generators, machine tool spindles, etc., are being used in industrial applications. Condition-based maintenance of rotating machinery is a common practice where the machine's condition is monitored constantly, so that timely maintenance can be done. Since modern machines are complex and the amount of data to be interpreted is huge, we need precise and fast methods in order to arrive at the best recommendations to prevent catastrophic failure and to prolong the life of the equipment. In the present work using vibration characteristics of a rotor-bearing system, the condition of a rotating machinery (electrical rotor is predicted using an off-line expert system. The analysis of the problem is carried out in an Object Oriented Programming (OOP framework using the finite element method. The expert system which is also developed in an OOP paradigm gives the type of the malfunctions, suggestions and recommendations. The system is implemented in C++.

  15. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    International Nuclear Information System (INIS)

    Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan; Kachelrieß, Marc

    2016-01-01

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation

  16. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    Energy Technology Data Exchange (ETDEWEB)

    Ritschl, Ludwig; Fleischmann, Christof [Ziehm Imaging GmbH, Donaustraße 31, Nürnberg 90451 (Germany); Kuntz, Jan, E-mail: j.kuntz@dkfz.de; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany)

    2016-05-15

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation

  17. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    Science.gov (United States)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  18. Planet Within a Planet: Rotation of the Inner Core of Earth

    Science.gov (United States)

    Su; Dziewonski; Jeanloz

    1996-12-13

    The time dependence of the orientation of Earth's inner core relative to the mantle was determined using a recently discovered 10-degree tilt in the axis of symmetry of the inner core's seismic-velocity anisotropy. Two methods of analyzing travel-time variations for rays traversing the inner core, on the basis of 29 years of data from the International Seismological Centre (1964-1992), reveal that the inner core appears to rotate about 3 degrees per year faster than the mantle. An anomalous variation in inner-core orientation from 1969 to 1973 coincides in time with a sudden change ("jerk") in the geomagnetic field.

  19. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Boudissa, M. [Universite Ferhat Abbas, Faculte des Sciences de l' Ingenieur, Setif (Algeria); Halimi, R. [Universite Mentouri, Unite de Recherche de Physique des Materiaux, Constantine (Algeria); Senoussi, S. [Universite Paris-Sud, Laboratoire de Physique des Solides, Orsay (France)

    2006-09-15

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 {mu}m and 40 {mu}m, for values of the angle {theta} between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M{sub irr}, allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    International Nuclear Information System (INIS)

    Boudissa, M.; Halimi, R.; Senoussi, S.

    2006-01-01

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 μm and 40 μm, for values of the angle θ between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M irr , allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Lattice Boltzmann simulation of viscoelastic flow past a confined free rotating cylinder

    Science.gov (United States)

    Xia, Yi; Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke; Nie, Deming

    2018-05-01

    To study the dynamics of rigid body immersed in viscoelastic fluid, an Oldroyd-B fluid flow past an eccentrically situated, free rotating cylinder in a two-dimensional (2D) channel is simulated by a novel lattice Boltzmann method. Two distribution functions are employed, one of which is aimed to solve Navier-Stokes equation and the other to the constitutive equation, respectively. The unified interpolation bounce-back scheme is adopted to treat the moving curved boundary of cylinder, and the novel Galilean invariant momentum exchange method is utilized to obtain the hydrodynamic force and torque exerted on the cylinder. Results show that the center-fixed cylinder rotates inversely in the direction where a cylinder immersed in Newtonian fluid do, which generates a centerline-oriented lift force according to Magnus effect. The cylinder’s eccentricity, flow inertia, fluid elasticity and viscosity would affect the rotation of cylinder in different ways. The cylinder rotates more rapidly when located farther away from the centerline, and slows down when it is too close to the wall. The rotation frequency decreases with increasing Reynolds number, and larger rotation frequency responds to larger Weissenberg number and smaller viscosity ratio, indicating that the fluid elasticity and low solvent viscosity accelerates the flow-induced rotation of cylinder.

  2. Theoretical studies of molecule surface scattering: Rotationally inelastic diffraction and dissociative dynamics of H2 on metals

    International Nuclear Information System (INIS)

    Cruz Pol, A.J.

    1993-01-01

    The interaction of H 2 and its isotopes with metal surfaces has been the subject of many investigations. The scattering experiments provide data such as the final rotational state distribution, sticking coefficients, kinetic energy distribution, and diffraction data. In the first study of this thesis the author implemented a model for looking at the rotationally inelastic diffraction probabilities for H 2 , HD, and D 2 , as a function of surface temperature. The surface is treated in a quantum mechanical fashion using a recently developed formalism. The center of mass translational motion is treated semiclassically using Gaussian wave packets, and the rotations are described quantum mechanically. The phonon summed rotation-diffraction probabilities as well as the probability distribution for a scattering molecule exchanging an amount of energy ΔE with the surface were computed. In the second and third study of this thesis the author implemented a mixed quantum-classical model to compute the probability for dissociation and rotational excitation for H 2 , HD, and D 2 scattered from Ni(100) dimensionally in dynamics simulations. Of the six degrees of freedom for the dissociative adsorption of a diatomic molecule on a static surface, the author treats Z,d the center of mass distance above the surface plan, r, the internuclear separation, θ, the polar orientation angle, quantum mechanically. The remaining three degrees of freedom, X and Y, the center of mass position on the surface plane, and oe, the azimuthal orientation angle, are treated classically. Probabilities for dissociation and ro-vibrational excitation are computed as a function of incident translational energy. Two sudden approximations are tested, in which either the center of mass translation parallel to the surface or the azimuthal orientation of the molecule are frozen. Comparisons are made between low and high dimensionality results and with fully classical results

  3. Optokinetic and vestibular stimulation determines the spatial orientation of negative optokinetic afternystagmus in the rabbit.

    Science.gov (United States)

    Pettorossi, V E; Errico, P; Ferraresi, A; Barmack, N H

    1999-02-15

    Prolonged binocular optokinetic stimulation (OKS) in the rabbit induces a high-velocity negative optokinetic afternystagmus (OKAN II) that persists for several hours. We have taken advantage of this uniform nystagmus to study how changes in static head orientation in the pitch plane might influence the orientation of the nystagmus. After horizontal OKS, the rotation axis of the OKAN II remained almost constant in space as it was kept aligned with the gravity vector when the head was pitched by as much as 80 degrees up and 35 degrees down. Moreover, during reorientation, slow-phase eye velocity decreased according to the head pitch angle. Thereafter, we analyzed the space orientation of OKAN II after optokinetic stimulation during which the head and/or the OKS were pitched upward and downward. The rotation axis of OKAN II did not remain aligned with an earth vertical axis nor a head vertical axis, but it tended to be aligned with that of the OKS respace. The slow-phase eye velocity of OKAN II was also affected by the head pitch angle during OKS, because maximal OKAN II velocity occurred at the same head pitch angle as that during optokinetic stimulation. We suggest that OKAN II is coded in gravity-centered rather than in head-centered coordinates, but that this coordinate system may be influenced by optokinetic and vestibular stimulation. Moreover, the velocity attenuation of OKAN II seems to depend on the mismatch between the space-centered nystagmus rotation axis orientation and that of the "remembered" head-centered optokinetic pathway activated by OKS.

  4. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    Science.gov (United States)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  5. Organizing for Customer and Competitor Orientation

    DEFF Research Database (Denmark)

    Sørensen, Hans Eibe; Slater, Stanley F.

    2007-01-01

    The purpose of this study is to investigate the role of structural liaison devices, specialization, the presence of a marketing function, and competitive intensity as antecedents to firms' customer and competitor orientation. Results based on a sample of 99 medium-sized (50-250 employees......) manufacturing firms indicate, that while specialization and liaison devices facilitate customer orientation only liaison devices facilitate competitor orientation. Competitive intensity has no effects on customer orientation but influence competitor orientation. The results also indicate that the presence...... of a marketing function has no influence on the level of firms' customer and competitor orientation....

  6. Magnocellular pathway for rotation invariant Neocognitron.

    Science.gov (United States)

    Ting, C H

    1993-03-01

    In the mammalian visual system, magnocellular pathway and parvocellular pathway cooperatively process visual information in parallel. The magnocellular pathway is more global and less particular about the details while the parvocellular pathway recognizes objects based on the local features. In many aspects, Neocognitron may be regarded as the artificial analogue of the parvocellular pathway. It is interesting then to model the magnocellular pathway. In order to achieve "rotation invariance" for Neocognitron, we propose a neural network model after the magnocellular pathway and expand its roles to include surmising the orientation of the input pattern prior to recognition. With the incorporation of the magnocellular pathway, a basic shift in the original paradigm has taken place. A pattern is now said to be recognized when and only when one of the winners of the magnocellular pathway is validified by the parvocellular pathway. We have implemented the magnocellular pathway coupled with Neocognitron parallel on transputers; our simulation programme is now able to recognize numerals in arbitrary orientation.

  7. Evaluating the change in fingerprint directional patterns under variation of rotation and number of regions

    CSIR Research Space (South Africa)

    Dorasamy, K

    2015-09-01

    Full Text Available Directional Patterns, which are formed by grouping regions of orientation fields falling within a specific range, vary under rotation and the number of regions. For fingerprint classification schemes, this can result in missclassification due...

  8. Advances in Molecular Rotational Spectroscopy for Applied Science

    Science.gov (United States)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  9. Directional dependency of air sampling

    International Nuclear Information System (INIS)

    1994-01-01

    A field study was performed by Idaho State University-Environmental Monitoring Laboratory (EML) to examine the directional dependency of low-volume air samplers. A typical continuous low volume air sampler contains a sample head that is mounted on the sampler housing either horizontally through one of four walls or vertically on an exterior wall 'looking down or up.' In 1992, a field study was undertaken to estimate sampling error and to detect the directional effect of sampler head orientation. Approximately 1/2 mile downwind from a phosphate plant (continuous source of alpha activity), four samplers were positioned in identical orientation alongside one sampler configured with the sample head 'looking down'. At least five consecutive weekly samples were collected. The alpha activity, beta activity, and the Be-7 activity collected on the particulate filter were analyzed to determine sampling error. Four sample heads were than oriented to the four different horizontal directions. Samples were collected for at least five weeks. Analysis of the alpha data can show the effect of sampler orientation to a know near source term. Analysis of the beta and Be-7 activity shows the effect of sampler orientation to a ubiquitous source term

  10. Predictors of "New Economy" Career Orientation in an Australian Sample of Late Adolescents

    Science.gov (United States)

    Creed, Peter; Macpherson, Jennifer; Hood, Michelle

    2011-01-01

    The authors surveyed 207 late adolescents on measures of new economy career orientation (protean and boundaryless career orientation), career adaptability (planning, self-exploration, environmental exploration, decision making, and self-regulation), disposition (proactive disposition), and environmental support (social support) and hypothesized…

  11. Neurons in Primary Motor Cortex Encode Hand Orientation in a Reach-to-Grasp Task.

    Science.gov (United States)

    Ma, Chaolin; Ma, Xuan; Fan, Jing; He, Jiping

    2017-08-01

    It is disputed whether those neurons in the primary motor cortex (M1) that encode hand orientation constitute an independent channel for orientation control in reach-to-grasp behaviors. Here, we trained two monkeys to reach forward and grasp objects positioned in the frontal plane at different orientation angles, and simultaneously recorded the activity of M1 neurons. Among the 2235 neurons recorded in M1, we found that 18.7% had a high correlation exclusively with hand orientation, 15.9% with movement direction, and 29.5% with both movement direction and hand orientation. The distributions of neurons encoding hand orientation and those encoding movement direction were not uniform but coexisted in the same region. The trajectory of hand rotation was reproduced by the firing patterns of the orientation-related neurons independent of the hand reaching direction. These results suggest that hand orientation is an independent component for the control of reaching and grasping activity.

  12. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-01-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements

  13. Spherical rotation orientation indication for HEVC and JEM coding of 360 degree video

    Science.gov (United States)

    Boyce, Jill; Xu, Qian

    2017-09-01

    Omnidirectional (or "360 degree") video, representing a panoramic view of a spherical 360° ×180° scene, can be encoded using conventional video compression standards, once it has been projection mapped to a 2D rectangular format. Equirectangular projection format is currently used for mapping 360 degree video to a rectangular representation for coding using HEVC/JEM. However, video in the top and bottom regions of the image, corresponding to the "north pole" and "south pole" of the spherical representation, is significantly warped. We propose to perform spherical rotation of the input video prior to HEVC/JEM encoding in order to improve the coding efficiency, and to signal parameters in a supplemental enhancement information (SEI) message that describe the inverse rotation process recommended to be applied following HEVC/JEM decoding, prior to display. Experiment results show that up to 17.8% bitrate gain (using the WS-PSNR end-to-end metric) can be achieved for the Chairlift sequence using HM16.15 and 11.9% gain using JEM6.0, and an average gain of 2.9% for HM16.15 and 2.2% for JEM6.0.

  14. ''Cube-on-hexagon'' orientation relationship for Fe on GaN(0001): The missing link in bcc/hcp epitaxy

    International Nuclear Information System (INIS)

    Gao Cunxu; Brandt, Oliver; Laehnemann, Jonas; Jahn, Uwe; Jenichen, Bernd; Schoenherr, Hans-Peter; Erwin, Steven C.

    2010-01-01

    We investigate, experimentally and theoretically, the epitaxy of body-centered-cubic Fe on hexagonal GaN. For growth on the Ga-polar GaN(0001) surface we find the well-known Pitsch-Schrader orientation relationship between Fe and GaN. On the N-polar GaN(0001) surface we observe coexistence between the familiar Burgers orientation and a new orientation in which the Fe(001) plane is parallel to GaN(0001). This 'cube-on-hexagon' orientation constitutes the high-symmetry link required for constructing a symmetry diagram for bcc/hcp systems in which all orientation relationships are connected by simple rotations.

  15. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  16. A novel rotating experimental platform in a superconducting magnet.

    Science.gov (United States)

    Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2016-08-01

    This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields.

  17. Pneumatic sample-transfer system for use with the Lawrence Livermore National Laboratory rotating target neutron source (RTNS-I)

    International Nuclear Information System (INIS)

    Williams, R.E.

    1981-07-01

    A pneumatic sample-transfer system is needed to be able to rapidly retrieve samples irradiated with 14-MeV neutrons at the Rotating Target Neutron Source (RTNS-I). The rabbit system, already in place for many years, has been refurbished with modern system components controlled by an LSI-11 minicomputer. Samples can now be counted three seconds after an irradiation. There are many uses for this expanded 14-MeV neutron activation capability. Several fission products difficult to isolate from mixed fission fragments can be produced instead through (n,p) or (n,α) reactions with stable isotopes. Mass-separated samples of Nd, Mo, and Se, for example, can be irradiated to produce Pr, Nb, and As radionuclides sufficient for decay scheme studies. The system may also be used for multielement fast-neutron activation analysis because the neutron flux is greater than 2 x 10 11 n/cm 2 -sec. Single element analyses of Si and O are also possible. Finally, measurements of fast-neutron cross sections producing short-lived activation products can be performed with this system. A description of the rabbit system and instructions for its use are presented in this report

  18. Measuring the light scattering and orientation of a spheroidal particle using in-line holography.

    Science.gov (United States)

    Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon

    2014-07-01

    The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.

  19. Elliptical Galaxies: Rotationally Distorted, After All

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2009-12-01

    Full Text Available On the basis of earlier investigations onhomeoidally striated Mac Laurin spheroids and Jacobi ellipsoids (Caimmi and Marmo2005, Caimmi 2006a, 2007, different sequences of configurations are defined and represented in the ellipticity-rotation plane, $({sf O}hat{e}chi_v^2$. The rotation parameter, $chi_v^2$, is defined as the ratio, $E_mathrm{rot}/E_mathrm{res}$, of kinetic energy related to the mean tangential equatorial velocity component, $M(overline{v_phi}^2/2$, to kineticenergy related to tangential equatorial component velocity dispersion, $Msigma_{phiphi}^2/2$, andresidual motions, $M(sigma_{ww}^2+sigma_{33}^2/2$.Without loss of generality (above a thresholdin ellipticity values, the analysis is restricted to systems with isotropic stress tensor, whichmay be considered as adjoint configurationsto any assigned homeoidally striated density profile with anisotropic stress tensor, different angular momentum, and equal remaining parameters.The description of configurations in the$({sf O}hat{e}chi_v^2$ plane is extendedin two respects, namely (a from equilibriumto nonequilibrium figures, where the virialequations hold with additional kinetic energy,and (b from real to imaginary rotation, wherethe effect is elongating instead of flattening,with respect to the rotation axis.An application is made toa subsample $(N=16$ of elliptical galaxies extracted from richer samples $(N=25,~N=48$of early type galaxies investigated within theSAURON project (Cappellari et al. 2006, 2007.Sample objects are idealized as homeoidallystriated MacLaurinspheroids and Jacobi ellipsoids, and theirposition in the $({sf O}hat{e}chi_v^2$plane is inferred from observations followinga procedure outlined in an earlier paper(Caimmi 2009b. The position of related adjoint configurations with isotropic stresstensor is also determined. With a singleexception (NGC 3379, slow rotators arecharacterized by low ellipticities $(0lehat{e}<0.2$, low anisotropy parameters$(0ledelta<0

  20. Systems and methods for self-synchronized digital sampling

    Science.gov (United States)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  1. Behaviors of Deformation, Recrystallization and Textures Evolution of Columnar Grains in 3%Si Electrical Steel Slabs

    Directory of Open Access Journals (Sweden)

    SHAO Yuan-yuan

    2017-11-01

    Full Text Available The behaviors of deformation and recrystallization and textures evolution of 3% (mass fraction Si columnar-grained electrical steel slabs were investigated by electron backscatter diffractometer technique and X-ray diffraction. The results indicate that the three columnar-grained samples have different initial textures with the long axes arranged along rolling, transverse and normal directions. Three shear orientations can be obtained in surface layer after hot rolling, of which Goss orientation is formed easily. The α and γ fibre rolling orientations are obtained in RD sample, while strong γ fibre orientations in TD sample and sharp {100} orientations in ND sample are developed respectively. In addition, cube orientation can be found in all the three samples. The characteristics of hot rolled orientations in center region reveal distinct dependence on initial columnar-grained orientations. Strong {111}〈112〉 orientation in RD and TD samples separately comes from Goss orientation of hot rolled sheets, and sharp rotated cube orientation in ND sample originates from the initial {100} orientation of hot rolled sheets after cold rolling. Influenced by initial deviated orientations and coarse grain size, large orientation gradient of rotated cube oriented grain can be observed in ND sample. The coarse {100} orientated grains of center region in the annealed sheets show the heredity of the initial columnar-grained orientations.

  2. The influence of magnetic field on the spatial orientation in zebrafish Danio rerio (Hamilton and roach Rutilus rutilus (L.

    Directory of Open Access Journals (Sweden)

    Anastasia A. Batrakova

    2015-10-01

    This is the first study on the use of GMF for orientation in R. rutilus from a natural population. Our results confirm the presence of magnetosensitivity in roach. At the same time, the preferred direction in GMF matched the direction to the mouth of the channel where the fish were caught. It is possible that fish stressed by experimental manipulations have tried to “leave” the experimental arena in the usual direction of escape to the deep-water part of reservoir. Figure 1. Bimodal distribution of preferred directions in zebrafish by the reversal of vertical (a, horizontal (b, both vertical and horizontal (c components of GMF, and by the rotation of the horizontal component by 90 degrees clockwise (d. Distributions of preferred directions in control conditions (GMF for each experiment are given under corresponding diagrams (e, f, g, h. Figure 2. Distribution of preferred directions of roach in a GMF (a and the rotation of the horizontal component of the GMF by 90 degrees clockwise (b. Sample area with designation of the direction of the channel to the Rybinsk Reservoir (c. Asterisk shows the point of sampling.

  3. Nanoparticles in dilute solution : A numerical study of rotational diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Evensen, Tom Richard

    2008-06-15

    This thesis is dedicated to Brownian dynamics simulations of rotational diffusion. A rotation dynamics engine has been implemented and tested. This engine will in the future be integrated as a part of a complete Brownian dynamics simulation tool. The special case, when translational motion can be ignored, has thoroughly been studied. Two choices of generalized coordinates describing angular orientation of the particles are used. The Euler angles, which constitute the classical choice, and the Cartesian components of the rotation vector, which was recently introduced as an alternative, are being compared with regards to computational efficiency. Results from both equilibrium and non-equilibrium simulations are presented. The consistency of two new algorithms is demonstrated on systems of free rigid particles with arbitrary surface topographies. The algorithms make use of only the principal values of the rotational mobility tensor, assuming the corresponding principal axes coincide with the body-fixed coordinate system. These three scalars contain all information about the particle surface topography relevant for rotational diffusion. The calculation of the mobility tensor can be performed in a pre-calculation step, which makes the algorithm itself highly efficient. Both choices of generalized coordinates correctly reproduce theoretical predictions, but we have found that the algorithm using the Cartesian components of the rotation vector as generalized coordinates outperform its counterpart using the Euler angles by up to a factor 1000 in extreme cases. The reason for this improvement is that the algorithm using the Cartesian components of the rotation vector is free of singularities. (Author). refs. figs

  4. Electrospinning of oriented and nonoriented ultrafine fibers of biopolymers

    Science.gov (United States)

    Vu, David

    2005-07-01

    Chitosan has long been known as a biocompatible and biodegradable material suitable for tissue engineering applications. Unfortunately, conventional chitosan solutions cannot be used for electrospinning due to their high conductivity, viscosity and surface tension. We have developed a method to produce clear chitosan solutions with conductivities, surface tension and viscosities that facilitate their processing into micron and submicron fibers via electrospinning. Acetic acid, carbon dioxide and organic solvents are key ingredients in preparing the chitosan solutions. Oriented and non oriented chitosan fibers were produced with the ultimate goal of designing a suitable tissue engineering scaffold. Circularly oriented, continuous, and aligned nanofibers were produced via this technique in the form of a thin membrane or fibrous "mat". Chitosan fiber diameters ranged from 5 micrometers down to 100 nanometers. The structure and mechanical properties of oriented and randomly aligned chitosan fiber deposits could potentially be exploited for cartilage tissue engineering. Ultrafine fibers of starch acetate (SA) also were prepared by the electrospinning process. In this study, solvent mixtures based on DMF, DMSO, pyrindine, acetic acid, acetone, THF, DMC, chloroform were used. A two-solvent formulation was used to study the effect of viscosity, surface tension, and conductivity to the fiber diameter. Also, water and ethanol were used to decrease the boiling point of the solvent, and to make bundled fibers. Several techniques such as scanning electron microscopy, conductmetry, viscometry, and tensiometry were used in this study. The results showed that the combined effects of viscosity, surface tension, and conductivity are of great importance in controlling the diameter of the fibers. We were able to produce SA fibers that was less than 40 nm in diameter. The dependence of fiber diameter on flow-rate, electric field and solvents also was investigated. A rotating disk and a

  5. Towards 3D crystal orientation reconstruction using automated crystal orientation mapping transmission electron microscopy (ACOM-TEM).

    Science.gov (United States)

    Kobler, Aaron; Kübel, Christian

    2018-01-01

    To relate the internal structure of a volume (crystallite and phase boundaries) to properties (electrical, magnetic, mechanical, thermal), a full 3D reconstruction in combination with in situ testing is desirable. In situ testing allows the crystallographic changes in a material to be followed by tracking and comparing the individual crystals and phases. Standard transmission electron microscopy (TEM) delivers a projection image through the 3D volume of an electron-transparent TEM sample lamella. Only with the help of a dedicated TEM tomography sample holder is an accurate 3D reconstruction of the TEM lamella currently possible. 2D crystal orientation mapping has become a standard method for crystal orientation and phase determination while 3D crystal orientation mapping have been reported only a few times. The combination of in situ testing with 3D crystal orientation mapping remains a challenge in terms of stability and accuracy. Here, we outline a method to 3D reconstruct the crystal orientation from a superimposed diffraction pattern of overlapping crystals without sample tilt. Avoiding the typically required tilt series for 3D reconstruction enables not only faster in situ tests but also opens the possibility for more stable and more accurate in situ mechanical testing. The approach laid out here should serve as an inspiration for further research and does not make a claim to be complete.

  6. Audit firm rotation, audit firm tenure and earnings conservatism

    NARCIS (Netherlands)

    Kramer, S.T.; Georgakopoulos, G.; Sotiropoulos, I.; Vasileiou, K.Z.

    2011-01-01

    This study aims to contribute to the debate around the possibility of mandating audit firm rotation. Specifically, it examines conservatism as an attribute of earnings quality, which has not attracted particular attention in the auditor rotation research. Applying regression analyses on a sample,

  7. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot

    Directory of Open Access Journals (Sweden)

    Yajing Shen

    2015-12-01

    Full Text Available Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  8. SDSS-IV MaNGA: the different quenching histories of fast and slow rotators

    Science.gov (United States)

    Smethurst, R. J.; Masters, K. L.; Lintott, C. J.; Weijmans, A.; Merrifield, M.; Penny, S. J.; Aragón-Salamanca, A.; Brownstein, J.; Bundy, K.; Drory, N.; Law, D. R.; Nichol, R. C.

    2018-01-01

    Do the theorized different formation mechanisms of fast and slow rotators produce an observable difference in their star formation histories? To study this, we identify quenching slow rotators in the MaNGA sample by selecting those that lie below the star-forming sequence and identify a sample of quenching fast rotators that were matched in stellar mass. This results in a total sample of 194 kinematically classified galaxies, which is agnostic to visual morphology. We use u - r and NUV - u colours from the Sloan Digital Sky Survey and GALEX and an existing inference package, STARPY, to conduct a first look at the onset time and exponentially declining rate of quenching of these galaxies. An Anderson-Darling test on the distribution of the inferred quenching rates across the two kinematic populations reveals they are statistically distinguishable (3.2σ). We find that fast rotators quench at a much wider range of rates than slow rotators, consistent with a wide variety of physical processes such as secular evolution, minor mergers, gas accretion and environmentally driven mechanisms. Quenching is more likely to occur at rapid rates (τ ≲ 1 Gyr) for slow rotators, in agreement with theories suggesting slow rotators are formed in dynamically fast processes, such as major mergers. Interestingly, we also find that a subset of the fast rotators quench at these same rapid rates as the bulk of the slow rotator sample. We therefore discuss how the total gas mass of a merger, rather than the merger mass ratio, may decide a galaxy's ultimate kinematic fate.

  9. An electronic pan/tilt/magnify and rotate camera system

    International Nuclear Information System (INIS)

    Zimmermann, S.; Martin, H.L.

    1992-01-01

    A new camera system has been developed for omnidirectional image-viewing applications that provides pan, tilt, magnify, and rotational orientation within a hemispherical field of view (FOV) without any moving parts. The imaging device is based on the fact that the image from a fish-eye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high-speed electronic circuitry. More specifically, an incoming fish-eye image from any image acquisition source is captured in the memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment. As a result, this device can accomplish the functions of pan, tilt, rotation, and magnification throughout a hemispherical FOV without the need for any mechanical devices. Multiple images, each with different image magnifications and pan-tilt-rotate parameters, can be obtained from a single camera

  10. Mental rotation of anthropoid hands: a chronometric study

    Directory of Open Access Journals (Sweden)

    L.G. Gawryszewski

    2007-03-01

    Full Text Available It has been shown that mental rotation of objects and human body parts is processed differently in the human brain. But what about body parts belonging to other primates? Does our brain process this information like any other object or does it instead maximize the structural similarities with our homologous body parts? We tried to answer this question by measuring the manual reaction time (MRT of human participants discriminating the handedness of drawings representing the hands of four anthropoid primates (orangutan, chimpanzee, gorilla, and human. Twenty-four right-handed volunteers (13 males and 11 females were instructed to judge the handedness of a hand drawing in palm view by pressing a left/right key. The orientation of hand drawings varied from 0º (fingers upwards to 90º lateral (fingers pointing away from the midline, 180º (fingers downwards and 90º medial (finger towards the midline. The results showed an effect of rotation angle (F(3, 69 = 19.57, P < 0.001, but not of hand identity, on MRTs. Moreover, for all hand drawings, a medial rotation elicited shorter MRTs than a lateral rotation (960 and 1169 ms, respectively, P < 0.05. This result has been previously observed for drawings of the human hand and related to biomechanical constraints of movement performance. Our findings indicate that anthropoid hands are essentially equivalent stimuli for handedness recognition. Since the task involves mentally simulating the posture and rotation of the hands, we wondered if "mirror neurons" could be involved in establishing the motor equivalence between the stimuli and the participants' own hands.

  11. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  12. Atomic structure and orientation relations of interfaces between Ag and ZnO

    NARCIS (Netherlands)

    Vellinga, W.P.; Hosson, de J.Th.M.

    1997-01-01

    This paper presents the results of investigations of Ag-ZnO interfaces, produced by internal oxidation of an Ag-Zn alloy. ZnO precipitates with the wurtzite structure were found exhibiting mainly one orientation relation with the Ag matrix. However, closely related ORs were found, rotated by small

  13. A low frequency rotational energy harvesting system

    International Nuclear Information System (INIS)

    Febbo, M; Machado, S P; Ramirez, J M; Gatti, C D

    2016-01-01

    This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation. (paper)

  14. Velocity-tunable slow beams of cold O2 in a single spin-rovibronic state with full angular-momentum orientation by multistage Zeeman deceleration

    Science.gov (United States)

    Wiederkehr, A. W.; Schmutz, H.; Motsch, M.; Merkt, F.

    2012-08-01

    Cold samples of oxygen molecules in supersonic beams have been decelerated from initial velocities of 390 and 450 m s-1 to final velocities in the range between 150 and 280 m s-1 using a 90-stage Zeeman decelerator. (2 + 1) resonance-enhanced-multiphoton-ionization (REMPI) spectra of the 3sσ g 3Π g (C) ? two-photon transition of O2 have been recorded to characterize the state selectivity of the deceleration process. The decelerated molecular sample was found to consist exclusively of molecules in the J ‧‧ = 2 spin-rotational component of the X ? ground state of O2. Measurements of the REMPI spectra using linearly polarized laser radiation with polarization vector parallel to the decelerator axis, and thus to the magnetic-field vector of the deceleration solenoids, further showed that only the ? magnetic sublevel of the N‧‧ = 1, J ‧‧ = 2 spin-rotational level is populated in the decelerated sample, which therefore is characterized by a fully oriented total-angular-momentum vector. By maintaining a weak quantization magnetic field beyond the decelerator, the polarization of the sample could be maintained over the 5 cm distance separating the last deceleration solenoid and the detection region.

  15. Horizontal rotation of the local stress field in response to magmatic activity: Evidence from case studies and modeling

    Science.gov (United States)

    Roman, D. C.

    2003-12-01

    A complete understanding of the initiation, evolution, and termination of volcanic eruptions requires reliable monitoring techniques to detect changes in the conduit system during periods of activity, as well as corresponding knowledge of conduit structure and of magma physical properties. Case studies of stress field orientation prior to, during, and after magmatic activity can be used to relate changes in stress field orientation to the state of the magmatic conduit system. These relationships may be tested through modeling of induced stresses. Here I present evidence from case studies and modeling that horizontal rotation of the axis of maximum compressive stress at an active volcano indicates pressurization of a magmatic conduit, and that this rotation, when observed, may also be indicative of the physical properties of the ascending magma. Changes in the local stress field orientation during the 1992 eruption sequence at Crater Peak (Mt. Spurr), Alaska were analyzed by calculating and inverting subsets of over 150 fault-plane solutions. Local stress tensors for four time periods, corresponding approximately to changes in activity at the volcano, were calculated based on the misfit of individual fault-plane solutions to a regional stress tensor. Results indicate that for nine months prior to the eruption, local maximum compressive stress was oriented perpendicular to regional maximum compressive stress. A similar horizontal rotation was observed beginning in November of 1992, coincident with an episode of elevated earthquake and tremor activity indicating intrusion of magma into the conduit. During periods of quiescence the local stress field was similar to the regional stress field. Similar horizontal rotations have been observed at Mt. Ruapehu, New Zealand (Miller and Savage 2001, Gerst 2003), Usu Volcano, Japan (Fukuyama et al. 2001), Unzen Volcano, Japan (Umakoshi et al. 2001), and Mt. St. Helens Volcano, USA (Moran 1994) in conjunction with eruptive

  16. Central Rotations of Milky Way Globular Clusters

    Science.gov (United States)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  17. Sustained change blindness to incremental scene rotation: a dissociation between explicit change detection and visual memory.

    Science.gov (United States)

    Hollingworth, Andrew; Henderson, John M

    2004-07-01

    In a change detection paradigm, the global orientation of a natural scene was incrementally changed in 1 degree intervals. In Experiments 1 and 2, participants demonstrated sustained change blindness to incremental rotation, often coming to consider a significantly different scene viewpoint as an unchanged continuation of the original view. Experiment 3 showed that participants who failed to detect the incremental rotation nevertheless reliably detected a single-step rotation back to the initial view. Together, these results demonstrate an important dissociation between explicit change detection and visual memory. Following a change, visual memory is updated to reflect the changed state of the environment, even if the change was not detected.

  18. Determination of Pole and Rotation Period of not Stabilized Artificial Satellite by Use of Model "diffuse Cylinder"

    Science.gov (United States)

    Kolesnik, S. Ya.; Dobrovolsky, A. V.; Paltsev, N. G.

    The algorithm of determination of orientation of rotation axis (pole) and rotation period of satellite, simulated by a cylinder, which is precessing around of vector of angular moment of pulse with constant nutation angle is offered. The Lambert's law of light reflection is accepted. Simultaneously, dependence of light reflection coefficient versus phase angle is determined. The model's simulation confirm applicability of this method. Results of the calculations for artificial satellite No 28506 are carried out.

  19. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    Science.gov (United States)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  20. Study of Axes Rotation during Simple Shear Tests on Aluminum Sheets

    International Nuclear Information System (INIS)

    Duchene, L.; Diouf, B.; Lelotte, T.; Flores, P.; Habraken, A. M.; Bouvier, S.

    2007-01-01

    In order to model accurately the anisotropic material behavior during finite element simulations, a precise description of the material yield locus is required. Beside the shape (linked to the material model used), the size (related to the isotropic hardening) and the position (kinematic hardening) of the yield locus, its orientation is of particular interest when large rotations of the material are encountered during the simulations. This paper proposes three distinct methods for the determination of the material yield locus rotation: a method based on the Constant Symmetric Local Velocity Gradient (CSLVG), a corotational method and a method based on the Mandel spin. These methods are compared during simple shear tests of an aluminum sheet

  1. Interpretation of the quasi-elastic neutron scattering on PAA by rotational diffusion models

    International Nuclear Information System (INIS)

    Bata, L.; Vizi, J.; Kugler, S.

    1974-10-01

    First the most important data determined by other methods for para azoxy anisolon (PAA) are collected. This molecule makes a rotational oscillational motion around the mean molecular direction. The details of this motion can be determined by inelastic neutron scattering. Quasielastic neutron scattering measurements were carried out without orienting magnetic field on a time-of-flight facility with neutron beam of 4.26 meV. For the interpretation of the results two models, the spherical rotation diffusion model and the circular random walk model are investigated. The comparison shows that the circular random walk model (with N=8 sites, d=4A diameter and K=10 10 s -1 rate constant) fits very well with the quasi-elastic neutron scattering, while the spherical rotational diffusion model seems to be incorrect. (Sz.N.Z.)

  2. Effects of Cold Rolling Reduction and Initial Goss Grains Orientation on Texture Evolution and Magnetic Performance of Ultra-thin Grain-oriented Silicon Steel

    Directory of Open Access Journals (Sweden)

    LIANG Rui-yang

    2017-06-01

    Full Text Available The ultra-thin grain-oriented silicon steel strips with a thickness of 0.06-0.12mm were produced by one-step-rolling methods with different Goss-orientation of grain-oriented silicon steel sheets. The effect of cold rolling reduction and initial Goss-orientation of samples on texture evolution and magnetic performance of ultra-thin grain-oriented silicon steel strips was studied by EBSD. The result shows that with the increase of cold rolling reduction and decrease of strips thickness, the recrystallization texture is enhanced after annealing.When the cold rolling reduction is 70%,RD//〈001〉 recrystallization texture is the sharpest, and the magnetic performance is the best. The higher degree of Goss orientation in initial sample is, the better magnetic performance of ultra-thin grain-oriented silicon steel.Therefore, for producing an ultra-thin grain-oriented silicon steel with high performance, a material with a concentrated orientation of Goss grains can be used.

  3. PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

    Directory of Open Access Journals (Sweden)

    Chensong Tao

    2017-07-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher

  4. Patterns of Wildlife Value Orientations

    Science.gov (United States)

    Harry C. Zinn; Michael J. Manfredo; Susan C. Barro

    2002-01-01

    Public value orientations toward wildlife may be growing less utilitarian and more protectionist. To better understand one aspect of this trend, we investigated patterns of wildlife value orientations within families. Using a mail survey, we sampled Pennsylvania and Colorado hunting license holders 50 or older; obtaining a 54% response rate (n = 599). Males (94% of...

  5. Validation of the Sexual Orientation Microaggression Inventory in Two Diverse Samples of LGBTQ Youth.

    Science.gov (United States)

    Swann, Gregory; Minshew, Reese; Newcomb, Michael E; Mustanski, Brian

    2016-08-01

    Critical race theory asserts that microaggressions, or low-level, covert acts of aggression, are commonplace in the lives of people of color. These theorists also assert a taxonomy of microaggressions, which includes "microassaults," "microinsults," and "microinvalidations". The theory of microaggressions has been adopted by researchers of LGBTQ communities. This study investigated the three-factor taxonomy as it relates to a diverse sample of LGBTQ youth using the newly developed Sexual Orientation Microaggression Inventory (SOMI). Exploratory factor analysis was used to determine the number of factors that exist in SOMI in a sample of 206 LGBTQ-identifying youth. Follow up confirmatory factor analyses were conducted in order to compare single-factor, unrestricted four-factor, second-order, and bi-factor models in a separate sample of 363 young men who have sex with men. The best fitting model was used to predict victimization, depressive symptoms, and depression diagnosis in order to test validity. The best fitting model was a bi-factor model utilizing 19 of the original 26 items with a general factor and four specific factors representing anti-gay attitudes ("microinsults"), denial of homosexuality, heterosexism ("microinvalidations"), and societal disapproval ("microassaults"). Reliability analyses found that the majority of reliable variance was accounted for by the general factor. The general factor was a significant predictor of victimization and depressive symptoms, as well as unrelated to social desirability, suggesting convergent, criterion-related, and discriminant validity. SOMI emerged as a scale with evidence of validity for assessing exposure to microaggressions in a diverse sample of LGBTQ youth.

  6. Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    Science.gov (United States)

    Bjerlin, J.; Bengtsson, J.; Deuretzbacher, F.; Kristinsdóttir, L. H.; Reimann, S. M.

    2018-02-01

    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially nonlocalized few-fermion state into a localized state with strong intertrap pairing. With an instant, nonadiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions.

  7. THE RADIO ACTIVITY-ROTATION RELATION OF ULTRACOOL DWARFS

    International Nuclear Information System (INIS)

    McLean, M.; Berger, E.; Reiners, A.

    2012-01-01

    We present a new radio survey of about 100 late-M and L dwarfs undertaken with the Very Large Array. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. As part of the survey we discovered radio emission from three new objects, 2MASS J 0518113 – 310153 (M6.5), 2MASS J 0952219 – 192431 (M7), and 2MASS J 1314203 + 132001 (M7), and made an additional detection of LP 349-25 (M8). Combining the new sample with results from our previous studies and from the literature, we compile the largest sample to date of ultracool dwarfs with radio observations and measured rotation velocities (167 objects). In the spectral type range M0-M6 we find a radio activity-rotation relation, with saturation at L rad /L bol ≈ 10 –7.5 above vsin i ≈ 5 km s –1 , similar to the relation in Hα and X-rays. However, at spectral types ∼> M7 the ratio of radio to bolometric luminosity increases significantly regardless of rotation velocity, and the scatter in radio luminosity increases. In particular, while the most rapid rotators (vsin i ∼> 20 km s –1 ) exhibit 'super-saturation' in X-rays and Hα, this effect is not seen in the radio. We also find that ultracool dwarfs with vsin i ∼> 20 km s –1 have a higher radio detection fraction by about a factor of three compared to objects with vsin i ∼ –1 . When measured in terms of the Rossby number (Ro), the radio activity-rotation relation follows a single trend and with no apparent saturation from G to L dwarfs and down to Ro ∼ 10 –3 ; in X-rays and Hα there is clear saturation at Ro ∼ rad /R 2 * ) as a function of Ro. The continued role of rotation in the overall level of radio activity and in the fraction of active sources, and the single trend of L rad /L bol and L rad /R 2 * as a function of Ro from G to L dwarfs, indicates that rotation effects are important in regulating the topology or strength of magnetic fields in at least some fully convective dwarfs. The fact that

  8. Bayesian integration of position and orientation cues in perception of biological and non-biological dynamic forms

    Directory of Open Access Journals (Sweden)

    Steven Matthew Thurman

    2014-02-01

    Full Text Available Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic

  9. Original article The effect of three-dimensional imaging of well-known objects on time and accuracy of mental rotation

    Directory of Open Access Journals (Sweden)

    Piotr Francuz

    2014-07-01

    Full Text Available Background The purpose of this study was to verify hypotheses concerning the effect of three-dimensional imaging and the canonicity of objects presented in the original position on the reaction time (RT and the accuracy (A of mental rotation task (MRT execution. The classical paradigm of MRT, developed by Shepard and Metzler (1971, was used in the experiment. Participants and procedure One hundred fifty-eight undergraduate students (88 female and 70 male, aged 18-30 years, participated in the experiment. All participants had normal vision or corrected vision, and reported no stereo blindness. The sequential version of the MRT was used in the experiment. Participants answered whether the object observed in the second position was only rotated or both rotated and mirror-reversed, in comparison to its original position. The answer (accuracy and its latency (RT were recorded. Results As predicted by the mental rotation model, both the “U”-shaped A-MRT distribution and the inverted “U”-shaped RT-MRT distribution were found, due to the angular disparity. For the RT-MRT, this effect was more pronounced when the objects were displayed stereoscopically than in a plane, and when the objects were presented in the original position from the canonical orientation rather than an unusual point of view. On the other hand, in the case of the A-MRT, an effect of the orientation of objects presented in the original position on strengthening the relationship between accuracy and angular disparity was found. Conclusions The results indicated that the interactions between the presentation of the objects in the mental rotation task (stereoscopically vs. in a plane and the orientation of the object in its original position (canonically vs. unusual are more complicated than would appear from predictions of classical theories of mental rotation. The results of this study are discussed in relation to the theories of recognition and categorization.

  10. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    Science.gov (United States)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  11. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  12. Ordered structures in rotating ultracold Bose gases

    International Nuclear Information System (INIS)

    Barberan, N.; Dagnino, D.; Lewenstein, M.; Osterloh, K.

    2006-01-01

    Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Ω increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N<10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Ω

  13. Programming in an object-oriented environment

    CERN Document Server

    Ege, Raimund K

    1992-01-01

    Programming in an Object-Oriented Environment provides an in-depth look at the concepts behind the technology of object-oriented programming.This book explains why object-oriented programming has the potential to vastly improve the productivity of programmers and how to apply this technology in a practical environment. Many programming examples are included, focusing on how different programming languages support the core of object-oriented concepts. C++ is used as the main sample language throughout this text.This monograph consists of two major parts. Part I provides an introduction to objec

  14. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  15. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  16. Dissociating object-based from egocentric transformations in mental body rotation: effect of stimuli size.

    Science.gov (United States)

    Habacha, Hamdi; Moreau, David; Jarraya, Mohamed; Lejeune-Poutrain, Laure; Molinaro, Corinne

    2018-01-01

    The effect of stimuli size on the mental rotation of abstract objects has been extensively investigated, yet its effect on the mental rotation of bodily stimuli remains largely unexplored. Depending on the experimental design, mentally rotating bodily stimuli can elicit object-based transformations, relying mainly on visual processes, or egocentric transformations, which typically involve embodied motor processes. The present study included two mental body rotation tasks requiring either a same-different or a laterality judgment, designed to elicit object-based or egocentric transformations, respectively. Our findings revealed shorter response times for large-sized stimuli than for small-sized stimuli only for greater angular disparities, suggesting that the more unfamiliar the orientations of the bodily stimuli, the more stimuli size affected mental processing. Importantly, when comparing size transformation times, results revealed different patterns of size transformation times as a function of angular disparity between object-based and egocentric transformations. This indicates that mental size transformation and mental rotation proceed differently depending on the mental rotation strategy used. These findings are discussed with respect to the different spatial manipulations involved during object-based and egocentric transformations.

  17. Orientation and structure development in poly(lactide) under uniaxial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Y.S. [School of Materials Science and Engineering, Nanyang Technological University, N4.1-02-06 Nanyang Avenue, Singapore 639798 (Singapore); Stachurski, Z.H. [Department of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Venkatraman, S.S. [School of Materials Science and Engineering, Nanyang Technological University, N4.1-02-06 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: assubbu@ntu.edu.sg

    2008-10-15

    Semicrystalline poly(L-lactide), or PLLA, is used in many biomedical applications, including self-expanding stents. A network model is applied to describe the deformation behaviour of semicrystalline poly(L-lactide) obtained at different drawing temperatures. Based on the present results, it is suggested that the deformation behaviour of PLLA appears to follow pseudo-affine model at the macroscopic level, but it does not follow it at the molecular level. The development of molecular orientation during drawing in both crystalline and amorphous phases was characterized by means of optical birefringence and wide-angle X-ray diffraction (WAXD). In general, high orientation is achieved at the higher drawing temperature and it is found that the crystalline and amorphous phases respond differently to network deformation. At moderate deformation temperature, the development of crystalline orientation increases slowly at a low stretch ratio followed by a rapid rise in the degree of orientation as a result of crystal rotation and crystal slip, while the amorphous chains deform in pseudo-affine manner. Drawing at a high temperature shows rapid crystalline orientation development, even at a low stretch ratio of 1.5, while molecular alignment develops steadily in the amorphous phase.

  18. Modeling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory.

    Science.gov (United States)

    Raphan, T

    1998-05-01

    This study evaluates the effects of muscle axis shifts on the performance of a vector velocity-position integrator in the CNS. Earlier models of the oculomotor plant assumed that the muscle axes remained fixed relative to the head as the eye rotated into secondary and tertiary eye positions. Under this assumption, the vector integrator model generates torsional transients as the eye moves from secondary to tertiary positions of fixation. The torsional transient represents an eye movement response to a spatial mismatch between the torque axes that remain fixed in the head and the displacement plane that changes by half the angle of the change in eye orientation. When muscle axis shifts were incorporated into the model, the torque axes were closer to the displacement plane at each eye orientation throughout the trajectory, and torsional transients were reduced dramatically. Their size and dynamics were close to reported data. It was also shown that when the muscle torque axes were rotated by 50% of the eye rotation, there was no torsional transient and Listing's law was perfectly obeyed. When muscle torque axes rotated >50%, torsional transients reversed direction compared with what occurred for muscle axis shifts of law is implemented by the oculomotor plant subject to a two-dimensional command signal that is confined to the pitch-yaw plane, having zero torsion. Saccades that bring the eye to orientations outside Listing's plane could easily be corrected by a roll pulse that resets the roll state of the velocity-position integrator to zero. This would be a simple implementation of the corrective controller suggested by Van Opstal and colleagues. The model further indicates that muscle axis shifts together with the torque orientation relationship for tissue surrounding the eye and Newton's laws of motion form a sufficient plant model to explain saccadic trajectories and periods of fixation when driven by a vector command confined to the pitch-yaw plane. This implies

  19. A biologically plausible transform for visual recognition that is invariant to translation, scale and rotation

    Directory of Open Access Journals (Sweden)

    Pavel eSountsov

    2011-11-01

    Full Text Available Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled or rotated.

  20. A Biologically Plausible Transform for Visual Recognition that is Invariant to Translation, Scale, and Rotation.

    Science.gov (United States)

    Sountsov, Pavel; Santucci, David M; Lisman, John E

    2011-01-01

    Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated.

  1. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Energy Technology Data Exchange (ETDEWEB)

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  2. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Energy Technology Data Exchange (ETDEWEB)

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-05-18

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  3. THE ATHLETES’ BODY SHAPES THE ATHLETES’ MIND – NEW PERSPECTIVES ON MENTAL ROTATION PERFORMANCE IN ATHLETES

    Directory of Open Access Journals (Sweden)

    Thomas Heinen

    2013-12-01

    Full Text Available Mentally rotating the image of an object is one fundamental cognitive ability in humans. Recent theoretical developments and empirical evidences highlight the potential role of the sensory-motor system, when analysing and understanding mental rotation. Therefore, the purpose of this study was to investigate the role of specific sensory-motor experience on mental rotation performance in gymnasts. N = 40 male gymnasts with either clockwise or anticlockwise rotation preference in a forward twisting layout salto performed a psychometric mental rotation test with either rotation-preference congruent or rotation-preference incongruent stimuli. Results revealed that choice reaction times differed clearly as a function of Angular Rotation between the stimuli figures. Gymnasts who preferred a clockwise rotation preference showed faster choice reaction times when the rotation direction of the reference figure was clockwise, and vice versa. The results clearly support the notion, that mental rotation performance varies as a function of sensory-motor system characteristics between different people. It is concluded, that sensory-motor experience in a particular sport may facilitate cognitive processing of experience-congruent stimuli. This may be advantageous for situations in which people are engaged in observing sport performance (i.e., judges, coaches. This conclusion could furthermore contribute to the training of athletes from sports such as sky-diving, scuba-diving, and climbing, where losses of spatial orientation can be life-threatening.

  4. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  5. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  6. Theoretical prediction of a rotating magnon wave packet in ferromagnets.

    Science.gov (United States)

    Matsumoto, Ryo; Murakami, Shuichi

    2011-05-13

    We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.

  7. Rotation of lathe-cut hydrogel lenses on the eye.

    Science.gov (United States)

    Harris, M G; Harris, K L; Ruddell, D

    1976-01-01

    The rotation lathe-cut HydroCurveTM gel contact lens was measured on six eyes to evaluate the parameters that influence lens rotation and to determine if this lens could be used to correct astigmatism. Of the 72 observations made, 73.6% showed some lens rotation, and 33.4% of the sample rotated more than 5 degrees per 10 blinks. Of the observations in which rotation was noted, 88.7% were encyclorotation. These results are similar to those found for spin-cast hydrogel lenses. None of the lens parameters evaluated seemed to be related to lens rotation, whereas the eye parameters studied were. Lenses were more likely to rotate on eyes with smaller corneal diameters, smaller palpebral apertures, and corneal curvatures steeper than 4 3.00 DK (X2, N =72, p less than 0.05). Our findings indicate that some method of lens stabilization will be needed before lathe-cut hydrogel lenses can be used to effectively correct astigmatism.

  8. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    International Nuclear Information System (INIS)

    Kakinohana, Y; Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S

    2014-01-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm 2 (two) and 4×5 cm 2 (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm 2 pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm 2 pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film

  9. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kakinohana, Y [University of the Ryukyus, Okinawa (Japan); Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S [University of the Ryukyus, Nishihara-cho, Okinawa (Japan)

    2014-06-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm{sup 2} (two) and 4×5 cm{sup 2} (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm{sup 2} pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm{sup 2} pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film.

  10. Progress in Research on Diurnal and Semidiurnal Earth Rotation Change

    Science.gov (United States)

    Xu, Xueqing

    2015-08-01

    We mainly focus on the progress of research on high frequency changes in the earth rotation. Firstly, we review the development course and main motivating factors of the diurnal and semidiurnal earth rotation change. In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including lunar and satellite laser ranging, very long baseline interferometry and the global positioning system. We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1, whose compliance is 90%, and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. Then we comprehensively review the different types of global ocean tidal correction models since the last eighties century, as well as the application research on diurnal and semidiurnal polar motion and UT1, the current ocean tidal correction models have 10% to 20% uncertainty, and need for further refinement.

  11. Rabi oscillations in the dissociative continuum: Rotation and alignment effects

    Science.gov (United States)

    Granucci, Giovanni; Magnier, Sylvie; Persico, Maurizio

    2002-01-01

    We have simulated a set of experiments in which Rabi oscillations are induced in bound-free and free-free transitions of a diatomic molecule. Dissociative vibrational states belonging to different electronic terms are involved. We show analytically and confirm computationally that a simple relationship exists between the one-dimensional dynamics of a molecule with fixed orientation with respect to the polarization of the radiation field and the three-dimensional dynamics of a rotating system. It is demonstrated that sufficiently short laser pulses can induce oscillations in the probabilities of two coupled electronic states, and in the yields of the respective dissociation products, as functions of the radiation intensity. As a result of molecular rotation the oscillations are damped but not washed out. The initial thermal distribution on several rotational levels has a negligible effect on the photodissociation yields and other experimentally relevant quantities. Since the molecule undergoes a strong alignment along the polarization axis of the laser field, the ejection of atoms and ions is anisotropic. We have chosen the well known diatomic ion Na2+ as a convenient example.

  12. On the origin of deformation-induced rotation patterns below nanoindents

    International Nuclear Information System (INIS)

    Zaafarani, N.; Raabe, D.; Roters, F.; Zaefferer, S.

    2008-01-01

    This study is about the origin of systematic deformation-induced crystallographic orientation patterns around nanoindents (here of single crystalline copper; conical indenter) using the following approach: first, the rotation pattern is investigated in three-dimensions (3D) using a high-resolution 3D electron backscattered diffraction (EBSD) technique (EBSD tomography) which works by a serial sectioning and EBSD mapping procedure in a scanning electron microscopy-focused ion beam cross-beam set-up. Second, the problem is modeled using a crystal plasticity finite element method which is based on a dislocation density-based constitutive model. Third, the results were discussed in terms of a geometrical model which simplifies the boundary conditions during indentation in terms of a compressive state normal to the local tangent of the indent shape. This simplification helps to identify the dominant slip systems and the resulting lattice rotations, thereby allowing us to reveal the basic mechanism of the formation of the rotation patterns. The finite element simulations also predict the pile-up patterning around the indents, which can be related to the dislocation density evolution

  13. Earth's Rotation: A Challenging Problem in Mathematics and Physics

    Science.gov (United States)

    Ferrándiz, José M.; Navarro, Juan F.; Escapa, Alberto; Getino, Juan

    2015-01-01

    A suitable knowledge of the orientation and motion of the Earth in space is a common need in various fields. That knowledge has been ever necessary to carry out astronomical observations, but with the advent of the space age, it became essential for making observations of satellites and predicting and determining their orbits, and for observing the Earth from space as well. Given the relevant role it plays in Space Geodesy, Earth rotation is considered as one of the three pillars of Geodesy, the other two being geometry and gravity. Besides, research on Earth rotation has fostered advances in many fields, such as Mathematics, Astronomy and Geophysics, for centuries. One remarkable feature of the problem is in the extreme requirements of accuracy that must be fulfilled in the near future, about a millimetre on the tangent plane to the planet surface, roughly speaking. That challenges all of the theories that have been devised and used to-date; the paper makes a short review of some of the most relevant methods, which can be envisaged as milestones in Earth rotation research, emphasizing the Hamiltonian approach developed by the authors. Some contemporary problems are presented, as well as the main lines of future research prospected by the International Astronomical Union/International Association of Geodesy Joint Working Group on Theory of Earth Rotation, created in 2013.

  14. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study

    KAUST Repository

    Demiral, Murat

    2014-07-01

    In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..

  15. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study

    KAUST Repository

    Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.

    2014-01-01

    In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..

  16. Gender differences in brain activation on a mental rotation task.

    Science.gov (United States)

    Semrud-Clikeman, Margaret; Fine, Jodene Goldenring; Bledsoe, Jesse; Zhu, David C

    2012-10-01

    Few neuroimaging studies have explored gender differences on mental rotation tasks. Most studies have utilized samples with both genders, samples mainly consisting of men, or samples with six or fewer females. Graduate students in science fields or liberal arts programs (20 males, 20 females) completed a mental rotation task during functional magnetic resonance imaging (fMRI). When a pair of cube figures was shown, the participant made a keypad response based on whether the pair is the same/similar or different. Regardless of gender, the bilateral middle frontal gyrus, bilateral intraparietal sulcus (IPS), and the left precuneus were activated when a subject tried to solve the mental rotation task. Increased activation in the right inferior frontal gyrus/middle frontal gyrus, the left precuneus/posterior cingulate cortex/cuneus region, and the left middle occipital gyrus was found for men as compared to women. Better accuracy and shorter response times were correlated with an increased activation in the bilateral intraparietal sulcus. No significant brain activity differences related to mental rotation were found between academic majors. These findings suggest that networks involved in visual attention appear to be more strongly activated in the mental rotation tasks in men as compared to women. It also suggests that men use a more automatic process when analyzing complex visual reasoning tasks while women use a more top-down process.

  17. Dynamic behavior of a rotating delaminated composite beam including rotary inertia and shear deformation effects

    Directory of Open Access Journals (Sweden)

    Ramazan-Ali Jafari-Talookolaei

    2015-09-01

    Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.

  18. Ultrafast internal rotational dynamics of the azido group in (4S)-azidoproline: Chemical exchange 2DIR spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung-Koo; Park, Kwang-Hee; Joo, Cheonik; Kwon, Hyeok-Jun; Han, Hogyu [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Ha, Jeong-Hyon [Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Park, Sungnam, E-mail: spark8@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Research Institute for Natural Sciences, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-03-02

    Graphical abstract: Internal rotational dynamics of the azido group in SA (Ac-(4S)-Azp-NHMe) was studied in real time by using ultrafast 2DIR spectroscopic method. The time constant of the internal rotation around the C{sup {gamma}}-N{sup {delta}} bond in SA was determined to be {tau}{sub ir} = 5.1 ps, which is found to be much faster than that around the C-C bond in ethane. Highlights: Black-Right-Pointing-Pointer Femtosecond two-dimensional IR spectroscopy of internal rotational dynamics. Black-Right-Pointing-Pointer Stereo-electronic effects of azido group in azido-derivatized proline peptide. Black-Right-Pointing-Pointer The timescale of the azido group internal rotation is about 5.1 ps. - Abstract: The azido group in 4-azidoproline (Azp) derivative, SA (Ac-(4S)-Azp-NHMe), can form an intramolecular electrostatic interaction with the backbone peptide in the s-trans and C{sup {gamma}}-endo conformations of SA. As a result, the azido group exists as two forms, bound and free, which are defined by the presence and absence of such interaction, respectively. The bound and free azido forms are spectrally resolved in the azido IR spectrum of SA in CHCl{sub 3}. Using the two-dimensional infrared (2DIR) and polarization-controlled IR pump-probe methods, we investigated the internal rotational and orientational relaxation dynamics of the azido group and determined the internal rotational time constant of the azido group to be 5.1 ps. The internal rotational motion is found to be responsible for the early part of the orientational relaxation of the azido group in SA. Thus, the femtosecond 2DIR spectroscopy is shown to be an ideal tool for studying ultrafast conformational dynamics of SA.

  19. Opening and closing of band gaps in magnonic waveguide by rotating the triangular antidots - A micromagnetic study

    Science.gov (United States)

    Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.

    2018-05-01

    Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.

  20. Inferring probabilistic stellar rotation periods using Gaussian processes

    Science.gov (United States)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  1. Modelling and analysing oriented fibrous structures

    International Nuclear Information System (INIS)

    Rantala, M; Lassas, M; Siltanen, S; Sampo, J; Takalo, J; Timonen, J

    2014-01-01

    A mathematical model for fibrous structures using a direction dependent scaling law is presented. The orientation of fibrous nets (e.g. paper) is analysed with a method based on the curvelet transform. The curvelet-based orientation analysis has been tested successfully on real data from paper samples: the major directions of fibrefibre orientation can apparently be recovered. Similar results are achieved in tests on data simulated by the new model, allowing a comparison with ground truth

  2. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  3. Aerodynamics in the amusement park: interpreting sensor data for acceleration and rotation

    Science.gov (United States)

    Löfstrand, Marcus; Pendrill, Ann-Marie

    2016-09-01

    The sky roller ride depends on interaction with the air to create a rolling motion. In this paper, we analyse forces, torque and angular velocities during different parts of the ride, combining a theoretical analysis, with photos, videos as well as with accelerometer and gyroscopic data, that may be collected e.g. with a smartphone. For interpreting the result, it must be taken into account that the sensors and their coordinate system rotate together with the rider. The sky roller offers many examples for physics education, from simple circular motion, to acceleration and rotation involving several axes, as well as the relation between wing orientation, torque and angular velocities and using barometer pressure to determine the elevation gain.

  4. Facial orientation and facial shape in extant great apes: a geometric morphometric analysis of covariation.

    Science.gov (United States)

    Neaux, Dimitri; Guy, Franck; Gilissen, Emmanuel; Coudyzer, Walter; Vignaud, Patrick; Ducrocq, Stéphane

    2013-01-01

    The organization of the bony face is complex, its morphology being influenced in part by the rest of the cranium. Characterizing the facial morphological variation and craniofacial covariation patterns in extant hominids is fundamental to the understanding of their evolutionary history. Numerous studies on hominid facial shape have proposed hypotheses concerning the relationship between the anterior facial shape, facial block orientation and basicranial flexion. In this study we test these hypotheses in a sample of adult specimens belonging to three extant hominid genera (Homo, Pan and Gorilla). Intraspecific variation and covariation patterns are analyzed using geometric morphometric methods and multivariate statistics, such as partial least squared on three-dimensional landmarks coordinates. Our results indicate significant intraspecific covariation between facial shape, facial block orientation and basicranial flexion. Hominids share similar characteristics in the relationship between anterior facial shape and facial block orientation. Modern humans exhibit a specific pattern in the covariation between anterior facial shape and basicranial flexion. This peculiar feature underscores the role of modern humans' highly-flexed basicranium in the overall integration of the cranium. Furthermore, our results are consistent with the hypothesis of a relationship between the reduction of the value of the cranial base angle and a downward rotation of the facial block in modern humans, and to a lesser extent in chimpanzees.

  5. Picosecond orientational dynamics of water in living cells.

    Science.gov (United States)

    Tros, Martijn; Zheng, Linli; Hunger, Johannes; Bonn, Mischa; Bonn, Daniel; Smits, Gertien J; Woutersen, Sander

    2017-10-12

    Cells are extremely crowded, and a central question in biology is how this affects the intracellular water. Here, we use ultrafast vibrational spectroscopy and dielectric-relaxation spectroscopy to observe the random orientational motion of water molecules inside living cells of three prototypical organisms: Escherichia coli, Saccharomyces cerevisiae (yeast), and spores of Bacillus subtilis. In all three organisms, most of the intracellular water exhibits the same random orientational motion as neat water (characteristic time constants ~9 and ~2 ps for the first-order and second-order orientational correlation functions), whereas a smaller fraction exhibits slower orientational dynamics. The fraction of slow intracellular water varies between organisms, ranging from ~20% in E. coli to ~45% in B. subtilis spores. Comparison with the water dynamics observed in solutions mimicking the chemical composition of (parts of) the cytosol shows that the slow water is bound mostly to proteins, and to a lesser extent to other biomolecules and ions.The cytoplasm's crowdedness leads one to expect that cell water is different from bulk water. By measuring the rotational motion of water molecules in living cells, Tros et al. find that apart from a small fraction of water solvating biomolecules, cell water has the same dynamics as bulk water.

  6. Pelvic orientation and assessment of hip dysplasia in adults

    DEFF Research Database (Denmark)

    Jacobsen, S.; Holm, S.S.; Lund, B.

    2004-01-01

    on the measurements of radiographic indices of hip dysplasia. MATERIAL AND METHODS: We investigated the effect of varying pelvic orientation on radiographic measurements of acetabular dysplasia using a cadaver model. Results from the cadaver study were used to validate the radiographic assessments of acetabular...... radiograph was recorded at each 3 degrees increment. The most widely used radiographic parameters of hip dysplasia were assessed. 2) Critical limits of acceptable rotation and inclination/reclination of pelvises were determined on 4151 standing, standardised pelvic radiographs of the CCHS cohort. RESULTS......BACKGROUND: The study was performed to qualify the source material of 4151 pelvic radiographs for the research into the relationship between unrecognised childhood hip disorders and the development of hip osteoarthrosis, and to investigate the effect of varying degrees of pelvic tilt and rotation...

  7. Towards the automatic detection and analysis of sunspot rotation

    Science.gov (United States)

    Brown, Daniel S.; Walker, Andrew P.

    2016-10-01

    Torsional rotation of sunspots have been noted by many authors over the past century. Sunspots have been observed to rotate up to the order of 200 degrees over 8-10 days, and these have often been linked with eruptive behaviour such as solar flares and coronal mass ejections. However, most studies in the literature are case studies or small-number studies which suffer from selection bias. In order to better understand sunspot rotation and its impact on the corona, unbiased large-sample statistical studies are required (including both rotating and non-rotating sunspots). While this can be done manually, a better approach is to automate the detection and analysis of rotating sunspots using robust methods with well characterised uncertainties. The SDO/HMI instrument provide long-duration, high-resolution and high-cadence continuum observations suitable for extracting a large number of examples of rotating sunspots. This presentation will outline the analysis of SDI/HMI data to determine the rotation (and non-rotation) profiles of sunspots for the complete duration of their transit across the solar disk, along with how this can be extended to automatically identify sunspots and initiate their analysis.

  8. Macroscopic optical constants of a cloud of randomly oriented nonspherical scatterers

    International Nuclear Information System (INIS)

    Borghese, F.; Denti, P.; Saija, R.; Toscano, G.; Sindoni, O.I.

    1984-01-01

    A method to calculate the macroscopic optical constants of a low-density medium consisting of a cloud of identical nonspherical scatterers is presented. The scatterers in the medium are clusters of dielectric spheres and the electromagnetic field scattered by each of the clusters is obtained as a superposition of multipole fields, as previously proposed by the authors. The transformation properties of the spherical multipoles under rotation allow the orientation-dependent terms in the expression for the forward-scattering amplitude of each of the clusters to be factored out. In this way the sum of the scattering amplitudes of the clusters with different orientations, needed to calculate the optical response of the medium, is greatly facilitated and admits a simple analytic expression in the case of randomly oriented clusters. Results of calculations of the optical constants for a few model media are presented

  9. Assessment of a method for the prediction of mandibular rotation.

    Science.gov (United States)

    Lee, R S; Daniel, F J; Swartz, M; Baumrind, S; Korn, E L

    1987-05-01

    A new method to predict mandibular rotation developed by Skieller and co-workers on a sample of 21 implant subjects with extreme growth patterns has been tested against an alternative sample of 25 implant patients with generally similar mean values, but with less extreme facial patterns. The method, which had been highly successful in retrospectively predicting changes in the sample of extreme subjects, was much less successful in predicting individual patterns of mandibular rotation in the new, less extreme sample. The observation of a large difference in the strength of the predictions for these two samples, even though their mean values were quite similar, should serve to increase our awareness of the complexity of the problem of predicting growth patterns in individual cases.

  10. Earthquake focal mechanisms and stress orientations in the eastern Swiss Alps

    International Nuclear Information System (INIS)

    Marschall, I.; Deichmann, N.; Marone, F.

    2013-01-01

    This study presents an updated set of earthquake focal mechanisms in the Helvetic and Penninic/Austroalpine domains of the eastern Swiss Alps. In eight cases, based on high-precision relative hypocentre locations of events within individual earthquake sequences, it was possible to identify the active fault plane. Whereas the focal mechanisms in the Helvetic domain are mostly strike-slip, the Penninic/Austroalpine domain is dominated by normal-faulting mechanisms. Given this systematic difference in faulting style, an inversion for the stress field was performed separately for the two regions. The stress field in the Penninic/Austroalpine domain is characterized by extension oriented obliquely to the E-W strike of the orogen. Hence, the Penninic nappes, which were emplaced as large-scale compressional structures during the Alpine orogenesis, are now deforming in an extensional mode. This contrasts with the more compressional strike-slip regime in the Helvetic domain towards the northern Alpine front. Relative to the regional stress field seen in the northern Alpine foreland with a NNW-SSE compression and an ENE-WSW extension, the orientation of the least compressive stress in the Penninic/Austroalpine domain is rotated counter-clockwise by about 40 °C. Following earlier studies, the observed rotation of the orientation of the least compressive stress in the Penninic/Austroalpine region can be explained as the superposition of the regional stress field of the northern foreland and a uniaxial extensional stress perpendicular to the local trend of the Alpine mountain belt. (authors)

  11. A quantum mechanical approach to establishing the magnetic field orientation from a maser Zeeman profile

    Science.gov (United States)

    Green, J. A.; Gray, M. D.; Robishaw, T.; Caswell, J. L.; McClure-Griffiths, N. M.

    2014-06-01

    Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).

  12. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    Science.gov (United States)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  13. Rotationally invariant clustering of diffusion MRI data using spherical harmonics

    DEFF Research Database (Denmark)

    Liptrot, Matthew George; Lauze, Francois Bernard

    2016-01-01

    simple features that are invariant to the rotation of the highly orientational diffusion data. This provides a way to directly classify voxels whose diffusion characteristics are similar yet whose primary diffusion orientations differ. Subsequent application of machine-learning to the spherical harmonic...... data as a collection of spherical basis functions. We use the derived coefficients as voxelwise feature vectors for classification. Using a simple Gaussian mixture model, we examined the classification performance for a range of sub-classes (3-20). The results were compared against existing...... classification of DWI data can be performed without the need for a model reconstruction step. This avoids the potential confounds and uncertainty that such models may impose, and has the benefit of being computable directly from the DWI volumes. As such, the method could prove useful in subsequent pre...

  14. Monitoring of Earth Rotation by VLBI

    Science.gov (United States)

    Ma., Chopo; Macmillan, D. S.

    2000-01-01

    Monitoring Earth rotation with Very Long Baseline Interferometry (VLBI) has unique potential because of direct access to the Celestial Reference System (CRF and Terrestrial Reference System (TRF) and the feasibility of re-analyzing the entire data set. While formal precision of better than 0.045 mas for pole and 0.002 ms for UT 1 has been seen in the best 24-hr data, the accuracy of the Earth Orientation Parameter (EOP) time series as a whole is subject to logistical, operational, analytical and conceptual constraints. The current issues related to the VLBI data set and the CORE program for greater time resolution such as analysis consistency, network jitter and reference frame stability will be discussed.

  15. Experimental and Theoretical Study of the Rotation of Si Ad-dimers on the Si(100) Surface

    DEFF Research Database (Denmark)

    Swartzentruber, B. S.; Smith, A. P.; Jonsson, Hannes

    1996-01-01

    Scanning tunneling microscopy measurements and first principles density functional theory calculations are used to study the rate of the rotational transition of Si ad-dimers on top of the surface dimer rows of Si(100). The rotation rate and the relative population of the two stable orientations ...... of the ad-dimers are measured as a function of the applied electric field to extract the zero-field behavior. The measured relative stability of the two configurations is used to test the accuracy of various functionals for density functional theory calculations....

  16. Refined rotational period, pole solution, and shape model for (3200) Phaethon

    Energy Technology Data Exchange (ETDEWEB)

    Ansdell, Megan; Meech, Karen J.; Kaluna, Heather [NASA Astrobiology Institute, Honolulu, HI 96822 (United States); Hainaut, Olivier [European Southern Observatory, Karl Schwarzschild Straße, 85748 Garching bei München (Germany); Buie, Marc W. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Bauer, James [Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 183-401, Pasadena, CA 91109 (United States); Dundon, Luke, E-mail: mansdell@ifa.hawaii.edu [United States Navy, Washington, DC 20350 (United States)

    2014-09-20

    (3200) Phaethon exhibits both comet- and asteroid-like properties, suggesting it could be a rare transitional object such as a dormant comet or previously volatile-rich asteroid. This justifies detailed study of (3200) Phaethon's physical properties as a better understanding of asteroid-comet transition objects can provide insight into minor body evolution. We therefore acquired time series photometry of (3200) Phaethon over 15 nights from 1994 to 2013, primarily using the Tektronix 2048 × 2048 pixel CCD on the University of Hawaii 2.2 m telescope. We utilized light curve inversion to (1) refine (3200) Phaethon's rotational period to P = 3.6032 ± 0.0008 hr; (2) estimate a rotational pole orientation of λ = +85° ± 13° and β = –20° ± 10°; and (3) derive a shape model. We also used our extensive light curve data set to estimate the slope parameter of (3200) Phaethon's phase curve as G ∼ 0.06, consistent with C-type asteroids. We discuss how this highly oblique pole orientation with a negative ecliptic latitude supports previous evidence for (3200) Phaethon's origin in the inner main asteroid belt as well as the potential for deeply buried volatiles fueling impulsive yet rare cometary outbursts.

  17. Managing Entrepreneurial Orientation

    NARCIS (Netherlands)

    S. van Doorn (Sebastiaan)

    2012-01-01

    textabstractIn this dissertation, we evaluate the roles senior management teams and individual middle managers play in realizing the performance benefits of entrepreneurial orientations. We investigate the role of senior management teams by focusing on a sample of 9.000 firms in the Netherlands. The

  18. A Faraday rotation search for magnetic fields in quasar damped Ly alpha absorption systems

    Science.gov (United States)

    Oren, Abraham L.; Wolfe, Arthur M.

    1995-01-01

    We present the results of a Faraday rotation survey of 61 radio-bright QSOs conducted at the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The Galactic contribution to the Faraday rotation is estimated and subtracted to determine the extragalactic rotation measure (RRM) for each source. Eleven of these QSOs are known to exhibit damped Ly alpha absorption. The rate of incidence of significant Faraday rotation of these 11 sources is compared to the remaining 50 and is found to be higher at the 99.8% confidence level. However, as this is based upon only two detections of Faraday rotation in the damped Ly alpha sample, the result is only tentative. If the two detections in the damped Ly alpha sample are dug to the absorbing systems, then the inferred rotation measure induced by these systems is roughly 250 rad/sq m. The two detections were for the two lowest redshift absorbers in the sample. We find that a rotation measure of 250 rad/sq m would have gone undetected for any other absorber in the damped Ly alpha sample due to the 1/(1 + 2) squared dilution of the observed RRM with redshift. Thus the data are consistent with, but do not prove, the hypothesis that Faraday rotation is a generic property of damped Ly alpha absorbers. We do not confirm the suggestion that the amplitude of RRMs increases with redshift. Rather, the data are consistent with no redshift evolution. We find that the uncertainty in the estimation of the Galactic rotation measure (GRM) is a more serious problem than previously realized for extra-galactic Faraday rotation studies of QSO absorbers. A careful analysis of current methods for estimating GRM indicate that it can be determined to an accuracy of about 15 - 20 rad/sq m. Previous studies underestimated this uncertainty by more than a factor of 2. Due to this uncertainty, rotation measures such as we suspect are associated with damped Ly alpha absorption systems can only be detected at redshifts less than z approximately

  19. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  20. A study of direct- and pulse-current chromium electroplating on rotating cylinder electrode (RCE)

    International Nuclear Information System (INIS)

    Chang, J.H.; Hsu, F.Y.; Liao, M.J.; Huang, C.A.

    2007-01-01

    Direct- and pulse-current (DC and PC) chromium electroplating on Cr-Mo steel were performed in a sulfate-catalyzed chromic acid solution at 50 deg. C using a rotating cylinder electrode (RCE). The electroplating cathodic current densities were at 30, 40, 50 and 60 A dm -2 , respectively. The relationship between electroplating current efficiency and the rotating speed of the RCE was studied. The cross-sectional microstructure of Cr-deposit was examined by transmission electron microscope (TEM). Results showed that DC-plating exhibited higher current efficiency than the PC-plating under the same conditions of electroplating current density and the rotating speed. We found the critical rotating speed of RCE used in the chromium electroplating, above this rotating speed the chromium deposition is prohibited. At the same plating current density, the critical rotating speed for DC-plating was higher than that for PC-plating. The higher plating current density is, the larger difference in critical rotating speeds appears between DC- and PC-electroplating. Equiaxed grains, in a nanoscale size with lower dislocation density, nucleate on the cathodic surface in both DC- and PC-electroplating. Adjacent to the equiaxed grains, textured grains were found in other portion of chromium deposit. Fine columnar grains were observed in the DC-electroplated deposit. On the other hand, very long slender grains with high degree of preferred orientation were detected in PC-electroplated deposit

  1. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V. [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A., E-mail: andreas.stierle@desy.de [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Fachbereich Physik, Universität Hamburg, D-22607 Hamburg (Germany)

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  2. Field on Poincare group and quantum description of orientable objects

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Shelepin, A.L. [Moscow Institute of Radio Engineering, Electronics and Automation, Moscow (Russian Federation)

    2009-05-15

    We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner's ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincare group G. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group {pi}=G x G. All such transformations can be studied by considering a generalized regular representation of G in the space of scalar functions on the group, f(x,z), that depend on the Minkowski space points x element of G/Spin(3,1) as well as on the orientation variables given by the elements z of a matrix Z element of Spin(3,1). In particular, the field f(x,z) is a generating function of the usual spin-tensor multi-component fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties. (orig.)

  3. A-axis oriented superconductive YBCO thin films. Growth mechanism on MgO substrate. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Hamet, J F; Mercey, B; Hervieu, M; Poullain, G; Raveau, B [Centre de Materiaux Supraconducteurs, CRISMAT-ISMRa, 14 - Caen (France)

    1992-08-01

    The growth mechanism of a-axis oriented YBCO thin films has been studied by TEM. At 650degC, a disordered cubic perovskite is first formed with a[sub p]parallela[sub MgO], then a strained tetragonal a-axis oriented perovskite is observed, with c=3a[sub p], slightly misoriented with respect to MgO and showing a marquetry-like contrast. At 750degC, a [1anti 10] axis oriented perovskite is formed whose lattice exhibits a rotation with respect to MgO lattice, but also a tilting of the [CuO[sub 2

  4. Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.

    Science.gov (United States)

    Rosen, H M

    1993-06-01

    Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically

  5. Noncontact orientation of objects in three-dimensional space using magnetic levitation.

    Science.gov (United States)

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M

    2014-09-09

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.

  6. Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2015-06-01

    Full Text Available Polycrystalline SnSe was synthesized by a melting-annealing-sintering process. X-ray diffraction reveals the sample possesses pure phase and strong orientation along [h00] direction. The degree of the orientations was estimated and the anisotropic thermoelectric properties are characterized. The polycrystalline sample shows a low electrical conductivity and a positive and large Seebeck coefficient. The low thermal conductivity is also observed in polycrystalline sample, but slightly higher than that of single crystal. The minimum value of thermal conductivity was measured as 0.3 W/m·K at 790 K. With the increase of the orientation factor, both electrical and thermal conductivities decrease, but the thermopowers are unchanged. As a consequence, the zT values remain unchanged in the polycrystalline samples despite the large variation in the degree of orientation.

  7. Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission-electron-microscope-based orientation and phase mapping

    International Nuclear Information System (INIS)

    Liu, X.; Nuhfer, N.T.; Rollett, A.D.; Sinha, S.; Lee, S.-B.; Carpenter, J.S.; LeDonne, J.E.; Darbal, A.; Barmak, K.

    2014-01-01

    A transmission-electron-microscope-based orientation mapping technique that makes use of beam precession to achieve near-kinematical conditions was used to map the phase and crystal orientations in nanolamellar Cu/Nb composites with average layer thicknesses of 86, 30 and 18 nm. Maps of high quality and reliability were obtained by comparing the recorded diffraction patterns with pre-calculated templates. Particular care was taken in optimizing the dewarping parameters and in calibrating the frames of reference. Layers with thicknesses as low as 4 nm were successfully mapped. Heterophase interface plane and character distributions (HIPD and HICD, respectively) of Cu and Nb phases from the samples were determined from the orientation maps. In addition, local orientation relation stereograms of the Cu/Nb interfaces were calculated, and these revealed the detailed layer-to-layer texture information. The results are in agreement with previously reported neutron-diffraction-based and precession-electron-diffraction-based measurements on an accumulated roll bonding (ARB)-fabricated Cu/Nb sample with an average layer thickness of 30 nm as well as scanning-electron-microscope-based electron backscattered diffraction HIPD/HICD plots of ARB-fabricated Cu/Nb samples with layer thicknesses between 200 and 600 nm

  8. Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Feng, Z.Q.; Yang, Y.Q.; Huang, B.; Li, M.H.; Chen, Y.X.; Ru, J.G.

    2014-01-01

    Highlights: • The substructures in rotation-twinned T (Al 20 Cu 2 Mn 3 ) particles were investigated. • A flattened hexagonal structural subunit with 20 atomic columns was proposed. • The stacking mode of these subunits at APB and TB were revealed. • The transition structures at twin domain junctions were unraveled. -- Abstract: The substructures in rotation-twinned T (Al 20 Cu 2 Mn 3 ) particles were investigated by means of high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) in the present work. A flattened hexagonal structural subunit with 20 atomic columns was proposed. The stacking mode of these subunits in non-defective T phase was proved to be tessellation of many flattened hexagonal subunits with the same orientations, while the stacking modes near anti-phase boundary (APB) and twin boundary (TB) were tessellations of two differently oriented flattened hexagonal subunits. The transition region at twin domain junctions has hybrid structure and perfect or imperfect pentagram structure. Centered with the perfect pentagram transition structure, a rotation twin with ten fan-shaped domains and constituted by five twin variants can be deduced

  9. Orientational Phase Transition Around 274 K in C60 Single Crystal

    Institute of Scientific and Technical Information of China (English)

    徐亚伯; 何丕模; 杨宏顺; 郑萍; 余朝文; 陈兆甲; 张宣嘉; 李文铸

    1994-01-01

    The electrical conductivity of a C60 single crystal around 274 K and the specific heat of C60 crystals from 150 to 340 K have been measured.The delta-like specific heat peak at about 251 K related to the first-order phase transition has been reported.The activation energy change around 274 K and the lambda-like specific heat peak beginning at 270 K and ending at 310 K show that there is an orientational phase transition in fcc C60 crystals above 251 K.By taking the symmetry into consideration and further analyzing lambda-like specific heat peak and the activation energy change around 274 K,the conclusion has been reached that this new phase transition is an orientational structure transition from the merohedral twinning fcc to the orientationally disordered fcc.The temperature of free rotation of C60 molecules is about 281 K.

  10. Pediatric interventional radiology with 3D rotational angiography

    International Nuclear Information System (INIS)

    Racadio, J.M.

    2004-01-01

    Rotational angiography with three-dimensional reconstruction vastly improves spatial orientation, eliminating guesswork during interventions. The 3D images help to define the anatomy more accurately, particularly in the case of overlapping tortuous anatomy such as that encountered in genitourinary abnormalities. The procedures are performed on a Philips Integris Allura biplane system with two 12'' image intensifiers. Although radiologists are trained to assemble multiple oblique views in their minds, that vision is often hard to convey to a waiting surgeon. The 3D images give a much better impression of the spatial relationships, saving valuable time and giving added security. (orig.)

  11. Rotation-Activity Correlations in K and M Dwarfs. I. Stellar Parameters and Compilations of v sin I and P/sin I for a Large Sample of Late-K and M Dwarfs

    Science.gov (United States)

    Houdebine, E. R.; Mullan, D. J.; Paletou, F.; Gebran, M.

    2016-05-01

    The reliable determination of rotation-activity correlations (RACs) depends on precise measurements of the following stellar parameters: T eff, parallax, radius, metallicity, and rotational speed v sin I. In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (Paper II), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the (R-I) C color from the calibrations of Mann et al. and Kenyon & Hartmann for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters (T eff, log(g), and [M/H]) using the principal component analysis-based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius-[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian et al. We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected v sin I in 92 stars. In combination with our previous v sin I measurements in M and K dwarfs, we now derive P/sin I measures for a sample of 418 K and M dwarfs. We investigate the distributions of P/sin I, and we show that they are different from one spectral subtype to another at a 99.9% confidence level. Based on observations available at Observatoire de Haute Provence and the European Southern Observatory databases and on Hipparcos parallax measurements.

  12. Bridgman growth and assessment of CdTe and CdZnTe using the accelerated crucible rotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Capper, P.; Harris, J.E.; O' Keefe, E.; Jones, C.L.; Ard, C.K.; Mackett, P.; Dutton, D. (Philips Infrared Defence Components, Southampton (United Kingdom))

    1993-01-30

    The Bridgman growth process for CdTe has been extended by applying the accelerated crucible rotation technique (ACRT). Modelling using ACRT has been extended to the 50 mm diameter required to produce grains large enough to yield CdTe(and Cd[sub 0.96]Zn[sub 0.04]Te) slices suitable for use in liquid phase epitaxy of Cd[sub x]Hg[sub 1-x]Te (CMT) layers. Two regimes are identified: ACRT parameter combinations which give maximum fluid velocities and that which maintains stable Ekman flow. Growth of crystals shows that larger single crystal regions are obtained when the Ekman flow is stable. Effects of changing the ampoule base shape have also been investigated. Techniques have been developed to produce 20 mm x 30 mm substrates oriented oriented close to the (111) direction. Assessment of these samples has included IR transmission, IR microscopy, defect etching, X-ray topography and X-ray diffraction curve width measurements. Chemical analyses have been carried out to determine impurity levels and matrix element distributions. Good quality CMT epitaxial layers, as demonstrated by good surface topography, electrical data and chemical analyses, have been grown onto material produced in this study. (orig.).

  13. A spinner magnetometer for large Apollo lunar samples

    Science.gov (United States)

    Uehara, M.; Gattacceca, J.; Quesnel, Y.; Lepaulard, C.; Lima, E. A.; Manfredi, M.; Rochette, P.

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10-7 Am2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  14. A spinner magnetometer for large Apollo lunar samples.

    Science.gov (United States)

    Uehara, M; Gattacceca, J; Quesnel, Y; Lepaulard, C; Lima, E A; Manfredi, M; Rochette, P

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10 -7 Am 2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  15. Orthogonal decomposition of core loss along rolling and transverse directions of non-grain oriented silicon steels

    Directory of Open Access Journals (Sweden)

    Xuezhi Wan

    2017-05-01

    Full Text Available Rotational core loss of the silicon steel laminations are measured under elliptical rotating excitation. The core loss decomposition model is very important in magnetic core design, in which the decomposition coefficients are calculated through the measurement data. By using the transformation of trigonometric function, the elliptical rotational magnetic flux can be decomposed into two parts along two directions. It is assumed that the rotating core loss is the sum of alternating core losses along rolling and transverse directions. The magnetic strength vector H of non-grain oriented (NGO silicon steel 35WW270 along rolling and transverse directions is measured by a novel designed 3-D magnetic properties tester. Alternating core loss along the rolling, transverse directions and rotating core loss in the xoy-plane of this specimen in different frequencies such as 50 Hz, 100 Hz, and 200 Hz. Experimental results show that the core loss model is more accurate and useful to predict the total core loss.

  16. "Magnetic" termite mound surfaces are oriented to suit wind and shade conditions.

    Science.gov (United States)

    Jacklyn, Peter M

    1992-09-01

    The termites Amitermes meridionalis and A. laurensis construct remarkable meridional or "magnetic" mounds in northern Australia. These mounds vary geographically in mean orientation in a manner that suggests such variation is an adaptive response to local environmental conditions. Theoretical modelling of solar irradiance and mound rotation experiments show that maintenance of an eastern face temperature plateau during the dry season is the most likely physical basis for the mound orientation response. Subsequent heat transfer analysis shows that habitat wind speed and shading conditions also affect face temperature gradients such as the rate of eastern face temperature change. It is then demonstrated that the geographic variation in mean mound orientation follows the geographic variation in long-term wind speed and shading conditions across northern Australia such that an eastern face temperature plateau is maintained in all locations.

  17. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  18. A Snapshot-Based Mechanism for Celestial Orientation.

    Science.gov (United States)

    El Jundi, Basil; Foster, James J; Khaldy, Lana; Byrne, Marcus J; Dacke, Marie; Baird, Emily

    2016-06-06

    In order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2-8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9, 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a "celestial snapshot," even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the "dance," a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Tertiary block rotations in the Fars Arc (Zagros, Iran)

    Science.gov (United States)

    Aubourg, C.; Smith, B.; Bakhtari, H. R.; Guya, N.; Eshraghi, A.

    2008-05-01

    The Fars arc accommodates the oblique convergence between the Arabic plate and the Iran block. Many geological observations suggest block rotations from regional to local scales. We present palaeomagnetic investigations in the Fars arc and its eastern termination, the Zagros-Makran syntaxis. Sixty-four sites have been sampled covering the Palaeocene Pabdeh Fm. to Mio-Pliocene Agha-Jhari Fm., the latest being the most sampled formation. We document pre-tilting components in all formations. However, coarse fractions of Agha-Jhari clastics formation retain a post-tilting remagnetization. As a whole, block rotations rarely exceed 20°. In the western Fars arc, clockwise and counter-clockwise rotations of small amplitudes are consistent with the torsions observed near the strike slip Kazerun and Mangarak faults. In the Zagros Makran syntaxis, counter-clockwise and clockwise rotations are observed, respectively, in the western and eastern part. This pattern is consistent with an amplification of the shape of the syntaxis. Between Zagros and Makran, palaeomagnetic data support that the present-day arcuate shape of the arc is secondary. We assume that most of the block rotations took place during the Plio-Pleistocene, during a blocking stage of the Zagros-Makran syntaxis. We emphasize the role of Oman Peninsula which plays as an indenter for the propagation of the Fars thrust belt.

  20. A morphological basis for orientation tuning in primary visual cortex.

    Science.gov (United States)

    Mooser, François; Bosking, William H; Fitzpatrick, David

    2004-08-01

    Feedforward connections are thought to be important in the generation of orientation-selective responses in visual cortex by establishing a bias in the sampling of information from regions of visual space that lie along a neuron's axis of preferred orientation. It remains unclear, however, which structural elements-dendrites or axons-are ultimately responsible for conveying this sampling bias. To explore this question, we have examined the spatial arrangement of feedforward axonal connections that link non-oriented neurons in layer 4 and orientation-selective neurons in layer 2/3 of visual cortex in the tree shrew. Target sites of labeled boutons in layer 2/3 resulting from focal injections of biocytin in layer 4 show an orientation-specific axial bias that is sufficient to confer orientation tuning to layer 2/3 neurons. We conclude that the anisotropic arrangement of axon terminals is the principal source of the orientation bias contributed by feedforward connections.

  1. Experimental occlusal interferences. Part III. Mandibular rotations induced by a rigid interference.

    Science.gov (United States)

    Rassouli, N M; Christensen, L V

    1995-10-01

    A rigid intercuspal interference (minimum mean height of 0.24 mm) was placed on either the right or left mandibular second premolar and first molar of 12 subjects. During brisk and forceful biting on the interference, rotational electrognathography measured maximum torque of the right and left mandibular condyles in the frontal and horizontal planes of orientation. All subjects showed frontal plan upward rotation (mean of 0.7 degrees) of the mandibular condyle contralateral to the interference. In 33% of the subjects there was no horizontal plane backward rotation. In 58% of the subjects there was horizontal plane backward rotation (mean of 0.5 degrees) of the mandibular condyle ipsilateral to the interference, and in one subject (8%) there was backward horizontal plane rotation (0.1 degree) of the mandibular condyle contralateral to the interference. It was inferred that the masseter muscle, ipsilateral to the interference, generated negative work in order to decelerate frontal plane 'unseating' of the mandibular condyle ipsilateral to the interference. It was inferred that the masseter muscle, contralateral to the interference, produced positive work in order to accelerate frontal plane 'seating' of the mandibular condyle contralateral to the interference. Finally, it was speculated that the impact forces of frontal plane 'seating' of the mandibular condyle, contralateral to the interference, might lead to 'vacuum sticking' of the temporomandibular joint disc because of the formation of negative hydrostatic pressures.

  2. X-ray wavefront characterization using a rotating shearing interferometer technique.

    Science.gov (United States)

    Wang, Hongchang; Sawhney, Kawal; Berujon, Sébastien; Ziegler, Eric; Rutishauser, Simon; David, Christian

    2011-08-15

    A fast and accurate method to characterize the X-ray wavefront by rotating one of the two gratings of an X-ray shearing interferometer is described and investigated step by step. Such a shearing interferometer consists of a phase grating mounted on a rotation stage, and an absorption grating used as a transmission mask. The mathematical relations for X-ray Moiré fringe analysis when using this device are derived and discussed in the context of the previous literature assumptions. X-ray beam wavefronts without and after X-ray reflective optical elements have been characterized at beamline B16 at Diamond Light Source (DLS) using the presented X-ray rotating shearing interferometer (RSI) technique. It has been demonstrated that this improved method allows accurate calculation of the wavefront radius of curvature and the wavefront distortion, even when one has no previous information on the grating projection pattern period, magnification ratio and the initial grating orientation. As the RSI technique does not require any a priori knowledge of the beam features, it is suitable for routine characterization of wavefronts of a wide range of radii of curvature. © 2011 Optical Society of America

  3. Nanoripple formation on GaAs (001) surface by reverse epitaxy during ion beam sputtering at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debasree; Ghose, Debabrata, E-mail: debabrata1.ghose@gmail.com

    2016-11-01

    Highlights: • GaAs (001) surfaces are sputtered by 1 keV Ar{sup +} at sample temperature of 450 °C. • Highly ordered defect-free ripples develop at near-normal incidence angles (θ ≈ 0–25{sup 0}). • Concurrent sample rotation does not alter the ripple orientation with respect to the ion beam. • At grazing incidence angles anisotropic structure is formed. • Concurrent sample rotation shows that the structure orientation depends on the beam direction. - Abstract: Self-organized pattern formation by the process of reverse epitaxial growth has been investigated on GaAs (001) surfaces during 1 keV Ar{sup +} bombardment at target temperature of 450 °C for a wide range of incident angles. Highly ordered ripple formation driven by diffusion instability is evidenced at near normal incidence angles. Concurrent sample rotation shows that the ripple morphology and its orientation do not depend on the incident beam direction; rather they are determined by the symmetry of the crystal face.

  4. Holistic face representation is highly orientation-specific.

    Science.gov (United States)

    Rosenthal, Gideon; Levakov, Gidon; Avidan, Galia

    2017-09-29

    It has long been argued that face processing requires disproportionate reliance on holistic processing (HP), relative to that required for nonface object recognition. Nevertheless, whether the holistic nature of face perception is achieved via a unique internal representation or by the employment of an automated attention mechanism is still debated. Previous studies had used the face inversion effect (FIE), a unique face-processing marker, or the face composite task, a gold standard paradigm measuring holistic processing, to examine the validity of these two different hypotheses, with some studies combining the two paradigms. However, the results of such studies remain inconclusive, particularly pertaining to the issue of the two proposed HP mechanisms-an internal representation as opposed to an automated attention mechanism. Here, using the complete composite paradigm design, we aimed to examine whether face rotation yields a nonlinear or a linear drop in HP, thus supporting an account that face processing is based either on an orientation-dependent internal representation or on automated attention. Our results reveal that even a relatively small perturbation in face orientation (30 deg away from upright) already causes a sharp decline in HP. These findings support the face internal representation hypothesis and the notion that the holistic processing of faces is highly orientation-specific.

  5. Determination of the Rotational Diffusion Tensor of Macromolecules in Solution from NMR Relaxation Data with a Combination of Exact and Approximate Methods—Application to the Determination of Interdomain Orientation in Multidomain Proteins

    Science.gov (United States)

    Ghose, Ranajeet; Fushman, David; Cowburn, David

    2001-04-01

    In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.

  6. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins.

    Science.gov (United States)

    Ghose, R; Fushman, D; Cowburn, D

    2001-04-01

    In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.

  7. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  8. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    Science.gov (United States)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  9. Subcycle interference upon tunnel ionization by counter-rotating two-color fields

    Science.gov (United States)

    Eckart, S.; Kunitski, M.; Ivanov, I.; Richter, M.; Fehre, K.; Hartung, A.; Rist, J.; Henrichs, K.; Trabert, D.; Schlott, N.; Schmidt, L. Ph. H.; Jahnke, T.; Schöffler, M. S.; Kheifets, A.; Dörner, R.

    2018-04-01

    We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counter-rotating circularly polarized fields (390 and 780 nm). A pronounced 3D low-energy structure and subcycle interferences are observed experimentally and reproduced numerically using a trajectory-based semiclassical simulation. The orientation of the low-energy structure in the polarization plane is verified by numerical simulations solving the time-dependent Schrödinger equation.

  10. Lattice gas automaton scheme with stochastic particle movement for a rotated fluid flow

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    2002-01-01

    Lattice gas automaton (LGA) models developed so far are just for Cartesian geometries, and no direct approach to rotated fluid flows is found. In this paper, LGA method is applied to model a two-dimensional rotated flow. Several problems specific to the rotated flow are to be solved: hexagonal lattice geometry to effectively identify the neighbors, boundary condition for irregular walls, multi-speed scheme to represent angular-oriented fluid velocity υ θ ≅γω, shape of macroscopic domain for statistics, formula to obtain macroscopic quantities such as density and mean fluid velocities, application method of Fermi-Dirac function to the initial particle arrangement. For this purpose, FHP-I type hexagonal lattice model is revised and a new LGA model with stochastic particle movement is proposed. The results of the trial calculation are shown. It is also investigated whether or not the underlying microscopic Boolean equations newly introduced leads to Navier-Stokes equation. (author)

  11. Perceived Stigma, Discrimination, and Disclosure of Sexual Orientation Among a Sample of Lesbian Veterans Receiving Care in the Department of Veterans Affairs.

    Science.gov (United States)

    Mattocks, Kristin M; Sullivan, J Cherry; Bertrand, Christina; Kinney, Rebecca L; Sherman, Michelle D; Gustason, Carolyn

    2015-06-01

    Many lesbian women experience stigma and discrimination from their healthcare providers as a result of their sexual orientation. Additionally, others avoid disclosure of their sexual orientation to their providers for fear of mistreatment. With the increasing number of lesbian, gay, bisexual, and transgender (LGBT) veterans seeking care from the Veterans Health Administration (VHA), it is important to understand lesbian veterans' experiences with stigma, discrimination, and disclosure of sexual orientation. This article examines lesbian veterans' experiences with perceived stigma and discrimination in VHA healthcare, their perspectives on disclosure of sexual orientation to VHA providers, and their recommendations for improvements in VHA healthcare to create a welcoming environment for lesbian veterans. This is a mixed methods study of twenty lesbian veterans at four VHA facilities. The women veterans participated in a one-hour interview and then completed an anonymous survey. Ten percent of lesbian veterans had experienced mistreatment from VHA staff or providers, but nearly 50% feared that their Veterans Affairs (VA) providers would mistreat them if they knew about their sexual orientation. A majority of lesbian veterans (70%) believed that VHA providers should never ask about sexual orientation or should only ask if the veteran wanted to discuss it. A majority (80%) believed the VHA had taken steps to create a welcoming environment for LBGT veterans. Though many lesbian veterans have fears of stigma and discrimination in the context of VHA care, few have experienced this. Most lesbian veterans believed the VHA was trying to create a welcoming environment for its LGBT veterans. Future research should focus on expanding this study to include a larger and more diverse sample of lesbian, gay, bisexual, and transgender veterans receiving care at VA facilities across the country.

  12. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth.

    Science.gov (United States)

    Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W; Hill, Anita J; Williams, Timothy; Doonan, Christian; Takahashi, Masahide

    2017-03-01

    The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.

  13. Influence of Electrotactile Tongue Feedback on Controlling Upright Stance during Rotational and/or Translational Sway-referencing with Galvanic Vestibular Stimulation

    Science.gov (United States)

    Wood, Scott J.; Tyler, Mitchell E.; Bach-y-Rita, Paul; MacDougall, Hamish G.; Moore, Steven T.; Stallings, Valerie L.; Paloski, William H.; Black, F. Owen

    2007-01-01

    Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y-Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. MacDougall et al. (2006) recently demonstrated that unpredictably varying Galvanic vestibular stimulation (GVS) significantly increased anterior-posterior (AP) sway during rotational sway referencing with eyes closed. The purpose of this study was to assess the influence of electrotactile feedback on postural control performance with pseudorandom binaural bipolar GVS. Postural equilibrium was measured with a computerized hydraulic platform in 10 healthy adults (6M, 4F, 24-65 y). Tactile feedback (TF) of pitch and roll body orientation was derived from a two-axis linear accelerometer mounted on a torso belt and displayed on a 144-point electrotactile array held against the anterior dorsal tongue (BrainPort, Wicab, Inc., Middleton, WI). Subjects were trained to use TF by voluntarily swaying to draw figures on their tongue, both with and without GVS. Subjects were required to keep the intraoral display in their mouths on all trials, including those that did not provide TF. Subjects performed 24 randomized trials (20 s duration with eyes closed) including four support surface conditions (fixed, rotational sway-referenced, translating the support surface proportional to AP sway, and combined rotational-translational sway-referencing), each repeated twice with and without GVS, and with combined GVS and TF. Postural performance was assessed using deviations from upright (peak-to-peak and RMS sway) and convergence toward stability limits (time and distance to base of support boundaries). Postural stability was impaired with GVS in all platform conditions, with larger decrements in performance during trials with rotation sway

  14. Factors associated with shift work disorder in nurses working with rapid-rotation schedules in Japan: the nurses' sleep health project.

    Science.gov (United States)

    Asaoka, Shoichi; Aritake, Sayaka; Komada, Yoko; Ozaki, Akiko; Odagiri, Yuko; Inoue, Shigeru; Shimomitsu, Teruichi; Inoue, Yuichi

    2013-05-01

    Workers who meet the criteria for shift work disorder (SWD) have elevated levels of risk for various health and behavioral problems. However, the impact of having SWD on shiftworkers engaged in rapid-rotation schedules is unknown. Moreover, the risk factors for the occurrence of SWD remain unclear. To clarify these issues, we conducted a questionnaire-based, cross-sectional survey on a sample of shiftworking nurses. Responses were obtained from 1202 nurses working at university hospitals in Tokyo, Japan, including 727 two-shift workers and 315 three-shift workers. The questionnaire included items relevant to age, gender, family structure, work environment, health-related quality of life (QOL), diurnal type, depressive symptoms, and SWD. Participants who reported insomnia and/or excessive sleepiness for at least 1 mo that was subjectively relevant to their shiftwork schedules were categorized as having SWD. The prevalence of SWD in the sampled shiftworking nurses was 24.4%; shiftworking nurses with SWD showed lower health-related QOL and more severe depressive symptoms, with greater rates of both actual accidents/errors and near misses, than those without SWD. The results of logistic regression analyses showed that more time spent working at night, frequent missing of nap opportunities during night work, and having an eveningness-oriented chronotype were significantly associated with SWD. The present study indicated that SWD might be associated with reduced health-related QOL and decreased work performance in shiftworking nurses on rapid-rotation schedules. The results also suggested that missing napping opportunities during night work, long nighttime working hours, and the delay of circadian rhythms are associated with the occurrence of SWD among shiftworking nurses on rapid-rotation schedules.

  15. Pole orientation of 16 Psyche by two independent methods

    Science.gov (United States)

    Tedesco, E. F.; Taylor, R. C.

    1985-01-01

    Nineteen new lightcurves of 16 Psyche are presented along with a pole orientation derived using two independent methods, namely, photometric astrometry and magnitude-amplitude-shape-aspect. The pole orientations found using these two methods agree to within 4 deg. The results from applying photometric astrometry were prograde rotation, a sidereal period of 0.1748143 days + or - 0.0000003 days, and a pole at longitude 223 deg and latitude +37 deg, with an uncertainty of 10 deg, and, from applying magnitude-amplitude-shape-aspect a pole at 220 + or - 1 deg, +40 + or - 4 deg, and a modeled triaxial ellipsoid shape (a greater than b greater than c) and a/b = 1.33 + or - 0.07. The discrepancy between the high-pole latitude found here and the low latitudes reported by Lupishko et al. (1982) and Zhou and Yang (1982) is discussed.

  16. Accurate Molecular Orientation Analysis Using Infrared p-Polarized Multiple-Angle Incidence Resolution Spectrometry (pMAIRS) Considering the Refractive Index of the Thin Film Sample.

    Science.gov (United States)

    Shioya, Nobutaka; Shimoaka, Takafumi; Murdey, Richard; Hasegawa, Takeshi

    2017-06-01

    Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a powerful tool for analyzing the molecular orientation in an organic thin film. In particular, pMAIRS works powerfully for a thin film with a highly rough surface irrespective of degree of the crystallinity. Recently, the optimal experimental condition has comprehensively been revealed, with which the accuracy of the analytical results has largely been improved. Regardless, some unresolved matters still remain. A structurally isotropic sample, for example, yields different peak intensities in the in-plane and out-of-plane spectra. In the present study, this effect is shown to be due to the refractive index of the sample film and a correction factor has been developed using rigorous theoretical methods. As a result, with the use of the correction factor, organic materials having atypical refractive indices such as perfluoroalkyl compounds ( n = 1.35) and fullerene ( n = 1.83) can be analyzed with high accuracy comparable to a compound having a normal refractive index of approximately 1.55. With this improved technique, we are also ready for discriminating an isotropic structure from an oriented sample having the magic angle of 54.7°.

  17. The association between obesity and mental rotation ability in an adolescent sample.

    Science.gov (United States)

    Kaltner, Sandra; Schulz, Anja; Jansen, Petra

    Obesity has been related to deficient mental rotation performance. We assessed object-based and egocentric MR tasks in 19 obese and 19 normal-weight participants. Results showed slower response times of obese adolescents only for high angular disparities. This finding might emerge because of impairments in working memory, motor skills or perspective taking processes in obese youth. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  18. USING ForeCAT DEFLECTIONS AND ROTATIONS TO CONSTRAIN THE EARLY EVOLUTION OF CMEs

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Colaninno, R. C.; Vourlidas, A.

    2016-01-01

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs from the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.

  19. Yield trends in the long-term crop rotation with organic and inorganic fertilisers on Alisols in Mata (Rwanda)

    NARCIS (Netherlands)

    Rutunga, V.; Neel, H.

    2006-01-01

    A crop rotation system with various species was established on Alisols at Mata grassland site, oriental side of Zaire-Nile Watershed Divide (CZN), Rwanda. Inorganic and organic fertilizers were applied in various plots under randomized complete blocs with three replicates. Crop yield data for each

  20. The orientation-averaged aspiration efficiency of IOM-like personal aerosol samplers mounted on bluff bodies.

    Science.gov (United States)

    Paik, Samuel Y; Vincent, James H

    2004-01-01

    This paper describes two sets of experiments that were intended to characterize the orientation-averaged aspiration efficiencies of IOM samplers mounted on rotating bluff bodies. IOM samplers were mounted on simplified, three-dimensional rectangular bluff bodies that were rotated horizontally at a constant rate. Orientation-averaged aspiration efficiencies (A360) were measured as a function of Stokes' number (St), velocity ratio (R) and dimension ratio (r). Aspiration efficiency (A) is the efficiency with which particles are transported from the ambient air into the body of a sampler, and A360 is A averaged over all orientations to the wind. St is a dimensionless variable that represents particle inertia, R is the ratio of the air velocity in the freestream and that at the plane of the sampler's entry orifice, and r is the ratio of the sampler's orifice diameter and the bluff body's width. The first set of experiments were instrumental in establishing a hierarchy of effects on orientation-averaged A. It was clear that compared to r, St had a much larger influence on A. It was also clear, however, that the effects of St were overpowered by the effects of R in many cases. As concluded in previous studies, R and St were considered the most important factors in determining A, even for A360. The second set of experiments investigated A360 of IOM samplers for a much wider range of r than examined in previous research. Two important observations were made from the experimental results. One was that the A360 of IOM samplers, as a function of St, did not change for an r-range of 0.066-0.4. This meant that an IOM sampler mounted on a near life-size mannequin would measure the same aerosol concentration as one not mounted on anything. The second observation was that the aspiration efficiency curve of the IOM sampler was close to the inhalability curve. This gave further evidence that the bluff body did not play a major role in influencing A360, as the IOM samplers, in these

  1. Historical Variations in Inner Core Rotation and Polar Motion at Decade Timescales

    Science.gov (United States)

    Dumberry, M.

    2005-12-01

    Exchanges of angular momentum between the mantle, the fluid core and the solid inner core result in changes in the Earth's rotation. Torques in the axial direction produce changes in amplitude, or changes in length of day, while torques in the equatorial direction lead to changes in orientation of the rotation vector with respect to the mantle, or polar motion. In this work, we explore the possibility that a combination of electromagnetic and gravitational torques on the inner core can reproduce the observed decadal variations in polar motion known as the Markowitz wobble. Torsional oscillations, which involve azimuthal motions in the fluid core with typical periods of decades, entrain the inner core by electromagnetic traction. When the inner core is axially rotated, its surfaces of constant density are no longer aligned with the gravitational potential from mantle density heterogeneities, and this results in a gravitational torque between the two. The axial component of this torque has been previously described and is believed to be partly responsible for decadal changes in length of day. In this work, we show that it has also an equatorial component, which produces a tilt of the inner core and results in polar motion. The polar motion produced by this mechanism depends on the density structure in the mantle, the rheology of the inner core, and the time-history of the angle of axial misalignment between the inner core and the mantle. We reconstruct the latter using a model of torsional oscillations derived from geomagnetic secular variation. From this time-history, and by using published models of mantle density structure, we show that we can reproduce the salient characteristics of the Markowitz wobble: an eccentric decadal polar motion of 30-50 milliarcsecs oriented along a specific longitude. We discuss the implications of this result, noting that a match in both amplitude and phase of the observed Markowitz wobble allows the recovery of the historical

  2. Effect of glass-forming biopreservatives on head group rotational dynamics in freeze-dried phospholipid bilayers: A 31P NMR study

    Science.gov (United States)

    Jain, P.; Sen, S.; Risbud, S. H.

    2009-07-01

    P31 NMR spectroscopy has been used to elucidate the role of glass-forming sugars in the preservation of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers. P31 wideline NMR spectra of freeze-dried pure DPPC, DPPC/trehalose, DPPC/glucose, and DPPC/hydroxyethyl starch (HES) mixtures collected in the temperature range of 25-80 °C have been simulated to obtain quantitative information about rotational dynamics and orientation of the lipid head groups in these media. In the case of pure DPPC, DPPC/glucose, and DPPC/HES, the gel-to-liquid crystalline phase transition of DPPC bilayer is characterized by a sudden increase in the rate of rotational diffusion of the PO4 head groups near 40 °C. The corresponding rotational jump frequency increases from a few kilohertz in the gel phase to at least several megahertz in the liquid crystalline phase. On the other hand, in the case of DPPC/trehalose mixture the temperature of this onset of rapid head group dynamics is increased by ˜10 °C. Trehalose reduces the lipid head group motions most effectively in the temperature range of T ≤50 °C relevant for biopreservation. Additionally, and possibly more importantly, trehalose is found to strongly restrict any change in the orientation of the diffusion axis of the PO4 head groups during the phase transformation. This unique ability of trehalose to maintain the dynamical and orientational rigidity of lipid head groups is likely to be responsible for its superior ability in biopreservation.

  3. Investigation the Relationship between Goal Orientation and Parenting Styles among Sample of Jordanian University Students

    Science.gov (United States)

    Mahasneh, Ahmad M.

    2014-01-01

    The primary purpose of this study is to examine the relationship between goal orientation and parenting styles. Participants of the study completed 650 goal orientation and parenting styles questionnaires. Means, standard deviations, regression and correlation analysis were used for data in establishing the dependence of the two variables. Results…

  4. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Arghavan Farzadi

    Full Text Available Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z, on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.

  5. Giant Polarization Rotation in BiFeO3/SrTiO3 Thin Films.

    Science.gov (United States)

    Langner, M. C.; Chu, Y. H.; Martin, L. M.; Gajek, M.; Ramesh, R.; Orenstein, J.

    2008-03-01

    We use optical second harmonic generation to probe dynamics of the ferroelectric polarization in (111) oriented BiFeO3 thin films grown on SrTiO3 substrates. The second harmonic response indicates 3m point group symmetry and is consistent with a spontaneous polarization normal to the surface of the film. We measure large changes in amplitude and lowering of symmetry, consistent with polarization rotation, when modest electric fields are applied in the plane of the film. At room temperature the rotation is an order of magnitude larger than expected from reported values of the dielectric constant and increases further (as 1/T) as temperature is lowered. We propose a substrate interaction model to explain these results.

  6. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    International Nuclear Information System (INIS)

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-01-01

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field

  7. Dependence of extinction cross-section on incident polarization state and particle orientation

    International Nuclear Information System (INIS)

    Yang Ping; Wendisch, Manfred; Bi Lei; Kattawar, George; Mishchenko, Michael; Hu, Yongxiang

    2011-01-01

    This note reports on the effects of the polarization state of an incident quasi-monochromatic parallel beam of radiation and the orientation of a hexagonal ice particle with respect to the incident direction on the extinction process. When the incident beam is aligned with the six-fold rotational symmetry axis, the extinction is independent of the polarization state of the incident light. For other orientations, the extinction cross-section for linearly polarized light can be either larger or smaller than its counterpart for an unpolarized incident beam. Therefore, the attenuation of a quasi-monochromatic radiation beam by an ice cloud depends on the polarization state of the beam if ice crystals within the cloud are not randomly oriented. Furthermore, a case study of the extinction of light by a quartz particle is also presented to illustrate the dependence of the extinction cross-section on the polarization state of the incident light.

  8. A survey and comparison of heuristics for the 2D oriented on-line ...

    African Journals Online (AJOL)

    The two dimensional oriented on-line strip packing problem requires items to be packed, one at a time, into a strip of fixed width and infinite height so as to minimise the total height of the packing. The items may neither be rotated nor overlap. In this paper, ten heuristics from the literature are considered for the special case ...

  9. Rotation sequence to report humerothoracic kinematics during 3D motion involving large horizontal component: application to the tennis forehand drive.

    Science.gov (United States)

    Creveaux, Thomas; Sevrez, Violaine; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2018-03-01

    The aim of this study was to examine the respective aptitudes of three rotation sequences (Y t X f 'Y h '', Z t X f 'Y h '', and X t Z f 'Y h '') to effectively describe the orientation of the humerus relative to the thorax during a movement involving a large horizontal abduction/adduction component: the tennis forehand drive. An optoelectronic system was used to record the movements of eight elite male players, each performing ten forehand drives. The occurrences of gimbal lock, phase angle discontinuity and incoherency in the time course of the three angles defining humerothoracic rotation were examined for each rotation sequence. Our results demonstrated that no single sequence effectively describes humerothoracic motion without discontinuities throughout the forehand motion. The humerothoracic joint angles can nevertheless be described without singularities when considering the backswing/forward-swing and the follow-through phases separately. Our findings stress that the sequence choice may have implications for the report and interpretation of 3D joint kinematics during large shoulder range of motion. Consequently, the use of Euler/Cardan angles to represent 3D orientation of the humerothoracic joint in sport tasks requires the evaluation of the rotation sequence regarding singularity occurrence before analysing the kinematic data, especially when the task involves a large shoulder range of motion in the horizontal plane.

  10. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator.

    Science.gov (United States)

    Sutter, John P; Boada, Roberto; Bowron, Daniel T; Stepanov, Sergey A; Díaz-Moreno, Sofía

    2016-08-01

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the 'glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni  K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO 3 ) 2 . The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  11. Oriented Structure of Pentablock Copolymers Induced by Solution Extrusion

    Science.gov (United States)

    Harada, Tamotsu; Bates, Frank S.; Lodge, Timothy P.

    2002-03-01

    Highly oriented structure of a poly(styrene-co-butadiene) pentablock copolymer (Mw; 104,700 g/mol, weight percentage of polybutadiene blocks; 29 wt of concentrated solutions. The pentablock copolymer was dissolved into mixtures of toluene and heptane, and the polymer concentration ranged from 40 wt extrusion, the pentablock copolymer was solidified either by coagulation in methanol or by evaporation of the solvent. Interestingly, a highly oriented lamellar structure was confirmed through the small angle X-ray scattering over a specific range of heptane composition, which is a good solvent for polybutadiene, although the hexagonal cylinder morphology was identified for the melt sample. The transition from the oriented lamellar to highly oriented cylinder structure was observed by annealing the samples at temperatures above the glass transition temperature of polystyrene. Moreover, a transition from parallel to perpendicular orientation in the lamellar state was observed with an increase of the extrusion shear rate. A comparison between pentablock and triblock copolymers will be also discussed.

  12. Orientation Characterisation of Aerospace Materials by Spatially Resolved Acoustic Spectroscopy

    International Nuclear Information System (INIS)

    Li, Wenqi; Coulson, Jethro; Smith, Richard J; Clark, Matt; Somekh, Michael G; Sharples, Steve D; Aveson, John W

    2014-01-01

    Material characteristics in metals such as strength, stiffness and fracture resistance are strongly related to the underlying microstructure. The crystallographic structure and orientation are related to the ultrasonic properties through the stiffness matrix. In individual grains it is possible to analytically determine the ultrasonic velocity from the orientation and stiffness, or determine the stiffness from the known orientation and measured velocity. In this paper we present a technique for imaging the crystallographic orientation of grains in metals using spatially resolved acoustic spectroscopy (SRAS) and a novel inverse solver that can determine the crystallographic orientation from the known stiffness matrix for the material and the SRAS velocity measurement. Previously we have shown the ability of this technique to determine the orientation on single crystal nickel samples; we extended the technique to multigrain industrial metals, such as aluminium, nickel and Inconel. The comparison between SRAS and electron backscatter diffraction (EBSD) on the nickel sample is presented. SRAS is a fast, accurate, quantitative and robust technique for imaging material microstructure and orientation over a wide range of scales and industrial materials

  13. Effect of rotation on the elastic moduli of solid 4He

    Science.gov (United States)

    Tsuiki, T.; Takahashi, D.; Murakawa, S.; Okuda, Y.; Kono, K.; Shirahama, K.

    2018-02-01

    We report measurements of elastic moduli of hcp solid 4He down to 15 mK when the samples are rotated unidirectionally. Recent investigations have revealed that the elastic behavior of solid 4He is dominated by gliding of dislocations and pinning of them by 3He impurities, which move in the solidlike Bloch waves (impuritons). Motivated by the recent controversy of torsional oscillator studies, we have performed direct measurements of shear and Young's moduli of annular solid 4He using pairs of quarter-circle-shape piezoelectric transducers (PZTs) while the whole apparatus is rotated with angular velocity Ω up to 4 rad/s. We have found that shear modulus μ is suppressed by rotation below 80 mK, when shear strain applied by PZT exceeds a critical value, above which μ decreases because the shear strain unbinds dislocations from 3He impurities. The rotation-induced decrement of μ at Ω =4 rad/s is about 14.7(12.3)% of the total change of temperature dependent μ for solid samples of pressure 3.6(5.4) MPa. The decrements indicate that the probability of pinning of 3He on dislocation segment G decreases by several orders of magnitude. We propose that the motion of 3He impuritons under rotation becomes strongly anisotropic by the Coriolis force, resulting a decrease in G for dislocation lines aligning parallel to the rotation axis.

  14. Impacts of Rotation Schemes on Ground-Dwelling Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2016-10-01

    Crop rotation alters agroecosystem diversity temporally, and increasing the number of crops in rotation schemes can increase crop yields and reduce reliance on pesticides. We hypothesized that increasing the number of crops in annual rotation schemes would positively affect ground-dwelling beneficial arthropod communities. During 2012 and 2013, pitfall traps were used to measure activity-density and diversity of ground-dwelling communities within three previously established, long-term crop rotation studies located in Wisconsin and Illinois. Rotation schemes sampled included continuous corn, a 2-yr annual rotation of corn and soybean, and a 3-yr annual rotation of corn, soybean, and wheat. Insects captured were identified to family, and non-insect arthropods were identified to class, order, or family, depending upon the taxa. Beneficial arthropods captured included natural enemies, granivores, and detritivores. The beneficial community from continuous corn plots was significantly more diverse compared with the community in the 2-yr rotation, whereas the community in the 3-yr rotation did not differ from either rotation scheme. The activity-density of the total community and any individual taxa did not differ among rotation schemes in either corn or soybean. Crop species within all three rotation schemes were annual crops, and are associated with agricultural practices that make infield habitat subject to anthropogenic disturbances and temporally unstable. Habitat instability and disturbance can limit the effectiveness and retention of beneficial arthropods, including natural enemies, granivores, and detritivores. Increasing non-crop and perennial species within landscapes in conjunction with more diverse rotation schemes may increase the effect of biological control of pests by natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Facet orientation and tropism: associations with spondylolysis.

    Science.gov (United States)

    Kalichman, Leonid; Guermazi, Ali; Li, Ling; Hunter, David J; Suri, Pradeep

    2010-04-01

    Cross-sectional study. To evaluate the association between lumbar spine facet joint orientation, facet joint tropism, and spondylolysis identified by multidetector computed tomography (CT) in the community-based Framingham Heart Study. The association between lumbar spondylolysis and facet orientation and tropism remains unclear. This study was an ancillary project to the Framingham Heart Study. Three thousand five hundred twenty-nine participants of the Framingham Heart Study aged 40 to 80 years underwent multidetector CT imaging to assess aortic calcification. One hundred ninety-one subjects were included in this ancillary study. Facet joint features and spondylolysis were evaluated on CT scans. The final analyzed sample included 104 men with mean age 51.90+/-11.25 years and 84 women with mean age 53.61+/-10.20 years. The association between spondylolysis and facet orientation and tropism was examined using univariate and multivariate analyses. Spondylolysis was prevalent in 11.5% of the total population. chi2 test demonstrated a significant sex difference in prevalence of spondylolysis (P=0.0154), with almost 3 times higher prevalence among men. There was no statistically significant difference in facet orientation and continuous facet tropism between individuals with and without spondylolysis at the L5 level (P=0.49 to 0.91). After adjustment for age, sex, and body mass index, no significant association between the occurrence of spondylolysis and facet orientation and tropism was found. In the studied sample the prevalence of facet joint osteoarthritis was significantly higher in individuals with spondylolysis than in those without spondylolysis at both sides of L4-L5 spinal level (P=0.044 at the right side and P=0.003 at the left side) and at left side of L5-S1 level (P=0.038). We did not find an association between facet orientation, facet tropism, and spondylolysis. One of the possible explanations for this is that the high prevalence of facet joint

  16. Work orientations in the job demands-resources model

    NARCIS (Netherlands)

    Demerouti, E.; Bakker, A.B.; Fried, Y.

    2012-01-01

    Purpose – This study aims to examine the role of instrumental vs intrinsic work orientations in the job demands-resources (JD-R) model. Design/methodology – Using a sample of 123 employees, the authors investigated longitudinally whether an instrumental work orientation moderates the motivational

  17. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  18. Disc valve for sampling erosive process streams

    Science.gov (United States)

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1986-01-07

    A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.

  19. Growth and Analysis of Highly Oriented (11n) BCSCO Films for Device Research

    Science.gov (United States)

    Raina, K. K.; Pandey, R. K.

    1995-01-01

    Films of BCSCO superconductor of the type Bi2CaSr2Cu2O(x), have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO3 substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880 C) of Bi2CaSr2Cu2O8. Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observed to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (greater than 860 C) also encourage to the formation of this phase. XRD measurements show that the films grown on (110) NdGaO3 have a preferred (11n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi2CaSr2Cu2O8 phase films on (001) NdGaO3 substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO3 substrate orientation. The best values, zero resistance (T(sab co)) and critical current density obtained are 87 K and 10(exp 5) A/sq cm respectively.

  20. Growth and analysis of highly oriented (11n) BCSCO films for device research

    International Nuclear Information System (INIS)

    Raina, K.K.; Pandey, R.K.

    1994-01-01

    Films of BCSCO superconductor of the type Bi 2 CaSr 2 Cu 2 O x have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO 3 substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880 degrees C) of Bi 2 CaSr 2 Cu 2 O 8 . Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observed to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (>860 degrees C) also encourage to the formation of this phase. XRD measurements show that the films grown on (110) NdGaO 3 have a preferred (11n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi 2 CaSr 2 Cu 2 O 8 phase films on (001) NdGaO 3 substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO 3 substrate orientation. The best values of zero resistance (T co ) and critical current density obtained are 87 K and 10 5 A/cm 2 , respectively

  1. Magnetic tri-axial orientation in (Y1-xErx)2Ba4Cu7O15-y superconductors

    International Nuclear Information System (INIS)

    Horii, S.; Okuhira, S.; Yamaki, M.; Haruta, M.; Maeda, T.; Shimoyama, J.

    2011-01-01

    (Y 1-x Er x ) 2 Ba 4 Cu 7 O 15-y [(Y,Er)247] was synthesized for clarifying a magnetic role of Er ion. The three magnetization axes of (Y,Er)247 were obtained from tri-axial orientation using a modulated rotation magnetic field. Magnetic anisotropy of Er ion is roughly ten times higher than that for Y247 at room temperature. Importance of rare-earth ions was shown for reduction of required magnetic fields in the tri-axial magnetic orientation. We report the tri-axial grain-orientation effects under a modulated rotation magnetic field for (Y 1-x Er x ) 2 Ba 4 Cu 7 O y [(Y, Er)247]. The magnetic easy axis at room temperature was drastically changed around x ∼ 0.1; however, the Er-doping levels for the conversion of magnetic easy axes from the c-axis to the ab-direction and from the a- to b-axes were quite different. Tri-axial single-ion magnetic anisotropy of Er 3+ was roughly 10 times greater than tri-axial magnetic anisotropy generated by both the superconducting CuO 2 plane and the blocking Cu-O chain layer. An appropriate choice of rare-earth (RE) ions in RE-based cuprate superconductors enables the reduction of the required magnetic field for the production of bulks and thick films based on the magnetic orientation technique.

  2. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  3. Effects of rotation on flow in an asymmetric rib-roughened duct: LES study

    International Nuclear Information System (INIS)

    Borello, D.; Salvagni, A.; Hanjalić, K.

    2015-01-01

    Highlights: • Ribbed duct reproduces most of the phenomena occurring in internal cooling channels of blade turbines (rotor and stator). • LES analysis of the flow in a ribbed duct was carried out aiming at detecting the influence of rotation on the turbulence. • In destabilizing conditions, rotation enhances turbulence close to the ribbed duct thus enhancing removal of fluid from the wall and improving mixing. • In stabilizing conditions, turbulence is suppressed by rotation close to the ribbed wall. - Abstract: We report on large-eddy simulations (LES) of fully-developed asymmetric flow in a duct of a rectangular cross-section in which square-sectioned, equally-spaced ribs oriented perpendicular to the flow direction, were mounted on one of the walls. The configuration mimics a passage of internal cooling of a gas-turbine blade. The duct flow at a Reynolds number Re = 15,000 (based on hydraulic diameter D_h and bulk flow velocity U_0) was subjected to clock-wise (stabilising) and anti-clock-wise (destabilising) orthogonal rotation at a moderate rotational number Ro = ΩD_h/U_0 = 0.3, where Ω is the angular velocity. The LES results reproduced well the available experimental results of Coletti et al. (2011) (in the mid-plane adjacent to the ribbed wall) and provided insight into the whole duct complementing the reference PIV measurement. We analyzed the effects of stabilising and destabilising rotation on the flow, vortical structures and turbulence statistics by comparison with the non-rotating case. The analysis includes the identification of depth of penetration of the rib-effects into the bulk flow, influence of flow three-dimensionality and the role of secondary motions, all shown to be strongly affected by the rotation and its direction.

  4. Report of the IAU Working Group on cartographic coordinates and rotational elements: 2009

    Science.gov (United States)

    Archinal, Brent A.; A’Hearn, Michael F.; Bowell, Edward; Conrad, Al; Consolmagno, Guy J.; Courtin, Regis; Fukushima, Toshio; Hestroffer, Daniel; Hilton, James L.; Krasinsky, Georgij A.; Neumann, Gregory; Oberst, Jurgen; Seidelmann, P. Kenneth; Stooke, Philip; Tholen, David J.; Thomas, Peter C.; Williams, Iwan P.

    2010-01-01

    Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars’ satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) Šteins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the

  5. Report of the IAU Working Group on cartographic coordinates and rotational elements: 2009

    Science.gov (United States)

    Archinal, B.A.; A'Hearn, M.F.; Bowell, E.; Conrad, A.; Consolmagno, G.J.; Courtin, R.; Fukushima, T.; Hestroffer, D.; Hilton, J.L.; Krasinsky, G.A.; Neumann, G.; Oberst, J.; Seidelmann, P.K.; Stooke, P.; Tholen, D.J.; Thomas, P.C.; Williams, I.P.

    2010-01-01

    Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars’ satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) Šteins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general

  6. Gender-Specific Effects of Artificially Induced Gender Beliefs in Mental Rotation

    Science.gov (United States)

    Heil, Martin; Jansen, Petra; Quaiser-Pohl, Claudia; Neuburger, Sarah

    2012-01-01

    Men outperform women in the Mental Rotation Test (MRT) by about one standard deviation. The present study replicated a gender belief account [Moe, A., & Pazzaglia, F. (2006). Following the instructions! Effects of gender beliefs in mental rotation. Learning and Individual Differences, 16, 369-377.] for (part of) this effect. A sample of 300…

  7. Examining weight and eating behavior by sexual orientation in a sample of male veterans.

    Science.gov (United States)

    Bankoff, Sarah M; Richards, Lauren K; Bartlett, Brooke; Wolf, Erika J; Mitchell, Karen S

    2016-07-01

    Eating disorders are understudied in men and in sexual minority populations; however, extant evidence suggests that gay men have higher rates of disordered eating than heterosexual men. The present study examined the associations between sexual orientation, body mass index (BMI), disordered eating behaviors, and food addiction in a sample of male veterans. Participants included 642 male veterans from the Knowledge Networks-GfK Research Panel. They were randomly selected from a larger study based on previously reported trauma exposure; 96% identified as heterosexual. Measures included the Eating Disorder Diagnostic Scale, the Yale Food Addiction Scale, and self-reported height and weight. Heterosexual and sexual minority men did not differ significantly in terms of BMI. However, gay and bisexual men (n=24) endorsed significantly greater eating disorder symptoms and food addiction compared to heterosexual men. Our findings that sexual minority male veterans may be more likely to experience eating disorder and food addiction symptoms compared to heterosexual male veterans highlight the importance of prevention, assessment, and treatment efforts targeted to this population. Published by Elsevier Inc.

  8. Randomly oriented twin domains in electrodeposited silver dendrites

    Directory of Open Access Journals (Sweden)

    Ivanović Evica R.

    2015-01-01

    Full Text Available Silver dendrites were prepared by electrochemical deposition. The structures of Ag dendrites, the type of twins and their distribution were investigated by scanning electron microscopy (SEM, Z-contrast high angle annular dark field transmission electron microscopy (HAADF, and crystallografically sensitive orientation imaging microscopy (OIM. The results revealed that silver dendrites are characterized by the presence of randomly distributed 180° rotational twin domains. The broad surface of dendrites was of the {111} type. Growth directions of the main dendrite stem and all branches were of type. [Projekat Ministarstva nauke Republike Srbije, br. 172054

  9. The interaction of two coronal mass ejections: Influence of relative orientation

    Energy Technology Data Exchange (ETDEWEB)

    Lugaz, N.; Farrugia, C. J.; Schwadron, N. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Manchester IV, W. B. [Center for Space Environment Modeling, University of Michigan, Ann Arbor, MI (United States)

    2013-11-20

    We report on a numerical investigation of two coronal mass ejections (CMEs) that interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90° from one simulation to the next. Each magnetohydrodynamic simulation is performed in three dimensions with the Space Weather Modeling Framework in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180°. Due to reconnection, the second CME only appears as an extended 'tail', and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic-cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.

  10. Rotational manipulation of single cells and organisms using acoustic waves.

    Science.gov (United States)

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-03-23

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

  11. Mental rotation and the motor system: embodiment head over heels.

    Science.gov (United States)

    Krüger, Markus; Amorim, Michel-Ange; Ebersbach, Mirjam

    2014-01-01

    We examined whether body parts attached to abstract stimuli automatically force embodiment in a mental rotation task. In Experiment 1, standard cube combinations reflecting a human pose were added with (1) body parts on anatomically possible locations, (2) body parts on anatomically impossible locations, (3) colored end cubes, and (4) simple end cubes. Participants (N=30) had to decide whether two simultaneously presented stimuli, rotated in the picture plane, were identical or not. They were fastest and made less errors in the possible-body condition, but were slowest and least accurate in the impossible-body condition. A second experiment (N=32) replicated the results and ruled out that the poor performance in the impossible-body condition was due to the specific stimulus material. The findings of both experiments suggest that body parts automatically trigger embodiment, even when it is counterproductive and dramatically impairs performance, as in the impossible-body condition. It can furthermore be concluded that body parts cannot be used flexibly for spatial orientation in mental rotation tasks, compared to colored end cubes. Thus, embodiment appears to be a strong and inflexible mechanism that may, under certain conditions, even impede performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses.

    Science.gov (United States)

    Bonaque-González, Sergio; Ríos, Susana; Amigó, Alfredo; López-Gil, Norberto

    2015-10-01

    To evaluate visual quality when changing the intraocular orientation of the Lentis Mplus LS-312MF nonrotational symmetric +3.00 diopters aspheric multifocal intraocular lens ([IOL] Oculentis GmbH, Berlin, Germany) in normal eyes. An artificial eye was used to measure the in vitro wavefront of the IOL. The corneal topography of 20 healthy patients was obtained. For each eye, a computational analysis simulated the implantation of the IOL. The modulation transfer function (MTF) and an image quality parameter (visually modulated transfer function [VSMTF] metric) were calculated for a 5.0-mm pupil and for three conditions: distance, intermediate, and near vision. The procedure was repeated for each eye after a rotation of the IOL with respect to the cornea from 0° to 360° in 1° steps. Statistical analysis showed significant differences in mean VSMTF values between orientations for distance vision. Optimal orientation of the IOL (different for each eye) showed a mean improvement of 58% ± 19% (range: 20% to 121%) in VSMTF values with respect to the worst possible orientation. For these orientations, intermediate and near vision quality were statistically indistinguishable. The MTFs were different between orientations, showing a mean difference of approximately 5 cycles per degree in the maximum spatial frequencies that can be transferred between the best and the worst orientations for distance vision. The results suggest that implantation of this nonrotational symmetric IOL should improve visual outcomes if it is oriented to coincide with a customized meridian. A simple, practical method is proposed to find an approximation to the angle that an Mplus IOL should be inserted. Copyright 2015, SLACK Incorporated.

  13. Effects of Rotational Motion in Robotic Needle Insertion

    Science.gov (United States)

    Ramezanpour, H.; Yousefi, H.; Rezaei, M.; Rostami, M.

    2015-01-01

    Background Robotic needle insertion in biological tissues has been known as one the most applicable procedures in sampling, robotic injection and different medical therapies and operations. Objective In this paper, we would like to investigate the effects of angular velocity in soft tissue insertion procedure by considering force-displacement diagram. Non-homogenous camel liver can be exploited as a tissue sample under standard compression test with Zwick/Roell device employing 1-D axial load-cell. Methods Effects of rotational motion were studied by running needle insertion experiments in 5, 50 and 200 mm/min in two types of with or without rotational velocity of 50, 150 and 300 rpm. On further steps with deeper penetrations, friction force of the insertion procedure in needle shaft was acquired by a definite thickness of the tissue. Results Designed mechanism of fixture for providing different frequencies of rotational motion is available in this work. Results for comparison of different force graphs were also provided. Conclusion Derived force-displacement graphs showed a significant difference between two procedures; however, tissue bleeding and disorganized micro-structure would be among unavoidable results. PMID:26688800

  14. On the determination of heliographic positions and rotation velocities of sunspots. Pt. 2

    International Nuclear Information System (INIS)

    Balthasar, H.

    1983-01-01

    Using sunspot positions of small sunspots observed at Debrecen and Locarno as well as positions of recurrent sunspots taken from the Greenwich Photoheliographic Results (1940-1976) the influence of the Wilson depression on the rotation velocities was investigated. It was found that the Wilson depression can be determined by minimizing errors of the rotation velocities or minimizing the differences of rotation velocities determined from disk passages and central meridian passages. The Wilson depressions found were between 765 km and 2500 km for the first sample while they were between 0 km and several 1000 km for the second sample. The averaged Wilson depression for the second sample is between 500 km and 965 km depending on the reduction method. A dependence of the Wilson depression on the age of the spots investigated seems not to exist. (orig.)

  15. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    Science.gov (United States)

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  16. Optimization of a Michelson interferometer with a rotating retroreflector in opitcal design, spectral resolution, and optical throughput

    International Nuclear Information System (INIS)

    Haschberger, P.; Tank, V.

    1993-01-01

    A newly designed Michelson interferometer for Fourier spectroscopy utilizes a nutating retroreflector (cube corner mirror) to generate alterations in geometrical and optical paths. The practical optomechanical design of a Fourier-transform spectrometer incorporating a rotating retroreflector for path-length alteration is considered. (The instrument has been given the name MIROR, for Michelson Interferometer with a Rotating Retroreflector.) Two parameters of the instrument are essential: the maximum optical path difference, which yields the spectral resolution of the instrument, and the diameter of the transmitted beam, which determines the throughput and hence the achievable signal-to-noise ratio. The maximum allowable beam diameter is calculated as a function of the geometry and the orientation of the rotating retroreflector and the other optical components. The geometrical configuration and the orientation of all the optical components with respect to one another are also optimized for the maximum transmitted beam diameter when the required path difference is given. A principal investigation of different possible configurations of the optical components is presented. Then a quantitative optimization for an interferometer employing a retroreflector having a 5-in. (12.7-cm) aperture diameter requiring an optical path difference of more than 10 cm (spectral resolution better than 0.1 cm -1 ) is performed. Finally a simplified but enhanced design is described. 10 refs., 15 figs

  17. Structure, deformation, and failure of flow-oriented semicrystalline polymers

    NARCIS (Netherlands)

    Schrauwen, B.A.G.; Breemen, van L.C.A.; Spoelstra, A.B.; Govaert, L.E.; Peters, G.W.M.; Meijer, H.E.H.

    2004-01-01

    This study deals with the influence of processing induced crystalline orientation on the macroscopic deformation and failure behavior of thin samples of polyethylene and polypropylene. Distribution and structure of flow-induced orientations were characterized by optical microscopy, X-ray diffraction

  18. The Hα Emission of Nearby M Dwarfs and its Relation to Stellar Rotation

    Science.gov (United States)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry; Calkins, Michael L.; Mink, Jessica

    2017-01-01

    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of Hα emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M⊙ are well-represented in our sample, with fast and slow rotators of all masses. We observe a threshold in the mass-period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that Hα activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between LHα/Lbol and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of LHα/Lbol. Our data also show a clear power-law decay in LHα/Lbol with Rossby number for slow rotators, with an index of -1.7 ± 0.1.

  19. INFLUENCE OF STORING AND TEMPERATURE ON RHEOLOGIC AND THERMOPHYSICAL PROPERTIES OF WHISKY SAMPLES

    Directory of Open Access Journals (Sweden)

    Peter Hlavac

    2013-09-01

    Full Text Available Temperature and storing time can be included between the most significant parameters that influence physical properties of food. This article deals with selected rheologic and thermophysical properties of alcohol drink whisky. Our research was oriented on measuring of rheologic and thermophysical characteristics of whisky. There were measured two types of whisky Grant s and Jim Beam from two different producers, both samples had 40 percent of alcohol content. During the experiments were analyzed rheologic parameters as dynamic viscosity, kinematic viscosity and fluidity and thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat. Selected parameters were measured in temperature range 5 to 27 C. Measurements were done on whisky samples in different days during the storage. Measuring of dynamic viscosity was performed by digital rotational viscometer Anton Paar. Principle of measuring is based on dependency of sample resistance against the probe rotation. Density of whisky samples was determined by pycnometric method. Average density at given temperature along with dynamic viscosity value was used at calculation of kinematic viscosity and fluidity was also determined. Measuring of thermophysical parameters was performed by instrument Isomet 2104 Measurement by Isomet is based on analysis of the temperature response of the measured sample to heat flow impulses. Relations of rheologic and thermophysical parameters to the temperature were made and influence of storing time was discussed. From obtained results is clear that dynamic and kinematic viscosity is decreasing exponentially with temperature and fluidity has increasing exponential progress. We found out that both whisky samples had at the beginning and after one week of storage very similar values of rheologic parameters. Very small difference in rheologic parameters of whisky samples was found after two weeks of storing. Values of dynamic and kinematic

  20. The effects of violence exposure on the development of impulse control and future orientation across adolescence and early adulthood: Time-specific and generalized effects in a sample of juvenile offenders.

    Science.gov (United States)

    Monahan, Kathryn C; King, Kevin M; Shulman, Elizabeth P; Cauffman, Elizabeth; Chassin, Laurie

    2015-11-01

    Impulse control and future orientation increase across adolescence, but little is known about how contextual factors shape the development of these capacities. The present study investigates how stress exposure, operationalized as exposure to violence, alters the developmental pattern of impulse control and future orientation across adolescence and early adulthood. In a sample of 1,354 serious juvenile offenders, higher exposure to violence was associated with lower levels of future orientation at age 15 and suppressed development of future orientation from ages 15 to 25. Increases in witnessing violence or victimization were linked to declines in impulse control 1 year later, but only during adolescence. Thus, beyond previous experiences of exposure to violence, witnessing violence and victimization during adolescence conveys unique risk for suppressed development of self-regulation.

  1. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Science.gov (United States)

    Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  2. Cell proliferation of Paramecium tetraurelia on a slow rotating clinostat

    Science.gov (United States)

    Sawai, Satoe; Mogami, Yoshihiro; Baba, Shoji A.

    Paramecium is known to proliferate faster under microgravity conditions, and slower under hypergravity. Experiments using axenic culture medium have demonstrated that hypergravity affected directly on the proliferation of Paramecium itself. In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation, Paramecium tetraurelia was grown under clinorotation (2.5 rpm) and the time course of the proliferation was investigated in detail on the basis of the logistic analysis. On the basis of the mechanical properties of Paramecium, this slow rate of the rotation appears to be enough to simulate microgravity in terms of the randomization of the cell orientation with respect to gravity. P. tetraurelia was cultivated in a closed chamber in which cells were confined without air bubbles, reducing the shear forces and turbulences under clinorotation. The chamber is made of quartz and silicone rubber film; the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method, and the latter for gas exchange. Because of the small dimension for culture space, Paramecium does not accumulate at the top of the chamber in spite of its known negative gravitactic behavior. We measured the cell density at regular time intervals without breaking the configuration of the chamber, and analyzed the proliferation parameters by fitting the data to a logistic equation. As a result, P. tetraurelia showed reduced proliferation under slow clinorotation. The saturation of the cell density as well as the maximum proliferation rate decreased, although we found no significant changes on the half maximal time for proliferation. We also found that the mean swimming velocity decreased under slow clinorotation. These results were not consistent with those under microgravity and fast rotating clinostat. This may suggest that randomization of the cell orientation performed by slow rotating clinostat has

  3. Mars geodesy, rotation and gravity

    International Nuclear Information System (INIS)

    Rosenblatt, Pascal; Dehant, Veronique

    2010-01-01

    This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars. (invited reviews)

  4. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  5. Health Orientation, Knowledge, and Attitudes toward Genetic Testing and Personalized Genomic Services: Preliminary Data from an Italian Sample

    Directory of Open Access Journals (Sweden)

    Serena Oliveri

    2016-01-01

    Full Text Available Objective. The study aims at assessing personality tendencies and orientations that could be closely correlated with knowledge, awareness, and interest toward undergoing genetic testing. Methods. A sample of 145 subjects in Italy completed an online survey, investigating demographic data, health orientation, level of perceived knowledge about genetic risk, genetic screening, and personal attitudes toward direct to consumer genetic testing (DTCGT. Results. Results showed that respondents considered genetic assessment to be helpful for disease prevention, but they were concerned that results could affect their life planning with little clinical utility. Furthermore, a very high percentage of respondents (67% had never heard about genetic testing directly available to the public. Data showed that personality tendencies, such as personal health consciousness, health internal control, health esteem, and confidence, motivation to avoid unhealthiness and motivation for healthiness affected the uptake of genetic information and the interest in undergoing genetic testing. Conclusions. Public knowledge and attitudes toward genetic risk and genetic testing among European countries, along with individual personality and psychological tendencies that could affect these attitudes, remain unexplored. The present study constitutes one of the first attempts to investigate how such personality tendencies could motivation to undergo genetic testing and engagement in lifestyle changes.

  6. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  7. Rotational state modification and fast ortho-para conversion of H2 trapped within the highly anisotropic potential of Pd(210)

    Science.gov (United States)

    Ohno, S.; Ivanov, D.; Ogura, S.; Wilde, M.; Arguelles, E. F.; Diño, W. A.; Kasai, H.; Fukutani, K.

    2018-02-01

    The rotational state and ortho-para conversion of H2 on a Pd(210) surface is investigated with rotational-state-selective temperature-programmed desorption (RS-TPD) and theoretical calculations. The isotope dependence of TPD shows a higher desorption energy for D2 than that for H2, which is ascribed to the rotational and zero-point vibrational energies. The RS-TPD data show that the desorption energy of H2(J =1 ) (J : rotational quantum number) is higher than that of H2(J =0 ). This is due to the orientationally anisotropic potential confining the adsorbed H2, which is in agreement with theoretical calculations. Furthermore, the H2 desorption intensity ratio in J =1 and J =0 indicates fast ortho-para conversion in the adsorption state, which we estimate to be of the order of 1 s.

  8. Correction of Pelvic Tilt and Pelvic Rotation in Cup Measurement after THA - An Experimental Study.

    Science.gov (United States)

    Schwarz, Timo Julian; Weber, Markus; Dornia, Christian; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Craiovan, Benjamin

    2017-09-01

    Purpose  Accurate assessment of cup orientation on postoperative pelvic radiographs is essential for evaluating outcome after THA. Here, we present a novel method for correcting measurement inaccuracies due to pelvic tilt and rotation. Method  In an experimental setting, a cup was implanted into a dummy pelvis, and its final position was verified via CT. To show the effect of pelvic tilt and rotation on cup position, the dummy was fixed to a rack to achieve a tilt between + 15° anterior and -15° posterior and 0° to 20° rotation to the contralateral side. According to Murray's definitions of anteversion and inclination, we created a novel corrective procedure to measure cup position in the pelvic reference frame (anterior pelvic plane) to compensate measurement errors due to pelvic tilt and rotation. Results  The cup anteversion measured on CT was 23.3°; on AP pelvic radiographs, however, variations in pelvic tilt (± 15°) resulted in anteversion angles between 11.0° and 36.2° (mean error 8.3°± 3.9°). The cup inclination was 34.1° on CT and ranged between 31.0° and 38.7° (m. e. 2.3°± 1.5°) on radiographs. Pelvic rotation between 0° and 20° showed high variation in radiographic anteversion (21.2°-31.2°, m. e. 6.0°± 3.1°) and inclination (34.1°-27.2°, m. e. 3.4°± 2.5°). Our novel correction algorithm for pelvic tilt reduced the mean error in anteversion measurements to 0.6°± 0.2° and in inclination measurements to 0.7° (SD± 0.2). Similarly, the mean error due to pelvic rotation was reduced to 0.4°± 0.4° for anteversion and to 1.3°± 0.8 for inclination. Conclusion  Pelvic tilt and pelvic rotation may lead to misinterpretation of cup position on anteroposterior pelvic radiographs. Mathematical correction concepts have the potential to significantly reduce these errors, and could be implemented in future radiological software tools. Key Points   · Pelvic tilt and rotation influence cup

  9. Nuclear fuel assembly grid sleeve/guide thimble bulge orientation gage and inspection method

    International Nuclear Information System (INIS)

    Widener, W.H.

    1988-01-01

    This patent describes a method of inspecting a fuel assembly to determine the orientation of externally-projecting mated bulges connecting a grid sleeve to a guide thimble of the assembly, the method comprising the steps of: (a) inserting a radially-expandable tubular member within the guide thimble, the tubular member having externally-projecting embossments thereon spaced circumferentially from one another about the tubular member, the embossments being the same in number as the bulges of the guide thimble and configured to fit therewithin; (b) axially moving an elongated expansion member, which extends through and rotatably mounts the tubular member, relative to the tubular member from a first position in which the expansion member permits inward contraction of the tubular member and displacement of embossments thereon away from the interior of the guide thimble bulges for removing the embossments from registry therewith and a second position in which the expansion member produces radial expansion of the tubular member and displacement of the embossments thereon toward the interior of the guide thimble bulges for placing the embossments in registry therewith; (c) rotating the tubular member relative to the expansion member so as to bring the embossments on the tubular member into alignment with the guide thimble bulges as the embossments on the tubular member are being displaced toward and into registry with the interior of the bulges; and (d) responsive to rotation of the tubular member away from a reference position, providing an indication of the orientation of the guide thimble bulges relative to a reference point upon displacement of the embossments into registry therewith

  10. Breakdown of I-Love-Q Universality in Rapidly Rotating Relativistic Stars

    Science.gov (United States)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2014-01-01

    It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependent and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.

  11. BREAKDOWN OF I-LOVE-Q UNIVERSALITY IN RAPIDLY ROTATING RELATIVISTIC STARS

    International Nuclear Information System (INIS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.; Stergioulas, Nikolaos

    2014-01-01

    It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependent and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz

  12. Within-Group Differences in Sexual Orientation and Identity

    Science.gov (United States)

    Worthington, Roger L.; Reynolds, Amy L.

    2009-01-01

    The purpose of this investigation was to examine within-group differences among self-identified sexual orientation and identity groups. To understand these within-group differences, 2 types of analysis were conducted. First, a sample of 2,732 participants completed the Sexual Orientation and Identity Scale. Cluster analyses were used to identify 3…

  13. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    Science.gov (United States)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt

  14. Optimal rotation sequences for active perception

    Science.gov (United States)

    Nakath, David; Rachuy, Carsten; Clemens, Joachim; Schill, Kerstin

    2016-05-01

    One major objective of autonomous systems navigating in dynamic environments is gathering information needed for self localization, decision making, and path planning. To account for this, such systems are usually equipped with multiple types of sensors. As these sensors often have a limited field of view and a fixed orientation, the task of active perception breaks down to the problem of calculating alignment sequences which maximize the information gain regarding expected measurements. Action sequences that rotate the system according to the calculated optimal patterns then have to be generated. In this paper we present an approach for calculating these sequences for an autonomous system equipped with multiple sensors. We use a particle filter for multi- sensor fusion and state estimation. The planning task is modeled as a Markov decision process (MDP), where the system decides in each step, what actions to perform next. The optimal control policy, which provides the best action depending on the current estimated state, maximizes the expected cumulative reward. The latter is computed from the expected information gain of all sensors over time using value iteration. The algorithm is applied to a manifold representation of the joint space of rotation and time. We show the performance of the approach in a spacecraft navigation scenario where the information gain is changing over time, caused by the dynamic environment and the continuous movement of the spacecraft

  15. A Model of Parental Achievement-Oriented Psychological Control in Academically Gifted Students

    Science.gov (United States)

    Garn, Alex C.; Jolly, Jennifer L.

    2015-01-01

    This study investigated achievement-oriented parent socialization as it pertains to school avoidance in a sample of gifted students. A serial mediation model examining relationships among parental achievement-oriented psychological control (APC), fear of academic failure, academic amotivation, and school avoidance was tested. The sample included…

  16. Perceived Sexual Orientation Based on Vocal and Facial Stimuli Is Linked to Self-Rated Sexual Orientation in Czech Men

    Science.gov (United States)

    Valentova, Jaroslava Varella; Havlíček, Jan

    2013-01-01

    Previous research has shown that lay people can accurately assess male sexual orientation based on limited information, such as face, voice, or behavioral display. Gender-atypical traits are thought to serve as cues to sexual orientation. We investigated the presumed mechanisms of sexual orientation attribution using a standardized set of facial and vocal stimuli of Czech men. Both types of stimuli were rated for sexual orientation and masculinity-femininity by non-student heterosexual women and homosexual men. Our data showed that by evaluating vocal stimuli both women and homosexual men can judge sexual orientation of the target men in agreement with their self-reported sexual orientation. Nevertheless, only homosexual men accurately attributed sexual orientation of the two groups from facial images. Interestingly, facial images of homosexual targets were rated as more masculine than heterosexual targets. This indicates that attributions of sexual orientation are affected by stereotyped association between femininity and male homosexuality; however, reliance on such cues can lead to frequent misjudgments as was the case with the female raters. Although our study is based on a community sample recruited in a non-English speaking country, the results are generally consistent with the previous research and thus corroborate the validity of sexual orientation attributions. PMID:24358180

  17. Perceived sexual orientation based on vocal and facial stimuli is linked to self-rated sexual orientation in Czech men.

    Directory of Open Access Journals (Sweden)

    Jaroslava Varella Valentova

    Full Text Available Previous research has shown that lay people can accurately assess male sexual orientation based on limited information, such as face, voice, or behavioral display. Gender-atypical traits are thought to serve as cues to sexual orientation. We investigated the presumed mechanisms of sexual orientation attribution using a standardized set of facial and vocal stimuli of Czech men. Both types of stimuli were rated for sexual orientation and masculinity-femininity by non-student heterosexual women and homosexual men. Our data showed that by evaluating vocal stimuli both women and homosexual men can judge sexual orientation of the target men in agreement with their self-reported sexual orientation. Nevertheless, only homosexual men accurately attributed sexual orientation of the two groups from facial images. Interestingly, facial images of homosexual targets were rated as more masculine than heterosexual targets. This indicates that attributions of sexual orientation are affected by stereotyped association between femininity and male homosexuality; however, reliance on such cues can lead to frequent misjudgments as was the case with the female raters. Although our study is based on a community sample recruited in a non-English speaking country, the results are generally consistent with the previous research and thus corroborate the validity of sexual orientation attributions.

  18. A two-in-one Faraday rotator mirror exempt of active optical alignment.

    Science.gov (United States)

    Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming

    2014-02-10

    A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.

  19. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

    International Nuclear Information System (INIS)

    Huang, S; Guo, J; Yang, F X

    2013-01-01

    In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects

  20. Rotator cuff exercises

    Science.gov (United States)

    ... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

  1. Review- Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions

    Directory of Open Access Journals (Sweden)

    Shigeru Horii, Atsushi Ishihara, Takayuki Fukushima, Tetsuo Uchikoshi, Hiraku Ogino, Tohru S Suzuki, Yoshio Sakka, Jun-ichi Shimoyama and Kohji Kishio

    2009-01-01

    Full Text Available The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7Oy. Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

  2. Growth and analysis of highly oriented (11n) BCSCO films for device research

    Energy Technology Data Exchange (ETDEWEB)

    Raina, K.K.; Pandey, R.K. [Texas A& M Univ., College Station, TX (United States)

    1994-12-31

    Films of BCSCO superconductor of the type Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub x} have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO{sub 3} substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880{degrees}C) of Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub 8}. Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observed to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (>860{degrees}C) also encourage to the formation of this phase. XRD measurements show that the films grown on (110) NdGaO{sub 3} have a preferred (11n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub 8} phase films on (001) NdGaO{sub 3} substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO{sub 3} substrate orientation. The best values of zero resistance (T{sub co}) and critical current density obtained are 87 K and 10{sup 5} A/cm{sup 2}, respectively.

  3. The Influence of Human Body Orientation on Distance Judgments.

    Science.gov (United States)

    Jung, Edgard; Takahashi, Kohske; Watanabe, Katsumi; de la Rosa, Stephan; Butz, Martin V; Bülthoff, Heinrich H; Meilinger, Tobias

    2016-01-01

    People maintain larger distances to other peoples' front than to their back. We investigated if humans also judge another person as closer when viewing their front than their back. Participants watched animated virtual characters (avatars) and moved a virtual plane toward their location after the avatar was removed. In Experiment 1, participants judged avatars, which were facing them as closer and made quicker estimates than to avatars looking away. In Experiment 2, avatars were rotated in 30 degree steps around the vertical axis. Observers judged avatars roughly facing them (i.e., looking max. 60 degrees away) as closer than avatars roughly looking away. No particular effect was observed for avatars directly facing and also gazing at the observer. We conclude that body orientation was sufficient to generate the asymmetry. Sensitivity of the orientation effect to gaze and to interpersonal distance would have suggested involvement of social processing, but this was not observed. We discuss social and lower-level processing as potential reasons for the effect.

  4. Lithium depletion and rotation in main-sequence stars

    International Nuclear Information System (INIS)

    Balachandran, S.

    1990-01-01

    Lithium abundances were measured in nearly 200 old disk-population F stars to examine the effects of rotational braking on the depletion of Li. The sample was selected to be slightly evolved off the main sequence so that the stars have completed all the Li depletion they will undergo on the main sequence. A large scatter in Li abundances in the late F stars is found, indicating that the Li depletion is not related to age and spectral type alone. Conventional depletion mechanisms like convective overshoot and microscopic diffusion are unable to explain Li depletion in F stars with thin convective envelopes and are doubly taxed to explain such a scatter. No correlation is found between Li abundance and the present projected rotational velocity and some of the most rapid rotators are undepleted, ruling out meridional circulation as the cause of Li depletion. There is a somewhat larger spread in Li abundances in the spun-down late F stars compared to the early F stars which should remain rotationally unaltered on the main sequence. 85 refs

  5. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P.; Boada, Roberto; Bowron, Daniel T.; Stepanov, Sergey A.; Díaz-Moreno, Sofía

    2016-07-06

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the `glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni Kedge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  6. Social orientation, sexual role, and moral judgment: a comparison of two brazilian and one norwegian sample / Orientação social, papel sexual e julgamento moral: uma comparação entre duas amostras brasileiras e uma norueguesa

    Directory of Open Access Journals (Sweden)

    Angela Biaggio

    2005-01-01

    Full Text Available Thirty female and 30 male university students each from Joao Pessoa and Porto Alegre were compared to a comparable Norwegian sample of 60 female and 60 male students. Except for a suggestion of differences in women's cultural orientation, comparisons on Gibbs' test of justice morality, the ECI test for ethic of care, Bem's sex role inventory, and Triandis' test for cultural orientations showed that all differences were between the Norwegian sample and the Brazilian samples as a unit. Brazilians showed a differentiation of sex roles, which was not shown in Norwegians, and higher scores on the collectivism cultural orientation. Norwegians showed higher scores ECI, which might be because of a culture bias in the test. No difference was shown for individualism cultural orientation, and on Gibbs' test. Men scored higher on the total individualism measure, and women on vertical collectivism. JP women scored as more hedonistic and individual than the PA women, who scores as more traditional than the JP women.

  7. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California

    Science.gov (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.

    1986-08-01

    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike

  8. Age Differences in Future Orientation and Delay Discounting

    Science.gov (United States)

    Steinberg, Laurence; Graham, Sandra; O'Brien, Lia; Woolard, Jennifer; Cauffman, Elizabeth; Banich, Marie

    2009-01-01

    Age differences in future orientation are examined in a sample of 935 individuals between 10 and 30 years using a delay discounting task as well as a new self-report measure. Younger adolescents consistently demonstrate a weaker orientation to the future than do individuals aged 16 and older, as reflected in their greater willingness to accept a…

  9. AUTOMATIC ORIENTATION OF LARGE BLOCKS OF OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2013-05-01

    Full Text Available Nowadays, multi-camera platforms combining nadir and oblique cameras are experiencing a revival. Due to their advantages such as ease of interpretation, completeness through mitigation of occluding areas, as well as system accessibility, they have found their place in numerous civil applications. However, automatic post-processing of such imagery still remains a topic of research. Configuration of cameras poses a challenge on the traditional photogrammetric pipeline used in commercial software and manual measurements are inevitable. For large image blocks it is certainly an impediment. Within theoretical part of the work we review three common least square adjustment methods and recap on possible ways for a multi-camera system orientation. In the practical part we present an approach that successfully oriented a block of 550 images acquired with an imaging system composed of 5 cameras (Canon Eos 1D Mark III with different focal lengths. Oblique cameras are rotated in the four looking directions (forward, backward, left and right by 45° with respect to the nadir camera. The workflow relies only upon open-source software: a developed tool to analyse image connectivity and Apero to orient the image block. The benefits of the connectivity tool are twofold: in terms of computational time and success of Bundle Block Adjustment. It exploits the georeferenced information provided by the Applanix system in constraining feature point extraction to relevant images only, and guides the concatenation of images during the relative orientation. Ultimately an absolute transformation is performed resulting in mean re-projection residuals equal to 0.6 pix.

  10. Position and Orientation Insensitive Wireless Power Transmission for EnerCage-Homecage System.

    Science.gov (United States)

    Jia, Yaoyao; Mirbozorgi, S Abdollah; Wang, Zheyuan; Hsu, Chia-Chun; Madsen, Teresa E; Rainnie, Donald; Ghovanloo, Maysam

    2017-10-01

    We have developed a new headstage architecture as part of a smart experimental arena, known as the EnerCage-HC2 system, which automatically delivers stimulation and collects behavioral data over extended periods with minimal small animal subject handling or personnel intervention in a standard rodent homecage. Equipped with a four-coil inductive link, the EnerCage-HC2 system wirelessly powers the receiver (Rx) headstage, irrespective of the subject's location or head orientation, eliminating the need for tethering or carrying bulky batteries. On the transmitter (Tx) side, a driver coil, five high-quality (Q) factor segmented resonators at different heights and orientations, and a closed-loop Tx power controller create a homogeneous electromagnetic (EM) field within the homecage 3-D space, and compensate for drops in power transfer efficiency (PTE) due to Rx misalignments. The headstage is equipped with four small slanted resonators, each covering a range of head orientations with respect to the Tx resonators, which direct the EM field toward the load coil at the bottom of the headstage. Moreover, data links based on Wi-Fi, UART, and Bluetooth low energy are utilized to enables remote communication and control of the Rx. The PTE varies within 23.6%-33.3% and 6.7%-10.1% at headstage heights of 8 and 20 cm, respectively, while continuously delivering >40 mW to the Rx electronics even at 90° rotation. As a proof of EnerCage-HC2 functionality in vivo, a previously documented on-demand electrical stimulation of the globus pallidus, eliciting consistent head rotation, is demonstrated in three freely behaving rats.

  11. Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft

    Directory of Open Access Journals (Sweden)

    Liu Zhang

    2017-01-01

    Full Text Available This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC with extended Kalman filter (EKF that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s.

  12. Explaining sex differences in mental rotation: role of spatial activity experience.

    Science.gov (United States)

    Nazareth, Alina; Herrera, Asiel; Pruden, Shannon M

    2013-05-01

    Males consistently outperform females on mental rotation tasks, such as the Vandenberg and Kuse (1978) Perceptual and Motor Skills, 47(2), 599-604, mental rotation test (MRT; e.g. Voyer et al. 1995) in Psychological Bulletin, 117, 250-265. The present study investigates whether these sex differences in MRT scores can be explained in part by early spatial activity experience, particularly those spatial activities that have been sex-typed as masculine/male-oriented. Utilizing an online survey, 571 ethnically diverse adult university students completed a brief demographic survey, an 81-item spatial activity survey, and the MRT. Results suggest that the significant relation between sex of the participant and MRT score is partially mediated by the number of masculine spatial activities participants had engaged in as youth. Closing the gap between males and females in spatial ability, a skill linked to science, technology, engineering, and mathematics success, may be accomplished in part by encouraging female youth to engage in more particular kinds of spatial activities.

  13. Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models.

    Science.gov (United States)

    Blutke, Andreas; Wanke, Rüdiger

    2018-03-06

    In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical

  14. The influence of grasping habits and object orientation on motor planning in children and adults.

    Science.gov (United States)

    Jovanovic, Bianca; Schwarzer, Gudrun

    2017-12-01

    We investigated the influence of habitual grasp strategies and object orientation on motor planning in 3-year-olds and 4- to 5-year-old children and adults. Participants were required to rotate different vertically oriented objects around 180°. Usually, adults perform this task by grasping objects with an awkward grip (thumb and index finger pointing downward) at the beginning of the movement, in order to finish it with a comfortable hand position. This pattern corresponds to the well-known end-state comfort effect (ESC) in grasp planning. The presented objects were associated with different habitual grasp orientations that either corresponded with the grasp direction required to reach end-state comfort (downward) or implied a contrary grasp orientation (upward). Additionally, they were presented either in their usual, canonical orientation (e.g., shovel with the blade oriented downward versus cup with its opening oriented upward) or upside down. As dependent variable we analyzed the number of grips conforming to the end-state comfort principle (ESC score) realized in each object type and orientation condition. The number of grips conforming to ESC strongly increased with age. In addition, the extent to which end-state comfort was considered was influenced by the actual orientation of the objects' functional parts. Thus, in all age-groups the ESC score was highest when the functional parts of the objects were oriented downward (shovel presented canonically with blade pointing downward, cup presented upside down) and corresponded to the hand orientation needed to realize ESC. © 2017 Wiley Periodicals, Inc.

  15. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes

    International Nuclear Information System (INIS)

    Arras, Matthias M L; Grasl, Christian; Schima, Heinrich; Bergmeister, Helga

    2012-01-01

    A conventional electrospinning setup was upgraded by two turnable plate-like auxiliary high-voltage electrodes that allowed aligned fiber deposition in adjustable directions. Fiber morphology was analyzed by scanning electron microscopy and attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR). The auxiliary electric field constrained the jet bending instability and the fiber deposition became controllable. At target speeds of 0.9 m s −1 90% of the fibers had aligned within 2°, whereas the angular spread was 70° without the use of auxiliary electrodes. It was even possible to orient fibers perpendicular to the rotational direction of the target. The fiber diameter became smaller and its distribution narrower, while according to the FTIR-ATR measurement the molecular orientation of the polymer was unaltered. This study comprehensively documents the feasibility of directed fiber deposition and offers an easy upgrade to existing electrospinning setups. (paper)

  16. Embodied memory allows accurate and stable perception of hidden objects despite orientation change.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P

    2017-07-01

    Rotating a scene in a frontoparallel plane (rolling) yields a change in orientation of constituent images. When using only information provided by static images to perceive a scene after orientation change, identification performance typically decreases (Rock & Heimer, 1957). However, rolling generates optic flow information that relates the discrete, static images (before and after the change) and forms an embodied memory that aids recognition. The embodied memory hypothesis predicts that upon detecting a continuous spatial transformation of image structure, or in other words, seeing the continuous rolling process and objects undergoing rolling observers should accurately perceive objects during and after motion. Thus, in this case, orientation change should not affect performance. We tested this hypothesis in three experiments and found that (a) using combined optic flow and image structure, participants identified locations of previously perceived but currently occluded targets with great accuracy and stability (Experiment 1); (b) using combined optic flow and image structure information, participants identified hidden targets equally well with or without 30° orientation changes (Experiment 2); and (c) when the rolling was unseen, identification of hidden targets after orientation change became worse (Experiment 3). Furthermore, when rolling was unseen, although target identification was better when participants were told about the orientation change than when they were not told, performance was still worse than when there was no orientation change. Therefore, combined optic flow and image structure information, not mere knowledge about the rolling, enables accurate and stable perception despite orientation change. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Method for the Field-oriented Control of an Induction Motor

    DEFF Research Database (Denmark)

    2000-01-01

    A method for the field-oriented control of an induction motor by means of a frequency contverter is dislosed, in which method a transformation angle is determined by estimation and is corrected in dependence on a rotational speed of a rotor flux vector or of the induction motor and/or in dependence...... on a delay time. In this connection it is desirable to improve the control behavior. To that end, the transformation angle is corrected a second time to compensate for a phase shift in the frequency converter....

  18. QINS studies of water diffusion in Na-Montmorillonite

    International Nuclear Information System (INIS)

    Gay-Duchosal, M.

    1999-01-01

    Complete text of publication follows. The rotational and translational motion of interlayer water was investigated in Na-Montmorillonite as a function of the humidity (one-, two- and three-layers). Partially orientated samples produced by deposition onto a filter under pressure were used. Measurements were made at two different resolutions 120 μeV and 36 μeV. In order to observe the anisotropy, measurements with sample orientations of 135 and 45 degree were made with respect to the incident beam corresponding to Q-parallel and Q-perpendicular to the clay layers. The fitting procedure consists of an elastic term based on a fit to an analogous D 2 O hydrated sample and a quasielastic term containing both rotational and translational contributions (1). At low resolution with Q-parallel a rotational broadening was observed that increases, indicating increasing water mobility, as the water content and hence the layer spacing increases. For the three-layer hydrate with the two different orientations the broadening is the same showing no measurable anisotropy of the rotational motion. At high resolution an additional broadening was seen due to translational diffusion of a similar magnitude to that measured previously for Li-Montmorillonite (2). We are currently refining our data analysis in order to determine whether the anisotropy of the translational motion with respect to the orientation of the clay is measurable. (author)

  19. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  20. Geckos significantly alter foot orientation to facilitate adhesion during downhill locomotion.

    Science.gov (United States)

    Birn-Jeffery, Aleksandra V; Higham, Timothy E

    2014-10-01

    Geckos employ their adhesive system when moving up an incline, but the directionality of the system may limit function on downhill surfaces. Here, we use a generalist gecko to test whether limb modulation occurs on downhill slopes to allow geckos to take advantage of their adhesive system. We examined three-dimensional limb kinematics for geckos moving up and down a 45° slope. Remarkably, the hind limbs were rotated posteriorly on declines, resulting in digit III of the pes facing a more posterior direction (opposite to the direction of travel). No significant changes in limb orientation were found in any other condition. This pes rotation leads to a dramatic shift in foot function that facilitates the use of the adhesive system as a brake/stabilizer during downhill locomotion and, although this rotation is not unique to geckos, it is significant for the deployment of adhesion. Adhesion is not just advantageous for uphill locomotion but can be employed to help deal with the effects of gravity during downhill locomotion, highlighting the incredible multi-functionality of this key innovation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Strategic Orientation of SMEs: Empirical Research

    Directory of Open Access Journals (Sweden)

    Jelena Minović

    2016-04-01

    Full Text Available The main objective of the paper is to identify the sources of competitive advantage of small and medium-sized enterprises in Serbia. Gaining a competitive advantage is the key priority of market-oriented enterprises regardless of their size and sector. Since business environment in Serbia is not stimulating enough for enterprises’ growth and development, the paper highlights the role of strategic orientation in business promotion and development. In order to identify the sources of competitive advantage, the empirical research is conducted by using the survey method. The research sample is created by using a selective approach, namely, the sample includes enterprises with more than ten employees, and enterprises identified to have the potential for growth and development. The research results indicate that small and medium-sized enterprises in Serbia are generally focused on costs as a source of competitive advantage, i.e., they gain competitive advantage in a selected market segment by offering low price and average quality products/services. In addition, the results of the research point out that the Serbian small and medium-sized enterprises are innovation-oriented. Organizations qualifying as middle-sized enterprises are predominantly focused on process innovations, while small businesses are primarily oriented towards product innovations. One of the limitations of the research refers to the small presence of the research sample within the category of middle-sized enterprises. The smaller sample presence than it was previously planned is mostly due to the lack of managers’ willingness to participate in the research, as well as to the fact that these enterprises account for the smaller share in the total number of enterprises in the small-and medium-sized enterprises’ sector. Taking into account that the sector of small and medium-sized enterprises generates around 30% of the country’s GDP, we consider the research results to be

  2. Magnetization reversal in an obliquely oriented metal evaporated tape

    International Nuclear Information System (INIS)

    Srinath, S.; Vavassori, P.; Rekveldt, M.Th.; Cook, R.E.; Felcher, G.P.

    2004-01-01

    Magnetization reversal in obliquely oriented metal evaporated videotapes as a function of the tape depth was studied by vector magneto-optic Kerr effect and polarized neutron reflectivity. The magnetization vector was found to rotate coherently out-of-plane by an angle α during the magnetization reversal for a substantial part of the hysteresis cycle. However α differs between the surface-facing and the substrate-facing sides of the film, with the more oxidized surface layer following closely the applied field. Close to M∼0 the film breaks down magnetically into a collage of small domains, reflecting the crystalline microstructure of the material

  3. Pattern recognition invariant under changes of scale and orientation

    Science.gov (United States)

    Arsenault, Henri H.; Parent, Sebastien; Moisan, Sylvain

    1997-08-01

    We have used a modified method proposed by neiberg and Casasent to successfully classify five kinds of military vehicles. The method uses a wedge filter to achieve scale invariance, and lines in a multi-dimensional feature space correspond to each target with out-of-plane orientations over 360 degrees around a vertical axis. The images were not binarized, but were filtered in a preprocessing step to reduce aliasing. The feature vectors were normalized and orthogonalized by means of a neural network. Out-of-plane rotations of 360 degrees and scale changes of a factor of four were considered. Error-free classification was achieved.

  4. Chemistry at molecular junctions: Rotation and dissociation of O2 on the Ag(110) surface induced by a scanning tunneling microscope.

    Science.gov (United States)

    Roy, Sharani; Mujica, Vladimiro; Ratner, Mark A

    2013-08-21

    The scanning tunneling microscope (STM) is a fascinating tool used to perform chemical processes at the single-molecule level, including bond formation, bond breaking, and even chemical reactions. Hahn and Ho [J. Chem. Phys. 123, 214702 (2005)] performed controlled rotations and dissociations of single O2 molecules chemisorbed on the Ag(110) surface at precise bias voltages using STM. These threshold voltages were dependent on the direction of the bias voltage and the initial orientation of the chemisorbed molecule. They also observed an interesting voltage-direction-dependent and orientation-dependent pathway selectivity suggestive of mode-selective chemistry at molecular junctions, such that in one case the molecule underwent direct dissociation, whereas in the other case it underwent rotation-mediated dissociation. We present a detailed, first-principles-based theoretical study to investigate the mechanism of the tunneling-induced O2 dynamics, including the origin of the observed threshold voltages, the pathway dependence, and the rate of O2 dissociation. Results show a direct correspondence between the observed threshold voltage for a process and the activation energy for that process. The pathway selectivity arises from a competition between the voltage-modified barrier heights for rotation and dissociation, and the coupling strength of the tunneling electrons to the rotational and vibrational modes of the adsorbed molecule. Finally, we explore the "dipole" and "resonance" mechanisms of inelastic electron tunneling to elucidate the energy transfer between the tunneling electrons and chemisorbed O2.

  5. Goal orientations predict academic performance beyond intelligence and personality

    NARCIS (Netherlands)

    Steinmayr, R.; Bipp, T.; Spinath, B.

    2011-01-01

    Goal orientations are thought to be an important predictor of scholastic achievement. The present paper investigated the joint influence of goal orientations, intelligence, and personality on school performance in a sample of N = 520 11th and 12th graders (303 female; mean age M = 16.94 years).

  6. Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio

    KAUST Repository

    Sabry, Hanan

    2014-05-01

    Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance of clear skies.The daylighting and energy performance of solar screens is affected by many parameters. These include screen perforation, depth, reflectivity and color, aspect ratio of openings, shape, tilt angle and rotation. Changing some of these parameters can improve the daylighting performance drastically. However, this can result in increased energy consumption. A balanced solution must be sought, where acceptable daylighting performance would be achieved at minimum energy consumption.This paper aims at defining solar screen designs that achieve visual comfort and at the same time minimum energy consumption in residential desert settings. The study focused on the effect of changing the solar screen axial rotation and the aspect ratio of its openings under the desert clear-sky. The individual and combined effects of changing these parameters were studied.Results of this study demonstrated that a non-rotated solar screen that has wide horizontal openings (aspect ratio of 18:1) proved to be successful in the north and south orientations. Its performance in the east/west orientations was also superior. In contrast, the screen that was rotated along its vertical axis while having small size openings (aspect ratio of 1:1) proved to be more successful in the east/west orientations. Its performance in the north orientation was also good. These solutions enhanced daylighting performance, while maintaining the energy consumption at a minimum.Moreover, it was observed that combining two screen parameters which proved useful in previous studies on daylighting or thermal performance does not add up to better solutions. The combined solutions that were tested in this study did not prove successful in satisfying daylighting and thermal

  7. Evaluation of rotational set-up errors in patients with thoracic neoplasms

    International Nuclear Information System (INIS)

    Wang Yanyang; Fu Xiaolong; Xia Bing; Fan Min; Yang Huanjun; Ren Jun; Xu Zhiyong; Jiang Guoliang

    2010-01-01

    Objective: To assess the rotational set-up errors in patients with thoracic neoplasms. Methods: 224 kilovoltage cone-beam computed tomography (KVCBCT) scans from 20 thoracic tumor patients were evaluated retrospectively. All these patients were involved in the research of 'Evaluation of the residual set-up error for online kilovoltage cone-beam CT guided thoracic tumor radiation'. Rotational set-up errors, including pitch, roll and yaw, were calculated by 'aligning the KVCBCT with the planning CT, using the semi-automatic alignment method. Results: The average rotational set-up errors were -0.28 degree ±1.52 degree, 0.21 degree ± 0.91 degree and 0.27 degree ± 0.78 degree in the left-fight, superior-inferior and anterior-posterior axis, respectively. The maximal rotational errors of pitch, roll and yaw were 3.5 degree, 2.7 degree and 2.2 degree, respectively. After correction for translational set-up errors, no statistically significant changes in rotational error were observed. Conclusions: The rotational set-up errors in patients with thoracic neoplasms were all small in magnitude. Rotational errors may not change after the correction for translational set-up errors alone, which should be evaluated in a larger sample future. (authors)

  8. Does Promotion Orientation Help Explain Why Future-Orientated People Exercise and Eat Healthy?

    Science.gov (United States)

    Milfont, Taciano L; Vilar, Roosevelt; Araujo, Rafaella C R; Stanley, Robert

    2017-01-01

    A study with United States undergraduate students showed individuals high in concern with future consequences engage in exercise and healthy eating because they adopt a promotion orientation, which represents the extent to which individuals are inclined to pursue positive gains. The present article reports a cross-cultural replication of the mediation findings with undergraduate samples from Brazil and New Zealand. Promotion orientation mediated the association between concern with future consequences and exercise attitudes in both countries, but the associations for healthy eating were not replicated-which could be explained by distinct obesity prevalence and eating habits in these socio-cultural contexts. We discuss theoretical and practical implications of the findings for promoting health behavior.

  9. Does Promotion Orientation Help Explain Why Future-Orientated People Exercise and Eat Healthy?

    Directory of Open Access Journals (Sweden)

    Taciano L. Milfont

    2017-07-01

    Full Text Available A study with United States undergraduate students showed individuals high in concern with future consequences engage in exercise and healthy eating because they adopt a promotion orientation, which represents the extent to which individuals are inclined to pursue positive gains. The present article reports a cross-cultural replication of the mediation findings with undergraduate