WorldWideScience

Sample records for organosolv pine lignins

  1. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process.

    Science.gov (United States)

    Pan, Xuejun; Xie, Dan; Yu, Richard W; Saddler, Jack N

    2008-09-01

    Lodgepole pine (Pinus contorta) killed by mountain pine beetle (Dendroctonus ponderosae) (BLP) was compared with healthy lodgepole pine (HLP) for bioconversion to ethanol and high-value co-products. The BLP and HLP chips were pretreated using an ethanol organosolv process at a variety of severities. It was shown that the BLP was easier to pretreat and delignify than were the HLP chips. The resulting pretreated BLP substrate had a lower residual lignin, lower degree of polymerization of cellulose, lower cellulose crystallinity, smaller fiber size and thereby a better enzymatic hydrolysability than did the HLP substrates. However, under the same conditions, the BLP showed lower substrate yield and cellulose recovery than did the HLP, which likely resulted from the excessive hydrolysis and subsequent decomposition of the cellulose and hemicellulose during the pretreatment. The BLP wood yielded more ethanol organosolv lignin than was obtained with the HLP material. The HLP lignin had a lower molecular weight and narrower distribution than did the BLP lignin. It appears that the beetle killed LP is more receptive to organosolv pretreatment other than a slightly lower recovery of carbohydrates.

  2. Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Koo, Bon-Wook; Min, Byeong-Cheol; Gwak, Ki-Seob; Lee, Soo-Min; Choi, Joon-Weon; Yeo, Hwanmyeong; Choi, In-Gyu

    2012-01-01

    Although organosolv pretreatment removed substantial amounts of lignin and xylan, the yield of glucan which is a major sugar source for fermentation to ethanol is more than 90% in most conditions of the organosolv pretreatment. Relative lignin contents of all pretreated biomass were more than 200 g kg −1 , however enzymatic conversions were increased dramatically comparing to untreated biomass. Therefore the correlation between lignin and enzymatic hydrolysis could not be explained just by lignin content, and other changes resulting from lignin removal affected enzymatic hydrolysis. Results on enzymatic conversion and sugar recovery suggested that the critical temperature improving enzymatic hydrolysis significantly was between 120 °C and 130 °C. Microscopic analysis using Field emission scanning electron microscopy (FE-SEM) showed that structural lignin changes happened through organosolv pretreatment. Lignins were isolated from lignin carbohydrate complex (LCC) at the initial stage and then migrated to the surface of biomass. The isolated and migrated lignins were finally redistributed onto surface. These structural changes formed droplets on surface and increased pore volume in pretreated biomass. The increase in pore volume also increased available surface area and enzyme adsorption at initial stage, and thus enzymatic conversion increased significantly through organosolv pretreatment. It was verified that the droplets were mainly composed of lignin and the lignin droplets inhibited enzymatic hydrolysis through adsorption with cellulase. -- Highlights: ► Just lignin contents cannot explain a correlation with enzymatic hydrolysis. ► Several changes resulted from lignin removal must affect enzymatic hydrolysis. ► Droplets are formed by structural changes in lignin during organosolv pretreatment. ► Formation of the lignin droplet increases the pore volume in biomass. ► The increase in pore volume enhances the enzymatic hydrolysis.

  3. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  4. Characteristics of Wheat Straw Lignins from Ethanol-based Organosolv Treatment

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Telysheva, G.; Arshanitsa, A.; Gosselink, R.J.A.; Wild, de P.J.

    2014-01-01

    Non-purified lignins resulting from ethanol-based organosolv fractionation of wheat straw were characterized for the presence of impurities (carbohydrates and ash), functional groups (hydroxyl, carboxyl and methoxyl), phenyl-propanoid structural moieties, molar mass distribution and thermal

  5. Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kasakov, Stanislav; Shi, Hui; Camaioni, Donald M.; Zhao, Chen; Barath, Eszter; Jentys, Andreas; Lercher, Johannes A.

    2015-11-01

    Mechanistic aspects of deconstruction and hydrodeoxygenation of organosolv lignin using supported Ni catalysts with (Ni/HZSM-5 and Ni/HBEA) and without Brønsted acid sites (Ni/SiO2) are reported. Lignin was deconstructed and converted to saturated cyclic hydrocarbons ranging from C5 to C14. In the one-stage reaction, full conversion with total yield of 70 ± 5 wt.% saturated hydrocarbons was achieved at 593 K and 20 bar H2. The organosolv lignin used consists of seven to eight monolignol subunits and has an average molecular weight of ca. 1200 g mol-1. The monolignols were mainly guaiacyl, syringyl and phenylcoumaran, randomly interconnected through β-O-4, 4-O-5, β-1, 5-5’ and β-β ether bonds. In situ IR spectroscopy was used to follow the changes in lignin constituents during reaction. The proposed reaction pathways for the catalytic transformation of this organosolv lignin to alkanes start with the hydrogenolysis of aryl alkyl ether bonds, followed by hydrogenation of the aromatic compounds on Ni to cyclic alcohols. Oxygen is removed from the alcohols via dehydration on Brønsted acid sites to yield cyclic alkenes that are further hydrogenated to alkanes. Formation of condensation products may occur via intermolecular recombination of aromatic monomers or alkylation of aromatic compounds by alkenes. The financial support from TUM-PNNL cooperation project “Development of new methods for in situ characterization in liquid phase reactions” (CN-177939) is highly appreciated. The work by S.K., H.S., and J.A.L was partially supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  6. Enhancement of Lignin Biopolymer Isolation from Hybrid Poplar by Organosolv Pretreatments

    Directory of Open Access Journals (Sweden)

    Miao Wu

    2014-01-01

    Full Text Available Lignocellulosic biomass is an abundant renewable resource that has the potential to displace petroleum in the production of biomaterials and biofuels. In the present study, the fractionation of different lignin biopolymers from hybrid poplar based on organosolv pretreatments using 80% aqueous methanol, ethanol, 1-propanol, and 1-butanol at 220°C for 30 min was investigated. The isolated lignin fractions were characterized by Fourier transform infrared spectroscopy (FT-IR, high-performance anion exchange chromatography (HPAEC, 2D nuclear magnetic resonance (2D NMR, and thermogravimetric analysis (TGA. The results showed that the lignin fraction obtained with aqueous ethanol (EOL possessed the highest yield and the strongest thermal stability compared with other lignin fractions. In addition, other lignin fractions were almost absent of neutral sugars (1.16–1.46% though lignin preparation extracted with 1-butanol (BOL was incongruent (7.53%. 2D HSQC spectra analysis revealed that the four lignin fractions mainly consisted of β-O-4′ linkages combined with small amounts of β-β′ and β-5′ linkages. Furthermore, substitution of Cα in β-O-4′ substructures had occurred due to the effects of dissolvent during the autocatalyzed alcohol organosolv pretreatments. Therefore, aqueous ethanol was found to be the most promising alcoholic organic solvent compared with other alcohols to be used in noncatalyzed processes for the pretreatment of lignocellulosic biomass in biorefinery.

  7. Dataset on the structural characterization of organosolv lignin obtained from ensiled Poaceae grass and load-dependent molecular weight changes during thermoplastic processing

    Directory of Open Access Journals (Sweden)

    Jörg Dörrstein

    2018-04-01

    Full Text Available This article presents experimental data of organosolv lignin from Poacea grass and structural changes after compounding and injection molding as presented in the research article “Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites” [1]. It supplements the article with morphological (SEM, spectroscopic (31P NMR, FT-IR and chromatographic (GPC, EA data of the starting lignin as well as molar mass characteristics (mass average molar mass (Mw and Polydispersity (D of the extracted lignin. Refer to Schwarz et al. [2] for a detailed description of the production of the organosolv residue and for further information on the raw material used for lignin extraction. The dataset is made publicly available and can be useful for extended lignin research and critical analyzes.

  8. Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw

    NARCIS (Netherlands)

    Moniz, Patrícia; Serralheiro, Cláudia; Matos, Cristina T.; Boeriu, Carmen G.; Frissen, Augustinus E.; Duarte, Luís C.; Roseiro, Luísa B.; Pereira, Helena; Carvalheiro, Florbela

    2018-01-01

    An organosolv process using ethanol-water was optimized in order to recover high quality lignin from rice-straw previously pre-treated by autohydrolysis at 210 °C. The results showed a selective and appreciable removal of lignin under very mild conditions and the highest delignification yield

  9. Catalytic hydrotreatment of pyrolytic lignins to give alkylphenolics and aromatics using a supported Ru catalyst

    NARCIS (Netherlands)

    Kloekhorst, Arjan; Wildschut, Jelle; Heeres, Hero Jan

    2014-01-01

    The catalytic hydrotreatment of two pyrolytic lignins (pine and forestry residue), obtained from the corresponding fast pyrolysis oils, and organosolv Alcell lignin as a benchmark was explored in a batch set-up using Ru/C as the catalyst (400 degrees C, 4 h, 100 bar initial H-2 pressure). The

  10. The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine.

    Science.gov (United States)

    Del Rio, Luis F; Chandra, Richard P; Saddler, Jack N

    2010-05-01

    Mountain pine beetle-killed lodgepole pine (Pinus contorta) chips were pretreated using the organosolv process, and their ease of subsequent enzymatic hydrolysis was assessed. The effect of varying pretreatment chemicals and solvents on the substrate's physicochemical characteristics was also investigated. The chemicals employed were MgCl2, H2SO4, SO2, and NaOH, and the solvents were ethanol and butanol. It was apparent that the different pretreatments resulted in variations in both the chemical composition of the solid and liquid fractions as well in the extent of cellulolytic hydrolysis (ranging from 21% to 82% hydrolysis after 12 h). Pretreatment under acidic conditions resulted in substrates that were readily hydrolyzed despite the apparent contradiction that pretreatment under alkaline conditions resulted in increased delignification (approximately 7% and 10% residual lignin for alkaline conditions versus 17% to 19% for acidic conditions). Acidic pretreatments also resulted in lower cellulose degree of polymerization, shorter fiber lengths, and increased substrate porosity. The substrates generated when butanol/water mixtures were used as the pretreatment solvent were also hydrolyzed more readily than those generated with ethanol/water. This was likely due to the limited miscibility of the solvents resulting in an increased concentration of pretreatment chemicals in the aqueous layer and thus a higher pretreatment severity.

  11. Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications

    Directory of Open Access Journals (Sweden)

    Christos Nitsos

    2017-12-01

    Full Text Available Softwoods represent a significant fraction of the available lignocellulosic biomass for conversion into a variety of bio-based products. Its inherent recalcitrance, however, makes its successful utilization an ongoing challenge. In the current work the research efforts for the fractionation and utilization of softwood biomass with the organosolv process are reviewed. A short introduction into the specific challenges of softwood utilization, the development of the biorefinery concept, as well as the initial efforts for the development of organosolv as a pulping method is also provided for better understanding of the related research framework. The effect of organosolv pretreatment at various conditions, in the fractionation efficiency of wood components, enzymatic hydrolysis and bioethanol production yields is then discussed. Specific attention is given in the effect of the pretreated biomass properties such as residual lignin on enzymatic hydrolysis. Finally, the valorization of organosolv lignin via the production of biofuels, chemicals, and materials is also described.

  12. Studies on Lignin-Based Adhesives for Particleboard Panels

    OpenAIRE

    ÇETİN, Nihat Sami; ÖZMEN, Nilgül

    2003-01-01

    The ultimate aim of this work was to develop a phenolic resin for partially replacing phenol with modified organosolv lignin in phenol-formaldehyde (PF) resin production. The lignin-formaldehyde relationship was determined in a reactivity test. Organosolv lignin-phenol-formaldehyde (LPF) resins were produced in a two-step preparation with different additions of lignin. The method selected for the manufacture of lignin resins dealt with modification of the lignin by the methylolation route. Th...

  13. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins.

    Science.gov (United States)

    Miles-Barrett, Daniel M; Neal, Andrew R; Hand, Calum; Montgomery, James R D; Panovic, Isabella; Ojo, O Stephen; Lancefield, Christopher S; Cordes, David B; Slawin, Alexandra M Z; Lebl, Tomas; Westwood, Nicholas J

    2016-10-25

    Understanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone structures found in isolated organosolv lignins from both Douglas fir and beech woods. Through the use of model compounds combined with HSQC, HMBC and HSQC-TOCSY NMR experiments we demonstrate that, depending on the lignin source, both S and G lignin-bound Hibbert ketone units can be present. We also show that these units can serve as a source of novel mono-aromatic compounds following an additional lignin depolymerisation reaction.

  14. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process.

    Science.gov (United States)

    Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2013-12-01

    Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Coconut coir pith lignin: A physicochemical and thermal characterization.

    Science.gov (United States)

    Asoka Panamgama, L; Peramune, P R U S K

    2018-07-01

    The structural and thermal features of coconut coir pith lignin, isolated by three different extraction protocols incorporating two different energy supply sources, were characterized by different analytical tools. The three different chemical extraction protocols were alkaline - 7.5% (w/v) NaOH, organosolv - 85% (v/v) formic and acetic acids at 7:3 (v/v) ratio and polyethylene glycol (PEG): water ratio at 80:20wt%. The two sources of energy were thermal or microwave. Raw lignins were modified by epichlorohydrin to enhance reactivity, and the characteristics of raw and modified lignins were comparatively analysed. Using the thermal energy source, the alkaline and organosolv processes obtained the highest and lowest lignin yields of 26.4±1.5wt% and 3.4±0.2wt%, respectively, as shown by wet chemical analysis. Specific functional group analysis by Fourier transform infrared spectra (FTIR) revealed that significantly different amounts of hydroxyl and carbonyl groups exist in alkaline, organosolv and PEG lignins. Thermogravimetric analysis (TGA) illustrated that the lowest degradation onset temperature was recorded for organosolv lignin, and the overall order was organosolvlignin extraction from coir pith can be performed efficiently with several protocols and that those methods offer practical value to industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. ETHANOL ORGANOSOLV PRETREATMENT OF BAMBOO FOR EFFICIENT ENZYMATIC SACCHARIFICATION

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li,

    2012-06-01

    Full Text Available Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanol organosolv pretreatment with dilute sulfuric acid as the catalyst was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w bamboo dilute sulfuric acid in 75% ethanol had a particularly strong effect on fractionation of bamboo. It yielded a solids fraction containing 83.4% cellulose in the treated substrate. The cellulose conversion to glucose yield reached 77.1 to 83.4% after enzymatic hydrolysis of the solids fraction for 48 h at an enzyme loading of 15 FPU cellulase/g cellulose and 30 IU β-glucosidase/g cellulose. The enzymatic hydrolysis rate was significantly accelerated as the ethanol organosolv pretreatment time increased, reaching the highest enzymatic glucose yield of 83.4% after 48 h at 50 °C. The concentrations of fermentation inhibitors such as HMF (5-hydroxy-2-methyl furfural and furfural were 0.96 g/L and 4.38 g/L in the spent liquor after the ethanol organosolv pretreatment, which were slightly lower than the concentrations quantified during H2SO4-water treatment. Spent liquor was diluted with water, and more than 87.2% of lignin in raw bamboo was recovered as ethanol organosolv lignin through the filtration process.

  17. Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive.

    Science.gov (United States)

    Hazwan Hussin, M; Samad, Noraini Abdul; Latif, Nur Hanis Abd; Rozuli, Nurul Adilla; Yusoff, Siti Baidurah; Gambier, François; Brosse, Nicolas

    2018-07-01

    Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Acetyl Groups in Typha capensis: Fate of Acetates during Organosolv and Ionosolv Pulping

    Directory of Open Access Journals (Sweden)

    Idi Guga Audu

    2018-06-01

    Full Text Available During biomass fractionation, any native acetylation of lignin and heteropolysaccharide may affect the process and the resulting lignin structure. In this study, Typha capensis (TC and its lignin isolated by milling (MWL, ionosolv (ILL and organosolv (EOL methods were investigated for acetyl group content using FT-Raman, 1H NMR, 2D-NMR, back-titration, and Zemplén transesterification analytical methods. The study revealed that TC is a highly acetylated grass; extractive free TC (TCextr and TC MWL exhibited similar values of acetyl content: 6 wt % and 8 wt % by Zemplén transesterification, respectively, and 11 wt % by back-titration. In contrast, lignin extracted from organosolv and [EMIm][OAc] pulping lost 80% of the original acetyl groups. With a high acetyl content in the natural state, TC could be an interesting raw material in biorefinery in which acetic acid could become an important by-product.

  19. Arundo donax L. reed: new perspectives for pulping and bleaching. Part 4. Peroxide bleaching of organosolv pulps.

    Science.gov (United States)

    Shatalov, A A; Pereira, H

    2005-05-01

    A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.

  20. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor

    Science.gov (United States)

    Yang, Bong Suk; Kang, Kyu-Young; Jeong, Myung-Joon

    2017-10-01

    Kraft and organosolv lignins, generally produced in chemical pulping and bio-refinery processes of lignocellulosic biomass, were used to prepare lignin-based carbon aerogels for supercapacitors as raw materials. The difference between lignins and lignin-based aerogels were compared by analyzing physical and chemical properties, including molecular weight, polydispersity, and reactivity with formaldehyde. Also, density, shrinkage, Brunauer-Emmett-Teller (BET) surface area and scanning electron microscope (SEM) images of the lignin-based aerogel were investigated. Kraft lignin consisting of coniferyl alcohol (G) and p-coumaryl alcohol (H) increased the reactivity of formaldehyde, formed a hydrogel well (porosity > 0.45), and specific surface area higher than organosolv lignin. In the case of kraft lignin, there were irregular changes such as oxidation and condensation in the pulping process. However, reaction sites with aromatic rings in lignin impacted the production of aerogel and required a long gelation period. The molecular weight of lignin influences the gelation time in producing lignin-based aerogel, and lignin composition affects the BET surface area and pore structures of the lignin-based carbon aerogels.

  1. Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives.

    Science.gov (United States)

    Lee, Soo Jung; Kim, Hyun Joo; Cho, Eun Jin; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Lignin was isolated from the residue of bioethanol production with oak wood via alkaline and catalyzed organosolv treatments at ambient temperature to improve the purity of lignin for the materials application. The isolated lignins were analyzed for their chemical composition by nitrobenzene oxidation method and their functionality was characterized via wet chemistry method, element analysis, (1)H NMR, GPC and FTIR-ATR. The isolated lignin by acid catalyzed organosolv treatment (Acid-OSL) contained a higher lignin content, aromatic proton, phenolic hydroxyl group and a lower nitrogen content that is more reactive towards chemical modification. The lignin-based adhesives were prepared and the bond strength was measured to evaluate the enhanced reactivity of lignin by the isolation. Two steps of phenolation and methylolation were applied for the modification of the isolated lignins and their tensile strengths were evaluated for the use as an adhesive. The acid catalyzed organosolv lignin-based adhesives had comparable bond strength to phenol-formaldehyde adhesives. The analysis of lignin-based adhesives by FTIR-ATR and TGA showed structural similarity to phenol adhesive. The results demonstrate that the reactivity of lignin was enhanced by isolation from hardwood bioethanol production residues at ambient temperature and it could be used in a value-added application to produce lignin-based adhesives. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose.

    Science.gov (United States)

    Hallac, Bassem B; Ray, Michael; Murphy, Richard J; Ragauskas, Arthur J

    2010-12-01

    Buddleja davidii is a unique biomass that has many attractive agroenergy features, especially its wide range of growth habitat. The anatomical characteristics of B. davidii were investigated before and after ethanol organosolv pretreatment (one of the leading pretreatment technologies) in order to further understand the alterations that occur to the cellular structure of the biomass which can then be correlated with its enzymatic digestibility. Results showed that the ethanol organosolv pretreatment of B. davidii selectively removes lignin from the middle lamella (ML), which does not significantly disrupt the crystalline structure of cellulose. The removal of ML lignin is a major factor in enhancing enzymatic cellulose-to-glucose hydrolysis. The pretreatment also causes cell deformation, resulting in cracks and breaks in the cell wall. These observations, together with characterization analysis of the cell wall polymer material, lend support to the hypothesis that the physical distribution of lignin in the biomass matrix is an important structural feature affecting biomass enzymatic digestibility. © 2010 Wiley Periodicals, Inc.

  3. Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach

    NARCIS (Netherlands)

    de Wild, P. J.; Huijgen, W.J.J.; Kloekhorst, A.; Chowdari, R. K.; Heeres, H. J.

    Five technical lignins (three organosolv, Kraft and soda lignin) were depolymerised to produce monomeric biobased aromatics, particularly alkylphenols, by a new two-stage thermochemical approach consisting of dedicated pyrolysis followed by catalytic hydrodeoxygenation (HDO) of the resulting

  4. Potentiometric chemical sensors from lignin-poly(propylene oxide) copolymers doped by carbon nanotubes.

    Science.gov (United States)

    Rudnitskaya, Alisa; Evtuguin, Dmitry V; Costa, Luis C; Graça, M Pedro F; Fernandes, António J S; Correia, M Rosario P; Gomes, M Teresa S R; Oliveira, J A B P

    2013-01-21

    Hardwood and softwood lignins obtained from industrial sulphite and kraft and laboratory oxygen-organosolv pulping processes were employed in co-polymerization with tolylene 2,4-diisocyanate terminated poly(propylene glycol). The obtained lignin-based polyurethanes were doped with 0.72 w/w% of multiwall carbon nanotubes (MWCNTs) with the aim of increasing their electrical conductivity to the levels suitable for sensor applications. Effects of the polymer doping with MWCNTs were assessed using electrical impedance (EIS) and UV-Resonance Raman (UV-RR) spectroscopy. Potentiometric sensors were prepared by drop casting of liquid polymer on the surface of carbon glass or platinum electrodes. Lignin-based sensors displayed a very low or no sensitivity to all alkali, alkali-earth and transition metal cations ions except Cr(VI) at pH 2. Response to Cr(VI) values of 39, 50 and 53 mV pX(-1) for the sensors based on kraft, organosolv and lignosulphonate lignins, respectively, were observed. Redox sensitivity values close to the theoretical values of 20 and 21 mV pX(-1) for organosolv and lignosulphonate based sensors respectively were detected in the Cr(III)/Cr(VI) solutions while a very low response was observed in the solutions containing Fe(CN)(6)(3-/4-). Conducting composite lignin-based polyurethanes doped with MWCNTs were suggested as being promising materials for Cr(VI)-sensitive potentiometric sensors.

  5. Development of an integrated pretreatment fractionation process for fermentable sugars and lignin: Application to almond (Prunus dulcis) shell

    International Nuclear Information System (INIS)

    Gong, Dachun; Holtman, Kevin M.; Franqui-Espiet, Diana; Orts, William J.; Zhao, Ruming

    2011-01-01

    An environmentally friendly pretreatment process was developed to fractionate cellulose, hemicellulose and lignin from almond (Prunus dulcis) shells, consisting of hot water pretreatment (HWP) coupled with organic solvent (organosolv) pretreatment of water/ethanol (OWEP). This integrated pretreatment process proved more effective on the basis of yield of fermentable sugar and lignin separation compared with HWP alone, dilute acid pretreatment (DAP), ammonia pretreatment (AP), lime pretreatment LP, organosolv water/ethanol pretreatment (OWEP), and organosolv water/acetone pretreatment (OWAP). In the coupled hot water-organosolv process, hemicellulose sugars were recovered in the first residual liquid while varying amounts of cellulose was retained in the residual solid. The lignin fraction was obtained by simply adjusting the pH from the second liquid. The optimal two-stage process consisted of first HWP stage at 195 o C for 30 min, resulting in w glucose = 95.4% glucose recovery yield and w xylose = 92.2% xylose removal. The second organosolv OWEP stage was operated at 195 o C for 20 min, in ethanol in water mixtures of ethanol = 50% and resulted in nearly w glucose = 100% glucose recovery yield, w xylose = 90% xylose and w lignin = 61% lignin removal. After enzymatic hydrolysis, glucose yield was up to w glucose = 95%, compared to 61% yield from untreated almond. Images obtained via scanning electron microscopy (SEM) highlighted the differences in almond structure from the varying pretreatment methods during biomass fractionation. -- Highlights: → Almond shells are an under-utilized agriculture byproduct available in the world. → Almond shells are particularly attractive as bioenergy feedstock. → We have developed a new fractionation process for the almond shell. → The new process combined the HWP with OWEP. → The fractionation process has potential in the utilization of almond shell.

  6. Reactions of Lignin Model Compounds in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  7. Economic Analysis of an Organosolv Process for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Jesse Kautto

    2014-08-01

    Full Text Available In a previous paper, conceptual process design, simulation, and mass and energy balances were presented for an organosolv process with a hardwood feed of 2350 metric tons (MT per day and ethanol, lignin, furfural, and acetic acid production rates of 459, 310, 6.6, and 30.3 MT/day, respectively. In this paper, the investment and operating costs of the process and the minimum ethanol selling price (MESP to make the process economically feasible were estimated. The total capital investment of the plant was approximately 720 million USD. Lignin price was found to affect the MESP considerably. With a base case lignin price of 450 USD/MT, the MESP was approximately 3.1 USD per gallon (gal. Higher lignin price of 1000 USD/MT was required to equal the MESP with the December 2013 ethanol market price (2.0 USD/gal. In addition to lignin price, the MESP was found to be strongly affected by feedstock, enzyme, and investment costs. Variations in feedstock and investment costs affected the MESP by approximately 0.2 and 0.5 USD/gal, respectively. Changing the enzyme dosage and price from base case estimate of 5270 USD/MT and 0.02 g/g cellulose to more conservative 3700 USD/MT and 0.06 g/g cellulose, respectively, increased the MESP by 0.59 USD/gal.

  8. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    Science.gov (United States)

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  9. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    Science.gov (United States)

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  10. Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin

    NARCIS (Netherlands)

    Jongerius, A.L.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    A two-step approach to the conversion of organosolv, kraft and sugarcane bagasse lignin to monoaromatic compounds of low oxygen content is presented. The first step consists of lignin depolymerization in a liquid phase reforming (LPR) reaction over a 1 wt% Pt/γ-Al2O3 catalyst at 225 °C in alkaline

  11. Alkaline and Organosolv Lignins from Furfural Residue: Structural Features and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Xue-Fei Cao

    2013-12-01

    Full Text Available Furfural residue (FR, composed mainly of cellulose and lignin, is an industrial waste produced during furfural manufacture. In this study, dioxane, alkali, ethanol, alkali-ethanol, and alkaline hydrogen peroxide (AHP were used to extract lignins from FR. The structural features of these lignins obtained were characterized by sugar analysis, GPC, UV, FT-IR, and HSQC spectra. As compared to dioxane lignin (DL, other lignins showed lower molecular weights (Mw owing to the partial cleavage of the linkages between lignin units. Results from HSQC spectra revealed that β-O-4' and β-5' were still the major linkages of the FR lignin. Moreover, p-coumaric and ferulic acids were released and co-precipitated in the lignin preparations extracted with alkali and AHP, whereas part of the esters in DL were preserved during the dioxane extraction. Antioxidant activity investigation indicated that the antioxidant property of the alkali and alkali-ethanol lignins was higher than that of the commercial antioxidant, butylated hydroxytoluene.

  12. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    Science.gov (United States)

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  13. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    Science.gov (United States)

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of Reaction Conditions on Lignin Hydrothermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erdocia, Xabier; Prado, Raquel; Corcuera, M. Ángeles; Labidi, Jalel, E-mail: jalel.labidi@ehu.es [Chemical and Environmental Engineering Department, University of the Basque Country, San Seabastian (Spain)

    2014-04-01

    Organosolv lignin, obtained from olive tree pruning under optimized conditions, was subjected to a hydrothermal depolymerization process catalyzed by sodium hydroxide. The depolymerization of lignin was carried out at 300°C using different reaction times (20, 40, 60, 70, 80, 90, and 100 min) in order to study the influence of this parameter on lignin depolymerization. The resulting products (oil and residual lignin) were measured and analyzed by different techniques (GC/MS, high-performance size-exclusion chromatography, and pyrolysis–GC/MS) in order to determine their nature and composition. Coke was also formed, at a lower quantity, uncompetitive repolymerization reactions during the lignin hydrothermal treatment. The maximum oil yield and concentration of monomeric phenolic compounds was obtained after 80 min of reaction time. The highest reaction time studied (100 min) had the worst results with the lowest oil yield and highest coke production.

  15. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    DEFF Research Database (Denmark)

    Munk, Line; Punt, A. M.; Kabel, M. A.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators...... better than HBT (1-hydroxybenzotriazole). Three different mechanisms are suggested to explain the grafting of HPI and HBT, all involving radical-radical coupling to produce covalent bonding to lignin. Lignin from exhaustive cellulase treatment of wheat straw was more susceptible to grafting than beech...... organosolv lignin with the relative abundance of grafting being 35% vs. 11% for HPI and 5% vs. 1% for HBT on these lignin substrates. The data imply that lignin can be functionalized via laccase catalysis with-N-OH type mediators....

  17. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol

    DEFF Research Database (Denmark)

    Warner, Genoa; Hansen, Thomas Søndergaard; Riisager, Anders

    2014-01-01

    conversion to methanol-soluble products, without char formation, were based on copper in combination with other dopants based on relatively earth-abundant metals. Nearly complete conversion of lignin to bio-oil composed of monomers and low-mass oligomers with high aromatic content was obtained in 6. h at 310......An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin...

  18. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy

    Science.gov (United States)

    Donaldson, Lloyd; Vaidya, Alankar

    2017-03-01

    Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.

  19. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Dai, Xuliang [GrafTech International Holdings Inc.; Hausner, Andrew [GrafTech International Holdings Inc.

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  20. Recent Progress in Producing Lignin-Based Carbon Fibers for Functional Applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Burwell, Deanna [GrafTech International Holdings Inc.; Dai, Xuliang [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Akato, Kokouvi [Oak Ridge National Laboratory

    2015-10-29

    Lignin, a biopolymer, has been investigated as a renewable and low-cost carbon fiber precursor since the 1960s. Although successful lab-scale production of lignin-based carbon fibers has been reported, there are currently not any commercial producers. This paper will highlight some of the known challenges with converting lignin-based precursors into carbon fiber, and the reported methods for purifying and modifying lignin to improve it as a precursor. Several of the challenges with lignin are related to its diversity in chemical structure and purity, depending on its biomass source (e.g. hardwood, softwood, grasses) and extraction method (e.g. organosolv, kraft). In order to make progress in this field, GrafTech and Oak Ridge National Laboratory are collaborating to develop lignin-based carbon fiber technology and to demonstrate it in functional applications, as part of a cooperative agreement with the DOE Advanced Manufacturing Office. The progress made to date with producing lignin-based carbon fiber for functional applications, as well as developing and qualifying a supply chain and value proposition, are also highlighted.

  1. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid.

    Science.gov (United States)

    Xu, Weiyin; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W

    2012-04-01

    Organosolv switchgrass lignin is depolymerized and hydrodeoxygenated with a formic acid hydrogen source, 20 wt % Pt/C catalyst, and ethanol solvent. The combination of formic acid and Pt/C is found to promote production of higher fractions of lower molecular weight compounds in the liquid products. After 4 h of reaction, all of the switchgrass lignin is solubilized and 21 wt % of the biomass is shown to be converted into seven prominent molecular species that are identified and quantified. Reaction time is shown to be an important variable in affecting changes in product distributions and bulk liquid product properties. At 20 h of reaction, the lignin is significantly depolymerized to form liquid products with a 76 % reduction in the weighted average molecular weight. Elemental analysis also shows that the resultant liquid products have a 50 % reduction in O/C and 10 % increase in H/C molar ratios compared to the switchgrass lignin after 20 h. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach.

    Science.gov (United States)

    de Wild, P J; Huijgen, W J J; Kloekhorst, A; Chowdari, R K; Heeres, H J

    2017-04-01

    Five technical lignins (three organosolv, Kraft and soda lignin) were depolymerised to produce monomeric biobased aromatics, particularly alkylphenols, by a new two-stage thermochemical approach consisting of dedicated pyrolysis followed by catalytic hydrodeoxygenation (HDO) of the resulting pyrolysis oils. Pyrolysis yielded a mixture of guaiacols, catechols and, optionally, syringols in addition to alkylphenols. HDO with heterogeneous catalysts (Ru/C, CoMo/alumina, phosphided NiMO/C) effectively directed the product mixture towards alkylphenols by, among others, demethoxylation. Up to 15wt% monomeric aromatics of which 11wt% alkylphenols was obtained (on the lignin intake) with limited solid formation (<3wt% on lignin oil intake). For comparison, solid Kraft lignin was also directly hydrotreated for simultaneous depolymerisation and deoxygenation resulting in two times more alkylphenols. However, the alkylphenols concentration in the product oil is higher for the two-stage approach. Future research should compare direct hydrotreatment and the two-stage approach in more detail by techno-economic assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sisal organosolv pulp as reinforcement for cement based composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  4. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst

    Science.gov (United States)

    Shao, Yi; Xia, Qineng; Dong, Lin; Liu, Xiaohui; Han, Xue; Parker, Stewart F.; Cheng, Yongqiang; Daemen, Luke L.; Ramirez-Cuesta, Anibal J.; Yang, Sihai; Wang, Yanqin

    2017-07-01

    Lignin is the only large-volume renewable source of aromatic chemicals. Efficient depolymerization and deoxygenation of lignin while retaining the aromatic functionality are attractive but extremely challenging. Here we report the selective production of arenes via direct hydrodeoxygenation of organosolv lignin over a porous Ru/Nb2O5 catalyst that enabled the complete removal of the oxygen content from lignin. The conversion of birch lignin to monomer C7-C9 hydrocarbons is nearly quantitative based on its monomer content, with a total mass yield of 35.5 wt% and an exceptional arene selectivity of 71 wt%. Inelastic neutron scattering and DFT calculations confirm that the Nb2O5 support is catalytically unique compared with other traditional oxide supports, and the disassociation energy of Caromatic-OH bonds in phenolics is significantly reduced upon adsorption on Nb2O5, resulting in its distinct selectivity to arenes. This one-pot process provides a promising approach for improved lignin valorization with general applicability.

  5. Sisal organosolv pulp as reinforcement for cement based composites

    OpenAIRE

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  6. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin

    NARCIS (Netherlands)

    Zhou, Shuai; Garcia-Perez, Manuel; Pecha, Brennan; Kersten, Sascha R.A.; McDonald, Armando G.; Westerhof, Roel Johannes Maria

    2013-01-01

    This paper presents results on the primary pyrolysis products of organosolv lignin at temperatures between 360 and 700 °C. To study the primary products, a vacuum screen heater (heating rate of 8000 °C/s, deep vacuum of 0.7 mbar, and very fast cooling at the wall temperature of −100 °C) was used.

  7. Lignin solubilisation and gentle fractionation in liquid ammonia

    NARCIS (Netherlands)

    Strassberger, Z.; Prinsen, P.; Klis, van der F.; Es, van D.S.; Tanase, S.; Rothenberg, G.

    2015-01-01

    We present a simple method for solubilising lignin using liquid ammonia. Unlike water, which requires harsh conditions, ammonia can solubilise technical lignins, in particular kraft lignin. A commercial pine wood Kraft lignin (Indulin AT) was solubilized instantaneously at room temperature and 7–11

  8. Production of Micro- and Nanoscale Lignin from Wheat Straw Using Different Precipitation Setups.

    Science.gov (United States)

    Beisl, Stefan; Loidolt, Petra; Miltner, Angela; Harasek, Michael; Friedl, Anton

    2018-03-11

    Micro- and nanosize lignin has recently gained interest due to its improved properties compared to standard lignin available today. As the second most abundant biopolymer after cellulose, lignin is readily available but used for rather low-value applications. Applications for lignin in micro- to nanoscale however, ranging from improvement of mechanical properties of polymer nanocomposites, have bactericidal and antioxidant properties and impregnations to hollow lignin drug carriers for hydrophobic and hydrophilic substances. This research represents a whole biorefinery process chain and compares different precipitation setups to produce submicron lignin particles from lignin containing an organosolv pretreatment extract from wheat straw. A batch precipitation in a stirred vessel was compared with continuous mixing of extract and antisolvent in a T-fitting and mixing in a T-fitting followed by a static mixer. The precipitation in the combination of T-fitting and static mixer with improved precipitation parameters yields the smallest particle size of around 100 nm. Furthermore, drying of particles did not influence the particle sizes negatively by showing decreased particle diameters after the separation process.

  9. Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Pimienta, Jose A. [Univ. Autonoma de Nayarit, Tepic (Mexico); Vargas-Tah, Alejandra [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).; López-Ortega, Karla M. [Univ. Autonoma de Nayarit, Tepic (Mexico); Medina-López, Yessenia N. [Univ. Autonoma de Nayarit, Tepic (Mexico); Mendoza-Pérez, Jorge A. [Inst. Politecnico Nacional (IPN), Mexico City (Mexico); Avila, Sayeny [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Singh, Seema [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Loaces, Inés [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).; Martinez, Alfredo [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).

    2016-11-16

    Agave bagasse (AGB) has gained recognition as a drought-tolerant biofuel feedstock with high productivity in semiarid regions. A comparative analysis of ionic liquid (IL) and organosolv (OV) pretreatment technologies in AGB was performed using a sequential enzymatic saccharification and fermentation (SESF) strategy with cellulolytic enzymes and the ethanologenic Escherichia coli strain MS04. After pretreatment, 86% of xylan and 45% of lignin were removed from OV-AGB, whereas IL-AGB reduced lignin content by 28% and xylan by 50% when compared to the untreated biomass. High glucan ( > 90%) and xylan ( > 83%) conversion was obtained with both pretreated samples. During the fermentation stage (48 h), 12.1 and 12.7 kg of ethanol were produced per 100 kg of untreated AGB for IL and OV, respectively. These comparative analyses showed the advantages of SESF using IL and OV in a biorefinery configuration where a better understanding of AGB recalcitrance is key for future applications.

  10. Characterization of electrospun lignin based carbon fibers

    International Nuclear Information System (INIS)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-01-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems

  11. Characterization of electrospun lignin based carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri [School of Engineering, Thornbrough Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada); Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada)

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  12. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.

    2017-01-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...... to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047–2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin...... for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33 °C and pH 5.8, 33 °C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR...

  13. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum

    Energy Technology Data Exchange (ETDEWEB)

    D/Souza, T.M.; Merritt, C.S.; Reddy, C.A.

    1999-12-01

    Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen shaken cultures were much greater than those seen in low-nitrogen, malt extract, or wool-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HM cultures showed two laccase activity bands, where as isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, and 5.1. Low levels of MnP activity were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.

  14. Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars

    International Nuclear Information System (INIS)

    Rutherford, David W.; Wershaw, Robert L.; Rostad, Colleen E.; Kelly, Charlene N.

    2012-01-01

    The application of biochar to soil has been proposed as a long-term sink for atmospheric carbon dioxide in terrestrial ecosystems while providing improved soil fertility and increased crop production. Because biochar differs from the widely documented activated carbon, initial characterization information on effects of formation conditions on physical and chemical properties of biochar is important prior to its large-scale incorporation into soils. Plant biomass is composed primarily of cellulose and lignin. As a means of predicting biochar characteristics, samples of cellulose, lignin, and pine were charred under a nitrogen atmosphere at temperatures ranging from 250 °C to 500 °C for times ranging from 1 h to 168 h. Mass loss, elemental composition (carbon, hydrogen, and oxygen), Fourier transform infrared and 13 C Nuclear Magnetic Resonance (NMR) spectra of the biochars produced were compared. Mass loss combined with NMR spectrometry showed that the initial rapid loss of material is attributed to aliphatic components, which are either lost or converted to aromatic carbon early in the charring process, and oxygen was lost more rapidly than carbon. The biomass contains a labile oxygen fraction that is quickly removed or lost upon initial heating, and a recalcitrant oxygen fraction which remains fixed in the char. If biochar is to be incorporated into agricultural soils, formation conditions should be tailored to optimize desirable characteristics, such as recalcitrance to degradation, soil fertility and pollutant sequestration, and minimize less desirable characteristics of degradability or low yield (mass loss). -- Highlights: ► Effects of formation conditions on physical and chemical properties of biochar. ► Cellulose, lignin, pine charred under inert atmosphere at various times and temperatures. ► Mass loss, elemental composition (C, H, and O), FTIR, NMR spectra compared. ► Aliphatic components either lost or converted to aromatic carbon early in

  15. The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models.

    Science.gov (United States)

    Janković, Bojan

    2011-10-01

    The non-isothermal pyrolysis kinetics of Acetocell (the organosolv) and Lignoboost® (kraft) lignins, in an inert atmosphere, have been studied by thermogravimetric analysis. Using isoconversional analysis, it was concluded that the apparent activation energy for all lignins strongly depends on conversion, showing that the pyrolysis of lignins is not a single chemical process. It was identified that the pyrolysis process of Acetocell and Lignoboost® lignin takes place over three reaction steps, which was confirmed by appearance of the corresponding isokinetic relationships (IKR). It was found that major pyrolysis stage of both lignins is characterized by stilbene pyrolysis reactions, which were subsequently followed by decomposition reactions of products derived from the stilbene pyrolytic process. It was concluded that non-isothermal pyrolysis of Acetocell and Lignoboost® lignins can be best described by n-th (n>1) reaction order kinetics, using the Weibull mixture model (as distributed reactivity model) with alternating shape parameters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Alkali-treated kraft lignin as a component in flakeboard eesins

    Science.gov (United States)

    Mon-Lin Kuo; Chung-Yun Hse; Dee-Hua Huang

    1991-01-01

    Southern pine kraft lignin was reacted with NaOH (15 and 20% based on dry lignin) at 170, 200, and 250°C for 30 and 60 min. Sweetgum flake boards bonded with phenolic resins containing 50% hydroxymethylated lignin prepared from some of the alkali treated lignins were compared with boards bonded with a neat PF resin. Results indicate that boards bonded with lignin-...

  17. Impact of Hot-Water Extraction on Acetone-Water Oxygen Delignification of Paulownia Spp. and Lignin Recovery

    Directory of Open Access Journals (Sweden)

    Chen Gong

    2014-02-01

    Full Text Available A hardwood-based biorefinery process starting with hot-water extraction (HWE is recommended in order to remove most of the hemicelluloses/xylans before further processing. HWE may be followed by delignification in acetone/water in the presence of oxygen (AWO for the production of cellulose and lignin. In this study, the HWE-AWO sequence was evaluated for its effectiveness at removing lignin from the fast-growing species Paulownia tomentosa (PT and Paulownia elongata (PE, in comparison with the reference species, sugar maple (Acer saccharum, SM. HWE might lead to a remarkable increase in lignin accessibility, and as a result, a greater AWO delignification degree was observed for extracted PT, PE, and SM than for unextracted ones. Organosolv lignin was recovered from the spent liquor of AWO delignification of PT with/without prior HWE and characterized to evaluate the benefits of HWE on the lignin structure and purity. The lignin recovered from the spent liquor of HWE-AWO sequence is of higher purity and lighter color than that recovered from the AWO spent liquor. These properties along with low sulfur content are desirable for lignin high-value applications.

  18. The chemistry of subcritical water reactions of a hardwood derived lignin and lignin model compounds with nitrogen, hydrogen, carbon monoxide and carbon dioxide

    Science.gov (United States)

    Hill Bembenic, Meredith A.

    Biofuels, like cellulosic ethanol, may only be cost effective if the lignin byproduct is upgraded to value-added products. However, lignin's inherent aromatic structure and interunit crosslinkages hinder effective conversion. High temperature H2O is considered for lignin conversion, because H2O exhibits unusual properties at higher temperatures (particularly at its supercritical point of 374°C and 3205 psi) including a decreased ion product and a decreased static dielectric constant (similar to those of polar organic solvents at room temperature) such that there is a high solubility for organic compounds, like lignin. Much of the research concerning lignin and supercritical H2O has focused on further decomposition to gases (e.g., H2, CH4, and CO2) where nearly no char formation is expected in the presence of a catalyst. However, the conditions required for supercritical H2O are difficult to maintain, catalysts can be expensive, and gases are not favorable to the current liquid fuel infrastructure. Reactions using Organosolv lignin, subcritical H2O (365°C) and various industrial gases (N2, H2, CO, and CO2 at an initial pressure of 500 psi) for 30 min. were examined to determine both lignin's potential to generate value-added products (e.g., monomer compounds and methanol) and the role (if any) of the H2O and the gases during the reactions. The behavior of H2O at reaction temperature and pressure is expected to be similar to the behavior of supercritical H 2O without the need to maintain supercritical conditions. Different characterization techniques were used for the products collected including primarily GC/FID-TCD of the evolved gases, GC/MS analysis of the organic liquids, solid phase microextraction analysis of the water, and solid state 13C-NMR analysis of the residues. The reactor pressure at temperature was shown to influence the reactivity of the H2O and lignin, and the highest conversions (≈54--62%) were obtained when adding a gas. However, the

  19. Evaluation of Pulp and Paper Properties obtained from Maple Juvenile Wood through Organosolv Alcohol Method Catalyzed by Calcium and Magnesium Salts

    Directory of Open Access Journals (Sweden)

    Reza Naghdi

    2015-05-01

    Full Text Available The properties of catalyzed organosolv pulp obtained from maple juvenile wood were studied. The physical properties of fiber (e.g. length, width, and cell membrane thickness and chemical composition of maple juvenile wood (e.g. average cellulose, lignin, extractives, and ash content were determined. The variables were cooking temperature (190 and 200 ºC and time (40, 60, and 80 minutes. Chemical charge ( 280 ml methanol, 70 ml water, and 0.025 mols of Calcium Chloride and Magnesium Nitrate was kept constant. Pulp screen yields (54.9 to 60.91% and Kappa No. (15.5 to 18.4 were measured. Pulp freeness was reduced to 350 ml CSF in PFI mill, and ten 60 g/m2 handsheets were made from the selected pulps. The strength properties of catalyzed organosolv handsheets including tear length (3.83 to 4.25 km, tear index (10.22 to 12.81 mN.m2/g, and burst index (1.74 to 2.15 kPa.m2/g were compared with those of the conventional Kraft handsheets of maple juvenile wood. The least allowed values of the mentioned properties in the Indian (IS and Japanese international standards (JIS reveal that while the tear length value is slightly below that of the standards, the values of tear and burst indices are well beyond the given standards, and the environmentally-friendly catalyzed organosolv pulping process (higher yield and lower Kappa No. compared to Kraft can be recommended to produce paper pulp from maple juvenile wood.

  20. A Mid-IR Multivariate Analysis Study on the Gross Calorific Value in Longleaf Pine: Impact on Correlations with Lignin and Extractive Contents

    Science.gov (United States)

    Chi-Leung So; Thomas L. Eberhardt

    2013-01-01

    Twenty 70-year-old longleaf pine trees from a spacing, thinning, and pruning study were harvested, from which samples were analyzed for gross calorific value (GCV). A strong correlation was found between GCV and extractive contents for the unextracted wood samples. Although lignin content should impact GCV, no correlation was found between the variation in GCV with...

  1. Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation.

    Science.gov (United States)

    Rashid, Goran M M; Taylor, Charles R; Liu, Yangqingxue; Zhang, Xiaoyang; Rea, Dean; Fülöp, Vilmos; Bugg, Timothy D H

    2015-10-16

    The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.

  2. NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins.

    Science.gov (United States)

    Kim, Hoon; Ralph, John; Lu, Fachuang; Ralph, Sally A; Boudet, Alain M; MacKay, John J; Sederoff, Ronald R; Ito, Takashi; Kawai, Shingo; Ohashi, Hideo; Higuchi, Takayoshi

    2003-01-21

    Peroxidase/H2O2-mediated radical coupling of 4-hydroxycinnamaldehydes produces 8-O-4-, 8-5-, and 8-8-coupled dehydrodimers as has been documented earlier, as well as the 5-5-coupled dehydrodimer. The 8-5-dehydrodimer is however produced kinetically in its cyclic phenylcoumaran form at neutral pH. Synthetic polymers produced from mixtures of hydroxycinnamaldehydes and normal monolignols provide the next level of complexity. Spectral data from dimers, oligomers, and synthetic polymers have allowed a more substantive assignment of aldehyde components in lignins isolated from a CAD-deficient pine mutant and an antisense-CAD-downregulated transgenic tobacco. CAD-deficient pine lignin shows enhanced levels of the typical benzaldehyde and cinnamaldehyde end-groups, along with evidence for two types of 8-O-4-coupled coniferaldehyde units. The CAD-downregulated tobacco also has higher levels of hydroxycinnamaldehyde and hydroxybenzaldehyde (mainly syringaldehyde) incorporation, but the analogous two types of 8-O-4-coupled products are the dominant features. 8-8-Coupled units are also clearly evident. There is clear evidence for coupling of hydroxycinnamaldehydes to each other and then incorporation into the lignin, as well as for the incorporation of hydroxycinnamaldehyde monomers into the growing lignin polymer. Coniferaldehyde and sinapaldehyde (as well as vanillin and syringaldehyde) co-polymerize with the traditional monolignols into lignins and do so at enhanced levels when CAD-deficiency has an impact on the normal monolignol production. The implication is that, particularly in angiosperms, the aldehydes behave like the traditional monolignols and should probably be regarded as authentic lignin monomers in normal and CAD-deficient plants.

  3. Reactivity of lignin and lignin models towards UV-assisted peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    The comparative reactivities of a series of guaiacyl and syringyl lignin model compounds and their methylated analogues towards alkaline peroxide and UV-alkaline peroxide were investigated. The overall reaction was followed by monitoring the reduction of the substrate as a function of time, and in every case, the reaction showed pseudo-first-order kinetics. The reaction rates of most lignin models having identical sidechains with alkaline peroxide and with UV-alkaline peroxide were in the order syringyl guaiacyl 3,4,5-trimethoxyphenyl veratryl. Thus phenols react faster than their methyl ethers, and an extra ortho methoxyl group promotes the reaction. Lignin models possessing electron-donating sidechains had generally higher reaction rates than those with electron-withdrawing sidechains. The reaction rates of the series of benzoic acids were 2-4 times higher at pH 11 than at pH 5. UV-peroxide degradation of a eucalypt kraft lignin was faster than that of a pine kraft lignin, and degradation was 1.4-1.6 times faster at pH 11 than at pH 5. The data are consistent with the formation of higher amounts of reactive radicals under alkaline conditions, and aromatic rings with greater electronegativities promoting reactions with the radicals

  4. Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass

    DEFF Research Database (Denmark)

    Rodrigues Gurgel da Silva, Andrè; Errico, Massimiliano; Rong, Ben-Guang

    2018-01-01

    data, we propose a feasible process flowsheet for organosolv pretreatment. Simulation of the pretreatment process provided mass and energy balances for a techno-economic analysis, and the values were compared with the most prevalent and mature pretreatment method: diluted acid. Organosolv pretreatment...... required more energy, 578.1 versus 213.8 MW for diluted acid pretreatment, but resulted in a higher ethanol concentration after the biomass fermentation, 11.1% compared to 5.4%. Total annual costs (TACs) calculations showed advantages for diluted acid pretreatment, but future improvements explored...

  5. Advances in the chemical utilization of alkali lignin

    International Nuclear Information System (INIS)

    Van der Klashorst, G.H.

    1985-06-01

    Large quantities of alkali lignin are produced as by-products by the South African pulping industry. The potential utilization of industrial soda/anthraquinone (soda/AQ) eucalyptus, kraft pine and soda bagasse lignin was subsequently investigated. The molecular mass distributions of the three lignins were similar when determined by high pressure gel permeation chromatography (HP-GPC). The quantitative and quanlitative occurrence of various low molecular mass lignin fragments in the different spent liquors, on the other hand, indicated that the three lignins have substantial chemical differences. Analysis of the purified degraded lignins by NMR, methoxyl content determinations, elemental analysis, carbohydrate content determinations etc., quantified various of the chemical properties of the lignin. The properties of the three lignins were ultimately used to make recommendations regarding the potential use of each lignin. One such application was investigated and it was shown that soda bagasse lignin can be used successfully in phenol formaldehyde resin applications. The reaction of formaldehyde with lignin model compounds in acidic medium was also investigated. This reaction was shown to give fast crosslinking of alkyl substituted phenolic and etherified phenolic lignin model compounds at positions meta to the aromatic hydroxy groups

  6. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    Science.gov (United States)

    2012-01-01

    Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of

  7. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    Directory of Open Access Journals (Sweden)

    Villalobos David P

    2012-06-01

    Full Text Available Abstract Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait. that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood. Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes

  8. A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin.

    Science.gov (United States)

    Du, Fang-Li; Du, Qi-Shi; Dai, Jun; Tang, Pei-Duo; Li, Yan-Ming; Long, Si-Yu; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo

    2018-01-01

    Sugarcane bagasse was refined into cellulose, hemicellulose, and lignin using an ethanol-based organosolv technique. The hydrothermal carbonization (HTC) reactions were applied for bagasse and its two components cellulose and lignin. Based on GC-MS analysis, 32 (13+19) organic byproducts were derived from cellulose and lignin, more than the 22 byproducts from bagasse. Particularly, more valuable catechol products were obtained from lignin with 56.8% share in the total GC-MS integral area, much higher than the 2.263% share in the GC-MS integral areas of bagasse. The organic byproducts from lignin make up more than half of the total mass of lignin, indicating that lignin is a chemical treasure storage. In general, bio-refinery and HTC are two effective techniques for the valorization of bagasse and other biomass materials from agriculture and forest industry. HTC could convert the inferior biomass to superior biofuel with higher energy quantity of combustion, at the same time many valuable organic byproducts are produced. Bio-refinery could promote the HTC reaction of biomass more effective. With the help of bio-refinery and HTC, bagasse and other biomass materials are not only the sustainable energy resource, but also the renewable and environment friendly chemical materials, the best alternatives for petroleum, coal and natural gas.

  9. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust

    International Nuclear Information System (INIS)

    Chang, Guozhang; Huang, Yanqin; Xie, Jianjun; Yang, Huikai; Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2016-01-01

    Highlights: • The primarily pyrolysis composition of PKS lignin was p-hydroxyphenyl unit. • Higher phenol yield and lower gas energy yield were obtained from PKS pyrolysis. • PKS produced more bio-oil and biochar than WS and PS from pyrolysis at 650–850 °C. • PKS-char had poorer gasification reactivity due to higher ordering carbon degree. - Abstract: The lignin monomer composition of palm kernel shell (PKS) was characterized using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and the characteristics and distributions of products obtained from PKS pyrolysis were investigated using Py-GC/MS, GC, and a specially designed pyrolysis apparatus. The gasification reactivity of PKS biochar was also characterized using thermogravimetry (TG) and Raman spectroscopy. All the results were compared with those obtained from wheat straw (WS) and pine sawdust (PS). The results showed that PKS lignin is primarily composed of p-hydroxyphenyl structural units, while WS and PS lignins are mainly made up of guaiacyl units. Both the mass and energy yields of non-condensable gases from PKS pyrolysis were lower than those obtained from WS and PS pyrolysis at 650–850 °C, owing to the lower volatile content (75.21%) and lack of methoxy groups in PKS. Compared with WS and PS, higher bio-oil productivity was observed during PKS pyrolysis. Phenols were the main component of PKS bio-oil from pyrolysis at 500 °C, and the phenol content of PKS bio-oil (13.49%) was higher than in WS bio-oil (1.62%) and PS bio-oil (0.55%). A higher yield of biochar (on an ash-free basis) was also obtained from PKS pyrolysis. Because of its greater relative degree of ordered carbon, PKS biochar exhibited lower in situ reactivity during CO_2 or H_2O gasification than WS and PS biochars. A longer residence time and addition of steam were found to be beneficial during PKS biochar gasification.

  10. Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osmaa, A.; Johansson, A. (Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology)

    High yields (61% of the original lignin) of low molecular weight oil (84% of the oil eluted through GC) have been obtained by hydrotreating kraft pine lignin with a water-soluble molybdenum catalyst at 430[degree]C for 60 min. The main compounds in the product oil were phenols (8.7% of the original lignin), cyclohexanes (5.0%), benzenes (3.8%), naphthalenes (4.0%), and phenanthrenes (1.2%). The degree of hydrodeoxygenation was 98%. The quality (measured by GPC and GC) of the product was as good as when using more expensive solid NiMo-CR[sub 2]O[sub 3] catalysts. 30 refs., 6 tabs.

  11. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design

    International Nuclear Information System (INIS)

    Mesa, Leyanis; Gonzalez, Erenio; Ruiz, Encarnacion; Romero, Inmaculada; Cara, Cristobal; Felissia, Fernando; Castro, Eulogio

    2010-01-01

    Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H 2 SO 4 or NaOH), catalyst concentration (1.25-1.50% w/w on dry fiber) and process time (60-90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 2 3 full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and β-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work.

  12. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production

    Science.gov (United States)

    The fate of lignin from wheat straw, Miscanthus, and Loblolly pine after pretreatment by a non-toxic and recyclable ionic liquid (IL), [C2mim][OAc], followed by enzymatic hydrolysis was investigated. The lignin partitioned into six process streams, each of which was quantified and analyzed by a comb...

  13. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Sanja Erakovic

    2014-07-01

    Full Text Available Hydroxyapatite (HAP is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC.

  14. Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimised mild organosolv delignification

    NARCIS (Netherlands)

    Moniz, Patrícia; Lino, João; Duarte, Luís C.; Roseiro, Luísa B.; Boeriu, Carmen G.; Pereira, Helena; Carvalheiro, Florbela

    2015-01-01

    An integrated strategy was followed to valorise rice straw, one of the most relevant biomass feedstocks available worldwide, to selectively recover solubilised hemicelluloses and lignin. The pathway encompassed the use of autohydrolysis to hydrolyse the hemicelluloses and an ethanol-based

  15. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis.

    Science.gov (United States)

    Mohan, Dinesh; Shi, Jenny; Nicholas, Darrel D; Pittman, Charles U; Steele, Philip H; Cooper, Jerome E

    2008-03-01

    Pine wood, pine bark, oak wood and oak bark were pyrolyzed in an auger reactor. A total of 16 bio-oils or pyrolytic oils were generated at different temperatures and residence times. Two additional pine bio-oils were produced at the National Renewable Energy Laboratory in a fluidized-bed reactor at different temperatures. All these bio-oils were fractionated to obtain lignin-rich fractions which consist mainly of phenols and neutrals. The pyrolytic lignin-rich fractions were obtained by liquid-liquid extraction. Whole bio-oils and their lignin-rich fractions were studied as potential environmentally benign wood preservatives to replace metal-based CCA and copper systems that have raised environmental concerns. Each bio-oil and several lignin-rich fractions were tested for antifungal properties. Soil block tests were conducted using one brown-rot fungus (Gloeophyllum trabeum) and one white-rot fungus (Trametes versicolor). The lignin-rich fractions showed greater fungal inhibition than whole bio-oils for a impregnation solution 10% concentration level. Water repellence tests were also performed to study wood wafer swelling behavior before and after bio-oil and lignin-rich fraction treatments. In this case, bio-oil fractions did not exhibit higher water repellency than whole bio-oils. Comparison of raw bio-oils in soil block tests, with unleached wafers, at 10% and 25% bio-oil impregnation solution concentration levels showed excellent wood preservation properties at the 25% level. The good performance of raw bio-oils at higher loading levels suggests that fractionation to generate lignin-rich fractions is unnecessary. At this more effective 25% loading level in general, the raw bio-oils performed similarly. Prevention of leaching is critically important for both raw bio-oils and their fractions to provide decay resistance. Initial tests of a polymerization chemical to prevent leaching showed some success.

  16. Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility.

    Science.gov (United States)

    Qing, Qing; Zhou, Linlin; Guo, Qi; Gao, Xiaohang; Zhang, Yan; He, Yucai; Zhang, Yue

    2017-06-01

    An efficient strategy was developed in current work for biochemical conversion of carbohydrates of corn stover into monosaccharides. Corn stover was first presoaked in mild alkaline solution (1% Na 2 S) under 40°C for 4h, after which about 35.3% of the lignin was successfully removed while the specific surface area was notably enlarged. Then the presoaked solids were subjected to organosolv pretreatment that employed 20% methanol with an addition of 0.2% HCl as catalyst at 160°C for 20min, and the maximum total sugar yield of the pretreated corn stover achieved was 98.6%. The intact structure of corn stover was disrupted by this two-step process, which resulted in a porous but crystalline structure of the regenerated solids that were mainly composed of cellulose. The enlarged specific surface area and increased accessibility made the regenerated solids highly digestible by a moderate enzyme loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Isolation and Characterization of Gramineae and Fabaceae Soda Lignins.

    Science.gov (United States)

    Domínguez-Robles, Juan; Sánchez, Rafael; Espinosa, Eduardo; Savy, Davide; Mazzei, Pierluigi; Piccolo, Alessandro; Rodríguez, Alejandro

    2017-02-04

    Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus , could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p -coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin.

  18. Isolation and Characterization of Gramineae and Fabaceae Soda Lignins

    Science.gov (United States)

    Domínguez-Robles, Juan; Sánchez, Rafael; Espinosa, Eduardo; Savy, Davide; Mazzei, Pierluigi; Piccolo, Alessandro; Rodríguez, Alejandro

    2017-01-01

    Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin. PMID:28165411

  19. Isolation and Characterization of Gramineae and Fabaceae Soda Lignins

    Directory of Open Access Journals (Sweden)

    Juan Domínguez-Robles

    2017-02-01

    Full Text Available Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.. In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR to analyse the chemical structure, and thermogravimetric analysis (TGA for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA, ferulate (FA and cinnamyl aldehyde end-groups (J were only detected in wheat isolated lignin.

  20. Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products.

    Science.gov (United States)

    Ingram, Thomas; Wörmeyer, Kai; Lima, Juan Carlos Ixcaraguá; Bockemühl, Vera; Antranikian, Garabed; Brunner, Gerd; Smirnova, Irina

    2011-04-01

    The conversion of lignocellulose to valuable products requires I: a fractionation of the major components hemicellulose, cellulose, and lignin, II: an efficient method to process these components to higher valued products. The present work compares liquid hot water (LHW) pretreatment to the soda pulping process and to the ethanol organosolv pretreatment using rye straw as a single lignocellulosic material. The organosolv pretreated rye straw was shown to require the lowest enzyme loading in order to achieve a complete saccharification of cellulose to glucose. At biomass loadings of up to 15% (w/w) cellulose conversion of LHW and organosolv pretreated lignocellulose was found to be almost equal. The soda pulping process shows lower carbohydrate and lignin recoveries compared to the other two processes. In combination with a detailed analysis of the different lignins obtained from the three pretreatment methods, this work gives an overview of the potential products from different pretreatment processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production

    Science.gov (United States)

    Noppadon Sathitsuksanoh; Kevin M. Holtman; Daniel J. Yelle; Trevor Morgan; Vitalie Stavila; Jeffrey Pelton; Harvey Blanch; Blake A. Simmons; Anthe George

    2014-01-01

    The fate of lignin from wheat straw, Miscanthus, and Loblolly pine after pretreatment by a non-toxic and recyclable ionic liquid (IL), [C2mim][OAc], followed by enzymatic hydrolysis was investigated. The lignin partitioned into six process streams, each of which was quantified and analyzed by a combination of a novel solution-state two-dimensional (2D) nuclear magnetic...

  2. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.

    Science.gov (United States)

    Hanson, Susan K; Baker, R Tom

    2015-07-21

    This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist

  3. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle

    Science.gov (United States)

    Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan. Wikaira

    2007-01-01

    A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...

  4. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hou-Min; Kadia, John F.; Li, Bailian; Sederoff, Ron

    2005-06-30

    In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem

  5. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 2{sup 3} experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, Leyanis; Gonzalez, Erenio [Centro de Analisis de Procesos, Facultad de Quimica-Farmacia, Universidad Central de Las Villas, Villa Clara (Cuba); Ruiz, Encarnacion; Romero, Inmaculada; Cara, Cristobal; Castro, Eulogio [Department of Chemical, Environmental and Materials Engineering, University of Jaen, 23071 Jaen (Spain); Felissia, Fernando [Programa de Celulosa y Papel, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Misiones, Misiones (Argentina)

    2010-01-15

    Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H{sub 2}SO{sub 4} or NaOH), catalyst concentration (1.25-1.50% w/w on dry fiber) and process time (60-90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 2{sup 3} full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and {beta}-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work. (author)

  6. High-Titer Methane from Organosolv-Pretreated Spruce and Birch

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2017-02-01

    Full Text Available The negative impact of fossil fuels and the increased demand for renewable energy sources has led to the use of novel raw material sources. Lignocellulosic biomass could serve as a possible raw material for anaerobic digestion and production of biogas. This work is aimed at using forest biomass, both softwood (spruce and hardwood (birch, as a raw material for anaerobic digestion. We examined the effect of different operational conditions for the organosolv pretreatment (ethanol content, duration of treatment, and addition of acid catalyst on the methane yield. In addition, we investigated the effect of addition of cellulolytic enzymes during the digestion. We found that inclusion of an acid catalyst during organosolv pretreatment improved the yields from spruce, but it did not affect the yields from birch. Shorter duration of treatment was advantageous with both materials. Methane yields from spruce were higher with lower ethanol content whereas higher ethanol content was more beneficial for birch. The highest yields obtained were 185 mL CH4/g VS from spruce and 259.9 mL CH4/g VS from birch. Addition of cellulolytic enzymes improved these yields to 266.6 mL CH4/g VS and 284.2 mL CH4/g VS, respectively.

  7. Physical vapor deposited thin films of lignins extracted from sugar cane bagasse: morphology, electrical properties, and sensing applications.

    Science.gov (United States)

    Volpati, Diogo; Machado, Aislan D; Olivati, Clarissa A; Alves, Neri; Curvelo, Antonio A S; Pasquini, Daniel; Constantino, Carlos J L

    2011-09-12

    The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 × 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan δ of 3.9 × 10(-3), and conductivity of 1.75 × 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being

  8. Conversion of potash soap and lignin into liquid fuels. Final report; Suovan ja ligniinin jalostaminen polttonesteiksi. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, P.; Oasmaa, A.

    1994-12-31

    The main task of the research is to estimate the suitability of catalytic hydration for refining of following rawmaterials into liquid fuels: concentrated black liquor, raw potash soap (especially birch containing mixed potash soap) and organosolv (Milox) lignin. When hydrating the concentrated black liquor catalytically (ammonium heptamolybdate/420 deg C or NiMo-Cr{sub 2}O{sub 3}/450 deg C) it is possible to convert about 30 wt-% of the original organic matter of the black liquor into hexane soluble oils. It is possible to remove the inorganic matter from the product oil by water extraction without reducing the amount of hexane suluble oil. The energy content of the hexane soluble oil is about 60 % of the energy content of the black liquor. The raw potash soap is cracked into oils and gases at 435- 450 deg C. The yield of the hexane soluble oil in nitrogen atmosphere without a catalyst is about 40 % of the organic matter of the potash soap. The calorific value of the oil is 42 MJ/kg, which corresponds to about 45 % energy yield. The presence of a catalyst and hydrogen gas increases the yield of hexane soluble oil (45 wt-%) and effects on the chemical composition of the product by increasing the portion of aliphatic hydrocarbons. It is possible to obtain oil of good quality from Milox lignin by using the catalytic hydration. At 420 deg C with 60 min retention time, at presence of the NiMo- Cr{sub 2}O{sub 3} catalyst and hydrogen gas, oil yield of 53 % and hexane soluble oil yield of 41 % (of organic matter of lignin) are obtained. The calorific value of the oil is 40 MJ/kg (Milox lignin 25 MJ/kg). (3 refs., 3 tabs., 1 fig.)

  9. Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor

    International Nuclear Information System (INIS)

    Shirkavand, Ehsan; Baroutian, Saeid; Gapes, Daniel J.; Young, Brent R.

    2017-01-01

    Highlights: • Fungal pretreatment by two New Zealand native white rot fungi was proposed. • Trametes versicolor was more efficient in selective degradation of pine wood chips. • Both fungal strains significantly decreased crystallinity index of biomass only after week 7 of degradation. • Structural analysis showed that Trametes versicolor and Stereum hirsutum increased porous surface area of woody biomass. - Abstract: Stereum hirsutum and Trametes versicolor, were studied over a period of 3–7 weeks for pretreatment of radiata pine wood chips. Chemical analysis of pretreated biomass showed that the two studied strains were able to selectively degrade lignin. Selective lignin degradation was greater in week 3 of the pretreatment by Trametes versicolor compared to the other strain. Lengthening pretreatment time increased both lignin and cellulose losses which caused a reduction in selective lignin degradation for both strains. X-ray diffractometry showed that after seven weeks of pretreatment, the crystallinity of the woody biomass was decreased significantly. It decreased from 46% for untreated wood chips to 37% and 44% for Stereum hirsutum and Trametes versicolor treated biomass, respectively. The pretreatment with these two white rot fungi showed that 3-week pretreatment provided a cellulose rich biomass with the minimum cellulose loss compared to the other time of pretreatment.

  10. Radiotracer experiments on lignin reactions, 2

    International Nuclear Information System (INIS)

    Terashima, Noritsugu; Araki, Hiroshi; Suganuma, Nobuo.

    1977-01-01

    The behavior of the specific carbon atoms of lignin during the cooking process was studied. Pine wood meal containing the protolignin labelled with 14-C was prepared, and treated under sulfate cooking conditions. The incorporation and distribution of radioactivity were traced in three fractions separated from the black liquor according to their solubilities and molecular weights. The gamma position carbon at the end of side chain of phenylpropane unit in lignin was eliminated easily from the high molecular weight portion in considerable extent during the cooking process, and a part of the eliminated carbon condenses again with the aromatic ring. However, a large portion of the eliminated gamma-carbon was found in the low molecular fraction of water soluble part of the black liquor. The radioactivity of alpha-carbons in the side chains adjacent to aromatic rings was found to be distributed in three fractions similarly to that of beta-carbons, except that the incorporation of radioactivity of alpha-carbons was slightly low in high molecular fraction, and slightly high in low molecular water soluble fraction as compared with that of beta-carbons and aromatic ring carbons. The number of residual carbon atoms per one monomer unit in high molecular kraft lignin was calculated from the specific incorporation ratio of radioactivity. The carbon skelton was estimated and the molecular formula was given by the elementary analysis and molecular weight determination. (Iwakiri, K.)

  11. Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline

    Science.gov (United States)

    Yang, Dongjie; Huang, Wenjing; Qiu, Xueqing; Lou, Hongming; Qian, Yong

    2017-12-01

    Pine and wheat straw alkali lignin (PAL and WAL) were sulfomethylated to improve water solubility, polymerized with horseradish peroxidase (HRP) to improve the molecular weight (Mw) and applied to dope and disperse polyaniline (PANI). The structural effect of lignin from different origins on the reactivities of sulfomethylation and HRP polymerization was investigated. The results show that WAL with less methoxyl groups and lower Mw have higher reactivity in sulfomethylation (SWAL). More phenolic hydroxyl groups and lower Mw benefit the HRP polymerization of sulfomethylated PAL (SPAL). Due to the natural three-dimensional aromatic structure and introduced sulfonic groups, SPAL and SWAL could effectively dope and disperse PANI in water by π-π stacking and electrostatic interaction. HRP modified SPAL (HRP-SPAL) with much higher sulfonation degree and larger Mw significantly increased the conductivity and dispersibility of lignin/PANI composites.

  12. Combined HPLC analysis of organic acids and furans formed during organosolv pulping of fiber hemp

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Dam, van J.E.G.; Zomers, F.H.A.

    1995-01-01

    During organosolv pulping of fiber hemp (Cannabis sativa L) with a mixture of ethanol/water, delignification is catalyzed by released acetic acid and formic acid in the effluent. The major sources of acetic acid are the acetyl groups, as determined by means of the acetyl balance, whereas formic acid

  13. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2014-12-03

    Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 °C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan.

  14. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    OpenAIRE

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinc...

  15. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    International Nuclear Information System (INIS)

    Ponomarev, A.V.; Kholodkova, E.M.; Metreveli, A.K.; Metreveli, P.K.; Erasov, V.S.; Bludenko, A.V.; Chulkov, V.N.

    2011-01-01

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: → Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. → Alternative approach to bio-oil production. → Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. → Electron-beam distillation mode is preferable for lignin conversion. → Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  16. Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification

    Science.gov (United States)

    Umesh P. Agarwal; J.Y. Zhu; Sally A. Ralph

    2013-01-01

    Hydrolysis experiments with commercial cellulases have been performed to understand the effects of cell wall crystallinity and lignin on the process. In the focus of the paper are loblolly pine wood samples, which were systematically delignified and partly ball-milled, and, for comparison, Whatman CC31 cellulose samples with different crystallinities. In pure cellulose...

  17. Comparison studies on soda lignin and soda-anthraquinone lignin

    International Nuclear Information System (INIS)

    Ibrahim, M.N.M; Yusof, N.N.M.; Hashim, A.

    2007-01-01

    Soda lignin and soda anthraquinone lignin were compared in this study. The physico-chemical properties and structural features of the isolated lignin were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet (UV), ash test, Carbon-Hydrogen-Nitrogen (CHN) analyzer, Nuclear Magnetic Resonance ( 13 C-NMR) and High Performance Liquid Chromatography (HPLC). Nitrobenzene oxidation was performed on these two types of lignin especially for the HPLC analysis. Based on the CHN, 13 C-NMR and UV results there were no significant differences between soda lignin and soda anthraquinone lignin. The FTIR results also showed that there were no significant differences in terms of functional groups that exist in both lignins. (author)

  18. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover.

    Science.gov (United States)

    Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos

    2017-11-01

    The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H 2 SO 4 , and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H 2 SO 4 . Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. pH-Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses

    Science.gov (United States)

    Hongming Lou; J.Y. Zhu; Tian Qing Lan; Huranran Lai; Xueqing Qiu

    2013-01-01

    We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5–6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL...

  20. Lignin nanoparticle synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dirk, Shawn M.; Cicotte, Kirsten Nicole; Wheeler, David R.; Benko, David A.

    2015-08-11

    A method including reducing a particle size of lignin particles to an average particle size less than 40 nanometers; after reducing the particle size, combining the lignin particles with a polymeric material; and forming a structure of the combination. A method including exposing lignin to a diazonium precursor including a functional group; modifying the lignin by introducing the functional group to the lignin; and combining the modified lignin with a polymeric material to form a composite. An apparatus including a composite of a polymer and lignin wherein the lignin has an average particle size less than 100 micrometers.

  1. Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell

    2015-01-01

    The objective of this research was to investigate the effects of the conditions of hot water extraction (HWE) on abundance, properties, and structure of lignin depolymerization products. HWE of extracted softwood (ponderosa pine) was conducted using temperatures from 140 to 320°C for 90 min. HWE materials were then subjected to a soxhlet...

  2. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    Science.gov (United States)

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-09

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  3. Chapter 16: Lignin Visualization: Advanced Microscopy Techniques for Lignin Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Donohoe, Bryon S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Visualization of lignin in plant cell walls, with both spatial and chemical resolution, is emerging as an important tool to understand lignin's role in the plant cell wall's nanoscale architecture and to understand and design processes intended to modify the lignin. As such, this chapter reviews recent advances in advanced imaging methods with respect to lignin in plant cell walls. This review focuses on the importance of lignin detection and localization for studies in both plant biology and biotechnology. Challenges going forward to identify and delineate lignin from other plant cell wall components and to quantitatively analyze lignin in whole cell walls from native plant tissue and treated biomass are also discussed.

  4. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine.

    Science.gov (United States)

    Li, Xinping; Luo, Xiaolin; Li, Kecheng; Zhu, J Y; Fougere, J Dennis; Clarke, Kimberley

    2012-11-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL pretreatment resulted in fiber separation, where SPORL high pH (4.2) pretreatment exhibited better fiber separation than SPORL low pH (1.9) pretreatment. Dilute acid pretreatment produced very poor fiber separation, consisting mostly of fiber bundles. The removal of almost all hemicelluloses in the dilute acid pretreated substrate did not overcome recalcitrance to achieve a high cellulose conversion when lignin removal was limited. SPORL high pH pretreatment removed more lignin but less hemicellulose, while SPORL low pH pretreatment removed about the same amount of lignin and hemicelluloses in lodgepole pine substrates when compared with dilute acid pretreatment. Substrates pretreated with either SPORL process had a much higher cellulose conversion than those produced with dilute acid pretreatment. Lignin removal in addition to removal of hemicellulose in SPORL pretreatment plays an important role in improving the cellulose hydrolysis of the substrate.

  5. Color and Surface Chemistry Changes of Pine Wood Flour after Extraction and Delignification

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark; Yongming Fan

    2014-01-01

    A detailed study was undertaken to examine the color and chemistry changes of pine wood flour when its extractives are removed and when it is delignified. The solvent systems employed were toluene/ethanol (TE), acetone/water (AW), and hot-water (HW), while sodium chlorite/acetic acid were used for delignification (i.e., lignin removal (LR)). Samples were analyzed by...

  6. Do climate and outbreak frequency affect levels of foliar phytochemistry in different lodgepole pine (Pinus contorta) stands?

    Science.gov (United States)

    Lodgepole pine (Pinus contorta Douglas ex Louden) is a widely distributed tree in North American forests and is found in a variety of environments, each with different levels of disease activity. We quantified the levels of defense-associated metabolites (including soluble phenolics, lignin, and ter...

  7. Towards Environmentally-benign Nanoengineering: Antimicrobial Nanoparticles Based on Silver-infused Lignin Cores

    Science.gov (United States)

    Richter, Alexander Philipp

    Engineered nanomaterials are capable of solving challenges in industries important to society such as energy, agriculture, and health care. Antimicrobial silver nanoparticles (AgNPs) are the most widely used nanoparticles by number of commercial products in commerce today. However, the increased introduction of AgNPs in industrial applications may lead to discharge of persistent nanoparticles in the environment and undesired impacts on living organisms. This dissertation will present a new class of antimicrobial environmentallybenign nanoparticles (EbNPs) designed with green chemistry principles, which can serve as highly efficient microbicide substitutes of the AgNPs. The EbNP core is made of biodegradable lignin, and is infused with an optimal amount of silver ions. We report on the fabrication of environmentally benign nanoparticles (EbNPs) using two types of lignin precursors with simple, inexpensive, and non-toxic processes, (i) by employing a solvent exchange precipitation method at room temperature and (ii) by applying an environmentally friendly water-based acid precipitation method. The synthesis of Organosolv (High Purity Lignin) nanoparticles via antisolvent flash precipitation method in water resulted in particles in the size range of 45 to 250 nm in diameter. We investigate the synthesis parameters of Kraft (Indulin AT) lignin nanoparticles by flash precipitation induced by pH drop in ethylene glycol. Furthermore, we evaluate the ionic strength and pH stability of both lignin nanoparticle suspensions and highlight differences in the systems. After silver ion infusion of Indulin AT nanoparticles followed by surface modification, we show that the EbNPs exhibit higher antimicrobial activity towards Gram-negative human pathogens Escherichia coli and Pseudomonas aeruginosa and Gram-positive human pathogens Staphylococcus epidermidis in direct comparison with silver nanoparticles and silver nitrate solution, and that the particles are effective against

  8. Biomass supply chain optimisation for Organosolv-based biorefineries.

    Science.gov (United States)

    Giarola, Sara; Patel, Mayank; Shah, Nilay

    2014-05-01

    This work aims at providing a Mixed Integer Linear Programming modelling framework to help define planning strategies for the development of sustainable biorefineries. The up-scaling of an Organosolv biorefinery was addressed via optimisation of the whole system economics. Three real world case studies were addressed to show the high-level flexibility and wide applicability of the tool to model different biomass typologies (i.e. forest fellings, cereal residues and energy crops) and supply strategies. Model outcomes have revealed how supply chain optimisation techniques could help shed light on the development of sustainable biorefineries. Feedstock quality, quantity, temporal and geographical availability are crucial to determine biorefinery location and the cost-efficient way to supply the feedstock to the plant. Storage costs are relevant for biorefineries based on cereal stubble, while wood supply chains present dominant pretreatment operations costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Lignin Valorization: Emerging Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Lignin, an aromatic biopolymer found in plant cell walls, is a key component of lignocellulosic biomass and generally utilized for heat and power. However, lignin's chemical composition makes it an attractive source for biological and catalytic conversion to fuels and chemicals. Bringing together experts from biology, catalysis, engineering, analytical chemistry, and techno-economic/life-cycle analysis, Lignin Valorization presents a comprehensive, interdisciplinary picture of how lignocellulosic biorefineries could potentially employ lignin valorization technologies. Chapters will specifically focus on the production of fuels and chemicals from lignin and topics covered include (i) methods for isolating lignin in the context of the lignocellulosic biorefinery, (ii) thermal, chemo-catalytic, and biological methods for lignin depolymerization, (iii) chemo-catalytic and biological methods for upgrading lignin, (iv) characterization of lignin, and (v) techno-economic and life-cycle analysis of integrated processes to utilize lignin in an integrated biorefinery. The book provides the latest breakthroughs and challenges in upgrading lignin to fuels and chemicals for graduate students and researchers in academia, governmental laboratories, and industry interested in biomass conversion.

  10. Polpação de palha de milho, utilizando-se diferentes processos organosolv

    OpenAIRE

    Maria Lucia Bianchi

    1995-01-01

    Resumo: A disponibilidade de palha de milho e a crescente procura de matérias primas alternativas que substituam a madeira na fabricação de papel, levaram à investigação da possibilidade de polpação da palha de milho, utilizando-se diferentes processos Organosolv. A palha de milho foi analisada, apresentando cerca de 13% de umidade, 1% de cinzas, 7% de extrativos, 24% de lignina Klason, 54% de celulose e 16% de polioses (por diferença), com um total de 71% de holocelulose. A análise elementar...

  11. Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

    2004-11-10

    As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to the start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.

  12. 14C-labeled lignins as substrates for the study of lignin biodegradation and transformation

    International Nuclear Information System (INIS)

    Crawford, R.L.; Robinson, L.E.; Chen, A.M.

    1980-01-01

    Methods, both classical and isotopic, for quantifying lignin degradation are reviewed. Preparation and chemical characterization of 14 C-labeled lignins (both synthetic and plant-synthesized) are reviewed, with emphasis on the utilization of these 14 C-labeled substrates in biodegradation and biotransformation experiments. The scientific literature is reviewed concerning the use of 14 C-lignins to examine the following: microbial groups that are able to degrade lignins; lignin degradation in natural environments; biochemistry and microbial physiology of lignin degradation; biodegradability of industrial lignins and their by-products; and screening for industrially valuable, lignin-modifying microorganisms. Recent results obtained in our laboratory concerning lignin degradation by eubacteria are presented. Future directions for 14 C-methodology are examined

  13. Characterization of products from hydrothermal carbonization of pine.

    Science.gov (United States)

    Wu, Qiong; Yu, Shitao; Hao, Naijia; Wells, Tyrone; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Liu, Shouxin; Ragauskas, Arthur J

    2017-11-01

    This study aims to reveal the structural features and reaction pathways for solid-liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240°C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon-carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensation reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. The recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Eraković, Sanja; Janković, Ana [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Vukašinović-Sekulić, Maja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Stevanović, Tatjana [Département des sciences du bois et de la forêt, Université Laval, 2425 rue de la Terrasse, Québec (Canada); Mišković-Stanković, Vesna, E-mail: vesna@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia)

    2013-11-01

    Silver doped hydroxyapatite (HAP) [Ca{sub 9.95}Ag{sub 0.05}(PO{sub 4}){sub 6}(OH){sub 2}] composite coatings with natural polymer organosolv lignin (Lig) were produced by electrophoretic deposition (EPD) on titanium. Coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubo's simulated body fluid (SBF) at 37 °C using electrochemical impedance spectroscopy (EIS). Antimicrobial properties are directly proportional to the rate of silver ions release from the coatings, determined from inductively coupled plasma spectrometry (ICP-AES). The obtained results are in good agreement with viability of pathogenic bacteria strain Staphylococcus aureus TL in suspension, which had completely disappeared after 24 h. Composite Ag/HAP/Lig coatings were confirmed as non-toxic for healthy immunocompetent peripheral blood mononuclear cells (PBMC). - Highlights: • Biocompatibility and antimicrobial properties of Ag/HAP/Lig were investigated. • Ag ions embedded into HAP lattice are released from material upon immersion in SBF. • Strong antibactericidal effect against Staphylococcus aureus. • Non-toxic properties of nanocomposite confirmed against PBMC cells. • Promising result for the future developments of bioactive implant materials.

  15. Research on the suitability of organosolv semi-chemical triticale fibers as reinforcement for recycled HDPE composites

    Directory of Open Access Journals (Sweden)

    Nour-Eddine El Mansouri

    2012-11-01

    Full Text Available The main objective of this research was to study the feasibility of incorporating organosolv semi-chemical triticale fibers as the reinforcing element in recycled high density polyethylene (HDPE. In the first step, triticale fibers were characterized in terms of chemical composition and compared with other biomass species (wheat, rye, softwood, and hardwood. Then, organosolv semi-chemical triticale fibers were prepared by the ethanolamine process. These fibers were characterized in terms of its yield, kappa number, fiber length/diameter ratio, fines, and viscosity; the obtained results were compared with those of eucalypt kraft pulp. In the second step, the prepared fibers were examined as a reinforcing element for recycled HDPE composites. Coupled and non-coupled HDPE composites were prepared and tested for tensile properties. Results showed that with the addition of the coupling agent maleated polyethylene (MAPE, the tensile properties of composites were significantly improved, as compared to non-coupled samples and the plain matrix. Furthermore, the influence of MAPE on the interfacial shear strength (IFSS was studied. The contributions of both fibers and matrix to the composite strength were also studied. This was possible by the use of a numerical iterative method based on the Bowyer-Bader and Kelly-Tyson equations.

  16. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: : towards complete biomass valorisation

    NARCIS (Netherlands)

    Lancefield, Christopher S.; Panovic, Isabella; Deuss, Peter J.; Barta, Katalin; Westwood, Nicholas J.

    2017-01-01

    Here, we report on the ability of the biomass derived solvents ethanol and, in particular, n-butanol to fractionate lignocellulose into its main components. An organosolv system consisting of n-butanol containing 5% water and 0.2 M HCl at reflux was found to remove effectively the lignin and

  17. Techno-Economic Analysis of the Optimum Softwood Lignin Content for the Production of Bioethanol in a Repurposed Kraft Mill

    Directory of Open Access Journals (Sweden)

    Shufang Wu

    2014-09-01

    Full Text Available Kraft pulping is one possible pretreatment for softwood to economically produce bioethanol. This work evaluates the techno-economic potential of using the kraft process for producing bioethanol from softwoods in a repurposed or co-located kraft mill. Pretreated loblolly pine was enzymatically hydrolyzed at low enzyme dosages of 5 and 10 FPU/g of substrate. Pretreated residue with 13% lignin content had the highest sugar recovery, 32.7% and 47.7% at 5 and 10 FPU/g, respectively. The pretreated residues were oxygen delignified and refined. In all cases, oxygen delignification improved sugar recovery, while refining was mostly effective for pulps with high lignin content. At 5 FPU/g, the sugar recovery for all kraft pulps was 51 to 53% with oxygen delignification and refining. Increasing the enzyme dosage to 10 FPU/g increased the sugar recovery for these pulps to greater than 60%. Economic analysis for the pulps with different initial lignin content showed that kraft pulps with an initial lignin content of 6.7% with oxygen delignification had an ethanol yield of 285 L/ODt wood and the lowest total production cost of $0.55/L. Pulps with initial lignin content of 18.6% had a total production cost of $0.64/L with an ethanol yield of 264 L/ODt wood.

  18. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  19. A study of lignin degradation in leaf and needle litter using 13C-labelled tetramethylammonium hydroxide (TMAH) thermochemolysis: comparison with CuO oxidation and van Soest methods.

    NARCIS (Netherlands)

    Klotzbücher, T.; Filley, T.R.; Kaiser, K.; Kalbitz, K.

    2011-01-01

    We studied the degradation of lignin in leaf and needle litter of ash, beech, maple, pine and spruce using 13C-labelled tetramethylammonium hydroxide (13C TMAH) thermochemolysis. Samples were allowed to decompose for 27 months in litter bags at a German spruce forest site, resulting in a range of

  20. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    Science.gov (United States)

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Lignin-Furfural Based Adhesives

    OpenAIRE

    Dongre, Prajakta; Driscoll, Mark; Amidon, Thomas; Bujanovic, Biljana

    2015-01-01

    Lignin recovered from the hot-water extract of sugar maple ( Acer saccharum ) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC). The effect of pH (0.3, 0.65 and 1), ex situ furfural, and curing conditions on the tensile properties of...

  2. Modulating lignin in plants

    Science.gov (United States)

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  3. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films.

    Science.gov (United States)

    Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2015-11-01

    Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Techno-economic and ex-ante environmental assessment of C6 sugars production from spruce and corn. Comparison of organosolv and wet milling technologies

    NARCIS (Netherlands)

    Moncada, Jonathan; Vural Gursel, Iris; Huijgen, Wouter J J; Dijkstra, Jan Wilco; Ramírez, Andrea

    2018-01-01

    This study assesses the techno-economic and environmental performance of C6 sugars production from softwood (spruce) and corn. Two technologies were considered in the assessment: organosolv of spruce woodchips (2nd generation) and corn wet milling (1st generation). Process models were developed to

  5. Lignin Macromolecule

    Indian Academy of Sciences (India)

    plant or a structural component of a mature plant which is detected by certain colour reactions. An enzymologist has termed lignin as the ... a phenyl-propanoid structure. A soil chemist considers lignin to be the residue of .... refer to the hardness of wood, but to the botanical classifications. They are aptly called gymnosperms ...

  6. Lignin blockers and uses thereof

    Science.gov (United States)

    Yang, Bin [West Lebanon, NH; Wyman, Charles E [Norwich, VT

    2011-01-25

    Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion and allows for the determination of optimized pretreatment conditions. Additionally, ethanol yields from a Simultaneous Saccharification and Fermentation process are improved 5-25% by treatment with a lignin-blocking polypeptide and/or protein. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.

  7. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    OpenAIRE

    Joshua, CJ; Simmons, BA; Singer, SW

    2016-01-01

    © 2016 The Royal Society of Chemistry. This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than...

  8. Soda-anthraquinone, kraft and organosolv pulping of holm oak trimmings.

    Science.gov (United States)

    Alaejos, J; López, F; Eugenio, M E; Tapias, R

    2006-11-01

    The operating conditions for an organosolv (ethyleneglycol) and two alkaline (soda-anthraquinone and kraft) processes for obtaining cellulose pulp and paper from holm oak (Quercus ilex) wood trimmings were optimized. A range of variation for each process variable (viz. temperature, cooking time and soda or ethyleneglycol concentration) was established and a central composite experimental design involving three independent variables at three different variation levels was applied. The results obtained with the three cooking processes used were compared and those provided by the kraft process were found to be the best. Thus, the tensile index values it provided (5.9-16.3 N m/g) were 23.7% and 41.5% better than those obtained with the soda-AQ and ethyleneglycol processes, respectively. Also, the kraft process provided the best burst index, brightness and kappa number values. Based on the optimum working ranges, the temperature and cooking time were the variables resulting in the most and least marked changes, respectively, in pulp properties.

  9. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Density, heating value, and composition of pellets made from lodgepole pine (Pinus concorta Douglas) infested with mountain pine beetle (Dendroctonus ponderosae Hopkins)

    Energy Technology Data Exchange (ETDEWEB)

    Zaini, P.; Kadla, J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Wood Science; Sokansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Oak Ridge National Laboratory, Oak Ridge, TN (United States). Environmental Sciences Div., Bioenergy Resource and Engineering Systems; Bi, X.; Lim, C.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Mani, S. [Georgia Univ., Athens, GA (United States). Faculty of Engineering; Melin, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Delta Research Corp., Delta, BC (Canada)

    2008-07-01

    BC is currently experiencing the largest recorded mountain pine beetle (MPB) infestation in North America that has killed nearly 7 million hectares of pine. The dead trees gradually lose their suitability for dimension lumber and pulp chips due to excessive cracking and spoilage. The economic losses can be partly averted by recovering the killed wood and processing it into pellets for bioenergy and other applications. Currently, Canada exports roughly 750,000 tons of wood pellets to Europe as a fuel for heat and power. The most important physical properties of wood pellets are bulk and pellet density, heating value, moisture content, and durability. In light of the chemical and structural changes reported with MPB attack, it is important to develop engineering data on properties of MPB-affected pine for wood pellets. The objective of this study was to compare chemical composition, density, and heat value of pellets made from MPB-infested wood and to compare these properties with those measured for pellets made from uninfested wood. Chemical analysis showed minor decrease in lignin and sugar contents of pellets made from MPB wood. Pellets made from MPB-infested pine had a mean value for density larger than those made from uninfested pine but the difference was not statistically significant. Heating values of the pellets from MPB-infested wood were similar to those measured for pellets from uninfested wood. A preliminary observation of mold growth did not show any further staining or other decay fungi growth for the pellets made from MPB-infested wood. The pellets made from MPB-infested wood were found to be similar to pellets made from uninfested wood in density, heating value, and most chemical constituents. The overall conclusion was that MBP infested wood can be used to produce comparable pellets to non infested wood pellets. 37 refs., 6 tabs., 2 figs.

  11. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification.

    Science.gov (United States)

    Eudes, Aymerick; George, Anthe; Mukerjee, Purba; Kim, Jin S; Pollet, Brigitte; Benke, Peter I; Yang, Fan; Mitra, Prajakta; Sun, Lan; Cetinkol, Ozgül P; Chabout, Salem; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Balzergue, Sandrine; Singh, Seema; Holmes, Bradley M; Mukhopadhyay, Aindrila; Keasling, Jay D; Simmons, Blake A; Lapierre, Catherine; Ralph, John; Loqué, Dominique

    2012-06-01

    Lignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers to reduce lignin polymerization degree (DP). Biosynthesis of these 'DP reducers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side-chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes so that plant stems expressing HCHL accumulate in their cell wall higher amounts of hydroxybenzaldehyde and hydroxybenzoate derivatives. Engineered plants with intermediate HCHL activity levels show no reduction in total lignin, sugar content or biomass yield compared with wild-type plants. However, cell wall characterization of extract-free stems by thioacidolysis and by 2D-NMR revealed an increased amount of unusual C₆C₁ lignin monomers most likely linked with lignin as end-groups. Moreover the analysis of lignin isolated from these plants using size-exclusion chromatography revealed a reduced molecular weight. Furthermore, these engineered lines show saccharification improvement of pretreated stem cell walls. Therefore, we conclude that enhancing the biosynthesis and incorporation of C₆C₁ monomers ('DP reducers') into lignin polymers represents a promising strategy to reduce lignin DP and to decrease cell wall recalcitrance to enzymatic hydrolysis. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied

  12. Screening of various types of lignin products for biosorption of heavy metals (Cu, Ni, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, H [Nile Research Inst., National Water Research Center, El Qanater (Egypt)

    2000-07-01

    This paper discussed the need to develop new technologies and approaches to meet strict environmental legislation and standards regarding the discharge of heavy metals to the environment by industry. A study was conducted to determine the feasibility of using different lignin materials for heavy metal removal using the BioElecDetox process. This process uses an unique combination of existing water and wastewater equipment and technology. The heavy metal removal efficiencies of grape stalks, pine bark, larch bark, pine sawdust, broccoli stems, and paper pulp were tested for their biosorption capacity, sedimentation, desorption and recycling for single solutions of copper, nickel and zinc (Cu, Ni and Zn respectively). Results showed that the grape stalk was the best biosorbent among the biomasses examined for Cu, Ni and Zn ions from single solution. The biomass biosorption capacity was determined using the Langmuir equation. Pine bark also gave good results and was considered to be the second best biosorbent. The biosorption for single metal solution was high for all metals. Biomass recycling had no impact on the efficiency of biosorption. It was recommended that future experiments should be conducted for industrial effluent using different biomasses at laboratory scale for the BioElecDetox process. 5 refs., 1 tab., 2 figs.

  13. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  14. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  15. Polymerization of different lignins by laccase

    NARCIS (Netherlands)

    Mattinen, M.L.; Suortti, T.; Gosselink, R.J.A.; Argyropoulos, D.S.; Evtuguin, D.; Suurnäkki, A.; Jong, de E.; Tamminen, T.

    2008-01-01

    In this study the oxidative polymerization of different lignins, i.e. Flax Soda lignin, Spruce EMAL, and Eucalyptus Dioxane lignin by Trametes hirsuta laccase was compared. Initially the structures of the different lignins were compared by Fourier transform infrared spectroscopy. The reactivity of

  16. Lignin biodegradation and industrial implications

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2014-12-01

    Full Text Available Lignocellulose, which comprises the cell walls of plants, is the Earth’s most abundant renewable source of convertible biomass. However, in order to access the fermentable sugars of the cellulose and hemicellulose fraction, the extremely recalcitrant lignin heteropolymer must be hydrolyzed and removed—usually by harsh, costly thermochemical pretreatments. Biological processes for depolymerizing and metabolizing lignin present an opportunity to improve the overall economics of the lignocellulosic biorefinery by facilitating pretreatment, improving downstream cellulosic fermentations or even producing a valuable effluent stream of aromatic compounds for creating value-added products. In the following review we discuss background on lignin, the enzymology of lignin degradation, and characterized catabolic pathways for metabolizing the by-products of lignin degradation. To conclude we survey advances in approaches to identify novel lignin degrading phenotypes and applications of these phenotypes in the lignocellulosic bioprocess.

  17. Analysis of xylem formation in pine by cDNA sequencing

    Science.gov (United States)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  18. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  19. Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production

    Directory of Open Access Journals (Sweden)

    Robert Glaser

    2018-06-01

    Full Text Available Bacillus coagulans is an interesting facultative anaerobic microorganism for biotechnological production of lactic acid that arouses interest. To determine the efficiency of biotechnological production of lactic acid from lignocellulosic feedstock hydrolysates, five Bacillus coagulans strains were grown in lignocellulose organosolv hydrolysate from ethanol/water-pulped beechwood. Parameter estimation based on a Monod-type model was used to derive the basic key parameters for a performance evaluation of the batch process. Three of the Bacillus coagulans strains, including DSM No. 2314, were able to produce lactate, primarily via uptake of glucose and xylose. Two other strains were identified as having the ability of utilizing cellobiose to a high degree, but they also had a lower affinity to xylose. The lactate yield concentration varied from 79.4 ± 2.1 g/L to 93.7 ± 1.4 g/L (85.4 ± 4.7 % of consumed carbohydrates from the diluted organosolv hydrolysate.

  20. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.

    Science.gov (United States)

    Fukushima, Romualdo S; Hatfield, Ronald D

    2004-06-16

    Present analytical methods to quantify lignin in herbaceous plants are not totally satisfactory. A spectrophotometric method, acetyl bromide soluble lignin (ABSL), has been employed to determine lignin concentration in a range of plant materials. In this work, lignin extracted with acidic dioxane was used to develop standard curves and to calculate the derived linear regression equation (slope equals absorptivity value or extinction coefficient) for determining the lignin concentration of respective cell wall samples. This procedure yielded lignin values that were different from those obtained with Klason lignin, acid detergent acid insoluble lignin, or permanganate lignin procedures. Correlations with in vitro dry matter or cell wall digestibility of samples were highest with data from the spectrophotometric technique. The ABSL method employing as standard lignin extracted with acidic dioxane has the potential to be employed as an analytical method to determine lignin concentration in a range of forage materials. It may be useful in developing a quick and easy method to predict in vitro digestibility on the basis of the total lignin content of a sample.

  1. Ethanol production by Clostridium thermocellum grown on hydrothermally and organosolv-pretreated lignocellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hoermeyer, H F; Bonn, G; Bobleter, O; Tailliez, P; Millet, J; Girard, H; Aubert, J P

    1988-12-01

    Two strains of the thermophilic anaerobe Clostridium thermocellum, the wild type NCIB 10682 and its ethanol-hyperproductive mutant 647, were tested for their ability to grow on natural lignocellulosic materials (poplar wood, wheat straw) which had been pretreated by either hydrothermolysis or an organosolv process. For both materials and both strains, the dependencies of substrate accessibility on the pretreatment temperature were established in terms of cellulose hydrolysis and of product formation. In addition to the non-pH-controlled shake flask assays, in vitro experiments with cell-free culture supernatant and in vivo cellulolyses under pH regulation in a laboratory fermenter indicated that lignocellulosics pretreated at approx. 230/sup 0/C were degraded efficiently by the Clostridium strains investigated.

  2. Cytocompatible cellulose hydrogels containing trace lignin

    International Nuclear Information System (INIS)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-01-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm"2 and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  3. Cytocompatible cellulose hydrogels containing trace lignin

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Kazuki; Kobayashi, Takaomi, E-mail: takaomi@nagaoakut.ac.jp

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm{sup 2} and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  4. Biotechnological modification of lignin

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    A literature search of organisms capable of degrading lignin was conducted. Four fungi were selected for study and these were Phanerochaete chrysosporium, Chrysosporium pruinosum, Phlebia tremellosus and Trametes versicolor. Other organisms, Pleurotus ostreatus, Pleurotus florida and Lentinus edodes were also tested in preliminary experiments. All cultures were screened for their ability to degrade the lignin component of aspen sawdust and also lignin extracted from steam-exploded wood. This type of screen was followed by analysis of culture filtrates for the presence of ligninase, the marker enzyme for lignin degradation. Phanerochaete chrysosporium and consequently chosen for further studies in fermentors. Considerable efforts were directed to production of ligninase in fermentors. Only when Chrysosporium pruinosum was pre-cultured in a shake flask for 4 days and then transferred to a fermentor could ligninase activity be detected. The enzyme from shake flasks has been concentrated ready for use in bench-scale studies on cell-free depolymerization of lignin. 13 refs., 8 tabs.

  5. Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity.

    Science.gov (United States)

    Chen, Fang; Tobimatsu, Yuki; Jackson, Lisa; Nakashima, Jin; Ralph, John; Dixon, Richard A

    2013-01-01

    We have recently described a hitherto unsuspected catechyl lignin polymer (C-lignin) in the seed coats of Vanilla orchid and in cacti of one genus, Melocactus (Chen et al., Proc. Natl. Acad. Sci. USA. 2012, 109, 1772-1777.). We have now determined the lignin types in the seed coats of 130 different cactus species. Lignin in the vegetative tissues of cacti is of the normal guaiacyl/syringyl (G/S) type, but members of most genera within the subfamily Cactoidae possess seed coat lignin of the novel C-type only, which we show is a homopolymer formed by endwise β-O-4-coupling of caffeyl alcohol monomers onto the growing polymer resulting in benzodioxane units. However, the species examined within the genera Coryphantha, Cumarinia, Escobaria and Mammillaria (Cactoideae) mostly had normal G/S lignin in their seeds, as did all six species in the subfamily Opuntioidae that were examined. Seed coat lignin composition is still evolving in the Cactaceae, as seeds of one Mammillaria species (M. lasiacantha) possess only C-lignin, three Escobaria species (E. dasyacantha, E. lloydii and E. zilziana) contain an unusual lignin composed of 5-hydroxyguaiacyl units, the first report of such a polymer that occurs naturally in plants, and seeds of some species contain no lignin at all. We discuss the implications of these findings for the mechanisms that underlie the biosynthesis of these newly discovered lignin types. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  6. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  7. Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawawy, Waleed K., E-mail: wkzawawy@yahoo.com [Cellulose and Paper Department, National Research Center, El-Tahrir St., Giza (Egypt); Ibrahim, Maha M. [Cellulose and Paper Department, National Research Center, El-Tahrir St., Giza (Egypt); Belgacem, Mohamed Naceur; Dufresne, Alain [Grenoble Institute of Technology (INP) - The International School of Paper, Print Media and Biomaterials (PAGORA), BP 65, 38402 Saint Martin d' Heres cedex, Grenoble (France)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We have studied the use of Co(II) to form a complex with the lignin. We use first vanillin as the lignin model and we observed a change in color for the produced complex depending on the light wavelength. The use of other transition metals does not give the same observation. Black-Right-Pointing-Pointer The use of the transition metal with the lignin precipitated from the black liquor after pulping of agricultural residues, gave a fluorescent color under fluorescent microscope. Black-Right-Pointing-Pointer We applied the resulted lignin complex to prepare polymer film that can be used as special polymer packaging which can be color changed under different wavelengths. - Abstract: The work in this research outlines the use of lignin precipitated from lignocellulosic substrate as fillers after modified with transition metal cations, Fe(III), Ni(II) and Co(II), in the production of a polystyrene based composite for polymer packaging applications. Virgin polystyrene was compared with lignin and lignin complex filled composites with loading of 5% by weight prepared using twin screw extrusion. The lignin complexes were first characterized by the UV spectra to identify the new absorption bands occurred due to the complex formation. Moreover, lignin model, namely vanillin, was used to notify the geometric structure of the resulting complexes applying the GC mass spectra. Scanning electron microscopy was used to indicate the change in the morphological structure of the filler particles. On the other hand, the mechanical and thermal analysis for the resulting polymer composites was studied and it was noticed that the type of lignin or lignin complex plays a roll in the results. The inclusion of the Co(II)-lignin complex was observed to increase the tensile strength of the resulting polymer composite and a decrease of the glass transition temperature. Furthermore, light wave lengths and UV fluorescent microscope were used to identify

  8. Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film

    International Nuclear Information System (INIS)

    El-Zawawy, Waleed K.; Ibrahim, Maha M.; Belgacem, Mohamed Naceur; Dufresne, Alain

    2011-01-01

    Highlights: ► We have studied the use of Co(II) to form a complex with the lignin. We use first vanillin as the lignin model and we observed a change in color for the produced complex depending on the light wavelength. The use of other transition metals does not give the same observation. ► The use of the transition metal with the lignin precipitated from the black liquor after pulping of agricultural residues, gave a fluorescent color under fluorescent microscope. ► We applied the resulted lignin complex to prepare polymer film that can be used as special polymer packaging which can be color changed under different wavelengths. - Abstract: The work in this research outlines the use of lignin precipitated from lignocellulosic substrate as fillers after modified with transition metal cations, Fe(III), Ni(II) and Co(II), in the production of a polystyrene based composite for polymer packaging applications. Virgin polystyrene was compared with lignin and lignin complex filled composites with loading of 5% by weight prepared using twin screw extrusion. The lignin complexes were first characterized by the UV spectra to identify the new absorption bands occurred due to the complex formation. Moreover, lignin model, namely vanillin, was used to notify the geometric structure of the resulting complexes applying the GC mass spectra. Scanning electron microscopy was used to indicate the change in the morphological structure of the filler particles. On the other hand, the mechanical and thermal analysis for the resulting polymer composites was studied and it was noticed that the type of lignin or lignin complex plays a roll in the results. The inclusion of the Co(II)–lignin complex was observed to increase the tensile strength of the resulting polymer composite and a decrease of the glass transition temperature. Furthermore, light wave lengths and UV fluorescent microscope were used to identify the change of color for the resulting polymer film.

  9. Lignin-Furfural Based Adhesives

    Directory of Open Access Journals (Sweden)

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  10. Raman spectra of lignin model compounds

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Ashok K. Pandey; Sally A. Ralph; Kolby C. Hirth; Rajai H. Atalla

    2005-01-01

    To fully exploit the value of Raman spectroscopy for analyzing lignins and lignin containing materials, a detailed understanding of lignins’ Raman spectra needs to be achieved. Although advances made thus far have led to significant growth in application of Raman techniques, further developments are needed to improve upon the existing knowledge. Considering that lignin...

  11. Multivariate Correlation between Analysis Data on Dissolved Organic Material from Scots Pine (Pinus sylvestris Chips and their Autohydrolysis Pre-Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Joni Lehto

    2013-11-01

    Full Text Available Various chemometric techniques were used to establish the relationship between the autohydrolysis conditions prior to pulping and the chemical compositions of the soluble organic materials removed from Scots pine (Pinus sylvestris wood chips. The aqueous chip pre-treatments (autohydrolysis were administered at 130 °C and 150 °C for 30, 60, 90, and 120 min, and the hydrolysates obtained were characterized in terms of total carbohydrates (various mono-, oligo-, and polysaccharides together with uronic acid side groups, volatile acids (acetic and formic acids, lignin, and furans (furfural and 5-(hydroxymethylfurfural. Based on the analytical data gathered, a relatively accurate model for pine chip autohydrolysis was developed.

  12. Lignin from Micro- to Nanosize: Applications

    Directory of Open Access Journals (Sweden)

    Stefan Beisl

    2017-11-01

    Full Text Available Micro- and nanosize lignin has recently gained interest due to improved properties compared to standard lignin available today. As the second most abundant biopolymer after cellulose, lignin is readily available but used for rather low-value applications. This review focuses on the application of micro- and nanostructured lignin in final products or processes that all show potential for high added value. The fields of application are ranging from improvement of mechanical properties of polymer nanocomposites, bactericidal and antioxidant properties and impregnations to hollow lignin drug carriers for hydrophobic and hydrophilic substances. Also, a carbonization of lignin nanostructures can lead to high-value applications such as use in supercapacitors for energy storage. The properties of the final product depend on the surface properties of the nanomaterial and, therefore, on factors like the lignin source, extraction method, and production/precipitation methods, as discussed in this review.

  13. Fabrication of environmentally biodegradable lignin nanoparticles.

    Science.gov (United States)

    Frangville, Camille; Rutkevičius, Marius; Richter, Alexander P; Velev, Orlin D; Stoyanov, Simeon D; Paunov, Vesselin N

    2012-12-21

    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The first method is based on precipitation of low-sulfonated lignin from an ethylene glycol solution by using diluted acidic aqueous solutions, which yields lignin NPs that are stable over a wide range of pH. The second approach is based on the acidic precipitation of lignin from a high-pH aqueous solution which produces NPs stable only at low pH. Our study reveals that lignin NPs from the ethylene glycol-based precipitation contain densely packed lignin domains which explain the stability of the NPs even at high pH. We characterised the properties of the produced lignin NPs and determined their loading capacities with hydrophilic actives. The results suggest that these NPs are highly porous and consist of smaller lignin domains. Tests with microalgae like Chlamydomonas reinhardtii and yeast incubated in lignin NP dispersions indicated that these NPs lack measurable effect on the viability of these microorganisms. Such biodegradable and environmentally compatible NPs can find applications as drug delivery vehicles, stabilisers of cosmetic and pharmaceutical formulations, or in other areas where they may replace more expensive and potentially toxic nanomaterials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study of lignin biotransformation by Aspergillus fumigatus and white-rot fungi using 14C-labeled and unlabeled kraft lignins

    International Nuclear Information System (INIS)

    Kadam, K.K.; Drew, S.W.

    1986-01-01

    The biodegradation of lignin by fungi was studied in shake flasks using 14 C-labeled kraft lignin and in a deep-tank fermentor using unlabeled kraft lignin. Among the fungi screened, A. fumigatus - isolated in our laboratories - was most potent in lignin biotransformation. Dialysis-type fermentation, designed to study possible accumulation of low MW lignin-derived products, showed no such accumulation. Recalcitrant carbohydrates like microcrystalline cellulose supported higher lignolytic activity than easily metabolized carbohydrates like cellobiose. An assay developed to distinguish between CO 2 evolved from lignin and carbohydrate substrates demonstrated no stoichiometric correlation between the metabolism of the two cosubstrates. The submerged fermentations with unlabeled liqnin are difficult to monitor since chemical assays do not give accurate and true results. Lignolytic efficiencies that allowed monitoring of such fermentations were defined. Degraded lignins were clearly superior to C. versicolor in all aspects of lignin degradation; A fumigatus brought about substantial demethoxylation and dehydroxylation, whereas C. versicolor degraded lignins closely resembled undegraded kraft lignin. There was a good agreement among the different indices of lignin degradation, namely, 14 CO evolution, OCH 3 loss, OH loss, and monomer and dimer yield after permanganate oxidation

  15. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora

    Energy Technology Data Exchange (ETDEWEB)

    Benner, R.; Maccubbin, A.E.; Hodson, R.E.

    1984-05-01

    Specifically radiolabeled (/sup 14/C-lignin)lignocelluloses and (/sup 14/C-polysaccharide)lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These (/sup 14/C)lignocellulose preparations and synthetic (/sup 14/C)lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components of the lignocelluloses were slowly degraded anaerobically to /sup 14/CO/sub 2/ and /sup 14/CH/sub 4/. Lignocelluloses derived from herbaceous plants were degraded more rapidly than lignocellulose derived from the hardwood. After 294 days, 16.9% of the lignin component and 30.0% of the polysaccharide component of lignocellulose derived from the grass used (Spartina alterniflora) were degraded to gaseous end products. In contrast, after 246 days, only 1.5% of the lignin component and 4.1% of the polysaccharide component of lignocellulose derived from the hardwood used (Rhizophora mangle) were degraded to gaseous end products. Synthetic (/sup 14/C) lignin was degraded anaerobically faster than the lignin component of the hardwood lignocellulose; after 276 days 3.7% of the synthetic lignin was degraded to gaseous end products. Contrary to previous reports, these results demonstrate that lignin and lignified plant tissues are biodegradable in the absence of oxygen. Although lignocelluloses are recalcitrant to anaerobic biodegradation, rates of degradation measured in aquatic sediments are significant and have important implications for the biospheric cycling of carbon from these abundant biopolymers. 31 references.

  16. Effect of lignin content on a GH11 endoxylanase acting on glucuronoarabinoxylan-lignin nanocomposites.

    Science.gov (United States)

    Boukari, Imen; Rémond, Caroline; O'Donohue, Michael; Chabbert, Brigitte

    2012-06-20

    The effects of lignin content on the activity and action pattern of GH11 endoxylanase from Thermobacillus xylanilyticus were investigated using in vitro reconstituted non-covalent glucuronoarabinoxylan-model lignin (GAX-DHP) nanocomposites. Four types of nanocomposites were prepared, each displaying different lignin contents. Variations in the DHP (model lignin) polymerization process were induced by increasing the coniferyl alcohol concentration. Examination of the morphology of the nanocomposites revealed globular particles enrobed in a matrix. The size of these particles increased in line with the lignin concentration. Physicochemical characterization of the in vitro reconstituted GAX-DHPs strongly suggested that increased particle size is directly related to the solubility and reactivity of coniferyl alcohol, as reflected by changes in the amount of β-O-4 linkages. Evaluation of the impact of the GH11 endoxylanase on the GAX-DHP nanocomposites revealed a negative correlation between the proportion and organization patterns of DHP in the nanocomposites and enzyme activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    Science.gov (United States)

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

  18. Lignin biodegradation by the ascomycete Chrysonilia sitophila.

    Science.gov (United States)

    Rodríguez, J; Ferraz, A; Nogueira, R F; Ferrer, I; Esposito, E; Durán, N

    1997-01-01

    The lignin biodegradation process has an important role in the carbon cycle of the biosphere. The study of this natural process has developed mainly with the use of basidiomycetes in laboratory investigations. This has been a logical approach since most of the microorganisms involved in lignocellulosic degradation belong to this class of fungi. However, other microorganisms such as ascomycetes and also some bacteria, are involved in the lignin decaying process. This work focuses on lignin biodegradation by a microorganism belonging to the ascomycete class, Chrysonilia sitophila. Lignin peroxidase production and characterization, mechanisms of lignin degradation (lignin model compounds and lignin in wood matrix) and biosynthesis of veratryl alcohol are outstanding. Applications of C. sitophila for effluent treatment, wood biodegradation and single-cell protein production are also discussed.

  19. Bioconversion of Beetle-Killed Lodgepole Pine Using SPORL: Process Scale-up Design, Lignin Coproduct, and High Solids Fermentation without detoxification

    Science.gov (United States)

    Haifeng Zhou; J.Y. Zhu; Xiaolin Luo; Shao-Yuan Leu; Xiaolei Wu; Roland Gleisner; Bruce S. Dien; Ronald E. Hector; Dongjie Yang; Xueqing Qiu; Eric Horn; Jose Negron

    2013-01-01

    Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from reaction kinetics, was used to design a scale-up...

  20. Lignin recovery. A resource to value

    International Nuclear Information System (INIS)

    Zimbardi, P.; Cardinale, G.; Demichele, M.; Nanna, F.; Viggiano, D.; Bonini, C.; D'Alessio, L.; D'Auria, M.; Teghil, R.; Tofani, D.

    1999-01-01

    In the present paper, the effects of the steam explosion (ES) pretreatment conditions on recovery and chemical structure of wheat straw lignin are reported. The experimental data of lignin recovery by caustic extraction, followed by acid precipitation, have been interpolated to obtain the dependence on the time and temperature of SE. The lignin has been characterised by using several methods. Preliminary results on the synthesis of copolymers lignin-styrene are also reported [it

  1. Lignin pyrolysis for profitable lignocellulosic biorefineries

    NARCIS (Netherlands)

    Wild, de P.J.; Gosselink, R.J.A.; Huijgen, W.J.J.

    2014-01-01

    Bio-based industries (pulp and paper and biorefineries) produce > 50 Mt/yr of lignin that results from fractionation of lignocellulosic biomass. Lignin is world's second biopolymer and a major potential source for production of performance materials and aromatic chemicals. Lignin valorization is

  2. Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Lignin-First Approach.

    Science.gov (United States)

    Huang, Xiaoming; Zhu, Jiadong; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2016-12-08

    Adding value to lignin, the most complex and recalcitrant fraction in lignocellulosic biomass, is highly relevant to costefficient operation of biorefineries. We report the use of homogeneous metal triflates to rapidly release lignin from biomass. Combined with metal-catalyzed hydrogenolysis, the process separates woody biomass into few lignin-derived alkylmethoxyphenols and cellulose under mild conditions. Model compound studies show the unique catalytic properties of metal triflates in cleaving lignin-carbohydrate interlinkages. The lignin fragments can then be disassembled by hydrogenolysis. The tandem process is flexible and allows obtaining good aromatic monomer yields from different woods (36-48 wt %, lignin base). The cellulose-rich residue is an ideal feedstock for established biorefining processes. The highly productive strategy is characterized by short reaction times, low metal triflate catalyst requirement, and leaving cellulose largely untouched. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tracking monolignols during wood development in lodgepole pine.

    Science.gov (United States)

    Kaneda, Minako; Rensing, Kim H; Wong, John C T; Banno, Brian; Mansfield, Shawn D; Samuels, A Lacey

    2008-08-01

    Secondary xylem (wood) formation in gymnosperms requires that the tracheid protoplasts first build an elaborate secondary cell wall from an array of polysaccharides and then reinforce it with lignin, an amorphous, three-dimensional product of the random radical coupling of monolignols. The objective of this study was to track the spatial distribution of monolignols during development as they move from symplasm to apoplasm. This was done by feeding [(3)H]phenylalanine ([(3)H]Phe) to dissected cambium/developing wood from lodgepole pine (Pinus contorta var latifolia) seedlings, allowing uptake and metabolism, then rapidly freezing the cells and performing autoradiography to detect the locations of the monolignols responsible for lignification. Parallel experiments showed that radioactivity was incorporated into polymeric lignin and a methanol-soluble pool that was characterized by high-performance liquid chromatography. [(3)H]Phe was incorporated into expected lignin precursors, such as coniferyl alcohol and p-coumaryl alcohol, as well as pinoresinol. Coniferin, the glucoside of coniferyl alcohol, was detected by high-performance liquid chromatography but was not radioactively labeled. With light microscopy, radiolabeled phenylpropanoids were detected in the rays as well as the tracheids, with the two cell types showing differential sensitivity to inhibitors of protein translation and phenylpropanoid metabolism. Secondary cell walls of developing tracheids were heavily labeled when incubated with [(3)H]Phe. Inside the cell, cytoplasm was most strongly labeled followed by Golgi and low-vacuole label. Inhibitor studies suggest that the Golgi signal could be attributed to protein, rather than phenylpropanoid, origins. These data, produced with the best microscopy tools that are available today, support a model in which unknown membrane transporters, rather than Golgi vesicles, export monolignols.

  4. Preparation and Properties of Nanocellulose from Organosolv Straw Pulp

    Science.gov (United States)

    Barbash, V. A.; Yaschenko, O. V.; Shniruk, O. M.

    2017-03-01

    The object of this work is to present a study of nanocellulose preparation from organosolv straw pulp (OSP) and its properties. OSP was obtained through thermal treatment in the system of isobutyl alcohol-H2O-KOH-hydrazine followed by processing in the mixture of acetic acid and hydrogen peroxide for bleaching and removal of residual non-cellulosic components. We have obtained nanocellulose from OSP through acid hydrolysis with lower consumption of sulfuric acid and followed by ultrasound treatment. The structural change and crystallinity degree of OSP and nanocellulose were studied by means of SEM and XRD techniques. It has been established that nanocellulose has a density up to 1.3 g/cm3, transparency up to 70%, crystallinity degree 72.5%. The TEM and AFM methods shown that nanocellulose have diameter of particles in the range from 10 to 40 nm. Thermogravimetric analysis confirmed that nanocellulose films have more dense structure and smaller mass loss in the temperature range 220-260 °C compared with OSP. The obtained nanocellulose films had high Young's modulus up to 11.45 GPa and tensile strength up to 42.3 MPa. The properties of obtained nanocellulose from OSP exhibit great potential in its application for the preparation of new nanocomposite materials.

  5. Bioconversion of beetle-killed lodgepole pine using SPORL: Process scale-up design, lignin co-product, and high solids fermentation without detoxification

    Science.gov (United States)

    Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from rea...

  6. Chapter 1: A Brief Introduction to Lignin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elder, Thomas J. [USDA-Forest Service

    2018-04-03

    Lignin is an alkyl-aromatic polymer found in the cell walls of terrestrial plants. Lignin provides structure and rigidity to plants, is a natural, highly effective barrier against microbial attack, and enables water and nutrient transport through plant tissues. Depending on the plant species, the constituents of lignin can vary considerably, leading to substantial diversity in lignin chemistry and structure. Despite nearly a century of research and development attempting to convert lignin into valuable products, lignin in most current and planned biorefinery contexts remains underutilized, most often being burned to generate heat and power. However, the drive towards effective lignin valorization processes has witnessed a significant resurgence in the past decade, catalyzed by advances in improved understanding of lignin chemistry, structure, and plasticity in parallel with new catalytic and biological approaches to valorize this important, prevalent biopolymer. As a preface to the subsequent chapters in this book, this chapter briefly highlights the known aspects of lignin structure.

  7. Structural Redesigning Arabidopsis Lignins into Alkali-Soluble Lignins through the Expression of p-Coumaroyl-CoA:Monolignol Transferase PMT1

    Science.gov (United States)

    Sibout, Richard; Le Bris, Philippe; Cézard, Laurent

    2016-01-01

    Grass lignins can contain up to 10% to 15% by weight of p-coumaric esters. This acylation is performed on monolignols under the catalysis of p-coumaroyl-coenzyme A monolignol transferase (PMT). To study the impact of p-coumaroylation on lignification, we first introduced the Brachypodium distachyon Bradi2g36910 (BdPMT1) gene into Arabidopsis (Arabidopsis thaliana) under the control of the constitutive maize (Zea mays) ubiquitin promoter. The resulting p-coumaroylation was far lower than that of lignins from mature grass stems and had no impact on stem lignin content. By contrast, introducing either the BdPMT1 or the Bradi1g36980 (BdPMT2) gene into Arabidopsis under the control of the Arabidopsis cinnamate-4-hydroxylase promoter boosted the p-coumaroylation of mature stems up to the grass lignin level (8% to 9% by weight), without any impact on plant development. The analysis of purified lignin fractions and the identification of diagnostic products confirmed that p-coumaric acid was associated with lignins. BdPMT1-driven p-coumaroylation was also obtained in the fah1 (deficient for ferulate 5-hydroxylase) and ccr1g (deficient for cinnamoyl-coenzyme A reductase) lines, albeit to a lower extent. Lignins from BdPMT1-expressing ccr1g lines were also found to be feruloylated. In Arabidopsis mature stems, substantial p-coumaroylation of lignins was achieved at the expense of lignin content and induced lignin structural alterations, with an unexpected increase of lignin units with free phenolic groups. This higher frequency of free phenolic groups in Arabidopsis lignins doubled their solubility in alkali at room temperature. These findings suggest that the formation of alkali-leachable lignin domains rich in free phenolic groups is favored when p-coumaroylated monolignols participate in lignification in a grass in a similar manner. PMID:26826222

  8. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  9. Systematic Parameterization of Lignin for the CHARMM Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg; Crowley, Michael

    2017-07-06

    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization for emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ between

  10. Lignin Biodegradation with Laccase-Mediator Systems

    International Nuclear Information System (INIS)

    Christopher, Lew Paul; Yao, Bin; Ji, Yun

    2014-01-01

    Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low-molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential “breakthrough” applications for lignin valorization. Here, we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  11. Lignin Biodegradation with Laccase-Mediator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Christopher, Lew Paul, E-mail: lew.christopher@sdsmt.edu [Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, Rapid City, SD (United States); Department of Civil and Environmental Engineering, South Dakota School of Mines & Technology, Rapid City, SD (United States); Yao, Bin [Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, Rapid City, SD (United States); Ji, Yun [Department of Chemical Engineering, University of North Dakota, Grand Forks, ND (United States)

    2014-03-31

    Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low-molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential “breakthrough” applications for lignin valorization. Here, we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  12. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization : Identification of Renewable Aromatics and a Lignin-Derived Solvent

    NARCIS (Netherlands)

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-01-01

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges

  13. Liquid Fuels from Lignins: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  14. Quantitative evaluation of the lignin protective effect on cellulose under γ irradiation of wood

    International Nuclear Information System (INIS)

    Skvortsov, S.V.; Klimentov, A.S.

    1986-01-01

    Changes in the degree of polymerization (D-barP-bar v ) of pine and spruce wood cellulose gamma-irradiated in- and outside the vegetable tissue are studied by the viscometric method. It has been shown that in the absorbed dose range of 0-100 kGy the protective effect of lignin on radiation-induced destruction of cellulose is reduced from 122 and 107 % to 4.5 and 3.4 %, respectively. At higher doses the mentioned effect is completely absent. It has been established that the destruction of wood cellulose in- and outside the plant tissue obeys the law of randomness, and finds its satisfactory description in the following equation: 1/D-barP-bar' v -1/D-barP-bar v 0 =KD α

  15. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification

    OpenAIRE

    Eudes, Aymerick; George, Anthe; Mukerjee, Purba; Kim, J.S.; Pollet, B.; Bnke, P.I.; Persil Çetinkol, Özgül

    2012-01-01

    Lignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arab...

  16. Radical nature of C- lignin

    Science.gov (United States)

    Laura Berstis; Thomas Elder; Michael Crowley; Gregg T. Beckham

    2016-01-01

    The recently discovered lignin composed of caffeoyl alcohol monolignols or C-lignin is particularly intriguing given its homogeneous, linear polymeric structure and exclusive benzodioxane linkage between monomers. By virtue of this simplified chemistry, the potential emerges for improved valorization strategies with C-lignin relative to other natural heterogeneous...

  17. Dissolution of lignin in green urea aqueous solution

    Science.gov (United States)

    Wang, Jingyu; Li, Ying; Qiu, Xueqing; Liu, Di; Yang, Dongjie; Liu, Weifeng; Qian, Yong

    2017-12-01

    The dissolution problem is the main obstacle for the value-added modification and depolymerization of industrial lignin. Here, a green urea aqueous solution for complete dissolution of various lignin is presented and the dissolution mechanism is analyzed by AFM, DLS and NMR. The results show that the molecular interaction of lignin decreases from 32.3 mN/m in pure water to 11.3 mN/m in urea aqueous solution. The immobility of 1H NMR spectra and the shift of 17O NMR spectra of urea in different lignin/urea solutions indicate that the oxygen of carbonyl in urea and the hydrogen of hydroxyl in lignin form new hydrogen bonds and break the original hydrogen bonds among lignin molecules. The shift of 1H NMR spectra of lignin and the decrease of interactions in model compound polystyrene indicate that urea also breaks the π-π interactions between aromatic rings of lignin. Lignin dissolved in urea aqueous has good antioxidant activity and it can scavenge at least 63% free radicals in 16 min.

  18. Lignin derivatives from desilicated rice straw soda black liquor

    Energy Technology Data Exchange (ETDEWEB)

    El-Taraboulsi, M A; Nasser, M M

    1979-01-01

    Carboxymethyl lignin, cyanoethyl lignin, carboxyethyl lignin, and aminopropyl lignin were prepared from alkali lignin of rice straw black liquor (after disilication by storage for 1 wk to 1 yr) and used as sizes for paper, drilling fluid additives and flocculants.

  19. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  20. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    Science.gov (United States)

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation

  1. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  2. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  3. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  4. Improved lignin polyurethane properties with Lewis acid treatment.

    Science.gov (United States)

    Chung, Hoyong; Washburn, Newell R

    2012-06-27

    Chemical modification strategies to improve the mechanical properties of lignin-based polyurethanes are presented. We hypothesized that treatment of lignin with Lewis acids would increase the concentration of hydroxyl groups available to react with diisocyanate monomers. Under the conditions used, hydrogen bromide-catalyzed modification resulted in a 28% increase in hydroxyl group content. Associated increases in hydrophilicity of solvent-cast thin films were also recorded as evidenced by decreases in water contact angle. Polyurethanes were then prepared by first preparing a prepolymer based on mixtures of toluene-2,4-diisocyanate (TDI) and unmodified or modified lignin, then polymerization was completed through addition of polyethylene glycol (PEG), resulting in mass ratios of TDI:lignin:PEG of 43:17:40 in the compositions investigated here. The mixture of TDI and unmodified lignin resulted in a lignin powder at the bottom of the liquid, suggesting it did not react directly with TDI. However, a homogeneous solution resulted when TDI and the hydrogen bromide-treated lignin were mixed, suggesting demethylation indeed increased reactivity and resulted in better integration of lignin into the urethane network. Significant improvements in mechanical properties of modified lignin polyurethanes were observed, with a 6.5-fold increase in modulus, which were attributed to better integration of the modified lignin into the covalent polymer network due to the higher concentration of hydroxyl groups. This research indicates that chemical modification strategies can lead to significant improvements in the properties of lignin-based polymeric materials using a higher fraction of an inexpensive lignin monomer from renewable resources and a lower fraction an expensive, petroleum-derived isocyanate monomer to achieve the required material properties.

  5. Lignin-based cement fluid loss control additive

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, P.

    1990-05-22

    This patent describes a hydraulic cement slurry composition. It comprises: a hydraulic cement, and the following expressed as parts by weight per 100 parts of the hydraulic cement, water from about 25 to 105 parts, and from abut 0.5 to 2.5 parts of a compound selected from the group consisting of a sulfonated lignin and a sulfomethylated lignin, wherein the lignin has been sequentially crosslinked by reacting the lignin with a member of the group consisting of formaldehyde and epichlorohydrin and alkoxylated with between about 2 to about 6 moles of a compound selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide and a combination thereof per 1000 g of the lignin.

  6. Enzymatic Synthesis of Lignin-Based Concrete Dispersing Agents.

    Science.gov (United States)

    Jankowska, Dagmara; Heck, Tobias; Schubert, Mark; Yerlikaya, Alpaslan; Weymuth, Christophe; Rentsch, Daniel; Schober, Irene; Richter, Michael

    2018-03-15

    Lignin is the most abundant aromatic biopolymer, functioning as an integral component of woody materials. In its unmodified form it shows limited water solubility and is relatively unreactive, so biotechnological lignin valorisation for high-performance applications is greatly underexploited. Lignin can be obtained from the pulp and paper industry as a by-product. To expand its application, a new synthesis route to new dispersing agents for use as concrete additives was developed. The route is based on lignin functionalisation by enzymatic transformation. Screening of lignin-modifying systems resulted in functionalised lignin polymers with improved solubility in aqueous systems. Through grafting of sulfanilic acid or p-aminobenzoic acid by fungal laccases, lignin became soluble in water at pH≤4 or pH≤7, respectively. Products were analysed and evaluated in miniaturised application tests in cement paste and mortar. Their dispersing properties match the performance criteria of commercially available lignosulfonates. The study provides examples of new perspectives for the use of lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lignin Contribution to the Global Carbon Pool: Investigating the Abiotic Modification of Lignin by Reactive Oxygen Species

    Science.gov (United States)

    Waggoner, Derek Charles

    Evidence suggests that reactive oxygen species (ROS), largely generated through photochemical processes, are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. The main focus of the studies within this dissertation aim to more thoroughly characterize the alterations to lignin, used as an analog for terrestrial DOM, resulting from reactions with ROS. To investigate the possibility that the alteration of lignin, through reactions involving ROS, could lead to the production of compounds not recognized as having terrestrial origin, lignin-derived DOM was prepared from a sample of Atlantic white cedar (Chamaecyparis thyoides) and used for a number of studies. Lignin-derived DOM was independently exposed to hydroxyl radical (•OH) generated by Fenton reaction, singlet oxygen (1O2) produced using the photosensitizer Rose Bengal, and superoxide (O2-•) via stable potassium superoxide solution, under controlled laboratory conditions to accentuate how each ROS is responsible for the alteration of lignin. Advanced analytical techniques including high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), were employed to characterize alteration to lignin taking place following various ROS treatments. Results of these studies have shown distinct differences in the types of new compounds observed from exposure to each ROS as well as ROS reactivity. The alteration of lignin to compounds not typically associated with terrestrial DOM has been demonstrated upon exposure to ROS. It is also suggested that ROS could selectively react with different fractions of lignin like compounds based

  8. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.

    Science.gov (United States)

    Kim, Kwang Ho; Bai, Xianglan; Cady, Sarah; Gable, Preston; Brown, Robert C

    2015-03-01

    We report on the quantitative analysis of free radicals in bio-oils produced from pyrolysis of cellulose, organosolv lignin, and corn stover by EPR spectroscopy. Also, we investigated their potential role in condensed-phase polymerization. Bio-oils produced from lignin and cellulose show clear evidence of homolytic cleavage reactions during pyrolysis that produce free radicals. The concentration of free radicals in lignin bio-oil was 7.5×10(20)  spin g(-1), which was 375 and 138 times higher than free-radical concentrations in bio-oil from cellulose and corn stover. Pyrolytic lignin had the highest concentration in free radicals, which could be a combination of carbon-centered (benzyl radicals) and oxygen-centered (phenoxy radicals) organic species because they are delocalized in a π system. Free-radical concentrations did not change during accelerated aging tests despite increases in molecular weight of bio-oils, suggesting that free radicals in condensed bio-oils are stable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cellulose fibers obtained by organosolv process from date palm rachis (Phoenix dactylifera L.)

    International Nuclear Information System (INIS)

    Ammar, H; Abid, M; Abid, S

    2012-01-01

    In this preliminary study, the chemical composition of Tunisian DPR was established and discussed. The main characteristic of this agri-residue was its high lignin content in comparison with that of alfa plant. CIMV process was used to selectively separate cellulose fibres, hemicelluloses and lignin at atmospheric pressure. The obtained unbleached pulp was analysed in accordance with Kappa index and degree of polymerisation and then bleached by treating successively with peroxyacids and hydrogen peroxide in basic media.

  10. Quantification of Lignin and Its Structural Features in Plant Biomass Using 13C Lignin as Internal Standard for Pyrolysis-GC-SIM-MS.

    Science.gov (United States)

    van Erven, Gijs; de Visser, Ries; Merkx, Donny W H; Strolenberg, Willem; de Gijsel, Peter; Gruppen, Harry; Kabel, Mirjam A

    2017-10-17

    Understanding the mechanisms underlying plant biomass recalcitrance at the molecular level can only be achieved by accurate analyses of both the content and structural features of the molecules involved. Current quantification of lignin is, however, majorly based on unspecific gravimetric analysis after sulfuric acid hydrolysis. Hence, our research aimed at specific lignin quantification with concurrent characterization of its structural features. Hereto, for the first time, a polymeric 13 C lignin was used as internal standard (IS) for lignin quantification via analytical pyrolysis coupled to gas chromatography with mass-spectrometric detection in selected ion monitoring mode (py-GC-SIM-MS). In addition, relative response factors (RRFs) for the various pyrolysis products obtained were determined and applied. First, 12 C and 13 C lignin were isolated from nonlabeled and uniformly 13 C labeled wheat straw, respectively, and characterized by heteronuclear single quantum coherence (HSQC), nuclear magnetic resonance (NMR), and py-GC/MS. The two lignin isolates were found to have identical structures. Second, 13 C-IS based lignin quantification by py-GC-SIM-MS was validated in reconstituted biomass model systems with known contents of the 12 C lignin analogue and was shown to be extremely accurate (>99.9%, R 2 > 0.999) and precise (RSD corn stover, and sugar cane bagasse), and lignin contents were in good agreement with the total gravimetrically determined lignin contents. Our robust method proves to be a promising alternative for the high-throughput quantification of lignin in milled biomass samples directly and simultaneously provides a direct insight into the structural features of lignin.

  11. Converting lignin to aromatics: step by step

    NARCIS (Netherlands)

    Strassberger, Z.I.

    2014-01-01

    Lignin, the glue that holds trees together, is the most abundant natural resource of aromatics. In that respect, it is a far more advanced resource than crude oil. This is because lignin already contains the aromatic functional groups. Thus, catalytic conversion of lignin to high-value aromatics is

  12. Iron addition to soil specifically stabilized lignin

    Science.gov (United States)

    Steven J. Hall; Whendee L. Silver; Vitaliy I. Timokhin; Kenneth E. Hammel

    2016-01-01

    The importance of lignin as a recalcitrant constituent of soil organic matter (SOM) remains contested. Associations with iron (Fe) oxides have been proposed to specifically protect lignin from decomposition, but impacts of Fe-lignin interactions on mineralization rates remain unclear. Oxygen (O2) fluctuations characteristic of humid tropical...

  13. Hydrothermal Liquefaction of Enzymatic Hydrolysis Lignin: Biomass Pretreatment Severity Affects Lignin Valorization

    DEFF Research Database (Denmark)

    Jensen, Mads M.; Djajadi, Demi T.; Torri, Cristian

    2018-01-01

    Alkalinehydrothermal liquefaction (HTL) of lignin-rich enzymatichydrolysis residues (EnzHR) from wheat straw and Miscanthusx giganteus was performed at 255, 300, and 345 °C to investigate valorization of this side-stream from second-generation bioethanol production. The EnzHR were from biomass...... contributed with additional chemical information as well as confirming trends seen from quantified monomers. This work is relevant for future lignin valorization in biorefineries based on current second-generation bioethanol production....

  14. Noncatalytic Direct Liquefaction of Biorefinery Lignin by Ethanol

    DEFF Research Database (Denmark)

    Nielsen, Joachim Bachmann; Jensen, Anders; Madsen, Line Riis

    2017-01-01

    There is a growing interest in lignin valorization to biofuels and chemicals. Here, we propose a novel and simple noncatalytic process to directly liquefy lignin rich solid residual from second generation bioethanol production by solvolysis with ethanol. Through an extensive parameter study...... in batch autoclaves assessing the effects of varying reaction temperature, reaction time, and solvent:lignin ratio, it is shown that hydrothermally pretreated enzymatic hydrolysis lignin solvolysis in supercritical ethanol can produce a heptane soluble bio-oil without the need for exhaustive deoxygenation....... The process does not require addition of catalyst or a reducing agent such as hydrogen. The process is advantageously carried out with a low reaction period ((ethanol:lignin (w/w) ratio of 2:1) which is a previously unexplored domain for lignin...

  15. Lignin depolymerization by fungal secretomes and a microbial sink

    Energy Technology Data Exchange (ETDEWEB)

    Salvachúa, Davinia; Katahira, Rui; Cleveland, Nicholas S.; Khanna, Payal; Resch, Michael G.; Black, Brenna A.; Purvine, Samuel O.; Zink, Erika M.; Prieto, Alicia; Martínez, María J.; Martínez, Angel T.; Simmons, Blake A.; Gladden, John M.; Beckham, Gregg T.

    2016-08-25

    In Nature, powerful oxidative enzymes secreted by white rot fungi and some bacteria catalyze lignin depolymerization and some microbes are able to catabolize the resulting aromatic compounds as carbon and energy sources. Taken together, these two processes offer a potential route for microbial valorization of lignin. However, many challenges remain in realizing this concept, including that oxidative enzymes responsible for lignin depolymerization also catalyze polymerization of low molecular weight (LMW) lignin. Here, multiple basidiomycete secretomes were screened for ligninolytic enzyme activities in the presence of a residual lignin solid stream from a corn stover biorefinery, dubbed DMR-EH (Deacetylation, Mechanical Refining, and Enzymatic Hydrolysis) lignin. Two selected fungal secretomes, with high levels of laccases and peroxidases, were utilized for DMR-EH lignin depolymerization assays. The secretome from Pleurotus eryngii, which exhibited the highest laccase activity, reduced the lignin average molecular weight by 63% and 75% at pH 7 compared to the Mw of the control treated at the same conditions and the initial DMR-EH lignin, respectively, and was applied in further depolymerization assays as a function of time. As repolymerization was observed after 3 days of incubation, an aromatic-catabolic microbe (Pseudomonas putida KT2440) was incubated with the fungal secretome and DMR-EH lignin. These experiments demonstrated that the presence of the bacterium enhances lignin depolymerization, likely due to bacterial catabolism of LMW lignin, which may partially prevent repolymerization. In addition, proteomics was also applied to the P. eryngii secretome to identify the enzymes present in the fungal cocktail utilized for the depolymerization assays, which highlighted a significant number of glucose/ methanol/choline (GMC) oxidoreductases and laccases. Overall, this study demonstrates that ligninolytic enzymes can be used to partially depolymerize a solid, high

  16. Solvothermal conversion of technical lignins over NiMo catalysts

    DEFF Research Database (Denmark)

    Ghafarnejad Parto, Soheila; Christensen, Jakob Munkholt; Pedersen, Lars Saaby

    Scope: Lignin, cellulose and hemicellulose are the main constituents of plants cell walls. Lignin is an aromatic rich compound, composed of phenolic building blocks. Depending on the method used for isolation of lignin from cellulose and hemicellulose, several types of technical lignin are availa......Scope: Lignin, cellulose and hemicellulose are the main constituents of plants cell walls. Lignin is an aromatic rich compound, composed of phenolic building blocks. Depending on the method used for isolation of lignin from cellulose and hemicellulose, several types of technical lignin...... of the range of available technical lignins. In this work, catalytic conversion of different types of lignin using an alumina supported NiMo catalyst (provided by Haldor Topsøe A/S) is conducted in ethanol at 310 ˚C with initial hydrogen pressure of 25 barg. The reaction time was set to 3 hours. Proton......, attributed as ‘bio-oil’. GC-MS-FID analysis was used for identification and quantification of the bio-oil and ethanol rich light fraction. The molecular weight of the oil fraction was determined by size exclusion chromatography (SEC). Elemental analysis (Eurovector EuroEA3000) was conducted for measuring...

  17. Diesel-soluble lignin oils and methods of their production

    DEFF Research Database (Denmark)

    2016-01-01

    Solvent consumption in supercritical ethanol, propanol or butanol treatment of either refined pre-extracted lignin or comparatively impure lignin-rich solid residual from hydrothermally pretreated lignocellulosic biomass can be minimized by conducting the reaction at very high loading of lignin...... to solvent. Comparatively impure, crude lignin- rich solid residual can be directly converted by supercritical alcohol treatment to significantly diesel-soluble lignin oil without requirement for pre-extraction or pre- solubilisation of lignin or for added reaction promoters such as catalysts, hydrogen donor...... co-solvents, acids, based or H2 gas. O:C ratio of product oil can readily be obtained using crude lignin residual in such a process at levels 0.20 or lower....

  18. Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine

    Science.gov (United States)

    2014-01-01

    Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769

  19. Pine weevil (Hylobius abietis) antifeedants from lodgepole pine (Pinus contorta).

    Science.gov (United States)

    Bratt, K; Sunnerheim, K; Nordenhem, H; Nordlander, G; Langström, B

    2001-11-01

    Pine weevils (Hylobius abietis) fed less on bark of lodgepole pine (Pinus contorta) than on bark of Scots pine (P. sylvestris). Two pine weevil antifeedants, ethyl trans-cinnamate and ethyl 2,3-dibromo-3-phenyl-propanoate, were isolated from bark of lodgepole pine. These two compounds significantly reduced pine weevil feeding in a laboratory bioassay. In field assays, the second compound significantly decreased pine weevil damage on planted seedlings. Ethyl 2,3-dibromo-3-phenylpropanoate has not previously been reported as a natural product.

  20. Theoretical Approaches to Lignin Chemistry

    OpenAIRE

    Shevchenko, Sergey M.

    1994-01-01

    A critical review is presented of the applications of theoretical methods to the studies of the structure and chemical reactivity of lignin, including simulation of macromolecular properties, conformational calculations, quantum chemical analyses of electronic structure, spectra and chemical reactivity. Modern concepts of spatial organization and chemical reactivity of lignins are discussed.

  1. Enzymatic synthesis of lignin-siloxane hybrid functional polymers.

    Science.gov (United States)

    Prasetyo, Endry Nugroho; Kudanga, Tukayi; Fischer, Roman; Eichinger, Reinhard; Nyanhongo, Gibson S; Guebitz, Georg M

    2012-02-01

    This study combines the properties of siloxanes and lignin polymers to produce hybrid functional polymers that can be used as adhesives, coating materials, and/or multifunctionalized thin-coating films. Lignin-silica hybrid copolymers were synthesized by using a sol-gel process. Laccases from Trametes hirsuta were used to oxidize lignosulphonates to enhance their reactivity towards siloxanes and then were incorporated into siloxane precursors undergoing a sol-gel process. In vitro copolymerization studies using pure lignin monomers with aminosilanes or ethoxytrimethylsilane and analysis by ²⁹Si NMR spectroscopy revealed hybrid products. Except for kraft lignin, an increase in lignin concentration positively affected the tensile strength in all samples. Similarly, the viscosity generally increased in all samples with increasing lignin concentration and also affected the curing time. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lignin-blocking treatment of biomass and uses thereof

    Science.gov (United States)

    Yang, Bin [Hanover, NH; Wyman, Charles E [Norwich, VT

    2009-10-20

    Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion. Cellulase efficiencies are improved by the protein or polypeptide treatment. The treatment may be used in combination with steam explosion and acid prehydrolysis techniques. Hydrolysis yields from lignin containing biomass are enhanced 5-20%, and enzyme utilization is increased from 10% to 50%. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.

  3. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability

    Directory of Open Access Journals (Sweden)

    Lu Fachuang

    2010-06-01

    Full Text Available Abstract Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree

  4. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  5. Chemical factors that control lignin polymerization.

    Science.gov (United States)

    Sangha, Amandeep K; Davison, Brian H; Standaert, Robert F; Davis, Mark F; Smith, Jeremy C; Parks, Jerry M

    2014-01-09

    Lignin is a complex, branched polymer that reinforces plant tissue. Understanding the factors that govern lignin structure is of central importance to the development of technologies for converting lignocellulosic biomass into fuels because lignin imparts resistance to chemical, enzymatic, and mechanical deconstruction. Lignin is formed by enzymatic oxidation of phenolic monomers (monolignols) of three main types, guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) subunits. It is known that increasing the relative abundance of H subunits results in lower molecular weight lignin polymers and hence more easily deconstructed biomass, but it is not known why. Here, we report an analysis of frontier molecular orbitals in mono-, di-, and trilignols, calculated using density functional theory, which points to a requirement of strong p-electron density on the reacting phenolic oxygen atom of the neutral precursor for enzymatic oxidation to occur. This model is consistent with a proton-coupled electron transfer (PCET) mechanism and for the first time explains why H subunits in certain linkages (β-β or β-5) react poorly and tend to "cap" the polymer. In general, β-5 linkages with either a G or H terminus are predicted to inhibit elongation. More broadly, the model correctly accounts for the reactivity of the phenolic groups in a diverse set of dilignols comprising H and G subunits. Thus, we provide a coherent framework for understanding the propensity toward growth or termination of different terminal subunits in lignin.

  6. Understanding the fast pyrolysis of lignin.

    Science.gov (United States)

    Patwardhan, Pushkaraj R; Brown, Robert C; Shanks, Brent H

    2011-11-18

    In the present study, pyrolysis of corn stover lignin was investigated by using a micro-pyrolyzer coupled with a GC-MS/FID (FID=flame ionization detector). The system has pyrolysis-vapor residence times of 15-20 ms, thus providing a regime of minimal secondary reactions. The primary pyrolysis product distribution obtained from lignin is reported. Over 84 % mass balance and almost complete closure on carbon balance is achieved. In another set of experiments, the pyrolysis vapors emerging from the micro-pyrolyzer are condensed to obtain lignin-derived bio-oil. The chemical composition of the bio-oil is analyzed by using GC-MS and gel permeation chromatography techniques. The comparison between results of two sets of experiments indicates that monomeric compounds are the primary pyrolysis products of lignin, which recombine after primary pyrolysis to produce oligomeric compounds. Further, the effect of minerals (NaCl, KCl, MgCl(2), and CaCl(2)) and temperature on the primary pyrolysis product distribution is investigated. The study provides insights into the fundamental mechanisms of lignin pyrolysis and a basis for developing more descriptive models of biomass pyrolysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    International Nuclear Information System (INIS)

    Bonnarme, P.; Jeffries, T.W.

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14 CO 2 from 14 C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14 CO 2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini

  8. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass.

    Science.gov (United States)

    Yu, Zhiying; Gwak, Ki-Seob; Treasure, Trevor; Jameel, Hasan; Chang, Hou-min; Park, Sunkyu

    2014-07-01

    The impact of lignin-derived inhibition on enzymatic hydrolysis is investigated by using lignins isolated from untreated woods and pretreated wood pulps. A new method, biomass reconstruction, for which isolated lignins are precipitated onto bleached pulps to mimic lignocellulosic biomass, is introduced, for the first time, to decouple the lignin distribution issue from lignin chemistry. Isolated lignins are physically mixed and reconstructed with bleached pulps. Lignins obtained from pretreated woods adsorb two to six times more cellulase than lignins obtained from untreated woods. The higher adsorption of enzymes on lignin correlates with decreased carbohydrate conversion in enzymatic hydrolysis. In addition, the reconstructed softwood substrate has a lower carbohydrate conversion than the reconstructed hardwood substrate. The degree of condensation of lignin increases significantly after pretreatment, especially with softwood lignins. In this study, the degree of condensation of lignin (0.02 to 0.64) and total OH groups in lignin (1.7 to 1.1) have a critical impact on cellulase adsorption (9 to 70%) and enzymatic hydrolysis (83.2 to 58.2%); this may provide insights into the more recalcitrant nature of softwood substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preparation and Characterization of Modified Soda Lignin with Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Fangda Zhang

    2016-10-01

    Full Text Available Soda lignin does not have thermal flowing characteristics and it is impossible for it to be further thermally molded. To achieve the fusibility of soda lignin for fiber preparation by melt-spinning, an effective method for soda lignin modification was conducted by cooking it with polyethylene glycol (PEG 400 at various ratios. The higher the ratio of PEG that was used, the more PEG molecular chains were grafted at the alpha carbon of the soda lignin through ether bonds, resulting in lower thermal transition temperatures and more excellent fusibility. The modified soda lignin with a weight ratio of lignin to PEG of 1:4 exhibited a relative thermal stability of molten viscosity at selected temperatures. Thereafter, the resultant fusible soda lignin was successfully melt-spun into filaments with an average diameter of 33 ± 5 μm, which is smaller than that of some industrial lignins. Accordingly, it is possible to utilize soda lignin to produce fibrous carbonaceous materials.

  10. New techniques for the characterization of lignins

    International Nuclear Information System (INIS)

    Javor, T.

    2001-09-01

    In the present work new techniques for the characterization of lignins, ligninsulfonates as well as lignin degradation products with capillary electrophoresis (CE), size exclusion chromatography (SEC) and mass spectrometry (ESI-MS, APCI-MS and MALDI-MS) are described. After an overview on wood and wood pulping the development of microemulsion electrokinetic chromatography (MEEKC) for the investigation of low-molecular-mass lignin degradation compounds is described. This method is suited for the analysis of phenolic compounds as well as for non-phenolic compounds in this kind of samples. Using a carrier electrolyte system consisting of 1-butanol/n-heptane/sodiumdodeylsulfate (SDS)/20 mM borate (6.61/0.81/1.66/90,29 % (w/w)) pH 9.2 it was possible to separate 14 lignin degradation compounds (2-methoxyphenol, 3,4,5-trimethoxyphenol, 2,6-dimethoxyphenol, 3,4-dimethoxybenzaldehyde, 3,4-dimethoxyacetophenone, 3,4,5-trimethoxybenzaldehyde, 3,4,5-trimethoxyacetophenone, 3-(3,4-dimethoxyphenyl)-2-propen-1-ol, 4-methoxyacetophenone, 3,5-Dimethoxy-4-hydroxyacetophenone, acetovanillone, syringaldehyde, vanillin, 4-hydroxybenzaldehyde and 1-(3-methoxy-4-hydroxyphenyl)-2-(2-methoxyphenoxy)-ethanol). In addition the advantages and disadvantages of microemulsions are discussed in comparison with carrier electrolytes containing micelles. Subsequently, the results from size exclusion chromatographic measurements are presented. SEC using modern high-performance poly(styrene-divinylbenzene) gels as stationary phase and 0.1 M NaOH as mobile phase allows efficient separations and good characterization of lignins and ligninsulfonates. Adsorption effects are practical negligible. SEC yields results which are independent of the charge of lignins or ligninsulfonates, so that this technique looks complementary to capillary electrophoresis. For the characterization of intact lignins and ligninsulfonates by capillary zone electrophoretic techniques, carrier electrolytes in the the pH range 10

  11. Analytical methods for lignin characterization - Differential scanning calorimetry

    NARCIS (Netherlands)

    Koullas, D.P.; Koukios, E.G.; Avgerinos, E.; Abaecherli, A.; Gosselink, R.; Vasile, C.; Lehnen, R.; Saake, B.; Suren, J.

    2006-01-01

    Results of a round robin on lignin thermal analyses are reported. Six laboratories have conducted thermal analyses of four lignin types to determine their cp values and softening points, and to study the thermal behaviour, materials endo- and exotherms included. The lignin types examined were wood

  12. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Das, Lalitendu [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States); Xu, Siquan [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States); College of Chemical Engineering, Nanjing Forestry University, Nanjing (China); Shi, Jian, E-mail: j.shi@uky.edu [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States)

    2017-08-10

    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C{sub 2}C{sub 1}Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H{sub 2}O{sub 2} as oxidizing agent in a batch reactor. CoCl{sub 2} and Nb{sub 2}O{sub 5} proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H{sub 2}O{sub 2} concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (M{sub w}) of liquid stream lignin after oxidation, for CoCl{sub 2} and Nb{sub 2}O{sub 5} catalysts were 1,202 and 1,520 g mol{sup −1}, respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid.

  13. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    International Nuclear Information System (INIS)

    Das, Lalitendu; Xu, Siquan; Shi, Jian

    2017-01-01

    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C 2 C 1 Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H 2 O 2 as oxidizing agent in a batch reactor. CoCl 2 and Nb 2 O 5 proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H 2 O 2 concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (M w ) of liquid stream lignin after oxidation, for CoCl 2 and Nb 2 O 5 catalysts were 1,202 and 1,520 g mol −1 , respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid.

  14. Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions

    Science.gov (United States)

    Ross, Kelly; Mazza, Giuseppe

    2010-01-01

    Lignin, a polyphenolic molecule, is a major constituent of flax shives. This polyphenolic molecular structure renders lignin a potential source of a variety of commercially viable products such as fine chemicals. This work compares the performance of different lignin isolation methods. Lignin from flax shive was isolated using both conventional alkaline extraction method and a novel experimental pressurized low polarity water (PLPW) extraction process. The lignin yields and chemical composition of the lignin fractions were determined. The conventional alkali treatment with 1.25 M NaOH, heated at 80 °C for 5 h, extracted 92 g lignin per kg flax shives, while lignin yields from the PLPW extracts ranged from 27 to 241 g lignin per kg flax shives. The purity and monomeric composition of the lignins obtained from the different extraction conditions was assessed via UV spectroscopy and alkaline nitrobenzene oxidation. Lignin obtained from conventional alkali treatment with 1.25 M NaOH, heated at 80 °C for 5 h was of low purity and exhibited the lowest yields of nitrobenzene oxidation products. With respect to alkali assisted PLPW extractions, temperature created an opposing effect on lignin yield and nitrobenzene oxidation products. More lignin was extracted as temperature increased, yet the yield of nitrobenzene oxidation products decreased. The low yield of nitrobenzene oxidation products may be attributed to either the formation of condensed structures or the selective dissolution of condensed structures of lignin during the pressurized alkaline high temperature treatment. Analytical pyrolysis, using pyroprobe GC-MS, was used to investigate the molecular composition of the lignin samples. The total yield of pyrolysis lignin products was 13.3, 64.7, and 30.5% for the 1.25 M NaOH extracted lignin, alkaline assisted PLPW extracted lignin, and the unprocessed flax shives, respectively. Key lignin derived compounds such as guaiacol, 4-vinyl guaiacol, 4-methyl guaiacol

  15. Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks

    Directory of Open Access Journals (Sweden)

    P. Yu

    2015-01-01

    Full Text Available In this study, lignin-novolac epoxy resin networks were fabricated in the styrene butadiene rubber (SBR matrix by combination of latex compounding and melt mixing. Firstly, SBR/lignin compounds were co-coagulated by SBR latex and lignin aqueous solution. Then the novolac epoxy resin (F51 was added in the SBR/lignin compounds by melt compounding method. F51 was directly cured by lignin via the ring-opening reaction of epoxy groups of F51 and OH groups (or COOH groups of lignin during the curing process of rubber compounds, as was particularly evident from Fourier transform infrared spectroscopy (FTIR studies and maximum torque of the curing analysis. The existence of lignin-F51 networks were also detected by scanning electron microscope (SEM and dynamic mechanical analysis (DMA. The structure of the SBR/lignin/F51 was also characterized by rubber process analyzer (RPA, thermogravimetric analysis (TGA and determination of crosslinking density. Due to rigid lignin-F51 networks achieved in SBR/lignin/F51 composites, it was found that the hardness, modulus, tear strength, crosslinking density, the temperature of 5 and 10% weight-loss were significantly enhanced with the loading of F51.

  16. Environmental economics of lignin derived transport fuels

    OpenAIRE

    Obydenkova, SV; Kouris, P Panagiotis; Hensen, EJM Emiel; Heeres, Hero J; Boot, MD Michael

    2017-01-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability....

  17. Microwave irradiation of lignocellulosic materials, 8: Microwave irradiation of the neutral fraction (C-I-M) of pine Björkman LCC

    International Nuclear Information System (INIS)

    Azuma, J.; Katayama, T.; Koshijima, T.

    1986-01-01

    Effect of microwave irradiation on the partially acetylated galactoglucomannan bearing a small amount of lignin (C-I-M) isolated from pine Bjorkman LCC was investigated. When the native C-I-M was heated above 180°C by microwave irradiation in the presence of water, its carbohydrate portion was hydrolyzed into oligosaccharides having d.p. of 2-5 and monosaccharides. The degree of depolymerization of carbohydrates strongly depended upon the heating temperature and did not reach a maximum below 237°C, at which the reducing sugar content attained to 45.7%. The lignin molecules precipitated during microwave irradiation and a substancial amount of their (β-0-4 linkages were splitted. The lignin-carbohydrate bondings were also splitted at the heating temperature above 230°C. The hydrolysis of the carbohydrate portion of C-I-M was found to be remarkably enhanced by addition of 0.5% acetic acid during microwave irradiation. In this case, the reducing sugar production showed a maximum (74.2%) at about 210°C. Acetic acid was an excellent reagent for enhancement of the extent of depolymerization of galactoglucomannan in C-I-M. (author)

  18. Characterization of the lignin polymer in Brassicaceae family

    Directory of Open Access Journals (Sweden)

    S. Hemmati

    2017-04-01

    Full Text Available Background and objectives: Residues of medicinal plants after extraction and weeds are suitable candidates for bioethanol production. Significant barriers exist to make the conversion of lignocellulosic feedstock to biofuel cost effective and environmentally friendly; one of which is the lignin polymer. Brassicaceae family is one of the potential targets for biofuel production. The structural characteristics of lignin from Hirschfeldia incana, Sisymbrium altissimum and Cardaria draba were studied in comparison to that of Brassica napus. Methods: Lignin deposition was observed by phloroglucinol and Mäule staining. The total lignin content was determined by Klason method. Maximum UV absorbance and FT-IR spectra were compared. Ratio of syringyl to guaiacyl lignin (S/G ratio as a metric of lignin digestibility was determined by DFRC followed by GC-MS analysis. 1H-NMR spectra of the total lignin was compared with other spectroscopic methods. Results: Staining of thestem cross sections of C. draba showed higher G units in contrast to the higher S units in S. altissimum which was in agreement with 1H-NMR analysis. Total lignin content for H. incana, C. draba and S. altissimum was 27.10%, 23.8% and 24.5%, respectively. The specific maximum UV absorbance appeared between 230-260 nm. FT-IR analysis confirmed the presence of more aromatic structures in the seed maturation stage than the flowering stage. S/G ratio was 0.26, 0.10 and 0.22 for H. incana, C. draba and S. altissimum, respectively.  Conclusion: Except Cardaria draba with the predominance of G subunits in lignin polymer, Hirschfeldia incana and Sisymbrium altissimum are suitable candidates for bioethanol production.

  19. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the

  20. Effective release of lignin fragments from lignocellulose by lewis acid metal triflates in the lignin-first approach

    NARCIS (Netherlands)

    Huang, X.; Zhu, J.; Koranyi, T.I.; Boot, M.D.; Hensen, E.J.M.

    2016-01-01

    Adding value to lignin, the most complex and recalcitrant fraction in lignocellulosic biomass, is highly relevant to costefficient operation of biorefineries. We report the use of homogeneous metal triflates to rapidly release lignin from biomass. Combined with metal-catalyzed hydrogenolysis, the

  1. Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; De Leeuw, J.W.

    1984-01-01

    Curie-point pyrolysis-gas chromatography-mass spectrometry was applied to study the chemical structure of sound and fungus degraded, industrial and synthetic lignins. Pyrolysis products reflected in some detail the structural units present in the lignin polymer. Thus, sound spruce lignin yielded trans-isoeugenol coniferaldehyde and trans-coniferyl alcohol as major pyrolysis products. Biodegraded lignin yielded oxidized units, including vanillin, acetoguaiacone, methyl vanillate, propioguaiacone, vanilloyl methyl ketone and vanillic acid as major products. Kraft lignin also showed evidence of oxidation, although not as much as the biodegraded lignin. Major products from this industrial lignin were guaiacol, methylguaiacol, vinylguaiacol and homovanillic acid. Results indicated that synthetic lignin duplicates fairly well the structure of natural lignin. However, coniferylaldehyde and trans-coniferyl alcohol were the dominant products only from the synthetic lignin, indicating the presence of large amounts of coniferyl alcohol and coniferylaldehyde end groups. 21 references.

  2. Bioethanol production from leafy biomass of mango (Mangifera indica) involving naturally isolated and recombinant enzymes.

    Science.gov (United States)

    Das, Saprativ P; Ravindran, Rajeev; Deka, Deepmoni; Jawed, Mohammad; Das, Debasish; Goyal, Arun

    2013-01-01

    The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.

  3. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; Zhang, Weimin; Sun, Jianzhong; Qian, Wei-Jun; Yang, Bin

    2017-02-21

    Background: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability to survive in extreme environments. Results: To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analyze was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis were carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least 2-fold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis and assembly, etc. Conclusions: GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the

  4. Hurricane Katrina winds damaged longleaf pine less than loblolly pine

    Science.gov (United States)

    Kurt H. Johnsen; John R. Butnor; John S. Kush; Ronald C. Schmidtling; C. Dana. Nelson

    2009-01-01

    Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina,...

  5. Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park.

    Science.gov (United States)

    Cullings, Ken; Ishkhanova, Galina; Henson, Joan

    2008-11-01

    Ectomycorrhizal (EM) basidiomycete fungi are obligate mutualists of pines and hardwoods that receive fixed C from the host tree. Though they often share most recent common ancestors with wood-rotting fungi, it is unclear to what extent EM fungi retain the ability to express enzymes that break down woody substrates. In this study, we tested the hypothesis that the dominant EM fungus in a pure pine system retains the ability to produce enzymes that break down woody substrates in a natural setting, and that this ability is inducible by reduction of host photosynthetic potential via partial defoliation. To achieve this, pines in replicate blocks were defoliated 50% by needle removal, and enzyme activities were measured in individual EM root tips that had been treated with antibiotics to prevent possible bacterial activity. Results indicate that the dominant EM fungal species (Suillus granulatus) expressed all enzymes tested (endocellulase D: -glucosidase, laccase, manganese peroxidase, lignin peroxidase, phosphatase and protease), and that activities of these enzymes increased significantly (P pine) has the potential to play a significant role in C, N and P cycling in this forested ecosystem. Therefore, many above-ground factors that reduce photosynthetic potential or divert fixed C from roots may have wide-reaching ecosystem effects.

  6. Structural characterization of lignin from grape stalks (Vitis vinifera L.).

    Science.gov (United States)

    Prozil, Sónia O; Evtuguin, Dmitry V; Silva, Artur M S; Lopes, Luísa P C

    2014-06-18

    The chemical structure of lignin from grape stalks, an abundant waste of winemaking, has been studied. The dioxane lignin was isolated from extractive- and protein-free grape stalks (Vitis vinifera L.) by modified acidolytic procedure and submitted to a structural analysis by wet chemistry (nitrobenzene and permanganate oxidation (PO)) and spectroscopic techniques. The results obtained suggest that grape stalk lignin is an HGS type with molar proportions of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units of 3:71:26. Structural analysis by (1)H and (13)C NMR spectroscopy and PO indicates the predominance of β-O-4' structures (39% mol) in grape stalk lignin together with moderate amounts of β-5', β-β, β-1', 5-5', and 4-O-5' structures. NMR studies also revealed that grape lignin should be structurally associated with tannins. The condensation degree of grape stalks lignin is higher than that of conventional wood lignins and lignins from other agricultural residues.

  7. Reductive Catalytic Fractionation of Corn Stover Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Eric M.; Katahira, Rui; Reed, Michelle; Resch, Michael G.; Karp, Eric M.; Beckham, Gregg T.; Román-Leshkov, Yuriy

    2016-12-05

    Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed

  8. Effect of hypergravity on lignin formation and expression of lignin-related genes in inflorescence stems of an ethylene-insensitive Arabidopsis mutant ein3-1

    Science.gov (United States)

    Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro

    Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.

  9. Selective Oxidation of Lignin Model Compounds.

    Science.gov (United States)

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Formation of aromatic products at radiation-thermal destruction of lignin

    International Nuclear Information System (INIS)

    Metreveli, P.K.; Bludenko, A.V.; Ponomarev, A.V.

    2012-01-01

    Influence of electron irradiation on lignin destruction is studied. Hydrolyzed lignin and mixture of fatty acid triglycerides (FATG) have been irradiated by 8.5 MeV electrons. Comparative study of four variants of lignin destruction is carried out, they are pyrogenic distillation, post-radiation dry distillation, electron-beam distillation (EBD) and EBD at combined heating. The mechanism of lignin radiation-thermal transformation with guaiacol and creosol formation is considered. Lignin EBD is investigated depending on dose rate, absorbed dose, electroheating power and addition (FATG and chitin) content. It is pointed out, that lignin stimulates radiation-thermal conversion of FATG into low-viscosity diesel fuel. The conclusion is made, that lignin EBD at radiation and combined heating can be perspective effective method of vegetal polyphenols conversion into liquid phenols [ru

  11. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  12. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian; Hugenholtz, Phillip; Simmons, Blake; Sublette, Kerry; Silver, Whendee; Hazen, Terry

    2011-07-14

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  13. Characterization of trapped lignin-degrading microbes in tropical forest soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Allgaier, M.; Chavarria, Y.; Fortney, J.L.; Hugenholz, P.; Simmons, B.; Sublette, K.; Silver, W.L.; Hazen, T.C.

    2011-03-01

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  14. Kraft Lignin Depolymerization in an Ionic Liquid without a Catalyst

    Directory of Open Access Journals (Sweden)

    Amadou Diop

    2015-06-01

    Full Text Available In this paper, the depolymerization of lignin was successfully achieved by the thermal treatment of kraft lignin in butyl-1,8-diazabicyclo[5.4.0]undec-7-enium chloride ([DBUC4+][Cl-] without a catalyst. The thermal treatment experiments were performed in an oven at 150, 200, and 250 °C for 1 h. The changes in kraft lignin structure over the course of depolymerization were characterized by gel permeation chromatography (GPC, Fourier transform infrared (FTIR spectroscopy, and 1H / 31P NMR analyses. GPC chromatograms indicated that the retention time of the original kraft lignin had shifted toward higher values after the thermal treatment, which indicated lignin depolymerization. The average molecular weight of the lignin obtained after 1 h reaction time decreased by 23, 70, and 58 wt% for the treatment at 150, 200, and 250 °C, respectively. FTIR spectra indicated the cleavage of β-O-4 bonds of kraft lignin. The 1H NMR spectra showed demethylation of all treated kraft lignins. Moreover, the 31P NMR analysis demonstrated that the demethylation phenomenon of the treated kraft lignin contributed to the formation of catechol groups.

  15. Fabrication of Environmentally Biodegradable Lignin Nanoparticles

    NARCIS (Netherlands)

    Frangville, C.; Rutkevicius, M.; Richter, A.P.; Velev, O.D.; Stoyanov, S.D.; Paunov, V.N.

    2012-01-01

    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The

  16. Biological and Catalytic Conversion of Sugars and Lignin Publications |

    Science.gov (United States)

    biorefinery lignins, ACS Sust. Chem. Eng. Lignin depolymerization with nitrate-intercalated hydrotalcite catalysts, ACS Catalysis Pyrolysis reaction networks for lignin model compounds: Unraveling thermal Free Energy, J. Amer. Chem. Soc. Process Design and Economics for the Conversion of Lignocellulosic

  17. Nitroxyl-mediated oxidation of lignin and polycarboxylated products

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Rafiee, Mohammad

    2018-02-27

    Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers or oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.

  18. Production of Flocculants, Adsorbents, and Dispersants from Lignin.

    Science.gov (United States)

    Chen, Jiachuan; Eraghi Kazzaz, Armin; AlipoorMazandarani, Niloofar; Hosseinpour Feizi, Zahra; Fatehi, Pedram

    2018-04-10

    Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  19. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification.

    Science.gov (United States)

    Barsberg, Søren; Selig, Michael Joseph; Felby, Claus

    2013-02-01

    Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6 % (w/w) and ash was from 5.8 to 30 % (w/w). ATR-IR analyses indicated significant and similar levels of calcium in all lignin isolates. Commercial cellulase adsorption studies showed that the presence of these lignins had no significant impact on the total amount of adsorbed enzyme in cellulose and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme-lignin interactions.

  20. Revealing the fate of the phenylcoumaran linkage during lignin oxidation reactions.

    Science.gov (United States)

    Lahive, Ciaran W; Lancefield, Christopher S; Codina, Anna; Kamer, Paul C J; Westwood, Nicholas J

    2018-03-14

    The fate of most lignin linkages, other than the β-O-4, under selective oxidation conditions is largely unknown. In this work we use advanced β-5 lignin model compounds to identify the fate of phenylcoumaran units in a softwood lignin during oxidation with DDQ. By using model compounds combined with detailed characterisation of the oxidised lignin polymer using HSQC and HMBC NMR we show that phenylcoumarones are a major product, and therefore constitute a novel non-native β-5 linkage in oxidised lignins. Additionally, the reactivity of these units in lignin led us to further investigate their connectivity in lignin, showing that they are found as both phenolic and etherified units. The findings and approach developed here will help improve the efficiency of selective oxidative lignin depolymerisation processes, particularly those aimed at the upgrading of softwood lignin in which phenylcoumarans are a major linkage.

  1. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Vasco, Carlos; Ma, Ruoshui; Quintero, Melissa; Guo, Mond; Geleynse, Scott; Ramasamy, Karthikeyan K.; Wolcott, Michael; Zhang, Xiao

    2016-01-01

    This paper reports a new method of applying Deep Eutectic Solvents (DES) for extracting lignin from woody biomass with high yield and high purity. DES mixtures prepared from Choline Chloride (ChCl) and four hydrogen-bond donors–acetic acid, lactic acid, levulinic acid and glycerol–were evaluated for treatment of hardwood (poplar) and softwood (D. fir). It was found that these DES treatments can selectively extract a significant amount of lignin from wood with high yields: 78% from poplar and 58% from D. fir. The extracted lignin has high purity (95%) with unique structural properties. We discover that DES can selectively cleave ether linkages in wood lignin and facilitate lignin removal from wood. The mechanism of DES cleavage of ether bonds between phenylpropane units was investigated. The results from this study demonstrate that DES is a promising solvent for wood delignification and the production of a new source of lignin with promising potential applications.

  2. Chemical reactivity of alkali lignin modified with laccase

    International Nuclear Information System (INIS)

    Sun, Yong; Qiu, Xueqing; Liu, Yunquan

    2013-01-01

    The modification of alkali lignin with laccase was investigated. The structural change of lignin was analyzed. The sulfonation reactivity was measured by the content of sulfonic group. The results showed the sulfonation reactivity increased to some extent under the condition of atmosphere pressure, but decreased under the condition of 0.3 MPa oxygen pressure. The analysis of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) showed the cleavage of various ether linkages and demethylation took place in the structure of lignin to certain extent during modification with laccase, which contributed to the improvement of sulfonation reactivity. Under the condition of 0.3 MPa oxygen pressure, the ratio of s/g (guaiacyl/syringyl) increased after modification, which reduced the sulfonation reactivity of lignin. Simultaneously partial polymerization reaction, such as 4-O-5′, β-5, 5-5 and other reaction in the aromatic ring decreased the activity sites of C 2 , C 5 and C 6 . Abundant polymerization reaction of α-O increased steric hindrance of C 2 and C 6 in aromatic ring, resulting in low sulfonation reactivity of lignin. -- Highlights: ► The modification of alkali lignin with laccase was investigated. ► The sulfonation reactivity increased under the condition of atmosphere pressure. ► More content of guaiacyl and hydroxy, the less content of methoxyl, syringyl can enhance the sulfonation reactivity of lignin. ► Partial moieties polymerized each other with α-O linkgages during treatment with laccase under oxygen pressure. ► The steric hindrance on C 2 and C 6 in aromatic ring resulted in low sulfonation reaction reactivity of lignin

  3. Pyrolysis - gas chromatography - mass spectrometry of lignins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F; Saiz-Jimenez, C; Gonzalez-Vila, F J

    1979-01-01

    Milled wood lignins from spruce, beech and bamboo were pyrolysed. The high-boiling products of pyrolysis were studied by GLC and mass spectrometry. The forty-three products identified provide information on the structural units of lignin.

  4. The Use of Esterified Lignin for Synthesis of Durable Composites

    Science.gov (United States)

    S. Olsson; E. Ostmark; R.E. Ibach; C.M. Clemons; K.B. Segerholm; F. Englund

    2011-01-01

    Lignin is a natural polymer and one of the most abundant materials on earth. Despite this fact, lignin is often viewed as a by-product in chemical pulp processing and the use of lignin as a sustainable material is low. However, research and public awareness of sustainability have opened up new possibilities for using lignin as a material.

  5. Production of Flocculants, Adsorbents, and Dispersants from Lignin

    Directory of Open Access Journals (Sweden)

    Jiachuan Chen

    2018-04-01

    Full Text Available Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  6. Nine years of irrigation cause vegetation and fine root shifts in a water-limited pine forest.

    Directory of Open Access Journals (Sweden)

    Claude Herzog

    Full Text Available Scots pines (Pinus sylvestris L. in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd. has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling.

  7. Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts

    Directory of Open Access Journals (Sweden)

    Cassie Marie Welker

    2015-07-01

    Full Text Available Lignin is an aromatic biopolymer involved in providing structural support to plant cell walls. Compared to the other cell wall polymers, i.e., cellulose and hemicelluloses, lignin has been considered a hindrance in cellulosic bioethanol production due to the complexity involved in its separation from other polymers of various biomass feedstocks. Nevertheless, lignin is a potential source of valuable aromatic chemical compounds and upgradable building blocks. Though the biosynthetic pathway of lignin has been elucidated in great detail, the random nature of the polymerization (free radical coupling process poses challenges for its depolymerization into valuable bioproducts. The absence of specific methodologies for lignin degradation represents an important opportunity for research and development. This review highlights research development in lignin biosynthesis, lignin genetic engineering and different biological and chemical means of depolymerization used to convert lignin into biofuels and bioproducts.

  8. Scientific designs of pine seeds and pine cones for species conservation

    Science.gov (United States)

    Song, Kahye; Yeom, Eunseop; Kim, Hyejeong; Lee, Sang Joon

    2015-11-01

    Reproduction and propagation of species are the most important missions of every living organism. For effective species propagation, pine cones fold their scales under wet condition to prevent seeds from short-distance dispersal. They open and release their embedded seeds on dry and windy days. In this study, the micro-/macro-scale structural characteristics of pine cones and pine seeds are studied using various imaging modalities. Since the scales of pine cones consist of dead cells, the folding motion is deeply related to structural changes. The scales of pine cones consist of three layers. Among them, bract scales are only involved in collecting water. This makes pine cones reduce the amount of water and minimize the time spent on structural changes. These systems also involve in drying and recovery of pine cones. In addition, pine cones and pine seeds have advantageous structures for long-distance dispersal and response to natural disaster. Owing to these structural features, pine seeds can be released safely and efficiently, and these types of structural advantages could be mimicked for practical applications. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  9. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Selig, Michael Joseph; Felby, Claus

    2013-01-01

    and cellulose-lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin-calcium complexes reduce enzyme......Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6...

  10. Directional synthesis of ethylbenzene through catalytic transformation of lignin.

    Science.gov (United States)

    Fan, Minghui; Jiang, Peiwen; Bi, Peiyan; Deng, Shumei; Yan, Lifeng; Zhai, Qi; Wang, Tiejun; Li, Quanxin

    2013-09-01

    Transformation of lignin to ethylbenzene can provide an important bulk raw material for the petrochemical industry. This work explored the production of ethylbenzene from lignin through the directional catalytic depolymerization of lignin into the aromatic monomers followed by the selective alkylation of the aromatic monomers. For the first step, the aromatics selectivity of benzene derived from the catalytic depolymerization of lignin reached about 90.2 C-mol% over the composite catalyst of Re-Y/HZSM-5 (25). For the alkylation of the aromatic monomers in the second step, the highest selectivity of ethylbenzene was about 72.3 C-mol% over the HZSM-5 (25) catalyst. The reaction pathway for the transformation of lignin to ethylbenzene was also addressed. Present transformation potentially provides a useful approach for the production of the basic petrochemical material and development of high-end chemicals utilizing lignin as the abundant natural aromatic resource. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Biodegradation of lignin by Shiitake Lentinus edodes (berk. ) sing

    Energy Technology Data Exchange (ETDEWEB)

    Oki, T.; Watanabe, H.; Ishikawa, H.

    1981-01-01

    Each strain of L. edodes destroyed all of the structural components of wood (Fagus crenata) at almost the same rate during the loss of approximately 30% of the total weight of wood. The activities of the extracellular enzymes, i.e. peroxidase, laccase, and polyphenol oxidase, in the wood powder and lignin-containing cultures increased during the early period of mycelial growth, and then declined rapidly, while the activity of Beta-glucosidase increased gradually throughout the growth period. Functional group analysis, nitrobenzene oxidation, and spectroscopic characterization showed that dioxane lignin from F. crenata degraded by L. edodes or in crude enzyme solution isolated from wood-containing culture had a higher content of carboxyl groups than the sound dioxane lignin, whereas the content of methoxyl group was lower in the degraded dioxane lignin than in sound dioxane lignin. The building units of dioxane lignin, which yield aromatic aldehydes on nitrobenzene oxidation, were attacked preferentially by L. edodes under the above conditions.

  12. Lignin biomass conversion into chemicals and fuels

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra

    Second-generation biomass or lignocellulosic biomass, which is mainly composed of cellulose, hemicellulose and lignin, is a very important and promising feedstock for the renewable production of fuels and chemicals of the future. Lignin is the second most abundant natural polymer, representing 30...... and show similar, although simplified, characteristics to the natural biopolymer. Among them, the most abundant structural unit is the β-O-4, representing approximately 60% of the bonds in hardwood and 45-50% of those in softwood. Oxidative depolymerization is one of the most viable methods for lignin...... valorization. It involves the cleavage of ether bonds, such as β-O-4 and other linkages present in lignin and its model compounds, giving aldehydes or carboxylic acids as products, depending on the reaction conditions used. In Chapter 2 of this thesis, the preparation, characterization and catalytic...

  13. Fibrous Agricultural Biomass as a Potential Source for Bioconversion to Vanillic Acid

    Directory of Open Access Journals (Sweden)

    Pei-Ling Tang

    2014-01-01

    Full Text Available This study was conducted to assess the potential of six fibrous agricultural residues, namely, oil palm empty fruit bunch fiber (OPEFBF, coconut coir fiber (CCF, pineapple peel (PP, pineapple crown leaves (PCL, kenaf bast fiber (KBF, and kenaf core fiber (KCF, as a source of ferulic acid and phenolic compounds for bioconversion into vanillic acid. The raw samples were pretreated with organosolv (NaOH-glycerol and alkaline treatment (NaOH, to produce phenol-rich black liquor. The finding showed that the highest amount of phenolic compounds and ferulic acid was produced from CCF and PP, respectively. This study also found that organosolv treatment was the superior method for phenolic compound extraction, whereas alkaline treatment was the selective method for lignin extraction. Vanillic acid production by Aspergillus niger I-1472 was only observed when the fermentation broth was fed with liquors from PP and PCL, possibly due to the higher levels of ferulic acid in those samples.

  14. Kinetic modeling of formic acid pulping of bagasse.

    Science.gov (United States)

    Tu, Qiliang; Fu, Shiyu; Zhan, Huaiyu; Chai, Xinsheng; Lucia, Lucian A

    2008-05-14

    Organic solvent or organosolv pulping processes are alternatives to soda or kraft pulping to delignify lignocellulosic materials for the production of paper pulp. Formic acid, a typical organosolv system, has been presently examined under atmospheric pressure to pulp bagasse fibers. It was shown that efficient bagasse pulping was achieved when the formic acid concentration was limited to 90% (v/v). A statistical kinetic model based on the experimental results for the delignification of bagasse during formic acid pulping was developed that can be described as follows: D (delignification) = 0.747 x C(formicacid) (1.688) x (1 - e(-0.05171t)), an equation that can be used to predict the lignin content in formic acid during the pulping process. The delignification of bagasse by 90% formic acid was almost completed after approximately 80 min, while extended pulping did not improve the delignification but tended to degrade the carbohydrates in bagasse, especially the hemicelluloses, which were rapidly hydrolyzed at the onset of pulping.

  15. Evaluation of correlation between glucan conversion and degree of delignification depending on pretreatment strategies using Jabon Merah.

    Science.gov (United States)

    Jang, Soo-Kyeong; Jeong, Hanseob; Kim, Ho-Yong; Choi, June-Ho; Kim, Jong-Hwa; Koo, Bon-Wook; Choi, In-Gyu

    2017-07-01

    The main purpose of this study was to investigate the glucan conversion rate after enzymatic hydrolysis depending on the treatment methods and conditions with changes in the chemical composition of treated solid fraction of Jabon Merah. The glucan conversion rate (17.4%) was not significantly improved after liquid hot water treatment (1st step) even though most of the hemicellulose was dissolved into liquid hydrolysate. Subsequently, dilute acid, organosolv, and peracetic acid treatment (2nd step) was conducted under various conditions to enhance glucan conversion. Among the 2nd step treatment, the glucan conversion rate of organosolv (max. 46.0%) and peracetic acid treatment (max. 65.9%) was increased remarkably through decomposition of acid-insoluble lignin (AIL). Finally, the glucan conversion rate and AIL content were highly correlated, which was revealed by the R-squared value (0.84), but inhibitory factors including cellulose crystallinity must be considered for advanced glucan conversion from highly recalcitrant biomasses, such as Jabon Merah. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Effect of Plant Source on the Properties of Lignin-Based Polyurethanes

    Directory of Open Access Journals (Sweden)

    Jason M. Lang

    2018-02-01

    Full Text Available This work increases our understanding of the effect of plant source on the mechanical and morphological properties of lignin-based polyurethanes (PUs. Lignin is a polymer that is synthesized inside the plant cell wall and can be used as a polyol to synthesize PUs. The specific aromatic structure of the lignin is heavily reliant on the plant source from which it is extracted. These results show that the mechanical properties of lignin-based PUs differ based on lignin’s plant source. The morphology of lignin-based PUs was examined using atomic force microscopy and scanning electron microscopy and the mechanical properties of lignin-based PU samples were measured using dynamic mechanical analysis and shore hardness (Type A. The thermal analysis and morphology studies demonstrate that all PUs prepared form a multiphase morphology. In these PUs, better mixing was observed in the wheat straw lignin PU samples leading to higher moduli than in the hardwood lignin and softwood lignin PUs whose morphology was dominated by larger aggregates. Independent of the type of the lignin used, increasing the fraction of lignin increased the rigidity of PU. Among the different types of lignin studied, PU with wheat straw soda lignin exhibited storage moduli ~2-fold higher than those of PUs incorporating other lignins. This study also showed that during synthesis all hydroxyl groups in the lignin are not available to react with isocyanates, which alters the number of cross-links formed within the PU and impacts the mechanical properties of the material.

  17. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  18. Producing a True Lignin Depolymerase for Biobleaching Softwood Kraft Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Simo Sarkanen

    2002-02-04

    This project constituted an intensive effort devoted to producing, from the white-rot fungus Tramets Cingulata, a lignin degrading enzyme (lignin depolymerase) that is directly able to biobleach or delignify softwood kraft pulp brownstock. To this end, the solutions in which T. cingulata was grown contained dissolved kraft lignin which fulfilled two functions; it behaved as a lignin deploymerase substrate and it also appeared to act as an inducer of enzyme expression. However, the lignin depolymerase isoenzymes (and other extracellular T. cingulata enzymes) interacted very strongly with both the kraft lignin components and the fungal hypae, so the isolating these proteins from the culture solutions proved to be unexpectedly difficult. Even after extensive experimentation with a variety of protein purification techniques, only one approach appeared to be capable of purifying lignin depolymerases to homogeneity. Unfortunately the procedure was extremely laborious; it involved the iso electric focusing of concentrated buffer-exchanged culture solutions followed by electro-elution of the desired protein bands from the appropriate polyacrylamide gel segments

  19. Progress in lignin hydrogels and nanocomposites for water purification

    DEFF Research Database (Denmark)

    Tamulevicius, Sigitas; Thakur, Sourbh; Govender, Penny P.

    2017-01-01

    -based hydrogels have shown excellent performance for removal of various pollutants from water. The adsorption properties of lignin based hydrogels can further be improved by using a combination of nanomaterials and lignin that results in promising hydrogel nanocomposites. In nature, the most abundant structures...... are formed by the combination of lignin, cellulose and hemicelluloses. In this article, we have attempted to comprehensively review the research work carried out in the direction of usage of lignin-based hydrogel for removal of toxic pollutants including metal ions and dyes....

  20. Solid-state 29Si NMR and FTIR analyses of lignin-silica coprecipitates

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Cabrera, Andrés; Larsen, Flemming Hofmann

    2016-01-01

    When agricultural residues are processed to ethanol, lignin and silica are some of the main byproducts. Separation of these two products is difficult and the chemical interactions between lignin and silica are not well described. In the present study, the effect of lignin-silica complexing has been...... investigated by characterizing lignin and silica coprecipitates by FTIR and solid state NMR. Silica particles were coprecipitated with three different lignins, three lignin model compounds, and two silanes representing silica-in-lignin model compounds. Comparison of 29Si SP/MAS NMR spectra revealed differences...

  1. Insights into lignin degradation and its potential industrial applications.

    Science.gov (United States)

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non

  2. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Redox Fluctuations Increase the Contribution of Lignin to Soil Respiration

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Timokhin, V.; Hammel, K.

    2014-12-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia has long been thought to suppress lignin decomposition, yet variation in oxygen (O2) availability in surface soils accompanying moisture fluctuations could potentially stimulate this process by generating reactive oxygen species via coupled biotic and abiotic iron (Fe) redox cycling. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl and propyl Cβ) to provide highly sensitive and specific measures of lignin mineralization not previously employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration, and cumulative methoxyl C mineralization was equivalent under static aerobic and fluctuating redox conditions despite lower total C mineralization in the latter treatment. Contributions of the highly stable Cβ to mineralization were also equivalent in static aerobic and fluctuating redox treatments during periods of O2 exposure, and nearly doubled in the fluctuating treatment after normalizing to cumulative O2 exposure. Oxygen fluctuations drove substantial net Fe reduction and oxidation, implying that reactive oxygen species generated during abiotic Fe oxidation likely contributed to the elevated contribution of lignin to C mineralization. Iron redox cycling provides a mechanism for lignin breakdown in soils that experience conditions unfavorable for canonical lignin-degrading organisms, and provides a potential mechanism for lignin depletion in soil organic matter during late-stage decomposition. Thus, close couplings between soil moisture, redox fluctuations, and lignin breakdown provide potential a link between climate variability and

  4. Evidence for lignin oxidation by the giant panda fecal microbiome.

    Directory of Open Access Journals (Sweden)

    Wei Fang

    Full Text Available The digestion of lignin and lignin-related phenolic compounds from bamboo by giant pandas has puzzled scientists because of the lack of lignin-degrading genes in the genome of the bamboo-feeding animals. We constructed a 16S rRNA gene library from the microorganisms derived from the giant panda feces to identify the possibility for the presence of potential lignin-degrading bacteria. Phylogenetic analysis showed that the phylotypes of the intestinal bacteria were affiliated with the phyla Proteobacteria (53% and Firmicutes (47%. Two phylotypes were affiliated with the known lignin-degrading bacterium Pseudomonas putida and the mangrove forest bacteria. To test the hypothesis that microbes in the giant panda gut help degrade lignin, a metagenomic library of the intestinal bacteria was constructed and screened for clones that contained genes encoding laccase, a lignin-degrading related enzyme. A multicopper oxidase gene, designated as lac51, was identified from a metagenomic clone. Sequence analysis and copper content determination indicated that Lac51 is a laccase rather than a metallo-oxidase and may work outside its original host cell because it has a TAT-type signal peptide and a transmembrane segment at its N-terminus. Lac51 oxidizes a variety of lignin-related phenolic compounds, including syringaldazine, 2,6-dimethoxyphenol, ferulic acid, veratryl alcohol, guaiacol, and sinapinic acid at conditions that simulate the physiologic environment in giant panda intestines. Furthermore, in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS, syringic acid, or ferulic acid as mediators, the oxidative ability of Lac51 on lignin was promoted. The absorbance of lignin at 445 nm decreased to 36% for ABTS, 51% for syringic acid, and 51% for ferulic acid after incubation for 10 h. Our findings demonstrate that the intestinal bacteria of giant pandas may facilitate the oxidation of lignin moieties, thereby clarifying the digestion

  5. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China.

    Science.gov (United States)

    Yang, C-X; Wang, T; Gao, L-N; Yin, H-J; Lü, X

    2017-12-01

    Lignin is an aromatic heteropolymer forming a physical barrier and it is a big challenge in biomass utilization. This paper first investigated lignin-degradation bacteria from rotten wood in Qinling Mountain. Nineteen potential strains were selected and ligninolytic enzyme activities were determined over 84 h. Strains that had higher enzyme activities were selected. Further, the biodegradation of wheat straw lignin and alkali lignin was evaluated indicating that Burkholderia sp. H1 had the highest capability. It was confirmed by gel permeation chromatography and field emission scanning electron microscope that alkali lignin was depolymerized into small fragments. The degraded products were analysed using gas chromatography-mass spectrometry. The total ion chromatograph of products treated for 7 days showed the formation of aromatic compounds, an important intermediate from lignin degradation. Interestingly, they disappeared in 15 days while the aldehyde and ester compounds increased. The results suggest that the lignin-degrading bacteria are abundant in rotten wood and strain H1 has high potential to break down lignin. The diversity of lignin-degrading bacteria in Qinling Mountain is revealed. The study of Burkholderia sp. H1 expands the range of bacteria for lignin degradation and provides novel bacteria for application to lignocellulosic biomass. © 2017 The Society for Applied Microbiology.

  6. Should ponderosa pine be planted on lodgepole pine sites?

    Science.gov (United States)

    P.H. Cochran

    1984-01-01

    Repeated radiation frosts caused no apparent harm to the majority of lodgepole pine (Pinus contorta Dougl.) seedlings planted on a pumice flat in south-central Oregon. For most but not all of the ponderosa pine (Pinus ponderosa Dougl.) seedlings planted with the lodgepole pine, however, damage from radiation frost resulted in...

  7. Valorization of lignin from biorefineries for fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Joachim Bachmann

    Direct lignin liquefaction is a promising process for lignin valorization in which ligninis treated in a solvent at elevated temperature and pressure. Liquefaction of sulfur freelignin obtained as a waste product from 2nd generation bio-ethanol production canprovide a sulfur free bio-oil which may...... substitute fossil fuel.In this Ph.D. study the direct liquefaction of a biorefinery lignin (hydrothermallypretreated enzymatic hydrolysis lignin) is explored. The goal is to provide a bio-crude which can substitute marine diesel as the engines found aboard large ships are adapted to more crude fuels. A novel...

  8. Environmental economics of lignin derived transport fuels

    NARCIS (Netherlands)

    Obydenkova, Svetlana V.; Kouris, Panos D.; Hensen, Emiel J. M.; Heeres, Hero J.; Boot, Michael D.

    2017-01-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative

  9. CHARACTERIZATION OF ALKALINE LIGNINS FOR USE IN PHENOL-FORMALDEHYDE AND EPOXY RESINS

    Directory of Open Access Journals (Sweden)

    Nour Eddine El Mansouri

    2011-05-01

    Full Text Available Besides polyurethanes and polyesters, phenolic and epoxy resins are the most prominent applications for technical lignins in thermosetting materials. To evaluate the potential application of lignin raw materials in phenol formaldehyde and epoxy resins, three types of alkaline lignins were characterized in terms of their structures and thermal properties. The lignin samples analyzed were kraft lignin (LIG-1, soda–rice straw lignin (LIG-2, and soda-wheat straw lignin (LIG-3. FTIR and 1H-NMR methods were used to determine their structure. Gel permeation chromatography (GPC was used to determine the molecular weight distribution (MWD. Differential scanning calorimetry (DSC was used to measure the glass transition temperature (Tg, and thermogravimetric analysis (TGA to determine the thermal stability of lignin samples. Results showed that kraft lignin (LIG-1 has moderate hydroxyl-group content, is rich in G-type units, and has good thermal stability. These properties make it more suitable for direct use in phenol formaldehyde resins, and it is therefore a good raw material for this purpose. The alkaline soda-rice straw lignin (LIG-2 with a high hydroxyl-group content and excellent thermal stability is most suited to preparing lignin-based epoxy resins.

  10. Nantucket Pine Tip Moth Control and Loblolly Pine Growth in Intensive Pine Culture: Two-Year Results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2004-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L. on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana (Comstock), and effects on pine growth over 2 years. Treatments were combinations of Velpar, Oust, and Arsenal...

  11. NMR characterization of lignins isolated from fruit and vegetable insoluble dietary fiber.

    Science.gov (United States)

    Bunzel, Mirko; Ralph, John

    2006-10-18

    Compositional information for lignins in food is rare and concentrated on cereal grains and brans. As lignins are suspected to have important health roles in the dietary fiber complex, the confusing current information derived from nonspecific lignin determination methods needs to be augmented by diagnostic structural studies. For this study, lignin fractions were isolated from kiwi, pear, rhubarb, and, for comparison, wheat bran insoluble dietary fiber. Clean pear and kiwi lignin isolates allowed for substantive structural profiling, but it is suggested that the significance of lignin in wheat has been overestimated by reliance on nonspecific analytical methods. Volume integration of NMR contours in two-dimensional (13)C-(1)H correlation spectra shows that pear and wheat lignins have comparable guaiacyl and syringyl contributions and that kiwi lignins are particularly guaiacyl-rich (approximately 94% guaiacyl) and suggest that rhubarb lignins, which could not be isolated from contaminating materials, are as syringyl-rich (approximately 96% syringyl) as lignins from any known natural or transgenic fiber source. Typical lignin structures, including those newly NMR-validated (glycerols, spirodienones, and dibenzodioxocins), and resinols implicated as possible mammalian lignan precursors in the gut are demonstrated via their NMR correlation spectra in the fruit and vegetable samples. A novel putative benzodioxane structure appears to be associated with the kiwi lignin. It is concluded that the fruits and vegetables examined contain authentic lignins and that the detailed structural analysis exposes limitations of currently accepted analytical methods.

  12. Metal Triflates for the Production of Aromatics from Lignin.

    Science.gov (United States)

    Deuss, Peter J; Lahive, Ciaran W; Lancefield, Christopher S; Westwood, Nicholas J; Kamer, Paul C J; Barta, Katalin; de Vries, Johannes G

    2016-10-20

    The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy-to-handle metal triflates (M(OTf) x ). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol or methyl aromatics obtained by catalytic decarbonylation. Notably, when the method was ultimately tested on lignin, especially Fe(OTf) 3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Role of paramagnetic polyconjugated clusters in lignin antioxidant activity (in vitro)

    International Nuclear Information System (INIS)

    Dizhbite, T; Ponomarenko, J; Andersone, A; Dobele, G; Lauberts, M; Krasilnikova, J; Telysheva, G; Mironova-Ulmane, N

    2012-01-01

    Using physico-chemical methods (EPR, SEC, Py-GC/MS and UV/VIS spectroscopy) and wet chemical analysis, the characteristics of 6 hardwood lignins in terms of functionality, molecular weight and composition of lignin substructures were determined and considered together with the results of DPPH., ABTS. + and O 2 . − antioxidant assays with the aim to understand the relationships governing antioxidant properties of lignin. The strong positive linear correlation between lignin antioxidant capacity in the three assays used and the extent of conjugation of paramagnetic polyconjugated clusters in lignin macromolecules was found. The biological activity of the most active alkaline lignins was assessed by in vitro experiment with human blood.

  14. Animal bioavailability of defined xenobiotic lignin metabolites

    International Nuclear Information System (INIS)

    Sandermann, H. Jr.; Arjmand, M.; Gennity, I.; Winkler, R.; Struble, C.B.; Aschbacher, P.W.

    1990-01-01

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U- 14 C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of ∼66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the [ring-U- 14 C]chloroaniline/lignin metabolites

  15. Lignin-Retaining Transparent Wood.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin; Berglund, Lars

    2017-09-11

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK -1 , and work-tofracture of 1.2 MJ m -3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Characterisation and application of NovaFiber lignin

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Snijder, M.H.B.; Kranenbarg, A.; Keijsers, E.R.P.; Jong, de E.; Stigsson, L.L.

    2004-01-01

    Sulphur-free lignin coming from a novel alkaline-pulping process called NovaFiber, which has been developed by KIRAM AB, has been characterised and evaluated for potential applications. A Kraft lignin has been used for comparison. Considering the characterisation results of a NovaFiber softwood and

  17. Characterisation of Authentic Lignin Biorefinery Samples by Fourier Transform Infrared Spectroscopy and Determination of the Chemical Formula for Lignin

    DEFF Research Database (Denmark)

    Le, Duy Michael; Damgaard Nielsen, Anders; Sørensen, Hanne

    2017-01-01

    samples in situ with no prior purification and minimal sample preparation. Lignin chemical formulas and lignin Fourier transform infrared (FTIR) spectra were extracted from mixed spectra by filtering out signals from residual carbohydrates and minerals. From estimations of C, H and O and adjustment...

  18. Environmental economics of lignin derived transport fuels.

    Science.gov (United States)

    Obydenkova, Svetlana V; Kouris, Panos D; Hensen, Emiel J M; Heeres, Hero J; Boot, Michael D

    2017-11-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability. The first factor, the logistics scheme, exhibited the disadvantage of the centralized approach, owing to prohibitively expensive transportation costs of the low energy-dense lignin. Life cycle analysis (LCA) displayed the second critical factor related to alternative energy carrier selection. Natural gas (NG) chosen over additional biomass boosts well-to-wheel greenhouse gas emissions (WTW GHG) to a level incompatible with the reduction targets set by the U.S. renewable fuel standard (RFS). Adversely, the process' economics revealed higher profits vs. fossil energy carrier. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    Science.gov (United States)

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  20. Investigating the reactivity of pMDI with wood cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2009-01-01

    The objectives of this study are the following: (1) Use solution-state NMR to assign contours in HSQC spectra of the reaction products between pMDI model compounds and: (a) lignin model compounds, (b) milled-wood lignin, (c) ball-milled wood, (d) microtomed loblolly pine; (2) Determine where and to what degree urethane formation occurs with loblolly pine cell wall...

  1. A radioimmunoassay for lignin in plant cell walls

    International Nuclear Information System (INIS)

    Dawley, R.M.

    1989-01-01

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A β-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 ηg/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. 125 I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO 2 delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed

  2. Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins.

    Science.gov (United States)

    Lapierre, Catherine; Pilate, Gilles; Pollet, Brigitte; Mila, Isabelle; Leplé, Jean-Charles; Jouanin, Lise; Kim, Hoon; Ralph, John

    2004-02-01

    A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.

  3. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Lee, Y.-I.; Rasmussen, Hanne Nina

    2018-01-01

    Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344......Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344...

  4. Process for conversion of lignin to reformulated hydrocarbon gasoline

    Science.gov (United States)

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  5. Isolation and characterization of new lignin streams derived from extractive-ammonia (EA) pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    da Costa Sousa, Leonardo [Michigan State Univ., East Lansing, MI (United States); Foston, Marcus [Washington Univ., St. Louis, MO (United States); Bokade, Vijay [National Chemical Lab., Pune (India); Azarpira, Ali [Univ. of Wisconsin, Madison, WI (United States); Lu, Fachuang [Univ. of Wisconsin, Madison, WI (United States); Ragauskas, Arthur J. [Univ. of Tennessee, Knoxville, TN (United States); Ralph, John [Univ. of Wisconsin, Madison, WI (United States); Dale, Bruce [Michigan State Univ., East Lansing, MI (United States); Balan, Venkatesh [Michigan State Univ., East Lansing, MI (United States)

    2016-05-05

    One of the key challenges facing lignin conversion to fuels and chemicals is related to the level of carbohydrate and ash impurities found in extracted lignin. Structural modifications of lignin may also occur as a result of biomass pretreatment and harsh lignin extraction protocols. Extractive-Ammonia (EA) is a new pretreatment technology that uses liquid ammonia to cleave lignin–carbohydrate complexes, decrystallize cellulose, solubilize lignin, and selectively extract lignin from lignocellulosic biomass, enabling better utilization of both lignin and carbohydrate components in a biorefinery. The EA-based biorefinery produces two different lignin-rich streams, with different properties, that could potentially be upgraded to fuels and chemicals using green processes. Here, a water/ethanol-based fractionation method was developed to enrich the ammonia-soluble extractives, resulting in a major product stream containing 92% lignin. Detailed characterization of the various streams resulting from EA treatment, including compositional analysis, structural characterization by nuclear magnetic resonance (NMR) spectrometry, elemental analysis, molecular weight analysis, and thermo-gravimetric analysis provides a broad evaluation of the EA-derived lignin product stream structures and properties, assessing their potential for commercial applications. In conclusion, EA-derived lignins preserve much of lignin's functionality, including the sensitive β-aryl ether units. Furthermore, we observed nitrogen incorporation in the lignin-rich streams, notably due to the presence of hydroxycinnamoyl amides formed during ammonia pretreatment.

  6. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism

    Science.gov (United States)

    Yuta Miki; Rebecca Pogni; Sandra Acebes; Fatima Lucas; Elena Fernandez-Fueyo; Maria Camilla Baratto; Maria I. Fernandez; Vivian De Los Rios; Francisco J. Ruiz-duenas; Adalgisa Sinicropi; Riccardo Basosi; Kenneth E. Hammel; Victor Guallar; Angel T. Martinez

    2013-01-01

    LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2...

  7. Esterification and characterization of lignin aiming the synthesis of polymeric composite

    International Nuclear Information System (INIS)

    Victor, Priscilla A.; Machado, Fabricio

    2015-01-01

    Lignin is a natural polymer derived from lignocellulosic materials with high availability, presenting a huge potential for production of new materials. Due to its complex macromolecular structure, and its low compatibility with styrene, eucalyptus wood-extracted lignin method was esterified with methacrylic anhydride - exhibiting a yield of 64% - in order to ensure homogeneity in the organic phase into the reaction medium. The evaluation of both the natural and esterified lignin through infrared (IR) spectroscopy showed a decrease of the hydroxyl band, characteristic of natural lignin (3200-3400 cm"-"1) and an increase of the characteristic ester band (1720 to 1740 cm"-"1). According to nuclear magnetic resonance ("1H NMR) analysis on esterified lignin, intense peaks were observed in the range from 1.7 to 2.05 ppm (-CH_3) and 5.4 ppm to 6.2 ppm (=CH_2), related to methacrylic anhydride. According to the thermogravimetric analysis (TGA), the esterified lignin showed a decrease in its thermal stability when compared to natural lignin, exhibiting two main weight losses between 200 °C and 300 °C and in the interval from 550 °C to 800 °C. Comparatively, the esterified lignin also displayed an increase in its glass transition temperature (Tg = 98 °C) for, when compared to natural lignin, whose Tg value was determined to be equal to 91 °C. (author)

  8. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw.

    Science.gov (United States)

    Hu, Zhen; Zhang, Guifen; Muhammad, Ali; Samad, Rana Abdul; Wang, Youmei; Walton, Jonathan D; He, Yuqing; Peng, Liangcai; Wang, Lingqiang

    2018-02-26

    Lignin content and composition are crucial factors affecting biomass digestibility. Exploring the genetic loci simultaneously affecting lignin-relevant traits and biomass digestibility is a precondition for lignin genetic manipulation towards energy crop breeding. In this study, a high-throughput platform was employed to assay the lignin content, lignin composition and biomass enzymatic digestibility of a rice recombinant inbred line population. Correlation analysis indicated that the absolute content of lignin monomers rather than lignin content had negative effects on biomass saccharification, whereas the relative content of p-hydroxyphenyl unit and the molar ratio of p-hydroxyphenyl unit to guaiacyl unit exhibited positive roles. Eight QTL clusters were identified and four of them affecting both lignin composition and biomass digestibility. The additive effects of clustered QTL revealed consistent relationships between lignin-relevant traits and biomass digestibility. Pyramiding rice lines containing the above four positive alleles for increasing biomass digestibility were selected and showed comparable lignin content, decreased syringyl or guaiacyl unit and increased molar percentage of p-hydroxyphenyl unit, the molar ratio of p-hydroxyphenyl unit to guaiacyl unit and sugar releases. More importantly, the lodging resistance and eating/cooking quality of pyramiding lines were not sacrificed, indicating the QTL information could be applied to select desirable energy rice lines.

  9. Dissolved Vanillin as Tracer for Estuarine Lignin Conversion

    Science.gov (United States)

    Edelkraut, F.

    1996-12-01

    Lignin is produced only by vascular plants and therefore can be used as a tracer for terrestrial organic carbon input to the estuarine and marine environments. Lignin measurements have been done by analyses of the oxidation products such as vanillin or 4-hydroxybenzaldehyde. In the Elbe Estuary, free dissolved vanillin was analysed in order to test whether such measurements yield information on terrestrial carbon inputs into the Estuary and on the vanillin derived from lignin oxidation. In the period 1990-1992, concentrations of dissolved vanillin in the Elbe ranged from 0 to 60 μ g l -1(mean: 8 μg l -1). Higher values were found in areas of increased microbial activity such as the turbidity zone and the river mouth where the water chemistry is influenced by large tidal flats. No correlation was found between dissolved vanillin and suspended matter concentrations, although lignin is normally associated with suspended particulate matter, nor was a covariance seen between dissolved vanillin and the terrestrial carbon inputs into the Estuary. Apparently, biological conversion of lignin was faster than the transport processes, and local sources were more dominant for the vanillin concentration than riverine sources. The dissolved vanillin turnover was fast and, consequently, a significant amount of lignin may be converted within an estuary. In sediments from the Estuary, the concentrations of dissolved vanillin were similar to those found in the water phase and showed no clear vertical profile. The sediment is unlikely to be the source for vanillin.

  10. Abundance and reactivity of dibenzodioxocins in softwood lignin.

    Science.gov (United States)

    Argyropoulos, Dimitris S; Jurasek, Lubo; Kristofová, Lívia; Xia, Zhicheng; Sun, Yujun; Palus, Ernest

    2002-02-13

    To define the abundance and comprehend the reactivity of dibenzodioxocins in lignin, model compound studies, specific degradation experiments on milled wood lignin, and molecular modeling calculations have been performed. Quantitative (31)P NMR measurements of the increase of biphenolic hydroxyl groups formed after a series of alkaline degradations in the presence of hydrosulfide anions (kraft conditions) showed the presence of 3.7 dibenzodioxocin rings/100 C9 units in milled wood lignin. The DFRC degradation protocol (Derivatization Followed by Reductive Cleavage) was chosen as an independent means to estimate their abundance. Initial experiments with a dibenzodioxocin model compound, trans-6,7-dihydro-7-(4-hydroxy-3-methoxyphenyl)-4,9-dimethoxy-2,11-dipropyldibenzo[e,g][1,4]dioxocin-6-ylmethanol, showed that it is not cleaved under DFRC conditions, but rather it isomerizes into a cyclic oxepine structure. Steric effects precluded this isomerization from occurring when DFRC was applied to milled wood lignin. Instead, monoacetylated biphenolic moieties were released and quantified by (31)P NMR, at 4.3 dibenzodioxocin rings/100 C9 units. The dibenzodioxocin content in residual lignins isolated from kraft pulps delignified to various degrees showed that during pulp delignification, the initial rate of dibenzodioxocin removal was considerably greater than the cleavage rate of arylglycerol-beta-aryl ether bonds. The activation energy for the degradation of dibenzodioxocins under kraft conditions in milled wood lignin was 96 +/- 9 kJ/mol, similar to that of arylglycerol-beta-aryl ether bond cleavage.

  11. Lignin depletion enhances the digestibility of cellulose in cultured xylem cells.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    Full Text Available Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis

  12. Fast Pyrolysis of Four Lignins from Different Isolation Processes Using Py-GC/MS

    OpenAIRE

    Lin, Xiaona; Sui, Shujuan; Tan, Shun; Pittman, Charles; Sun, Jianping; Zhang, Zhijun

    2015-01-01

    Pyrolysis is a promising approach that is being investigated to convert lignin into higher value products including biofuels and phenolic chemicals. In this study, fast pyrolysis of four types of lignin, including milled Amur linden wood lignin (MWL), enzymatic hydrolysis corn stover lignin (EHL), wheat straw alkali lignin (AL) and wheat straw sulfonate lignin (SL), were performed using pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS). Thermogravimetric analysis (TGA) showed that the...

  13. Lignins : natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids

    Science.gov (United States)

    John Ralph; Knut Lundquist; Gosta Brunow; Fachuang Lu; Hoon Kim; Paul F. Schatz; Jane M. Marita; Ronald D. Hatfield; Sally A. Ralph; Jorgen Holst Christensen; Wout Boerjan

    2004-01-01

    Lignins are complex natural polymers resulting from oxidative coupling of, primarily, 4-hydroxyphenylpropanoids. An understanding of their nature is evolving as a result of detailed structural studies, recently aided by the availability of lignin-biosynthetic-pathway mutants and transgenics. The currently accepted theory is that the lignin polymer is formed by...

  14. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut

    International Nuclear Information System (INIS)

    Pasti, M.B.; Crawford, D.L.; Pometto, A.L. III; Nuti, M.P.

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [ 14 C]lignin- and [ 14 C]cellulose-labeled phloem of Abies concolor to 14 CO 2 and 14 C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14 CO 2 evolution from [ 14 C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures. On the basis of an increase of specific peroxidase activity in the presence of lignocellulose in the medium, the actinomycetes could be placed into the same three groups

  15. Lignin Modification for Biopolymer/Conjugated Polymer Hybrids as Renewable Energy Storage Materials.

    Science.gov (United States)

    Nilsson, Ting Yang; Wagner, Michal; Inganäs, Olle

    2015-12-07

    Lignin derivatives, which arise as waste products from the pulp and paper industry and are mainly used for heating, can be used as charge storage materials. The charge storage function is a result of the quinone groups formed in the lignin derivative. Herein, we modified lignins to enhance the density of such quinone groups by covalently linking monolignols and quinones through phenolation. The extra guaiacyl, syringyl, and hydroquinone groups introduced by phenolation of kraft lignin derivatives were monitored by (31) P nuclear magnetic resonance and size exclusion chromatography. Electropolymerization in ethylene glycol/tetraethylammonium tosylate electrolyte was used to synthesize the kraft lignin/polypyrrole hybrid films. These modifications changed the phenolic content of the kraft lignin with attachment of hydroquinone units yielding the highest specific capacity (around 70 mA h g(-1) ). The modification of softwood and hardwood lignin derivatives yielded 50 % and 23 % higher charge capacity than the original lignin, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Lignin transformations and reactivity upon ozonation in aqueous media

    Science.gov (United States)

    Khudoshin, A. G.; Mitrofanova, A. N.; Lunin, V. V.

    2012-03-01

    The reaction of ozone with lignin in aqueous acidic solutions is investigated. The Danckwerst model is used to describe the kinetics of gas/liquid processes occurring in a bubble reactor. The efficient ozonation rate of a soluble lignin analog, sodium lignosulfate, is determined. The main lines of the reaction between ozone and lignin are revealed on the basis of kinetic analysis results and IR and UV spectroscopy data.

  17. Towards development of lignin reinforced elastomeric compounds with reduced energy dissipation

    Science.gov (United States)

    Bahl, Kushal

    This research deals with development of lignin as reinforcing filler for elastomeric compounds. Lignins are naturally abundant and cost competitive wood derivatives possessing strong mechanical properties and offering reactive functional groups on their surfaces. The presence of the functional groups imparts polarity to the lignin molecules and makes them incompatible with non-polar elastomers. Also, the large particle size of lignin does not produce desired mechanical reinforcement. The present study deals with solving the outstanding issues associated with the use of lignin as fillers for polymeric compounds. In addition, the work specifically focuses on producing rubber compounds with reduced energy dissipation via partial replacement of carbon black with lignin. The first part of this study is devoted to suppression of the polarity of lignin and achievement of compatibility with rubber matrix via modification of lignosulfonates (LS) with cyclohexylamine (CA). CA reduces the polarity of lignin via interactions originating from proton transfer and hydrogen bonding. X-ray Photoelectron Spectroscopy (XPS) confirms the attachment of CA on the surfaces of lignin. The mechanical properties of rubber compounds increase substantially along with improvement in cure properties and increase in crosslink density in the presence of LS particles modified with CA. The tensile strength and storage modulus show an increase by 45% and 41% respectively. The values of the 100% modulus and elongation at break also improve by 35% and 60% respectively. The second part of this study exploits the non-covalent interactions between lignin and carbon black (CB) for the design of novel hybrid filler particles exhibiting lower energy loss in rubber compounds. The hybrid fillers offer unique morphology consisting of coating layers of lignin on carbon black particle aggregates. It is found that such coating layers are formed due to pi-pi interactions between lignin and carbon black. Raman

  18. Naturally Occurring Compound Can Protect Pines from the Southern Pine Beetle

    Science.gov (United States)

    B.L. Strom; R.A. Goyer; J.L. Hayes

    1995-01-01

    The southern pine beetle (SPB), Dendroctonus frontalis, is the most destructive insect pest of southern pine forests. This tiny insect, smaller than a grain of rice, is responsible for killing pine timber worth millions of dollars on a periodic basis in Louisiana.

  19. Combustion properties of kraft black liquors; Ligniinifraktion vaikutus mustalipeaen poltto-ominaisuuksiin

    Energy Technology Data Exchange (ETDEWEB)

    Alen, R.; Rantanen, K.; Ekman, J.; Malkavaara, P. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The aim of this investigation was to find relationships between the structure of the dissolved lignin and the combustion properties (pyrolysis time, char burning time, and swelling) of softwood and hardwood kraft black liquors. In this conjunction, pine and birch chips, as well as their two mixtures (the mass ratios of pine chips to birch chips were 80:20 and 60:40), were delignified by conventional kraft pulping. In each cook series, a liquor sample was withdrawn at certain time intervals to obtain liquor samples with different chemical composition. The black liquors obtained were analyzed with respect to the content of lignin and `lignin monomers`, but also the molecular-mass distribution and the mass average molecular mass of lignin were made. In addition, the dissolved lignin was characterized by NMR spectroscopy and elemental analysis. Further data on the chemical structures of lignin in black liquors were obtained by identifying various degradation products formed from this material during oxidative (CuO oxidation) and pyrolytic treatments. Several correlations between the `structural parameters` of the dissolved lignin and the combustion properties of black liquor were found. These correlations were significant especially in the case of pine cook. The results revealed many findings which are, together with the earlier data, useful for a better understanding of the thermochemical behavior of different kraft black liquors during combustion in a recovery furnace. (author)

  20. Electron-beam mediated dry distillation of lignin

    International Nuclear Information System (INIS)

    Chulkov, V.N.; Bludenko, A.V.; Ponomarev, A.V.

    2007-01-01

    Radiation heating was studied for its application in dry distillation of lignin under high absorbed-dose irradiation with no supplementary heating device used. Commercial preparation Polyphepan containing lignin (90 wt.%) and cellulose (10 wt.%), dried at 102 deg C, was used. The test samples were exposed to 8 MeV electron beams on U-003 linear accelerator under atmospheric pressure, with dose rates of 3.6 and 4.8 kGy/s. It is demonstrated that an increased yield of liquid products of dry lignin distillation is observed under conditions studied with a two-fold decrease in energy consumption due to more favorable heating conditions and intensification of free-radical reactions [ru

  1. Membrane Technology for the Recovery of Lignin: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Humpert

    2016-09-01

    Full Text Available Utilization of renewable resources is becoming increasingly important, and only sustainable processes that convert such resources into useful products can achieve environmentally beneficial economic growth. Wastewater from the pulp and paper industry is an unutilized resource offering the potential to recover valuable products such as lignin, pigments, and water [1]. The recovery of lignin is particularly important because it has many applications, and membrane technology has been investigated as the basis of innovative recovery solutions. The concentration of lignin can be increased from 62 to 285 g∙L−1 using membranes and the recovered lignin is extremely pure. Membrane technology is also scalable and adaptable to different waste liquors from the pulp and paper industry.

  2. Membrane Technology for the Recovery of Lignin: A Review

    Science.gov (United States)

    Humpert, Daniel; Ebrahimi, Mehrdad; Czermak, Peter

    2016-01-01

    Utilization of renewable resources is becoming increasingly important, and only sustainable processes that convert such resources into useful products can achieve environmentally beneficial economic growth. Wastewater from the pulp and paper industry is an unutilized resource offering the potential to recover valuable products such as lignin, pigments, and water [1]. The recovery of lignin is particularly important because it has many applications, and membrane technology has been investigated as the basis of innovative recovery solutions. The concentration of lignin can be increased from 62 to 285 g∙L−1 using membranes and the recovered lignin is extremely pure. Membrane technology is also scalable and adaptable to different waste liquors from the pulp and paper industry. PMID:27608047

  3. Structural Changes of Lignin from Wheat Straw by Steam Explosion and Ethanol Pretreatments

    Directory of Open Access Journals (Sweden)

    Cheng Pan

    2016-06-01

    Full Text Available Effects of the pretreatment of wheat straw by steam explosion and ethanol were evaluated relative to the structural changes of lignin from the pretreated pulp. The lignin from steam explosion pulp (LS, lignin from steam blasting residual liquid (LL, lignin from ethanol pretreatment pulp (LE, lignin from black liquor (LB, and lignin from wheat straw (LW were separated, and the structural characteristics of the lignin fractions were compared based on analyses of Fourier transform-infrared, ultraviolet, thermogravimetric, and 1H and 13C nuclear magnetic resonance spectra. The proportions of the three structural units in all lignin fractions clearly changed during the pretreatment process because of inter-conversion reactions. The conjugated structure of lignin was destroyed in the pretreatment process and was also affected by the alkali extraction process. The alcoholic hydroxyl links on the aliphatic side chain were partly transformed into carbonyl groups during ethanol pretreatment. Demethoxylation occurred in all lignin fractions during the ethanol pretreatment and steam explosion process. The thermal stability of the LB fraction was relatively high because of the condensation reaction.

  4. Ecosystem, location, and climate effects on foliar secondary metabolites of lodgepole pine populations from central British Columbia.

    Science.gov (United States)

    Wallis, Christopher M; Huber, Dezene P W; Lewis, Kathy J

    2011-06-01

    Lodgepole pines, Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson, are encountering increased abiotic stress and pest activity due to recent increases in temperature and changes in precipitation throughout their range. This tree species counters these threats by producing secondary metabolites, including phenolics and terpenoids. We examined foliar levels of lignin, soluble phenolics, monoterpenoids, sesquiterpenoids, and diterpenoids in 12 stands in British Columbia, Canada. We used these data to assess associations among foliar secondary metabolite levels and ecosystem, geographic, and climatic variables. Regressions were also performed to observe which combinations of variables best explained secondary metabolite variance. Stands of P. c. latifolia in the Coastal Western Hemlock and Interior Cedar/Hemlock biogeoclimatic zones had consistently greater foliar levels of almost all measured secondary metabolites than did other stands. Lignin was present in greater amounts in Boreal White/Black Spruce ecosystem (i.e., northern) stands than in southern stands, suggesting a role for this metabolite in pine survival in the boreal forest. Attempts to develop regression models with geographic and climatic variables to explain foliar secondary metabolite levels resulted in multiple models with similar predictive capability. Since foliar secondary metabolite levels appeared to vary most between stand ecosystem types and not as much due to geographic and climatic variables, metabolic profiles appeared best matched to the stress levels within local environments. It is unknown if differences in secondary metabolite levels are the result of genetic adaptation or phenotypic plasticity, but results from this and other studies suggest that both are important. These results are interpreted in light of ongoing efforts to assist in the migration of certain populations of P. c. latifolia northward in an effort to counter predicted effects of climate change.

  5. Identification of the primary mechanism for fungal lignin degradation. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Many lignin-degrading fungi appear to lack lignin peroxidase (LiP), an enzyme generally thought important for fungal ligninolysis. The authors are working with one of these fungi, Ceriporiopsis subvermispora, an aggressive white-rotter that selectively removes lignin from wood. During this project period, they have obtained the following principal results: new polymeric lignin model compounds were developed to assist in the elucidation of fungal ligninolytic mechanisms; experiments with one of the polymeric lignin models showed that C. subvermispora cultures which express no detectable LiP activity are nevertheless able to degrade nonphenolic lignin structures, this result is significant because LiPs were previously considered essential for fungal attack on these recalcitrant structures, which constitute about 90% of lignin; manganese peroxidases (MnPs), which C. subvermispora does produce, catalyze the peroxidation of unsaturated fatty acids to give fatty acid hydroperoxides, fatty acid hydroperoxides are also used by MnP as oxidants (in place of H{sub 2}O{sub 2}) that support the MnP catalytic cycle, these results indicate that MnP turnover in the presence of unsaturated lipids generates reactive lipid oxyradicals that could act as oxidant of other molecules; MnP-mediated lipid peroxidation results in the co-oxidative cleavage of nonphenolic lignin structures, the MnP/lipid peroxidation system may therefore provide C. subvermispora and other LiP-negative fungi with a mechanism to degrade the principal structures of lignin.

  6. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation.

    Science.gov (United States)

    Wu, Yi-Rui; He, Jianzhong

    2013-07-01

    Two sediment-free microbial consortia (LI3 and LP3) were established to depolymerize lignin under anaerobic conditions. During depolymerizing high molecular weight lignin to low molecular weight molecules, the two cultures produced biomethane up to 151.7 and 113.0 mL g(-1) total lignin. Furthermore, LI3 and LP3 could also utilize the biomass - oil palm empty fruit bunch fiber (OPEFB) to produce 190.6 and 195.6 mL methaneg(-1) total lignin in OPEFB, and at the same time improve the bioavailability of lignocellulosic matters for further enzymatic hydrolysis. The microbial community analysis by denature gradient gel electrophoresis (DGGE) and the high-density 16S rDNA gene microarray (PhyloChip) exhibited that Methanomethylovorans sp. (LI3) and Methanoculleus sp. (LP3) were the main methanogens present, and phylum Firmicutes and Bacteroidetes were mainly involved in the lignin depolymerization. The established microbial consortia with both lignin depolymerization and biomethane production provide profound application on the environmental friendly pretreatment of lignocellulosic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Lignin biopolymer based triboelectric nanogenerators

    Science.gov (United States)

    Bao, Yukai; Wang, Ruoxing; Lu, Yunmei; Wu, Wenzhuo

    2017-07-01

    Ongoing research in triboelectric nanogenerators (TENGs) focuses on increasing power generation, but obstacles concerning economical and eco-friendly utilization of TENGs continue to prevail. Being the second most abundant biopolymer on earth, lignin offers a valuable opportunity for low-cost TENG applications in biomedical devices, benefitting from its biodegradability and biocompatibility. Here, we develop for the first time a lignin biopolymer based TENGs for harvesting mechanical energy in the environment, which shows great potential for self-powered biomedical devices among other applications and opens doors to new technologies that utilize otherwise wasted materials for economically feasible and ecologically friendly production of energy devices.

  8. The graft polymers from different species of lignin and acrylic acid: synthesis and mechanism study.

    Science.gov (United States)

    Ye, De zhan; Jiang, Li; Ma, Chao; Zhang, Ming-hua; Zhang, Xi

    2014-02-01

    The influence of lignin species on the grafting mechanism of lignosulfonate (from eucalyptus and pine, recorded as HLS and SLS, respectively) with acrylic acid (AA) was investigated. The graft polymers were confirmed by the absorption of carbonyl groups in the FTIR spectra. The decreasing phenolic group's content (Ph-OH) is not only due to its participation as grafting site but also to the negative effect of initiator. In the initial period (0-60 min), HLS and SLS both accelerate the polymerization of AA. Additionally, Ph-OH group's content is proportional to product yield (Y%), monomer conversion (C%) and grafting efficiency (GE%), strongly indicating that it acts as active center. Nevertheless, compared with HLS, Y% and C% in SLS grafting system are lower though it has higher Ph-OH group's content, which is due to the quinonoid structure formed by the self-conjugated of phenoxy radical in Guaiacyl unit. Finally, the lignosulfonate grafting mechanism was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Lignin nanotubes as vehicles for gene delivery into human cells.

    Science.gov (United States)

    Ten, Elena; Ling, Chen; Wang, Yuan; Srivastava, Arun; Dempere, Luisa Amelia; Vermerris, Wilfred

    2014-01-13

    Lignin nanotubes (LNTs) synthesized from the aromatic plant cell wall polymer lignin in a sacrificial alumina membrane template have as useful features their flexibility, ease of functionalization due to the availability of many functional groups, label-free detection by autofluorescence, and customizable optical properties. In this report we show that the physicochemical properties of LNTs can be varied over a wide range to match requirements for specific applications by using lignin with different subunit composition, a function of plant species and genotype, and by choosing the lignin isolation method (thioglycolic acid, phosphoric acid, sulfuric acid (Klason), sodium hydroxide lignin), which influences the size and reactivity of the lignin fragments. Cytotoxicity studies with human HeLa cells showed that concentrations of up to 90 mg/mL are tolerated, which is a 10-fold higher concentration than observed for single- or multiwalled carbon nanotubes (CNTs). Confocal microscopy imaging revealed that all LNT formulations enter HeLa cells without auxiliary agents and that LNTs made from NaOH-lignin penetrate the cell nucleus. We further show that DNA can adsorb to LNTs. Consequently, exposure of HeLa cells to LNTs coated with DNA encoding the green fluorescent protein (GFP) leads to transfection and expression of GFP. The highest transfection efficiency was obtained with LNTs made from NaOH-lignin due to a combination of high DNA binding capacity and DNA delivery directly into the nucleus. These combined features of LNTs make LNTs attractive as smart delivery vehicles of DNA without the cytotoxicity associated with CNTs or the immunogenicity of viral vectors.

  10. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    NARCIS (Netherlands)

    Richter, Alexander P.; Bharti, Bhuvnesh; Armstrong, Hinton B.; Brown, Joseph S.; Plemmons, Dayne; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2016-01-01

    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and

  11. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Science.gov (United States)

    2012-01-01

    Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of

  12. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Directory of Open Access Journals (Sweden)

    Li Muyang

    2012-06-01

    Full Text Available Abstract Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses

  13. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion.

    Science.gov (United States)

    Liu, Zhi-Hua; Xie, Shangxian; Lin, Furong; Jin, Mingjie; Yuan, Joshua S

    2018-01-01

    Lignin valorization has recently been considered to be an essential process for sustainable and cost-effective biorefineries. Lignin represents a potential new feedstock for value-added products. Oleaginous bacteria such as Rhodococcus opacus can produce intracellular lipids from biodegradation of aromatic substrates. These lipids can be used for biofuel production, which can potentially replace petroleum-derived chemicals. However, the low reactivity of lignin produced from pretreatment and the underdeveloped fermentation technology hindered lignin bioconversion to lipids. In this study, combinatorial pretreatment with an optimized fermentation strategy was evaluated to improve lignin valorization into lipids using R. opacus PD630. As opposed to single pretreatment, combinatorial pretreatment produced a 12.8-75.6% higher lipid concentration in fermentation using lignin as the carbon source. Gas chromatography-mass spectrometry analysis showed that combinatorial pretreatment released more aromatic monomers, which could be more readily utilized by lignin-degrading strains. Three detoxification strategies were used to remove potential inhibitors produced from pretreatment. After heating detoxification of the lignin stream, the lipid concentration further increased by 2.9-9.7%. Different fermentation strategies were evaluated in scale-up lipid fermentation using a 2.0-l fermenter. With laccase treatment of the lignin stream produced from combinatorial pretreatment, the highest cell dry weight and lipid concentration were 10.1 and 1.83 g/l, respectively, in fed-batch fermentation, with a total soluble substrate concentration of 40 g/l. The improvement of the lipid fermentation performance may have resulted from lignin depolymerization by the combinatorial pretreatment and laccase treatment, reduced inhibition effects by fed-batch fermentation, adequate oxygen supply, and an accurate pH control in the fermenter. Overall, these results demonstrate that combinatorial

  14. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  15. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  16. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    Science.gov (United States)

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  17. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana).

    Science.gov (United States)

    Hall, Dawn E; Yuen, Macaire M S; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet K; Li, Maria; Henderson, Hannah; Arango-Velez, Adriana; Liao, Nancy Y; Docking, Roderick T; Chan, Simon K; Cooke, Janice Ek; Breuil, Colette; Jones, Steven Jm; Keeling, Christopher I; Bohlmann, Jörg

    2013-05-16

    The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.

  18. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading.

    Science.gov (United States)

    Schutyser, W; Renders, T; Van den Bosch, S; Koelewijn, S-F; Beckham, G T; Sels, B F

    2018-02-05

    In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the

  19. Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schutyser, Wouter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Renders, Tom [KU Leuven; Van den Bosch, Sander [KU Leuven; Koelewijn, Steven-Friso [KU Leuven; Sels, Bert F. [KU Leuven

    2018-01-01

    In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the

  20. Dual role of lignin in plant litter decomposition in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Ballaré, Carlos L

    2010-03-09

    Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems.

  1. Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles

    Science.gov (United States)

    J.C. Nod; F.L. Hastings; A.S. Jones

    1990-01-01

    An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...

  2. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  3. Thermochemical Conversion of Lignin for Fuels and Chemicals: A Review Conversion thermochimique de la lignine en carburants et produits chimiques : une revue

    Directory of Open Access Journals (Sweden)

    Joffres B.

    2013-10-01

    Full Text Available Lignin is one of the biomass components potentially usable as renewable resource to produce fuels or chemicals. After separation from the lignocellulosic matrix, this macromolecule is nowadays essentially valorized by combustion in paper mills. If second generation ethanol is produced in the future from lignocellulosic biomass, some increasing reserves of lignin will be available in addition to the ones coming from the paper industry. The main thermochemical ways such as pyrolysis, solvolysis, hydrothermal conversion and hydroconversion considered for the valorization of the lignin are reviewed in this article. La lignine est une des composantes de la biomasse lignocellulosique potentiellement valorisable comme ressource renouvelable pour la production de carburants ou de produits chimiques. Après séparation de la matrice lignocellulosique, cette macromolécule est de nos jours essentiellement utilisée comme combustible dans l’industrie papetière. Outre cette filière papetière, la production d’éthanol de seconde génération à partir de la cellulose aura comme conséquence la mise à disponibilité d’encore plus grandes quantités de lignine. De nouvelles applications pourront donc être proposées pour l’utilisation de cette bio-ressource. Les différentes voies thermochimiques : pyrolyse, solvolyse, conversion hydrothermale et hydroconversion envisagées pour la valorisation de la lignine sont décrites dans cet article.

  4. Modified lignin: Preparation and use in reversible gel via Diels-Alder reaction.

    Science.gov (United States)

    Zhou, Wanpeng; Zhang, Hui; Chen, Fangeng

    2018-02-01

    In this study, popular soda lignin was modified with either furan or maleimide ring, and the modified lignins were subjected to reversible Diels-Alder reaction. A new process was proposed to prepare the functionalized lignin. A long chain was introduced to the hydroxyl groups of lignin, and then either the furan or maleimide ring was added to the other end of the chain. The test results confirmed that either the furan ring or the maleimide ring was bound to lignin. Furan- and maleimide-functionalized lignins were also combined to generate crosslinking via Diels-Alder [4+2] cycloaddition reaction. Under appropriate conditions, the formation of a gel was identified, which reverted to liquid state after retro Diels-Alder reaction upon heating at 120°C. This study reveals the significant versatility and potential of the developed strategy for the utilization of lignin-based recyclable networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. EFFECT OF LIGNIN CONTENT ON ENZYMATIC HYDROLYSIS OF FURFURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Jianxin Jiang

    2011-02-01

    Full Text Available The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM.

  6. Tunable Thermosetting Epoxies Based on Fractionated and Well-Characterized Lignins.

    Science.gov (United States)

    Gioia, Claudio; Lo Re, Giada; Lawoko, Martin; Berglund, Lars

    2018-03-21

    Here we report the synthesis of thermosetting resins from low molar mass Kraft lignin fractions of high functionality, refined by solvent extraction. Such fractions were fully characterized by 31 P NMR, 2D-HSQC NMR, SEC, and DSC in order to obtain a detailed description of the structures. Reactive oxirane moieties were introduced on the lignin backbone under mild reaction conditions and quantified by simple 1 H NMR analysis. The modified fractions were chemically cross-linked with a flexible polyether diamine ( M n ≈ 2000), in order to obtain epoxy thermosets. Epoxies from different lignin fractions, studied by DSC, DMA, tensile tests, and SEM, demonstrated substantial differences in terms of thermo-mechanical properties. For the first time, strong relationships between lignin structures and epoxy properties could be demonstrated. The suggested approach provides unprecedented possibilities to tune network structure and properties of thermosets based on real lignin fractions, rather than model compounds.

  7. Fast Pyrolysis of Lignin Using a Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sárossy, Zsuzsa

    2013-01-01

    Fast pyrolysis of lignin from an ethanol plant was investigated on a lab scale pyrolysis centrifuge reactor (PCR) with respect to pyrolysis temperature, reactor gas residence time, and feed rate. A maximal organic oil yield of 34 wt % dry basis (db) (bio-oil yield of 43 wt % db) is obtained...... at temperatures of 500−550 °C, reactor gas residence time of 0.8 s, and feed rate of 5.6 g/min. Gas chromatography mass spectrometry and size-exclusion chromatography were used to characterize the Chemical properties of the lignin oils. Acetic acid, levoglucosan, guaiacol, syringols, and p-vinylguaiacol are found...... components and molecular mass distribution of the lignin oils. The obtained lignin oil has a very different components composition when compared to a beech wood oil....

  8. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fast Pyrolysis of Four Lignins from Different Isolation Processes Using Py-GC/MS

    Directory of Open Access Journals (Sweden)

    Xiaona Lin

    2015-06-01

    Full Text Available Pyrolysis is a promising approach that is being investigated to convert lignin into higher value products including biofuels and phenolic chemicals. In this study, fast pyrolysis of four types of lignin, including milled Amur linden wood lignin (MWL, enzymatic hydrolysis corn stover lignin (EHL, wheat straw alkali lignin (AL and wheat straw sulfonate lignin (SL, were performed using pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS. Thermogravimetric analysis (TGA showed that the four lignins exhibited widely different thermolysis behaviors. The four lignins had similar functional groups according to the FTIR analysis. Syringyl, guaiacyl and p-hydroxyphenylpropane structural units were broken down during pyrolysis. Fast pyrolysis product distributions from the four lignins depended strongly on the lignin origin and isolation process. Phenols were the most abundant pyrolysis products from MWL, EHL and AL. However, SL produced a large number of furan compounds and sulfur compounds originating from kraft pulping. The effects of pyrolysis temperature and time on the product distributions from corn stover EHL were also studied. At 350 °C, EHL pyrolysis mainly produced acids and alcohols, while phenols became the main products at higher temperature. No obvious influence of pyrolysis time was observed on EHL pyrolysis product distributions.

  10. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer

    Science.gov (United States)

    Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T.; Ruiz-Dueñas, Francisco Javier

    2015-01-01

    Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn2+, and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan. PMID:26240145

  11. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2016-01-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...

  12. Structure variations of carbonizing lignin

    International Nuclear Information System (INIS)

    Otani, C.; Polidoro, H.A.; Otani, S.; Craievich, A.F.

    1984-01-01

    The studied lignin is a by-product of the process of ethanol production from eucaliptus. It was heat-treated under inert atmosphere conditions at increasing temperatures from 300C up to 2400C. The structural variations were studied by wide-angle X-ray diffraction, small-angle X-ray scattering and infrared absorption spectroscopy. The bulk and 'real' density of the compacted materials have also been determined as functions of the final temperature. These experimental results enabled us to establish a mechanism of structure variation based on the formation of a turbostratic graphite-like and porous structure within the initially amorphous lignin matrix. (Author) [pt

  13. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose

    OpenAIRE

    Li, Yanfei; Sun, Zongping; Ge, Xiaoyan; Zhang, Junhua

    2016-01-01

    Background Considerable works have been reported concerning the obstruction of enzymatic hydrolysis efficiency by lignin. However, there is a lack of information about the influence of lignin on the adsorption of cellulases on cellulose, along with the hydrolytic activity of the cellulases adsorbed on lignin. In addition, limited discovery has been reported about the influence of additives on cellulase desorption from lignin and lignocellulosic materials. In this work, the effects of lignin o...

  14. Effect of a long-term afforestation of pine in a beech domain in NE-Spain revealed by analytical pyrolysis (Py-GC/MS)

    Science.gov (United States)

    Girona García, Antonio; Badía-Villas, David; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara; González-Pérez, José Antonio

    2015-04-01

    both beech (18.30-10.09%) and pine (15.81-10.01%) soils; nevertheless the relative abundance of aromatic compounds content is higher in beech mineral horizons Bhs (41.96%) and C (30.91%) than in those under pine (11.43% and 13.04% for Bhs and C respectively). Polycyclic aromatic hydrocarbons (PAHs) were only observed in the mineral soil horizons showing similar relative abundances ranging from 0.61-6.63% in beech and 0.96-3.05% in pine soils. The highest PAHs relative abundance was found in the Bhs horizon under beech. This may indicate the occurrence of fire events in the area and its translocation and accumulation by leaching from top soil in the spodic horizon. Differences in the relative abundances of lignin derived pyrolysis products (Methoxyphenols) were mainly observed in the O-layers whereas the relative abundances were similar for the mineral horizons that ranged from 1.49-4.31% in beech and 1.42-4.67% in pine. Lignin relative abundance is much higher in OH beech layer (31.88%) than in pine OH layer (14.99%) whereas similar relative contents were found in OL and OF layers ranging from 26.21-27-12% and 20.22-25.92% in beech and pine respectively. In the soil developed under beech the polysaccharide derived moieties show a relative content increase along the profile from a 9.86% in OL layer to a 29.86% in E horizon followed by a remarkable decrease in the Bhs (4.86%) and C (11.22%). Besides, the polysaccharide relative abundance in the soil under pine show a similar trend ranging from 12-23% to 30.65% but the decrease in Bhs and C horizons was found less marked (26.83% and 24.12% respectively). (1) Carceller F, Vallejo VR (1996). Influencia de la vegetación en los procesos de podsolización en los suelos de la Sierra del Moncayo (Zaragoza). Geogaceta 20: 1127-1130. (2) De la Rosa JM, Faria SR, Varela ME, Knicker H, González-Vila FJ, González-Pérez JA, Keizer J (2012). Characterization of wildfire effects on soil organic matter using analytical pyrolysis

  15. Ponderosa pine ecosystems

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    Ponderosa pine is a wide-ranging conifer occurring throughout the United States, southern Canada, and northern Mexico. Since the 1800s, ponderosa pine forests have fueled the economies of the West. In western North America, ponderosa pine grows predominantly in the moist and dry forests. In the Black Hills of South Dakota and the southern portion of its range, the...

  16. Unravelling Some of the Key Transformations in the Hydrothermal Liquefaction of Lignin.

    Science.gov (United States)

    Lui, Matthew Y; Chan, Bun; Yuen, Alexander K L; Masters, Anthony F; Montoya, Alejandro; Maschmeyer, Thomas

    2017-05-22

    Using both experimental and computational methods, focusing on intermediates and model compounds, some of the main features of the reaction mechanisms that operate during the hydrothermal processing of lignin were elucidated. Key reaction pathways and their connection to different structural features of lignin were proposed. Under neutral conditions, subcritical water was demonstrated to act as a bifunctional acid/base catalyst for the dissection of lignin structures. In a complex web of mutually dependent interactions, guaiacyl units within lignin were shown to significantly affect overall lignin reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modification of lignin for the production of new compounded materials.

    Science.gov (United States)

    Hüttermann, A; Mai, C; Kharazipour, A

    2001-05-01

    The cell walls of woody plants are compounded materials made by in situ polymerization of a polyphenolic matrix (lignin) into a web of fibers (cellulose), a process that is catalysed by polyphenoloxidases (laccases) or peroxidases. The first attempt to transform the basic strategy of this natural process for use in human craftsmanship was the ancient lacquer method. The sap of the lacquer tree (Rhus verniciflua) contains large amounts of a phenol (urushiol), a polysaccharide and the enzyme laccase. This oil-in-water emulsion solidifies in the presence of oxygen. The Chinese began using this phenomenon for the production of highly creative artwork more than 6,000 years ago. It was the first example of an isolated enzyme being used as a catalyst to create an artificial plastic compound. In order to apply this process to the production of products on an industrial scale, an inexpensive phenol must be used, which is transferred by an enzyme to active radicals that react with different components to form a compounded material. At present, the following approaches have been studied: (1) In situ polymerization of lignin for the production of particle boards. Adhesive cure is based on the oxidative polymerization of lignin using phenoloxidases (laccase) as radical donors. This lignin-based bio-adhesive can be applied under conventional pressing conditions. The resulting particle boards meet German performance standards. By this process, 80% of the petrochemical binders in the wood-composite industry can be replaced by materials from renewable resources. (2) Enzymatic copolymerization of lignin and alkenes. In the presence of organic hydroperoxides, laccase catalyses the reaction between lignin and olefins. Detailed studies on the reaction between lignin and acrylate monomers showed that chemo-enzymatic copolymerization offers the possibility to produce defined lignin-acrylate copolymers. The system allows control of the molecular weights of the products in a way that has

  18. Aktivitas Ligninolitik Beberapa Jamur Aphyllophorales dan Kemampuannya Mendegradasi Lignin pada Lindi Hitam

    Directory of Open Access Journals (Sweden)

    Atria Martina

    2016-03-01

    Full Text Available Fourteen local isolate Aphyllophorales fungi were screened their ligninolytic activity. The isolate with highest ligninolytic activity was tested it capability to degrade kraft blackliquor lignin. The biodegradability of black liquor is low because the presence of lignin and lignin derivative in the wastewater. These fungal were screened for ligninolytic activity by decolorization on solid mediacontaining RBBR dye. The ability of the fungal strains to biodegrade kraft black liquor lignin was performed by submerged fermentation condition with agitation and incubation time as treatment. The solid culture result in 3 isolates had ligninolytic activity and Ganoderma sp.BTA1 gave the highest ligninolytic. Agitation and incubation time influenced ligninbiodegradation of blackliquor significantly. Optimum condition for lignin biodegradation was at 200 rpm during 25 days with lignin reduction was 45,786%.

  19. Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids

    International Nuclear Information System (INIS)

    Moghaddam, Lalehvash; Zhang, Zhanying; Wellard, R. Mark; Bartley, John P.; O'Hara, Ian M.; Doherty, William O.S.

    2014-01-01

    Sugarcane bagasse pretreatment processes using acidified aqueous ethylene glycol (EG) and ionic liquids (ILs) have been reported recently. In this study, recovery of lignins from these processes was conducted, as well as determination of their physico-chemical properties. The amount of lignins recovered from 1-butyl-3-methylimidazolium chloride ([bmim]Cl) with HCl as a catalyst and [bmim][CH 3 SO 3 ] was ∼42%, and ∼35%–36% by EG with HCl or H 2 SO 4 as a catalyst, respectively. The isolated lignins were characterised using wet chemistry, spectroscopy and thermogravimetry analysis (TGA), and the results compared to soda lignin from NaOH pretreatment of bagasse. The IL and EG lignins contained no or trace amounts of carbohydrates, slightly lower hydrogen content but slightly higher oxygen contents than soda lignin. The IL and EG lignins contained more C-3 and C-5 reactive sites for Mannich reaction and had more p-hydroxypheny propane unit structures than soda lignin. Two-dimensional heteronuclear single quantum coherence (2D HSQC) nuclear magnetic resonance (NMR) identified the major substructural units in the lignins, and allowed differences among them to be studied. As EG lignins were extracted in very reactive environment, intermediate enol ethers were formed and led to cleavage reactions which were not apparent in the other lignins. 31 P NMR and infra-red spectroscopy results showed that IL and EG lignins had lower total hydroxyl content than soda lignin, probably indicating that a higher degree of self-polymerisation occurred during bagasse pretreatment, despite the use of lower temperature and shorter reaction time. On the basis of the salient features of these lignins, potential applications were proposed. - Highlights: • Lignins were recovered from ethylene glycol (EG) and ionic liquid (IL) processes. • IL and EG lignins contained no or trace amounts of carbohydrates. • IL and EG lignin had more C-3 and C-5 sites for Mannich reaction than soda

  20. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.

    Science.gov (United States)

    Saariaho, Anna-Maija; Jääskeläinen, Anna-Stiina; Nuopponen, Mari; Vuorinen, Tapani

    2003-01-01

    Raman spectroscopy of wood and lignin samples is preferably carried out in the near-infrared region because lignin produces an intense laser-induced fluorescence background at visible excitation wavelengths. However, excitation of aromatic and conjugated lignin structures with deep ultra violet (UV) light gives resonance-enhanced Raman signals while the overlapping fluorescence is eliminated. In this study, ultra violet resonance Raman (UVRR) spectroscopy was used to define characteristic vibration bands of model compounds of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures at three excitation wavelengths (229, 244, and 257 nm). The intensities of each band, relative to the intensity of the aromatic vibration band at 1600 cm-1, were defined and the most suitable excitation wavelength was suggested for each structure. p-Hydroxyphenyl structures showed intensive characteristic bands at 1217-1214 and 1179-1167 cm-1 with excitation at 244 nm, whereas the bands of guaiacyl structures were more intensive with 257 nm excitation. Most intensive characteristic bands of guaiacyl structures were found at 1289-1279, 1187-1185, 1158-1155, and 791-704 cm-1. Syringyl structures had almost identical spectra with 244 and 257 nm excitations with characteristic bands at 1514-1506, 1333-1330, and 981-962 cm-1. The characteristic bands of the three structural units were also found from the compression wood, softwood, and hardwood samples, indicating that UVRR spectroscopy can be applied for the determination of chemical structures of lignin.

  1. A ponderosa pine-lodgepole pine spacing study in central Oregon: results after 20 years.

    Science.gov (United States)

    K.W. Seidel

    1989-01-01

    The growth response after 20 years from an initial spacing study established in a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex Loud.) plantation was measured in central Oregon. The study was designed to compare the growth rates of pure ponderosa pine, pure lodgepole pine, and a...

  2. Fiber and lignin analysis in concentrate, forage, and feces

    DEFF Research Database (Denmark)

    Hindrichsen, I.K.; Kreuzer, M.; Madsen, Jørgen

    2006-01-01

    Hemicelluloses, cellulose, and lignin contents of contrasting feeds, with emphasis on concentrate ingredients and complete concentrates, were analyzed using the Van Soest detergent procedure (analyzing neutral detergent fiber, acid detergent fiber, and acid detergent lignin) and the enzymatic...

  3. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.

    Science.gov (United States)

    Pasti, M B; Pometto, A L; Nuti, M P; Crawford, D L

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [14C]lignin- and [14C]cellulose-labeled phloem of Abies concolor to 14CO2 and 14C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). The actinomycetes were all Streptomyces strains and could be placed into three groups, including a group of five strains that appear superior to S. viridosporus T7A in lignocellulose-degrading ability, three strains of approximately equal ability, and three strains of lesser ability. Strain A2 was clearly the superior and most effective lignocellulose decomposer of those tested. Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14CO2 evolution from [14C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167628

  4. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives.

    Science.gov (United States)

    Nadif, A; Hunkeler, D; Käuper, P

    2002-08-01

    Sulfur-free lignin, obtained through the acid precipitation of black liquor from the soda pulping process, has been tested as water reducer in mortar. It has also been compared to existing commercial additives such as naphthalene sulfonates and lignosulfonates. The ash content and sugar content of these lignins are low in comparison to lignosulfonates, conferring on them higher purity. A procedure for small scale testing derived from the industrial norms SN-EN196 and ASTM (Designation C230-90) is presented. Specifically, all the sulfur-free lignins tested improved the flow of the mortar. Selected flax lignins performed better than lignosulfonates though still less than naphthalene sulfonates. Furthermore, certain hemp lignins gave comparable results to the lignosulfonates. Overall, the straw lignin prepared herein is comparable in performance to commercially available lignins, such as Organocell, Alcell and Curan 100. The plant from which the lignin was isolated, and the process of the pulp mill are the primary influences on the performance of the lignin.

  5. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  6. Coupling and reactions of 5- hydroxyconiferyl alcohol in lignin formation

    Science.gov (United States)

    Thomas Elder; Laura Berstis; Gregg T. Beckham; Michael F. Crowley

    2016-01-01

    The catechol alcohols, caffeyl and 5-hydroxyconiferyl alcohol, may be incorporated into lignin either naturally or through genetic manipulation. Due to the presence of o-OH groups, these compounds form benzodioxanes, a departure from the interunit connections found in lignins derived from the cinnamyl alcohols. In nature, lignins composed of caffeyl and 5-...

  7. Survey of Lignin-Structure Changes and Depolymerization during Ionic Liquid Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Tanmoy; Isern, Nancy G.; Sun, Jian; Wang, Eileen; Hull, Sarah; Cort, John R.; Simmons, Blake A.; Singh, Seema

    2017-09-26

    A detailed study of chemical changes in lignin structure during the ionic liquid (IL) pretreatment process is not only pivotal for understanding and overcoming biomass recalcitrance during IL pretreatment, but also is necessary for designing new routes for lignin valorization. Chemical changes in lignin were systematically studied as a function of pretreatment temperature, time and type of IL used. Kraft lignin was used as the lignin source and common pretreatment conditions were employed using three different ILs of varying chemical structure in terms of acidic or basic character. The chemical changes in the lignin structure due to IL pretreatment processes were monitored using 1H-13C HSQC NMR, 31P NMR, elemental analysis, GPC, FT-IR, and the depolymerized products were analyzed using GC-MS. Although pretreatment in acidic IL, triethylammonium hydrogensulfate ([TEA][HSO4]) results in maximum decrease in β-aryl ether bond, maximum dehydration and recondensation pathways were also evident, with the net process showing a minimum decrease in the molecular weight of regenerated lignin. However, 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) pretreatment yields a smaller decrease in the β-aryl ether content along with minimum evidence of recondensation, resulting in the maximum decrease in the molecular weight. Cholinium lysinate ([Ch][Lys]) pretreatment shows an intermediate result, with moderate depolymerization, dehydration and recondensation observed. The depolymerization products after IL pretreatment are found to be a function of the pretreatment temperature and the specific chemical nature of the IL used. At higher pretreatment temperature, [Ch][Lys] pretreatment yields guaiacol, [TEA][HSO4] yields guaiacylacetone, and [C2C1Im][OAc] yields both guaiacol and guaiacylacetone as major products. These results clearly indicate that the changes in lignin structure as well as the depolymerized product profile depend on the pretreatment conditions and the nature

  8. Synthesis of novel ionic liquids from lignin-derived compounds

    Science.gov (United States)

    Socha, Aaron; Singh, Seema; Simmons, Blake A.; Bergeron, Maxime

    2017-09-19

    Methods and compositions are provided for synthesizing ionic liquids from lignin derived compounds comprising: contacting a starting material comprising lignin with a depolymerization agent to depolymerize the lignin and form a mixture of aldehyde containing compounds; contacting the mixture of aldehyde containing compounds with an amine under conditions suitable to convert the mixture of aldehyde containing compounds to a mixture of amine containing compounds; and contacting the mixture of amine containing compounds with an acid under conditions suitable to form an ammonium salt, thereby preparing the ionic liquid.

  9. Investigations on a global environment improving technology utilizing biological functions. 2. Structuring a ligno-bioprocess; Seibutsu kino wo riyoshita chikyu kankyo kaizen gijutsu ni kansuru chosa. 2. Riguno bio process no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Discussions were given to reserve global environments on reducing dependence on fossil resources and more effectively utilizing wood resources. Economically utilizable amount of wastes from lumbering factories reaches about five million tons annually. Discussions were made on a ligno-bioprocess that uses these wastes. The current quantitative production efficiency of cellulase by means of bacterial breeding is very high. A problem is production of ligninolytic enzymes, to which application of the recombinant DNA method is indispensable. Combination of steam explosion with biological decomposition or the organosolv process is an effective method for lignin decomposition. Decomposition of cellulose by using the ultra critical water method is worth noticing. With respect to hemicellulose utilization, production of cellulose derivatives, biodegradable polymers and oligosaccharides would be conceivable by means of esterification and etherification. Vanillinic acid, adhesives, resins and lignin-based polymer materials could be manufactured from lignin. Material cost for these products accounts for about 35% of the product price, thus making the lignochemicals promising commercial products. 301 refs., 71 figs., 39 tabs.

  10. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco.

    Science.gov (United States)

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N; Marshall, David; Hancock, Robert D; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-12-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.

  11. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction

    International Nuclear Information System (INIS)

    Wen, Jia-Long; Sun, Shao-Long; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2014-01-01

    Highlights: • The terrified bamboo has a high energy yield of 85.7% and a HHV of 20.13 MJ/kg. • The structural changes of hemicelluloses, cellulose, and lignin were investigated. • First study on the structural transformations of lignin during torrefaction. • The mechanism of structural changes of lignin has been proposed. - Abstract: Torrefaction is an efficient method to recover energy from biomass. Herein, the characteristics (mass yield, energy yield, physical, and chemical characteristics) of torrefied bamboo at diverse temperatures (200–300 °C) were firstly evaluated by elemental analysis, XRD, and CP–MAS 13 C NMR methodologies. Under an optimal condition the terrified bamboo has a relative high energy yield of 85.7% and a HHV of 20.13 MJ/kg. The chemical and structural transformations of lignin induced by thermal treatment were thoroughly investigated by FT-IR and solution-state NMR techniques (quantitative 13 C NMR, 2D-HSQC, and 31 P-NMR methodologies). The results highlighted the chemical reactions of the native bamboo lignins towards severe torrefaction treatments occurred, such as depolymerization, demethoxylation, bond cleavage, and condensation reactions. NMR results indicated that aryl-ether bonds (β-O-4) and p-coumaric ester in lignin were cleaved during the torrefaction process at mild conditions. The severe treatments of bamboo (275 °C and 300 °C) induced a dramatic enrichment in lignin content together with the almost complete disappearance of β-O-4, β-β, and β-5 linkages. Further analysis of the molecular weight of milled wood lignin (MWL) indicated that the average molecular weights of “torrefied MWL” were lower than those of control MWL. It is believed that understanding of the reactivity and chemical transformations of lignin during torrefaction will contribute to the integrated torrefaction mechanism

  12. Lignin conversion to high-octane fuel additives

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.; Zmierczak, W.; Kadangode, S. [University of Utah, Salt Lake City (United States); Chornet, E.; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States)

    1999-07-01

    Continuing previous studies on the conversion of lignin to reformulated gasoline compositions, new lignin upgrading processes were developed that allow preferential production of specific high-octane fuel additives of two distinct types: (1) C{sub 7}-C{sub 10} alkylbenzenes; and (2) aryl methyl ethers, where aryl mostly = phenyl, 2-methylphenyl, 4-methylphenyl, and dimethylphenyl. Process (1) comprises base-catalyzed depolymerization (BCD) and simultaneous partial ({approx} 50%) deoxygenation of lignin at 270 - 290{sup o}C, in the presence of supercritical methanol as reaction medium, followed by exhaustive hydrodeoxygenation and attendant mild hydrocracking of the BCD product with sulfided catalysts to yield C{sub 8}-C{sub 10} alkylbenzenes as main products. Process (2) involves mild BCD at 250 - 270{sup o}C with preservation of the lignin oxygen, followed by selective C-C hydrocracking with solid superacid catalysts. This method preferentially yields a mixture of alkylated phenols, which upon acid-catalyzed etherification with methanol are converted into corresponding aryl methyl ethers (see above) possessing blending octane numbers in the range of 142-166. In a recent extension of this work, a greatly advantageous procedure for performing the BCD stage of processes (1) and (2) in water as reaction medium was developed. (author)

  13. Influence of lignin on biochemical methane potential of biomass for biogas production

    DEFF Research Database (Denmark)

    Triolo, Jin Mi; Sommer, Sven G.; Møller, Henrik Bjarne

    2011-01-01

    model for these two biomass groups. Validation of the combined model was carried out using datasets from the literature. This study showed that lignin was not degraded during anaerobic digestion. Furthermore, lignin concentration in organic materials was the strongest predictor of BMP for all...... the biomass groups. The square of the sample correlation coefficient (R2) from the BMP versus lignin was 0.908 (P lignin concentration could be used to predict...

  14. Bio-based polyurethane prepared from Kraft lignin and modified castor oil

    Directory of Open Access Journals (Sweden)

    L. B. Tavares

    2016-11-01

    Full Text Available Current challenges highlight the need for polymer research using renewable natural sources as a substitute for petroleum-based polymers. The use of polyols obtained from renewable sources combined with the reuse of industrial residues such as lignin is an important agent in this process. Different compositions of polyurethane-type materials were prepared by combining technical Kraft lignin (TKL with castor oil (CO or modified castor oil (MCO1 and MCO2 to increase their reactivity towards diphenylmethane diisocyanate (MDI. The results indicate that lignin increases the glass transition temperature, the crosslinking density and improves the ultimate stress especially for those prepared from MCO2 and 30% lignin content from 8.2 MPa (lignin free to 23.5 MPa. Scanning electron microscopy (SEM micrographs of rupture surface after uniaxial tensile tests show ductile-to-brittle transition. The results show the possibility to develop polyurethane-type materials, varying technical grade Kraft lignin content, which cover a wide range of mechanical properties (from large elastic/low Young modulus to brittle/high Young modulus polyurethanes.

  15. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers.

    Science.gov (United States)

    Rencoret, Jorge; Ralph, John; Marques, Gisela; Gutiérrez, Ana; Martínez, Ángel T; del Río, José C

    2013-03-13

    The structure of the isolated milled "wood" lignin from coconut coir has been characterized using different analytical methods, including Py-GC/MS, 2D NMR, DFRC, and thioacidolysis. The analyses demonstrated that it is a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin, with a predominance of G units (S/G ratio 0.23) and considerable amounts of associated p-hydroxybenzoates. Two-dimensional NMR indicated that the main substructures present in this lignin include β-O-4' alkyl aryl ethers followed by phenylcoumarans and resinols. Two-dimensional NMR spectra also indicated that coir lignin is partially acylated at the γ-carbon of the side chain with p-hydroxybenzoates and acetates. DFRC analysis showed that acetates preferentially acylate the γ-OH in S rather than in G units. Despite coir lignin's being highly enriched in G-units, thioacidolysis indicated that β-β' resinol structures are mostly derived from sinapyl alcohol. Finally, we find evidence that the flavone tricin is incorporated into the coconut coir lignin, as has been recently noted for various grasses.

  16. Establishing Longleaf Pine Seedlings Under a Loblolly Pine Canopy (User’s Guide)

    Science.gov (United States)

    2017-02-01

    longleaf pine forests (Figure 1) for the diverse values they provide. These forests afford abundant recreational opportunities like hiking , bird...combined herbicide-fertilizer treatments that might benefit planted longleaf pine seedlings after planting. In addition to measuring longleaf pine

  17. Lignin: an adhesive raw material of the future or waste of research energy?

    OpenAIRE

    Hemmilä, Venla; Trischler, Johann; Sandberg, Dick

    2013-01-01

    Lignin has been studied as an adhesive for more than 100 years, but there are only a few industrial applications. The reason for the current interest is the high availability and low price of lignin. Lignin is the main by-product of paper pulping processes and is typically burned as fuel. Being the natural glue in plants and having a phenolic nature makes lignins an attractive replacement for wood adhesives.An adhesive system for wood composites consisting mainly of lignin has yet to be devel...

  18. Development and Validation of Marker-Aided Selection Methods for Wood Property Traits in Loblolly Pine and Hybrid Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, G.A.

    2001-06-20

    Wood properties influence pulp and paper quality. Certainly, overall pulp yields are directly related to the cellulose content, changes in hemicellulose content are associated with changes in pulp cohesiveness, and pulping efficiency is related to lignin content. Despite the importance of wood properties on product quality, little progress has been made in improving such traits because current methods of assessing wood and fiber characteristics are time-consuming, expensive, and often imprecise. Genetic improvement of wood and fiber properties has been further hampered by the large size of trees, delayed reproductive maturity and long harvest cycles. Recent developments in molecular genetics will help overcome the physical, economic and biological constraints in assessing and improving wood properties. Genetic maps consisting of numerous molecular markers are now available for loblolly pine and hybrid poplar. Such markers/maps may be used as part of a marker-aided selection and breeding effort or to expedite the isolation and characterization of genes and/or promoters that directly control wood properties. The objectives of this project are: (1) to apply new and rapid analytical techniques for assessing component wood properties to segregating F2 progeny populations of loblolly pine and hybrid poplar, (2) to map quantitative trait loci and identify molecular markers associated with wood properties in each of the above species and (3) to validate marker-aided selection methods for wood properties in loblolly pine and hybrid poplar.

  19. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant.

    Science.gov (United States)

    Bonawitz, Nicholas D; Kim, Jeong Im; Tobimatsu, Yuki; Ciesielski, Peter N; Anderson, Nickolas A; Ximenes, Eduardo; Maeda, Junko; Ralph, John; Donohoe, Bryon S; Ladisch, Michael; Chapple, Clint

    2014-05-15

    Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.

  20. Metal Triflates for the Production of Aromatics from Lignin

    NARCIS (Netherlands)

    Deuss, Peter J.; Lahive, Ciaran W.; Lancefield, Christopher S.; Westwood, Nicholas J.; Kamer, Paul C. J.; Barta, Katalin; de Vries, Johannes G.

    2016-01-01

    The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology

  1. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes.

    Science.gov (United States)

    Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J

    2017-06-01

    Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.

  2. [Phenolic foam prepared by lignin from a steam-explosion derived biorefinery of corn stalk].

    Science.gov (United States)

    Wang, Guanhua; Chen, Hongzhang

    2014-06-01

    To increase the integral economic effectiveness, biorefineries of lignocellulosic materials should not only utilize carbohydrates hydrolyzed from cellulose and hemicellulose but also use lignin. We used steam-exploded corn stalk as raw materials and optimized the temperature and alkali concentration in the lignin extraction process to obtain lignin liquor with higher yield and purity. Then the concentrated lignin liquor was used directly to substitute phenol for phenolic foam preparation and the performances of phenolic foam were characterized by microscopic structure analysis, FTIR, compression strength and thermal conductivity detection. The results indicated that, when steam-exploded corn stalk was extracted at 120 degrees C for 2 h by 1% NaOH with a solid to liquid ratio of 1:10, the extraction yield of lignin was 79.67%. The phenolic foam prepared from the concentrated lignin liquor showed higher apparent density and compression strength with the increasing substitution rate of lignin liquor. However, there were not significant differences of thermal conductivity and flame retardant properties by the addition of lignin, which meant that the phenolic foam substituted by lignin liquor was approved for commercial application. This study, which uses alkali-extracted lignin liquor directly for phenolic foam preparation, provides a relatively simple way for utilization of lignin and finally increases the overall commercial operability ofa lignocellulosic biorefinery derived by steam explosion.

  3. Nano-lignin filled natural rubber composites: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    C. Jiang

    2013-05-01

    Full Text Available This paper presents a novel strategy to prepare nano-lignin and its composites with natural rubber. The nanolignin was ontained by fabricating colloidal lignin-Poly (diallyldimethylammonium chloride (PDADMAC complexes (LPCs via self-assembly technology. The characteristics of LPCs were investigated by zeta potential, dynamic light scattering (DLS, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR and ultraviolet – visible (UV-vis absorption measurements. The results indicated that PDADMAC intensively interacted with lignin by cation-π and π-π interactions, and lignin particles were stable in aqueous solution with an average particle size less than 100 nm. LPCs accelerated the vulcanization of NR/LPCs nanocomposites. Morphological studies and Dynamic mechanical analysis (DMA showed the homogeneous dispersion of LPCs in the NR matrix and the strong interfacial adhesion between them. The nanoscale dispersion of LPCs significantly enhanced the thermal stability and mechanical properties of NR/LPCs nanocomposites.

  4. Sugar pine and its hybrids

    Science.gov (United States)

    W. B. Critchfield; B. B. Kinloch

    1986-01-01

    Unlike most white pines, sugar pine (Pinus lambertiana) is severely restricted in its ability to hybridize with other species. It has not been successfully crossed with any other North American white pine, nor with those Eurasian white pines it most closely resembles. Crosses with the dissimilar P. koraiensis and P....

  5. System analyse cellulose ethanol in combines - Combustion characterisation of lignin from cellulose based ethanol production; Systemanalys foer cellulosabaserad etanol i kombinat - Foerbraenningskarakterisering av lignin fraan cellulosabaserad etanolproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Lindstedt, Jan; Wingren, Anders; Magnusson, Staffan; Wiinikka, Henrik; Westbom, Urban; Lidman, Marcus; Groenberg, Carola

    2012-02-15

    In this work 3 different hydrolysed lignin fractions produced from Sugarcane Bagasse, Spruce and Wheat Straw were burned in a 150 kW horizontal furnace equipped with a powder burner to assess the combustion behaviour of hydrolysed lignin fuels. The combustion experiments showed that the feeding properties of all three lignin fractions were better compared to ordinary wood powder

  6. Lignin as a Binder Material for Eco-Friendly Li-Ion Batteries

    Science.gov (United States)

    Lu, Huiran; Cornell, Ann; Alvarado, Fernando; Behm, Mårten; Leijonmarck, Simon; Li, Jiebing; Tomani, Per; Lindbergh, Göran

    2016-01-01

    The industrial lignin used here is a byproduct from Kraft pulp mills, extracted from black liquor. Since lignin is inexpensive, abundant and renewable, its utilization has attracted more and more attention. In this work, lignin was used for the first time as binder material for LiFePO4 positive and graphite negative electrodes in Li-ion batteries. A procedure for pretreatment of lignin, where low-molecular fractions were removed by leaching, was necessary to obtain good battery performance. The lignin was analyzed for molecular mass distribution and thermal behavior prior to and after the pretreatment. Electrodes containing active material, conductive particles and lignin were cast on metal foils, acting as current collectors and characterized using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge cycles. Good reversible capacities were obtained, 148 mAh·g−1 for the positive electrode and 305 mAh·g−1 for the negative electrode. Fairly good rate capabilities were found for both the positive electrode with 117 mAh·g−1 and the negative electrode with 160 mAh·g−1 at 1C. Low ohmic resistance also indicated good binder functionality. The results show that lignin is a promising candidate as binder material for electrodes in eco-friendly Li-ion batteries. PMID:28773252

  7. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment.

    Science.gov (United States)

    Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J; Yang, Haitao

    2018-01-01

    Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H , respectively). Three different lignin fractions were extracted using ethanol, followed by p -dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively). Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weights for the other two lignin fractions were similar. 31 P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p -hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β- O -4 linkages with small amounts of β-5 and β-β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L 1  >  L 3  >  L 2 for the low recalcitrance poplar and H 1  >  H 2  >  H 3 for the high recalcitrance poplar. Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption

  8. Silvicultural treatments for converting loblolly pine to longleaf pine dominance: Effects on planted longleaf pine seedlings

    Science.gov (United States)

    Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp

    2012-01-01

    A field study was installed to test silvicultural treatments for establishing longleaf pine (Pinus palustris Mill) in loblolly pine (P. taeda L.) stands. Harvesting was used to create seven canopy treatments, four with uniformly distributed canopies at different residual basal areas [Control (16.2 m2/ha),...

  9. Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.

    Science.gov (United States)

    Fan, Liangliang; Zhang, Yaning; Liu, Shiyu; Zhou, Nan; Chen, Paul; Cheng, Yanling; Addy, Min; Lu, Qian; Omar, Muhammad Mubashar; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Anderson, Erik; Peng, Peng; Lei, Hanwu; Ruan, Roger

    2017-10-01

    Effects of process parameters on the yield and chemical profile of bio-oil from fast pyrolysis of lignin and the processes for lignin-derived bio-oil upgrading were reviewed. Various process parameters including pyrolysis temperature, reactor types, lignin characteristics, residence time, and feeding rate were discussed and the optimal parameter conditions for improved bio-oil yield and quality were concluded. In terms of lignin-derived bio-oil upgrading, three routes including pretreatment of lignin, catalytic upgrading, and co-pyrolysis of hydrogen-rich materials have been investigated. Zeolite cracking and hydrodeoxygenation (HDO) treatment are two main methods for catalytic upgrading of lignin-derived bio-oil. Factors affecting zeolite activity and the main zeolite catalytic mechanisms for lignin conversion were analyzed. Noble metal-based catalysts and metal sulfide catalysts are normally used as the HDO catalysts and the conversion mechanisms associated with a series of reactions have been proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds.

    Science.gov (United States)

    Rahmanpour, Rahman; Rea, Dean; Jamshidi, Shirin; Fülöp, Vilmos; Bugg, Timothy D H

    2016-03-15

    A Dyp-type peroxidase enzyme from thermophilic cellulose degrader Thermobifida fusca (TfuDyP) was investigated for catalytic ability towards lignin oxidation. TfuDyP was characterised kinetically against a range of phenolic substrates, and a compound I reaction intermediate was observed via pre-steady state kinetic analysis at λmax 404 nm. TfuDyP showed reactivity towards Kraft lignin, and was found to oxidise a β-aryl ether lignin model compound, forming an oxidised dimer. A crystal structure of TfuDyP was determined, to 1.8 Å resolution, which was found to contain a diatomic oxygen ligand bound to the heme centre, positioned close to active site residues Asp-203 and Arg-315. The structure contains two channels providing access to the heme cofactor for organic substrates and hydrogen peroxide. Site-directed mutant D203A showed no activity towards phenolic substrates, but reduced activity towards ABTS, while mutant R315Q showed no activity towards phenolic substrates, nor ABTS. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  12. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi; Davis, Ryan Wesley

    2014-09-01

    Lignin is a potentially plentiful source of renewable organics, with %7E50Mtons/yr produced by the pulp/paper industry and 200-300 Mtons/yr projected production by a US biofuels industry. This industry must process approximately 1 billion tons of biomass to meet the US Renewable Fuel goals. However, there are currently no efficient processes for converting lignin to value-added chemicals and drop-in fuels. Lignin is therefore an opportunity for production of valuable renewable chemicals, but presents staggering technical and economic challenges due to the quantities of material involved and the strong chemical bonds comprising this polymer. Aggressive chemistries and high temperatures are required to degrade lignin without catalysts. Moreover, chemical non-uniformity among lignins leads to complex product mixtures that tend to repolymerize. Conventional petrochemical approaches (pyrolysis, catalytic cracking, gasification) are energy intensive (400-800 degC), require complicated separations, and remove valuable chemical functionality. Low-temperature (25-200 degC) alternatives are clearly desirable, but enzymes are thermally fragile and incompatible with liquid organic compounds, making them impractical for large-scale biorefining. Alternatively, homogeneous catalysts, such as recently developed vanadium complexes, must be separated from product mixtures, while many heterogenous catalysts involve costly noble metals. The objective of this project is to demonstrate proof of concept that an entirely new class of biomimetic, efficient, and industrially robust synthetic catalysts based on nanoporous Metal- Organic Frameworks (MOFs) can be developed. Although catalytic MOFs are known, catalysis of bond cleavage reactions needed for lignin degradation is completely unexplored. Thus, fundamental research is required that industry and most sponsoring agencies are currently unwilling to undertake. We introduce MOFs infiltrated with titanium and nickel species as catalysts

  13. Effect of Lignin-Containing Media on Growth of Medicinal Mushroom Lentinula Edodes

    Directory of Open Access Journals (Sweden)

    Matjuškova Nataļja

    2017-04-01

    Full Text Available The effect of lignocellulose and lignin on growth of mycelium of mushroom Lentinula edodes and laccase activity in cultivation medium was studied. It was shown that cultivation of L. edodes mycelium in liquid nutrient medium with addition of 0.25-0.5% of kraft lignin increased mycelium biomass yield approximately two times compared with reference conditions without addition of lignin. Similar results were obtained in experiments in which 0.5% lignocellulose that remained after obtaining furfural, and 0.5% lignin that remained after obtaining furfural and glucose from wheat straw, were added to the nutrient medium. This effect was greater in the conditions of cultivation with good aeration, compared with static culture. Laccase activity in medium increased after addition of wheat straw lignocellulose or lignin only in the case of mycelium cultivation with aeration. In the case of mushroom cultivation on solid nutrient medium, addition of wheat straw lignocellulose and lignin promoted growth of mycelium only during the first 7 days of cultivation.

  14. Final Report: Investigation of Catalytic Pathways for Lignin Breakdown into Monomers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gluckstein, Jeffrey A [ORNL; Hu, Michael Z. [ORNL; Kidder, Michelle [ORNL; McFarlane, Joanna [ORNL; Narula, Chaitanya Kumar [ORNL; Sturgeon, Matthew R [ORNL

    2010-12-01

    Lignin is a biopolymer that comprises up to 35% of woody biomass by dry weight. It is currently underutilized compared to cellulose and hemicellulose, the other two primary components of woody biomass. Lignin has an irregular structure of methoxylated aromatic groups linked by a suite of ether and alkyl bonds which makes it difficult to degrade selectively. However, the aromatic components of lignin also make it promising as a base material for the production of aromatic fuel additives and cyclic chemical feed stocks such as styrene, benzene, and cyclohexanol. Our laboratory research focused on three methods to selectively cleave and deoxygenate purified lignin under mild conditions: acidolysis, hydrogenation and electrocatalysis. (1) Acidolysis was undertaken in CH2Cl2 at room temperature. (2) Hydrogenation was carried out by dissolving lignin and a rhodium catalyst in 1:1 water:methoxyethanol under a 1 atm H2 environment. (3) Electrocatalysis of lignin involved reacting electrically generated hydrogen atoms at a catalytic palladium cathode with lignin dissolved in a solution of aqueous methanol. In all of the experiments, the lignin degradation products were identified and quantified by gas chromatography mass spectroscopy and flame ionization detection. Yields were low, but this may have reflected the difficulty in recovering the various fractions after conversion. The homogeneous hydrogenation of lignin showed fragmentation into monomers, while the electrocatalytic hydrogenation showed production of polyaromatic hydrocarbons and substituted benzenes. In addition to the experiments, promising pathways for the conversion of lignin were assessed. Three conversion methods were compared based on their material and energy inputs and proposed improvements using better catalyst and process technology. A variety of areas were noted as needing further experimental and theoretical effort to increase the feasibility of lignin conversion to fuels.

  15. Developing lignin-based bio-nanofibers by centrifugal spinning technique.

    Science.gov (United States)

    Stojanovska, Elena; Kurtulus, Mustafa; Abdelgawad, Abdelrahman; Candan, Zeki; Kilic, Ali

    2018-07-01

    Lignin-based nanofibers were produced via centrifugal spinning from lignin-thermoplastic polyurethane polymer blends. The most suitable process parameters were chosen by optimization of the rotational speed, nozzle diameter and spinneret-to-collector distance using different blend ratios of the two polymers at different total polymer concentrations. The basic characteristics of polymer solutions were enlightened by their viscosity and surface tension. The morphology of the fibers produced was characterized by SEM, while their thermal properties by DSC and TG analysis. Multiply regression was used to determine the parameters that have higher impact on the fiber diameter. It was possible to obtain thermally stable lignin/polyurethane nanofibers with diameters below 500nm. From the aspect of spinnability, 1:1 lignin/TPU contents were shown to be more feasible. On the other side, the most suitable processing parameters were found to be angular velocity of 8500rpm for nozzles of 0.5mm diameter and working distance of 30cm. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Analysis of syringyl and guaiacyl (S/G) ratio in lignin

    CSIR Research Space (South Africa)

    Spark, A

    2006-12-01

    Full Text Available the acidolysis products – Validate the new S/G ratio method Why are S/G ratios important? Gives a good indication of the reactivity of the lignin Experimental design Literature Review Establishing Acidolysis conditions Permanganate oxidation Lignin...-method is quick • Permanganate oxidation-method is slow but it is the standard method used at present • Nitrobenzene Oxidation, Pyrolysis, Cupric Oxidation and Thioacidolysis Lignin can be broken down to syringyl and guaiacyl subunits: OCH3 OH OCH3 OH...

  17. Methylene blue as a lignin surrogate in manganese peroxidase reaction systems.

    Science.gov (United States)

    Goby, Jeffrey D; Penner, Michael H; Lajoie, Curtis A; Kelly, Christine J

    2017-11-15

    Manganese peroxidase (MnP) is associated with lignin degradation and is thus relevant to lignocellulosic-utilization technologies. Technological applications require reaction mixture optimization. A surrogate substrate can facilitate this if its susceptibility to degradation is easily monitored and mirrors that of lignin. The dye methylene blue (MB) was evaluated in these respects as a surrogate substrate by testing its reactivity in reaction mixtures containing relevant redox mediators (dicarboxylic acids, fatty acids). Relative rates of MB degradation were compared to available literature reports of lignin degradation under similar conditions, and suggest that MB can be a useful lignin surrogate in MnP systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Thermoplastic Starch with Improved Properties by Blending with Lignins and Radiation Processing

    International Nuclear Information System (INIS)

    Zheng, D.; Baumberger, S.; Mikus, P.-Y.; Dole, P.; Soulestin, J.; Lacrampe, M.F.; Bliard, C.; Coqueret, X.

    2010-01-01

    The biorefinery of lignocellulosics generates lignin-rich fractions, which are potential source of phenolic molecules for chemistry and polymeric materials. The LignoStarch project aims at using such fractions to functionalize a renewable material, starch, by a clean physical grafting process, without any synthetic chemical additive and without any by-products generation. Previous works suggested that the low-molar-mass phenolic compounds in technical lignin could be responsible for the reactivity of starch-lignin system under electron-beam irradiation and improvement of starch water resistance. A particular aspect of the current studies is focused on the role of lignin phenolic extractables and to investigate the different chemical and physical parameters likely to impact the surface properties of starch-lignin materials. (author)

  19. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine.

    Science.gov (United States)

    Paasela, Tanja; Lim, Kean-Jin; Pietiäinen, Milla; Teeri, Teemu H

    2017-06-01

    Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Impact of Different Lignin Fractions on Saccharification Efficiency in Diverse Species of the Bioenergy Crop Miscanthus

    NARCIS (Netherlands)

    Weijde, van der Tim; Torres Salvador, Andres Francisco; Dolstra, Oene; Dechesne, Annemarie; Visser, Richard G.F.; Trindade, Luisa M.

    2016-01-01

    Lignin is a key factor limiting saccharification of lignocellulosic feedstocks. In this comparative study, various lignin methods—including acetyl bromide lignin (ABL), acid detergent lignin (ADL), Klason lignin (KL), and modified ADL and KL determination methods—were evaluated for their

  1. Base-catalyzed depolymerization of lignin : separation of monomers

    Energy Technology Data Exchange (ETDEWEB)

    Vigneault, A. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States); Chornet, E. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; National Renewable Energy Laboratory, Golden, CO (United States)

    2007-12-15

    Biofuels produced from residual lignocellulosic biomass range from ethanol to biodiesel. The use of lignin for the production of alternate biofuels and green chemicals has been studied with particular emphasis on the structure of lignin and its oxyaromatic nature. In an effort to fractionate lignocellulosic biomass and valorize specific constitutive fractions, the authors developed a strategy for the separation of 12 added value monomers produced during the hydrolytic base catalyzed depolymerization (BCD) of a Steam Exploded Aspen Lignin. The separation strategy was similar to vanillin purification to obtain pure monomers, but combining more steps after the lignin depolymerization such as acidification, batch liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. The purpose was to develop basic data for an industrial size process flow diagram, and to evaluate both the monomer losses during the separation and the energy requirements. Experimentally testing of LLE, vacuum distillation and flash LC in the laboratory showed that batch vacuum distillation produced up to 4 fractions. Process simulation revealed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, of which 3 require further chromatography and crystallization operations for purification. 22 refs., 4 tabs., 8 figs.

  2. Strategies for managing whitebark pine in the presence of white pine blister rust [Chapter 17

    Science.gov (United States)

    Raymond J. Hoff; Dennis E. Ferguson; Geral I. McDonald; Robert E. Keane

    2001-01-01

    Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine blister rust (Cronartium ribicola). Blister rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The rust is slowly...

  3. Production of lignin peroxidase by Ganoderma leucidum using solid ...

    African Journals Online (AJOL)

    The main objectives of this study were to optimize the culture conditions for the production of lignin peroxidase by Ganoderma leucidum, economic utilization of waste corn cobs as inducers substrate by pollution free fermentation technology and to optimize the solid state fermentation (SSF) process for lignin peroxidase ...

  4. Effect of periodate on lignin for wood adhesive application

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Dam, van J.E.G.; Jong, de E.; Gellerstedt, G.; Scott, E.L.; Sanders, J.P.M.

    2011-01-01

    Development of eco-friendly binders with no harmful emission during its complete life cycle is of high interest for the wood-based industry. In this paper, a fully renewable binder based on activated lignin and poly-furfuryl alcohol and a partly renewable lignin based phenol-formaldehyde (PF) binder

  5. Development and Validation of Marker-Aided Selection Methods for Wood Property Traits in Loblolly Pine and Hybrid Poplar; FINAL

    International Nuclear Information System (INIS)

    Tuskan, G.A.

    2001-01-01

    Wood properties influence pulp and paper quality. Certainly, overall pulp yields are directly related to the cellulose content, changes in hemicellulose content are associated with changes in pulp cohesiveness, and pulping efficiency is related to lignin content. Despite the importance of wood properties on product quality, little progress has been made in improving such traits because current methods of assessing wood and fiber characteristics are time-consuming, expensive, and often imprecise. Genetic improvement of wood and fiber properties has been further hampered by the large size of trees, delayed reproductive maturity and long harvest cycles. Recent developments in molecular genetics will help overcome the physical, economic and biological constraints in assessing and improving wood properties. Genetic maps consisting of numerous molecular markers are now available for loblolly pine and hybrid poplar. Such markers/maps may be used as part of a marker-aided selection and breeding effort or to expedite the isolation and characterization of genes and/or promoters that directly control wood properties. The objectives of this project are: (1) to apply new and rapid analytical techniques for assessing component wood properties to segregating F(sub 2) progeny populations of loblolly pine and hybrid poplar, (2) to map quantitative trait loci and identify molecular markers associated with wood properties in each of the above species and (3) to validate marker-aided selection methods for wood properties in loblolly pine and hybrid poplar

  6. Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures

    NARCIS (Netherlands)

    Güvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J M

    2016-01-01

    The depolymerization of lignin model compounds and soda lignin by super Lewis acidic metal triflates has been investigated in a mixture of ethanol and water at 400 °C. The strong Lewis acids convert representative model compounds for the structure-forming linkages in lignin, namely α-O-4, 5-O-4

  7. Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum

    Directory of Open Access Journals (Sweden)

    José I Santos

    2015-07-01

    Full Text Available The current challenges in developing a cost-effective bioethanol industry include the production of not only high-volume, low cost biofuels but also high-value products with minimal downstream waste. The up-grading of side-stream lignins from bioethanol production plants to novel high-value products will improve the profitability of the bioethanol industry; to do that, a precise understanding of lignin is required. In the present study, lignin-enriched fermentation residues from bioethanol production (steam explosion pretreatment, saccharification, and fermentation of fast-growing poplar and forage sorghum were characterized. In addition to the purity and composition, lignin structure (syringyl/guaiacyl (S/G ratio, inter-unit linkages was also analyzed with spectroscopy techniques such as Fourier transform infrared and two-dimensional nuclear magnetic resonance. Bioethanol processing and feedstock origins seemed to be the main factors determining the purity, composition, and structure of lignins. Residual lignins from poplar and forage sorghum contained significant amounts of sugar and protein impurities. Poplar lignin showed a very high S/G ratio associated with p-hydroxybenzoate. A lower S/G ratio together with H lignin units and p-hydroxycinnamates (p-coumarate and ferulate was observed for forage sorghum lignin. The main inter-unit linkages present in both lignins were β-O-4´ aryl ether followed by resinols and phenylcoumarans.

  8. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    OpenAIRE

    Jiongjiong Li; Jizhi Zhang; Shifeng Zhang; Qiang Gao; Jianzhang Li; Wei Zhang

    2017-01-01

    Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL) reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance) and Fourier transform infrared (FT-IR) spectroscopy to determine the deme...

  9. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  10. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    DEFF Research Database (Denmark)

    Westereng, Bjorge; Cannella, David; Wittrup Agger, Jane

    2015-01-01

    in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant...... cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds...

  11. Radiolysis of lignin: Prospective mechanism of high-temperature decomposition

    Science.gov (United States)

    Ponomarev, A. V.

    2017-12-01

    The range of the radiation-thermal processes resulting in conversion of lignin into monomeric phenols is considered. Statistically the most probable places of macromolecule ionization are aromatic units. Release of phenolic products from a lignin macromolecule is the multistage process beginning via fragmentation of primary cation-radicals. Reactions of electrons and small radicals with macromolecules, also as degradation of cation-radicals, result in formation of phenoxyl radicals. Macroradicals possess lower heat stability in comparison with macromolecules. Thermal decomposition of macroradicals leads to release of monohydric and dihydric phenols. The probability of benzenediols formation increases in the presence of alkanes. As noted, partial transformation of lignin into charcoal is inevitable.

  12. Wood digestion in Pselactus spadix Herbst--a weevil attacking marine timber structures.

    Science.gov (United States)

    Oevering, Pascal; Pitman, Andrew J; Pandey, Krishna K

    2003-04-01

    Pselactus spadix tunnels timber structures in the marine environment. Recent studies reported a cosmopolitan distribution for this weevil, which is frequently found in harbour and port areas. P. spadix feeds on timber (hardwood and softwood) in immature and adult life stages, but its digestion of wood components had not been investigated. Using dry weight analyses of tunnel walls and frass produced, P. spadix adults consumed Scots pine with soft rot decay at a rate of 1.59 +/- 0.37 mg d-1 and the digestibility of this substrate was 57.96 +/- 5.89 (i.e. for 100 mg consumed SR-pine, 58 mg was digested). Using gravimetric analysis to quantify structural wood components in tunnel walls and frass, P. spadix adults were found to digest cellulose, lignin and hemicellulose with digestibility coefficients of 82.2, 41.2 and 14.5 respectively. Fourier Transform Infrared (FTIR) spectroscopy analyses of tunnel walls and frass of adults and larvae from soft rotted pine also indicated digestion of all structural components, with larvae digesting cellulose and lignin more efficiently than adults. When FTIR was employed to analyse adult tunnel walls and frass from undecayed pine, cellulose and hemicellulose were digested, but no evidence of lignin digestion was found. This study shows that adults digest lignin when soft rot is present and suggests a symbiotic function of wood degrading microorganisms.

  13. Structural Changes of Lignin after Liquid Hot Water Pretreatment and Its Effect on the Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2016-01-01

    Full Text Available During liquid hot water (LHW pretreatment, lignin is mostly retained in the pretreated biomass, and the changes in the chemical and structural characteristics of lignin should probably refer to re-/depolymerization, solubilization, or glass transition. The residual lignin could influence the effective enzymatic hydrolysis of cellulose. The pure lignin was used to evaluate the effect of LHW process on its structural and chemical features. The surface morphology of LHW-treated lignin observed with the scanning electron microscopy (SEM was more porous and irregular than that of untreated lignin. Compared to the untreated lignin, the surface area, total pore volume, and average pore size of LHW-treated lignin tested with the Brunner-Emmet-Teller (BET measurement were increased. FTIR analysis showed that the chemical structure of lignin was broken down in the LHW process. Additionally, the impact of untreated and treated lignin on the enzymatic hydrolysis of cellulose was also explored. The LHW-treated lignin had little impact on the cellulase adsorption and enzyme activities and somehow could improve the enzymatic hydrolysis of cellulose.

  14. Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials.

    Science.gov (United States)

    Goff, Ben M; Murphy, Patrick T; Moore, Kenneth J

    2012-03-15

    A variety of methods have been developed for estimating lignin concentration within plant materials. The objective of this study was to compare the lignin concentrations produced by six methods on a diverse population of forage and biomass materials and to examine the relationship between these concentrations and the portions of these materials that are available for utilisation by livestock or for ethanol conversion. Several methods produced lignin concentrations that were highly correlated with the digestibility of the forages, but there were few relationships between these methods and the available carbohydrate of the biomass materials. The use of Na₂SO₃ during preparation of residues for hydrolysis resulted in reduced lignin concentrations and decreased correlation with digestibility of forage materials, particularly the warm-season grasses. There were several methods that were well suited for predicting the digestible portion of forage materials, with the acid detergent lignin and Klason lignin method giving the highest correlation across the three types of forage. The continued use of Na₂SO₃ during preparation of Van Soest fibres needs to be evaluated owing to its ability to reduce lignin concentrations and effectiveness in predicting the utilisation of feedstuffs and feedstocks. Because there was little correlation between the lignin concentration and the biomass materials, there is a need to examine alternative or develop new methods to estimate lignin concentrations that may be used to predict the availability of carbohydrates for ethanol conversion. Copyright © 2011 Society of Chemical Industry.

  15. Syringyl Lignin Is Unaltered by Severe Sinapyl Alcohol Dehydrogenase Suppression in Tobacco[W

    Science.gov (United States)

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N.; Marshall, David; Hancock, Robert D.; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-01-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference–inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem. PMID:22158465

  16. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior.

    Science.gov (United States)

    Duan, Dengle; Ruan, Roger; Wang, Yunpu; Liu, Yuhuan; Dai, Leilei; Zhao, Yunfeng; Zhou, Yue; Wu, Qiuhao

    2018-03-01

    This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin. Fourier transform infrared spectroscopy analysis showed breakage of βO4 bond and aliphatic side chain, decrease in OH groups, and formation of CO groups in pretreatment. Microwave temperature exerted more significant influence on lignin structure. Thermal stability of treated lignin was improved and insensitive to short microwave time and acid concentration under mild conditions. Resulting from improved alkyl-phenols and decreased alkoxy-phenols, microwave-assisted acid pretreatment of lignin yielded bio-oil with excellent quality. Total yield of phenols in pyrolysis vapors (200 °C) improved to 14.15%, whereas that of guaiacols decreased to 22.36%. This study shows that microwave-assisted acid pretreatment is a promising technology for lignin conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui; Mansfield, Elisabeth; Taylor, Larry E.; Decker, Stephen R.; Himmel, Michael E.; Vinzant, Todd

    2017-04-24

    Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolase activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific

  18. Lodgepole Pine Dwarf Mistletoe

    Science.gov (United States)

    Frank G. Hawksworth; Oscar J. Dooling

    1984-01-01

    Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...

  19. Exploring the antioxidant potential of lignin isolated from black liquor of oil palm waste.

    Science.gov (United States)

    Bhat, Rajeev; Khalil, H P S A; Karim, A A

    2009-09-01

    This study was conducted to evaluate the potential antioxidant activity of lignin obtained from black liquor, a hazardous waste product generated during the extraction of palm oil. Antioxidant potential of the extracted lignin was evaluated by dissolving the extracted samples in 2 different solvent systems, namely, 2-methoxy ethanol and DMSO. Results revealed high percent inhibition of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in the lignin sample dissolved in 2-methoxy ethanol over DMSO (concentration range of 1-100 microg/ml). Lignin extracted in 2-methoxy ethanol exhibited higher inhibition percentage (at 50 microg/ml, 84.2%), whereas a concentration of 100 microg/ml was found to be effective in the case of the DMSO solvent (69.8%). Fourier transform infrared (FTIR) spectrometry revealed that the functional groups from the extracted lignin and commercial lignin were highly similar, indicating the purity of the lignin extracted from black liquor. These results provide a strong basis for further applications of lignin in the food industry and also illustrate an eco-friendly approach to utilize oil palm black liquor.

  20. Conversion of kraft lignin over hierarchical MFI zeolite.

    Science.gov (United States)

    Kim, Seong-Soo; Lee, Hyung Won; Ryoo, Ryong; Kim, Wookdong; Park, Sung Hoon; Jeon, Jong-Ki; Park, Young-Kwon

    2014-03-01

    Catalytic pyrolysis of kraft lignin was carried out using pyrolysis gas chromatography/mass spectrometry. Hierarchical mesoporous MFI was used as the catalyst and another mesoporous material Al-SBA-15 was also used for comparison. The characteristics of mesoporous MFI were analyzed by X-ray diffraction patterns, N2 adsorption-desorption isotherms, and temperature programmed desorption of NH3. Two catalyst/lignin mass ratios were tested: 5/1 and 10/1. Aromatics and alkyl phenolics were the main products of the catalytic pyrolysis of lignin over mesoporous MFI. In particular, the yields of mono-aromatics such as benzene, toluene, ethylbenzene, and xylene were increased substantially by catalytic upgrading. Increase in the catalyst dose enhanced the production of aromatics further, which is attributed to decarboxylation, decarbonlyation, and aromatization reactions occurring over the acid sites of mesoporous MFI.

  1. Properties and Possible Applications for Lignin Streams Obtained from Rice Straw Processing

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    This study aimed to evaluate the chemical and physical properties of lignin streams recovered from rice straw processing and to study the extraction of antioxidant phenolic compounds from these materials. The evaluated samples included two different cellulignin fermentation residues (FR’s) and an......This study aimed to evaluate the chemical and physical properties of lignin streams recovered from rice straw processing and to study the extraction of antioxidant phenolic compounds from these materials. The evaluated samples included two different cellulignin fermentation residues (FR......’s) and an acid-precipitated lignin from alkaline-deacetylated black liquor (DBLL). For comparison, a standard lignin sample (Kraft lignin, from Sigma-Aldrich) was also assayed. Besides providing a better understanding about such materials, the obtained results made also possible to propose some potential...

  2. Structural changes of corn stover lignin during acid pretreatment.

    Science.gov (United States)

    Moxley, Geoffrey; Gaspar, Armindo Ribeiro; Higgins, Don; Xu, Hui

    2012-09-01

    In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70 % at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by ³¹P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180 °C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.

  3. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications.

    Science.gov (United States)

    Mattinen, Maija-Liisa; Valle-Delgado, Juan José; Leskinen, Timo; Anttila, Tuomas; Riviere, Guillaume; Sipponen, Mika; Paananen, Arja; Lintinen, Kalle; Kostiainen, Mauri; Österberg, Monika

    2018-04-01

    Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.e. spherical shape and size. Two fungal laccases, Trametes hirsuta (ThL) and Melanocarpus albomyces (MaL) were used in the cross-linking reactions. Reactivity of ThL and MaL on Lignoboost™ lignin and LNPs was confirmed by high performance size exclusion chromatography (HPSEC) and oxygen consumption measurements with simultaneous detection of red-brown color due to the formation of quinones. Zeta potential measurements verified oxidation of LNPs via formation of surface-oriented carboxylic acid groups. Dynamic light scattering (DLS) revealed minor changes in the particle size distributions of LNPs after laccase catalyzed radicalization, indicating preferably covalent intraparticular cross-linking over polymerization. Changes in the surface morphology of laccase treated LNPs were imaged by atomic force (AFM) and transmission emission (TEM) microscopy. Furthermore, decolorization of LNPs without degradation was obtained using ultrasonication with H 2 O 2 in alkaline reaction conditions. The research results have high impact for the utilization of Kraft lignin as nanosized colloidal particles in advanced bionanomaterial applications in medicine, foods and cosmetics including different sectors from chemical industry. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor.

    Science.gov (United States)

    Olcese, Roberto Nicolas; Lardier, George; Bettahar, Mohammed; Ghanbaja, Jaafar; Fontana, Sébastien; Carré, Vincent; Aubriet, Frédéric; Petitjean, Dominique; Dufour, Anthony

    2013-08-01

    Lignin is a potential renewable material for the production of bio-sourced aromatic chemicals. We present the first hydrotreatment of lignin pyrolysis vapors, before any condensation, using inexpensive and sustainable iron-silica (Fe/SiO2 ) and iron-activated carbon (Fe/AC) catalysts. Lignin pyrolysis was conducted in a tubular reactor and vapors were injected in a fixed bed of catalysts (673 K, 1 bar) with stacks to investigate the profile of coke deposit. More than 170 GC-analyzable compounds were identified by GCxGC (heart cutting)/flame ionization detector mass spectrometry. Lignin oligomers were analyzed by very high resolution mass spectrometry, called the "petroleomic" method. They are trapped by the catalytic fixed bed and, in particular, by the AC. The catalysts showed a good selectivity for the hydrodeoxygenation of real lignin vapors to benzene, toluene, xylenes, phenol, cresols, and alkyl phenols. The spent catalysts were characterized by temperature-programmed oxidation, transmission electron microscopy (TEM), and N2 sorption. Micropores in the Fe/AC catalyst are completely plugged by coke deposits, whereas the mesoporous structure of Fe/SiO2 is unaffected. TEM images reveal two different types of coke deposit: 1) catalytic coke deposited in the vicinity of iron particles and 2) thermal coke (carbonaceous particles ≈1 μm in diameter) formed from the gas-phase growth of lignin oligomers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxidative degradation of lignin by photochemical and chemical radical generating systems

    International Nuclear Information System (INIS)

    Gold, M.H.; Kutsuki, H.; Morgan, M.A.

    1983-01-01

    Oxidation of specifically radiolabeled 14 C-lignins by UV/H 2 O 2 , Fenton's reagent, photosensitizing riboflavin, UV- and γ-irradiation was examined. In the presence of UV/H 2 O 2 , a hydroxyl radical (radicalOH) generating system, 14 C-methoxy, 2-[ 14 C-sidechain] and 14 C-ring labeled lignin were rapidly and extensively degraded as measured by gel filtration of the reaction products on Sephadex LH-20. This suggested that exposure to radicalOH leads to rapid, nonspecific lignin degradation. Rapid degradation of 14 C-methoxy, 2-[ 14 C-sidechain] and 14 C-ring labeled lignin also occurred in the presence of the radicalOH generating system, Fenton's reagent, confirming the primary role of radicalOH in these reactions. Photosensitizing riboflavin, also capable of effecting transformation of organic compounds via Type I hydrogen radical abstractions, caused extensive oxidative degradation of 14 C-methoxy labeled lignin and significant degradation of 2-[ 14 C-sidechain] and 14 C-ring labeled lignin. In addition, UV- and γ-irradiation caused slower but extensive degradation of the polymers, probably via radical type mechanisms. All of these results indicate that radicalOH as well as organic radical generating systems are effective agents for the purpose of degrading this heterogeneous, optically inactive and random biopolymer. (author)

  6. Lignocellulose mineralization by Arctic lake sediments in response to nutrient manipulation

    International Nuclear Information System (INIS)

    Federle, T.W.; Vestal, J.R.

    1980-01-01

    Mineralization of specifically labeled 14 C-cellulose- and 14 C-lignin-labeled lignocelluloses by Toolik Lake, Alaska, sediments was examined in response to manipulation of various environmental factors. Mineralization was measured by quantifying the amount of labeled CO 2 released from the specifically labeled substrates. Nitrogen (NH 4 NO 3 ) and, to a greater degree, phosphorus (PO 4 -3 ) additions enhanced the mineralization of white pine (Pinus strobus) cellulose during the summer of 1978. Nitrogen and phosphorus together had no cumulative effect. During the summer of 1979, nitrogen or phosphorus alone had only a slight stimulatory effect on the mineralization of a sedge (Carex aquatilis) cellulose; however, together, they had a dramatic effect. This variable response of mineralization to nutrient addition between 1978 and 1979 was probably attributable to year-to-year variation in nutrient availability within the lake. Cellobiose addition and oxygen depletion inhibited the amount of pine cellulose mineralized. Whereas addition of nitrogen to oxygen-depleted treatments had limited effect, addition of phosphorus resulted in mineralizations equal to or greater than that of the controls. Nitrogen had no effect on mineralization of pine or Carex lignins. Phosphorus, however, inhibited mineralization of both lignins. With Carex lignin, the phosphorus inhibition occurred at a concentration as low as 0.1 μM. The antagonistic role of phosphorus in cellulose and lignin mineralizations may be of significance in understanding the increased proportion of lignin relative to cellulose in decomposing litter

  7. Improved Lignin Polyurethane Properties with Lewis Acid Treatment

    OpenAIRE

    Chung, Hoyong; Washburn, Newell R.

    2012-01-01

    Chemical modification strategies to improve the mechanical properties of lignin-based polyurethanes are presented. We hypothesized that treatment of lignin with Lewis acids would increase the concentration of hydroxyl groups available to react with diisocyanate monomers. Under the conditions used, hydrogen bromide-catalyzed modification resulted in a 28% increase in hydroxyl group content. Associated increases in hydrophilicity of solvent-cast thin films were also recorded as evidenced by ...

  8. Valorisation of lignin – Achievements of the LignoValue project

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Dam, van J.E.G.; Wild, de P.; Huijgen, W.; Bridgwater, T.; Heeres, H.J.; Kloekhorst, A.; Scott, E.L.; Sanders, J.P.M.

    2011-01-01

    Lignocellulosic biorefinery for production of biofuels, materials and chemicals requires valorization of all fractions including lignin. As a consequence of its poly-aromatic structure, lignin potentially serves as a source for aromatic chemicals. The developed biorefinery concept of the LignoValue

  9. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  10. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Science.gov (United States)

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  11. Mitogenic activity of pine cone extracts against cultured splenocytes from normal and tumor-bearing animals.

    Science.gov (United States)

    Kurakata, Y; Sakagami, H; Takeda, M; Konno, K; Kitajima, K; Ichikawa, S; Hata, N; Sato, T

    1989-01-01

    An acidic pine cone extract, Fr. V. of Pinus parviflora Sieb. et Zucc. significantly stimulated DNA synthesis of isolated splenocytes from both mice and rats, but only marginally affected the DNA synthesis of leukemic cell lines. The maximum stimulation level attained by Fr. V slightly exceeded that of plant lectins, whereas much weaker stimulating activity was found in natural and chemically modified antitumor polysaccharides, sialic acid-rich glycoproteins, and polyphenolic compounds such as lignin and tannic acid. In mice with subcutaneously transplanted sarcoma-180, responses of splenocytes against Con A declines in the terminal stage of tumor development, whereas responses against Fr. V remained relatively constant throughout all periods of tumor progression. The suppression of Fr. V activity by acetylation or methylation suggests the importance of the hydroxyl group in the expression of its stimulation activity.

  12. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  13. Assessing longleaf pine (Pinus palustris) restoration after southern pine beetle kill using a compact experimental design

    Science.gov (United States)

    J.-P. Berrill; C.M. Dagley

    2010-01-01

    A compact experimental design and analysis is presented of longleaf pine (Pinus palustris) survival and growth in a restoration project in the Piedmont region of Georgia, USA. Longleaf pine seedlings were planted after salvage logging and broadcast burning in areas of catastrophic southern pine beetle (Dendroctonus frontalis) attacks on even-aged mixed pine-hardwood...

  14. A NEW PROCESS DEVELOPED FOR SEPARATION OF LIGNIN FROM AMMONIUM HYDROXIDE PRETREATMENT SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S.; Gorensek, M.; Milliken, C.

    2010-12-14

    A method is described for separating lignin from liquid solutions resulting from the pretreatment of lignocellulosic materials such as switchgrass with ammonium hydroxide. The method involves a sequence of steps including acidification, evaporation, and precipitation or centrifugation that are performed under defined conditions, and results in a relatively pure, solid lignin product. The method is tested on ammonium hydroxide solutions containing lignin extracted from switchgrass. Experimental results show that the method is capable of recovering between 66-95% of dissolved lignin as a precipitated solid. Cost estimates of pilot-scale and industrial-scale expressions of the process indicate that breakeven lignin prices of $2.36/kg and $0.78/kg, respectively, may be obtainable with this recovery method.

  15. Paving the Way for Lignin Valorisation : Recent Advances in Bioengineering, Biorefining and Catalysis

    NARCIS (Netherlands)

    Rinaldi, Roberto; Jastrzebski, Robin|info:eu-repo/dai/nl/338017747; Clough, Matthew T; Ralph, John; Kennema, Marco; Bruijnincx, Pieter C A|info:eu-repo/dai/nl/33799529X; Weckhuysen, Bert M|info:eu-repo/dai/nl/285484397

    2016-01-01

    Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of

  16. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    Directory of Open Access Journals (Sweden)

    Jiongjiong Li

    2017-09-01

    Full Text Available Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance and Fourier transform infrared (FT-IR spectroscopy to determine the demethylation mechanism. With the demethylation of lignin, the methoxyl group content decreased from 1.93 m mol/g to 1.09 m mol/g, and the phenolic hydroxyl group content increased from 0.56 m mol/g to 0.82 m mol/g. These results revealed that methoxyl groups were attacked by SO32−, and some methoxyl groups were converted to phenolic hydroxyl groups by a nucleophilic substitution reaction, generating DL with high reactivity. The chemical properties of lignin-based phenolic resins were studied by 13C-NMR and FT-IR spectroscopy, and their physical properties were also investigated. The results indicated that lignin-based phenolic resins exhibited faster curing rate and shorter gel time. In addition, the bonding strength increased from 0.92 MPa to 1.07 MPa, and the formaldehyde emission decreased from 0.58 mg/L to 0.22 mg/L after lignin demethylated at the optimum condition.

  17. Probing the interactions between lignin and inorganic oxides using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyu; Qian, Yong, E-mail: qianyong86@163.com; Deng, Yonghong; Liu, Di; Li, Hao; Qiu, Xueqing, E-mail: xueqingqiu66@163.com

    2016-12-30

    Graphical abstract: The interactions between lignin and inorganic oxides are quantitatively probed by atomic force microscopy, which is fundamental but beneficial for understanding and optimizing the absorption-dispersion and catalytic degradation processes of lignin. - Highlights: • The interactions between lignin and inorganic oxides are measured using AFM. • The adhesion forces between lignin and metal oxides are larger than that in nonmetal systems. • Hydrogen bond plays an important role in lignin-inorganic oxides system. - Abstract: Understanding the interactions between lignin and inorganic oxides has both fundamental and practical importance in industrial and energy fields. In this work, the specific interactions between alkali lignin (AL) and three inorganic oxide substrates in aqueous environment are quantitatively measured using atomic force microscopy (AFM). The results show that the average adhesion force between AL and metal oxide such as Al{sub 2}O{sub 3} or MgO is nearly two times bigger than that between AL and nonmetal oxide such as SiO{sub 2} due to the electrostatic difference and cation-π interaction. When 83% hydroxyl groups of AL is blocked by acetylation, the adhesion forces between AL and Al{sub 2}O{sub 3}, MgO and SiO{sub 2} decrease 43, 35 and 75% respectively, which indicate hydrogen bonds play an important role between AL and inorganic oxides, especially in AL-silica system.

  18. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  19. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    Science.gov (United States)

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Connecting tropical river DOM and POM to the landscape with lignin

    Science.gov (United States)

    Hernes, Peter J.; Dyda, Rachael Y.; McDowell, William H.

    2017-12-01

    Tropical rivers account for two thirds of global fluxes of terrigenous organic matter to the oceans, yet because of their remote locations relative to most industrialized countries, they are poorly studied compared to temperate and even Arctic rivers. Further, most tropical river research has focused on large rivers like the Amazon or Congo, yet more than half of organic matter fluxes from tropical rivers comes from much smaller rivers. This study focuses on two such rivers in the Luquillo Experimental Forest of Puerto Rico, namely the Rio Mameyes and Rio Icacos, and uses time-series measurements of lignin biomarkers to put them in context with much bigger tropical rivers in the literature. Although lignin concentrations and carbon-normalized yields offer some distinction between mountainous vs. floodplain tropical river reaches, compositional differences appear to offer greater potential, including S:V vs. C:V plots that may capture the poorly-studied influence of palm trees, and (Ad:Al)s vs. (Ad:Al)v plots that may reflect differences in underlying mineralogy and degradation in soils. Even though dissolved and particulate lignin ultimately come from the same vegetation sources, comparison of dissolved and particulate lignin parameters within the two Puerto Rican rivers indicate that the pathways by which they end up in the same parcel of river water are largely decoupled. Across several particulate lignin studies in tropical rivers, mineral composition and concentration appears to exert a strong control on particulate lignin compositions and concentrations. Finally, the time-series nature of this study allows for new ways of analyzing dissolved lignin endmember compositions and degradation within the catchment. Plots of dissolved lignin parameters vs. lignin concentration reveal both the composition of "fresh" DOM that is likely mobilized from organic-rich soil surface layers along with the extent and trajectory of degradation of that signature that is possible

  1. Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine

    Science.gov (United States)

    Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook. Kim

    2006-01-01

    From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...

  2. Analysis of Structural Units and Their Influence on Thermal Degradation of Alkali Lignins

    Directory of Open Access Journals (Sweden)

    Wen Hua

    2016-01-01

    Full Text Available The chemical structures of four alkali lignins isolated from poplar, fir, straw, and bagasse were investigated. To explore the relationship between the structural units and the thermal decomposition behavior, the system was tested by elemental analysis, Fourier transform infrared spectrometry, thermogravimetric analysis (TGA, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS. The results indicated that the carbon content of poplar lignin (PL was higher than that of others. Fir lignin (FL exhibited the highest guaiacol units, while the other three lignins were abundant in syringol units. The thermal decomposition characteristics and pyrolysis products of the four lignins were influenced by the material structural and composition. The DTG curves showed that the initial temperatures and major degradation temperatures of woody lignins(FL and PL) with complex inherent structures were shifted to the high temperature zoom compared with that of non-woody (BL and SL)lignins. Py-GC/MS analysis showed that guaiacol-type phenolic compounds were predominant pyrolysis products derived from the four lignins. The yield of guaiacol-type phenols could reach 82.87%. Moreover, the BL had selectively on phenol-type compounds with yield of 27.89%.

  3. Removal of oil palm trunk lignin in ammonium hydroxide pretreatment

    Science.gov (United States)

    Az-Zahraa, Balqis; Zakaria, Sarani; Daud, Muhammad F. B.; Jaafar, Sharifah Nabihah Syed

    2018-04-01

    Alkaline pretreatment using ammonium hydroxide, NH4OH serves as one of a process to remove lignin from lignocellulosic biomass such as oil palm trunk fiber. In this study, the effect of NH4OH pretreatment on removal of oil palm trunk lignin was investigated. The oil palm trunk fiber was dissolved in NH4OH with different concentrations (6, 8 and 10 %), different duration (3, 5 and 7 h) and temperatures (60, 80 and 100 °C). The samples were analyzed by using UV-Vis to estimate the concentration of extracted lignin. The result indicates that the optimum conditions to gain maximum extracted lignin were 8% NH4OH, 100 °C and 5 h with concentration of 64 mgL-1 while the lowest was at 6% NH4OH, 100 °C and 5 h with concentration of 62.5 mgL-1.

  4. Structural variations and physical properties of lignin coke

    International Nuclear Information System (INIS)

    Otani, C.

    1986-01-01

    The studied lignin is a by-product of the process of ethanol production from eucaliptus. It was heat-treated under inert atmosphere conditions at increasing temperatures from 300 0 C up to 2600 0 C. This material has about 35 weight % of carbon yield and low ash content (0.70 w %). The structural variations were studied by wide-angle X-ray diffraction, small-angle X-ray scattering and infra-red spectroscopy. The bulk and the ''real'' density of the samples have also been determined as a function of the heat treatment temperatures. These experimental results enabled us to establish a mechanism of structure variation based on the formation of a graphite-like and porous structure within the initially amorphous lignin matrix. It has been possible to specify the adequate heat treatment temperature based upon the lignin coke applications. (author) [pt

  5. Reactivity of lignin and problems of its oxidative destruction with peroxy reagents

    International Nuclear Information System (INIS)

    Demin, Valerii A; Shereshovets, Valerii V; Monakov, Yurii B

    1999-01-01

    Published data on reactivity and oxidation of lignin and model compounds with hydrogen peroxide, ozone and chlorine dioxide as well as on oxidative destruction of the sulfate pulp lignin with various reagents during bleaching are systematised and generalised. Concepts of lignin activation towards its selective oxidation and kinetic features of sulfate pulp oxidative delignification are considered. The bibliography includes 157 references.

  6. The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes

    Science.gov (United States)

    Dimitrios Floudas; Manfred Binder; Robert Riely; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Angel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. deVries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Pawe³ Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten; Annegret Kohler; Ursula Kües; T. K. ArunKumar; Alan Kuo; Kurt LaButti; Luis F. Larrondo; Erika Lindquist; Albee Ling; Vincent Lombard; Susan Lucas; Taina Lundell; Rachael Martin; David J. McLaughlin; Ingo Morgenstern; Emanuelle Morin; Claude Murat; Laszlo G. Nagy; Matt Nolan; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Antonis Rokas; Francisco J. Ruiz-Dueñas; Grzegorz Sabat; Asaf Salamov; Masahiro Samejima; Jeremy Schmutz; Jason C. Slot; Franz St. John; Jan Stenlid; Hui Sun; Sheng Sun; Khajamohiddin Syed; Adrian Tsang; Ad Wiebenga; Darcy Young; Antonio Pisabarro; Daniel C. Eastwood; Francis Martin; Dan Cullen; Igor V. Grigoriev; David S. Hibbett

    2012-01-01

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non–lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study)...

  7. Lignin properties in topsoils of a beech/oak forest after 8 years of manipulated litter fall: relevance of altered input and oxidation of lignin

    NARCIS (Netherlands)

    Klotzbücher, T.; Strohmeier, S.; Kaiser, K.; Bowden, R.D.; Lajtha, K.; Ohm, H.; Kalbitz, K.

    2013-01-01

    Background and aims We studied the response of lignin oxidation in soils of a beech/oak forest to changes in litter fall. Additionally we considered possible factors in lignin oxidation, including altered (i) input of fresh organic matter and (ii) fungi-to-bacteria ratios. Methods The field-based

  8. Influence of alkaline hydrothermal pretreatment on shrub wood Tamarix ramosissima: Characteristics of degraded lignin

    International Nuclear Information System (INIS)

    Xiao, Ling-Ping; Bai, Yuan-Yuan; Shi, Zheng-Jun; Lu, Qiang; Sun, Run-Cang

    2014-01-01

    The objective of this work was to evaluate the influence of alkaline hydrothermal (AH) pretreatment on the physicochemical properties of the degraded lignins, attempt to upgrade the potential of lignin for value-added chemicals and fuel production. For this purpose, shrub wood Tamarix ramosissima lignin was fractionated using a two-stage process based on an AH pretreatment followed by an alkaline ethanol post-treatment. The recovered lignin fractions were investigated by comparison with milled wood lignin (MWL) in terms of fractionation yield, carbohydrate composition, gel permeation chromatography, Fourier transform infrared spectroscopy, 13 C and 2D heteronuclear single quantum correlation nuclear magnetic resonance, as well as pyrolysis-gas chromatography/mass spectrometry. The result showed that AH pretreatment led to the degradation of β-O-4 linkages and consequently the increased severity caused a release of more S-units lignin fractions with molecular weights between 1300 and 2500 g/mol in the liquid but higher molecular weights (3000–4400 g/mol) in the residues. Moreover, it was found that the lignin syringyl-to-guaiacyl (S/G) ratios from analytical pyrolysis slightly changed after AH pretreatment (S/G, 1.8–2.3) but higher than those of MWL (S/G, 1.7). Overall, the present study demonstrates that these lignins dissolved during AH pretreatment and those recovered from the solid residues isolated with alkaline ethanol post-treatment could be profitably exploited as feedstock in integrated forest biorefineries, rather than traditional use as low-value energy sources.- Highlights: • Alkaline hydrothermal pretreatment and alkaline ethanol post-treatment were proposed. • The influence of AH pretreatment on the lignin structural changes was characterized. • Aryl-O-ether linkages of lignin were extensively cleaved. • Lignin recovered from solid residue is a potential resource for the production of value-added chemicals

  9. A process for producing lignin and volatile compounds from hydrolysis liquor.

    Science.gov (United States)

    Khazraie, Tooran; Zhang, Yiqian; Tarasov, Dmitry; Gao, Weijue; Price, Jacquelyn; DeMartini, Nikolai; Hupa, Leena; Fatehi, Pedram

    2017-01-01

    Hot water hydrolysis process is commercially applied for treating wood chips prior to pulping or wood pellet production, while it produces hydrolysis liquor as a by-product. Since the hydrolysis liquor is dilute, the production of value-added materials from it would be challenging. In this study, acidification was proposed as a viable method to extract (1) furfural and acetic acid from hot water hydrolysis liquor and (2) lignin compounds from the liquor. The thermal properties of the precipitates made from the acidification of hydrolysis liquor confirmed the volatile characteristics of precipitates. Membrane dialysis was effective in removing inorganic salts associated with lignin compounds. The purified lignin compounds had a glass transition temperature (Tg) of 180-190 °C, and were thermally stable. The results confirmed that lignin compounds present in hot water hydrolysis liquor had different characteristics. The acidification of hydrolysis liquor primarily removed the volatile compounds from hydrolysis liquor. Based on these results, a process for producing purified lignin and precipitates of volatile compounds was proposed.

  10. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Chandra, Richard P; Saddler, Jack N

    2007-01-01

    Recycling of cellulases is one way of reducing the high cost of enzymes during the bioconversion process. The effects of surfactant addition on enzymatic hydrolysis and the potential recycling of cellulases were studied during the hydrolysis of steam exploded Lodgepole pine (SELP) and ethanol pretreated Lodgepole pine (EPLP). Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their hydrolysis efficiencies over multiple rounds of recycling. The surfactant, Tween 80, significantly increased the yield from 63% to 86% during the hydrolysis of the SELP substrate. The addition of surfactant to the hydrolysis of the EPLP substrate increased the free enzymes in the supernatant from 71% of the initial protein to 96%. Based on the Langmuir adsorption constants, cellulases (Celluclast and Spezyme CP) from Trichoderma reesei showed a higher affinity (3.48 mL/mg and 3.17 mL/mg) for the EPLP substrate than did the Penicillium enzyme (0.62 mg/mg). The Trichoderma reesei enzyme was used in four successive rounds of enzyme recycling using surfactant addition and readsorption onto fresh substrates during the hydrolysis of EPLP. In contrast, the Penicillium-derived enzyme preparation (MSUBC) could only be recycled once. When the same recycling strategy was carried out using the SELP substrate, the hydrolysis yield declined during each enzyme recycling round. These results suggested that the higher lignin content of the SELP substrate, and the low affinity of cellulases for the SELP substrate limited enzyme recycling by readsorption onto fresh substrates.

  11. Reactivity improvement of cellulolytic enzyme lignin via mild hydrothermal modification.

    Science.gov (United States)

    Ma, Zhuoming; Tang, Jiafa; Li, Shujun; Suo, Enxiang

    2017-12-01

    Isolated by the cellulolytic enzyme lignin (CEL) process, water-alcohol (1:1, v/v) was introduced as co-solvent in the process of the hydrothermal treatment. The modification parameters such as reaction temperature and time, solid-to-liquid ratio, and catalysts (NaOH and NaOAlO 2 ) have been investigated in terms of the specific lignin properties, such as the phenolic hydroxyl content (OH phen ), DPPH free radical scavenging rate, and formaldehyde value. The CELs were also characterized by GPC, FT-IR and 1 H NMR spectroscopy, and Py-GC/MS. The key data are under optimal lignin modification conditions (solid-to-liquid ratio of 1:10 (w/v) and a temperature of 250°C for 60min) are: OH phen content: 2.50mmol/g; half maximal inhibitory concentration (IC 50 ) towards DPPH free radicals: 88.2mg/L; formaldehyde value: 446.9g/kg). Both base catalysts decrease the residue rate, but phenol reactivities of the products were also detracted. Py-GC/MS results revealed that modified lignin had a higher phenolic composition than the CEL did, especially the modified lignin without catalyst (ML), which represented 74.51% phenolic content. Copyright © 2017. Published by Elsevier Inc.

  12. Purification and characterization of lignin peroxidases from Penicillium decumbens P6

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Yuan, H.L.; Wang, H.X.; Chen, W.X. [China Agricultural University, Beijing (China). College of Biological Science

    2005-06-01

    Peroxidases are essential enzymes in biodegradation of lignin and lignite which have been investigated intensively in the white-rot fungi. This is the first report of purification and characterization of lignin peroxidase from Penicillium sp. P6 as lignite degradation fungus. The results indicated that the lignin peroxidase of Penicillium decumbens P6 had physical and chemical properties and a N-terminal amino acid sequence different from the lignin peroxidases of white-rot fungi. The lignin peroxidase was isolated from a liquid culture of P. decumbens P6. This enzyme had a molecular weight of 46.3 KDa in SDS-PAGE and exhibited greater activity, temperature stability and wider pH range than those previously reported. The isolation procedure involved (NH{sub 4}){sub 2}SO{sub 4} precipitation, ion-exchange chromatography on DEAE-cellulose and CM-cellulose, gel filtration on Sephadex G-100, and non-denaturing, discontinuous polyacrylamide gel electrophoresis. The K{sub m} and V{sub max} values of this enzyme using veratryl alcohol as substrate were 0.565 mmol L{sup -1} and 0.088 mmol (mg protein){sup -1} min{sup -1} respectively. The optimum pH of P6 lignin peroxidase was 4.0, and 70.6% of the relative activity was remained at pH 9.0. The optimum temperature of the enzyme was 45{sup o}C.

  13. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.

    Science.gov (United States)

    Sen, Sanghamitra; Sadeghifar, Hasan; Argyropoulos, Dimitris S

    2013-10-14

    Despite its aromatic and polymeric nature, the heterogeneous, stochastic, and reactive characteristics of softwood kraft lignin seriously limit its potential for thermoplastic applications. Our continuing efforts toward creating thermoplastic lignin polymers are now focused at exploring propargylation derivatization chemistry and its potential as a versatile novel route for the eventual utilization of technical lignins with a significant amount of molecular control. To do this, we initially report the systematic propargylation of softwood kraft lignin. The synthesized derivatives were extensively characterized with thermal methods (DSC, TGA), (1)H, (13)C, and quantitative (31)P NMR and IR spectroscopies. Further on, we explore the versatile nature of the lignin pendant propargyl groups by demonstrating two distinct chain extension chemistries; the solution-based, copper-mediated, oxidative coupling and the thermally induced, solid-state, Claissen rearrangement polymerization chemistries. Overall, we show that it is possible to modulate the reactivity of softwood kraft lignin via a combination of methylation and chain extension providing a rational means for the creation of higher molecular weight polymers with the potential for thermoplastic materials and carbon fibers with the desired control of structure-property relations.

  14. Tip moth control and loblolly pine growth in intensive pine culture: four year results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2006-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L., on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana Comstock, and effects on pine growth over 2 years. Treatments were combinations of Velpar®,...

  15. Optimizing Noncovalent Interactions Between Lignin and Synthetic Polymers to Develop Effective Compatibilizers

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Nathan [University of Tennessee, Knoxville (UTK); Harper, David [University of Tennessee, Knoxville (UTK), Center for Renewable Carbon; Dadmun, Mark D [ORNL

    2012-01-01

    Experiments are designed and completed to identify an effective polymeric compatibilizer for lignin polystyrene blends. Copolymers of styrene and vinylphenol are chosen as the structure of the compatibilizer as the VPh unit can readily form intermolecular hydrogen bonds with the lignin molecule. Electron microscopy, thermal analysis, and neutron refl ectivity results demonstrate that among these compatibilizers, a copolymer of styrene and VPh with 20% 30% VPh most readily forms intermolecular interactions with the lignin molecule and results in the most well-dispersed blends with lignin. This behavior is explained by invoking the competition of intra- and intermolecular hydrogen bonding and functional group accessibility in forming intermolecular interactions.

  16. The Austrian x red pine hybrid

    Science.gov (United States)

    W. B. Critchfield

    1963-01-01

    The genetic improvement of red pine (Pinus resinosa Ait.) presents tree breeders with one of their most difficult problems. Not only is this valuable species remarkably uniform, but until 1955 it resisted all attempts to cross it with other pines. In that year red pine and Austrian pine (P. nigra var. austriaca [...

  17. The investigation of wood hydrolysis lignin ability for uranium sorption

    International Nuclear Information System (INIS)

    Rachkova, N.G.; Shuktomova, I.I.; Taskaev, A.I.

    2001-01-01

    The uranium are sorbed in wood hydrolysis lignin efficacious and very strong both in uranyl nitrate solutions and in podsolic soil. It may well be that formation of complexes are possible mechanism of irreversible sorption. The static capacity of lignin are 2.7 mg/g. (author)

  18. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Directory of Open Access Journals (Sweden)

    Andrew P Lerch

    Full Text Available Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae, but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug. and 599 ponderosa (Pinus ponderosa Doug. ex Law pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  19. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Science.gov (United States)

    Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F

    2016-01-01

    Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  20. Lignin decomposition is sustained under fluctuating redox conditions in humid tropical forest soils

    Science.gov (United States)

    Steven J. Hall; Whendee L. Silver; Vitaliy I. Timokhin; Kenneth E. Hammel

    2015-01-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2) variability in surface soils have not been explored. Here, we...

  1. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Ricardo Harakava

    2005-01-01

    Full Text Available Eucalyptus ESTs libraries were screened for genes involved in lignin biosynthesis. This search was performed under the perspective of recent revisions on the monolignols biosynthetic pathway. Eucalyptus orthologues of all genes of the phenylpropanoid pathway leading to lignin biosynthesis reported in other plant species were identified. A library made with mRNAs extracted from wood was enriched for genes involved in lignin biosynthesis and allowed to infer the isoforms of each gene family that play a major role in wood lignin formation. Analysis of the wood library suggests that, besides the enzymes of the phenylpropanoids pathway, chitinases, laccases, and dirigent proteins are also important for lignification. Colocalization of several enzymes on the endoplasmic reticulum membrane, as predicted by amino acid sequence analysis, supports the existence of metabolic channeling in the phenylpropanoid pathway. This study establishes a framework for future investigations on gene expression level, protein expression and enzymatic assays, sequence polymorphisms, and genetic engineering.

  2. Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils

    KAUST Repository

    Xu, Xuezhu

    2013-10-01

    This letter reports a method to produce lignin and cellulose nanofibrils (CNFs) based porous core-shell carbon fibers via co-electrospinning followed by controlled carbonization. Lignin formed the shell of the fiber while CNF network formed the porous core. Polyacrylonitrile (PAN) was added to the lignin solution to increase its electrospinability. CNFs were surface acetylated and dispersed in silicon oil to obtain a homogenous dispersion for electrospinning the porous core. Hollow lignin fibers were also electrospun using glycerin as the core material. FT-IR measurements confirmed the CNF acetylation. SEM micrographs showed the core-shell and hollow fiber nanostructures before and after carbonization. The novel carbon fibers synthesized in this study exhibited increased surface area and porosity that are promising for many advanced applications. © 2013 Elsevier B.V.

  3. Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils

    KAUST Repository

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Chen, Ye; Wu, Xiangfa; Piere, Robert

    2013-01-01

    This letter reports a method to produce lignin and cellulose nanofibrils (CNFs) based porous core-shell carbon fibers via co-electrospinning followed by controlled carbonization. Lignin formed the shell of the fiber while CNF network formed the porous core. Polyacrylonitrile (PAN) was added to the lignin solution to increase its electrospinability. CNFs were surface acetylated and dispersed in silicon oil to obtain a homogenous dispersion for electrospinning the porous core. Hollow lignin fibers were also electrospun using glycerin as the core material. FT-IR measurements confirmed the CNF acetylation. SEM micrographs showed the core-shell and hollow fiber nanostructures before and after carbonization. The novel carbon fibers synthesized in this study exhibited increased surface area and porosity that are promising for many advanced applications. © 2013 Elsevier B.V.

  4. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca; Simmons, Blake A.; Isern, Nancy G.; Markillie, Lye Meng; Nicora, Carrie D.; Norbeck, Angela D.; Taylor, Ronald C.; Aldrich, Joshua T.; Robinson, Errol W.

    2013-08-29

    The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have examined differential expression of the anaerobic isolate Enterobacter lignolyticus SCF1 during growth on lignin. After 48 hours of growth, we used transcriptomics and proteomics to define the enzymes and other regulatory machinery that these organisms use to degrade lignin, as well as metabolomics to measure lignin degradation and monitor the use of lignin and iron as terminal electron acceptors that facilitate more efficient use of carbon. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.

  5. Preparation of Silk Sericin/Lignin Blend Beads for the Removal of Hexavalent Chromium Ions

    Science.gov (United States)

    Kwak, Hyo Won; Shin, Munju; Yun, Haesung; Lee, Ki Hoon

    2016-01-01

    In the present study, novel adsorbents having high adsorption capability and reusability were prepared using agricultural by-products: silk sericin and lignin. Silk sericin and lignin blend beads were successfully prepared using simple coagulation methods for the removal of hexavalent chromium (Cr(VI)) from aqueous solution. A 1 M lithium chloride (LiCl)/dimethyl sulfoxide (DMSO) solvent system successfully dissolved both sericin and lignin and had sufficient viscosity for bead preparation. Compared to the conventional sericin bead adsorbent, sericin/lignin blend beads showed higher Cr(VI) adsorption capacity. The amount of lignin added to the adsorbent greatly affected the adsorption capacity of the beads, and a 50:50 sericin/lignin blend ratio was optimal. Adsorption behavior followed the Freundlich isotherm, which means the adsorption of Cr(VI) occurred on the heterogeneous surface. Cr(VI) adsorption capability increased with temperature because of thermodynamic-kinetic effects. In addition, over 90% of Cr(VI) ions were recovered from the Cr(VI) adsorbed sericin/lignin beads in a 1 M NaOH solution. The adsorption-desorption recycling process was stable for more than seven cycles, and the recycling efficiency was 82%. It is expected that the sericin/lignin beads could be successfully applied in wastewater remediation especially for hazardous Cr(VI) ions in industrial wastewater. PMID:27598142

  6. Preparation of Silk Sericin/Lignin Blend Beads for the Removal of Hexavalent Chromium Ions

    Directory of Open Access Journals (Sweden)

    Hyo Won Kwak

    2016-09-01

    Full Text Available In the present study, novel adsorbents having high adsorption capability and reusability were prepared using agricultural by-products: silk sericin and lignin. Silk sericin and lignin blend beads were successfully prepared using simple coagulation methods for the removal of hexavalent chromium (Cr(VI from aqueous solution. A 1 M lithium chloride (LiCl/dimethyl sulfoxide (DMSO solvent system successfully dissolved both sericin and lignin and had sufficient viscosity for bead preparation. Compared to the conventional sericin bead adsorbent, sericin/lignin blend beads showed higher Cr(VI adsorption capacity. The amount of lignin added to the adsorbent greatly affected the adsorption capacity of the beads, and a 50:50 sericin/lignin blend ratio was optimal. Adsorption behavior followed the Freundlich isotherm, which means the adsorption of Cr(VI occurred on the heterogeneous surface. Cr(VI adsorption capability increased with temperature because of thermodynamic-kinetic effects. In addition, over 90% of Cr(VI ions were recovered from the Cr(VI adsorbed sericin/lignin beads in a 1 M NaOH solution. The adsorption-desorption recycling process was stable for more than seven cycles, and the recycling efficiency was 82%. It is expected that the sericin/lignin beads could be successfully applied in wastewater remediation especially for hazardous Cr(VI ions in industrial wastewater.

  7. Comparative studies on anthraquinone retention following the soda/anthraquinone process using 14C-labelled anthraquinone, and mode of action of anthraquinone on lignins and lignin model components

    International Nuclear Information System (INIS)

    Pfuetze, E.

    1982-01-01

    This dissertation contributes to the clarification of the following questions: how much of the additive is retained in cellulose following soda/anthraquinone-wood pulping; how much anthraquinone can be detected after extraction studies and after a conventional CEHD-bleaching treatment; can differences be detected between soda lignins and soda/anthraquinone lignins with respect to analytical data, spectroscopie characteristics and macromolecular properties; and how do dimeric lignin models with #betta#-arylether structure behave in decomposition studies using the soda/anthraquinone process. (orig./MG) [de

  8. Anti-HCV effect of Lentinula edodes mycelia solid culture extracts and low-molecular-weight lignin.

    Science.gov (United States)

    Matsuhisa, Koji; Yamane, Seiji; Okamoto, Toru; Watari, Akihiro; Kondoh, Masuo; Matsuura, Yoshiharu; Yagi, Kiyohito

    2015-06-19

    Lentinula edodes mycelia solid culture extract (MSCE) contains several bioactive molecules, including some polyphenolic compounds, which exert immunomodulatory, antitumor, and hepatoprotective effects. In this study, we examined the anti-hepatitis C virus (HCV) activity of MSCE and low-molecular-weight lignin (LM-lignin), which is the active component responsible for the hepatoprotective effect of MSCE. Both MSCE and LM-lignin inhibited the entry of two HCV pseudovirus (HCVpv) types into Huh7.5.1 cells. LM-lignin inhibited HCVpv entry at a lower concentration than MSCE and inhibited the entry of HCV particles in cell culture (HCVcc). MSCE also inhibited HCV subgenome replication. LM-lignin had no effect on HCV replication, suggesting that MSCE contains additional active substances. We demonstrate here for the first time the anti-HCV effects of plant-derived LM-lignin and MSCE. The hepatoprotective effect of LM-lignin suggests that lignin derivatives, which can be produced in abundance from existing plant resources, may be effective in the treatment of HCV-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Thermochemical properties of cellulose acetate blends with acetosolv and sawdust lignin: A comparative study.

    Science.gov (United States)

    Peredo, Karol; Escobar, Danilo; Vega-Lara, Johana; Berg, Alex; Pereira, Miguel

    2016-02-01

    Sawdust (SD) and cotton-lignin blends (CLB) were acetylated and the effect of lignin type and content on thermoplastic properties of the acetate produced was studied. The lignin in samples did not significantly affect the degree of acetylation. An increase in acetyl groups of 1-3% was observed in acetylated SD (ASD) unlike acetylated CLB (ACLB). Thermogravimetric analysis showed two thermal degradation zones; one at 190-200°C and the other at 330-370°C. The early degradation in ASD corresponds to galactoglucomannans while that in ACLB corresponds to the low-molecular-weight lignin. The second degradation is due to decomposition of cellulose acetate and high-molecular-weight lignin. DSC analysis showed homogeneous behaviour in ASD with only one glass transition temperature (Tg) at 170-180°C, unlike ACLB that showed two Tgs at 170-180°C. Sawdust acetylation, taking advantage of its residual lignin, showed higher reactivity and miscibility as compared to the same material produced by adding previously extracted lignin on cotton. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  11. Southern Pine Beetle Information System (SPBIS)

    Science.gov (United States)

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  12. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.; Chapple, Clint; Venugopalan, Nagarajan; Fischetti, Robert F.; Makowski, Lee

    2016-06-17

    Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content were grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with

  13. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.

    Science.gov (United States)

    Lamminpää, Kaisa; Ahola, Juha; Tanskanen, Juha

    2015-02-01

    In this study, the effects of kraft lignin (Indulin AT) on acid-catalysed xylose dehydration into furfural were studied in formic and sulphuric acids. The study was done using D-optimal design. Three variables in both acids were included in the design: time (20-80 min), temperature (160-180°C) and initial lignin concentration (0-20 g/l). The dependent variables were xylose conversion, furfural yield, furfural selectivity and pH change. The results showed that the xylose conversion and furfural yield decreased in sulphuric acid, while in formic acid the changes were minor. Additionally, it was showed that lignin has an acid-neutralising capacity, and the added lignin increased the pH of reactant solutions in both acids. The pH rise was considerably lower in formic acid than in sulphuric acid. However, the higher pH did not explain all the changes in conversion and yield, and thus lignin evidently inhibits the formation of furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Sugarcane expressed sequences tags (ESTs encoding enzymes involved in lignin biosynthesis pathways

    Directory of Open Access Journals (Sweden)

    Ramos Rose Lucia Braz

    2001-01-01

    Full Text Available Lignins are phenolic polymers found in the secondary wall of plant conductive systems where they play an important role by reducing the permeability of the cell wall to water. Lignins are also responsible for the rigidity of the cell wall and are involved in mechanisms of resistance to pathogens. The metabolic routes and enzymes involved in synthesis of lignins have been largely characterized and representative genes that encode enzymes involved in these processes have been cloned from several plant species. The synthesis of lignins is liked to the general metabolism of the phenylpropanoids in plants, having enzymes (e.g. phenylalanine ammonia-lyase (PAL, cinnamate 4-hydroxylase (C4H and caffeic acid O-methyltransferase (COMT common to other processes as well as specific enzymes such as cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. Some maize and sorghum mutants, shown to have defective in CAD and/or COMT activity, are easier to digest because they have a reduced lignin content, something which has motivated different research groups to alter the lignin content and composition of model plants by genetic engineering try to improve, for example, the efficiency of paper pulping and digestibility. In the work reported in this paper, we have made an inventory of the sugarcane expressed sequence tag (EST coding for enzymes involved in lignin metabolism which are present in the sugarcane EST genome project (SUCEST database. Our analysis focused on the key enzymes ferulate-5-hydroxylase (F5H, caffeic acid O-methyltransferase (COMT, caffeoyl CoA O-methyltransferase (CCoAOMT, hydroxycinnamate CoA ligase (4CL, cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. The comparative analysis of these genes with those described in other species could be used as molecular markers for breeding as well as for the manipulation of lignin metabolism in sugarcane.

  15. New insights into the structure and composition of technical lignins : A comparative characterisation study

    NARCIS (Netherlands)

    Constant, Sandra|info:eu-repo/dai/nl/374650519; Wienk, Hans L J|info:eu-repo/dai/nl/203884884; Frissen, Augustinus E.; Peinder, Peter De|info:eu-repo/dai/nl/325810818; Boelens, Rolf|info:eu-repo/dai/nl/070151407; Van Es, Daan S.; Grisel, Ruud J H; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397; Huijgen, Wouter J J; Gosselink, Richard J A; Bruijnincx, Pieter C A|info:eu-repo/dai/nl/33799529X

    2016-01-01

    Detailed insight into the structure and composition of industrial (technical) lignins is needed to devise efficient thermal, bio- or chemocatalytic valorisation strategies. Six such technical lignins covering three main industrial pulping methods (Indulin AT Kraft, Protobind 1000 soda lignin and

  16. New insights into the structure and composition of technical lignins: a comparative characterisation study

    NARCIS (Netherlands)

    Constant, Sandra; Wienk, Hans L.J.; Frissen, A.E.; Peinder, de Peter; Boelens, Rolf; Es, van D.S.; Grisel, Ruud J.H.; Weckhuysen, Bert M.; Huijgen, W.J.J.; Gosselink, R.J.A.; Bruijnincx, Pieter C.A.

    2016-01-01

    Detailed insight into the structure and composition of industrial (technical) lignins is needed to devise efficient thermal, bio- or chemocatalytic valorisation strategies. Six such technical lignins covering three main industrial pulping methods (Indulin AT Kraft, Protobind 1000 soda lignin and

  17. Imidazolium-Based Ionic Liquids as Efficient Reagents for the C-O Bond Cleavage of Lignin.

    Science.gov (United States)

    Thierry, Marina; Majira, Amel; Pégot, Bruce; Cezard, Laurent; Bourdreux, Flavien; Clément, Gilles; Perreau, François; Boutet-Mercey, Stéphanie; Diter, Patrick; Vo-Thanh, Giang; Lapierre, Catherine; Ducrot, Paul-Henri; Magnier, Emmanuel; Baumberger, Stéphanie; Cottyn, Betty

    2018-01-23

    The demethylation of lignin in ionic liquids (ILs) was investigated by using pure lignin model monomers and dimers together with dioxane-isolated lignins from poplar, miscanthus, and maize. Different methylimidazolium ILs were compared and the samples were treated with two different heating processes: microwave irradiation and conventional heating in a sealed tube. The conversion yield and influence of the treatment on the lignin structure were assessed by 31 P NMR spectroscopy, size-exclusion chromatography, and thioacidolysis. The acidic methylimidazolium IL [HMIM]Br was shown to be an effective combination of solvent and reagent for the demethylation and depolymerization of lignin. The relatively mild reaction conditions, the clean work-up, and the ability to reuse the IL makes the described procedure an attractive and new green method for the conversion of lignin to produce phenol-rich lignin oligomers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lignin phenols used to infer organic matter sources to Sepetiba Bay - RJ, Brasil

    Science.gov (United States)

    Rezende, C. E.; Pfeiffer, W. C.; Martinelli, L. A.; Tsamakis, E.; Hedges, J. I.; Keil, R. G.

    2010-04-01

    Lignin phenols were measured in the sediments of Sepitiba Bay, Rio de Janeiro, Brazil and in bedload sediments and suspended sediments of the four major fluvial inputs to the bay; São Francisco and Guandu Channels and the Guarda and Cação Rivers. Fluvial suspended lignin yields (Σ8 3.5-14.6 mgC 10 g dw -1) vary little between the wet and dry seasons and are poorly correlated with fluvial chlorophyll concentrations (0.8-50.2 μgC L -1). Despite current land use practices that favor grassland agriculture or industrial uses, fluvial lignin compositions are dominated by a degraded leaf-sourced material. The exception is the Guarda River, which has a slight influence from grasses. The Lignin Phenol Vegetation Index, coupled with acid/aldehyde and 3.5 Db/V ratios, indicate that degraded leaf-derived phenols are also the primary preserved lignin component in the bay. The presence of fringe Typha sp. and Spartina sp. grass beds surrounding portions of the Bay are not reflected in the lignin signature. Instead, lignin entering the bay appears to reflect the erosion of soils containing a degraded signature from the former Atlantic rain forest that once dominated the watershed, instead of containing a significant signature derived from current agricultural uses. A three-component mixing model using the LPVI, atomic N:C ratios, and stable carbon isotopes (which range between -26.8 and -21.8‰) supports the hypothesis that fluvial inputs to the bay are dominated by planktonic matter (78% of the input), with lignin dominated by leaf (14% of the input) over grass (6%). Sediments are composed of a roughly 50-50 mixture of autochthonous material and terrigenous material, with lignin being primarily sourced from leaf.

  19. Drivers of lignin composition in boreal forest organic soils across a climate gradient

    Science.gov (United States)

    Myers-Pigg, A.; Kaiser, K.; Benner, R. H.; Ziegler, S. E.

    2017-12-01

    Lignin diagenesis in soils, including the cumulative effects of degradation and leaching, increases with experimental warming, signifying a potentially important change relevant to soil organic matter accumulation and fate. However, decadal to centennial climatic effects including changes in precipitation, litterfall inputs, and understory sources, on lignin composition are poorly constrained. We examined the lignin content and composition, via cupric oxide oxidation (CuO), within the organic layers of podzolic soils under similar balsam fir forests across a latitudinal climate gradient in Atlantic Canada. By exploring variation in lignin by both soil depth and climate region, this study informs on the climate drivers of lignin stability within boreal forest soil. A two-way analysis of variance (ANOVA) revealed significant variations in common signatures of CuO by-products with depth and/or site, indicating source and/or diagenetic controllers. Importantly, none of these signatures, with the exception of p-hydroxyphenols, exhibited a site by depth interaction indicating a similar degree of diagenetic alternation with depth across climates. The site by depth interaction for p-hydroxyphenols is a result of greater moss input in the northernmost site. To better elucidate this climate-induced source variation on our interpretation of lignin diagenesis, a principle component (PCA) model was built using signatures varying by site (pforest soils. A lignin diagenesis PCA model was built using (1) all non-moss related signatures identified in the first PCA model, and (2) scores for additional sites within each region, calculated from modeled lignin composition based on 13C-NMR spectra. The combined results indicate that the lignin diagenetic states among soils is similar, despite the large increase in soil C turnover with climate warming across this transect. Thus our results indicate that shifts in moss contribution, and not increased diagenesis, controls CuO by

  20. Lignin-Based Materials Through Thiol-Maleimide "Click" Polymerization.

    Science.gov (United States)

    Buono, Pietro; Duval, Antoine; Averous, Luc; Habibi, Youssef

    2017-03-09

    In the present report an environmentally friendly approach to transforming renewable feedstocks into value-added materials is proposed. This transformation pathway was conducted under green conditions, without the use of solvents or catalyst. First, controlled modification of lignin, a major biopolymer present in wood and plants, was achieved by esterification with 11-maleimidoundecylenic acid (11-MUA), a derivative from castor oil that contains maleimide groups, following its transformation into 11-maleimidoundecanoyl chloride (11-MUC). Different degrees of substitution were achieved by using various amounts of the 11-MUC, leading to an efficient conversion of lignin hydroxy groups, as demonstrated by 1 H and 31 P NMR analyses. These fully biobased maleimide-lignin derivatives were subjected to an extremely fast (ca. 1 min) thiol-ene "click" polymerization with thiol-containing linkers. Aliphatic and aromatic thiol linkers bearing two to four thiol groups were used to tune the reactivity and crosslink density. The properties of the resulting materials were evaluated by swelling tests and thermal and mechanical analyses, which showed that varying the degree of functionality of the linker and the linker structure allowed accurate tailoring of the thermal and mechanical properties of the final materials, thus providing interesting perspectives for lignin in functional aromatic polymers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structural characterization of guaiacyl-rich lignins in flax (Linum usitatissimum) fibers and shives.

    Science.gov (United States)

    del Río, José C; Rencoret, Jorge; Gutiérrez, Ana; Nieto, Lidia; Jiménez-Barbero, Jesús; Martínez, Ángel T

    2011-10-26

    The structural characteristics of the lignins from flax (Linum usitatissimum) fibers and shives were studied. Significant differences in the content and composition of the lignin from both parts were observed. The lignin contents were 3.8% in the fibers and 29.0% in the shives. Analysis by Py-GC/MS indicated a H:G:S molar ratio of 13:72:15 in the milled wood lignin (MWL) isolated from flax fibers and a molar ratio of 5:87:8 in the MWL isolated from flax shives. In addition, 2D-NMR showed a predominance of β-O-4' aryl ether linkages, followed by β-5' phenylcoumaran and β-β' resinol-type linkages in both MWLs, with a higher content of condensed linkages in flax shives. Thioacidolysis (followed by Raney nickel desulfurization) gave further information on the lignin units involved in the different linkages and confirmed the enrichment of G units. The thioacidolysis dimers released were similar from both lignins, with a predominance of the β-5' followed by β-1' and 5-5' structures.

  2. From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization

    Directory of Open Access Journals (Sweden)

    Pere ePicart

    2015-09-01

    Full Text Available The set-up of biorefineries for the valorization of lignocellulosic biomass will be core in the future to reach sustainability targets. In this area, biomass-degrading enzymes are attracting significant research interest for their potential in the production of chemicals and biofuels from renewable feedstock. Gluthatione-dependent β-etherases are emerging enzymes for the biocatalytic depolymerization of lignin, a heterogeneous aromatic polymer abundant in Nature. They selectively catalyze the reductive cleavage of β-O-4 aryl-ether bonds which account for 45-60% of linkages present in lignin. Hence, application of β-etherases in lignin depolymerization would enable a specific lignin breakdown, selectively yielding (valuable low-molecular-mass aromatics. Albeit β-etherases have been biochemically known for decades, only very recently novel β-etherases have been identified and thoroughly characterized for lignin valorization, expanding the enzyme toolbox for efficient β-O-4 aryl-ether bond cleavage. Given their emerging importance and potential, this mini-review discusses recent developments in the field of β-etherase biocatalysis covering all aspects from enzyme identification to biocatalytic applications with real lignin samples.

  3. From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization.

    Science.gov (United States)

    Picart, Pere; de María, Pablo Domínguez; Schallmey, Anett

    2015-01-01

    The set-up of biorefineries for the valorization of lignocellulosic biomass will be core in the future to reach sustainability targets. In this area, biomass-degrading enzymes are attracting significant research interest for their potential in the production of chemicals and biofuels from renewable feedstock. Glutathione-dependent β-etherases are emerging enzymes for the biocatalytic depolymerization of lignin, a heterogeneous aromatic polymer abundant in nature. They selectively catalyze the reductive cleavage of β-O-4 aryl-ether bonds which account for 45-60% of linkages present in lignin. Hence, application of β-etherases in lignin depolymerization would enable a specific lignin breakdown, selectively yielding (valuable) low-molecular-mass aromatics. Albeit β-etherases have been biochemically known for decades, only very recently novel β-etherases have been identified and thoroughly characterized for lignin valorization, expanding the enzyme toolbox for efficient β-O-4 aryl-ether bond cleavage. Given their emerging importance and potential, this mini-review discusses recent developments in the field of β-etherase biocatalysis covering all aspects from enzyme identification to biocatalytic applications with real lignin samples.

  4. Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)

    Science.gov (United States)

    Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...

  5. Lignin valorization through integrated biological funneling and chemical catalysis

    Science.gov (United States)

    Linger, Jeffrey G.; Vardon, Derek R.; Guarnieri, Michael T.; Karp, Eric M.; Hunsinger, Glendon B.; Franden, Mary Ann; Johnson, Christopher W.; Chupka, Gina; Strathmann, Timothy J.; Pienkos, Philip T.; Beckham, Gregg T.

    2014-01-01

    Lignin is an energy-dense, heterogeneous polymer comprised of phenylpropanoid monomers used by plants for structure, water transport, and defense, and it is the second most abundant biopolymer on Earth after cellulose. In production of fuels and chemicals from biomass, lignin is typically underused as a feedstock and burned for process heat because its inherent heterogeneity and recalcitrance make it difficult to selectively valorize. In nature, however, some organisms have evolved metabolic pathways that enable the utilization of lignin-derived aromatic molecules as carbon sources. Aromatic catabolism typically occurs via upper pathways that act as a “biological funnel” to convert heterogeneous substrates to central intermediates, such as protocatechuate or catechol. These intermediates undergo ring cleavage and are further converted via the β-ketoadipate pathway to central carbon metabolism. Here, we use a natural aromatic-catabolizing organism, Pseudomonas putida KT2440, to demonstrate that these aromatic metabolic pathways can be used to convert both aromatic model compounds and heterogeneous, lignin-enriched streams derived from pilot-scale biomass pretreatment into medium chain-length polyhydroxyalkanoates (mcl-PHAs). mcl-PHAs were then isolated from the cells and demonstrated to be similar in physicochemical properties to conventional carbohydrate-derived mcl-PHAs, which have applications as bioplastics. In a further demonstration of their utility, mcl-PHAs were catalytically converted to both chemical precursors and fuel-range hydrocarbons. Overall, this work demonstrates that the use of aromatic catabolic pathways enables an approach to valorize lignin by overcoming its inherent heterogeneity to produce fuels, chemicals, and materials. PMID:25092344

  6. The chemical oxidation of lignin found in Sappi Saiccor dissolving ...

    African Journals Online (AJOL)

    Sappi Saiccor (situated in Durban, South Africa) dissolving pulp mill effluent, produced from an acid bisulphite pulping process, uses acacia and eucalyptus hardwoods to produce a unique and different blend of lignin that has not been previously studied. The chemical oxidation of lignin found in Sappi Saiccor's effluent has ...

  7. The Paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes

    OpenAIRE

    Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martinez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex

    2012-01-01

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstruc...

  8. Conditions for selective degradation of lignin by the fungus Ganoderma australis

    Energy Technology Data Exchange (ETDEWEB)

    Rios, S.; Eyzaguirre, J. (Universidad Catolica de Chile, Santiago (Chile). Lab. de Bioquimica)

    1992-08-01

    The white-rot fungus Ganoderma australis selectively degrades lignin in the ecosystem 'palo podrido'. Using conditions that simulate those of 'palo podrido' in the laboratory, it was found that low nitrogen content and low O{sub 2} tension stimulate the production of manganese peroxidase and lignin degradation, and depress cellulose degradation and cellulase production. The inverse is found at high nitrogen concentration and high O{sub 2} tension. This agrees with previous results indicating that low O{sub 2} tension and low nitrogen stimulate selective lignin degradation by this fungus. (orig.).

  9. Influence of lignin on morphology, structure and thermal behavior of polylactic acid-based biocomposites

    Science.gov (United States)

    Canetti, Maurizio; Cacciamani, Adriana; Bertini, Fabio

    2016-05-01

    Polylactic acid (PLA) is a thermoplastic biodegradable polymer that can be made from annually renewable resources. Lignin is a natural amorphous polyphenolic macromolecule inexpensive and easily available. In the present study PLA and acetylated lignin biocomposites were prepared by casting from chloroform solution. PLA can crystallize from the melt in the α and α' forms, depending on the adopted crystallization conditions. The presence of the lignin in the biocomposites can interfere with the crystal formation process. Isothermal crystallizations were performed at different temperatures, the presence of lignin causes an increase of the time of crystallization, while the overall crystallization rate and the spherulite radial growth rate decrease with enhancing the lignin content in the biocomposites.

  10. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties.

    Science.gov (United States)

    Lu, Xianqin; Wang, Can; Li, Xuezhi; Zhao, Jian

    2017-12-01

    Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    OpenAIRE

    Qin, Chengrong; Clarke, Kimberley; Li, Kecheng

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups invo...

  12. Enzymatic Transesterification of Kraft Lignin with Long Acyl Chains in Ionic Liquids

    OpenAIRE

    Hulin, Lise; Husson, Eric; Bonnet, Jean-Pierre; Stevanovic, Tatjana; Sarazin, Catherine

    2015-01-01

    Valorization of lignin is essential for the economic viability of the biorefinery concept. For example, the enhancement of lignin hydrophobicity by chemical esterification is known to improve its miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. To this end and due to its many reactive hydroxyl groups, lignin is a challenging macromolecular substrate for biocatalyzed esterification in non-conventional media. The present work describes for the f...

  13. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection.

    Science.gov (United States)

    Gutiérrez-Hernández, José Manuel; Escalante, Alfredo; Murillo-Vázquez, Raquel Nalleli; Delgado, Ezequiel; González, Francisco Javier; Toríz, Guillermo

    2016-10-01

    The use of sunscreens is essential for preventing skin damage and the potential appearance of skin cancer in humans. Inorganic active components such as zinc oxide (ZnO) have been used commonly in sunscreens due to their ability to block UVA radiation. This ultraviolet (UV) protection might be enhanced to cover the UVB and UVC bands when combined with other components such as titanium dioxide (TiO2). In this work we evaluate the photoprotection properties of organic nanoparticles made from lignin in combination with ZnO nanoparticles as active ingredients for sunscreens. Lignin nanoparticles were synthesized from Agave tequilana lignin. Two different pulping methods were used for dissolving lignin from agave bagasse. ZnO nanoparticles were synthesized by the precipitation method. All nanoparticles were characterized by SEM, UV-Vis and FT-IR spectroscopy. Nanoparticles were mixed with a neutral vehicle in different concentrations and in-vitro sun protection factor (SPF) values were calculated. Different sizes of spherical lignin nanoparticles were obtained from the spent liquors of two different pulping methods. ZnO nanoparticles resulted with a flake shape. The mixture of all components gave SPF values in a range between 4 and 13. Lignin nanoparticles showed absorption in the UVB and UVC regions which can enhance the SPF value of sunscreens composed only of zinc oxide nanoparticles. Lignin nanoparticles have the added advantage of being of organic nature and its brown color can be used to match the skin tone of the person using it. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels

    Directory of Open Access Journals (Sweden)

    Chris D. Castro

    2015-01-01

    Full Text Available Organic xerogels were functionalized by incorporating sugarcane bagasse lignin from soda pulping black liquor, not used so far in this materials, with the aim of introducing new functional groups on traditional gels that could improve its adsorptive capacity. Two mixing designs were applied to identify the reactive combinations that allow a well gel formation and to adjust models that predict physical properties. The designs study five components: resorcinol (R, 0.04–0.3, lignin (L, 0.004–0.14, formaldehyde (F, 0.08–0.17, water (W, 0.45–0.8, and NaOH (C, 0.0003–0.0035. The first experimental design was an extreme vertices design and its results showed shrinkage between 4.3 and 59.7 and a bulk density from 0.54 to 1.3; a mass ratio LR/F near 1.5 was required for gel formation. In the second design a D-Optimal was used to achieve better adjusted coefficients and incorporate the largest possible amount of lignin in the gels. Bulk density varies from 0.42 to 0.9, shrinkage varies from 3.42 to 25.35, and specific surface area reaches values of 451.86 m2/g with 13% lignin and 270 m2/g with 27% lignin. High catalyst content improves lignin dissolution and increase shrinkage and bulk density of xerogels and bulk density. Lignin contributes to reducing shrinkage and specific surface area due to his compact and rigid structure.

  15. Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites.

    Science.gov (United States)

    Bajwa, Dilpreet S; Wang, Xinnan; Sitz, Evan; Loll, Tyler; Bhattacharjee, Sujal

    2016-08-01

    Lignin is the most abundant of renewable polymers next to cellulose with a global annual production of 70million tons, largely produced from pulping and second generation biofuel industries. Low value of industrial lignin makes it an attractive biomaterial for wide range of applications. The study investigated the application of wheat straw and corn stover based lignin derived from ethanol production for use in thermoset biocomposites. The biocomposite matrix constituted a two component low viscosity Araldite(®)LY 8601/Aradur(®) 8602 epoxy resin system and the lignin content varied from 0 to 25% by weight fraction. The analysis of the physical and mechanical properties of the biocomposites show bioethanol derived lignin can improve selective properties such as impact strength, and thermal stability without compromising the modulus and strength attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy

    NARCIS (Netherlands)

    Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; Dam, van J.E.G.

    2004-01-01

    Fourier-transformed infrared spectroscopy (FT-IR) was evaluated as an analytical technique for the estimation of the chemical composition and functional properties of lignin. A sample set containing various non-wood, hardwood and softwood lignins isolated by different processing technologies was

  17. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    Science.gov (United States)

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.

  18. Properties of Lignin from Oil Palm Empty Fruit Bunch and Its Application for Plywood Adhesive

    Directory of Open Access Journals (Sweden)

    Lucky Risanto

    2014-10-01

    Full Text Available Lignin from lignocellulosic biomass is a potential biopolymer for wood adhesive. The aims of this study were to characterize lignin isolated from the black liquor of oil palm empty fruit bunch fiber pretreated with steam explosion in alkaline conditions and to examine the bond quality of aqueous polymer isocyanate (API adhesive prepared from lignin, natural rubber latex (NRL, and polyvinyl alcohol (PVA as base polymers with isocyanate crosslinkers. Lignin was precipitated from the black liquor by adding hydrochloric acid; then the precipitate was separated by filtration, thoroughly washed with water up to pH 2 and pH 5, and dried. The isolated lignin was characterized by ultimate analysis, UV spectroscopy, FT-IR spectroscopy, and thermal analysis. Three-layer plywood samples were prepared, and the bond strengths of the plywood samples were determined in dry conditions and after cyclic boiling. The lignin isolates with different pH values did not have significantly different chemical and thermal properties. Both lignin isolates had similar C, H, and O contents, identical functional groups in the FTIR spectra, similar absorption in the UV spectra, and high decomposition temperatures. The base polymers composition that could produce API adhesive for exterior applications was NRL/PVA/lignin (4/4/2. The use of more lignin in the adhesive formulation decreased the bond strength of the plywood.

  19. Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation.

    Science.gov (United States)

    Pang, Yuxia; Wang, Shengwen; Qiu, Xueqing; Luo, Yanling; Lou, Hongming; Huang, Jinhao

    2017-12-20

    Lignin is a vastly underutilized biomass resource. The preparation of water-dispersed lignin nanoparticles is an effective way to realize the high-value utilization of lignin. However, the currently reported preparation methods of lignin nanoparticles still have some drawbacks, such as the requirement for toxic organic solvent or chemical modification, complicated operation process, and poor dispersibility. Here, lignin/sodium dodecyl sulfate (SDS) composite nanoparticles (LSNPs) with outstanding water dispersibility and a size range of 70-200 nm were facilely prepared via acidifying the mixed basic solution of alkaline lignin and SDS. No harsh chemical was needed. The formation mechanism was systematically studied. Results indicated that the LSNPs were obtained by acid precipitation of the mixed micelles formed by the self-assembly of lignin and SDS. In addition, on the basis of the LSNP-stabilized Pickering emulsions, lignin/polyurea composite microcapsules combining the excellent chemical stability of a synthetic polyurea shell with the fantastic antiphotolysis and antioxidant properties of lignin were successfully prepared.

  20. Characteristics of Lignin Fractions from Dilute Acid Pretreated Switchgrass and Their Effect on Cellobiohydrolase from Trichoderma longibrachiatum

    Directory of Open Access Journals (Sweden)

    Lan Yao

    2018-02-01

    Full Text Available To investigate the interactions between acid pretreated switchgrass lignin and cellobiohydrolase (CBH, three different lignin fractions were isolated from dilute acid pretreated switchgrass by (i ethanol extraction, followed by (ii dioxane/H2O extraction, and (iii cellulase treatment, respectively. Structural properties of each lignin fraction were elucidated by GPC, 13C-NMR, and 2D-HSQC NMR analyses. The adsorptions of CBH to the isolated lignin fractions were also studied by Langmuir adsorption isotherms. Ethanol-extractable lignin fraction, mainly composed of syringyl (S and guaiacyl (G units, had the lowest molecular weight, while dioxane/H2O-extracted lignin fraction had the lowest S/G ratio with higher content of p-coumaric acid (pCA unit. The residual lignin fraction after enzymatic treatment had the highest S/G ratio without hydroxyphenyl (H unit. Strong associations were found between lignin properties such as lignin composition and S/G ratio and its non-productive enzyme adsorption factors including the maximum adsorption capacity and binding strength.

  1. Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali‑oxygen black liquor.

    Science.gov (United States)

    Jiang, Bo; Zhang, Yu; Gu, Lihui; Wu, Wenjuan; Zhao, Huifang; Jin, Yongcan

    2018-05-17

    Alkali‑oxygen cooking of lignocellulose offers lignin many structural properties and bioactivities for biorefinery. In this work, milled wood lignin (MWL) and alkali‑oxygen lignin (AOL) were isolated from rice straw and alkali‑oxygen black liquor, respectively. The lignin structure was characterized by spectroscopy and wet chemistry. Antioxidant activity of lignins was assessed by DPPH·and ABTS scavenging ability assay. Results showed the oxidization and condensation of lignin occurred during alkali‑oxygen cooking. The p-hydroxyphenyl was more easily removed from rice straw than guaiacyl and syringyl units. The ester or ether linkages derived from hydroxycynnamic acids, and the main interunit linkages, i.e. β-O-4' bonds, were mostly cleaved. Lignin-xylan complex had high reactivity under alkali‑oxygen condition. Tricin, incorporated into lignin, was detected in MWL but was absent in AOL. Nitrobenzene oxidation showed MWL can well represent the protolignin of rice straw, and the products yield decreased dramatically after alkali‑oxygen cooking. AOL had higher radical scavenging ability than MWL indicating alkali‑oxygen cooking was an effective pathway for the enhancement of antioxidant activity of lignin. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content

    Directory of Open Access Journals (Sweden)

    Masarin Fernando

    2011-12-01

    Full Text Available Abstract Background The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples. The enzymatic digestion of untreated and chemically delignified samples was evaluated to advance the performance of the sugarcane residue (bagasse in cellulosic-ethanol production processes. Results The ranges for the percentages of glucan, hemicellulose, lignin, and extractive (based on oven-dry biomass of the experimental hybrids and reference samples were 38% to 43%, 25% to 32%, 17% to 24%, and 1.6% to 7.5%, respectively. The samples with the smallest amounts of lignin did not produce the largest amounts of total polysaccharides. Instead, a variable increase in the mass of a number of components, including extractives, seemed to compensate for the reduction in lignin content. Hydroxycinnamic acids accounted for a significant part of the aromatic compounds in the samples, with p-coumaric acid predominating, whereas ferulic acid was present only in low amounts. Hydroxycinnamic acids with ester linkage to the hemicelluloses varied from 2.3% to 3.6%. The percentage of total hydroxycinnamic acids (including the fraction linked to lignin through ether linkages varied from 5.0% to 9.2%, and correlated to some extent with the lignin content. These clones released up to 31% of glucose after 72 hours of digestion with commercial cellulases, whereas chemically delignified samples led to cellulose conversion values of more than 80%. However, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during

  3. SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum

    Science.gov (United States)

    Lignin in plant biomass represents a target for engineering strategies towards the development of a sustainable bioeconomy. In addition to the conventional lignin monomers, namely p-coumaryl, coniferyl and sinapyl alcohols, tricin has been shown to be part of the native lignin polymer in certain mon...

  4. Chemoselective Methylation of Phenolic Hydroxyl Group Prevents Quinone Methide Formation and Repolymerization During Lignin Depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; Isern, Nancy G.; Cort, John R.; Simmons, Blake A.; Singh, Seema

    2017-03-30

    Chemoselective blocking of the phenolic hydroxyl (Ar-OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar-OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. This approach could be directed toward alteration of natural lignification processes to produce biomass more amenable to chemical depolymerization.

  5. New Insights Toward Quantitative Relationships between Lignin Reactivity to Monomers and Their Structural Characteristics.

    Science.gov (United States)

    Ma, Ruoshui; Zhang, Xiumei; Wang, Yi; Zhang, Xiao

    2018-04-27

    The heterogeneous and complex structural characteristics of lignin present a significant challenge to predict its processability (e.g. depolymerization, modifications etc) to valuable products. This study provides a detailed characterization and comparison of structural properties of seven representative biorefinery lignin samples derived from forest and agricultural residues, which were subjected to representative pretreatment methods. A range of wet chemistry and spectroscopy methods were applied to determine specific lignin structural characteristics such as functional groups, inter-unit linkages and peak molecular weight. In parallel, oxidative depolymerization of these lignin samples to either monomeric phenolic compounds or dicarboxylic acids were conducted, and the product yields were quantified. Based on these results (lignin structural characteristics and monomer yields), we demonstrated for the first time to apply multiple-variable linear estimations (MVLE) approach using R statistics to gain insight toward a quantitative correlation between lignin structural properties and their conversion reactivity toward oxidative depolymerization to monomers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.

    Science.gov (United States)

    Baptista, C; Robert, D; Duarte, A P

    2008-05-01

    This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.

  7. EFFECT OF LIGNIN CONTENT OF Eucalyptus globulus WOOD IN KRAFT PULPING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Gabriel Valim Cardoso

    2011-03-01

    Full Text Available In this research, it was analyzed the lignin content effect of Eucalyptus globulus wood in kraft pulping optimization. Seventy-two laboratory cooking were made with wood chips obtained from six Eucalyptus globulus trees selected from a group of 50 trees. The wood chips from three trees with the lowest lignin content, with average 20,53%, were mixed proportionally based on the tree weights, obtaining the sample of low lignin content wood. The same was made to obtain the sample for wood chips with the highest lignin content, with average 23,02%. The two lignin levels were statistically different. The two wood samples had basic densities statistically not different. Using three maximum temperatures levels (160, 165 and 170ºC, and three active alkali charged (17, 18,5 and 20%, the wood chips were converted to kraft pulps. The pulps were then characterized to analyze the influence of the distinct treatments employed in the cooking on their properties. The effect of the cooking conditions was expressed by mathematical models in order to determine the optimum points for each of the evaluated properties. The optimization process indicated maximum temperature of 168ºC, and active alkali of 19%, for maximum kraft pulping yield to achieve kappa number 18; this result was for woods with low lignin content. For woods containing the high lignin content, the optimization showed maximum cooking temperature of 169ºC and active alkali of 19% for kappa number of 18. The average reduction of 2,49% in wood lignin content resulted a correspondent gain of 2,2% in the kraft yield (o.d. basis and a reduction on the active alkali charge of 1,2% (o.d. basis to achieve kappa numbers from 16 to 19, preserving pulp properties. If the option is to work with kappa number 19 instead of 16, the gain in kraft yield is approximately 2%. Therefore, when working with low lignin content wood and kappa number 19 instead of 16, a substantial gain of approximately 4,2% is obtained

  8. Density functional theory study of spirodienone stereoisomers in lignin

    Science.gov (United States)

    Thomas Elder; Laura Berstis; Gregg T. Beckham; Michael F. Crowley

    2017-01-01

    The spirodienone structure in lignin is a relatively recent discovery, and it has been found to occur in lignin of various plant species at concentrations of ∼3%, which is sufficiently high to be important for better understanding of its properties and reactivity. The cyclic structure, with a β-1 bond, has been proposed to be a precursor for acyclic β-1 linkages in...

  9. Retention of lignin in seagrasses: angiosperms that returned to the sea

    NARCIS (Netherlands)

    Klap, V.A.; Hemminga, M.A.; Boon, J.J.

    2000-01-01

    Using Curie-point Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS) and Direct Temperature-resolved Mass Spectrometry (DT-MS), lignin was detected in highly purified preparations (Milled Wood Lignin = MWL) of various tissues of the seagrasses Zostera marina and Posidonia oceanica. The results

  10. Insect biodiversity reduction of pine woods in southern Greece caused by the pine scale (Marchalina hellenica)

    Energy Technology Data Exchange (ETDEWEB)

    Petrakis, P. V.; Spanos, K.; Feest, A.

    2011-07-01

    This paper deals with the impact of the pine scale (Marchalina hellenica Gennadius, Hemiptera, Sternorrhyncha, Margarodidae) on the insect biodiversity of pinewoods in Attica, Greece. The comparison of biodiversities was done by estimating the biodiversity by the Ewens-Caswells V statistic in a set of nine sites each containing two linetransects. Transects pairs went through free and infested pine woods from the pine scale and each one had several tenth hectare plots on both sides. The ecosystem temperature (= disorder) of the sites was computed and found high, together with the idiosyncratic temperatures (= susceptibility to extinction) of the 158 species in order to detect local extinctions. The indicator values of insect species were computed on the basis of the relative cover of each plant species. The main findings of this study are (1) the reduction of insect species biodiversity because of the introduction of the pine scale, (2) the moderate increase of disorder in pine scale infested sites,(3) many insect species can characterize site groups but none of them can distinguish infested from pine scale free sites. The introduction of pine scale in pine woods disturbs their insect fauna before its influence to the floristic composition and the associated vegetation structure appears. The causes behind this reduction of biodiversity and the anthropogenic influences are discussed. (Author) 64 refs.

  11. Enrichment of Bacteria From Eastern Mediterranean Sea Involved in Lignin Degradation via the Phenylacetyl-CoA Pathway

    Directory of Open Access Journals (Sweden)

    Hannah L. Woo

    2018-05-01

    Full Text Available The degradation of allochthonous terrestrial organic matter, such as recalcitrant lignin and hemicellulose from plants, occurs in the ocean. We hypothesize that bacteria instead of white-rot fungi, the model organisms of aerobic lignin degradation within terrestrial environments, are responsible for lignin degradation in the ocean due to the ocean’s oligotrophy and hypersalinity. Warm oxic seawater from the Eastern Mediterranean Sea was enriched on lignin in laboratory microcosms. Lignin mineralization rates by the lignin-adapted consortia improved after two sequential incubations. Shotgun metagenomic sequencing detected a higher abundance of aromatic compound degradation genes in response to lignin, particularly phenylacetyl-CoA, which may be an effective strategy for marine microbes in fluctuating oxygen concentrations. 16S rRNA gene amplicon sequencing detected a higher abundance of Gammaproteobacteria and Alphaproteobacteria bacteria such as taxonomic families Idiomarinaceae, Alcanivoraceae, and Alteromonadaceae in response to lignin. Meanwhile, fungal Ascomycetes and Basidiomycetes remained at very low abundance. Our findings demonstrate the significant potential of bacteria and microbes utilizing the phenylacetyl-CoA pathway to contribute to lignin degradation in the Eastern Mediterranean where environmental conditions are unfavorable for fungi. Exploring the diversity of bacterial lignin degraders may provide important enzymes for lignin conversion in industry. Enzymes may be key in breaking down high molecular weight lignin and enabling industry to use it as a low-cost and sustainable feedstock for biofuels or other higher-value products.

  12. Influence of hardwood midstory and pine species on pine bole arthropods

    Science.gov (United States)

    Christopher S. Collins; Richard N. Conner; Daniel Saenz

    2002-01-01

    Arthropod density on the boles of loblolly pines (Pinus taeda) was compared between a stand with and stand without hardwood midstory and between a stand of loblolly and shortleaf pines (P. echinata) in the Stephen E Austin Experimental Forest, Nacogdoches Co., Texas, USA from September 1993 through July 1994. Arthropod density was...

  13. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model

  14. Control of lignin solubility and particle formation modulates its antioxidant efficiency in lipid medium

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Thygesen, Lisbeth Garbrecht; Sanadi, Anand Ramesh

    2014-01-01

    Lignin is an abundant plant polymer usually regarded as waste material. In the present work, antioxidant properties of lignin preparations with differing lipid solubility were studied using biodiesel as a convenient lipid test substrate. In place of formerly used assays, we used attenuated total...... reflectance (ATR) FT-IR spectroscopy to follow in situ biodiesel autoxidation on a heated ATR crystal as a function of time. The study demonstrates that a complex balance between intrinsic (chemical) efficiency, solubility, and particle formation controls the antioxidant efficiency of differently prepared...... lignin fractions. It was found that solubility and particle formation of lignin preparations strongly modulate its antioxidant efficiency and that these properties might depend on the presence of lipid components within the original lignin source....

  15. The Paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes

    Energy Technology Data Exchange (ETDEWEB)

    Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martinez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M.; de Vries, Ronald P.; Ferreira, Patricia; Findley, Keisha; Foster, Brian; Gaskell, Jill; Glotzer, Dylan; Gorecki, Pawel; Heitman, Joseph; Hesse, Cedar; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A.; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kues, Ursula; Kumar, T. K. Arun; Kuo, Alan; LaButti, Kurt; Larrondo, Luis F.; Lindquist, Erika; Ling, Albee; Lombard, Vincent; Lucas, Susan; Lundell, Taina; Martin, Rachael; McLaughlin, David J.; Morgenstern, Ingo; Morin, Emanuelle; Murat, Claude; Nagy, Laszlo G.; Nolan, Matt; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Rokas, Antonis; Ruiz-Duenas, Francisco J.; Sabat, Grzegorz; Salamov, Asaf; Samejima, Masahiro; Schmutz, Jeremy; Slot, Jason C.; John, Franz; Stenlid, Jan; Sun, Hui; Sun, Sheng; Syed, Khajamohiddin; Tsang, Adrian; Wiebenga, Ad; Young, Darcy; Pisabarro, Antonio; Eastwood, Daniel C.; Martin, Francis; Cullen, Dan; Grigoriev, Igor V.; Hibbett, David S.

    2012-03-12

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

  16. Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content.

    Directory of Open Access Journals (Sweden)

    Renato Vicentini

    Full Text Available Sugarcane is an important crop worldwide for sugar and first generation ethanol production. Recently, the residue of sugarcane mills, named bagasse, has been considered a promising lignocellulosic biomass to produce the second-generation ethanol. Lignin is a major factor limiting the use of bagasse and other plant lignocellulosic materials to produce second-generation ethanol. Lignin biosynthesis pathway is a complex network and changes in the expression of genes of this pathway have in general led to diverse and undesirable impacts on plant structure and physiology. Despite its economic importance, sugarcane genome was still not sequenced. In this study a high-throughput transcriptome evaluation of two sugarcane genotypes contrasting for lignin content was carried out. We generated a set of 85,151 transcripts of sugarcane using RNA-seq and de novo assembling. More than 2,000 transcripts showed differential expression between the genotypes, including several genes involved in the lignin biosynthetic pathway. This information can give valuable knowledge on the lignin biosynthesis and its interactions with other metabolic pathways in the complex sugarcane genome.

  17. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine.

    Science.gov (United States)

    Progar, R A; Blackford, D C; Cluck, D R; Costello, S; Dunning, L B; Eager, T; Jorgensen, C L; Munson, A S; Steed, B; Rinella, M J

    2013-02-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of lodgepole pine. The success of verbenone treatments has varied greatly in previous studies because of differences in study duration, beetle population size, tree size, or other factors. To determine the ability of verbenone to protect lodgepole pine over long-term mountain pine beetle outbreaks, we applied verbenone treatments annually for 3 to 7 yr at five western United States sites. At one site, an outbreak did not develop; at two sites, verbenone reduced lodgepole pine mortality in medium and large diameter at breast height trees, and at the remaining two sites verbenone was ineffective at reducing beetle infestation. Verbenone reduced mountain pine beetle infestation of lodgepole pine trees in treated areas when populations built gradually or when outbreaks in surrounding untreated forests were of moderate severity. Verbenone did not protect trees when mountain pine beetle populations rapidly increase.

  18. The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars.

    Science.gov (United States)

    Özparpucu, Merve; Gierlinger, Notburga; Burgert, Ingo; Van Acker, Rebecca; Vanholme, Ruben; Boerjan, Wout; Pilate, Gilles; Déjardin, Annabelle; Rüggeberg, Markus

    2018-04-01

    CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.

  19. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.

    Science.gov (United States)

    Hilgers, Roelant; Vincken, Jean-Paul; Gruppen, Harry; Kabel, Mirjam A

    2018-02-05

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it remains unclear to what extent the presence of a mediator influences the reactions of the phenolic subunits of lignin. To get more insight in this, UHPLC-MS was used to study the reactions of a phenolic lignin dimer (GBG), initiated by a laccase from Trametes versicolor , alone or in combination with the mediators HBT and ABTS. The role of HBT was negligible, as its oxidation by laccase occurred slowly in comparison to that of GBG. Laccase and laccase/HBT oxidized GBG at a comparable rate, resulting in extensive polymerization of GBG. In contrast, laccase/ABTS converted GBG at a higher rate, as GBG was oxidized both directly by laccase but also by ABTS radical cations, which were rapidly formed by laccase. The laccase/ABTS system resulted in Cα oxidation of GBG and coupling of ABTS to GBG, rather than polymerization of GBG. Based on these results, we propose reaction pathways of phenolic lignin model compounds with laccase/HBT and laccase/ABTS.

  20. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    Directory of Open Access Journals (Sweden)

    Kristen M DeAngelis

    2013-09-01

    Full Text Available The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have used transcriptomics and proteomics to examine the increased growth of the anaerobic isolate Enterobacter lignolyticus SCF1 when grown on media amended with lignin compared to unamended growth. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC transporters. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate increased xylose utilization in lignin-amended compared to unamended growth. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.