WorldWideScience

Sample records for organic matter enriched

  1. Radiocarbon enrichment of soil organic matter fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Goh, K.M.; Stout, J.D.; Rafter, T.A.

    1977-01-01

    Soil organic matter was extracted using the classical procedure and fractionated into humin (nonextractable), humic acid, and fulvic acid. The masses of total organic carbon in the whole soil samples and in the fractions, together with their 14 C content and 13 C/ 12 C ratios, were also determined. The following New Zealand soils were studied: a Fluvaquent, with experimental pasture plots, formed from deeply mixing subsoils of low organic carbon content; a Typic Fragiaqualf and a Typic Dystrochrept with moderately productive pastures; and an Umbric Vitrandept at two sites under native tussock and under introduced grasses of low productivity. The degree of radiocarbon enrichment of the different fractions in both topsoil and subsoil samples was examined in relation to differences in soil type, soil biological activity, and vegetation history. There was variation in the distribution and enrichment of the organic matter fractions both within the same soil type and between soil types, as well as between the topsoil and subsoil of the same soil. Differences appeared to be primarily a function of the stage of decomposition and translocation of the fractions through the soil rather than due to vegetation differences

  2. Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter

    Science.gov (United States)

    Cynthia J. Tant; Amy D. Rosemond; Matthew R. First

    2013-01-01

    Nutrient enrichment affects bacteria and fungi associated with detritus, but little is known about how biota associated with different size fractions of organic matter respond to nutrients. Bacteria dominate on fine (1 mm) fractions, which are used by different groups of detritivores. We measured the effect of experimental...

  3. Enrichment of deuterium in insoluble organic matter from primitive meteorites: A solar system origin?

    Science.gov (United States)

    Remusat, Laurent; Palhol, Fabien; Robert, François; Derenne, Sylvie; France-Lanord, Christian

    2006-03-01

    Because of a systematic enrichment in deuterium, the insoluble organic matter (IOM) of the carbonaceous chondrites is considered to have formed in the interstellar medium. However, the D / H ratios in IOM remain much lower than those measured in the organic molecules commonly observed in the dense interstellar medium. In this study, the D / H ratio of different aromatic and aliphatic molecular fragments of IOM from the Orgueil meteorite was measured by GC-irMS (gas chromatography-isotopic ratio mass spectrometry). No correlation was observed between the D / H ratios and structural parameters characterizing the IOM, such as the H / C ratio. However, the δD of the benzylic, aliphatic and aromatic hydrogen into the IOM can be determined to be 1250‰, + 550‰ and + 150‰, respectively, relative to SMOW. This indicates that D-enrichment in IOM is correlated with the C-H bond dissociation energy. Such a correlation rules out IOM formation from observed interstellar molecules and suggests instead that the different components of IOM have acquired their D / H ratios by an exchange with a deuterium-rich reservoir after its synthesis. The same process can be invoked to account for the D / H composition of meteoritic water. Findings point to a common process for deuterium enrichment in the solar system.

  4. Effects of nitrogen enrichment on soil organic matter in tropical forests with different ambient nutrient status

    Science.gov (United States)

    Vaughan, E.; Cusack, D. F.; McDowell, W. H.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) enrichment is a widespread and increasingly important human influence on ecosystems globally, with implications for net primary production and biogeochemical processes. Previous research has shown that N enrichment can alter soil carbon (C) cycling, although the direction and magnitude of the changes are not consistent across studies, and may change with time. Inconsistent responses to N additions may be due to differences in ambient nutrient status, and/or variable responses of plant C inputs and microbial decomposition. Although plant production in the tropics is not often limited by N, soil processes may respond differently to N enrichment. Our study uses a 15-year N addition experiment at two different tropical forest sites in the Luquillo Long-Term Ecological Research project site in Puerto Rico to address long-term changes in soil C pools due to fertilization. The two forests differ in elevation and ambient nutrient status. Soil sampling three and five years post-fertilization showed increased soil C concentrations under fertilization, driven by increases in mineral-associated C (Cusack et al. 2011). However, the longer-term trends at these sites are unknown. To this end, soil samples were collected following fifteen years of fertilization. Soils were sampled from 0-10 cm and 10-20 cm. Bulk soil C and N concentrations will be measured and compared to samples collected before fertilization (2002) and three years post fertilization (2005). We are using density fractionation to isolate different soil organic matter pools into a free light, occluded light, and dense, mineral associated fraction. These pools represent different mechanisms of soil organic matter stabilization, and provide more detailed insight into changes in bulk soil C. These data will provide insight into the effects of N enrichment on tropical forest soils, and how those effects may change through time with a unique long-term data set.

  5. Organic matter in central California radiation fogs.

    Science.gov (United States)

    Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L

    2002-11-15

    Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.

  6. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations

    NARCIS (Netherlands)

    Sweere, T.; Van den Boorn, S.; Dickson, A.J.; Reichart, G.-J.

    2016-01-01

    Trace metal enrichments in sedimentary deposits are of prime interest because they are governed by processes that also control the production and preservation of organic matter. Consequently, trace metals have been used in reconstructions of the (palaeo)depositional environment of organic-rich

  7. On the enrichment of hydrophobic organic compounds in fog droplets

    Science.gov (United States)

    Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.

    The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.

  8. Characterization of organic matter in lake sediments from Minnesota and Yellowstone National Park

    Science.gov (United States)

    Dean, Walter E.

    2006-01-01

    Samples of sediment from lakes in Minnesota and Yellowstone National Park (YNP) were analyzed for organic carbon (OC), hydrogen richness by Rock-Eval pyrolysis, and stable carbon- and nitrogen-isotope composition of bulk organic matter. Values of delta 13C of lake plankton tend to be around -28 to -32 parts per thousand (0/00). Organic matter with values of delta 13C in the high negative 20s overlap with those of organic matter derived from C3 higher terrestrial plants but are at least 10 0/00 more depleted in 13C than organic matter derived from C4 terrestrial plants. If the organic matter is produced mainly by photosynthetic plankton and is not oxidized in the water column, there may be a negative correlation between H-richness (Rock-Eval pyrolysis H-index) and delta 13C, with more H-rich, algal organic matter having lower values of delta 13C. However, if aquatic organic matter is oxidized in the water column, or if the organic matter is a mixture of terrestrial and aquatic organic matter, then there may be no correlation between H-richness and carbon-isotopic composition. Values of delta 13C lower than about -28 0/00 probably indicate a contribution of bacterial biomass produced in the hypolimnion by chemoautotrophy or methanotrophy. In highly eutrophic lakes in which large amounts of 13C-depleted organic matter is continually removed from the epilimnion by photosynthesis throughout the growing season, the entire carbon reservoir in the epilimnion may become severely 13C-enriched so that 13C-enriched photosynthetic organic matter may overprint 13C-depleted chemosynthetic bacterial organic matter produced in the hypolimnon. Most processes involved with the nitrogen cycle in lakes, such as production of ammonia and nitrate, tend to produce 15N-enriched values of delta 15N. Most Minnesota lake sediments are 15N-enriched. However, some of the more OC-rich sediments have delta 15N values close to zero (delta 15N of air), suggesting that organic matter production is

  9. Anthropogenic signature of sediment organic matter probed by UV-Visible and fluorescence spectroscopy and the association with heavy metal enrichment.

    Science.gov (United States)

    He, Wei; Lee, Jong-Hyun; Hur, Jin

    2016-05-01

    Sediment organic matter (SOM) was extracted in an alkaline solution from 43 stream sediments in order to explore the anthropogenic signatures. The SOM spectroscopic characteristics including excitation-emission matrix (EEM)-parallel factor analysis (PARAFAC) were compared for five sampling site groups classified by the anthropogenic variables of land use, population density, the loadings of organics and nutrients, and metal enrichment. The conventional spectroscopic characteristics including specific UV absorbance, absorbance ratio, and humification index did not properly discriminate among the different cluster groups except in the case of metal enrichment. Of the four decomposed PARAFAC components, humic-like and tryptophan-like fluorescence responded negatively and positively, respectively, to increasing degrees of the anthropogenic variables except for land use. The anthropogenic enrichment of heavy metals was positively associated with the abundance of tryptophan-like component. In contrast, humic-like component, known to be mostly responsible for metal binding, exhibited a decreasing trend corresponding with metal enrichment. These conflicting trends can be attributed to the overwhelmed effects of the coupled discharges of heavy metals and organic pollutants into sediments. Our study suggests that the PARAFAC components can be used as functional signatures to probe the anthropogenic influences on sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seafloor ecosystem functioning: the importance of organic matter priming

    NARCIS (Netherlands)

    Van Nugteren, P.; Moodley, L.; Brummer, G.J.; Heip, C.H.R.; Herman, P.M.J.; Middelburg, J.J.

    2009-01-01

    Organic matter (OM) remineralization may be considered a key function of the benthic compartment of marine ecosystems and in this study we investigated if the input of labile organic carbon alters mineralization of indigenous sediment OM (OM priming). Using 13C-enriched diatoms as labile tracer

  11. 76 FR 34103 - In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of...

    Science.gov (United States)

    2011-06-10

    .... 10-899-02-ML-BD01] In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility...'' portion of this proceeding regarding the December 2008 application by AREVA Enrichment Services, LLC (AES... gas centrifuge uranium enrichment facility--denoted as the Eagle Rock Enrichment Facility (EREF)--in...

  12. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    International Nuclear Information System (INIS)

    Mikutta, Christian; Langner, Peggy; Bargar, John R.; Kretzschmar, Ruben

    2016-01-01

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7–6.6, E_h = –127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L_3-edge X-ray absorption spectroscopy. The soils contained 2.3–47.4 wt % organic C, 4.1–58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̄ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35–68% of total U (x̄ = 50%, n = 15). Shell-fit analyses of bulk U L_3-edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̄ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ~3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. As a result, our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).

  13. Tetra- and Hexavalent Uranium Forms Bidentate-Mononuclear Complexes with Particulate Organic Matter in a Naturally Uranium-Enriched Peatland.

    Science.gov (United States)

    Mikutta, Christian; Langner, Peggy; Bargar, John R; Kretzschmar, Ruben

    2016-10-04

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7-6.6, E h = -127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L 3 -edge X-ray absorption spectroscopy. The soils contained 2.3-47.4 wt % organic C, 4.1-58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̅ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35-68% of total U (x̅ = 50%, n = 15). Shell-fit analyses of bulk U L 3 -edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̅ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).

  14. Insights into the nature of cometary organic matter from terrestrial analogues

    Science.gov (United States)

    Court, Richard W.; Sephton, Mark A.

    2012-04-01

    The nature of cometary organic matter is of great interest to investigations involving the formation and distribution of organic matter relevant to the origin of life. We have used pyrolysis-Fourier transform infrared (FTIR) spectroscopy to investigate the chemical effects of the irradiation of naturally occurring bitumens, and to relate their products of pyrolysis to their parent assemblages. The information acquired has then been applied to the complex organic matter present in cometary nuclei and comae. Amalgamating the FTIR data presented here with data from published studies enables the inference of other comprehensive trends within hydrocarbon mixtures as they are progressively irradiated in a cometary environment, namely the polymerization of lower molecular weight compounds; an increased abundance of polycyclic aromatic hydrocarbon structures; enrichment in 13C; reduction in atomic H/C ratio; elevation of atomic O/C ratio and increase in the temperature required for thermal degradation. The dark carbonaceous surface of a cometary nucleus will display extreme levels of these features, relative to the nucleus interior, while material in the coma will reflect the degree of irradiation experienced by its source location in the nucleus. Cometary comae with high methane/water ratios indicate a nucleus enriched in methane, favouring the formation of complex organic matter via radiation-induced polymerization of simple precursors. In contrast, production of complex organic matter is hindered in a nucleus possessing a low methane/water ration, with the complex organic matter that does form possessing more oxygen-containing species, such as alcohol, carbonyl and carboxylic acid functional groups, resulting from reactions with hydroxyl radicals formed by the radiolysis of the more abundant water. These insights into the properties of complex cometary organic matter should be of particular interest to both remote observation and space missions involving in situ

  15. Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b

    DEFF Research Database (Denmark)

    Kuypers, M.M.M.; Blokker, P.; Hopmans, E.C.

    2002-01-01

    The sources for both soluble and insoluble organic matter of the early Albian (∼112 Myr) oceanic anoxic event (OAE) 1b black shales of the Ocean Drilling Program (ODP) site 1049C (North Atlantic Ocean off the coast of Florida) and the Ravel section of the Southeast France Basin (SEFB) were...... in C/C ratios was used to estimate that up to ∼40% of the organic matter of the SEFB and up to ∼80% of the organic matter of ODP site 1049C preserved in the black shales is derived from archaea. Furthermore, it is shown that, even though there are apparent similarities (high organic carbon (OC) content......, distinct lamination, C-enrichment of OC) between the black shales of OAE1b and the Cenomanian/Turonian (∼94 Myr) OAE, the origin of the organic matter (archaeal versus phytoplanktonic) and causes for C-enrichment of OC are completely different....

  16. Influencing factors on δ(13C) of organic matter and carbonate in labke sediments on songnen plain

    International Nuclear Information System (INIS)

    Ou Wenjia; Zhang Chengjun

    2009-01-01

    Carbon isotopic compositions of organic matter and carbonate in surface sediments from lakes in Songnen Plain, northeast of China, were carried out.n-alkanes carbon distribution characteristics of the organic matter in lake sediments were also analyzed to identify the source of organic matter and sedimentary environment in these lakes. With the limnological characteristics of water and sediment, the influencing factors on isotopic composition in sedimentary organic matter and carbonate were discussed. The results showed that types of organic matter affected the carbon isotopic composition. 13 C of carbonate depleted by input of biologic organic matter and enriched by input of oil pollution. (authors)

  17. Evaluation of the symbiotic nitrogen fixation in soybean by labelling of soil organic matter

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Vose, P.B.

    1982-01-01

    An experiment was carried out using the isotopic dilution method to evaluate symbiotic nitrogen fixation in soybean grown in soil labelled with 15 N enriched organic matter. Symbiotic N 2 -fixed was 71-76% of total N in the plant. Non nodulated soybean utilized 56-59% N from organic matter and 40% from soil. Roots of nodulated plants had lower NdN 2 than aereal plant parts. The advantage of using labelled organic matter as compared with 15 N-fertilizer addition in evaluating N 2 -fixation is discussed. (Author) [pt

  18. Controlled experimental soil organic matter modification for study of organic pollutant interactions in soil

    International Nuclear Information System (INIS)

    Ahmed, Ashour A.; Kühn, Oliver; Leinweber, Peter

    2012-01-01

    through Py-FIMS. Finally, this combination of analytical techniques can be recommended for similar problems that require characterizing the bulk, non-extracted SOM instead of pre-selected compounds or compound classes. -- Highlights: ► The soil organic matter composition was modified by hot water-extracted (HWE) organic fraction and by off-line pyrolysis. ► These alterations were tested by Py-FIMS as well as XANES at both C and N K-edges. ► HWE addition enriched the relative proportions of carbohydrates, peptides, and N-containing heterocyclic compounds. ► Off-line pyrolysis enriched the relative proportions of aromatics and heterocyclic compounds. ► The data provide a basis for interpretation of pollutant–SOM interaction and development of an atomistic model for SOM.

  19. The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation

    OpenAIRE

    Laurent, Boris; Roskosz, Mathieu; Remusat, Laurent; Robert, Fran?ois; Leroux, Hugues; Vezin, Herv?; Depecker, Christophe; Nuns, Nicolas; Lefebvre, Jean-Marc

    2015-01-01

    Primitive carbonaceous chondrites contain a large array of organic compounds dominated by insoluble organic matter (IOM). A striking feature of this IOM is the systematic enrichment in deuterium compared with the solar hydrogen reservoir. This enrichment has been taken as a sign of low-temperature ion-molecule or gas-grain reactions. However, the extent to which Solar System processes, especially ionizing radiation, can affect D/H ratios is largely unknown. Here, we report the effects of elec...

  20. Soil organic matter

    International Nuclear Information System (INIS)

    1976-01-01

    The nature, content and behaviour of the organic matter, or humus, in soil are factors of fundamental importance for soil productivity and the development of optimum conditions for growth of crops under diverse temperate, tropical and arid climatic conditions. In the recent symposium on soil organic matter studies - as in the two preceding ones in 1963 and 1969 - due consideration was given to studies involving the use of radioactive and stable isotopes. However, the latest symposium was a departure from previous efforts in that non-isotopic approaches to research on soil organic matter were included. A number of papers dealt with the behaviour and functions of organic matter and suggested improved management practices, the use of which would contribute to increasing agricultural production. Other papers discussed the turnover of plant residues, the release of plant nutrients through the biodegradation of organic compounds, the nitrogen economy and the dynamics of transformation of organic forms of nitrogen. In addition, consideration was given to studies on the biochemical transformation of organic matter, characterization of humic acids, carbon-14 dating and the development of modern techniques and their impact on soil organic matter research

  1. A Novel Type of Oil—generating Organic Matter —Crystal—enclosed Organic Matter

    Institute of Scientific and Technical Information of China (English)

    周中毅; 裴存民; 等

    1992-01-01

    The comparative study of organic matter in carbonate rocks and argillaceous rocks from the same horizon indicates that the organic thermal maturities of carbonate rocks are much lower than those of argillaceous rocks .Ana extensive analysis of extracted and inclused organic matter from the same sample shows that inclused organic matter is different from extracted organic matter,and the thermal maturity of the former is usually lower than that of the latter in terms of biomarker structural parameters.It seems that carbonate mineras could preserve organic matter and retard organic maturation.The inclused organic matter,abundant in most carbonate rocks,will be released from minerals and transformed into oil and gas during the high-thermal maturity stage.

  2. Indices, multispecies and synthesis descriptors in benthic assessments: Intertidal organic enrichment from oyster farming

    Science.gov (United States)

    Quintino, Victor; Azevedo, Ana; Magalhães, Luísa; Sampaio, Leandro; Freitas, Rosa; Rodrigues, Ana Maria; Elliott, Michael

    2012-09-01

    Intertidal off-bottom oyster culture is shown to cause organic enrichment of the shore and although there are two stressors of interest (the presence of a structure, the trestles, and also the sediment and organic waste from the oysters), these can be separated and their relative impacts determined using an appropriate nested experimental design and data treatments. Although no artificial food sources are involved, the oysters feeding activity and intensity of culture enhances biodeposition and significantly increases the sediment fines content and total organic matter. This in general impoverished the benthic community in culture areas rather than a species succession with the installation of opportunists or a resulting increase in the abundance and biomass of benthic species; the findings can be a direct consequence of the intertidal situation which is less-amenable recruitment of species more common to the subtidal environment. Thus the most appropriate biological descriptors to diagnose the effects associated with the organic enrichment were the multispecies abundance data as well as the primary biological variables species richness and abundance. The effects were however spatially and statistically significantly confined to the area located directly underneath the culture bags compared to the corridors located between the trestles, which do not show such enrichment effects. Synthesis biotic indices were much less effective to diagnose the benthic alterations associated with this organic enrichment. These results show that special attention must be paid when using indices in areas where the organic enrichment induces an impoverishment of the benthic community but not necessarily a species replacement with the installation of opportunists.

  3. High sensitivity of Lobelia dortmanna to sediment oxygen depletion following organic enrichment

    DEFF Research Database (Denmark)

    Møller, Claus Lindskov; Jensen, Kaj Sand

    2011-01-01

    • Lobelia dortmanna thrives in oligotrophic, softwater lakes thanks to O(2) and CO(2) exchange across roots and uptake of sediment nutrients. We hypothesize that low gas permeability of leaves constrains Lobelia to pristine habitats because plants go anoxic in the dark if O(2) vanishes from...... sediments. • We added organic matter to sediments and followed O(2) dynamics in plants and sediments using microelectrodes. To investigate plant stress, nutrient content and photosynthetic capacity of leaves were measured. • Small additions of organic matter triggered O(2) depletion and accumulation of NH(4......)(+), Fe(2+) and CO(2) in sediments. O(2) in leaf lacunae fluctuated from above air saturation in the light to anoxia late in the dark in natural sediments, but organic enrichment prolonged anoxia because of higher O(2) consumption and restricted uptake from the water. Leaf N and P dropped below minimum...

  4. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  5. The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation

    Science.gov (United States)

    Laurent, Boris; Roskosz, Mathieu; Remusat, Laurent; Robert, François; Leroux, Hugues; Vezin, Hervé; Depecker, Christophe; Nuns, Nicolas; Lefebvre, Jean-Marc

    2015-10-01

    Primitive carbonaceous chondrites contain a large array of organic compounds dominated by insoluble organic matter (IOM). A striking feature of this IOM is the systematic enrichment in deuterium compared with the solar hydrogen reservoir. This enrichment has been taken as a sign of low-temperature ion-molecule or gas-grain reactions. However, the extent to which Solar System processes, especially ionizing radiation, can affect D/H ratios is largely unknown. Here, we report the effects of electron irradiation on the hydrogen isotopic composition of organic precursors containing different functional groups. From an initial terrestrial composition, overall D-enrichments and differential intramolecular fractionations comparable with those measured in the Orgueil meteorite were induced. Therefore, ionizing radiation can quantitatively explain the deuteration of organics in some carbonaceous chondrites. For these meteorites, the precursors of the IOM may have had the same isotopic composition as the main water reservoirs of the inner Solar System.

  6. Ultrastructural Alterations in Lepocinclis acus (Euglenophyta Induced by Medium with High Organic Matter Content

    Directory of Open Access Journals (Sweden)

    Visitación T. Conforti

    2017-11-01

    Full Text Available Ultrastructural changes induced by exposure to excess of organic matter were studied in Lepocinclis acus (ex Euglena acus. The cells isolated from the Matanza River, Buenos Aires, Argentina, were grown in soil water medium (SWM. When transferred to medium enriched with Bacteriological Peptone OXOID®, marked body deformation and a significant shortening and widening of the cells was observed. These changes were unexpected in a species with quite rigid cells, a condition previously shown in studies of the pellicle fine structure. Transmission electron microscopy observations suggest that cellular deformation might be facilitated by an increase in strip number, whereas in the original strips normal ultrastructure was maintained. An increase in number and volume of paramylon grains and vacuoles, as well as the presence of membrane whorls in vacuoles was observed. The fine structure of organisms grown in medium with and without organic matter enrichment was compared, and the systematic and ecological importance of morphological changes triggered by cell deformation was discussed.

  7. Organic matter and soil moisture content and double cropping with organic matter sourceplants

    OpenAIRE

    John Bako Baon; Aris Wibawa

    2005-01-01

    Double cropping of coffee with organic matter source plants is thought to increase organic matter content of soil. This study examined the effect of double cropping of coffee and organic matter source plants on soil organic matter content and yield of coffee plants. Arabica coffee trees in Andungsari Experimental Station (Bondowoso district), 1400 m asl. and climate type C; and Robusta coffee trees in Sumberasin Experimental Station (Malang district), 550 m asl. and climate type C, were used ...

  8. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    DEFF Research Database (Denmark)

    Mikutta, Christian; Langner, Peggy; Bargar, John R.

    2016-01-01

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work...... of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents...... the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI)....

  9. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs.

    Science.gov (United States)

    Brocke, Hannah J; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs.

  10. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The term organic matter refers to the remnants of all living material. This can include fallen leaves, yard waste, animal waste, downed timber, or the remains of any other plant and animal life. Organic matter is abundant both on land and in water. Investigating organic matter is necessary for understanding the fate and transport of carbon (a major constituent of organic matter).

  11. Polychaete response to fresh food supply at organically enriched coastal sites: Repercussion on bioturbation potential and trophic structure

    Science.gov (United States)

    Venturini, N.; Pires-Vanin, A. M. S.; Salhi, M.; Bessonart, M.; Muniz, P.

    2011-12-01

    We investigated the vertical distribution, abundance, specific and functional structure of polychaete assemblages at four organically enriched sites. The effects of fresh organic matter input from the water column driving by upwelling were evaluated. Temperature and salinity values indicate the intrusion of South Atlantic Central Water (SACW) in spring, a nutrient-rich water mass. The dominance of the conveyor belt transport (CONV) in the station influenced by SACW, in the spring survey, is associated with fresh organic matter input as indicated by higher amounts of polyunsaturated fatty acids. Conversely, the predominance of the diffusive mixing (DIFF) bioturbation category, in the sites without SACW influence is related to the preferential accumulation of more refractive food resources as indicated by higher concentrations of short chain saturated fatty acids. At the site influenced by SACW, the changes in polychaete assemblages were not all evident during proceeding upwelling conditions, but may persist at the end of the upwelling. Polychaetes in the study area seemed to be limited by the quality but not the quantity of food. The delay in polychaete response to fresh food supply may be related to the organic enrichment and the prevalence of refractory material in the sediments.

  12. Ligand extraction of rare earth elements from aquifer sediments: Implications for rare earth element complexation with organic matter in natural waters

    Science.gov (United States)

    Tang, Jianwu; Johannesson, Karen H.

    2010-12-01

    complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as "truly" dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., "colloidal" HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).

  13. Geochemical characterization of the Jurassic Amran deposits from Sharab area (SW Yemen): Origin of organic matter, paleoenvironmental and paleoclimate conditions during deposition

    Science.gov (United States)

    Hakimi, Mohammed Hail; Abdullah, Wan Hasiah; Makeen, Yousif M.; Saeed, Shadi A.; Al-Hakame, Hitham; Al-Moliki, Tareq; Al-Sharabi, Kholah Qaid; Hatem, Baleid Ali

    2017-05-01

    Calcareous shales and black limestones of the Jurassic Amran Group, located in the Sharab area (SW Yemen), were analysed based on organic and inorganic geochemical methods. The results of this study were used to reconstruct the paleoenvironmental and paleoclimatic conditions during Jurassic time and their relevance to organic matter enrichment during deposition of the Amran calcareous shale and black limestone deposits. The analysed Amran samples have present-day TOC and Stotal content values in the range of 0.25-0.91 wt % and 0.59-4.96 wt %, respectively. The relationship between Stotal and TOC contents indicates that the Jurassic Amran deposits were deposited in a marine environment as supported by biomarker environmental indicators. Biomarker distributions also reflect that the analysed Amran deposits received high contributions of marine organic matter (e.g., algal and microbial) with minor amount of land plant source inputs. Low oxygen (reducing) conditions during deposition of the Jurassic Amran deposits are indicated from low Pr/Ph values and relatively high elemental ratios of V/Ni and V/(V + Ni). Enrichment in the pyrite grains and very high DOPT and high Fe/Al ratios further suggest reducing bottom waters. This paleo-redox (i.e., reducing) conditions contributed to preservation of organic matter during deposition of the Jurassic Amran deposits. Semi-arid to warm climatic conditions are also evidenced during deposition of the Amran sediments and consequently increased biological productivity within the photic zone of the water column during deposition. Therefore, the increased bio-productivity in combination with good preservation of organic matter identified as the major mechanisms that gave rise to organic matter enrichment. This contradicts with the low organic matter content of the present-day TOC values of less than 1%. The biomarker maturity data indicate that the analysed Amran samples are of high thermal maturity; therefore, the low present-day TOC

  14. Pathways of CH3Hg and Hg ingestion in benthic organisms: an enriched isotope approach.

    Science.gov (United States)

    Taylor, Vivien F; Bugge, Deenie; Jackson, Brian P; Chen, Celia Y

    2014-05-06

    Mercury is a widespread contaminant in marine food webs, and identifying uptake pathways of mercury species, CH3Hg(+) and Hg(2+), into low trophic level organisms is important to understanding its entry into marine food webs. Enriched stable isotope tracers were used to study benthic vs. pelagic pathways of CH3Hg(+) and Hg(2+) uptake via food to the infaunal estuarine amphipod, Leptocheirus plumulosus. Algal cells differentially labeled with isotopically enriched CH3Hg(+) or Hg(2+) were added simultaneously to the sediment and water column of microcosms, and Hg species were monitored in amphipods and in sediment and water compartments. Methylation of Hg(2+) occurred during the course of the experiment, enhancing the uptake of Hg(2+) spikes. Trophic transfer of Hg from algae added to the water column was determined to be the major uptake route for amphipods, suggesting inputs of contaminated organic matter from the pelagic zone are important to mercury bioaccumulation even in organisms living in sediments.

  15. Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events

    International Nuclear Information System (INIS)

    Zheng Yi; Luo Xiaolin; Zhang Wei; Wu Bin; Han Feng; Lin Zhongrong; Wang Xuejun

    2012-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported by surface runoff result in nonpoint source pollution and jeopardize aquatic ecosystems. The transport mechanism of PAHs during rainfall-runoff events has been rarely studied regarding pervious areas. An experimental system was setup to simulate the runoff pollution process on PAHs-contaminated soil. The enrichment behavior of soil-bound PAHs was investigated. The results show that soil organic matters (SOM), rather than clay particles, seem to be the main carrier of PAHs. The enrichment is highly conditioned on runoff and erosion processes, and its magnitude varies among PAH compounds. It is not feasible to build a simple and universal relationship between enrichment ratio and sediment discharge following the traditional enrichment theory. To estimate the flux of PAHs from pervious areas, soil erosion process has to be clearly understood, and both organic carbon content and composition of SOM should be factored into the calculation. - Highlights: ► Significant enrichment of particle-bound PAHs during rainfall-runoff events. ► Organic matters as the direct carrier of PAHs in runoff from contaminated soil. ► The traditional enrichment theory is not fully valid for PAHs. - The traditional enrichment theory is not fully valid for PAHs, and soil organic matters have a significant impact on the transport of PAHs during rainfall-runoff events.

  16. Impact of sediment organic matter quality on the fate and effects of fluoranthene in the infaunal brittle star Amphiura filiformis

    DEFF Research Database (Denmark)

    Selck, Henriette; Granberg, Maria E; Forbes, Valery E.

    2005-01-01

    Hydrophobic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) readily adsorb to organic matter. The aim of this study was to determine the importance of the quality of sedimentary organic matter for the uptake, biotransformation and toxicity of the PAH, fluoranthene (Flu......), in the infaunal brittle star Amphiura filiformis. Brittle stars were exposed to a base sediment covered by a 2 cm Flu-spiked top layer (30 mug Flu/g dry wt. sed.), enriched to the same total organic carbon content with either refractory or labile organic matter. The labile carbon source was concentrated green...... to equilibrium partitioning between organism lipid content and organic content of the sediment. Biotransformation of Flu by brittle stars was very limited and unaffected by organic matter quality. A. filiformis contributed to the downward transport of Flu from the surface sediment to the burrow lining...

  17. The effects of anthropogenic organic matter inputs on stable carbon and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal area

    International Nuclear Information System (INIS)

    Vizzini, Salvatrice; Mazzola, Antonio

    2006-01-01

    Stable isotope ratios were used to determine the impact of anthropogenically derived organic matter from onshore and offshore fish farming and a sewage outfall on organisms at different trophic levels (primary producers and consumers) on the south-east coast of Sicily (Italy, Mediterranean). Representative macroalgae and consumers were collected in three sampling locations: 'Impact' and two putative 'Controls' sited to the north of the impacted location. While δ 13 C values of both organic matter sources and consumers varied little between locations, δ 15 N spatial variability was higher and δ 15 N was shown to be a good descriptor of organic enrichment and uptake of anthropogenically derived material within coastal food webs. Isotopic data were analysed using a multivariate approach. Organic matter sources and benthic components were more sensitive to pollution than nektobenthic species and revealed that the effects of anthropogenic activities seem to be detectable over a wide area. The study site is characterised by wide waste dispersal, which brings a reduction in impact in the area directly affected by organic matter inputs and enlarges the area of moderate impact

  18. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    Science.gov (United States)

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  19. The Rusty Sink: Iron Promotes the Preservation of Organic Matter in Sediments

    Science.gov (United States)

    Lalonde, K. M.; Mucci, A.; Moritz, A.; Ouellet, A.; Gelinas, Y.

    2011-12-01

    The biogeochemical cycles of iron (Fe) and organic carbon (OC) are strongly interlinked. In oceanic waters, organic ligands have been shown to control the concentration of dissolved Fe [1], whereas in soils, solid Fe phases provide a sheltering and preservative effect for organic matter [2]. Until now however, the role of iron in the preservation of OC in sediments has not been clearly established. Here we show that 21.5 ± 8.6% of the OC in sediments is directly bound to reactive iron phases, which promote the preservation of OC in sediments. Iron-bound OC represents a global mass of 19 to 45 × 10^15 g of OC in surface marine sediments. This pool of OC is different from the rest of sedimentary OC, with 13C and nitrogen-enriched organic matter preferentially bound to Fe which suggests that biochemical fractionation occurs with OC-Fe binding. Preferential binding also affects the recovery of high molecular weight lipid biomarkers and acidic lignin oxidation products, changing the environmental message of proxies derived from these biomarkers. [1] Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron in the world ocean? Marine Chemistry 57, 137-161 (1997). [2] Kaiser, K. & Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry 31, 711-725 (2000).

  20. Organic matter loading affects lodgepole pine seedling growth.

    Science.gov (United States)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M J; Armleder, H M

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  1. Morphological Study of Insoluble Organic Matter Residues from Primitive

    Science.gov (United States)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  2. Effects of sediment organic matter quality on bioaccumulation, degradation, and distribution of pyrene in two macrofaunal species and their surrounding sediment

    DEFF Research Database (Denmark)

    Granberg, M. E.; Selck, H.

    2007-01-01

    Sediment dwelling macrofauna (infauna) are important vectors for the transfer of sediment-associated contaminants to higher trophic levels. Sedimenting organic matter constitutes an important food source for all benthic organisms and changes seasonally in terms of quantity and quality. Sediment...... organic matter (SOM) quality affects organism activity and feeding behaviour, and is therefore also likely to affect contaminant fate in benthic systems. We investigated the impact of SOM quality (enrichment with either labile Tetraselmis sp. or refractory lignin) on the accumulation and metabolism...... imply that bioaccumulation and trophic transfer of sediment-associated PAH should increase following fresh organic matter input, e.g. after sedimentation of phytoplankton blooms. We stress the importance of considering behavioural characteristics of infauna and the trophic situation of the system when...

  3. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    A total of four sites distributed in different soils of Kelantan State, Malaysia was identified for the study. Soils were collected by depth interval of 0-10cm, 10-20cm and 20-30cm. The correlation of soil organic matter (SOM) content, total organic carbon (TOC) content, water content and soils texture for industrial area at ...

  4. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles

    Science.gov (United States)

    Aléon, Jérôme; Robert, François; Chaussidon, Marc; Marty, Bernard

    2003-10-01

    Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ 15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ 15N = +208‰). The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10 -3 and δ 15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ 15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed

  5. Agriculture Organic Matter and Chicken Manure

    Directory of Open Access Journals (Sweden)

    Süleyman Taban

    2013-11-01

    Full Text Available Undo ubtedly organic matter content of soils is one of theim portant factor for high quality and abundant crop production. In addition to improve the physical properties ofsoil, organic matter contributest ocrop production viabeing energy source formicro-organisms in soiland contained plantnutrients. Fiftypercent of theagri cultures oil contains 1-2 % organicmatter in Turkey.In addition to being a sourceof organic matter, organic poultry manurefertilizer isricherthan other organic fertilizerse specially nitrogen content. It is possible to eliminate poultry manure based salt stress and disease factors with composting process in proper conditions.

  6. Decomposition of litter and soil organic matter - Can we distinguish a mechanism for soil organic matter buildup ?

    International Nuclear Information System (INIS)

    Berg, B.; Johansson, M.B.; McClaugherty, C.; Virzo de Santo, A.; Ekbohm, G.

    1995-01-01

    This synthesis paper presents a model for estimating the buildup of soil organic matter in various types of coniferous forests. The knowledge used was obtained from a well-studied forest with good litterfall data, decomposition information and validation measurements of the soil organic matter layer. By constructing a simple model for litterfall, and the information on maximum decomposition levels for litter, we could estimate the annual increase in soil organic matter and extend this to encompass stand age. The validation measurement and the estimated amount of soil organic matter differed by about 8 or 26% over a 120-yr period, depending on the litterfall model. The estimated increased storage of soil organic matter as a consequence of climate change was found to be drastic. We thus found that the soil organic matter layer would grow about four times as fast as a result of the needle component only. This estimate was based on a comparison between latitudes with a difference of 17 degrees. 35 refs, 7 figs, 3 tabs

  7. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  8. The role of low-temperature organic matter diagenesis in carbonate precipitation within a marine deposit

    International Nuclear Information System (INIS)

    Miyakawa, Kazuya; Ishii, Eiichi; Hirota, Akinari; Komatsu, Daisuke D.; Ikeya, Kosuke; Tsunogai, Urumu

    2017-01-01

    Carbonate minerals in veins can record paleo-hydrogeological information that enables the reconstruction of groundwater history. This paper investigates the cause of differences in the occurrence of carbonate veins in the Koetoi and Wakkanai formations, both Neogene mudstone units in northwestern Hokkaido, from the perspective of controls on CO_2 supply from the alteration of organic matter. Carbonate veins are rare in the Koetoi Formation, but are widespread in the Wakkanai Formation. This area is a region of oil and gas accumulation where deep groundwater is saturated mainly with CH_4 and CO_2. The results show high δ"1"3C values in co-existing CH_4 (∼–32.6‰) and CO_2 (∼+31.0‰) gases. An investigation of δ"1"3C – δD systematics among these gases indicates that isotopic fractionation was caused by microbial CO_2 reduction. Although total organic carbon content in the Koetoi Formation decreases with increasing depth, total organic content in the Wakkanai Formation remains roughly constant with depth. Furthermore, although δ"1"3C values also show depth dependence, values from the Wakkanai Formation are higher than those from the Koetoi Formation. This "1"3C-enrichment could be explained by Rayleigh fractionation in a closed system. Based on these results, the processes behind the formation of the carbonate veins can be summarized as follows. Carbon dioxide behavior is thought to play an important role with respect to carbonate formation because CO_2 abundance is closely linked to pH and pressure. In shallow sedimentary rocks such as the Koetoi Formation that have started to experience diagenetic alteration of organic matter, CO_2 in groundwater is supplied by microbial decomposition of organic matter and is reduced to CH_4 by methanogens. In deep sedimentary rocks such as the Wakkanai Formation that have undergone diagenesis but have only experienced moderate temperatures so that thermal decomposition of organic matter has not yet begun, microbial

  9. Promotion of uranium enrichment business

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1981-01-01

    The Committee on Nuclear Power has studied on the basic nuclear power policy, establishing its five subcommittees, entrusted by the Ministry of Nternational Trade and Industry. The results of examination by the subcommittee on uranium enrichment business are given along with a report in this connection by the Committee. In order to establish the nuclear fuel cycle, the aspect of uranium enrichment is essential. The uranium enrichment by centrifugal process has proceeded steadily in Power Reactor and Nuclear Fuel Development Corporation. The following matters are described: the need for domestic uranium enrichment, the outlook for overseas enrichment services and the schedule for establishing domestic enrichment business, the current state of technology development, the position of the prototype enrichment plant, the course to be taken to establish enrichment business the main organization operating the prototype and commercial plants, the system of supplying centrifuges, the domestic conversion of natural uranium the subsidies for uranium enrichment business. (J.P.N.)

  10. Distribution and ecological relevance of fine sediments in organic-enriched lagoons: The case study of the Cabras lagoon (Sardinia, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Magni, P. [CNR-IAMC, National Research Council - Institute for Coastal Marine Environment Localita Sa Mardini, Torregrande, 09072 Oristano (Italy); International Marine Centre, Localita Sa Mardini, Torregrande, 09072 Oristano (Italy)], E-mail: paolo.magni@iamc.cnr.it; De Falco, G. [CNR-IAMC, National Research Council - Institute for Coastal Marine Environment Localita Sa Mardini, Torregrande, 09072 Oristano (Italy); International Marine Centre, Localita Sa Mardini, Torregrande, 09072 Oristano (Italy); Como, S. [International Marine Centre, Localita Sa Mardini, Torregrande, 09072 Oristano (Italy); Casu, D. [Dip. di Botanica ed Ecologia vegetale, Universita di Sassari, 07100 Sassari (Italy); Floris, A. [Dip. di Zoologia e Genetica evoluzionistica, Universita di Sassari, 07100 Sassari (Italy); Petrov, A.N. [Institute of Biology of the Southern Seas NASU, 99011 Sevastopol (Ukraine); Castelli, A. [Dip. di Biologia, Universita di Pisa, 56126 Pisa (Italy); Perilli, A. [CNR-IAMC, National Research Council - Institute for Coastal Marine Environment Localita Sa Mardini, Torregrande, 09072 Oristano (Italy); International Marine Centre, Localita Sa Mardini, Torregrande, 09072 Oristano (Italy)

    2008-03-15

    In organic-enriched sedimentary systems, like many Mediterranean coastal lagoons, a detailed analysis of sediment grain size composition and partitioning within the muds is crucial to investigate sedimentological trends related to both hydrodynamic energy and basin morphology. In these systems, sediment dynamics are particularly important because the partitioning and transport of fine sediments can strongly influence the redistribution and accumulation of large amounts of organic matter, and consequently the distribution of benthic assemblages and the trophic status and functioning of a lagoon. Nevertheless, studies on benthic-sediment relationships have been based mainly on a rather coarse analysis of sediment grain size features. In muddy systems, however, this approach may impede a proper evaluation of the relationships and effects of the distribution of fine sediment and organic matter on the biotic benthic components. Here we show that the distribution of sedimentary organic matter (OM) and total organic carbon (TOC) in the Cabras lagoon (Sardinia, Italy) can be explained (i.e., predicted) as a function of a nonlinear increase in the amount of the cohesive fraction of sediments ({<=}8 {mu}m grain size particles) and that this fraction strongly influences the structure, composition and distribution of macrobenthic assemblages. Even in such a homogeneously muddy system, characterized by 'naturally' occurring impoverished communities, impaired benthic assemblages were found at {<=}8 {mu}m, OM, TOC contents of about 77%, 11% and 3.5%, respectively. A review of studies conducted in Mediterranean coastal lagoons highlighted a lack of direct integrated analysis of sediment features and the biotic components. We suggest that, especially in organic-enriched coastal lagoons, monitoring programs should primarily investigate and consider the cohesive fraction of sediments in order to allow a better assessment of benthic-sediment relationships and ecological

  11. Riverine organic matter composition and fluxes to Hudson Bay

    Science.gov (United States)

    Kuzyk, Z. Z. A.; Macdonald, R. W.; Goni, M. A.; Godin, P.; Stern, G. A.

    2016-12-01

    With warming in northern regions, many changes including permafrost degradation, vegetation alteration, and wildfire incidence will impact the carbon cycle. Organic carbon (OC) carried by river runoff to northern oceans has the potential to provide integrated evidence of these impacts. Here, concentrations of dissolved (DOC) and particulate (POC) OC are used to estimate terrestrial OC transport in 17 major rivers draining varied vegetative and permafrost conditions into Hudson Bay and compositional data (lignin and 14C) to infer OC sources. Hudson Bay lies just south of the Arctic Circle in Canada and is surrounded by a large drainage basin (3.9 × 106 km2) dominated by permafrost. Analysis of POC and DOC in the 17 rivers indicates that DOC dominates the total OC load. The southern rivers dominate. The Nelson and Churchill Rivers to the southwest are particularly important suppliers of OC partly because of large drainage basins but also perhaps because of impacts by hydroelectric development, as suggested by a 14C age of DOC in the Churchill River of 2800 years. Higher DOC and POC concentrations in the southern rivers, which have substantive areas only partially covered by permafrost, compared to northern rivers draining areas with complete permafrost cover, implies that warming - and hence permafrost thawing - will lead to progressively higher DOC and POC loads for these rivers. Lignin composition in the organic matter (S/V and C/V ratios) reveals mixed sources of OC consistent with the dominant vegetation in the river basins. This vegetation is organized by latitude with southern regions below the tree line enriched by woody gymnosperm sources (boreal forest) and northern regions enriched with organic matter from non-woody angiosperms (flowering shrubs, tundra). Acid/Aldehyde composition together with Δ14C data for selected DOC samples suggest that most of the lignin has undergone oxidative degradation, particularly the DOC component. However, high Δ14C ages

  12. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    Science.gov (United States)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  13. The destruction of organic matter

    CERN Document Server

    Gorsuch, T T

    1970-01-01

    International Series of Monographs in Analytical Chemistry, Volume 39: The Destruction of Organic Matter focuses on the identification of trace elements in organic compounds. The monograph first offers information on the processes involved in the determination of trace elements in organic matters, as well as the methods not involving complete destruction of these elements. The text surveys the sources of errors in the processes responsible in pinpointing elements in organic compounds. These processes include sampling, disruption of the samples, manipulation, and measurements. The book

  14. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    Science.gov (United States)

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  15. Assessment of soil properties by organic matter and EM-microorganism incorporation

    Directory of Open Access Journals (Sweden)

    Valarini P. J.

    2003-01-01

    Full Text Available Properties of a claim loam soil, collected in Aranjuez (Madrid and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control; soil + 50 t ha-1 of animal manure (E50; soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM; soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30 and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM. Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.

  16. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  17. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight

    Science.gov (United States)

    Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.

    This study focuses on the chemical characterization of high molecular-weight dissolved organic matter (HMW DOM) isolated from the Middle Atlantic Bight in April 1994 and March 1996. Using proton nuclear magnetic resonance spectroscopy ( 1HNMR) and monosaccharide analysis we compared both spatial and temporal variations in the chemical structure of HMW DOM across this region. Our analyses support the presence of at least two compositionally distinct components to HMW DOM. The major component is acyl polysaccharide (APS), a biopolymer rich in carbohydrates, acetate and lipid, accounting for between 50% and 80% of the total high molecular-weight dissolved organic carbon (HMW DOC) in surface samples. APS is most abundant in fully marine, surface-water samples, and is a product of autochthonous production. Organic matter with spectral properties characteristic of humic substances is the second major component of HMW DOM. Humic substances are most abundant (up to 49% of the total carbon) in samples collected from estuaries, near the coast, and in deep water, suggesting both marine and perhaps terrestrial sources. Radiocarbon analyses of neutral monosaccharides released by the hydrolysis of APS have similar and modern (average 71‰) Δ 14C values. Radiocarbon data support our suggestion that these sugars occur as part of a common macromolecule, with an origin via recent biosynthesis. Preliminary radiocarbon data for total neutral monosaccharides isolated from APS at 300 and 750 m show this fraction to be substantially enriched relative to total HMW DOC and DOC. The relatively enriched radiocarbon values of APS at depth suggest APS is rapidly transported into the deep ocean.

  18. Investigating Photosensitized Properties of Natural Organic Matter and Effluent Organic Matter

    KAUST Repository

    Niu, Xi-Zhi

    2013-05-01

    The photosensitized processes significantly enhance photolysis of various chemicals in the aqueous system with dissolved organic matter (DOM) as sensitizer. The excitation of chromophores on the DOM molecule further generates reactive species as triplet states DOM, singlet oxygen, hydroxyl radical, carbonate radical etc. We investigated the photosensitization properties of Beaufort Fulvic Acid, Suwannee River Fulvic Acid, South Platte River Fulvic Acid, and Jeddah wastewater treatment plant effluent organic matter with a sunlight simulator. DOM photochemical properties were characterized by observing their performances in 3DOM*, singlet oxygen, hydroxyl radical production with indirect probing protocols. Sensitized degradation of 0.1 μM and 0.02 μM 2, 4, 6- Trimethylphenol exhibited higher pseudo-first-order rate constant than that of 10 μM. Pre-irradiated DOMs were found to be depressed in photochemical properties. Photolysis of 5 different contaminants: ibuprofen, bisphenol A, acetaminophen, cimetidine, and caffeine were found to be enhanced in the presence of sensitizers. The possible reaction pathways were revealed. Long time irradiance induced change in contaminants degradation kinetics in some DOM solutions, which was proposed to be due to the irradiation initiated indirect transformation of DOMs. Key Words: Photolysis Dissolved Organic Matter, Triplet State DOM, Singlet Oxygen, Hydroxyl Radical, Contaminants Degradation.

  19. Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral Montipora digitata

    Science.gov (United States)

    Tanaka, Y.; Ogawa, H.; Miyajima, T.

    2010-09-01

    The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 -) and phosphate (PO4 3-) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l-1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 - and PO4 3- stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.

  20. Podzolisation and soil organic matter dynamics

    NARCIS (Netherlands)

    Buurman, P.; Jongmans, A.G.

    2005-01-01

    Present models of podzolisation emphasize the mobilization and precipitation of dissolved organic matter. together with Al(-silicates) and Fe. Such models cannot explain the dominance of pellet-like organic matter in most boreal podzols and in well-drained podzols outside the boreal zone, and the

  1. Rare earth elements and neodymium isotopes in sedimentary organic matter

    Science.gov (United States)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  2. Effect of Se-enriched Organic Fertilizers on Selenium Accumulation in Corn and Soil

    Directory of Open Access Journals (Sweden)

    LI Sheng-nan

    2015-12-01

    Full Text Available The effect of two Se-enriched organic fertilizers (cow dung and rice straw biochar on selenium accumulation of corn growing in selenium deficient soil was studied with pot experiment. The results showed that corn accumulated more selenium and the selenium was much easier to convert from root to shoot in the corn plant with the application of Se-enriched cow dung than Se-enriched rice straw biochar. With the application of more organic fertilizer such as 25 t·hm-2 Se-enriched cow dung or 40 t·hm-2 Se-enriched rice straw biochar, the accumulation of selenium and growth status of corn were getting better than the other treatments. At the same time, as the application amount of Se-enriched organic fertilizers (cow dung and rice straw biochar increased, the total selenium content in the soil also increased, which positively correlated with each other.

  3. When Organization Fails: Why Authority Matters

    DEFF Research Database (Denmark)

    Blaschke, Steffen

    2015-01-01

    Review of: James R. Taylor and Elizabeth J. Van Every / When Organization Fails: Why Authority Matters. (New York: Routledge, 2014. 220 pp. ISBN: 978 0415741668)......Review of: James R. Taylor and Elizabeth J. Van Every / When Organization Fails: Why Authority Matters. (New York: Routledge, 2014. 220 pp. ISBN: 978 0415741668)...

  4. Biochemical Characteristics of Organic Matter in a Guano Concretion of Late Miocene or Pliocene Age from Manchester Parish in Jamaica

    Directory of Open Access Journals (Sweden)

    Adrian Spence

    2013-01-01

    Full Text Available The biogeochemical fate of organic matter (OM entering soils is an important issue that must be examined to better understand its roles in nitrogen cycling and as a natural modulator of soil-atmospheric carbon fluxes. Despite these critical roles, there are uncertainties in estimating the contribution of this feedback mechanism due in part to a lack of molecular-level information regarding the origin and labile and refractory inventories of OM in soils. In this study, we used a multi-analytical approach to determine molecular-level information for the occurrence and stabilization of OM in a bird guano concretion of the Late Miocene or Pliocene age in Jamaica. We determined the specific organic structures persisting in the concretion and the possible contribution of fossil organic matter to the OM pool in modern environments. Our results indicate that aliphatic species, presumably of a highly polymethylenic nature [(CH 2 n ], may significantly contribute to the stable soil-C pool. Although not as significant, proteins and carbohydrates were also enriched in the sample, further suggesting that fossil organic matter may contribute to carbon and nitrogen pools in present day soil organic matter.

  5. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  6. Natural organic matter to enhance electrokinetic transport of PAH

    Energy Technology Data Exchange (ETDEWEB)

    Suer, P.; Joensson, S.; Allard, B. [Man-Technology-Environment Research Centre, Oerebro Univ. (Sweden)

    2001-07-01

    The remediation of contaminated soil can be enhanced with natural organic matter (NOM) as a complexing agent for pollutants. NOM has both hydrophobic and acidic properties, so that it is charged and thus subject to electroremediation. At the same time many contaminants have a high affinity for organic matter. Organic matter was produced in situ in an electric field or added in solute form. The resulting dissolved organic matter was transported towards the cathode, probably by cationic colloids. Produced dissolved organic matter included high molecular weight molecules near the cathode, at the site of pH buffering. Pyrene and phenanthrene were likewise transported towards the cathode. Movement was small but distinctive in 2-day experiments. Clay influence the soil/water distribution of the PAH but no effect on the total transport could be discerned. The presence of solid organic matter in the soil removed all PAH from the water phase, even though the concentration of organic matter in the water phase was high as well. (orig.)

  7. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Sun, Youping [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Barrios, Ana C. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Niu, Genhua [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Margez, Juan P. Flores- [Autonomous University of Ciudad Juarez, Departamento de Química y Biología, Instituto de Ciencias Biomédicas, Anillo envolvente PRONAF y Estocolmo, Ciudad Juarez, Chihuahua 32310, México (Mexico); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States)

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0–500 mg/kg cerium oxide nanoparticles (nano-CeO{sub 2}) under greenhouse condition. After 52 days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO{sub 2} exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65–111% with increasing nano-CeO{sub 2} concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5–250 mg/kg nano-CeO{sub 2} led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25–28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250 mg/kg nano-CeO{sub 2}. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO{sub 2} exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. - Highlights: • Ce translocation to leaves was facilitated by higher organic matter (OM) in soil. • Lower soil OM increased leaf cover area in nano-CeO{sub 2} exposed plants. • Nano-CeO{sub 2} effects on metabolic processes were more

  8. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    Science.gov (United States)

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (PCDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  9. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    Science.gov (United States)

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Molybdenum isotope fractionation during adsorption to organic matter

    Science.gov (United States)

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  11. Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses.

    Science.gov (United States)

    Nkhili, Ezzhora; Guyot, Ghislain; Vassal, Nathalie; Richard, Claire

    2012-07-01

    Cold and hot water processes have been intensively used to recover soil organic matter, but the effect of extraction conditions on the composition of the extracts were not well investigated. Our objective was to optimize the extraction conditions (time and temperature) to increase the extracted carbon efficiency while minimizing the possible alteration of water extractable organic matter of soil (WEOM). WEOM were extracted at 20°C, 60°C, or 80°C for 24 h, 10-60 min, and 20 min, respectively. The different processes were compared in terms of pH of suspensions, yield of organic carbon, spectroscopic properties (ultraviolet-visible absorption and fluorescence), and by chromatographic analyses. For extraction at 60°C, the time 30 min was optimal in terms of yield of organic carbon extracted and concentration of absorbing and fluorescent species. The comparison of WEOM 20°C, 24 h; 60°C, 30 min; and 80°C, 20 min highlighted significant differences. The content of total organic carbon, the value of specific ultraviolet absorbance (SUVA(254)), the absorbance ratio at 254 and 365 nm (E (2)/E (3)), and the humification index varied in the order: WEOM (20°C, 24 h) < WEOM (80°C, 20 min) < WEOM (60°C, 30 min). The three WEOM contained common fluorophores associated with simple aromatic structures and/or fulvic-like and common peaks of distinct polarity as detected by ultra performance liquid chromatography. For the soil chosen, extraction at 60°C for 30 min is the best procedure for enrichment in organic chemicals and minimal alteration of the organic matter.

  12. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations

    Science.gov (United States)

    Le Guillou, Corentin; Bernard, Sylvain; Brearley, Adrian J.; Remusat, Laurent

    2014-04-01

    Chondrites accreted the oldest solid materials in the solar system including dust processed in the protoplanetary disk and diverse organic compounds. After accretion, asteroidal alteration may have impacted organic particles in various ways. To constrain these processes, we conducted a comprehensive study of organics disseminated within the matrices of the three carbonaceous chondrite falls, Renazzo (CR2), Murchison (CM2) and Orgueil (CI). By combining synchrotron-based STXM and TEM analyses on FIB sections of samples previously characterized by NanoSIMS, we investigated the influence of aqueous alteration on the morphology, isotopic signature, molecular structure, spatial distribution, and mineralogical environment of the organic matter within the matrices. Two different populations of materials are distinguishable: sub-micrometric individual grains, likely dominated by insoluble compounds and diffuse organic matter, finely interspersed within phyllosilicates and/or (amorphous) nanocarbonates at the nanometer scale. We suggest that this latter component, which is depleted in aromatics and enriched in carboxylic functional groups, may be dominated by soluble compounds. Organic matter in Renazzo (CR) mainly consists of chemically-homogeneous individual grains surrounded by amorphous and nanocrystalline phyllosilicates. Evidence of connectivity between organic grains and fractures indicates that redistribution has occurred: some areas containing diffuse organic matter can be observed. This diffuse organic component is more abundant in Murchison (CM) and Orgueil (CI). This is interpreted as resulting from fluid transport at the micrometer scale and encapsulation within recrystallized alteration phases. In contrast to Renazzo, organic grains in Murchison and Orgueil display strong chemical heterogeneities, likely related to chemical evolution during aqueous alteration. The observations suggest that the altering fluid was a brine with elevated concentrations of both

  13. Enriching project organizations with formal change agents

    DEFF Research Database (Denmark)

    Eskerod, Pernille; Justesen, Just Bendix; Sjøgaard, Gisela

    2017-01-01

    Purpose: Project success requires effective and efficient cooperation between the project organization and the permanent organization in which the project takes place. The purpose of this paper is to discuss potentials and pitfalls from enriching project organizations by appointing peers as formal...... and middle and top management support are major determinants of success within change projects. To select change agents that the employees respect and can identify with, combined with top management prioritization, is important in order for the project organization to benefit from the additional role...... change agents. Design/methodology/approach: The paper is based on a literature review and a multiple-case study in which six organizations participated in an action-oriented research project. The aim for the organizations was to obtain a better health status among the employees by accomplishing...

  14. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites

    International Nuclear Information System (INIS)

    Lee, Eunkyung; Shon, Ho Kyong; Cho, Jaeweon

    2014-01-01

    Highlights: • Photodegradation of PPCPs was investigated in various NOM enriched solutions. • Direct and indirect photolysis experiments were conducted upon UV irradiation. • PPCPs showed different levels of photodegradation rates depending on their photoreactivity. • Allochthonous NOM inhibited the photolysis of target PPCPs. • Wetland NOM enhanced photodegradation of some conservative PPCPs. - Abstract: Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with 3 DOM * for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ( 3 DOM * ) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants by the

  15. Influence of sediment organic enrichment and water alkalinity on growth of aquatic isoetid and elodeid plants

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens; Jensen, Kaj Sand

    2010-01-01

    1. Lake eutrophication has increased phytoplankton blooms and sediment organic matter. Among higher plants, small, oligotrophic rosette species (isoetids) have disappeared, while a few tall, eutrophic species (elodeids) may have persisted. Despite recent reduction of nutrient loading in restored...... lakes, the vegetation has rarely regained its former composition and coverage. Patterns of recovery may depend on local alkalinity because HCO3- stimulates photosynthesis of elodeids and not of isoetids. In laboratory growth experiments with two isoetids (Lobelia dortmanna and Littorella uniflora......) and two elodeids (Potamogeton crispus and P. perfoliatus), we test whether organic enrichment of lake sediments has a long-lasting influence by: (i) reducing plant growth because of oxygen stress on plant roots and (ii) inhibiting growth more for isoetids than elodeids. We also test whether (iii...

  16. Changes in δ(13)C of dark respired CO2 and organic matter of different organs during early ontogeny in peanut plants.

    Science.gov (United States)

    Ghashghaie, Jaleh; Badeck, Franz W; Girardin, Cyril; Sketriené, Diana; Lamothe-Sibold, Marlène; Werner, Roland A

    2015-01-01

    Carbon isotope composition in respired CO2 and organic matter of individual organs were measured on peanut seedlings during early ontogeny in order to compare fractionation during heterotrophic growth and transition to autotrophy in a species with lipid seed reserves with earlier results obtained on beans. Despite a high lipid content in peanut seeds (48%) compared with bean seeds (1.5%), the isotope composition of leaf- and root-respired CO2 as well as its changes during ontogeny were similar to already published data on bean seedlings: leaf-respired CO2 became (13)C-enriched reaching -21.5‰, while root-respired CO2 became (13)C-depleted reaching around -31‰ at the four-leaf stage. The opposite respiratory fractionation in leaves vs. roots already reported for C3 herbs was thus confirmed for peanuts. However, contrarily to beans, the peanut cotyledon-respired CO2 was markedly (13)C-enriched, and its (13)C-depletion was noted from the two-leaf stage onwards only. Carbohydrate amounts being very low in peanut seeds, this cannot be attributed solely to their use as respiratory substrate. The potential role of isotope fractionation during glyoxylate cycle and/or gluconeogenesis on the (13)C-enriched cotyledon-respired CO2 is discussed.

  17. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    Science.gov (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport

  18. Deuterium in organic matter

    International Nuclear Information System (INIS)

    Straaten, C.M. van der.

    1981-01-01

    In order to obtain an insight in the processes governing the macroclimate on earth, a knowledge is required of the behaviour of climates in the past. It is well known that D/H ratio of rain varies with temperature determined by latitude as well as by season. Because land plants use this water during the assimilation process, it is expected that the D/H variations are propagated in the organic plant matter. The D/H palaeoclimatic method has therefore been applied to peat to distinguish between the chemical constituents and trace the stable hydrogen fraction in the organic matter. The relation between the hydrogen isotopic composition of precipitation and climatic factors such as the temperature have also been studied. (Auth.)

  19. Organic matter dynamics and N mineralization in grassland soils

    OpenAIRE

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly and can be used in soil organic matter models, iii) to develop a model that predicts the long-term dynamics of soil organic matter, iv) to develop a simple model that can be used by farmers and advi...

  20. Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene.

    Science.gov (United States)

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-06-01

    Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.

  1. Cycling downwards - dissolved organic matter in soils

    NARCIS (Netherlands)

    Kaiser, K.; Kalbitz, K.

    2012-01-01

    Dissolved organic matter has been recognized as mobile, thus crucial to translocation of metals, pollutants but also of nutrients in soil. We present a conceptual model of the vertical movement of dissolved organic matter with soil water, which deviates from the view of a chromatographic stripping

  2. Clay-associated organic matter in kaolinitic and smectitic soils

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.

    2002-01-01

    The primary source of soil organic matter is plant debris of all kinds, such as dead roots, leaves and branches that enter into the soil and are then biologically decomposed at variable rates. Organic matter has many different important functions on a local and global scale. Soil organic matter is

  3. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Lyra, Christina; Autio, Riitta; Kuosa, Harri; Dieckmann, Gerhard S; Thomas, David N

    2014-02-01

    The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0-6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α- and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea

    International Nuclear Information System (INIS)

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-01-01

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ 13 C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. - Highlights: • Response of sources and composition of SOC to nutrient enrichment was observed. • Similar SOC sources and composition were observed in the two seagrass communities. • Nutrient enrichment enhanced seagrass and macroalgae and epiphytes contribution to SOC. • High nutrient concentration stimulated the MBC and the MBC/SOC ratio.

  5. Organic Matter in the Surface Microlayer: Insights From a Wind Wave Channel Experiment

    Directory of Open Access Journals (Sweden)

    Anja Engel

    2018-06-01

    Full Text Available The surface microlayer (SML is the uppermost thin layer of the ocean and influencing interactions between the air and sea, such as gas exchange, atmospheric deposition and aerosol emission. Organic matter (OM plays a key role in air-sea exchange processes, but studying how the accumulation of organic compounds in the SML relates to biological processes is impeded in the field by a changing physical environment, in particular wind speed and wave breaking. Here, we studied OM dynamics in the SML under controlled physical conditions in a large annular wind wave channel, filled with natural seawater, over a period of 26 days. Biology in both SML and bulk water was dominated by bacterioneuston and -plankton, respectively, while autotrophic biomass in the two compartments was very low. In general, SML thickness was related to the concentration of dissolved organic carbon (DOC but not to enrichment of DOC or of specific OM components in the SML. Pronounced changes in OM enrichment and molecular composition were observed in the course of the study and correlated significantly to bacterial abundance. Thereby, hydrolysable amino acids, in particular arginine, were more enriched in the SML than combined carbohydrates. Amino acid composition indicated that less degraded OM accumulated preferentially in the SML. A strong correlation was established between the amount of surfactants coverage and γ-aminobutric acid, suggesting that microbial cycling of amino acids can control physiochemical traits of the SML. Our study shows that accumulation and cycling of OM in the SML can occur independently of recent autotrophic production, indicating a widespread biogenic control of process across the air-sea exchange.

  6. Biologically Active Organic Matter in Soils of European Russia

    Science.gov (United States)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  7. Diagenesis of amorphous organic matter as an essential aspect of genesis and alteration of tabular-type uranium-vanadium deposits, Colorado Plateau

    International Nuclear Information System (INIS)

    Spirakis, C.S.; Hansley, P.L.

    1987-01-01

    Organic matter was the key to the initial concentration of uranium and vanadium (during the sulfate reduction stage of early diagenesis) in all sandstone-hosted, tabular deposits in the Morrison Formation, Colorado Plateau. In deposits rich in amorphous organic matter, as are many in the Grants uranium region (GUR), diagenesis did not proceed beyond sulfate reduction. In contrast, in organic-poor, chlorite deposits of the Henry Mountains district, 13 C- and 18 O-enriched dolomites preserve evidence of a subsequent methanogenic stage. In these and similar organic-poor deposits in the Slick Rock district and in parts of the GUR, aluminosilicate dissolution (including a distinctive, organic-acid-induced etching of garnets) and growth of coarse-grained coffinite, albite, ankerite, and chlorite suggest diagenesis reached the organic acid stage. Temperature and thermal maturation indicators (vitrinite reflectance, type IIb chlorite, ordered illite/smectite, and fluid inclusion data) are consistent with temperatures of organic-acid stage diagenesis (∼ 100 0 C). The localization of these alterations in and around organic-poor, clay-rich ore; the similarities in type and sequence of these alterations to the normal alteration of organic-bearing sediments; the alteration of iron-titanium oxides (attributed to the action of soluble organic complexes) around both organic-rich and organic-poor deposits; and the gradation from organic-rich to organic-poor, chlorite-rich deposits (in GUR) suggest that (1) amorphous organic matter was involved in the genesis of all of these deposits and (2) differences among deposits may reflect varying degrees of diagenesis of the organic matter

  8. Exploring the Origins of Deuterium Enrichments in Solar Nebular Organics

    Science.gov (United States)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; O'D. Alexander, Conel M.; Du, Fujun; Graninger, Dawn; Öberg, Karin I.; Harries, Tim J.

    2016-03-01

    Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies generally have higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to (1) the availability of additional chemical fractionation pathways for organics beyond that for water, and (2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic-ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH2D+/CH3+. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from ˜20-40 au, CH4 can reach {{D}}/{{H}}˜ 2× {10}-3, while D/H in CH3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.

  9. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunkyung [Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shon, Ho Kyong [School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), PO Box 123, Broadway, Sydney 2007, NSW (Australia); Cho, Jaeweon, E-mail: chojw@yonsei.ac.kr [Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-07-15

    Highlights: • Photodegradation of PPCPs was investigated in various NOM enriched solutions. • Direct and indirect photolysis experiments were conducted upon UV irradiation. • PPCPs showed different levels of photodegradation rates depending on their photoreactivity. • Allochthonous NOM inhibited the photolysis of target PPCPs. • Wetland NOM enhanced photodegradation of some conservative PPCPs. - Abstract: Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with {sup 3}DOM{sup *}for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ({sup 3}DOM{sup *}) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants

  10. Linking measurements of biodegradability, thermal stability and chemical composition to evaluate the effects of management on soil organic matter

    Science.gov (United States)

    Gregorich, Ed; Gillespie, Adam; Beare, Mike; Curtin, Denis; Sanei, Hamed; Yanni, Sandra

    2015-04-01

    The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to accurately quantify and characterise the labile and stable forms of soil organic C. Our objectives in this study were to evaluate and describe relationships among the biodegradability, thermal stability and chemistry of SOM in soil under widely contrasting management regimes. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: managements and that sand-associated organic matter was significantly more susceptible than that in the silt or clay fractions. Analysis by XANES showed accumulation of carboxylates and strong depletion of amides (protein) and aromatics in the fallow whole soil. Moreover, protein depletion was most significant in the sand fraction of the fallow soil. Sand fractions in fallow and cropped soils were, however, enriched in plant-derived phenols, aromatics and carboxylates compared to the sand fraction of pasture soils. In contrast, ketones, which have been identified as products of microbially-processed organic matter, were slightly enriched in the silt fraction of the pasture soil. These data suggest reduced inputs and cropping restrict the decomposition of plant residues and, without supplemental N additions, protein-N in native SOM is significantly mineralized in fallow systems to meet microbial C mineralization demands. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the size fractions and management treatments; it also showed that the loss of SOM generally involved dehydrogenation. The temperature at which half of the C was pyrolyzed showed strong correlation with mineralizable C and thus provides solid evidence for a link between the biological and

  11. A new method for identifying the types of organic matter

    International Nuclear Information System (INIS)

    Tong Chunhan; Li Guodong

    1991-01-01

    A new method for dividing the types of organic matter according to V and Ni contents in soluble organic matter determined by NAA is introduced. The research site was an oil-gas field in northeastern China. The type of organic matter is an important parameter in evaluating an oil or a gas field. The conventional organic geochemistry methods will meet unsurmountable difficulties when the maturity of organic matter is high. The method described in this paper can solve the problem. (author) 4 refs.; 1 fig.; 2 tabs

  12. Relative age and age sequence of fractions of soil organic matter

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.

    1975-01-01

    Natural radiocarbon measurements on soil fractions provide information regarding the chances of separating the ''old biologically inert carbon'' out of samples of recent soil material. Beyond this, the relative fraction ages are scrutinized for the sequential order of the origin of the fractions within the biosynthetic reaction chain of soil humic matter. Among all fractions compared (classic humic matter fractionation by alkali and acid treatment; successive extraction with organic solvents of increasing polarity; separation according to particle size by Sephadex gel filtration; hydrolysis residue) the 6 n HCl hydrolysis residue shows the most consistent significant age increment. Repeated exhaustive hydrolysis treatment of the same sample material is still pending. All other fraction types indicate an age pattern under strong predetermination by method of origin, e.g., existence or lack of hydromorphy, without an evident enrichment of the ''old biologically inert carbon''. Among the organic extracts, no persistent age hierarchy is noticeable, whereas the classical fractions follow an age sequence mainly parallel to an increase of the molecular weight. Hymatomelanic acids appear rejuvenated by relics of recent carbon derived from the extractant ethanol. Grey humic acids are older than the brown humic acids, humines from fully terrestrial soil environment are older than humic acids, while in hydromorphic soils, cold alkali insoluble young C-compounds seem to be conserved which are liable to falsify rejuvenation of the humines

  13. Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells

    Science.gov (United States)

    Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.

    2007-01-01

    Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318

  14. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due...... of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer...... ranged up to 1.59 ± 0.16 μg gdw−1 d−1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin–Benson–Bassham (CBB) cycle, as indicated from quantification of cbbL/cbbM marker genes encoding for RubisCO by quantitative polymerase chain reaction...

  15. Organic matter in constructed soils from a coal mining area in southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Deborah P.; Avila, Leticia G. [Universidade Federal do Rio Grande do Sul, Inst. de Quimica, Porto Alegre, RS (Brazil); Knicker, Heike [Technische Universitaet Muenchen, Lehrstuhl fuer Bodenkunde, Freising-Weihenstephan (Germany); Inda, Alberto V. Jr.; Giasson, Elvio; Bissani, Carlos A. [Universidade Federal do Rio Grande do Sul, Dept. de Ciencia do Solo, Porto Alegre, RS (Brazil)

    2006-11-15

    In southern Brazil, the landscape restoration after the exhaustion of open cast coal mines involves the filling of mine cavities with both pedogenic and geological material. The objective of this work was to determine the content and chemical composition of the organic matter of two constructed soils (24 years and 2 years) in a coal mining area in southern Brazil. An undisturbed Acrisol and geological material from three sites were also sampled. Samples were analyzed for carbon and nitrogen contents by dry combustion and for chemical composition of the organic matter by {sup 13} C NMR CPMAS and FTIR spectroscopies. Prior to the spectroscopic analyses, the samples were treated with 10% (m/m) hydrofluoric acid solution, which lead to a carbon enrichment in the sample of 2-46 times. The three coal samples were mainly composed of aromatic C (46-63%) and alkyl C (10-28%), and differed largely in the carbon content (18-312 g kg{sup -1}). The C/N ratio of 27 and the proportions of O-alkyl C (26%) and aromatic C (29%) found in the native soil (18 g C kg{sup -1} soil) suggest a coal contamination of the native site. The proportions of O/N-alkyl C (15-17%), alkyl C (22-23%) and aromatic C (39-41%) observed in the organic matter of the A1 horizon of the two constructed soils were intermediate to those of the coal samples and the native soil. In the younger constructed soil the proportion of O/N-alkyl diminished and that of aromatic C increased with depth, whereas in the older constructed soil this trend was less evident. Our results show that, during the 24 years after site reconstruction, the input of vegetation residues diluted the proportion of recalcitrant organic matter. The aromaticity index calculated from the FTIR data (I{sub 1620} /I{sub 2920}) correlated positively with the aryl C/alkyl C ratio, obtained from the NMR data, evidencing the applicability of the FTIR index for geological and coal contaminated samples. (Author)

  16. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    Science.gov (United States)

    Heckman, K.; Grandy, A. S.; Gao, X.; Keiluweit, M.; Wickings, K.; Carpenter, K.; Chorover, J.; Rasmussen, C.

    2013-11-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering reactions. We incubated gibbsite-quartz mineral mixtures in the presence of forest floor material inoculated with a native microbial consortium for periods of 5, 60 and 154 days. At each time step, samples were density separated into light (2.0 g cm-3) fractions. The light fraction was mainly comprised of particulate organic matter, while the intermediate and heavy density fractions contained moderate and large amounts of Al-minerals, respectively. Multi-method interrogation of the fractions indicated the intermediate and heavy fractions differed both in mineral structure and organic compound composition. X-ray diffraction analysis and SEM/EDS of the mineral component of the intermediate fractions indicated some alteration of the original gibbsite structure into less crystalline Al hydroxide and possibly proto-imogolite species, whereas alteration of the gibbsite structure was not evident in the heavy fraction. DRIFT, Py-GC/MS and STXM/NEXAFS results all showed that intermediate fractions were composed mostly of lignin-derived compounds, phenolics, and polysaccharides. Heavy fraction organics were dominated by polysaccharides, and were enriched in proteins, N-bearing compounds, and lipids. The source of organics appeared to differ between the intermediate and heavy fractions. Heavy fractions were enriched in 13C with lower C/N ratios relative to intermediate fractions, suggesting a microbial origin. The observed differential fractionation of organics among hydroxy-Al mineral types suggests that microbial activity superimposed with abiotic mineral-surface-mediated fractionation leads to strong density

  17. Methods for Determining Organic Matter and Colour in Water

    Directory of Open Access Journals (Sweden)

    Ramunė Albrektienė

    2011-02-01

    Full Text Available The article examines different methods for determining organic matter and colour in water. Most of organic compounds in water have a humic substance. These substances frequently form complexes with iron. Humic matter gives water a yellow-brownish colour. Water filtration through conventional sand filters does not remove colour and organic compounds, and therefore complicated water treatment methods shall be applied. The methods utilized for organic matter determination in water included research on total organic carbon, permanganate index and the bichromate number of UV absorption of 254 nm wave length. The obtained results showed the greatest dependence between water colour and permanganate index. However, UV adsorption could be used for organic matter determination during the operation of a water treatment plant and the start-up of plants as easy and fast methods.Article in Lithuanian

  18. Measuring organic matter in Everglades wetlands and the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2015-01-01

    Here, organic matter is a complex material that represents the long-term decay products from plants and other organisms in the soil. When organic matter is allowed to build up in a soil, the soil color at the surface usually turns a darker color, often with a red or brown hue. Typically in Florida mineral soils, organic matter content is quite low, within the range of 1 to 5%. However, in some soils that remain flooded for most of the year, organic matter can build up with time and actually become the soil. Such is the case for the organic soils, or histosols, found in southern Florida. These organic soils comprise much of the Water Conservation Areas, Everglades National Park (ENP), Big Cypress Basin, and the Everglades Agricultural Area (EAA). It is important to document organic matter accumulation in the Everglades to gauge the effectiveness of wetland creation and succession. For the EAA, the drained soils lose organic matter due to oxidation, so measurement of the organic matter content of these soils over the course of time indicates the oxidation potential and mineral incorporation from bedrock. Due to the wide diversity of soil types and methods of measuring soil organic matter, there is a need to devise a more universal method applicable to many types of histosols in south Florida. The intent of this publication is: 1.To describe a simple laboratory method for determining the organic matter content of the organic soils of southern Florida and demonstrate the importance of using this new procedure for improved accuracy and precision; 2.To utilize this updated laboratory procedure for field sites across Everglades wetlands and the EAA; and 3. To recommend this procedure be used by growers, state and federal agencies, and university and agency researchers dealing with the management of organic soils in southern Florida. Growers can use this improvement to organic matter measurement to keep lab testing costs low while getting a better, more quantitative

  19. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    Science.gov (United States)

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enriching Students’ Vocabulary Mastery Using Graphic Organizers

    Directory of Open Access Journals (Sweden)

    Syaifudin Latif Darmawan

    2017-04-01

    Full Text Available This action research is carried out to (1 identify whether graphic organizers enrich student’s vocabulary mastery; and (2 to describe the classroom situation when graphic organizers are employed in instructional process of vocabulary. The research is conducted in two cycles from March to May 2016/2017 in the eight years of SMP Muhammadiyah Sekampung, East lampung. The procedure of the research consists of identifying the problem, planning the action, implementing the action, observing the action, and reflecting the result of the research. Qualitative data are collected through interview, observation, questionnaire, and research diary. Quantitative data are collected through test. To analyze qualitative data, the researcher used constant comparative method. It consists of four steps: (1 comparing incidents applicable to each category; (2 Integrating categories and their properties; (3 delimiting the theory; (4 Writing the theory. Meanwhile, to analyze quantitative data, the researcher employed descriptive statistic.    The result of the research shows that using graphic organizers can enrich students’ vocabulary mastery and classroom situation. The improvement on students’ vocabulary included; a the students are able to speak English; b the students are able to understand the meaning of the text as they have a lot of vocabularies. The improvement of the classroom situation; (a students come on time in the class (b students are more motivated to join the class (c Students pay more attention in the instructional process (d students’ participation in responding the questions are high.

  1. Phytoplankton community response to carbon dioxide enrichment in winter incubation experiments

    Science.gov (United States)

    Coastal waters are experiencing changes in carbonate chemistry, including pH, in response to increases in atmospheric CO2 concentration and the microbial degradation of surplus organic matter associated with nutrient enrichment. The effects of this change on plankton communities ...

  2. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  3. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    Science.gov (United States)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass

  4. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    Science.gov (United States)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    significantly higher VSC values compared to their parent soil types. However, the higher organic carbon concentrations in Andosol and Alisol (China)-derived paddy soils compared to their parent soil types, could not be explained by an enrichment of lignin-derived phenols. It seems that site specific incorporation of crop residues and properties of the parent soil types are likely more important for organic carbon contents and soil organic matter composition than the effect of paddy management itself.

  5. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea.

    Science.gov (United States)

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-09-15

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ(13)C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation

    Science.gov (United States)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Alexander, Conel M. O.'D.; Kilcoyne, A. L. David; Zega, Thomas J.

    2010-08-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with 15N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large 15N anomaly (δ 15N = 1120‰). Associated, non-globular, organic matter from this track is less enriched in 15N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ( sbnd C tbnd N) and carboxyl ( sbnd COOH) functional groups. It is significantly enriched in D (δD = 1000‰) but has a terrestrial 15N/ 14N ratio. Experiments indicate that similar D enrichments, unaccompanied by 15N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large 15N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in 15N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K) chemistry in the interstellar medium or perhaps the outer regions of the solar nebula. In other

  7. Effects of organic matter and ageing on the bioaccessibility of arsenic

    International Nuclear Information System (INIS)

    Meunier, Louise; Koch, Iris; Reimer, Kenneth J.

    2011-01-01

    Arsenic-contaminated soils may pose a risk to human health. Redevelopment of contaminated sites may involve amending soils with organic matter, which potentially increases arsenic bioaccessibility. The effects of ageing on arsenic-contaminated soils mixed with peat moss were evaluated in a simulated ageing period representing two years, during which arsenic bioaccessibility was periodically measured. Significant increases (p = 0.032) in bioaccessibility were observed for 15 of 31 samples tested, particularly in comparison with samples originally containing >30% bioaccessible arsenic in soils naturally rich in organic matter (>25%). Samples where percent arsenic bioaccessibility was unchanged with age were generally poor in organic matter (average 7.7%) and contained both arsenopyrite and pentavalent arsenic forms that remained unaffected by the organic matter amendments. Results suggest that the addition of organic matter may lead to increases in arsenic bioaccessibility, which warrants caution in the evaluation of risks associated with redevelopment of arsenic-contaminated land. - Highlights: → Adding organic matter to contaminated soils may increase arsenic bioaccessibility. → Ageing soils with >25% organic matter can lead to increased arsenic bioaccessibility. → No changes in arsenic bioaccessibility for soils poor in organic matter (mean 7.7%). → No changes in arsenic bioaccessibility for samples containing arsenopyrite. → Organic matter in soil may favour oxidation of trivalent arsenic to pentavalent form. - Adding organic carbon may increase arsenic bioaccessibility, especially in samples originally containing >30% bioaccessible arsenic in organic carbon-rich soils (>25%).

  8. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils

    International Nuclear Information System (INIS)

    Zhou, Tong; Wu, Longhua; Luo, Yongming; Christie, Peter

    2018-01-01

    Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000–53 μm POM size fractions had higher contents of C–H and C=O bonds, C–H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5–27.9% and 7.12–16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000–250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C–H and C=O bonds or C–H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250–53 μm POM size fractions were lower than those in 2000–250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils. - Highlights: • The OC and FA contents and C/N in POM (2000–250 μm) increased in polluted soil. • Enrichment of Cd and Zn decreased with decreasing POM size. • No significant change in content of C=O group in POM was observed in polluted soil. • Changes in the size and composition of soil POM affected the Cd and Zn distribution. - Interactions between soil organic matter and metals.

  9. Behaviour of organic matters in uranium ore processing

    International Nuclear Information System (INIS)

    Wu Sanmin

    1991-01-01

    The oxidation-reduction behaviour of organic matters in the course of oxidation roasting, acid leaching and alkali leaching, the regeneration of humic acid and the consumption of reagents are described. The mineralogical characteristics of the organic matter samples were studied. The results show that its organic matter rich in volatile carbon and with the shorter evolutionary process and lower association is easily oxidized with higher consumption of oxidant during its acid leaching; it is easily oxidized with forming humic acid during alkali leaching; and pretreating it by oxidation roasting is beneficial to the oxidation of uranium. On the contrary, the organic matter rich in fixed carbon, and with longer evolutionary process and higher association is difficultly oxidized with lower consumption of oxidant during its acid leaching; it is difficult to regenerate humic acid for it during alkali leaching; and the uranium can be easily reduced and the leaching performance of uranium can be lowered

  10. Organic Matter Dynamics in Soils Regenerating from Degraded ...

    African Journals Online (AJOL)

    The area of secondary forest (SF) regenerating from degraded abandoned rubber (Hevea brasiliensis) plantation is increasing in the rainforest zone of south southern Nigeria; however, the build-up of soil organic matter following abandonment is not well understood. This study examined the build-up of soil organic matter in ...

  11. Analytic study of organic matters in Lodeve uranium ore

    International Nuclear Information System (INIS)

    Campuzano, E.J.

    1981-01-01

    Exploitation of uranium in the Permian basin of Lodeve is difficult because of simultaneous extraction of organic matters which are found, in small proportion, in ammonium diuranate and a supplementary purification is required. Available information on natural organic matters are briefly reviewed. Natural organic matters contained in the Lodeve uranium ore processing fluid is separated and fractionated. Physicochemical properties of ligands in each fraction are studied. The existence of bonds between these ligands and dissolved uranium is experimentally demonstrated [fr

  12. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean

    NARCIS (Netherlands)

    Granskog, M.A.; Stedmon, C.A.; Dodd, P.A.; Amon, R.M.W.; Pavlov, A.K.; de Steur, L.; Hansen, E.

    2012-01-01

    Absorption coefficients of colored dissolved organic matter (CDOM) were measured together with salinity, delta O-18, and inorganic nutrients across the Fram Strait. A pronounced CDOM absorption maximum between 30 and 120 m depth was associated with river and sea ice brine enriched water,

  13. Deep-sea nematodes actively colonise sediments, irrespective of the presence of a pulse of organic matter: results from an in-situ experiment.

    Directory of Open Access Journals (Sweden)

    Katja Guilini

    Full Text Available A colonisation experiment was performed in situ at 2500 m water depth at the Arctic deep-sea long-term observatory HAUSGARTEN to determine the response of deep-sea nematodes to disturbed, newly available patches, enriched with organic matter. Cylindrical tubes,laterally covered with a 500 µm mesh, were filled with azoic deep-sea sediment and (13C-labelled food sources (diatoms and bacteria. After 10 days of incubation the tubes were analysed for nematode response in terms of colonisation and uptake. Nematodes actively colonised the tubes, however with densities that only accounted for a maximum of 2.13% (51 ind.10 cm(-2 of the ambient nematode assemblages. Densities did not differ according to the presence or absence of organic matter, nor according to the type of organic matter added. The fact that the organic matter did not function as an attractant to nematodes was confirmed by the absence of notable (13C assimilation by the colonising nematodes. Overall, colonisation appears to be a process that yields reproducible abundance and diversity patterns, with certain taxa showing more efficiency. Together with the high variability between the colonising nematode assemblages, this lends experimental support to the existence of a spatio-temporal mosaic that emerges from highly localised, partially stochastic community dynamics.

  14. Export of Terrestrially-Derived Organic Matter from the Mississippi River to the Gulf of Mexico Sediments as Determined by Ultrahigh Resolution Mass Spectrometry

    Science.gov (United States)

    Hatcher, P.; Ware, S. A.; Vaughn, D.; Waggoner, D. C.; Bianchi, T. S.

    2017-12-01

    Sediment samples extending from the main channel of the Mississippi River to edge of the continental shelf of the Gulf of Mexico were extracted to recover humic acids from the organic matter and subjected to molecular level characterization by electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The data show that sedimentary organic matter at the river mouth contains humic substances with a predominantly terrestrial signature resembling those obtained from soils. Condensed aromatic molecules and carboxyl rich alicyclic molecules (CRAM) typify the major structures observed. The CRAM-like molecules persist progressing seaward into the Gulf while the condensed aromatic molecules diminish in relative abundance. This trend is characteristic of traditional mixing of allochthonous terrestrial with autochthonous source materials, consistent with published isotope and lignin phenol biomarker data. Alternatively, the trend could also be explained by oxidative degradation of mainly terrestrial organic matter whereby the condensed aromatic molecules would be selectively oxidized. CRAM molecules would then become selectively enriched as one progresses from the channel to the continental shelf. Laboratory studies show that aromatic molecules (like those in lignin) subjected to oxidative degradation mainly by hydroxyl radical attack, either biologically or non-biologically, undergo molecular rearrangement via ring-opening to form reactive species. These can interact with nucleophilic molecules such as peptides and sulfur-containing species and/or can undergo cycloaddition reactions to produce CRAM-like species. This latter explanation suggests that the main source of organic matter in this coastal depocenter is terrestrial and that autochthonous organic matter contributes little to sedimentary organic matter.

  15. X-Ray-induced Deuterium Enrichment of N-rich Organics in Protoplanetary Disks: An Experimental Investigation Using Synchrotron Light

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, Lisseth; Carrasco, Nathalie [LATMOS, Université Versailles St Quentin, UPMC Université Paris 06, CNRS, 11 blvd d’Alembert, F-78280 Guyancourt (France); Remusat, Laurent; Roskosz, Mathieu [IMPMC, CNRS UMR 7590, Sorbonne Universités, UPMC Université Paris 06, IRD, Muséum National d’Histoire Naturelle, CP 52, 57 rue Cuvier, Paris F-75231 (France); Popescu, Horia; Jaouen, Nicolas [SEXTANTS beamline, SOLEIL synchrotron, L’Orme des Merisiers, F-91190 Saint-Aubin (France); Sandt, Christophe [SMIS beamline, SOLEIL synchrotron, L’Orme des Merisiers, F-91190 Saint-Aubin (France); Jäger, Cornelia [Laboratory Astrophysics and Cluster Physics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University and Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Thomas [Max-Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany); Simionovici, Alexandre [Institut des Sciences de la Terre, Observatoire des Sciences de l’Univers de Grenoble, BP 53, F-38041 Grenoble (France); Lemaire, Jean Louis [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91405 Orsay (France); Mangin, Denis, E-mail: lisseth.gavilan@latmos.ipsl.fr [Institut Jean Lamour, CNRS, Université de Lorraine, F-54011 Nancy (France)

    2017-05-01

    The deuterium enrichment of organics in the interstellar medium, protoplanetary disks, and meteorites has been proposed to be the result of ionizing radiation. The goal of this study is to simulate and quantify the effects of soft X-rays (0.1–2 keV), an important component of stellar radiation fields illuminating protoplanetary disks, on the refractory organics present in the disks. We prepared tholins, nitrogen-rich organic analogs to solids found in several astrophysical environments, e.g., Titan’s atmosphere, cometary surfaces, and protoplanetary disks, via plasma deposition. Controlled irradiation experiments with soft X-rays at 0.5 and 1.3 keV were performed at the SEXTANTS beamline of the SOLEIL synchrotron, and were immediately followed by ex-situ infrared, Raman, and isotopic diagnostics. Infrared spectroscopy revealed the preferential loss of singly bonded groups (N–H, C–H, and R–N≡C) and the formation of sp{sup 3} carbon defects with signatures at ∼1250–1300 cm{sup −1}. Raman analysis revealed that, while the length of polyaromatic units is only slightly modified, the introduction of defects leads to structural amorphization. Finally, tholins were measured via secondary ion mass spectrometry to quantify the D, H, and C elemental abundances in the irradiated versus non-irradiated areas. Isotopic analysis revealed that significant D-enrichment is induced by X-ray irradiation. Our results are compared to previous experimental studies involving the thermal degradation and electron irradiation of organics. The penetration depth of soft X-rays in μ m-sized tholins leads to volume rather than surface modifications: lower-energy X-rays (0.5 keV) induce a larger D-enrichment than 1.3 keV X-rays, reaching a plateau for doses larger than 5 × 10{sup 27} eV cm{sup −3}. Synchrotron fluences fall within the expected soft X-ray fluences in protoplanetary disks, and thus provide evidence of a new non-thermal pathway to deuterium fractionation of

  16. X-Ray-induced Deuterium Enrichment of N-rich Organics in Protoplanetary Disks: An Experimental Investigation Using Synchrotron Light

    Science.gov (United States)

    Gavilan, Lisseth; Remusat, Laurent; Roskosz, Mathieu; Popescu, Horia; Jaouen, Nicolas; Sandt, Christophe; Jäger, Cornelia; Henning, Thomas; Simionovici, Alexandre; Lemaire, Jean Louis; Mangin, Denis; Carrasco, Nathalie

    2017-05-01

    The deuterium enrichment of organics in the interstellar medium, protoplanetary disks, and meteorites has been proposed to be the result of ionizing radiation. The goal of this study is to simulate and quantify the effects of soft X-rays (0.1-2 keV), an important component of stellar radiation fields illuminating protoplanetary disks, on the refractory organics present in the disks. We prepared tholins, nitrogen-rich organic analogs to solids found in several astrophysical environments, e.g., Titan’s atmosphere, cometary surfaces, and protoplanetary disks, via plasma deposition. Controlled irradiation experiments with soft X-rays at 0.5 and 1.3 keV were performed at the SEXTANTS beamline of the SOLEIL synchrotron, and were immediately followed by ex-situ infrared, Raman, and isotopic diagnostics. Infrared spectroscopy revealed the preferential loss of singly bonded groups (N-H, C-H, and R-N≡C) and the formation of sp3 carbon defects with signatures at ˜1250-1300 cm-1. Raman analysis revealed that, while the length of polyaromatic units is only slightly modified, the introduction of defects leads to structural amorphization. Finally, tholins were measured via secondary ion mass spectrometry to quantify the D, H, and C elemental abundances in the irradiated versus non-irradiated areas. Isotopic analysis revealed that significant D-enrichment is induced by X-ray irradiation. Our results are compared to previous experimental studies involving the thermal degradation and electron irradiation of organics. The penetration depth of soft X-rays in μm-sized tholins leads to volume rather than surface modifications: lower-energy X-rays (0.5 keV) induce a larger D-enrichment than 1.3 keV X-rays, reaching a plateau for doses larger than 5 × 1027 eV cm-3. Synchrotron fluences fall within the expected soft X-ray fluences in protoplanetary disks, and thus provide evidence of a new non-thermal pathway to deuterium fractionation of organic matter.

  17. Tracing Sources of Organic Matter in a Midwestern USA Reservoir using Online Tetramethylammonium Hydroxide (TMAH) Thermochemolysis

    Science.gov (United States)

    Hayes, J. M.; Blair, N. E.

    2017-12-01

    Increasingly industrial agriculture and food processing practices have created greater demand for water resources. In an attempt to meet this demand, many rivers have been dammed, however the resulting effects of the carbon cycle via carbon sequestration and methane production are not well understood. The organic geochemistry of sediment cores from Lake Decatur, IL, a 95-year-old impoundment on the Sangamon River in the Intensively Managed Landscape - Critical Zone Observatory (IML-CZO), was studied to assess the sources of organic matter to the lake. Online tetramethylammonium hydroxide (TMAH) thermochemolysis GC-MS was used to provide a broad-spectrum analysis using small samples with a minimum of preparation. Intensive corn and soy production have dominated Lake Decatur's nearly 2400 km2 watershed throughout its history. The agricultural land use has led to rapid soil erosion and infilling of the lake. Along with the eroded soil came organic matter enriched in 13C, which is attributed to corn, a C4 plant. This is consistent with an angiosperm-derived lignin signal, as indicated by high syringic/vanillic and cinnamic/vanillic lignin phenol ratios. Since approximately 1980, accumulating organic carbon has become increasingly 13C-depleted, indicating a change in organic carbon input to a more C3 plant signature. However, this is not due to a decrease in corn cultivation acreage, according to land use records. Instead, the ratio of algal (short chain, C12-C18) fatty acids to lignin increases correspondingly from this point, suggesting that this isotopic trend is the result of eutrophication in the lake due to agricultural fertilizer runoff. In the last decade, the organic carbon has become more 13C-enriched again, breaking the trend of the three previous decades. This inflection is captured in the return to a lower fatty acid to lignin ratio in the most recently deposited sediments. We speculate that this recent change in organic carbon input could be the result of

  18. Chemical Structure of Insoluble Organic Matter of Meteorites

    Science.gov (United States)

    Derenne, S.; Robert, F.; Binet, L.; Gourier, D.; Rouzaud, J.-N.; Largeau, C.

    A detailed knowledge of the insoluble organic matter (IOM) of the meteorites is essential to estimate to what extent the interstellar organic matter was preserved during the formation of the solar system and to decipher the synthetic pathways of this matter in space. Although predominant, the insoluble organic fraction has been much less extensively studied than soluble one due to specific analytical difficulties. The present work reports the examination of the IOM of two carbonaceous meteorites, Orgueil and Murchison through a number of various spectroscopic and microscopic methods, i. e. XANES for sulphur, carbon and nitrogen, solid state 13C NMR, electron paramagnetic resonance, electron nuclear double resonance and high resolution transmission electron microscopy.

  19. Organic carbon organic matter and bulk density relationships in arid ...

    African Journals Online (AJOL)

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  20. Temperature sensitivity of respiration scales with organic matter recalcitrance

    Science.gov (United States)

    Craine, J. M.; Fierer, N.; McLauchlan, K. K.

    2010-12-01

    Microbial decomposition of soil organic matter is a key process in determining the carbon sequestration potential of ecosystems and carbon fluxes to the atmosphere. Since microbial decomposition is highly sensitive to short-term changes in temperature, predicting the temperature sensitivity of microbial decomposition is critical to predicting future atmospheric carbon dioxide concentrations and feedbacks to anthropogenic warming. Fundamental principles of enzyme kinetics, embodied in the carbon-quality temperature hypothesis, predict that the temperature sensitivity of microbial decomposition should increase with increasing biochemical recalcitrance of a substrate. To test the generality of this principle, we measured the temperature sensitivity of microbial respiration of soil organic matter with serial short-term temperature manipulations over 365 days for 28 North American soils. When joined with data from similar studies that represent a wide variety of contrasts, we show that the temperature sensitivity of organic matter decomposition scales with biochemical recalcitrance. With physico-chemical protection likely an important covariate for relating plant and soil organic matter decomposition scalars, biochemically recalcitrant organic matter is highly susceptible to short-term increases in temperature, a key link in predicting the effects of warming on carbon cycling.

  1. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    Science.gov (United States)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  2. Effects of organic enrichment on macrofauna community structure: an experimental approach

    Directory of Open Access Journals (Sweden)

    Rodrigo Riera

    2013-12-01

    Full Text Available The determination of the resilience of benthic assemblages is a capital issue for the off-shore aquaculture industry in its attempts to minimize environmental disturbances. Experimental studies are an important tool for the establishment of thresholds for macrofaunal assemblages inhabiting sandy seabeds. An experiment was conducted with three treatments (Control, 1x and 3x,in which organic load (fish pellets was added (1x (10 g of fish pellets and 3x (30 g. A reduction in abundance of individuals and species richness was found as between the control and organic-enriched treatments. Significant changes in assemblage structure were also found, mainly due to the decrease of the sensitive tanaid Apseudes talpa in organically-enriched treatments. AMBI and M-AMBI indices were calculated and a decrease of ecological status was observed in treatment 3x.

  3. Soil Organic Matter Erosion by Interrill Processes from Organically and Conventionally farmed Devon Soil

    Science.gov (United States)

    Armstrong, E.; Ling, A.; Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomenon involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P) and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  4. Probing the nature of dark matter through the metal enrichment of the intergalactic medium

    Science.gov (United States)

    Bremer, Jonas; Dayal, Pratika; Ryan-Weber, Emma V.

    2018-06-01

    We focus on exploring the metal enrichment of the intergalactic medium (IGM) in cold and warm (1.5 and 3 keV) dark matter (DM) cosmologies, and the constraints this yields on the DM particle mass, using a semi-analytic model, DELPHI, that jointly tracks the DM and baryonic assembly of galaxies at z ≃ 4-20 including both supernova (SN) and (a range of) reionization feedback (models). We find that while M_{UV}≳ -15 galaxies contribute half of all IGM metals in the cold dark matter (CDM) model by z ≃ 4.5, given the suppression of low-mass haloes, larger haloes with M_{UV}≲ -15 provide about 80 per cent of the IGM metal budget in 1.5 keV warm dark matter (WDM) models using two different models for the metallicity of the interstellar medium. Our results also show that the only models compatible with two different high-redshift data sets, provided by the evolving ultraviolet luminosity function (UV LF) at z ≃ 6-10 and IGM metal density, are standard CDM and 3 keV WDM that do not include any reionization feedback; a combination of the UV LF and the Díaz et al. point provides a weaker constraint, allowing CDM and 3 and 1.5 keV WDM models with SN feedback only, as well as CDM with complete gas suppression of all haloes with v_{circ} ≲ 30 km s^{-1}. Tightening the error bars on the IGM metal enrichment, future observations, at z ≳ 5.5, could therefore represent an alternative way of shedding light on the nature of DM.

  5. Organic matter dynamics and N mineralization in grassland soils

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  6. Air oxidation of samples from different clay formations of East Paris basin: quantitative and qualitative consequences on the dissolved organic matter

    International Nuclear Information System (INIS)

    Blanchart, Pascale; Faure, Pierre; Michels, Raymond; Parant, Stephane

    2012-01-01

    Document available in extended abstract form only. During the excavation and the building of an underground research laboratory in clay geological formations, exposure to air is one of the most important parameters affecting the composition of fossil organic matter. Indeed the net effect of air oxidation of the organic matter is enrichment in oxygen and carbon combined with a loss of hydrogen. Effluents formed are CO 2 and water as well as the liberation of hydrocarbons. This process may have an impact on water chemistry of the clay, especially on the quantity and composition of Dissolved Organic Matter (DOM). The clays studied were the following and may be distinguished on the basis of their organic matter content: - The Callovo-Oxfordian argillite, collected in the Bure Underground Research Laboratory (Meuse, France), which contains a mixture of type II and III kerogen; - The Toarcian shales of East Paris Basin collected from drilling EST 204 (Meuse, France) contains type II kerogen; - The Kimmeridgian shales of East Paris Basin collected from drilling HTM 102 (Meuse, France) also contains type II kerogen. The powdered clay samples were oxidized in a ventilated oven at 100 C under air flow during 2, 256, 512 and 1088 hours for Callovo-Oxfordian samples and during 512 and 2048 hours for Toarcian and Kimmeridgian samples. The DOM of each sample was extracted by soxhlet using pure water. Different analyses were carried out: - Quantitative evolution of DOM with the oxidation process; - Evolution of several chemical parameters of DOM with oxidation using molecular analyses (PyGC-MS) molecular weight distribution (GPC-HPLC) as well as spectroscopic measurements (3D-Fluorescence). Increasing oxidation induces an increase of DOC values for all samples. Also, Changes in the chemical composition of the DOM are observed: decrease in the molecular weight range; enrichment in acidic functional groups (alkane-dioic acids, alkanoic acids, aromatics poly acids). Moreover the

  7. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Xiong Yongqiang; Wang Yanmei; Wang Yongquan; Xu Shiping

    2007-01-01

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition

  8. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)], E-mail: xiongyq@gig.ac.cn; Wang Yanmei; Wang Yongquan; Xu Shiping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2007-11-15

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition.

  9. Isotopic Anomalies in Organic Nanoglobules from Comet 81P/Wild 2: Comparison to Murchison Nanoglobules and Isotopic Anomalies Induced in Terrestrial Organics by Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, B.; Stroud, R; Nittler, L; Alexander, C; Kilcoyne, A; Zega, T

    2010-01-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with {sup 15}N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large {sup 15}N anomaly ({delta}{sup 15}N = 1120{per_thousand}). Associated, non-globular, organic matter from this track is less enriched in {sup 15}N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ({single_bond}C{triple_bond}N) and carboxyl ({single_bond}COOH) functional groups. It is significantly enriched in D ({delta}D = 1000{per_thousand}) but has a terrestrial {sup 15}N/{sup 14}N ratio. Experiments indicate that similar D enrichments, unaccompanied by {sup 15}N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large {sup 15}N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in {sup 15}N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K

  10. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyungguen; Amy, Gary L.

    2012-01-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR

  11. The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter

    KAUST Repository

    Le Roux, Julien

    2015-10-21

    Water treatment utilities are diversifying their water sources and often rely on waters enriched in nitrogen-containing compounds (e.g., ammonia, organic nitrogen such as amino acids). The disinfection of waters exhibiting high levels of nitrogen has been associated with the formation of nitrogenous disinfection byproducts (N-DBPs) such as haloacetonitriles (HANs) and haloacetamides (HAcAms). While the potential precursors of HANs have been extensively studied, only few investigations are available regarding the nature of HAcAm precursors. Previous research has suggested that HAcAms are hydrolysis products of HANs. Nevertheless, it has been recently suggested that HAcAms can be formed independently, especially during chloramination of humic substances. When used as a disinfectant, monochloramine can also be a source of nitrogen for N-DBPs. This study investigated the role of aromatic organic matter in the formation of N-DBPs (HAcAms and HANs) upon chloramination. Formation kinetics were performed from various fractions of organic matter isolated from surface waters or treated wastewater effluents. Experiments were conducted with 15N-labeled monochloramine (15NH2Cl) to trace the origin of nitrogen. N-DBP formation showed a two-step profile: (1) a rapid formation following second-order reaction kinetics and incorporating nitrogen atom originating from the organic matrix (e.g., amine groups); and (2) a slower and linear increase correlated with exposure to chloramines, incorporating inorganic nitrogen (15N) from 15NH2Cl into aromatic moieties. Organic matter isolates showing high aromatic character (i.e., high SUVA) exhibited high reactivity characterized by a major incorporation of 15N in N-DBPs. A significantly lower incorporation was observed for low-aromatic-content organic matter. 15N-DCAcAm and 15N-DCAN formations exhibited a linear correlation, suggesting a similar behavior of 15N incorporation as SUVA increases. Chloramination of aromatic model compounds (i

  12. Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove.

    Science.gov (United States)

    Leavey, Anna; Patel, Sameer; Martinez, Raul; Mitroo, Dhruv; Fortenberry, Claire; Walker, Michael; Williams, Brent; Biswas, Pratim

    2017-10-01

    Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM 1 , total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63ng/L versus 0.04ng/L), and benzo(b)fluoranthene (31.32ng/L versus 0.19ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory. Copyright © 2017. Published by Elsevier Inc.

  13. Radionuclide - Soil Organic Matter Interactions

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1985-01-01

    Interactions between soil organic matter, i.e. humic and fulvic acids, and radionuclides of primary interest to shallow land burial of low activity solid waste have been reviewed and to some extent studied experimentally. The radionuclides considered in the present study comprise cesium, strontium...

  14. In-situ production of humic-like fluorescent dissolved organic matter during Cochlodinium polykrikoides blooms

    Science.gov (United States)

    Kwon, Hyeong Kyu; Kim, Guebuem; Lim, Weol Ae; Park, Jong Woo

    2018-04-01

    We investigated phytoplankton pigments, dissolved organic carbon (DOC), and fluorescent dissolved organic matter (FDOM) during the summers of 2013 and 2016 in the coastal area of Tongyeong, Korea, where Cochlodinium polykrikoides blooms often occur. The density of red tides was evaluated using a dinoflagellate pigment, peridinin. The concentrations of peridinin and DOC in the patch areas were 15- and 4-fold higher than those in the non-patch areas. The parallel factor analysis (PARAFAC) model identified one protein-like FDOM (FDOMT) and two humic-like FDOM, classically classified as marine FDOM (FDOMM) and terrestrial FDOM (FDOMC). The concentrations of FDOMT in the patch areas were 5-fold higher than those in the non-patch areas, likely associated with biological production. In general, FDOMM and FDOMC are known to be dependent exclusively on salinity in any surface waters of the coastal ocean. However, in this study, we observed strikingly enhanced FDOMC concentration over that expected from the salinity mixing, whereas FDOMM increases were not clear. These FDOMC concentrations showed a significant positive correlation against peridinin, indicating that the production of FDOMC is associated with the red tide blooms. Our results suggest that FDOMC can be naturally enriched by some phytoplankton species, without FDOMM enrichment. Such naturally produced FDOM may play a critical role in biological production as well as biogeochemical cycle in red tide regions.

  15. Mobility of the dissolved organic matter through intact boom clay cores

    International Nuclear Information System (INIS)

    Put, M.J.; Dierckx, A.; Aertsens, M.; Canniere, P. de

    1998-01-01

    Performance assessment studies are expected to predict the enhancement of the migration of trivalent lanthanides and actinides due to their complexation with organic matter, which play a role as a transport agent [1]. Therefore, the mobility of the dissolved organic matter in the interstitial boom clay water is studied. For the first time, the mobile fraction present in the clay water is concentrated and labelled with a radioisotope to study the mobility of the organic matter in clay and the interaction of the mobile with the non-mobile. The isotopes tested as label are 125 I and 14 C. The 125 I label proved to be unstable and hence discarded. The labelled organic matter is then diluted for migration experiments on boom clay cores under anaerobic conditions. The influence of the molecular size on its mobility is studied by the separation of the labelled organic matter in different size fractions. (orig.)

  16. Polar ecosystem dynamics: recovery of communities from organic enrichment in McMurdo Sound, Antarctica.

    Science.gov (United States)

    Kim, Stacy; Hammerstom, Kamille K; Conlan, Kathleen E; Thurber, Andrew R

    2010-12-01

    Community structure and diversity are influenced by patterns of disturbance and input of food. In Antarctica, the marine ecosystem undergoes highly seasonal changes in availability of light and in primary production. Near research stations, organic input from human activities can disturb the regular productivity regime with a consistent input of sewage. McMurdo Sound has both high-productivity and low-productivity habitats, thereby providing an ideal test bed for community recovery dynamics under polar conditions. We used experimental manipulations of the subtidal communities to test the hypotheses that (1) benthic communities respond differently to disturbance from organic enrichment versus burial and (2) community response also varies in areas with different natural patterns of food supply. Both in low- and high-food habitats, the strongest community response was to organic enrichment and resulted in dominance of typical organic-enrichment specialists. In habitats with highly seasonal productivity, community response was predictable and recovery was rapid. In habitats with low productivity, community variability was high and caging treatments suggested that inconsistencies were due to patchy impacts by scavengers. In areas normally subject to regular organic enrichment, either from primary production or from further up the food web (defecation by marine mammals), recovery of benthic communities takes only years even in a polar system. However, a low-productivity regime is as common in near shore habitats around the continent; under these conditions, recovery of benthic communities from disturbance is likely to be much slower and follow a variable ecological trajectory.

  17. Organic matter in uranium concentration during ancient bed oxidation of carboniferons sediments

    International Nuclear Information System (INIS)

    Kruglova, V.G.; Uspenskij, V.A.; Dement'ev, P.K.; Kochenov, A.V.

    1984-01-01

    Changes in the organic matter accompanying the process of epigenetic ore formation are studied using the example of a deposit localized in carboniferous molasse strata of the Cretaceous period. Peculiarities of the organic matter as the main mineralization agent are studied by a complex of physical and themical methods. A distinct relationship between the uranium concentration and the degree of organic matter oxigenation is a most characteristic feature of the ore localization, however, there is no direct correlation between the contents of uranium and organic matter in ores. Uranium minerallzation was accumulated during infiltration of acid uraniferous.waters into grey stratum in the process of the bed oxidation zone formation oxidizing. Brown coal matter possessing a maximum adsorbability, as compared to other sedimentary rocks, apprared to be the uranium precipitator. The adsorption was accompanie by the formation of proper uranium minerals (coffinite, pitchblende) due to uranium reduction by oxidizing organic matter. Thus, the oxidative epigenesis was an are-forming process with the uranium concentration on organic matter proportionally to oxidation of the latter

  18. Applicability of FTIR-spectroscopy for characterizing waste organic matter

    International Nuclear Information System (INIS)

    Smidt, E.

    2001-12-01

    State and development of waste organic matter were characterized by means of FTIR-spectroscopy. Due to the interaction of infrared light with matter energy is absorbed by chemical functional groups. Chemical preparation steps are not necessary and therefore this method offers a more holistic information about the material. The first part of experiments was focussed on spectra of different waste materials representing various stages of decomposition. Due to characteristics in the fingerprint- region the identity of wastes is provable. Heights of significant bands in the spectrum were measured and relative absorbances were calculated. Changes of relative absorbances indicate the development of organic matter during decomposition. Organic matter of waste samples was compared to organic matter originating from natural analogous processes (peat, soil). The second part of experiments concentrated on a composting process for a period of 260 days. Spectral characteristics of the samples were compared to their chemical, physical and biological data. The change of relative absorbances was reflected by conventional parameters. According to the development of the entire sample humic acids underwent a change as well. For practical use the method offers several possibilities: monitoring of a process, comparison of different processes, quality control of products originating from waste materials and the proof of their identity. (author)

  19. Can particulate organic matter reveal emerging changes in soil organic carbon?

    DEFF Research Database (Denmark)

    Simonsson, Magnus; Kirchmann, Holger; Magid, Jakob

    2014-01-01

    different cropping systems, N fertilizer applications, and organic amendments, we found that C and N in the fine to medium sand fraction (0.063-0.600 mm, "Fraction B") showed considerably larger relative errors according to ANOVA (RMSE was 11-20% of the mean), slightly lower values of the F statistic......This study assessed whether particulate organic matter (POM) in sand fractions, isolated by wet sieving after treatment with Na hexametaphosphate, can be a sensitive indicator of incipient changes in the content and composition of soil organic matter. In five long-term field experiments including......, and slightly less contrast between treatments than total organic C and N (RMSE 3-9% of the mean). Imprecision in laboratory procedures only explained part of the increase in RMSE for C and N in Fraction B compared with total C and N; within-field spatial variability most likely had a greater influence...

  20. Deuterium exchange rate between D3+ and organic CH bonds: Implication for D enrichment in meteoritic IOM

    Science.gov (United States)

    Robert, François; Derenne, Sylvie; Thomen, Aurélien; Anquetil, Christelle; Hassouni, Khaled

    2011-12-01

    The rate of the transfer of deuterium from D3+ to the three types (benzylic, aliphatic and aromatic) of bonds of 2-Ethylnaphthalene (and Methylnaphthalene) has been measured in the laboratory. The D/H ratio of each bond was calculated from the mass spectrum of the different isotopomers produced in the source of the GC mass spectrometer. The relations between the D/H ratio of the different isotopomers allow to calculate the internal isotopic fractionation factors ( αi- j = (D/H) i/(D/H) j) between the 3 bonds: αBenzylic-Aromatic = 1.99 ± 0.38 and αAliphatic-Aromatic = 1.22 ± 0.39. Isotopic exchange rate constants are ⩾2.2 × 10 -7±0.4 s -1, determined at room temperature for 10 -3 g of 2-Ethylnaphthalene in contact with 5 × 10 12 cm -3 of D3+. These results are compatible with those measured in the insoluble organic matter (IOM) isolated from the Orgueil meteorite ( Remusat et al., 2006), i.e., αBenzylic-Aromatic = 1.96 ± 0.05 and αAliphatic-Aromatic = 1.35 ± 0.05. Using the calculated dust and H 2D + densities from the models of deuterium chemistry in protostellar disks, the duration needed to enrich the IOM up to its measured D/H ratio is ⩽10 4±1 s. These laboratory results are in agreement with a late deuteration of the insoluble organic matter taking place in the solar T-Tauri disk by interaction of the organic dust with H 2D +.

  1. Seasonal distribution of organic matter in mangrove environment of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    Water and sediments were studied for the distribution of suspended matter, organic carbon and nitrogen Suspended matter ranged from 3-373 mg.l-1 while particulate organic carbon (POC) from 0.03-9.94 mg.l-1 POC value showed significant correlation...

  2. Chemical examination of the organic matter in oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J B

    1914-01-01

    The analyses of Broxburn (Scotland), Pumpherston (Scotland), Armadale (Scotland), Australian, and Knightsbridge oil shales were given. Also, the action of nitric acid and solvents on some of the oil shales was determined. Carbon-hydrogen ratios of the oil shales varied from 6 to more than 8, and the shales with the lowest ratio (most hydrogen per carbon) produced the largest amount of oil from a given amount of organic matter. There was little resinous material in the oil shales, and most of the organic matter was insoluble in organic solvents. Nitric acid oxidized Australian torbanite, Broxburn shale, New Battle cannel coal (Scotland), and Glenfullock peat to organic acids. The hydrogen content of the organic acids obtained by oxidizing the following materials increased from ordinary coal to cannel coal to peat to Broxburn shale to torbanite. The organic substance in oil shale is a decomposition product of vegetable matter similar to that found in peat and cannel coal, and it was produced by a definite combination of external conditions.

  3. Sulfurization of Dissolved Organic Matter Increases Hg-Sulfide-Dissolved Organic Matter Bioavailability to a Hg-Methylating Bacterium.

    Science.gov (United States)

    Graham, Andrew M; Cameron-Burr, Keaton T; Hajic, Hayley A; Lee, Connie; Msekela, Deborah; Gilmour, Cynthia C

    2017-08-15

    Reactions of dissolved organic matter (DOM) with aqueous sulfide (termed sulfurization) in anoxic environments can substantially increase DOM's reduced sulfur functional group content. Sulfurization may affect DOM-trace metal interactions, including complexation and metal-containing particle precipitation, aggregation, and dissolution. Using a diverse suite of DOM samples, we found that susceptibility to additional sulfur incorporation via reaction with aqueous sulfide increased with increasing DOM aromatic-, carbonyl-, and carboxyl-C content. The role of DOM sulfurization in enhancing Hg bioavailability for microbial methylation was evaluated under conditions typical of Hg methylation environments (μM sulfide concentrations and low Hg-to-DOM molar ratios). Under the conditions of predicted metacinnabar supersaturation, microbial Hg methylation increased with increasing DOM sulfurization, likely reflecting either effective inhibition of metacinnabar growth and aggregation or the formation of Hg(II)-DOM thiol complexes with high bioavailability. Remarkably, Hg methylation efficiencies with the most sulfurized DOM samples were similar (>85% of total Hg methylated) to that observed in the presence of l-cysteine, a ligand facilitating rapid Hg(II) biouptake and methylation. This suggests that complexes of Hg(II) with DOM thiols have similar bioavailability to Hg(II) complexes with low-molecular-weight thiols. Overall, our results are a demonstration of the importance of DOM sulfurization to trace metal and metalloid (especially mercury) fate in the environment. DOM sulfurization likely represents another link between anthropogenic sulfate enrichment and MeHg production in the environment.

  4. Quantifying the degradation of organic matter in marine sediments: A review and synthesis

    Science.gov (United States)

    Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.

    2013-08-01

    Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be

  5. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li Kun [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States) and Northeast Institute of Geography and Agro-ecology, CAS, Harbin 150040 (China)]. E-mail: bx@pssci.umass.edu; Torello, William A. [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States)

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf.

  6. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    International Nuclear Information System (INIS)

    Li Kun; Xing Baoshan; Torello, William A.

    2005-01-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf

  7. Leaf litter and roots as sources of mineral soil organic matter in temperate deciduous forest with and without earthworms

    Science.gov (United States)

    Fahey, T.; Yavitt, J. B.

    2012-12-01

    We labeled sugar maple trees with 13C to quantify the separate contributions of decaying leaf litter and root turnover/rhizosphere C flux to mineral soil organic matter (SOM). Labeled leaf litter was applied to forest plots with and without earthworms and recovery of the label in SOM was quantified over three years. In parallel, label recovery was quantified in soils from the labeling chambers where all label was supplied by belowground C flux. In the absence of earthworms about half of the label added as leaf litter remained in the surface organic horizons after three years, with about 3% recovered in mineral SOM. The label was most enriched on silt + clay surfaces, representing precipitation of DOC derived from litter. Earthworms mixed nearly all the leaf litter into mineral soil within one year, and after two years the label was most enriched in particulate organic matter held within soil aggregates produced by worms. After three years 15-20% of the added label was recovered in mineral SOM. In the labeling chambers over 75% of belowground C allocation (BCA) was used in root and rhizosphere respiration in the first year after labeling. We recovered only 3.8% of estimated BCA in SOM after 3 years; however, expressed as a proportion of fine root production plus rhizosphere C flux, this value is 15.4%, comparable to that for leaf litter in the presence of earthworms. In conclusion, both roots and leaf litter contribute significantly to the formation of stabilized mineral SOM in temperate deciduous forests, and this process is profoundly altered by the invasion of lumbricid earthworms.

  8. Organic Matter in Extraterrestrial Water-Bearing Salt Crystals

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Kebukwa, Y.; Fries, M.; Steele, A.

    2017-01-01

    the unweathered CR chondrites and less metamorphosed meteorites [6], and are moderately enriched in N-15 (delta N-15 = 106.1-164.5 per mille). The total amino acid distribution and abundance of the Zag matrix (approximately 1,940 parts per billion [ppb]) is comparable to other ordinary chondrites (60-3,330 ppb) [7, 8]. While the Zag matrix is gamma-ABA and EACA-deficient, the halite is shown to exhibit an opposite trend and is almost depleted in amino acids. The striking difference in the amino acid contents between the halite and matrix indicates their separate synthetic origins. Conclusion: Abundant, primitive, and highly-diverse N-15-rich organic compounds were detected in brine-water bearing halite crystals that were synthesized on a cryovolcanically-active asteroid. Our study suggests that the asteroidal parent body where the halite precipitated, potentially Ceres, is a host to abundance large variety organic precursors. Insoluble organic matter and amino acids can be synthesized from similar organic precusors under hydrous conditions [9].We envision that similar organic synthetic processes could have occurred on Ceres that synthesized organic solids as well as biologically relevant molecules.

  9. Spectral band selection for classification of soil organic matter content

    Science.gov (United States)

    Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.

    1989-01-01

    This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.

  10. Stabilization of ancient organic matter in deep buried paleosols

    Science.gov (United States)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of the Brady soil indicate a predominance of

  11. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs).

    Science.gov (United States)

    Arulandhu, Alfred J; van Dijk, Jeroen P; Dobnik, David; Holst-Jensen, Arne; Shi, Jianxin; Zel, Jana; Kok, Esther J

    2016-07-01

    With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples.

  12. Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events.

    Science.gov (United States)

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Bin; Han, Feng; Lin, Zhongrong; Wang, Xuejun

    2012-12-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported by surface runoff result in nonpoint source pollution and jeopardize aquatic ecosystems. The transport mechanism of PAHs during rainfall-runoff events has been rarely studied regarding pervious areas. An experimental system was setup to simulate the runoff pollution process on PAHs-contaminated soil. The enrichment behavior of soil-bound PAHs was investigated. The results show that soil organic matters (SOM), rather than clay particles, seem to be the main carrier of PAHs. The enrichment is highly conditioned on runoff and erosion processes, and its magnitude varies among PAH compounds. It is not feasible to build a simple and universal relationship between enrichment ratio and sediment discharge following the traditional enrichment theory. To estimate the flux of PAHs from pervious areas, soil erosion process has to be clearly understood, and both organic carbon content and composition of SOM should be factored into the calculation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Is old organic matter simple organic matter?

    Science.gov (United States)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  14. Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs

    International Nuclear Information System (INIS)

    Schmoker, J.W.

    1981-01-01

    The organic-matter content of the Devonian shale of the Appalachian basin is important for assessing the natural-gas resources of these rocks, and patterns of organic-matter distribution convey information on sedimentary processes and depositional environment. In most of the western part of the Appalachian basin the organic-matter content of the Devonian shale can be estimated from gamma-ray wire-line logs using the equation: phi 0 = (γ/sub B/ - γ)/1.378A, where phi 0 is the organic-matter content of the shale (fractional volume), γ the gamma-ray intensity (API units), γ/sub B/ the gamma-ray intensity if no organic matter is present (API units), and A the slope of the crossplot of gamma-ray intensity and formation density (API units/(g/cm 3 )). Organic-matter contents estimated using this equation are compared with organic-matter contents determined from direct laboratory analyses of organic carbon for 74 intervals of varying thickness from 12 widely separated wells. The organic-matter content of these intervals ranges from near zero to about 20% by volume. The gamma-ray intensity of the Cleveland Member of the Ohio Shale and the lower part of the Olentangy Shale is anomalously low compared to other Devonian shales of similar richness, so that organic-matter content computed for each of these units from gamma-ray logs is likely to be too low. Wire-line methods for estimating organic-matter content have the advantages of economy, readily available sources of data, and continuous sampling of the vertically heterogenous shale section. The gamma-ray log, in particular, is commonly run in the Devonian shale, its response characteristics are well known, and the cumulative pool of gamma-ray logs forms a large and geographically broad data base. The quantitative computation of organic-matter content from gamma-ray logs should be of practical value in studies of the Appalachian Devonian shale. 16 figures

  15. Effect of phosphorus and organic matter on zinc availability on rice

    International Nuclear Information System (INIS)

    Gupta, G.N.; Kamath, M.B.; Motsara, M.R.

    1977-01-01

    Pot culture experiment was conducted on grey brown podzolic soil (Palampur) and Tarai soil (Pantnagar) to study the influence of the addition of organic matter, phosphorus and zinc on the uptake and utilization of zinc by rice crop. In podzolic soils the combined application of Zn-P and Zn-organic matter resulted in reduced zinc content in crop but the crop yield was not affected. The uptake and utilization of applied zinc increased with P application. In Tarai soil, crop response to Zn, P and organic matter was obtained when applied separately. A negative zinc x P and zinc x organic matter interaction was obtained on yield. However, zinc content of the crop increased due to the application of P, organic matter and zinc. The uptake and utilization of applied zinc increased with P application. The analysis of soils after crop harvest indicated an increased amount of 0.1 N HCl extractable zinc in soils treated with zinc in Tarai soils while in podzolic soil from Palampur, the available zinc increased only under the combined application of zinc and P. (author)

  16. Response of organic matter quality in permafrost soils to warming

    Science.gov (United States)

    Plaza, C.; Pegoraro, E.; Schuur, E.

    2016-12-01

    Global warming is predicted to thaw large quantities of the perennially frozen organic matter stored in northern permafrost soils. Upon thaw, this organic matter will be exposed to lateral export to water bodies and to microbial decomposition, which may exacerbate climate change by releasing significant amounts of greenhouse gases. To gain an insight into these processes, we investigated how the quality of permafrost soil organic matter responded to five years of warming. In particular, we sampled control and experimentally warmed soils in 2009 and 2013 from an experiment established in 2008 in a moist acidic tundra ecosystem in Healy, Alaska. We examined surface organic (0 to 15 cm), deep organic (15 to 35 cm), and mineral soil layers (35 to 55 cm) separately by means of stable isotope analysis (δ13C and δ15N) and solid-state 13C nuclear magnetic resonance. Compared to the control, the experimental warming did not affect the isotopic and molecular composition of soil organic matter across the depth profile. However, we did find significant changes with time. In particular, in the surface organic layer, δ13C decreased and alkyl/O-alkyl ratio increased from 2009 to 2013, which indicated variations in soil organic sources (e.g., changes in vegetation) and accelerated decomposition. In the deep organic layer, we found a slight increase in δ15N with time. In the mineral layer, δ13C values decreased slightly, whereas alkyl C/O-alkyl ratio increased, suggesting a preferential loss of relatively more degraded organic matter fractions probably by lateral transport by water flowing through the soil. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  17. Can Biochar Protect Labile Organic Matter Against Mineralization in Soil?

    Institute of Scientific and Technical Information of China (English)

    Giovanna B.MELAS; Oriol ORTIZ; Josep M.ALACA(N)IZ

    2017-01-01

    Biochar could help to stabilize soil organic (SOM) matter,thus sequestering carbon (C) into the soil.The aim of this work was to determine an easy method i) to estimate the effects of the addition of biochar and nutrients on the organic matter (SOM)mineralization in an artificial soil,proposed by the Organization for Economic Co-operation and Development (OECD),amended with glucose and ii) to measure the amount of labile organic matter (glucose) that can be sorbed and thus be partially protected in the same soil,amended or not amended with biochar.A factorial experiment was designed to check the effects of three single factors (biochar,nutrients,and glucose) and their interactions on whole SOM mineralization.Soil samples were inoculated with a microbial inoculum and preincubated to ensure that their biological activities were not limited by a small amount of microbial biomass,and then they were incubated in the dark at 21 ℃ for 619 d.Periodical measurements of C mineralized to carbon dioxide (CO2) were carried out throughout the 619-d incubation to allow the mineralization of both active and slow organic matter pools.The amount of sorbed glucose was calculated as the difference between the total and remaining amounts of glucose added in a soil extract.Two different models,the Freundlich and Langmuir models,were selected to assess the equilibrium isotherms of glucose sorption.The CO2-C release strongly depended on the presence of nutrients only when no biochar was added to the soil.The mineralization of organic matter in the soil amended with both biochar and glucose was equal to the sum of the mineralization of the two C sources separately.Furthermore,a significant amount of glucose can be sorbed on the biochar-amended soil,suggesting the involvement of physico-chemical mechanisms in labile organic matter protection.

  18. Heterogeneity of the organic matter in the Guayuta group, Eastern Venezuelan Basin

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, M.; Gallango, O.; Ruggiero, A.; Jordan, N. (Intevep, S.A., Caracas (Venezuela)); Lefargue, E. (I.F.P., Rueil Malmaison (France))

    1993-02-01

    The purpose of this study is to evaluate the organic matter heterogeneities in the Guayuta Group as a principal hydrocarbon source rock in the Eastern Venezuelan Basin. In order to do this, thirteen wells and five work stations on outcrops of the Interior Mountain Belt were analyzed to study the regional and vertical variations in the geochemical characteristics of the organic matter. It is possible to detect significant differences in quality and quantity of the organic matter which could corroborate the regional development of two organic facies from North to South in the Maturin Subbasin. The northern organic facies show excellent characteristics as source rock. The study of vertical distribution of organic matter was carried out in a well of northern part of the Monagas state, which represents the southern organic facies. It shows an irregular input of continental organic matter, thermally immature. Besides the organic matter content was low (around 1.5%) without depth tendencies. These sediments are clastic and bioclastic in contrast with carbonates and pelagic shales of the Guayuta Group in the Interior Mountain Belt. The outcrop samples studied show a high total organic content (2-6%) despite the high maturity determined on kerogen. The systematic study of this geochemical parameter show pseudocyclic relationships with a general tendency to increase toward the bottom of the section. V, Ni, and S determinations could indicate that anoxic conditions were developing toward the North where the marine organic matter was sedimenting. The results of this study are in agreement with paleogeographic model of sedimentation during middle and late Cretaceous, with sources of sediments from South and a progressive depth of the basin toward the North.

  19. Molecular and isotope constraints on the formation of the insoluble organic matter of carbonaceous meteorites

    Science.gov (United States)

    Derenne, Sylvie; Robert, François

    2017-04-01

    The origin of the insoluble organic matter (IOM) of the carbonaceous meteorites remains an unsolved issue despite major achievements in the knowledge of its chemical structure. The latter led us to propose a model for its molecular structure. Based on the relationship between the aromatic moieties of the macromolecular structure and their aliphatic linkages, it was recently suggested that, its synthesis has taken place in the gas phase of the disk surrounding the Sun in its early T-Tauri phase and that organic radicals have played a central role in this organo-synthesis. To test experimentally this pathway, we submitted short hydrocarbons (methane, pentane, octane) to a microwave plasma discharge so as to produce in situ CHx radicals. The black organic residue deposited contained both soluble and insoluble OM. The comparison at the molecular level between the thus synthesized IOM and that of meteorite led to strong similarities thus supporting the proposed pathway for its organo-synthesis. Moreover, in the meteorite IOM, systematic deuterium enrichment relative to the protosolar value is observed at the bulk sample scale and micrometer-sized grains exhibit dramatic enrichments in deuterium interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the solar disk. In the aforementioned synthesized IOM, NanoSIMS analyses revealed large variations at a sub-micrometric spatial resolution. They likely reflect the differences in the D/H ratios of the CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the T-Tauri solar disk may have triggered the formation of organic compounds. This laboratory synthesis thus shed a new light on the formation conditions and pathways of the IOM of carbonaceous chondrites.

  20. Interrill sediment enrichment of P and C from organically and conventionally farmed silty loams

    Science.gov (United States)

    Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomen on involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P)and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  1. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Science.gov (United States)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  2. Age heterogeneity of soil organic matter

    International Nuclear Information System (INIS)

    Rethemeyer, J.; Grootes, P.M.; Bruhn, F.; Andersen, N.; Nadeau, M.J.; Kramer, C.; Gleixner, G.

    2004-01-01

    Accelerator mass spectrometry (AMS) radiocarbon measurements were used to investigate the heterogeneity of organic matter in soils of agricultural long-term trial sites in Germany and Great Britain. The strong age heterogeneity of the soil organic matter (SOM) is reflected by highly variable 14 C values of different organic components, ranging from modern (>100 pMC) to 7% modern carbon (pMC). At the field experiment in Halle (Germany), located in a heavily industrialized area, an increase of 14 C content with increasing depth was observed even though the input of modern plant debris should be highest in the topsoil. This is attributed to a significant contribution of old carbon (of up to 50% in the topsoil) to SOM. As a test to exclude the old carbon contamination, more specific SOM fractions were extracted. However, even a phospholipid fraction representing viable microbial biomass that is supposed to be short-lived in SOM, shows a strong influence of old, refractory carbon, when radiocarbon dated. In contrast, 14 C data of other field trials distant from industrial areas indicate that there inputs of old carbon to the soil are lower or even absent. Such locations are more favorable to study SOM stabilization and to quantify turnover of organic carbon in soils

  3. Nutrient and Organic Carbon Losses, Enrichment Rate, and Cost of Water Erosion

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    Full Text Available ABSTRACT Soil erosion from water causes loss of nutrients and organic carbon, enriches the environment outside the erosion site, and results in costs. The no-tillage system generates increased nutrient and C content in the topsoil and, although it controls erosion, it can produce a more enriched runoff than in the conventional tillage system. This study was conducted in a Humic Cambisol in natural rainfall from 1997 to 2012 to quantify the contents and total losses of nutrients and organic C in soil runoff, and to calculate the enrichment rates and the cost of these losses. The treatments evaluated were: a soil with a crop, consisting of conventional tillage with one plowing + two harrowings (CT, minimum tillage with one chisel plowing + one harrowing (MT, and no tillage (NT; and b bare soil: one plowing + two harrowings (BS. In CT, MT, and NT, black oat, soybean, vetch, corn, turnip, and black beans were cultivated. Over the 15 years, 15.5 Mg ha-1 of limestone, 525 kg ha-1 of N (urea, 1,302 kg ha-1 of P2O5 (triple superphosphate, and 1,075 kg ha-1 of K2O (potassium chloride were used in the soil. The P, K, Ca, Mg, and organic C contents in the soil were determined and also the P, K, Ca, and Mg sediments in the runoff water. From these contents, the total losses, the enrichment rates (ER, and financial losses were calculated. The NT increased the P, K, and organic C contents in the topsoil. The nutrients and organic C content in the runoff from NT was greater than from CT, showing that NT was not a fully conservationist practice for soil. The linear model y = a + bx fit the data within the level of significance (p≤0.01 when the values of P, K, and organic C in the sediments from erosion were related to those values in the soil surface layer. The nutrient and organic C contents were higher in the sediments from erosion than in the soil where the erosion originated, generating values of ER>1 for P, K, and organic C. The value of the total losses

  4. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    Science.gov (United States)

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  5. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.

    Science.gov (United States)

    Phillips, Lori A; Ward, Valerie; Jones, Melanie D

    2014-03-01

    Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils.

  6. Prospects and problems of uranium enrichment

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1974-01-01

    The problem of uranium enrichment now concerns principally peaceful nuclear power generation. With the current oil crisis, energy resources assume unprecedented importance. However, the requirements for enriched uranium vary with the vicissitude of the world situation in nuclear power generation; the enterprise of uranium enrichment is related to economic aspect. The following matters are described: dimension of enrichment problem, political factors, changes in requirements, projects in each country, and strategy of enrichment in Japan. (Mori, K.)

  7. Tritium in organic matter around Krsko Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kristof, Romana; Zorko, Benjamin; Kozar Logar, Jasmina; Kosenina, Suzana

    2017-01-01

    The aim of the research was to obtain first results of tritium in the organic matter of environmental samples in the vicinity of Krsko NPP. The emphasis was on the layout of suitable sampling network of crops and fruits in nearby agricultural area. Method for determination of tritium in organic matter in the form of Tissue Free Water Tritium (TFWT) and Organically Bound Tritium (OBT) has been implemented. Capabilities of the methods were tested on real environmental samples and its findings were compared to modeled activities of tritium from atmospheric releases and literature based results of TFWT and OBT. (author)

  8. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics.

    Science.gov (United States)

    Saijai, Sakuntala; Ando, Akinori; Inukai, Ryuya; Shinohara, Makoto; Ogawa, Jun

    2016-06-27

    Nitrifying microbial consortia were enriched from bark compost in a water system by regulating the amounts of organic nitrogen compounds and by controlling the aeration conditions with addition of CaCO 3 for maintaining suitable pH. Repeated enrichment showed reproducible mineralization of organic nitrogen via the conversion of ammonium ions ([Formula: see text]) and nitrite ions ([Formula: see text]) into nitrate ions ([Formula: see text]). The change in microbial composition during the enrichment was investigated by PCR-DGGE analysis with a focus on prokaryote, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and eukaryote cell types. The microbial transition had a simple profile and showed clear relation to nitrogen ions transition. Nitrosomonas and Nitrobacter were mainly detected during [Formula: see text] and [Formula: see text] oxidation, respectively. These results revealing representative microorganisms acting in each ammonification and nitrification stages will be valuable for the development of artificial simple microbial consortia for organic hydroponics that consisted of identified heterotrophs and autotrophic nitrifying bacteria.

  9. Microbe-mediated transformations of marine dissolved organic matter during 2,100 years of natural incubation in the cold, oxic crust of the Mid-Atlantic Ridge.

    Science.gov (United States)

    Shah Walter, S. R.; Jaekel, U.; Huber, J. A.; Dittmar, T.; Girguis, P. R.

    2015-12-01

    On the western flank of the Mid-Atlantic Ridge, oxic seawater from the deep ocean is downwelled into the basaltic crust, supplying the crustal aquifer with an initial inoculum of organic matter and electron acceptors. Studies have shown that fluids circulating within the crust are minimally altered from original seawater, making this subsurface environment a unique natural experiment in which the fate of marine organic matter and the limitations of microbial adaptability in the context of reduced carbon supply can be examined. To make the subsurface crustal aquifer accessible, two CORK (Circulation Obviation Retrofit Kit) observatories have been installed at North Pond, a sediment-filled depression beneath the oligotrophic Sargasso Sea. Radiocarbon analysis of dissolved inorganic (DIC) and organic carbon (DOC) in samples recovered from these observatories show uncoupled aging between DOC and DIC with Δ14C values of DOC as low as -933‰ despite isolation from the open ocean for, at most, 2,100 years. This extreme value is part of a general trend of decreasing DOC δ13C and Δ14C values with increasing incubation time within the aquifer. Combined with reduced concentrations of DOC, our results argue for selective microbial oxidation of the youngest, most 13C-enriched components of downwelled DOC, possibly identifying these as characteristics of the more bioavailable fractions of deep-ocean dissolved organic matter. They also suggest that microbial oxidation during low-temperature hydrothermal circulation could be an important sink for aged marine dissolved organic matter.

  10. Molecular and optical properties of tree-derived dissolved organic matter in throughfall and stemflow from live oaks and eastern red cedar

    Science.gov (United States)

    Stubbins, Aron; Silva, Leticia M.; Dittmar, Thorsten; Van Stan, John T.

    2017-03-01

    Studies of dissolved organic matter (DOM) transport through terrestrial aquatic systems usually start at the stream. However, the interception of rainwater by vegetation marks the beginning of the terrestrial hydrological cycle making trees the headwaters of aquatic carbon cycling. Rainwater interacts with trees picking up tree-DOM, which is then exported from the tree in stemflow and throughfall. Stemflow denotes water flowing down the tree trunk, while throughfall is the water that drips through the leaves of the canopy. We report the concentrations, optical properties (light absorbance) and molecular signatures (ultrahigh resolution mass spectrometry) of tree-DOM in throughfall and stemflow from two tree species (live oak and eastern red cedar) with varying epiphyte cover on Skidaway Island, Savannah, Georgia, USA. Both stemflow and throughfall were enriched in DOM compared to rainwater, indicating trees were a significant source of DOM. The optical and molecular properties of tree-DOM were broadly consistent with those of DOM in other aquatic ecosystems. Stemflow was enriched in highly colored DOM compared to throughfall. Elemental formulas identified clustered the samples into three groups: oak stemflow, oak throughfall and cedar. The molecular properties of each cluster are consistent with an autochthonous aromatic-rich source associated with the trees, their epiphytes and the microhabitats they support. Elemental formulas enriched in oak stemflow were more diverse, enriched in aromatic formulas, and of higher molecular mass than for other tree-DOM classes, suggesting greater contributions from fresh and partially modified plant-derived organics. Oak throughfall was enriched in lower molecular weight, aliphatic and sugar formulas, suggesting greater contributions from foliar surfaces. While the optical properties and the majority of the elemental formulas within tree-DOM were consistent with vascular plant-derived organics, condensed aromatic formulas were

  11. Characteristics of dissolved organic matter following 20 years of peatland restoration

    NARCIS (Netherlands)

    Höll, B.S.; Fiedler, S.; Jungkunst, H.F.; Kalbitz, K.; Freibauer, A.; Drösler, M.; Stahr, K.

    2009-01-01

    The changes in the amounts and composition of dissolved organic matter (DOM) following long-term peat restoration are unknown, although this fraction of soil organic matter affects many processes in such ecosystems. We addressed this lack of knowledge by investigating a peatland in south-west

  12. Effect of high organic enrichment of benthic polychaete population in an estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Ingole, B.S.; Parulekar, A.H.

    The benthic polychaete fauna of an estuarine region receiving domestic sewage and wastes from a nearby fish landing jetty was compared to that of a site having normal organic enrichment. The population density, biomass and species diversity were...

  13. Production of Dissolved Organic Matter During Doliolid Feeding

    Science.gov (United States)

    Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.

    2016-02-01

    The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.

  14. Vertical transport of organic matter in the various oceanic areas

    International Nuclear Information System (INIS)

    Handa, Nobuhiko; Hayakawa, Kazuhide

    1993-01-01

    Organic matter produced by the photosynthesis of the phytoplankton is removed from the euphotic layer to the underlying waters by sinking of the particles consisting of both marine snow and fecal pellet. Phytoplankton bloom always enhances the vertical flux of organic matter from the subsurface to deep waters. Turbidity current is another factor to govern the vertical flux of organic carbon especially in the continental shelf to its slope areas. However, no information are available to distinguish the organic materials from these two sources. Stable carbon isotope ratio and fatty acid composition give most promising informations to diagnose the physiological state of the phytoplankton which is one of the source of the organic materials of the sinking particle, because of the extensive variations of the δ 13 C of the phytoplankton cellular organic matter and fatty acid composition due to the phytoplankton growth rate (O'Leary, 1981; Morris et al., 1985). Δ 14 C of the organic matter of the sinking particle will provide an information as to how much organic materials are derived from the phytoplankton growing in the surface and subsurface waters and/or from the resuspended particles of the surface sediment in the continental shelf and its slope areas. Recently we analyzed various samples of the sinking particles collected from the coastal areas of the Antarctica and off Hokkaido, Japan for fatty acids and found that ratios as biomarker to diagnose these growth phases of the phytoplankton growing in the surface to subsurface waters. Thus, we intend to report here these data obtained. (J.P.N.)

  15. (Tropical) soil organic matter modelling: problems and prospects

    NARCIS (Netherlands)

    Keulen, van H.

    2001-01-01

    Soil organic matter plays an important role in many physical, chemical and biological processes. However, the quantitative relations between the mineral and organic components of the soil and the relations with the vegetation are poorly understood. In such situations, the use of models is an

  16. Impact of future climatic conditions on the potential for soil organic matter priming

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Ambus, Per; Thornton, Barry

    2013-01-01

    Terrestrial carbon (C) storage and turnover are of major interest under changing climatic conditions. We present a laboratory microcosm study investigating the effects of anticipated climatic conditions on the soil microbial community and related changes in soil organic matter (SOM) decomposition....... Soil samples were taken from a heath-land after six years of exposure to elevated carbon dioxide (eCO2) in combination with summer drought (D) and increased temperature (T). Soil C-dynamics were investigated in soils from: (i) ambient, (ii) eCO2, and (iii) plots exposed to the combination of factors...... simulating future climatic conditions (TDeCO2) that simulate conditions predicted for Denmark in 2075. 13C enriched glucose (3 atom% excess) was added to soil microcosms, soil CO2 efflux was measured over a period of two weeks and separated into glucose- and SOM-derived C. Microbial biomass was measured...

  17. Mapping Soil Organic Matter with Hyperspectral Imaging

    Science.gov (United States)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  18. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming

    Directory of Open Access Journals (Sweden)

    X. Cheng

    2011-06-01

    Full Text Available The influence of global warming on soil organic matter (SOM dynamics in terrestrial ecosystems remains unclear. In this study, we combined soil fractionation with isotope analyses to examine SOM dynamics after nine years of experimental warming in a North America tallgrass prairie. Soil samples from the control plots and the warmed plots were separated into four aggregate sizes (>2000 μm, 250–2000 μm, 53–250 μm, and <53 μm, and three density fractions (free light fraction – LF, intra-aggregate particulate organic matter – iPOM, and mineral-associated organic matter – mSOM. All fractions were analyzed for their carbon (C and nitrogen (N content, and δ13C and δ15N values. Warming did not significantly effect soil aggregate distribution and stability but increased C4-derived C input into all fractions with the greatest in LF. Warming also stimulated decay rates of C in whole soil and all aggregate sizes. C in LF turned over faster than that in iPOM in the warmed soils. The δ15N values of soil fractions were more enriched in the warmed soils than those in the control, indicating that warming accelerated loss of soil N. The δ15N values changed from low to high, while C:N ratios changed from high to low in the order LF, iPOM, and mSOM due to increased degree of decomposition and mineral association. Overall, warming increased the input of C4-derived C by 11.6 %, which was offset by the accelerated loss of soil C. Our results suggest that global warming simultaneously stimulates C input via shift in species composition and decomposition of SOM, resulting in negligible net change in soil C.

  19. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil.

    Science.gov (United States)

    Wang, Dan; Dinh, Quang Toan; Anh Thu, Tran Thi; Zhou, Fei; Yang, Wenxiao; Wang, Mengke; Song, Weiwei; Liang, Dongli

    2018-05-01

    To exploit the plant byproducts from selenium (Se) biofortification and reduce environmental risk of inorganic Se fertilizer, pot experiment was conducted in this study. The effects of Se-enriched wheat (Triticum aestivum L.) straw (WS + Se) and pak choi (Brassica chinensis L.) (P + Se) amendment on organo-selenium speciation transformation in soil and its bioavailability was evaluated by pak choi uptake. The Se contents of the cultivated pak choi in treatments amended with the same amount of Se-enriched wheat straw and pak choi were 1.7 and 9.7 times in the shoots and 2.3 and 6.3 times in the roots compared with control treatment. Soil respiration rate was significantly increased after all organic material amendment in soil (p organic materials and thus resulted in soluble Se (SOL-Se), exchangeable Se (EX-Se), and fulvic acid-bound Se (FA-Se) fraction increasing by 25.2-29.2%, 9-13.8%, and 4.92-8.28%, respectively. In addition, both Pearson correlation and cluster analysis showed that EX-Se and FA-Se were better indicators for soil Se availability in organic material amendment soils. The Marquardt-Levenberg Model well described the dynamic kinetics of FA-Se content after Se-enriched organic material amendment in soil mainly because of the mineralization of organic carbon and organo-selenium. The utilization of Se in P + Se treatment was significantly higher than those in WS + Se treatment because of the different mineralization rates and the amount of FA-Se in soil. Se-enriched organic materials amendment can not only increase the availability of selenium in soil but also avoid the waste of valuable Se source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Science.gov (United States)

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  1. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    Science.gov (United States)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase

  2. Elucidating Microbial Species-Specific Effects on Organic Matter Transformation in Marine Sediments

    Science.gov (United States)

    Mahmoudi, N.; Enke, T. N.; Beaupre, S. R.; Teske, A.; Cordero, O. X.; Pearson, A.

    2017-12-01

    Microbial transformation and decomposition of organic matter in sediments constitutes one of the largest fluxes of carbon in marine environments. Mineralization of sedimentary organic matter by microorganisms results in selective degradation such that bioavailable or accessible compounds are rapidly metabolized while more recalcitrant, complex compounds are preserved and buried in sediment. Recent studies have found that the ability to use different carbon sources appears to vary among microorganisms, suggesting that the availability of certain pools of carbon can be specific to the taxa that utilize the pool. This implies that organic matter mineralization in marine environments may depend on the metabolic potential of the microbial populations that are present and active. The goal of our study was to investigate the extent to which organic matter availability and transformation may be species-specific using sediment from Guaymas Basin (Gulf of California). We carried out time-series incubations using bacterial isolates and sterilized sediment in the IsoCaRB system which allowed us to measure the production rates and natural isotopic signatures (δ13C and Δ14C) of microbially-respired CO2. Separate incubations using two different marine bacterial isolates (Vibrio sp. and Pseudoalteromonas sp.) and sterilized Guaymas Basin sediment under oxic conditions showed that the rate and total quantity of organic matter metabolized by these two species differs. Approximately twice as much CO2 was collected during the Vibrio sp. incubation compared to the Pseudoalteromonas sp. incubation. Moreover, the rate at which organic matter was metabolized by the Vibrio sp. was much higher than the Pseudoalteromonas sp. indicating the intrinsic availability of organic matter in sediments may depend on the species that is present and active. Isotopic analyses of microbially respired CO2 will be used to constrain the type and age of organic matter that is accessible to each species

  3. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review.

    Science.gov (United States)

    Chen, Meilian; Hur, Jin

    2015-08-01

    Dissolved organic matter (DOM) in sediments, termed here sediment DOM, plays a variety of important roles in global biogeochemical cycling of carbon and nutrients as well as in the fate and transport of xenobiotics. Here we reviewed sediment DOM, including pore waters and water extractable organic matter from inland and coastal sediments, based on recent literature (from 1996 to 2014). Sampling, pre-treatment, and characterization methods for sediment DOM were summarized. The characteristics of sediment DOM have been compared along an inland to coastal ecosystems gradient and also with the overlying DOM in water column to distinguish the unique nature of it. Dissolved organic carbon (DOC) from inland sediment DOM was generally higher than coastal areas, while no notable differences were found for their aromaticity and apparent molecular weight. Fluorescence index (FI) revealed that mixed sources are dominant for inland sediment DOM, but marine end-member prevails for coastal sediment DOM. Many reports showed that sediments operate as a net source of DOC and chromophoric DOM (CDOM) to the water column. Sediment DOM has shown more enrichment of nitrogen- and sulfur-containing compounds in the elemental signature than the overlying DOM. Fluorescent fingerprint investigated by excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) further demonstrated the characteristics of sediment DOM lacking in the photo-oxidized and the intermediate components, which are typically present in the overlying surface water. In addition, the biogeochemical changes in sediment DOM and the subsequent environmental implications were discussed with the focus on the binding and the complexation properties with pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Changes in the composition and bioavailability of dissolved organic matter during sea ice formation

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Kaartokallio, Hermanni

    2015-01-01

    matter (FDOM) fractions in sea ice, brines (contained in small pores between the ice crystals), and the underlying seawater during a 14 d experiment. Two series of mesocosms were used: one with seawater alone and one with seawater enriched with humic-rich river water. Abiotic processes increased...... processes such as sea ice formation as the source of the significant DOM removal in the Arctic Ocean. We present the results of a mesocosm experiment designed to investigate how sea ice formation affects DOM composition and bioavailability. We measured the change in different fluorescent dissolved organic...... the humic-like FDOM signal in the seawater below the ice during the initial ice formation. Humic-like FDOM fractions with a marine signal were preferentially retained in sea ice (relative to salinity), whereas humic-like FDOM with a terrestrial signal behaved more conservatively with respect to salinity...

  5. Extraterrestrial Organic Compounds in Meteorites

    Science.gov (United States)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  6. Multi-technical approach to characterize the dissolved organic matter from clay-stone

    International Nuclear Information System (INIS)

    Blanchart, Pascale; Michels, Raymond; Faure, Pierre; Parant, Stephane; Bruggeman, Christophe; De Craen, Mieke

    2012-01-01

    Document available in extended abstract form only. Currently, different clay formations (Boom Clay, Callovo-Oxfordian argilites, Opalinus Clay, Toarcian shales...) are studied as reference host rocks for methodological studies on the geological disposal of high-level and long-lived radioactive waste. While a significant effort is being done on the characterization of the mineral composition and the reactivity of the clays as barriers, the occurrence of organic matter, even in low proportion cannot be neglected. The organic matter appears as gas (C 1 -C 4 as identified in the Bure underground facilities), as solid (kerogen), as hydrocarbon liquids (free hydrocarbons within the kerogen or adsorbed on minerals) as well as in the aqueous phase (Dissolved Organic Matter - DOM). DOM raises specific interest, as it may have complexation properties towards metals and rare earth elements and is potentially mobile. Therefore, it is important to characterize the DOM as part of a study of feasibility of geological disposal. In this study, four host rocks were studied: - The Callovo-Oxfordian shales of Bure Underground Research Laboratory (Meuse, France); - The Opalinus Clay of Mont Terri Underground Research Laboratory (Switzerland); - The Toarcian shales of Tournemire (Aveyron, France); - The Boom Clay formation studied in The HADES Underground Research Laboratory (Mol, Belgium). Organic matter characteristics vary upon formation in terms of (i) origin (mainly marine type II; mixtures of marine type II and higher plants type III organic matter often poorly preserved), (ii) TOC contents, (iii) thermal maturity (for instance, Opalinus Clay and Toarcian shales are more mature and have poor oxygen content compare to Callovo-Oxfordian shales and Boom Clay). These differences in organic matter quality may have an influence on the quantity and the quality of DOM. The DOM of the rocks was isolated by Soxhlet extraction using pure water. A quantitative and qualitative multi

  7. 16S rRNA gene-based molecular analysis of mat-forming and accompanying bacteria covering organically-enriched marine sediments underlying a salmon farm in Southern Chile (Calbuco Island)

    OpenAIRE

    Aranda, Carlos; Paredes, Javier; Valenzuela, Cristian; Lam, Phyllis; Guillou, Laure

    2010-01-01

    The mat forming bacteria covering organic matter-enriched and anoxic marine sediments underlying a salmon farm in Southern Chile, were examined using 16S rRNA gene phylogenies. This mat was absent in the sea bed outside the direct influence of the farm (360 m outside fish cages). Based on nearly complete 16S rRNA gene sequences (-1500 bp), mat-forming filamentous cells were settled as the sulphur-oxidizing and putatively dissimilative nitrate-reducing Beggiatoa spp., being closely related (up...

  8. Extração de matéria orgânica aquática por abaixamento de temperatura: uma metodologia alternativa para manter a identidade da amostra Extraction of aquatic organic matter by temperature decreasing: an alternative methodology to keep the original sample characteristics

    Directory of Open Access Journals (Sweden)

    Rosana N. H. Martins de Almeida

    2003-03-01

    Full Text Available In this work was developed an alternative methodology to separation of aquatic organic matter (AOM present in natural river waters. The process is based in temperature decreasing of the aqueous sample under controlled conditions that provoke the freezing of the sample and separation of the dark extract, not frozen and rich in organic matter. The results showed that speed of temperature decreasing exerts strongly influence in relative recovery of organic carbon, enrichment and time separation of the organic matter present in water samples. Elemental composition, infrared spectra and thermal analysis results showed that the alternative methodology is less aggressive possible in the attempt of maintaining the integrity of the sample.

  9. Energy Transformations of Soil Organic Matter in a Changing World

    Science.gov (United States)

    Herrmann, A. M.; Coucheney, E.; Grice, S. M.; Ritz, K.; Harris, J.

    2011-12-01

    The role of soils in governing the terrestrial carbon balance is acknowledged as being important but remains poorly understood within the context of climate change. Soils exchange energy with their surroundings and are therefore open systems thermodynamically, but little is known how energy transformations of decomposition processes are affected by temperature. Soil organic matter and the soil biomass can be conceptualised as analogous to the 'fuel' and 'biological engine' of the earth, respectively, and are pivotal in driving the belowground carbon cycle. Thermodynamic principles of soil organic matter decomposition were evaluated by means of isothermal microcalorimetry (TAM Air, TA Instruments, Sollentuna Sweden: (i) Mineral forest soils from the Flakaliden long-term nitrogen fertilisation experiment (Sweden) were amended with a range of different substrates representing structurally simple to complex, ecologically pertinent organic matter and heat signatures were determined at temperatures between 5 and 25°C. (ii) Thermodynamic and resource-use efficiencies of the biomass were determined in arable soils which received contrasting long-term management regimes with respect to organic matter and nitrogen since 1956. The work showed that (i) structurally labile components have higher activation energy and temperature dependence than structurally more complex organic components. This is, however, in contrast to the thermodynamic argument which suggests the opposite that reactions metabolising structurally complex, aromatic components have higher temperature dependence than reactions metabolising structurally more labile components. (ii) Microbial communities exposed to long-term stress by heavy metal and low pH were less thermodynamic efficient and showed a decrease in resource-use efficiency in comparison with conventional input regimes. Differences in efficiencies were mirrored in both the phenotypic and functional profiles of the communities. We will present our

  10. Cosorption study of organic pollutants and dissolved organic matter in a soil

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Cespedes, F. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Fernandez-Perez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)]. E-mail: mfernand@ual.es; Villafranca-Sanchez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Gonzalez-Pradas, E. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)

    2006-08-15

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl{sub 2} aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L{sup -1}, produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K {sub doc}, has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM.

  11. Cosorption study of organic pollutants and dissolved organic matter in a soil

    International Nuclear Information System (INIS)

    Flores-Cespedes, F.; Fernandez-Perez, M.; Villafranca-Sanchez, M.; Gonzalez-Pradas, E.

    2006-01-01

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl 2 aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L -1 , produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K doc , has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM

  12. Test procedure for determining organic matter content in soils : UV-VIS method.

    Science.gov (United States)

    2010-11-01

    The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...

  13. Tracing organic matter sources in a tropical lagoon of the Caribbean Sea

    Science.gov (United States)

    Alonso-Hernández, Carlos M.; Garcia-Moya, Alejandro; Tolosa, Imma; Diaz-Asencio, Misael; Corcho-Alvarado, Jose Antonio; Morera-Gomez, Yasser; Fanelli, Emanuela

    2017-09-01

    The natural protected lagoon of Guanaroca, located between Cienfuegos Bay and the Arimao River, Cuba, has been heavily impacted by human-induced environmental changes over the past century. Sources of organic matter in the Guanaroca lagoon and concentrations of radioisotopes (210Pb, 226Ra, 137Cs and 239,240Pu), as tracers of anthropogenic impacts, were investigated in a 78 cm sediment core. Variations in total organic carbon (TOC), total nitrogen (TN), stable isotopic composition (δ13C and δ15N) and ratio of total organic carbon to total nitrogen (C/N) were analysed. On such a basis, environmental changes in the lagoon were revealed. Down core variation patterns of the parameters representing sources of organic matter were predominantly related to the impacts of human activities. Up to the nineteenth century, the principal sources of organic matter to sediments (more than 80%) were a mixing of terrestrial vascular plants ( 48%) and freshwater phytoplankton ( 8%), with minimal contribution from the marine component ( 16%). In the period 1900-1980, due to the strong influence of human activities in the catchment area, the water exchange capacity of the lagoon declined substantially, as indicated by the relatively high proportion of organic matter originated from human activities (58%). Since 1980, as a result of management actions in the protected area, the lagoon has regained gradually its capability to exchange freshwater, showing sources of organic matter similar to the natural conditions recorded previous to 1900, although an indication of human impact (treated sewage contributed for 26% to the organic matter in sediments) was still observed and further management measures would be required.

  14. d13C and d15N dynamics of particulate organic matter in freshwater and brackish waters of the Scheldt estuary

    DEFF Research Database (Denmark)

    De Brabandere, Loreto; Dehairs, F.; Van Damme, S.

    2002-01-01

    the growth season reflects the 15N enrichment of the ambient NH4 + pool induced by nitrification and NH4+ uptake. Zooplankton in the mesohaline section of the river was consistently enriched in 15N relative to suspended matter but followed its seasonal trend. During summer and autumn the isotopic offset...... matter in the oligohaline and mesohaline section increased compared to the 1970s, probably because today nitrification, which enriches the NH4+ pool in 15N, starts earlier in the season. For summer, the discrepancy between present-day suspended matter d15N values and those observed in the 1970s was even...

  15. Organic matter and the geotechnical properties of submarine sediments

    Science.gov (United States)

    Keller, George H.

    1982-09-01

    Continental slope deposits off Peru and Oregon where coastal upwelling is a pronounced oceanographic process possess significant concentrations of organic carbon. Geotechnical properties are altered to varying degrees by the organic matter. Organic matter absorbs water and causes clay-size particles to aggregate forming an open fabric. This causes unusually high water contents and plasticity and exceptionally low wet bulk densities. Some of these deposits show notable increases in shear strength, sensitivity and degree of apparent overconsolidation. Owing to the unique geotechnical properties, sediment stability characteristics are considered to be poor in situations of excess pore pressures. Failure appears to take the form of a fluidized flow somewhat similar to the quick clays of Scandinavia.

  16. Interactions of diuron with dissolved organic matter from organic amendments.

    Science.gov (United States)

    Thevenot, Mathieu; Dousset, Sylvie; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Andreux, Francis

    2009-07-01

    Diuron is frequently detected in some drinking water reservoirs under the Burgundy vineyards, where organic amendments are applied. The environmental effect of these amendments on pesticide transport is ambiguous: on the one hand it could enhance their retention by increasing soil organic carbon content; on the other hand, dissolved organic matter (DOM) could facilitate their transport. Elutions were performed using columns packed with glass beads in order to investigate DOM-diuron interactions, and the possible co-transport of diuron and DOM. Four organic amendments (A, B, C and D) were tested; C and D were sampled at fresh (F) and mature (M) stages. An increase in diuron leaching was observed only for A and D(F) amendments (up to 16% compared to the DOM-free blank samples), suggesting a DOM effect on diuron transport. These results could be explained by the higher DOM leaching for A and D(F) compared to B, C(F), C(M) and D(M) increasing diuron-DOM interactions. These interactions seem to be related to the aromatic and aliphatic content of the DOM, determining formation of hydrogen and non-covalent bonds. The degree of organic matter maturity does not seem to have any effect with amendment C, while a reduction in diuron leaching is observed between D(F) and D(M). After equilibrium dialysis measurement of diuron-DOM complexes, it appeared that less than 3% of the diuron applied corresponded to complexes with a molecular weight >1000 Da. Complexes <1000 Da could also take part in this facilitated transport.

  17. Riverine transport of terrestrial organic matter to the North Catalan margin, NW Mediterranean Sea

    Science.gov (United States)

    Sanchez-Vidal, Anna; Higueras, Marina; Martí, Eugènia; Liquete, Camino; Calafat, Antoni; Kerhervé, Philippe; Canals, Miquel

    2013-11-01

    Rivers are the primary pathway for organic matter transport from the terrestrial to the marine environment and, thus, river fluxes are critical in regulating the quantity of terrestrial organic matter that reaches the coastal ecosystems. Hydrodynamic processes typical of the coastal zone can lead to the transport of terrestrial organic matter across the continental shelf and beyond. Such organic matter can eventually reach the deep margin and basin ecosystems. Riverine inputs of organic matter to the sea can be a significant food source to marine ecosystems contributing to carbon cycling in these ecosystems. In order to assess the marine carbon cycle it is essential to know the biogeochemical characteristics and temporal dynamics of the fluvial organic matter input discharged by rivers to the coastal zone. In this study we present a one and a half year long (November 2008 to May 2010) assessment on organic carbon (OC) and nitrogen (N) inputs from the three main rivers discharging into the North Catalan margin (Tordera, Ter and Fluvià, from south to north). Furthermore, we investigate the characteristics of the particulate organic matter discharged by these rivers by means of stable isotopic (δ13C and δ15N) and grain size analyses. We found that the hydrological regime of the rivers is a relevant factor in regulating the quantity and mediating the quality of organic matter inputs to the North Catalan margin. Overall, the three main rivers discharging into the study area deliver 1266 and 159 tonnes of terrestrial OC and N per year, respectively, to the coastal zone. Most of the OC and N load is transported during floods, which indicates that the Mediterranean climate of the area, with a strong seasonal contrast in precipitation, determines the timing of the main inputs of OC and N to the sea. Therefore, the annual OC and N load experiences a high temporal variability associated to the number and magnitude of floods with in each hydrological year. In addition, we

  18. The Role of Organic Matter in the Formation of High-Grade Al Deposits of the Dopolan Karst Type Bauxite, Iran: Mineralogy, Geochemistry, and Sulfur Isotope Data

    Directory of Open Access Journals (Sweden)

    Somayeh Salamab Ellahi

    2017-06-01

    Full Text Available Mineralogical and geochemical analyses of the Dopolan karstic bauxite ore were performed to identify the characteristics of four bauxite horizons, which comprise from top to bottom, bauxitic kaolinite, diaspore-rich bauxite, clay-rich bauxite, and pyrite-rich bauxite. Diaspore, kaolinite, and pyrite are the main minerals; böhmite, muscovite, rutile, and anatase are the accessory minerals. The main minerals of the Dopolan bauxite deposit indicate slightly acidic to alkaline reducing conditions during bauxitization. Immobile elements (Nb, Ta, Zr, Hf, and rare earth elements are enriched in the diaspore-rich horizon, which also has the highest alumina content, whereas redox sensitive elements (e.g., Cr, Cu, Ni, Pb, Zn, Ag, U, and V are enriched in the lowest horizon of pyrite-rich bauxite. The presence of a high content of organic matter was identified in different horizons of bauxitic ore from wet chemistry. The presence of organic matter favored Fe bioleaching, which resulted in Al enrichment and the formation of diaspore-rich bauxite. The leached Fe2+ reacted with the hydrogen sulfur that was produced due to bacterial metabolism, resulting in the formation of the pyrite-rich horizon towards the bottom of the Dopolan bauxite horizons. Biogeochemical activity in the Dopolan bauxitic ore was deduced from the reducing environment of bauxitization, and the deposition of framboidal and cubic or cubic/octahedral pyrite crystals, with large negative values of δ34S of pyrite (−10‰ to −34‰ and preserved fossil cells of microorganisms.

  19. Presence and evolution of natural organic matter in the boom clay

    International Nuclear Information System (INIS)

    Van Geet, M.; Deniau, I.; Largeau, C.; Bruggeman, C.; Maes, A.; Dierckx, A.

    2004-01-01

    Because of its very low hydraulic conductivity, reducing conditions, slightly alkaline pH, high specific surface, high cation exchange capacity and high plasticity, the Boom Clay is studied as a reference host formation for the deep disposal of high-level long-lived radioactive waste (NIRAS/ONDRAF, 1989). However, Boom Clay also contains up to 5% wt. of organic matter (OM). As radionuclides can form complexes with this organic matter, a detailed characterisation and knowledge of the evolution of the organic matter is necessary. An overview of the characteristics of the organic matter present in Boom Clay is given by Van Geet et al., (2003). The solid phase OM can be up to 5%. The dissolved OM fraction is around 200 mg C per liter of Boom Clay pore water. Both kinds of OM will be discussed. Concerning the solid phase OM the focus will be on the past evolution and its possible future evolution due to a thermal stress. For the dissolved OM, the focus will be on its origin. (author)

  20. Organic matter in the universe

    CERN Document Server

    Kwok, Sun

    2012-01-01

    Authored by an experienced writer and a well-known researcher of stellar evolution, interstellar matter and spectroscopy, this unique treatise on the formation and observation of organic compounds in space includes a spectroscopy refresher, as well as links to geological findings and finishes with the outlook for future astronomical facilities and solar system exploration missions. A whole section on laboratory simulations includes the Miller-Urey experiment and the ultraviolet photolysis of ices.

  1. Biochemical stability of organic matter in soils amended with organic slow N-release fertilizer derived from charred plant residues and ammonoxidized lignin

    Science.gov (United States)

    Knicker, Heike; de la Rosa, José Maria; López Martín, María; Clemente Barragan, Reyes; Liebner, Falk

    2013-04-01

    As an important plant nutrient, N that has been removed from the soil by plant growth is replaced mainly by the use of synthetic fertilizers. Although this practice has dramatically increased food production, the unintended costs to the environment and human health due to surplus and inefficient application have also been substantial. Major losses of N to the environment can be minimized if "sustainable" agricultural practices are combined with reasonable fertilization. The latter can be achieved by applying slow N-release fertilizers. Here, the N is incorporated into an organic matrix, which after its amendment to soils, slowly decompose, allowing the liberation of the nutrient. Deriving from organic waste, such an amendment helps to efficiently recycle resources and increases the C sequestration potential of soils. However, in order to turn this approach into a successful strategy, the material has to be bioavailable but still sufficiently recalcitrant to ensure slow and controlled N-release. In the present study, we tested potential slow N-release fertilizers recycled from organic waste for their biochemical stability in soils. They comprised N-rich charred grass residues and N-lignin derived from waste of the pulp and paper industry and enriched in N by ammonoxidation. The substrates were mixed with soil of an Histic Humaquept and subsequently subjected to microbial degradation at 28°C in a Respicond IV Apparatus for 10 weeks. Additionally, soil material without organic amendment and soils mixed with lignin or charcoal both with and without KNO3 were included into the experiment. During the degradation experiment the CO2 production was determined on an hourly base. The degradation rate constants and the mean residence times were calculated using a double exponential decay model (pools with fast and slow turnover). Alterations of the chemical composition of the organic matter during degradation were studied by solid-state 13C NMR spectroscopy. First results

  2. Repeated applications of compost and manure mainly affect the size and chemical nature of particulate organic matter in a loamy soil after 8 years

    Science.gov (United States)

    Peltre, Clement; Dignac, Marie-France; Doublet, Jeremy; Plante, Alain; Houot, Sabine

    2013-04-01

    Land application of exogenous organic matter (EOM) of residual origin can help to maintain or increase soil organic carbon (SOC) stocks. However, it remains necessary to quantify and predict the soil C accumulation and to determine under which form the C accumulates. Changes to the chemical composition of soil organic matter (SOM) after repeated applications of composts and farmyard manure were investigated in a field experiment (Qualiagro experiment, Ile-de-France) after 8 years of applications of green waste and sludge compost (GWS), municipal solid waste compost (MSW), biowaste compost (BIOW) or farmyard manure (FYM). The soil was fractionated into particulate organic matter >50 µm (POM), a heavy fraction >50 µm and a 0-50 µm fraction demineralized with hydrofluoric acid (HF). Repeated EOM applications significantly increased total SOC stocks, the C amount in the POM fraction and to a less extent in the 0-50 µm fraction compared to the reference treatment. Compost applications accumulated C preferentially under the form of coarse organic matter of size >50 µm, whereas the FYM accumulated similar C proportions of size >50 µm and 0-50 µm, which was attributed to the presence in the FYM of a fraction of labile C stimulating microbial activity and producing humified by-products together with a fraction of stabilized C directly alimenting the humified fraction of SOC. Pyrolysis-GC/MS and DRIFT spectroscopy revealed enrichment in lignin in the POM fractions of amended soils with GWS, BIOW and FYM. In the soil receiving MSW compost, the pyrolysate of the POM fraction revealed the presence of plastics originating from the MSW compost. A lower C mineralization during laboratory incubation was found for the POM fractions of amended soils compared with the POM from reference soil. This feature was related to a lower ratio of (furfural+acetic acid) / pyrole pyrolysis products in POM of amended vs. reference plots, indicating a higher degree of recalcitrance.. The POM

  3. Leader Election and Shape Formation with Self-Organizing Programmable Matter

    OpenAIRE

    Daymude, Joshua J.; Derakhshandeh, Zahra; Gmyr, Robert; Strothmann, Thim; Bazzi, Rida; Richa, Andréa W.; Scheideler, Christian

    2015-01-01

    We consider programmable matter consisting of simple computational elements, called particles, that can establish and release bonds and can actively move in a self-organized way, and we investigate the feasibility of solving fundamental problems relevant for programmable matter. As a suitable model for such self-organizing particle systems, we will use a generalization of the geometric amoebot model first proposed in SPAA 2014. Based on the geometric model, we present efficient local-control ...

  4. 75 FR 10525 - In the Matter of: AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) and All Other...

    Science.gov (United States)

    2010-03-08

    ...: AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) and All Other Persons Who Seek or Obtain... for the Implementation of a Safeguards Information Program (Effective Immediately) I AREVA Enrichment... it to construct and operate a uranium enrichment facility in Bonneville County, Idaho. AES submitted...

  5. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    Science.gov (United States)

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  6. Non-invasive localization of organic matter in soil aggregates using SR-μCT

    Science.gov (United States)

    Peth, Stephan; Mordhorst, Anneka; Chenu, Claire; Uteau Puschmann, Daniel; Garnier, Patricia; Nunan, Naoise; Pot, Valerie; Beckmann, Felix; Ogurreck, Malte

    2014-05-01

    Knowledge of the location of soil organic matter (SOM) and its spatial association to soil structure is an important step in improving modeling approaches for simulating organic matter turnover processes. Advanced models for carbon mineralization are able to account for the 3D distribution of SOM which is assumed to influence mineralisation. However, their application is still limited by the fact that no method exists to non-invasively determine the 3D spatial distribution of SOM in structured soils. SR-based X-ray microtomography (SR-µCT) is an advanced and promising tool in gaining knowledge on the 3-dimensional organization of soil phases (minerals, organic matter, water, air) which on a voxel level could be implemented into spatially explicit models. However, since the contrast of linear attenuation coefficients of soil organic matter on the one hand and mineral components and water on the other hand are relatively low, especially when materials are finely dispersed, organic matter within the soil pore space is often not resolved in ordinary X-ray absorption contrast imaging. To circumvent this problem we have developed a staining procedure for organic matter using Osmium-tetroxide since Osmium is an element with an absorption edge at a higher X-ray energy level. Osmium is known from transmission electron microscopy analysis (TEM) to stain organic matter specifically and irreversibly while having an absorption edge at approximately 74 keV. We report on the application of a novel Osmium vapor staining method to analyze differences in organic matter content and identify small scale spatial distribution of SOM in soil aggregates. To achieve this we have taken soil aggregate samples (6-8 mm across) obtained from arable soils differing in soil management. Aggregate samples were investigated by synchrotron-based X-ray microtomography (SR-µCT) after staining the sample with Osmium-tetroxide (OsO4) vapor. We utilized the monochromatic X-ray beam to locate osmium

  7. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  8. Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Klouček, Ondřej; Pivokonská, Lenka

    2006-01-01

    Roč. 40, č. 16 (2006), s. 3045-3052 ISSN 0043-1354 R&D Projects: GA AV ČR KJB200600501 Institutional research plan: CEZ:AV0Z20600510 Keywords : affinity chromatography * algogenic organic matter * aluminum and iron coagulants * extracellular organic matter * molecular weight fractionation * intracellular organic matter Subject RIV: BK - Fluid Dynamics Impact factor: 2.459, year: 2006

  9. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    Directory of Open Access Journals (Sweden)

    M. C. Braakhekke

    2013-01-01

    Full Text Available The vertical distribution of soil organic matter (SOM in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transport of organic matter were estimated for two temperate forest soils: an Arenosol with a mor humus form (Loobos, the Netherlands, and a Cambisol with mull-type humus (Hainich, Germany. Furthermore, the use of the radioisotope 210Pbex as tracer for vertical SOM transport was studied. For Loobos, the calibration results demonstrate the importance of organic matter transport with the liquid phase for shaping the vertical SOM profile, while the effects of bioturbation are generally negligible. These results are in good agreement with expectations given in situ conditions. For Hainich, the calibration offered three distinct explanations for the observations (three modes in the posterior distribution. With the addition of 210Pbex data and prior knowledge, as well as additional information about in situ conditions, we were able to identify the most likely explanation, which indicated that root litter input is a dominant process for the SOM profile. For both sites the organic matter appears to comprise mainly adsorbed but potentially leachable material, pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to be mainly derived from root litter, supporting previous studies that highlighted the importance of root input for soil carbon sequestration. The 210

  10. Sorptive stabilization of organic matter by amorphous Al hydroxide

    NARCIS (Netherlands)

    Schneider, M.P.W.; Scheel, T.; Mikutta, R.; van Hees, P.; Kaiser, K.; Kalbitz, K.

    2010-01-01

    Amorphous Al hydroxides (am-Al(OH)(3)) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L-1) with OM extracted from organic horizons under a Norway spruce and a European

  11. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  12. Changes in different organic matter fractions during conventional treatment and advanced treatment

    Institute of Scientific and Technical Information of China (English)

    Chao Chen; Xiaojian Zhang; Lingxia Zhu; Wenjie He; Hongda Han

    2011-01-01

    XAD-8 resin isolation of organic matter in water was used to divide organic matter into the hydrophobic and hydrophilic fractions.A pilot plant was used to investigate the change in both fractions during conventional and advanced treatment processes.The treatment of hydrophobic organics (HPO), rather than hydrophilic organicas (HPI), should carry greater emphasis due to HPO's higher trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP).The removal of hydrophobic matter and its transmission into hydrophilic matter reduced ultimate DBP yield during the disinfection process.The results showed that sand filtration, ozonation, and biological activated carbon (BAC) filtration had distinct influences on the removal of both organic fractions.Additionally, the combination of processes changed the organic fraction proportions present during treatment.The use of ozonation and BAC maximized organic matter removal efficiency, especially for the hydrophobic fraction.In sum, the combination of pre-ozonation,conventional treatment, and O3-BAC removed 48% of dissolved organic carbon (DOC), 60% of HPO, 30% of HPI, 63% of THMFP,and 85% of HAAFP.The use of conventional treatment and O3-BAC without pre-ozonation had a comparable performance, removing 51% of DOC, 56% of HPO, 45% of HPI, 61% of THMFP, and 72% of HAAFP.The effectiveness of this analysis method indicated that resin isolation and fractionation should be standardized as an applicable test to help assess water treatment process efficiency.

  13. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Elizabeth Guthrie [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)], E-mail: elizabeth_nichols@ncsu.edu; Gregory, Samuel T.; Musella, Jennifer S. [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)

    2008-12-15

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C{sub 3}-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k{sub slow} and k{sub veryslow}. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior.

  14. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    International Nuclear Information System (INIS)

    Nichols, Elizabeth Guthrie; Gregory, Samuel T.; Musella, Jennifer S.

    2008-01-01

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C 3 -phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k slow and k veryslow . After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior

  15. Soil Organic Matter and Soil Productivity: Searching for the Missing Link

    Science.gov (United States)

    Felipe G. Sanchez

    1998-01-01

    Soil-organic matter (SOM) is a complex array of components including soil fauna and flora at different stages of decomposition (Berg et al., 1982). Its concentration in soils can vary from 0.5% in mineral soils to almost 100% in peat soils (Brady, 1974). Organic matter (OM) in the surface mineral soil is considered a major determinant of forest ecosystem productivity...

  16. Selective release of D and 13C from insoluble organic matter of the Murchison meteorite by impact shock

    Science.gov (United States)

    Mimura, Koichi; Okamoto, Michioki; Sugitani, Kenichiro; Hashimoto, Shigemasa

    2007-03-01

    We performed shock-recovery experiments on insoluble organic matter (IOM) purified from the Murchison meteorite, and determined the abundances and isotope ratios of hydrogen and carbon in the shocked IOM sample. We also performed shock experiments on type III kerogen and compared the results of these experiments with the experimental results regarding IOM.The shock selectively released D and 13C from the IOM, while it preferably released H and 12C from the kerogen. The release of these elements from IOM cannot be explained in terms of the isotope effect, whereas their release from kerogen can be explained by this effect. The selective release of heavier isotopes from IOM would be due to its structure, in which D and 13C-enriched parts are present as an inhomogeneity and are weakly attached to the main network. Shock gave rise to a high release of D even at a lower degree of dehydrogenation compared with the stepwise heating of IOM. This effective release of D is probably an inherent result of shock, in which a dynamic high-pressure and high-temperature condition prevails. Thus, shock would effectively control the hydrogen isotope behavior of extraterrestrial organic matter during the evolution of the solar nebula.

  17. Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2015-01-01

    to more than 200 modeled spectra (PARAFAC components) in the OpenFluor database. Apparent matches, based on spectral similarity, were subsequently evaluated using molar fluorescence and absorbance. Five organic compounds were potential matches with PARAFAC components from 16 studies; however, the ability......Absorbance and fluorescence spectroscopy are economical tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The colored and fluorescent fractions of DOM (CDOM and FDOM, respectively) are linked by the apparent fluorescence quantum yield (AQY) of DOM, which reflects...... the likelihood that chromophores emit fluorescence after absorbing light. Compared to the number of studies investigating CDOM and FDOM, few studies have systematically investigated AQY spectra for DOM, and linked them to fluorescence quantum yields (Φ) of organic compounds. To offer a standardized approach...

  18. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    Science.gov (United States)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  19. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  20. Structural, chemical and isotopic examinations of interstellar organic matter extracted from meteorites and interstellar dust particles

    Science.gov (United States)

    Busemann, Henner; Alexander, Conel M. O'D.; Nittler, Larry R.; Stroud, Rhonda M.; Zega, Tom J.; Cody, George D.; Yabuta, Hikaru; Kilcoyne, A. L. David

    2008-10-01

    Meteorites and Interplanetary Dust Particles (IDPs) are supposed to originate from asteroids and comets, sampling the most primitive bodies in the Solar System. They contain abundant carbonaceous material. Some of this, mostly insoluble organic matter (IOM), likely originated in the protosolar molecular cloud, based on spectral properties and H and N isotope characteristics. Together with cometary material returned with the Stardust mission, these samples provide a benchmark for models aiming to understand organic chemistry in the interstellar medium, as well as for mechanisms that secured the survival of these fragile molecules during Solar System formation. The carrier molecules of the isotope anomalies are largely unknown, although amorphous carbonaceous spheres, so-called nanoglobules, have been identified as carriers. We are using Secondary Ion Mass Spectrometry to identify isotopically anomalous material in meteoritic IOM and IDPs at a ~100-200 nm scale. Organics of most likely interstellar origin are then extracted with the Focused-Ion-Beam technique and prepared for synchrotron X-ray and Transmission Electron Microscopy. These experiments yield information on the character of the H- and N-bearing interstellar molecules: While the association of H and N isotope anomalies with nanoglobules could be confirmed, we have also identified amorphous, micron-sized monolithic grains. D-enrichments in meteoritic IOM appear not to be systematically associated with any specific functional groups, whereas 15N-rich material can be related to imine and nitrile functionality. The large 15N- enrichments observed here (δ15N > 1000 ‰) cannot be reconciled with models using interstellar ammonia ice reactions, and hence, provide new constraints for understanding the chemistry in cold interstellar clouds.

  1. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    Science.gov (United States)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  2. Soil architecture and distribution of organic matter

    NARCIS (Netherlands)

    Kooistra, M.J.; Noordwijk, van M.

    1996-01-01

    The biological component of soil structure varies greatly in quality and quantity, occurs on different scales, and varies throughout the year. It is far less predictable than the physical part and human impact. The occurrence and distribution of organic matter depends on several processes, related

  3. A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems

    Science.gov (United States)

    Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.

    2017-12-01

    Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.

  4. Characterization of Natural Organic Matter by FeCl3 Coagulation

    Science.gov (United States)

    Cahyonugroho, O. H.; Hidayah, E. N.

    2018-01-01

    Natural organic matter (NOM) is heterogenous mixture of organic compounds that enter the water from various decomposition and metabolic reactions, including animal, plant, domestic and industrial wastes. NOM refers to group of carbon-based compounds that are found in surface water and ground water. The aim of the study is to assess organic matter characteristics in Jagir River as drinking water source and to characterize the organic components that could be removed during coagulation. Coagulation is the common water treatment process can be used to remove NOM with FeCl3 coagulant in various dosage. NOM surrogates, including total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) were chosen to assess the organic removal. Results of jar test experiments showed that NOM can be removed about 40% of NOM surrogates with 200 mg/L FeCl3. About 60% removal of total organic fraction, which is mainly humic substances, as detected by size exclusion chromatography (SEC).

  5. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  6. Microbial bioavailability regulates organic matter preservation in marine sediments

    NARCIS (Netherlands)

    Koho, K. A.; Nierop, K. G. J.; Moodley, L.; Middelburg, J. J.; Pozzato, L.; Soetaert, K.; van der Plicht, J.; Reichart, G-J.; Herndl, G.

    2013-01-01

    Burial of organic matter (OM) plays an important role in marine sediments, linking the short-term, biological carbon cycle with the long-term, geological subsurface cycle. It is well established that low-oxygen conditions promote organic carbon burial in marine sediments. However, the mechanism

  7. Influence of organic matter on the solubility of ThO2 and geochemical modeling

    International Nuclear Information System (INIS)

    Liu Dejun; Luo Tian; Maes, N.; Bruggeman, C.

    2014-01-01

    Thorium (IV) is widely considered in laboratory experiments as a suitable chemical analogue for long-lived tetravalent actinides. Th (IV) is redox-insensitive, as an analogue for U (IV) to study the influence of natural organic matter on the solubility. The solubility of crystalline ThO 2 (cr) has been measured under geochemical conditions representative for the Boom Clay using Real Boom Clay Water containing organic matter to assess its influence on the ThO 2 (cr) solubility. For the purpose of comparison, Aldrich Humic Acid was also investigated. Solubility measurements of ThO 2 (cr) were approached from under-saturation in an anaerobic glove box with a controlled Ar0.4%CO 2 atmosphere. Th concentration is determined after 30000 MWCO, 300000 MWCO, and 0.45 μm filtration to distinguish solid (0.45 μm), larger colloids (300000 MWCO), and small dissolved species(30000 MWCO). X-ray diffraction was carried out to investigate the transformation of ThO 2 (cr) phase during the contact with Boom Clay Water. In Synthetic Boom Clay Water (without organic matter) the concentrations of Th (IV) are 5 × l0 -ll mol/L, 4 × lO -10 mol/L, and 8 × lO -8 mol/L after 30000 MWCO, 300000 MWCO, and 0. 45 μm filtration, respectively. It indicated the existence of inorganic colloids in solution. The increase of the total Th solution concentration with increasing organic matter concentration revealed a complexation-like interaction between Th and organic matter. All the experimental data could be modeled by Tipping humic ion-binding model VI using a combination of solubility calculations and complexation reactions between Th (IV) and organic matter functional groups. Similar to the investigation of Eu 3+ solubility, the affinity of organic matter for Th was higher for Aldrich humic acid compared to Boom Clay organic matter. However, Boom Clay organic matter with different size had the similar complexation affinity with Th (IV). (authors)

  8. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  9. ForCent model development and testing using the Enriched Background Isotope Study experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parton, W.J.; Hanson, P. J.; Swanston, C.; Torn, M.; Trumbore, S. E.; Riley, W.; Kelly, R.

    2010-10-01

    The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could accurately simulate ecosystem carbon dynamics for the Oak Ridge National Laboratory deciduous forest. A comparison of ForCent versus observed soil pool {sup 14}C signature ({Delta} {sup 14}C) data from the Enriched Background Isotope Study {sup 14}C experiment (1999-2006) shows that the model correctly simulates the temporal dynamics of the {sup 14}C label as it moved from the surface litter and roots into the mineral soil organic matter pools. ForCent model validation was performed by comparing the observed Enriched Background Isotope Study experimental data with simulated live and dead root biomass {Delta} {sup 14}C data, and with soil respiration {Delta} {sup 14}C (mineral soil, humus layer, leaf litter layer, and total soil respiration) data. Results show that the model correctly simulates the impact of the Enriched Background Isotope Study {sup 14}C experimental treatments on soil respiration {Delta} {sup 14}C values for the different soil organic matter pools. Model results suggest that a two-pool root growth model correctly represents root carbon dynamics and inputs to the soil. The model fitting process and sensitivity analysis exposed uncertainty in our estimates of the fraction of mineral soil in the slow and passive pools, dissolved organic carbon flux out of the litter layer into the mineral soil, and mixing of the humus layer into the mineral soil layer.

  10. Mean residence time of soil organic matter associated with kaolinite and smectite

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.; Buurman, P.; Plicht, van der J.; Wattel, J.T.; Breemen, van N.

    2003-01-01

    To gain insight into the effect of clay mineralogy on the turnover of organic matter, we analysed the C-14 activity of soil organic matter associated with clay in soils dominated by kaolinite and smectite in natural savanna systems in seven countries. Assuming that carbon inputs and outputs are in

  11. Mean residence time of soil organic matter associated with kaolinite and smectite

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.; Buurman, P.; Plicht, J. van der; Wattel, E.; Breemen, N. van

    To gain insight into the effect of clay mineralogy on the turnover of organic matter, we analysed the C-14 activity of soil organic matter associated with clay in soils dominated by kaolinite and smectite in natural savanna systems in seven countries. Assuming that carbon inputs and outputs are in

  12. Cosorption study of organic pollutants and dissolved organic matter in a soil.

    Science.gov (United States)

    Flores-Céspedes, F; Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E

    2006-08-01

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L(-1), produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K(doc), has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment.

  13. Dependence of 210Po activity on organic matter in the reverine environs of coastal Kerala

    International Nuclear Information System (INIS)

    Narayana, Y.; Venunathan, N.

    2011-01-01

    This paper deals with the distribution of 210 Po in the river bank soil samples of three major rivers namely Bharathapuzha, Periyar and Kallada river of Kerala. The dependence of 210 Po activity on organic matter content in the samples was also studied. The soil samples were collected and analyzed for 210 Po radionuclide using standard radiochemical analytical method. Activity of 210 Po increases with increase in organic matter content in samples. Along the Bharathapuzha river bank the 210 Po activity ranges from 2.96 to 12.48 Bq kg -1 with mean 5.62 Bq kg -1 . The organic matter percentage in the samples ranges from 0.4 to 2.8 and a good correlation with correlation coefficient 0.9 was found between activity and organic matter percentage. In the Periyar river environs 210 Po activity ranges from 3.47 to 13.39 Bq kg -1 with mean value 9.27 Bq kg -1 . Organic matter percentage in these samples ranges from 1.20 to 4.10 and the correlation coefficient between 210 Po activity and organic matter percentage was found to be 0.8 In the Kallada river bank soil samples 210 Po activity ranges from 4.46 to 6.45 Bq kg -1 . The organic matter percentage ranges from 1.4 to 3. The correlation coefficient between 210 Po activity and organic matter percentage in the samples was found to be 0.9. (author)

  14. Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests.

    Science.gov (United States)

    Siebers, Nina; Martius, Christopher; Eckhardt, Kai-Uwe; Garcia, Marcos V B; Leinweber, Peter; Amelung, Wulf

    2015-01-01

    The impact of termites on nutrient cycling and tropical soil formation depends on their feeding habits and related material transformation. The identification of food sources, however, is difficult, because they are variable and changed by termite activity and nest construction. Here, we related the sources and alteration of organic matter in nests from seven different termite genera and feeding habits in the Terra Firme rainforests to the properties of potential food sources soil, wood, and microepiphytes. Chemical analyses comprised isotopic composition of C and N, cellulosic (CPS), non-cellulosic (NCPS), and N-containing saccharides, and molecular composition screening using pyrolysis-field ionization mass spectrometry (Py-FIMS). The isotopic analysis revealed higher soil δ13C (-27.4‰) and δ15N (6.6‰) values in nests of wood feeding Nasutitermes and Cornitermes than in wood samples (δ13C = -29.1‰, δ15N = 3.4‰), reflecting stable-isotope enrichment with organic matter alterations during or after nest construction. This result was confirmed by elevated NCPS:CPS ratios, indicating a preferential cellulose decomposition in the nests. High portions of muramic acid (MurAc) pointed to the participation of bacteria in the transformation processes. Non-metric multidimensional scaling (MDS) revealed increasing geophagy in the sequence Termes rainforest termites shows variations and evidence of modification by microbial processes, but nevertheless it primarily reflects the trophic niches of the constructors.

  15. Repeated application of organic waste affects soil organic matter composition

    DEFF Research Database (Denmark)

    Peltre, Clément; Gregorich, Edward G.; Bruun, Sander

    2017-01-01

    Land application of organic waste is an important alternative to landfilling and incineration because it helps restore soil fertility and has environmental and agronomic benefits. These benefits may be related to the biochemical composition of the waste, which can result in the accumulation...... of different types of carbon compounds in soil. The objective of this study was to identify and characterise changes in soil organic matter (SOM) composition after repeated applications of organic waste. Soil from the CRUCIAL field experiment in Denmark was sampled after 12 years of annual application...... that there was accumulation in soil of different C compounds for the different types of applied organic waste, which appeared to be related to the degree to which microbial activity was stimulated and the type of microbial communities applied with the wastes or associated with the decomposition of applied wastes...

  16. Formation of Chromophoric Dissolved Organic Matter by Bacterial Degradation of Phytoplankton-Derived Aggregates

    Directory of Open Access Journals (Sweden)

    Joanna D. Kinsey

    2018-01-01

    Full Text Available Organic matter produced and released by phytoplankton during growth is processed by heterotrophic bacterial communities that transform dissolved organic matter into biomass and recycle inorganic nutrients, fueling microbial food web interactions. Bacterial transformation of phytoplankton-derived organic matter also plays a poorly known role in the formation of chromophoric dissolved organic matter (CDOM which is ubiquitous in the ocean. Despite the importance of organic matter cycling, growth of phytoplankton and activities of heterotrophic bacterial communities are rarely measured in concert. To investigate CDOM formation mediated by microbial processing of phytoplankton-derived aggregates, we conducted growth experiments with non-axenic monocultures of three diatoms (Skeletonema grethae, Leptocylindrus hargravesii, Coscinodiscus sp. and one haptophyte (Phaeocystis globosa. Phytoplankton biomass, carbon concentrations, CDOM and base-extracted particulate organic matter (BEPOM fluorescence, along with bacterial abundance and hydrolytic enzyme activities (α-glucosidase, β-glucosidase, leucine-aminopeptidase were measured during exponential growth and stationary phase (~3–6 weeks and following 6 weeks of degradation. Incubations were performed in rotating glass bottles to keep cells suspended, promoting cell coagulation and, thus, formation of macroscopic aggregates (marine snow, more similar to surface ocean processes. Maximum carbon concentrations, enzyme activities, and BEPOM fluorescence occurred during stationary phase. Net DOC concentrations (0.19–0.46 mg C L−1 increased on the same order as open ocean concentrations. CDOM fluorescence was dominated by protein-like signals that increased throughout growth and degradation becoming increasingly humic-like, implying the production of more complex molecules from planktonic-precursors mediated by microbial processing. Our experimental results suggest that at least a portion of open

  17. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water.

    Science.gov (United States)

    Herckes, Pierre; Leenheer, Jerry A; Collett, Jeffrey L

    2007-01-15

    Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds.

  18. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    Science.gov (United States)

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  19. Turnover of intra- and extra-aggregate organic matter at the silt-size scale

    Science.gov (United States)

    I. Virto; C. Moni; C. Swanston; C. Chenu

    2010-01-01

    Temperate silty soils are especially sensitive to organic matter losses associated to some agricultural management systems. Long-term preservation of organic C in these soils has been demonstrated to occur mainly in the silt- and clay-size fractions, although our knowledge about the mechanisms through which it happens remains unclear. Although organic matter in such...

  20. The Physics of Life. Part I: The Animate Organism as an Active Condensed Matter Body

    OpenAIRE

    Kukuruznyak , Dmitry ,

    2017-01-01

    Nonequilibrium "active agents" establish bonds with each other and create a quickly evolving condensed state known as active matter. Recently, active matter composed of motile self-organizing biopolymers demonstrated a biotic-like motion similar to cytoplasmic streaming. It was suggested that the active matter could produce cells. However, active matter physics cannot yet define an " organism " and thus make a satisfactory connection to biology. This paper describes an organism made of active...

  1. Hurricane Matthew's Effects on Wetland Sources of Organic Matter to North Carolina Coastal Waters.

    Science.gov (United States)

    Rudolph, J. C.; Osburn, C. L.; Paerl, H. W.; Hounshell, A.

    2017-12-01

    Increased frequency and intensity of storm events such as tropical cyclones will have a major impact on estuarine and coastal biogeochemical cycling. Here, we determined the sources of dissolved and particulate organic matter (DOM and POM) as part of a larger study to quantify the short-term (several months) response of carbon and nitrogen cycling in the Neuse River Estuary-Pamlico Sound (NRE-PS) ecosystem to floodwaters associated with Hurricane Matthew. Sampling was conducted weekly in both the NRE-PS (October 2016 to January 2017), the Neuse River (NR) (October to December 2016) and in freshwater wetlands of the Neuse River above head of tide in March 2017. Specific ultraviolet (UV) absorbance at 254 nm (SUVA254) and stable carbon isotope ratios (δ13C-DOC) were used to determine the sources of DOM and POM transported to the NRE-PS in post-hurricane floodwaters. For DOM, SUVA254 values increased from 3.23 ±0.52 mg C L-1 m-1 in the NR to 4.14±0.52 mg C L-1 m-1 in the NRE and then declined to 3.63±0.32 mg C L-1 m-1 in PS. Combined with depleted δ13C-DOC values (-26 to -32‰) and elevated C:N values in the estuary and sound, these results confirm continued loading of fresh terrestrial organic matter into NRE-PS weeks after the storm. For POM, δ13C-POC and C:N ratio results likewise indicated a terrestrial source in floodwaters. SUVA254 values >3.5 mg C L-1 m-1 coupled with the depleted δ13C values and large C:N values were consistent with DOM primarily sourced from wetlands (e.g., wetland SUVA254 = 3.77±0.52 mg C L-1 m-1 in March 2017). We hypothesize that floodwaters connected riverine wetlands to the main channel of the NR, exporting DOM and POM into the NRE-PS. Our results indicate that upstream wetlands play a central and potentially significant role in organic matter enrichment and metabolism of estuarine and coastal waters, in light of increasing frequencies and intensities of tropical cyclones impacting coastal watersheds.

  2. Effect of selective removal of organic matter and iron oxides on the ...

    African Journals Online (AJOL)

    The effect of selective removal of organic matter and amorphous and crystalline iron oxides on N2-BET specific surface areas of some soil clays was evaluated. Clay fractions from 10 kaolinitic tropical soils were successively treated to remove organic matter by oxidation with Na hypochlorite, amorphous Fe oxide with acid ...

  3. pH dependence of steroid hormone-organic matter interactions at environmental concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Peta A. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)], E-mail: p.neale@ed.ac.uk; Escher, Beate I. [Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Duebendorf (Switzerland); Schaefer, Andrea I. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2009-01-15

    The interaction of estradiol, estrone, progesterone and testosterone with environmentally relevant concentrations of Aldrich humic acid, alginic acid and tannic acid was studied using solid-phase microextraction (SPME). Since bulk organic matter and certain hormones such as estradiol and estrone contain dissociable functional groups, the effect of pH on sorption was investigated as this will influence their fate and bioavailability. For humic acid and tannic acid, sorption was strongest at acidic pH when the bulk organic matter was in a non-dissociated form and decreased when they became partially negatively charged. At acidic and neutral pH the strength of partitioning was influenced by hormone functional groups content, with the strongest sorption observed for progesterone and estrone. At alkaline pH conditions, when the bulk organics were dissociated, sorption decreased considerably (up to a factor of 14), although the non-dissociated hormones testosterone and progesterone indicated greater sorption to humic acid at pH 10 compared to the partially deprotonated estradiol and estrone. This study demonstrates that SPME can be used to assess organic matter sorption behaviour of a selected range of micropollutants and at environmentally relevant organic matter concentrations.

  4. Modification of SWAT model for simulation of organic matter in Korean watersheds.

    Science.gov (United States)

    Jang, Jae-Ho; Jung, Kwang-Wook; Gyeong Yoon, Chun

    2012-01-01

    The focus of water quality modeling of Korean streams needs to be shifted from dissolved oxygen to algae or organic matter. In particular, the structure of water quality models should be modified to simulate the biochemical oxygen demand (BOD), which is a key factor in calculating total maximum daily loads (TMDLs) in Korea, using 5-day BOD determined in the laboratory (Bottle BOD(5)). Considering the limitations in simulating organic matter under domestic conditions, we attempted to model total organic carbon (TOC) as well as BOD by using a watershed model. For this purpose, the Soil and Water Assessment Tool (SWAT) model was modified and extended to achieve better correspondence between the measured and simulated BOD and TOC concentrations. For simulated BOD in the period 2004-2008, the Nash-Sutcliffe model efficiency coefficient increased from a value of -2.54 to 0.61. Another indicator of organic matter, namely, the simulated TOC concentration showed that the modified SWAT adequately reflected the observed values. The improved model can be used to predict organic matter and hence, may be a potential decision-making tool for TMDLs. However, it needs further testing for longer simulation periods and other catchments.

  5. Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability?

    International Nuclear Information System (INIS)

    Alewell, C.; Paul, S.; Lischeid, G.; Storck, F.R.

    2008-01-01

    Wetlands have important filter functions in landscapes but are considered to be the biggest unknowns regarding their element dynamics under global climate change. Information on sink and source function of sulphur, nitrogen, organic matter and acidity in wetlands is crucial for freshwater regeneration. Recent results indicate that redox processes are not completely controlled by the sequential reduction chain (that is electron acceptor availability) but that electron donor availability may be an important regulator. Our hypothesis was that only sites which are limited in their electron donor availability (low concentrations of dissolved organic carbon (DOC)) follow the concept of the sequential reduction chain. We compared the results of two freshwater wetland systems: 1) three forested fens within a boreal spruce catchment in a low mountain range in southern Germany (high DOC regime) and 2) three floodplain soils within a groundwater enrichment area in the Rhein valley in northwest Switzerland (low DOC regime). Micro scale investigations (a few cm 3 ) with dialyse chambers as well as soil solution and groundwater concentrations at the forested fens (high DOC regime) indicated simultaneous consumption of nitrate and sulphate with release of iron, manganese and methane (CH 4 ) as well as an enrichment in stable sulphur isotopes indicating a co-existence of processes attributed to different redox gradients. Soil and aquifer gas measurements down to 4.6 m at the groundwater enrichment site (low DOC regime and carbon limitation) showed extreme high rates of metabolism with carbon dioxide (CO 2 ) , dinitrous oxide (N 2 O) and CH 4 concentrations reaching fifty, thirty and three times atmospheric concentrations, respectively. Simultaneously, groundwater oxygen (O 2 ) saturation was between 50 and 95%. We concluded that independent of DOC regime the sequential reduction chain was not a suitable concept in our systems. Instead of electron acceptor or donor availability

  6. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    Science.gov (United States)

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes

    Science.gov (United States)

    Chemical properties of whole organic matter (OM) and its dissolved organic matter (DOM) fraction from six dominant macrophytes in Lake Dianchi were comparatively characterized, and their environmental implications were discussed. Significant differences in chemical composition of the OM samples were...

  8. Organic Matter Decomposition following Harvesting and Site Preparation of a Forested Wetland

    Science.gov (United States)

    Carl C. Trettin; M. Davidian; M.F. Jurgensen; R. Lea

    1996-01-01

    Organic matter accumulation is an important process that affects ecosystem function in many northern wetlands. The cotton strip assay (CSA)was used to measure the effect of harvesting and two different site preparation treatments, bedding and trenching, on organic matter decomposition in a forested wetland. A Latin square experimental design was used to determine the...

  9. Sorption, degradation and leaching of pesticides in soils amended with organic matter: A review

    Directory of Open Access Journals (Sweden)

    Fardin Sadegh-Zadeh

    2017-04-01

    Full Text Available The use of pesticides in modern agriculture is unavoidable because they are required to control weeds. Pesticides are poisonous; hence, they are dangerous if misused. Understanding the fate of pesticides will be useful to use them safely. Therefore, contaminations of water and soil resources could be avoided. The fates of pesticides in soils are influenced by their sorption, decomposition and movement. Degradation and leaching of pesticides are control by sorption. Soil organic matter and clay content are main soil constituents that have a high capacity for sorption of pesticides. Addition of organic maters to amend the soils is a usual practice that every year has been done in a huge area of worldwide.  The added organic amendments to the soils affect the fate of pesticides in soils as well. Pesticides fates in different soils are different. The addition of organic matter to soils causes different fates for pesticides as well. It is known from the studies that sorption of non-ionic pesticides by soil in aqueous system is controlled mainly by the organic matter content of the soils. Sorption of pesticides has been reported to increase by amending soils with organic matter. In general, conditions that promote microbial activity enhance the rate of pesticides degradation, and those that inhibit the growth of microorganisms reduce the rate of degradation. Amendment of soils with organic matter may modify leaching of pesticides in soil. Some studies showed that organic matter added to soils reduced pesticides in ground water. Generally, organic amendments induces the restriction of pesticides leaching in soils.

  10. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean

    OpenAIRE

    Granskog, M.A.; Stedmon, C.A.; Dodd, P.A.; Amon, R.M.W.; Pavlov, A.K.; de Steur, L.; Hansen, E.

    2012-01-01

    Absorption coefficients of colored dissolved organic matter (CDOM) were measured together with salinity, delta O-18, and inorganic nutrients across the Fram Strait. A pronounced CDOM absorption maximum between 30 and 120 m depth was associated with river and sea ice brine enriched water, characteristic of the Arctic mixed layer and upper halocline waters in the East Greenland Current (EGC). The lowest CDOM concentrations were found in the Atlantic inflow. We show that the salinity-CDOM relati...

  11. Problem Space Matters: Evaluation of a German Enrichment Program for Gifted Children.

    Science.gov (United States)

    Welter, Marisete M; Jaarsveld, Saskia; Lachmann, Thomas

    2018-01-01

    We studied the development of cognitive abilities related to intelligence and creativity ( N = 48, 6-10 years old), using a longitudinal design (over one school year), in order to evaluate an Enrichment Program for gifted primary school children initiated by the government of the German federal state of Rhineland-Palatinate ( Entdeckertag Rheinland Pfalz , Germany; ET; Day of Discoverers). A group of German primary school children ( N = 24), identified earlier as intellectually gifted and selected to join the ET program was compared to a gender-, class- and IQ- matched group of control children that did not participate in this program. All participants performed the Standard Progressive Matrices (SPM) test, which measures intelligence in well-defined problem space; the Creative Reasoning Task (CRT), which measures intelligence in ill-defined problem space; and the test of creative thinking-drawing production (TCT-DP), which measures creativity, also in ill-defined problem space. Results revealed that problem space matters: the ET program is effective only for the improvement of intelligence operating in well-defined problem space. An effect was found for intelligence as measured by SPM only, but neither for intelligence operating in ill-defined problem space (CRT) nor for creativity (TCT-DP). This suggests that, depending on the type of problem spaces presented, different cognitive abilities are elicited in the same child. Therefore, enrichment programs for gifted, but also for children attending traditional schools, should provide opportunities to develop cognitive abilities related to intelligence, operating in both well- and ill-defined problem spaces, and to creativity in a parallel, using an interactive approach.

  12. Response of Arabica Coffee Cultivated on Andisols on Organic Matter Applications

    Directory of Open Access Journals (Sweden)

    Pujiyanto .

    2013-12-01

    Full Text Available Andisols  are characterized  by  dominance  of  amorphous  minerals  which form strong and stable bonding with organic matter, therefore Andisols always contain high organic matter. For that reason, organic fertilizer is generally not applied  on  Andisols,  because  it  is  assumed  that  it  will  not  give   any  positive effect  on  growth  or  yield.  The  experiment  was  aimed  to  evaluate  response  of mature Kartika 1  Arabica coffee variety (seven years old cultivated on  Andisols applied with organic matter derived from cow dung manure. The experiment was carried out at Andungsari  Experimental Station located in Bondowoso District, East  Java. Elevation of the site was 1,150 m asl., with rainfall type of C (Schmidt &  Fergusson.  The  experiment  was    arranged  according  to  completely randomized  block  design  with  four  replications  to  evaluate  effect  of  ninecombination  treatments  of  application  rates  at   application  depths  of  50,  100, and 150 cm. The  range of organic fertilizers rates were  0 - 13.5 kg/tree/year. The experiment revealed that cow dung manure applications on Arabica coffee cultivated  on  Andisols  significantly  increased  yield  at  the  average  of  33% compared  to  the  untreated  crop.  No  significant  effect  of  the  treatment  onvariables of leaf water deficit and soil moisture content during dry season and root  density.  At  range  of  application  depths  of  50  -  150  cm,  the  deeper  the organic matter applications, the higher the yield will be.Key words: Andisols, Arabica coffee, organic matter, cow dung manure

  13. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    Science.gov (United States)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  14. Nitrogen and carbon isotopes in soil with special reference to the diagnosis of organic matter

    International Nuclear Information System (INIS)

    Wada, Eitaro; Nakamura, Koichi.

    1980-01-01

    Distributions of nitrogen and carbon isotopes in terrestrial ecosystems are described based on available data and our recent findings for soil organic matters. Major processes regulating N-isotope and C-isotope ratios in biogenic substances are discussed. The biological di-nitrogen fixation and the precipitation are major sources which lower the delta 15 N value for forested soil organic matters. Denitrification enhances delta 15 N value for soil in cultivated fields. An addition of chemical fertilizer lowers 15 N content in soils. The permiation of soil water is an important factor controlling vertical profiles of delta 15 N in soil systems. Among soil organic matters, non-hydrolizable fraction seems to give unique low delta 15 N value, suggesting the utility of delta 15 N analysis in studying the nature of the fractions. delta 13 C of soil organic matter is significantly lower than that for marine sediments. delta 13 C for soil humus varies with respect to chemical forms as well as an age of soil organic matters. The variation is large in paddy fields. It is, thus, probable that delta 13 C is an useful parameter in studying the early epidiagenesis of soil organic matters. Based on the known delta 15 N-delta 13 C relationships, a two-source mixing model has been applied to assess sources of organic matters in coastal sediment. (author)

  15. Municipal wastewater treatment for effective removal of organic matter and nitrogen

    International Nuclear Information System (INIS)

    Grebenevich, E.V.; Zaletova, N.A.; Terentieva, N.A.

    1987-01-01

    The organic matter, as well as nitrogen and phosphorus, are nutrient substances. Their excess concentrations in water receiving bodies lead to eutrophication, moreover, the nitrogen content in water bodies is standardized according the sanitary-toxicological criterion of harmfulness: NH 4 + -N ≤0,39-2,0 mgl - , NO 3 -N ≤9,1-10 mgl - . The municipal wastewater contain, usually, organic matter estimated by BOD 150-200 mgl - , and COD 300-400 mgl - , the nitrogen compounds 50-60 mgl - , and NH 4 + -N 20-25 mgl - . NO x -N are practically absent. Their presence indicated on discharge of industrial wastewater. The total phosphorus is present in the concentration of 15 mgl - , PO 4 - - P 5-8 mgl - . Activated sludge process has been most widely used in the USSR for municipal wastewater treatment. The activated sludge is biocenoses of heterotrophic and auto trophic microorganisms. They consume nutrient matters, transferring pollution of wastewater by means of enzyme systems in acceptable forms. C, N and P-containing matters are removed from wastewater by biological intake for cell synthesis. Moreover C- containing matters are removed by oxidation to CO 2 and H 2 O. P-containing compounds under definite conditions associate with solid fraction of activated sludge and thus simultaneously removed from wastewater. The removal of nitrogen in addition to biosynthesis is carried out only in the denitrification process, when oxygen of NO x -N is used for oxidation of organic matter and produced gaseous nitrogen escapes into the atmosphere

  16. Organic matter in North Bohemian Tertiavy and Cretaceous sediments with uranium mineralization

    International Nuclear Information System (INIS)

    Simanek, V.

    1979-01-01

    Significant variability was found in the qualitative and the quantitative compositions of dispersed organic matter in Tertiary rocks with uranium ore content between hundredths and units of percentage of the rocks. In Cretaceous rocks with similar proportion of uranium in w.% the variability is much smaller. In rocks with higher organic carbon and uranium levels the organic matter is in a more advanced stage of carbonification metamorphosis than in rocks with lower levels of the components. A statistical correlation test showed free positive correlation between the levels of uranium and organic carbon and the levels of uranium and strongly carbonified organic components and negative correlation between uranium level and humic substances on one hand and the uranium level and bitumens on the other. In Cretaceous sediments, the individual organic compounds were analytically determined in addition to the total level of organic carbon, the strongly carbonified organic components, humic substances and bitumens. Higher fatty acids in ppm concentrations were also found. Their distribution corresponds to the usual distribution in sediments. Rocks with lower contents of organic matter and uranium usually contain phenol aldehydes bound to glycosides while those with higher contents of uranium and organic carbon contain higher amounts of free phenol aldehydes. The composition of amino acids indicates genetic links to the microbial activity. (author)

  17. Processes controlling the production of aromatic water-soluble organic matter during litter decomposition

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Filley, T.R.; Kalbitz, K.

    2013-01-01

    Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a

  18. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    Science.gov (United States)

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. Copyright © 2016 The Authors. Published by Elsevier B

  19. Intra-annual variability of carbon and nitrogen stable isotopes in suspended organic matter in waters of the western continental shelf of India

    Directory of Open Access Journals (Sweden)

    M. V. Maya

    2011-11-01

    Full Text Available Intra-annual variations of δ13C and δ15N of water-column suspended particulate organic matter (SPOM have been investigated to understand the biogeochemical cycling of C and N in the Western Continental Shelf of India (WCSI. The key issues being addressed are: how the δ15N of SPOM is affected by seasonally varying processes of organic matter production and respiration and how it relates to the δ15N of sedimentary organic matter that appears to show a decreasing trend despite an apparent intensification of seasonal oxygen deficiency over the past few decades? A secondary objective was to evaluate the sources of organic carbon. Elemental carbon and nitrogen concentrations, C/N ratios in SPOM, along with ancillary chemical and biological variables including phytoplankton pigment abundance were also determined on a seasonal basis (from March 2007 to September 2008, with the partial exception of the southwest (SW monsoon period. The results reveal significant shifts in isotopic signatures, especially δ15N, of SPOM before and after the onset of SW monsoon. Very low δ15N values, reaching a minimum of −4.17 ‰, are found during the pre-monsoon period. Our results provide the first direct evidence for the addition of substantial amounts of isotopically light nitrogen by the diazotrophs, especially Trichodesmium, in the region. The δ15N of SPOM is generally lower than the mean value (7.38 ‰ for surficial sediments, presumably because of diagenetic enrichment. The results support the view that sedimentary δ15N may not necessarily reflect denitrification intensity in the overlying waters due to diverse sources of nitrogen and variability of its isotopic composition. The observed intra-annual variability of δ13C of SPOM during the pre-monsoon and post-monsoon periods is generally small. Phytoplankton production and probably species

  20. Bulk Soil Organic Matter d2H as a Precipitation Proxy

    Science.gov (United States)

    Williams, E. K.; Terwilliger, V. J.; Nakamoto, B. J.; Berhe, A. A.; Fogel, M. L.

    2016-12-01

    The stable hydrogen isotopic composition (d2H) of leaf waxes have traditionally been used to infer modern and paleoclimate precipitation sources. However, the extent to which evapotranspiration of leaf waters affects the d2H of plant leaf waxes remains hotly contested with offsets varying between species. Because of the relative importance of root organic matter contribution to bulk soil pools compared to litter/leaves and the minimal fractionation between soil water and root material, it is plausible that bulk soil organic matter d2H may be an option for modern and paleoclimate precipitation reconstructions. In this study, we analyzed the non-exchangeable d2H composition of roots, litter, leaves, and bulk soils along an elevation gradient in the southern Sierra Nevada range (USA). Our results show a consistent offset of 30 ± 3‰ in bulk soil organic matter in surface soils from the measured precipitation. This consistent relationship with precipitation was not found in any of the other organic materials that we measured and implies that d2H bulk soil organic matter can record precipitation signals regardless of above-ground species composition. Additionally, we utilized physical density fractionation to determine which fractions (which vary in level of mineral association and in turnover time) of the soil control this relationship. These findings and how this relationship holds with depth will be presented in conjunction with data from a soil profile on the Ethiopian plateau spanning 6000 years.

  1. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics

    International Nuclear Information System (INIS)

    Mahara, Y.; Kubota, T.; Wakayama, R.; Nakano-Ohta, T.; Nakamura, T.

    2007-01-01

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of 3 , 1-10 x 10 3 , 10-100 x 10 3 , and > 100 x 10 3 . The organic matter source was land plants, based on the carbon isotope ratios (δ 13 C/ 12 C). The organic matter in surface water originated from presently growing land plants, based on 14 C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter ( 3 ) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment

  2. Non-pharmacological modulation of cerebral white matter organization

    DEFF Research Database (Denmark)

    Kristensen, Tina D; Mandl, Rene C W; Jepsen, Jens R M

    2018-01-01

    OBJECTIVE: Neuroplasticity is a well-described phenomenon, but effects of non-pharmacological interventions on white matter (WM) are unclear. Here we review associations between active non-pharmacological interventions and WM organization in healthy subjects and in psychiatric patients. METHOD...

  3. A Chemical Comparison of STARDUST Organics with Insoluble Organic Matter in Chondritic Meteorites

    Science.gov (United States)

    Cody, G. D.; Yabuta, H.; Alexander, C. M.; Araki, T.; Kilcoyne, D.

    2006-12-01

    We have analyzed 15 organic rich particles extracted from the aerogel capture device flown on the STARDUST mission spacecraft to comet Wild 2 using C-, N-, and O-X-ray Absorption Near Edge Structure (XANES) spectroscopy. Data were acquired with the Scanning Transmission X-ray Microscopy (STXM) beam line 5.3.2 at the Advanced Light Source, Lawrence Berkeley Laboratory. XANES can provide both quantitative molecular functional group information and atomic N/C and O/C data. We use these data to place the organic matter extracted from the Aerogel Capture device in context with a large database of C-, N-, and O-XANES spectra obtained on meteoritic Insoluble Organic Matter (IOM) obtained from type 1, 2, and 3 chondrites. We find that the organic chemistry of the particles extracted from aerogel varies in functional group abundances, but is universally very rich in heteroatoms (N and O). In several cases the organic carbon is closely associated with silica (possibly derived from the aerogel), but at a concentration far in excess of the intrinsic carbon abundance of synthesized (and flown) aerogel. Independently, 29-Si, 13-C, and 1-H solid state NMR was applied to analyze the nature of organic carbon present in the aerogel as byproduct of the synthesis. The intrinsic aerogel carbon is very simple in its functional group chemistry, very low in abundance, and differs completely from that detected in the extracted organic particles.

  4. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  5. Origin, transport and fate of the dissolved organic matter produced in the watershed of the Paraíba do Sul River, Brazil.

    Science.gov (United States)

    Marques da Silva Junior, Jomar; Soares Gonçalves Serafim, Tassiana; Gomes de Almeida, Marcelo; Dittmar, Thorsten; de Rezende, Carlos Eduardo

    2015-04-01

    recorded for the soil of the Rain Forest and mangrove species, respectively. These results suggest an input contribution of the allochthonous organic matter due to washing of the soil during the rainy season. The 13C values found in the samples more distant from the coast showed a terrigenous organic matter input in marine environmental due the high flow. In the dry season the 13C values showed indicated predominance of the autochthonous production. Downstream of the PSR, the 13C and 15N values were enriched in both seasons, showing the influence of the cover substitution from Rain Forest to pasture and sugar cane, that has more enriched values of the 13C and 15N. In conclusion, DOM transported by PSR is formed by multiple sources (a mixture of C3 and C4 plants and autochthonous production), showing that the land use in the watershed and the discharge of domestic and industrial effluents promote a qualitative change in the MOD of the water column of the river.

  6. Differential recycling of coral and algal dissolved organic matter via the sponge loop

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; van Oevelen, D.; Struck, U.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.

    Corals and macroalgae release large quantities of dissolved organic matter (DOM), one of the largest sources of organic matter produced on coral reefs. By rapidly taking up DOM and transforming it into particulate detritus, coral reef sponges are proposed to play a key role in transferring the

  7. River inputs and organic matter fluxes in the northern Bay of Bengal: Fatty acids

    Digital Repository Service at National Institute of Oceanography (India)

    Reemtsma, T.; Ittekkot, V.; Bartsch, M.; Nair, R.R

    ) 55-71 55 Elsevier Science Publishers B.V., Amsterdam \\[RA\\] River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids T. Reemtsma a, V. Ittekkot a, M. Bartsch a and R.R. Nair b alnstitut fiir Biogeochemie und Meereschemie..., R.R., 1993. River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids. Chem. Geol., 103: 55-71. Total particulate matter flux and organic carbon and fatty acid fluxes associated with settling particles collected during...

  8. Missing links in the root-soil organic matter continuum

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L. [Argonne National Laboratory (ANL); Iversen, Colleen M [ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a

  9. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  10. Organic matter degradation in Chilean sediments - following nature's own degradation experiment

    DEFF Research Database (Denmark)

    Langerhuus, Alice Thoft; Niggemann, Jutta; Lomstein, Bente Aagaard

    ORGANIC MATTER DEGRADATION IN CHILEAN SEDIMENTS – FOLLOWING NATURE’S OWN DEGRADATION EXPERIMENT Degradation of sedimentary organic matter was studied at two stations from the shelf of the Chilean upwelling region. Sediment cores were taken at 1200 m and 800 m water depth and were 4.5 m and 7.5 m...... in length, respectively. The objective of this study was to assess the degradability of the organic matter from the sediment surface to the deep sediments. This was done by analysing amino acids (both L- and D-isomers) and amino sugars in the sediment cores, covering a timescale of 15.000 years. Diagenetic...... indicators (percentage of carbon and nitrogen present as amino acid carbon and nitrogen, the ratio between a protein precursor and its non-protein degradation product and the percentage of D-amino acids) revealed ongoing degradation in these sediments, indicating that microorganisms were still active in 15...

  11. Organic Matter Quality and its Influence on Carbon Turnover and Stabilization in Northern Peatlands

    Science.gov (United States)

    Turetsky, M. R.; Wieder, R. K.

    2002-12-01

    Peatlands cover 3-5 % of the world's ice-free land area, but store about 33 % of global terrestrial soil carbon. Peat accumulation in northern regions generally is controlled by slow decomposition, which may be limited by cold temperatures and water-logging. Poor organic matter quality also may limit decay, and microbial activity in peatlands likely is regulated by the availability of labile carbon and/or nutrients. Conversely, carbon in recalcitrant soil structures may be chemically protected from microbial decay, particularly in peatlands where carbon can be buried in anaerobic soils. Soil organic matter quality is controlled by plant litter chemical composition and the susceptibility of organic compounds to decomposition through time. There are a number of techniques available for characterizing organic quality, ranging from chemical proximate or elemental analysis to more qualitative methods such as nuclear magenetic resonance, pyrolysis/mass spectroscopy, and Fourier transform infrared spectroscopy. We generally have relied on proximate analysis for quantitative determination of several organic fractions (i.e., water-soluble carbohydrates, soluble nonpolars, water-soluble phenolics, holocellulose, and acid insoluble material). Our approaches to studying organic matter quality in relation to C turnover in peatlands include 1) 14C labelling of peatland vegetation along a latitudinal gradient in North America, allowing us to follow the fate of 14C tracer in belowground organic fractions under varying climates, 2) litter bag studies focusing on the role of individual moss species in litter quality and organic matter decomposition, and 3) laboratory incubations of peat to explore relationships between organic matter quality and decay. These studies suggest that proximate organic fractions vary in lability, but that turnover of organic matter is influenced both by plant species and climate. Across boreal peatlands, measures of soil recalcitrance such as acid

  12. Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2013-06-01

    Full Text Available AIM:This study reports a comparison between decomposition kinetics of detritus derived from two macrophyte species (Polygonum lapathifolium L.: Polygonaceae; Eichhornia azurea (Sw. Kunth.: Pontederiaceae growing in a neotropical reservoir (Brazil, under laboratory and field conditions, in order to assess hypotheses on the main differences in factors affecting organic matter cycling, including the effect of temperature. METHODS: Plant and water samples were collected from the reservoir in August 2009. In field incubation mass loss was assessed using a litter bag technique and in the laboratory the decay was followed using a decomposition chamber maintained under controlled conditions (i.e. in the dark, at 15 ºC and 25 ºC. A kinetic model was adopted to explain and compare the organic matter decay, ANOVA (Repeated Measures testing was used to describe the differences between the treatments and a linear correlation was used to compare in situ and in vitro experiments. RESULTS: The mass decay was faster in natural conditions with rapid release of the labile-soluble portion. The simulated values of mineralization rates of dissolved organic matter and refractory organic matter were rapid in high temperatures (25 ºC. The high Q10 results (mainly for E. azurea, and experimental conditions, and outcomes of ANOVA testing indicate the temperature variation (10 ºC influence the rates of mass decay. CONCLUSIONS: The results suggested rapid organic matter cycling in warm months (from October to December supporting the microbial loop. Although the particulate organic matter losses are high in field conditions the results are of the same magnitude in both conditions suggesting an equivalence of the mass decay kinetic.

  13. Transformation of soil organic matter in a Japanese larch forest. Radiocarbon and stable carbon isotope compositions versus soil depth

    International Nuclear Information System (INIS)

    Liu Wei; Moriizumi, Jun; Yamazawa, Hiromi; Iida, Takao

    2008-01-01

    Soil organic matter at a depth of 0-55 cm, collected from a Japanese larch forest area, was separated into particulate organic matter (size >53 μm), particulate organic matter (size 14 C and δ 13 C values were determined. The Δ 14 C values of particulate matters decreased greatly from 128 per mille to -278 per mille, indicating a relative increase of resistant organic components in particulate matters. That of humic acid matter decreased from 183 per mille to -139 per mille. For these of organic matter fractions at the same depth, the Δ 14 C values of particulate matter (size >53μm) are smallest and those of humic acid matter are the largest. That indicates that a high contribution of young organic matter to the humic acid matter exists and transformation tendency of particulate matter may be from coarse to small in the particulate size. Positive Δ 14 C values appeared at a depth of 10 cm, 25 cm, and 35 cm for the particulate organic matter (size >53μm), particulate organic matter (size 14 C values of the humic acid matter also infects that the bomb carbon has reached the depth of 35 cm. Additionally, the Δ 14 C values of these three kinds of organic matters ranged from 50 per mille to 183 per mille at a depth of 0-7 cm, which were not smaller than that of litter in the forest area, indicating high proportion of modern, plants-derived soil organic matter in this depth ranges. The δ 13 C values increased from -28 per mille to -23 per mille with the increase depth of 0-55 cm. The δ 13 C values of humic acid matter are approximately less than that of particulate matters at the same depth, which may be explained as a high contribution of young organic matter to the humic acid matter. (author)

  14. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    Science.gov (United States)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  15. Elemental and isotopic characterization of organic particles in carbonaceous chondrites by NanoSIMS imaging: assessment on the origin, accretion and preservation of organic matter in chondrites

    Science.gov (United States)

    Remusat, L.; Guan, Y.; Eiler, J. M.

    2009-12-01

    Chondrites accreted primitive components, including organic compounds sampled from the proto-solar nebula. However, the molecular and isotopic fingerprints of organic matter extracted from chondrites are also potentially influenced by complex evolution on the parent bodies. We have performed NanoSIMS in situ characterisation of organic matter in the matrices of carbonaceous chondrites Orgueil (CI), Murchison (CM), Tagish Lake (C2), Renazzo (CR) and Allende (CV) with a spatial resolution of ~200 nm; we could also constrains textural relationships between organic constituents and other phases. Those meteorites have undergone a diverse set of parent body processes. I.e., CI, C2 and CM meteorites have undergone aqueous alteration, and the CV’s are thermally metamorphosed. The CR’s are inferred to be the least altered class of chondrites. Despite these differences in parent body modification, the distributions of organic carbon in these meteorites is similar: in all cases it can be found as micron-size, randomly distributed organic particles that are surrounded by the clay minerals that dominate the matrix material, but are not specifically associated with sulfides, sulfates or oxides. In addition, there is a “diffuse” fraction of organic carbon intimately associated with the clay-rich matrix. We hypothesize that the C particles we identify are hosts of insoluble organic matter that co-accreted with other primitive constituents of these materials, whereas the diffuse C fraction is the soluble component (i.e., soluble in laboratory organic and aqueous solvents). Our analytical technique lacks the spatial resolution required to analyze the diffuse organic matter without contamination by associated clays. But we are able to analyze the compositions of the interiors of relatively large C-rich particles (>500 nm) without such contamination. Some fraction of the C-rich particles in all of the examined meteorites but Allende exhibit a very high enrichment in deuterium

  16. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    Science.gov (United States)

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  17. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes.

    Science.gov (United States)

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Kretzschmar, Ruben

    2017-10-18

    Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ 199 Hg and Δ 200 Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg 0 ) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg 0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the

  18. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  19. Soil erosion and organic matter loss by using fallout 137Cs as tracer in Miyun reservoir valley

    International Nuclear Information System (INIS)

    Hua Luo; Zhang Zhigang; Li Junbo; Feng Yan; Zhao Hong; Yin Xunxiao; Zhu Fengyun

    2005-01-01

    Miyun reservoir is one of the important water sources for Beijing, the water quality of the reservoir is directly influenced by soil erosion. Based on measuring the 137 Cs concentrations, organic content in the soil of selected sampling sites, the authors investigated the relationship between the quality of soil erosion and organic matters. According to classificatory standards of soil erosion, the intensity of erosion in Miyun reservoir valley is light and moderate, but in some parts erosion is serious. The land use model has dramatic influence on distribution of organic matters in the soil. Unreasonable human activities could cause serious increase of organic matter runoff and soil erosion intensity. Distributions of organic matters were increased in the following order: bush land > forestry > orchard > farmland. Organic matters in the upper course were higher than in the circumference of reservoir. The simulated model suggests that there is a cubic relation between the contents of organic matters and 137 Cs concentrations (r 2 =0.9). The math model in the single sights can forecast soil erosion and changes of concentrations of organic matters in the soils, so that the chemical analysis and measurements are simplified. (authors)

  20. Influence of light-weight organic matters on strontium sorption to bentonite

    International Nuclear Information System (INIS)

    Wang, Tsing-Hai; Wu, Ding-Chiang; Teng, Shi-Ping

    2010-01-01

    Document available in extended abstract form only. Light-weight organic matters were frequently observed in groundwater. Their existence had significant influence on the transport of radionuclides. In this study, light-weight organic acid species including oxalic (MW 90), succinic (MW 118), adipic (MW 146), azelaic (MW 188), eicosanedioic (MW 306), benzoic (MW 122), salicylic (MW 138), and gallic (MW 170) were selected as the surrogate of natural organic matters. Their effects on strontium sorption to bentonite were evaluated by using a surface complexation model MINEQL+. Under this framework, three sorption mechanisms were considered: 1. structure sorption sites, 2. edge sorption sites, 3. further hydration of adsorbed Sr 2+ . The presence of organic species had no influence on Sr cation sorption to structure sorption sites. However, Sr cation sorption to edge sorption was affected by the organics to certain extent. For example, sorption capability of edge sites toward Sr was increased by the gallic species. Furthermore, hydration of adsorbed Sr was significantly affected by the presence of organic species. This might relate to that adsorbed Sr would become the bridge associating organic species on bentonite surfaces, but this argument required more solid spectral evidences to support. Some preliminary observations on Sr sorption to bentonite were obtained in this work; however, further experiments are still required by conducting experiments with more variety of organic species. By doing a comprehensive study, it would be much beneficial to make a more accurate evaluation of the influence of organic matters on Sr sorption

  1. The effect of gamma irradiation on the digestibility of organic matter of poultry excreta (In vitro)

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1993-07-01

    The changes in the digestibility of dry matter and organic matter by enzyme (in vitro) for two types of the excreta of laying hens were studied. In type I, excreta were dried at 170-180 C for 10 minutes whereas in type II dried at 55-60 C for several days. Each type was divided into two parts, the first stored for 3 months with the control. The second part was irradiated by gamma irradiation at 100 KGy and stored for 3 months with the control. The results indicated that there was significant (0.05) difference in the digestibility of dry matter and organic matter and the percentage of crude fibre between samples and the control for the types I and II before and after storage. The dry matter digestibility for types I and II increased by 7%, and the organic matter digestibility increased by 17% for type I and by 11% for type II before and after storage. The increase in the digestibility of dry matter and organic matter is attributed to the decrease in crude fibre obtained by irradiation. The storage of excreta after drying has no effects on the rate of increase in the digestibility of dry matter and organic matter due to irradiation in both types (I and II). (author). 19 refs., 5 figs., 4 tabs

  2. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Guo Xueyan; Luo Lei; Ma Yibing; Zhang Shuzhen

    2010-01-01

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13 C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  3. Experimental Study of Soil Organic Matter Loss From Cultivated Field Plots In The Venezuelan Andes.

    Science.gov (United States)

    Bellanger, B.; Huon, S.; Velasquez, F.; Vallès, V.; Girardin A, C.; Mariotti, A. B.

    The question of discriminating sources of organic matter in suspended particles of stream flows can be addressed by using total organic carbon (TOC) concentration and stable isotope (13C, 15N) measurements when constant fluxes of organic matter supply can be assumed. However, little is known on the dynamics of organic matter release during soil erosion and on the temporal stability of its isotopic signature. In this study, we have monitored soil organic carbon loss and water runoff using natural rainfall events on three experimental field plots with different vegetation cover (bare soil, maize and coffee fields), set up on natural slopes of a tropical mountainous watershed in NW Venezuela (09°13'32'' ­ 09°10'00''N, 70°13'49'' ­ 70°18'34''W). Runoff and soil loss are markedly superior for the bare field plot than for the coffee field plot: by a factor 15 ­ 36, respectively, for the five-month experiment, and by a factor 30 ­ 120, respectively, during a single rainfall event experiment. Since runoff and soil organic matter loss are closely linked during most of the flow (at the time scales of this study), TOC concentration in suspended matter is constant. Furthermore, stable isotope compositions reflect those of top-soil organic matter from which they originate.

  4. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.

    Science.gov (United States)

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen

    2017-01-01

    Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations

  5. Nitrogen Isotopic Composition of Organic Matter in a Pristine Collection IDP

    Science.gov (United States)

    Messenger, S.; Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Walker, Robert M.

    2012-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) are probable cometary materials that show primitive characteristics, such as unequilibrated mineralogy, fragile structure, and abundant presolar grains and organic matter [1-3]. CP IDPs are richer in aliphatic species and N-bearing aromatic hydrocarbons than meteoritic organics and commonly exhibit highly anomalous H and N isotopic compositions [4,5]. Cometary organic matter is of interest in part because it has escaped the hydrothermal processing experienced by meteorites. However, IDPs are collected using silicon oil that must be removed with strong organic solvents such as hexane. This procedure is likely to have removed some fraction of soluble organic phases in IDPs. We recently reported the first stratospheric collection of IDPs without the use of silicone oil [6]. Here we present initial studies of the carbonaceous material in an IDP from this collection.

  6. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation

    Science.gov (United States)

    Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.

    2001-01-01

    We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.

  7. Origin and Alteration of Organic Matter in Termite Mounds from Different Feeding Guilds of the Amazon Rainforests

    Science.gov (United States)

    Siebers, Nina; Martius, Christopher; Eckhardt, Kai-Uwe; Garcia, Marcos V. B.; Leinweber, Peter; Amelung, Wulf

    2015-01-01

    The impact of termites on nutrient cycling and tropical soil formation depends on their feeding habits and related material transformation. The identification of food sources, however, is difficult, because they are variable and changed by termite activity and nest construction. Here, we related the sources and alteration of organic matter in nests from seven different termite genera and feeding habits in the Terra Firme rainforests to the properties of potential food sources soil, wood, and microepiphytes. Chemical analyses comprised isotopic composition of C and N, cellulosic (CPS), non-cellulosic (NCPS), and N-containing saccharides, and molecular composition screening using pyrolysis-field ionization mass spectrometry (Py-FIMS). The isotopic analysis revealed higher soil δ13C (-27.4‰) and δ15N (6.6‰) values in nests of wood feeding Nasutitermes and Cornitermes than in wood samples (δ13C = -29.1‰, δ15N = 3.4‰), reflecting stable-isotope enrichment with organic matter alterations during or after nest construction. This result was confirmed by elevated NCPS:CPS ratios, indicating a preferential cellulose decomposition in the nests. High portions of muramic acid (MurAc) pointed to the participation of bacteria in the transformation processes. Non-metric multidimensional scaling (NMDS) revealed increasing geophagy in the sequence Termes termites shows variations and evidence of modification by microbial processes, but nevertheless it primarily reflects the trophic niches of the constructors. PMID:25909987

  8. The role of aquatic fungi in transformations of organic matter mediated by nutrients

    Science.gov (United States)

    Cynthia J. Tant; Amy D. Rosemond; Andrew S. Mehring; Kevin A. Kuehn; John M. Davis

    2015-01-01

    1. We assessed the key role of aquatic fungi in modifying coarse particulate organic matter (CPOM) by affecting its breakdown rate, nutrient concentration and conversion to fine particulate organic matter (FPOM). Overall, we hypothesised that fungal-mediated conditioning and breakdown of CPOM would be accelerated when nutrient concentrations are increased and tested...

  9. Management of organic matter in the tropics: Translating theory into practice

    NARCIS (Netherlands)

    Palm, C.A.; Giller, K.E.; Mafongoya, P.L.; Swift, M.J.

    2001-01-01

    Inputs of organic materials play a central role in the productivity of many tropical farming systems by providing nutrients through decomposition and substrate for synthesis of soil organic matter (SOM). The organic inputs in many tropical farming systems such as crop residues, manures, and natural

  10. Multiscale organisation of organic matter associated with gold and uranium minerals in the Witwatersrand basin, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Smieja-Krol, Beata; Duber, Stanislaw [Faculty of Earth Science, University of Silesia, 60 Bedzinska St., 41-200 Sosnowiec (Poland); Rouzaud, Jean-Noel [Laboratoire de Geologie, Ecole Normale Superieure, 24, rue Lhomond, 75231 Paris Cedex 5 (France)

    2009-03-01

    Organic matter from the northern part of the Early Proterozoic Witwatersrand basin (Carbon Leader reef) was investigated using optical (OM) and transmission electron (TEM) microscopes, completed by XRD analysis. The multiscale organization (texture, microtexture, structure) of the organic matter was observed in order to gain information about the processes which affected organic material after its deposition in sediments. In the micrometre scale (optical microscope), the shape and size of the Reflectance Indicating Surface (RIS) of the organic matter were determined. The organic matter reveals a prevailing biaxial symmetry. The size of RIS is generally dependent on uranium and increases with increasing uranium concentration. Furthermore, it appears that more than one RIS is present within the scale of a single sample, each with a different symmetry and size. The presence of domains differing in organisation of the aromatic framework was confirmed by TEM observation in the DF mode. The aromatic skeleton of organic matter is composed of short, often crumpled, mostly isolated (non-stacked) polyaromatic layers whose fringe length corresponds to 3-16 aromatic rings. The data indicate reorganization of the polyaromatic organic matter structure under stress in high pressure and relatively low temperature conditions. The organic matter was in a solid state within the rocks before the pressure event. (author)

  11. Organic matter distribution in the continental shelf sediments, off Kochi, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.

    (average 3.8%) than those towards Azhikode (average 1.97%). The sand predominant offshore relict sediments contain very low organic matter values (average 0.71%). The high organic matter content in the inner shelf is mainly controlled by the fine texture...

  12. Investigation of the organic matter in inactive nuclear tank liquids

    International Nuclear Information System (INIS)

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes

  13. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    OpenAIRE

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, Filip; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. ...

  14. A mixing-model approach to quantifying sources of organic matter to salt marsh sediments

    Science.gov (United States)

    Bowles, K. M.; Meile, C. D.

    2010-12-01

    Salt marshes are highly productive ecosystems, where autochthonous production controls an intricate exchange of carbon and energy among organisms. The major sources of organic carbon to these systems include 1) autochthonous production by vascular plant matter, 2) import of allochthonous plant material, and 3) phytoplankton biomass. Quantifying the relative contribution of organic matter sources to a salt marsh is important for understanding the fate and transformation of organic carbon in these systems, which also impacts the timing and magnitude of carbon export to the coastal ocean. A common approach to quantify organic matter source contributions to mixtures is the use of linear mixing models. To estimate the relative contributions of endmember materials to total organic matter in the sediment, the problem is formulated as a constrained linear least-square problem. However, the type of data that is utilized in such mixing models, the uncertainties in endmember compositions and the temporal dynamics of non-conservative entitites can have varying affects on the results. Making use of a comprehensive data set that encompasses several endmember characteristics - including a yearlong degradation experiment - we study the impact of these factors on estimates of the origin of sedimentary organic carbon in a saltmarsh located in the SE United States. We first evaluate the sensitivity of linear mixing models to the type of data employed by analyzing a series of mixing models that utilize various combinations of parameters (i.e. endmember characteristics such as δ13COC, C/N ratios or lignin content). Next, we assess the importance of using more than the minimum number of parameters required to estimate endmember contributions to the total organic matter pool. Then, we quantify the impact of data uncertainty on the outcome of the analysis using Monte Carlo simulations and accounting for the uncertainty in endmember characteristics. Finally, as biogeochemical processes

  15. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  16. Stabilization of dissolved organic matter by aluminium: A toxic effect or stabilization through precipitation?

    NARCIS (Netherlands)

    Scheel, T.; Jansen, B.; van Wijk, A.J.; Verstraten, J.M.; Kalbitz, K.

    2008-01-01

    Carbon mineralization in acidic forest soils can be retarded by large concentrations of aluminium (Al). However, it is still unclear whether Al reduces C mineralization by direct toxicity to microorganisms or by decreased bioavailability of organic matter (OM) because dissolved organic matter (DOM)

  17. Effect of Organic Selenium from Se-enriched Alga (Chlorella spp. on Selenium Transfer from Sows to Their Progeny

    Directory of Open Access Journals (Sweden)

    Martin Svoboda

    2009-01-01

    Full Text Available The study was conducted to determine the efficacy of organic Se from Se-enriched alga Chlorella spp. in placental transfer to piglets. In group A (n = 8 the sows were fed during the gestation a diet supplemented with inorganic Se (sodium selenite, 0.3 mg/kg. In group B (n = 8 the diet of the sows was supplemented with organic Se from Se-enriched alga (0.3 mg/kg. The Se concentrations in the whole blood (P P Chlorella spp. in sows resulted in greater transfer of Se to their progeny.

  18. Terrestrial dissolved organic matter distribution in the North Sea.

    Science.gov (United States)

    Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J

    2018-07-15

    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Colored dissolved organic matter in shallow estuaries: the effect of source on quantification

    OpenAIRE

    W. K. Oestreich; N. K. Ganju; J. W. Pohlman; S. E. Suttles

    2015-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM...

  20. The fate or organic matter during planetary accretion - Preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite

    Science.gov (United States)

    Tingle, Tracy N.; Tyburczy, James A.; Ahrens, Thomas J.; Becker, Christopher H.

    1992-01-01

    The fate of organic matter in carbonaceous meteorites during hypervelocity (1-2 km/sec) impacts is investigated using results of experiments in which three samples of the Murchison (CM2) carbonaceous chondrite were shocked to 19, 20, and 36 GPa and analyzed by highly sensitive thermal-desorption photoionization mass spectrometry (SALI). The thermal-desorptive SALI mass spectra of unshocked CM2 material revealed presence of indigenous aliphatic, aromatic, sulfur, and organosulfur compounds, and samples shocked to about 20 GPa showed little or no loss of organic matter. On the other hand, samples shocked to 36 GPa exhibited about 70 percent loss of organic material and a lower alkene/alkane ratio than did the starting material. The results suggest that it is unlikely that the indigenous organic matter in carbonaceous chondritelike planetesimals could have survived the impact on the earth in the later stages of earth's accretion.

  1. Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon, Africa

    International Nuclear Information System (INIS)

    Nagy, B.; Rigali, M.J.; Gauthier-Lafaye, F.; Holliger, P.; Mossman, D.J.; Leventhal, J.S.

    1993-01-01

    Of the sixteen known Oklo and the Bangombe natural fission reactors (hydrothermally altered elastic sedimentary rocks that contain abundant uraninite and authigenic clay minerals), reactors 1 to 6 at Oklo contain only traces of organic matter, but the others are rich in organic substances. Reactors 7 to 9 are the subjects of this study. These organic-rich reactors may serve as time-tested analogues for anthropogenic nuclear-waste containment strategies. Organic matter helped to concentrate quantities of uranium sufficient to initiate the nuclear chain reactions. Liquid bitumen was generated from organic matter by hydrothermal reactions during nuclear criticality. The bitumen soon became a solid, consisting of polycyclic aromatic hydrocarbons and an intimate mixture of cryptocrystalline graphite, which enclosed and immobilized uraninite and the fission-generated isotopes entrapped in uraninite. This mechanism prevented major loss of uranium and fission products from the natural nuclear reactors for 1.2 b.y. 24 refs., 4 figs

  2. Long – term evalutation of the organic matter balance and its relations to the organic C content in the topsoils in Ústí nad Orlicí district

    Directory of Open Access Journals (Sweden)

    Jiří Dostál

    2009-01-01

    Full Text Available Organic matter balance in the farms located in Ústí nad Orlicí district has been investigated since 1979. As a result, so called need of organic fertilisation, has been determined and the supply of the organic fertilisers to soils, e.g. farmyard manure, slurries and also straw and green manure has been monitored over the whole time period. About 45 % of the arable land area in the district has been monitored.In addition to the organic matter balance, we determined several soil organic matter characteristics in soil samples (organic C, N and S contents, inert and decomposable C content, hot water soluble C content, hydrophobicity index calculated from the DRIFT spectrometry, available P, K, Ca and Mg contents and pH.The relationships between the organic matter supply with supplemental sources organic fertilisers and all the selected soil organic matter characteristics were statistically significant. Significant correlations were also found for the relationships between the organic matter need and all the selected soil organic matter characteristics.

  3. White matter microstructural organization and gait stability in older adults

    Directory of Open Access Journals (Sweden)

    Sjoerd M. Bruijn

    2014-06-01

    Full Text Available Understanding age-related decline in gait stability and the role of alterations in brain structure is crucial. Here, we studied the relationship between white matter microstructural organization using Diffusion Tensor Imaging (DTI and advanced gait stability measures in 15 healthy young adults (range 18-30 years and 25 healthy older adults (range 62-82 years.Among the different gait stability measures, only stride time and the maximum Lyapunov exponent (which quantifies how well participants are able to attenuate small perturbations were found to decline with age. White matter microstructural organization (FA was lower throughout the brain in older adults. We found a strong correlation between FA in the left anterior thalamic radiation and left corticospinal tract on the one hand, and step width and safety margin (indicative of how close participants are to falling over on the other. These findings suggest that white matter FA in tracts connecting subcortical and prefrontal areas is associated with the implementation of an effective stabilization strategy during gait.

  4. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.

    2008-01-01

    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  5. SOMPROF: A vertically explicit soil organic matter model

    NARCIS (Netherlands)

    Braakhekke, M.C.; Beer, M.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2011-01-01

    Most current soil organic matter (SOM) models represent the soil as a bulk without specification of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile may be of great importance for soil carbon cycling, both on short (hours to years) time scale, due to

  6. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be

  7. Influence of Soil Organic Matter Content on Abundance and Biomass of Earthworm (Oligochaeta: Lumbricidae Populations

    Directory of Open Access Journals (Sweden)

    Hristo Valchovski

    2016-06-01

    Full Text Available The current study explores the influence of soil organic matter content on abundance and biomass of earthworm communities. The observation was carried out on three type of soils: PellicVertisols (very fine texture, Cromi-Vertic Luvisols (fine texture and Calcaric Fluvisols (mediumtexture from the Balkan Peninsula (Bulgaria. The field experiment was provided on uncultivatedplots. In the studied area earthworm fauna comprises of four species: Aporrectodea rosea,Aporrectodea caliginosa, Lumbricus terrestris and Octolasion lacteum. We found peregrine lumbricidtaxa, which are widely distributed in European soils. Our study demonstrated that soil organicmatter has a positive effect on lumbricid populations. It was revealed that augmentation of soilorganic matter favours characteristics of earthworm communities. The soil organic matter contentand earthworm abundance are in strong positive correlation (r > 0.981. The same relationship wasrevealed between the biomass of lumbricid fauna and amount of soil organic matter (r > 0.987. Insum, the soil organic matter could be used as an indicator for earthworm communities inuncultivated soils.

  8. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics

    DEFF Research Database (Denmark)

    Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A L

    2018-01-01

    The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter...... as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities...... collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted...

  9. Peatland Organic Matter Chemistry Trends Over a Global Latitudinal Gradient

    Science.gov (United States)

    Verbeke, B. A.; Hodgkins, S. B.; Carson, M. A.; Lamit, L. J.; Lilleskov, E.; Chanton, J.

    2017-12-01

    Peatlands contain a significant amount of the global soil carbon, and the climate feedback of carbon cycling within these peatland systems is still relatively unknown. Organic matter composition of peatlands plays a major role in determining carbon storage, and while high latitude peatlands seem to be the most sensitive to climate change, a global picture of peat organic matter chemistry is required to improve predictions and models of greenhouse gas emissions fueled by peatland decomposition. The objective of this research is to test the hypothesis that carbohydrate content of peatlands near the equator will be lower than high latitude peatlands, while aromatic content will be higher. As a part of the Global Peatland Microbiome Project (GPMP), around 2000 samples of peat from 10 to 70 cm across a latitudinal gradient of 79 N to 53 S were measured with Fourier transform infrared spectroscopy (FTIR) to examine the organic matter functional groups of peat. Carbohydrate and aromatic content, as determined by FTIR, are useful proxies of decomposition potential and recalcitrance, respectively. We found a highly significant relationship between carbohydrate and aromatic content, latitude, and depth. Carbohydrate content of high latitude sites were significantly greater than at sites near the equator, in contrast to aromatic content which showed the opposite trend. It is also clear that carbohydrate content decreases with depth while aromatic content increases with depth. Higher carbohydrate content at higher latitudes indicates a greater potential for lability and resultant mineralization to form the greenhouse gases, carbon dioxide and methane, whereas the composition of low latitude peatlands is consistent with their apparent stability. We speculate that the combination of low carbohydrates and high aromatics at warmer locations near the equator could foreshadow the organic matter composition of high latitude peat transitioning to a more recalcitrant form with a

  10. Role of sedimentary organic matter in bacterial sulfate reduction: the G model tested

    International Nuclear Information System (INIS)

    Westrich, J.T.; Berner, R.A.

    1984-01-01

    Laboratory study of the bacterial decomposition of Long Island Sound plankton in oxygenated seawater over a period of 2 years shows that the organic material undergoes decomposition via first-order kinetics and can be divided into two decomposable fractions, of considerably different reactivity, and a nonmetabolized fraction. This planktonic material, after undergoing varying degrees of oxic degradation, was added in the laboratory to anoxic sediment taken from a depth of 1 m at the NWC site of Long Island Sound and the rate of bacterial sulfate reduction in the sediment measured by the 35 S radiotracer technique. The stimulated rate of sulfate reduction was in direct proportion to the amount of planktonic carbon added. This provides direct confirmation of the first-order decomposition, or G model, for marine sediments and proves that the in situ rate of sulfate reduction is organic-matter limited. Slower sulfate reduction rates resulted when oxically degraded plankton rather than fresh plankton was added, and the results confirm the presence of the same two fractions of organic matter deduced from the oxic degradation studies. Near-surface Long Island Sound sediment, which already contains abundant readily decomposable organic matter, was also subjected to anoxic decomposition by bacterial sulfate reduction. The decrease in sulfate reduction rate with time parallels decreases in the amount of organic matter, and these results also indicate the presence of two fractions of organic carbon of distinctly different reactivity. From plots of the log of reduction rate vs. time two first-order rate constants were obtained that agree well with those derived from the plankton addition experiment. Together, the two experiments confirm the use of a simple multi-first-order rate law for organic matter decomposition in marine sediments

  11. Aquatic Organic Matter Fluorescence - from phenomenon to application

    Science.gov (United States)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  12. Assessment of the unidentified organic matter fraction in fogwater using fluorescence spectroscopy

    Science.gov (United States)

    Valsaraj, K.; Birdwell, J.

    2010-07-01

    Dissolved organic matter (DOM) in fogwaters from southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix (EEM) fluorescence spectroscopy. The results demonstrate that fluorescence spectroscopy can be used to obtain a qualitative assessment of the large fraction of fogwater organic carbon (~40 - 80% by weight) that cannot be identified in terms of specific chemical compounds. The method has the principle advantage that it can be applied at natural abundance concentrations, thus eliminating the need for large sample volumes required to isolate DOM for characterization by other spectroscopic (NMR, FTIR) and chemical (elemental) analyses. It was anticipated that the fogwater organic matter fluorescence spectra would resemble those of surface and rain waters, containing peaks indicative of both humic substances and fluorescent amino acids. Humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices had values comparable to other natural waters. Biological character (intensity of tyrosine and tryptophan peaks) was found to increase with organic carbon concentration. Fogwater organic matter appears to contain a mixture of terrestrially- and microbially-derived material. The fluorescence results show that most of the unidentified fogwater organic carbon can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems.

  13. Properties and reactivity of aquatic organic matter from an Amazonian floodplain system

    Science.gov (United States)

    Perez, M. A. P.; Benedetti, M. F.; Moreira-Turcq, P.

    2009-04-01

    The aim of this study was to characterize the nature of the bulk dissolved organic matter (DOM) in different types of environments in the Amazon River-floodplain system and determine the importance of two different fractions of dissolved organic matter onto adsorption processes that occurs through the transport of organic matter in the Amazon Basin. Seven samples were collected in the Amazon River - "Lago Grande de Curuai" floodplain system, in rising water levels cruise (March 2006). The samples were taken in the Amazon main stem, in white and black floodplain waters, and in the middle of a phytoplaktonic bloom. The bulk, dissolved (i.e. acid-base titration) were characterized for these fractions. Adsorption experiments onto mineral phase from de surface sediment of the Curuai floodplain lake (rich in smectite and kaolinite) were realized with HPO and TPH fractions. The OC concentrations in the natural organic matter (Bulk and < 0.22 micrometer fractions) varied between 3.7-5.7 mg/L. The OC and TN concentrations varied between 510 - 528 mg C/g in the HPO fraction, and 408 - 462 mg C/g in the TPH compounds and between 14.3 - 17.6 mg N/g (HPO), and 22.1 - 30.0 mg N/g (TPH). The molecular weight of both fractions (HPO and TPH) didn't present significant variation. Both fractions presented high aromaticity and they were rich in carboxylic groups, although smaller values are systematically reported for the HPO fractions. The OM of the main stem was the most adsorbed, followed by the white water lake, the phytoplanktonic bloom, and black water lake sample. These results helped us to strengthen the hypothesis that the organic matter carried from the river and sediment in the floodplain is closely associated with mineral phase.

  14. The source and distribution of thermogenic dissolved organic matter in the ocean

    Science.gov (United States)

    Dittmar, T.; Suryaputra, I. G. N. A.; Paeng, J.

    2009-04-01

    Thermogenic organic matter (ThOM) is abundant in the environment. ThOM is produced at elevated temperature and pressure in deep sediments and earth's crust, and it is also a residue of fossil fuel and biomass burning ("black carbon"). Because of its refractory character, it accumulates in soils and sediments and, therefore, may sequester carbon from active cycles. It was hypothesized that a significant component of marine dissolved organic matter (DOM) might be thermogenic. Here we present a detailed data set on the distribution of thermogenic DOM in major water masses of the deep and surface ocean. In addition, several potential sources of thermogenic DOM to the ocean were investigated: active seeps of brine fluids in the deep Gulf of Mexico, rivers, estuaries and submarine groundwaters. Studies on deep-sea hydrothermal vents and aerosol deposition are ongoing. All DOM samples were isolated from seawater via solid phase extraction (SPE-DOM). ThOM was quantified in the extracts as benzene-polycarboxylic acids (BPCAs) after nitric acid oxidation via high-performance liquid chromatography and diode array detection (HPLC-DAD). BPCAs are produced exclusively from fused ring systems and are therefore unambiguous molecular tracers for ThOM. In addition to BPCA determination, the molecular composition and structure of ThOM was characterized in detail via ultrahigh resolution mass spectrometry (FT-ICR-MS). All marine and river DOM samples yielded significant amounts of BPCAs. The cold seep system in the deep Gulf of Mexico, but also black water rivers (like the Suwannee River) were particularly rich in ThOM. Up to 10% of total dissolved organic carbon was thermogenic in both systems. The most abundant BPCA was benzene-pentacarboxylic acid (B5CA). The molecular composition of BPCAs and the FT-ICR-MS data indicate a relatively small number (5-8) of fused aromatic rings per molecule. Overall, the molecular BPCA patterns were very similar independent of the source of Th

  15. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest.

    Science.gov (United States)

    Fahey, Timothy J; Yavitt, Joseph B; Sherman, Ruth E; Maerz, John C; Groffman, Peter M; Fisk, Melany C; Bohlen, Patrick J

    2013-07-01

    To examine the mechanisms of earthworm effects on forest soil C and N, we double-labeled leaf litter with 13C and 15N, applied it to sugar maple forest plots with and without earthworms, and traced isotopes into soil pools. The experimental design included forest plots with different earthworm community composition (dominated by Lumbricus terrestris or L. rubellus). Soil carbon pools were 37% lower in earthworm-invaded plots largely because of the elimination of the forest floor horizons, and mineral soil C:N was lower in earthworm plots despite the mixing of high C:N organic matter into soil by earthworms. Litter disappearance over the first winter-spring was highest in the L. terrestris (T) plots, but during the warm season, rapid loss of litter was observed in both L. rubellus (R) and T plots. After two years, 22.0% +/- 5.4% of 13C released from litter was recovered in soil with no significant differences among plots. Total recovery of added 13C (decaying litter plus soil) was much higher in no-worm (NW) plots (61-68%) than in R and T plots (20-29%) as much of the litter remained in the former whereas it had disappeared in the latter. Much higher percentage recovery of 15N than 13C was observed, with significantly lower values for T than R and NW plots. Higher overwinter earthworm activity in T plots contributed to lower soil N recovery. In earthworm-invaded plots isotope enrichment was highest in macroaggregates and microaggregates whereas in NW plots silt plus clay fractions were most enriched. The net effect of litter mixing and priming of recalcitrant soil organic matter (SOM), stabilization of SOM in soil aggregates, and alteration of the soil microbial community by earthworm activity results in loss of SOM and lowering of the C:N ratio. We suggest that earthworm stoichiometry plays a fundamental role in regulating C and N dynamics of forest SOM.

  16. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...

  17. Organic speciation of size-segregated atmospheric particulate matter

    Science.gov (United States)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  18. Indigenous Carbonaceous Matter and Boron Associated with Halite Crystals in Nakhla

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; McKay, D. S.; Gibson, E. K.; Wentworth, S. J.

    2015-01-01

    We report here the observation of indigenous organic matter spatially associated with, and in several cases embedded within, halite crystals located in alteration veins inside the Martian meteorite Nakhla. Further-more, we have also detected enrichments of boron (B) in these halites far in excess of those previously reported in bulk Martian meteorites. Boron in Martian halites has not been detected previously.

  19. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks.

    Science.gov (United States)

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S; Álvarez, Pedro A; Reche, Isabel

    2018-01-01

    Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named "extractive" species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (-holothurian) only contained around 810 individuals of Anemonia sulcata , whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali . We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and -holothurians (-H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four -H tanks that contained only 80 individuals of A. sulcata . In the time-series, absorption coefficients at 325 nm ( a 325 ) and spectral slopes from 275 to 295 nm ( S 275-295 ) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m -1 and 16 µm -1 , respectively) than in the effluent of the -holothurian tank (average: 0.69 m -1 and 34 µm -1 , respectively), the former being similar to those found in the inlet

  20. Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the southern ocean

    OpenAIRE

    Ortega-Retuerta, E.; Frazer, Thomas K.; Duarte, Carlos M.; Ruiz-Halpern, Sergio; Tovar-Sánchez, Antonio; Arrieta López de Uralde, Jesús M.; Reche, Isabel

    2009-01-01

    Chromophoric dissolved organic matter (CDOM), the optically active fraction of dissolved organic matter, is primarily generated by pelagic organisms in the open ocean. In this study, we experimentally determined the quantity and spectral quality of CDOM generated by bacterioplankton using two different substrates (with and without photoproducts) and by Antarctic krill Euphausia superba and evaluated their potential contributions to CDOM dynamics in the peninsular region of the Southern Ocean....

  1. Characterization and source identification of organic matter in view of land uses and heavy rainfall in the Lake Shihwa, Korea

    International Nuclear Information System (INIS)

    Lee, Yeonjung; Hur, Jin; Shin, Kyung-Hoon

    2014-01-01

    Highlights: • Organic matter derived from industrial area showed high biodegradability. • Organic matter transported from rural area was of refractory nature. • Autochthonous organic matter dominated in lake during the dry season. • Contributions of organic source by industrial and rural area increased at rainy season. - Abstract: The characteristics and sources of organic matter in water of the Lake Shihwa, which receives inputs from rural, urban, and industrial areas, were evaluated by examining the biodegradable organic carbon concentration, fluorescence spectra, and carbon and nitrogen isotope ratios, especially during rainy season and dry season. The organic matter transported from rural areas was of refractory nature, while that of industrial origin decomposed rapidly. As compared to the dry season, the organic matter in the rainy season was characterized by a reduced labile fraction. During the dry season, the autochthonous organic matter dominated in the lake, however, the contributions of allochthonous organic sources by industrial and rural areas significantly increased at rainy season. This investigation revealed that the transport of organic matter of anthropogenic origin to the Lake Shihwa was mainly influenced by heavy rainfall. Moreover, each anthropogenic source could differently influence the occurrence of organic matter in water of the Lake Shihwa

  2. Evidence of molybdenum association with particulate organic matter under sulfidic conditions

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Chappaz, A.; Hoek, Joost

    2017-01-01

    , consisting of mainly Mo(IV)-sulfide compounds with molecular structures similar to Mo enzymes and to those found in natural euxinic sediments. Therefore, we propose that Mo removal in natural sulfidic waters can proceed via a non-Fe-assisted pathway that requires particulate organic matter (dead or living......The geochemical behavior of molybdenum (Mo) in the oceans is closely linked to the presence of sulfide species in anoxic environments, where Fe availability may play a key role in the Mo scavenging. Here, we show that Mo(VI) is reduced in the presence of particulate organic matter (represented...

  3. [Studies on nitrogen, phosphorus and organic matter in ponds around Chaohu Lake].

    Science.gov (United States)

    Sun, Qing-ye; Ma, Xiu-ling; Yang, Gui-de; Chen, Zheng; Wu, Hong-lin; Xuan, Huai-xiang

    2010-07-01

    There are a lot of ponds around Chaohu Lake. According to location and runoff supply of ponds, the ponds are divided into three types: ponds inner vellage (PIV), ponds adjacent vellage (PAV) and ponds outer vellage (POV). The samples of water and sediment were collected from 136 ponds around Chaohu Lake and the contents of nitrogen, phosphorus and organic matter in water and sediments were analyzed in this study. The results showed that mean contents of total nitrogen (TN), NH4+ -N, NO3- -N, NO2- -N, total phosphorus (TP), soluble PO4(3-) -P and COD were 2.53, 0.65, 0.18, 0.02, 0.97, 0.38 and 51.58 mg x L(-1) in pond water, respectively; and mean contents of TN, NH4+ -N, NO3- -N, NO2- -N, TP, inorganic phosphorus (IP), organic phosphorus (OP) and loss of ignition (LOI) in pond sediment were 1575.36, 35.73, 13.30, 2.88, 933.19, 490.14, 414.75 mg x kg(-1) and 5.44%, respectively. The ponds of more than 90% presented eutrophication in the contents of total nitrogen and phosphorus in water. The contents of TN and NH4+ -N in water and sediment of PIV were significantly higher than that of POV. And the contents of inorganic nitrogen in pond water and sediment displayed a following order: NH4+ -N > NO3- -N > NO2- -N. Data analysis indicated that there was a significantly positive correlation between organic matter and total nitrogen and phosphorus in water and sediment. The nitrogen, phosphorus and organic matter in ponds mainly sourced farmlands and village land surface. The contents of nitrogen, phosphorus and organic matter in ponds were affected by location and runoff supply of ponds. By retaining nitrogen, phosphorus and organic matter in runoff, the ponds can effectively decrease nutrient content into Chaohu Lake.

  4. Stabilization of organic matter in the raised-bed soils of tidal swamplands is influenced by the types and the amounts of organic matter application

    Directory of Open Access Journals (Sweden)

    A R Saidy

    2015-05-01

    Full Text Available Farmers in tidal swamplands annually added organic matter (OM onto the raised beds to maintain organic matter contents and thereby maintain soil productivity of the raised beds. This experiment aimed to study the influence of the types and the amounts of OM on the stabilization of organic matter in the raised-bed soils. Four types of OM: rice straw, eceng gondok (Eichornia crassipes, purun tikus  (Eleocharis dulcis and mixed  rice straw-eceng gondok were added to a 27-year raised bed soil with 4 different rates: 0, 0.5, 1.0 and 2.0  of maximum sorption capacity (Qmax, and the OM stabilization was quantified after 10 weeks of OM addition.  Results of this study showed with the exception of rice straw, OM addition to soil resulted in increases in the mineralization of soil OM thereby inducing priming effect. Addition of rice straw at rate of 0.5 of Qmax resulted in stabilization of 46% added OM, while only 30% and 37% of added OM was stabilized when OM was added to soils at rates of 1.0 and 2.0 Qmax, respectively.  This study showed that the stabilization of OM in raised bed soils were influenced by the chemical composition of OM and the amount of added OM.

  5. Stabilization of organic matter in the raised-bed soils of tidal swamplands is influenced by the types and the amounts of organic matter application

    Directory of Open Access Journals (Sweden)

    A R Saidy

    2015-03-01

    Full Text Available Farmers in tidal swamplands annually added organic matter (OM onto the raised beds to maintain organic matter contents and thereby maintain soil productivity of the raised beds. This experiment aimed to study the influence of the types and the amounts of OM on the stabilization of organic matter in the raised-bed soils. Four types of OM: rice straw, eceng gondok (Eichornia crassipes, purun tikus  (Eleocharis dulcis and mixed  rice straw-eceng gondok were added to a 27-year raised bed soil with 4 different rates: 0, 0.5, 1.0 and 2.0  of maximum sorption capacity (Qmax, and the OM stabilization was quantified after 10 weeks of OM addition.  Results of this study showed with the exception of rice straw, OM addition to soil resulted in increases in the mineralization of soil OM thereby inducing priming effect. Addition of rice straw at rate of 0.5 of Qmax resulted in stabilization of 46% added OM, while only 30% and 37% of added OM was stabilized when OM was added to soils at rates of 1.0 and 2.0 Qmax, respectively.  This study showed that the stabilization of OM in raised bed soils were influenced by the chemical composition of OM and the amount of added OM.

  6. A critical evaluation of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; PrakashBabu, C.; Mascarenhas, A.

    source of organic matter. However, a critical examination reveals that the organic enrichment on the slope of the Indian margin is two to four fold higher (max. 16.71%) than on the slope of the Arabian Peninsula (max. 7.54%) while the productivity...

  7. Observed effects of soil organic matter content on the microwave emissivity of soils

    International Nuclear Information System (INIS)

    O'Neill, P.E.; Jackson, T.J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, a series of field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8%, 4.0%, and 6.1%) for a range of soil moisture values. Analyses of the observed data showed only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibited the same trends and type of response as the measured data when adjusted values for the input parameters were utilized

  8. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  9. Soil organic matter regulates molybdenum storage and mobility in forests

    Science.gov (United States)

    Marks, Jade A; Perakis, Steven; King, Elizabeth K.; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  10. Roles of epi-anecic taxa of earthworms in the organic matter recycling

    Science.gov (United States)

    Hoeffner, Kevin; Monard, Cécile; Santonja, Mathieu; Pérès, Guénola; Cluzeau, Daniel

    2017-04-01

    Given their impact on soil functioning and their interactions with soil organisms, earthworms contribute to the recycling of organic matter and participate significantly in the numerous ecosystem services provided by soils. Most studies on the role of earthworms in organic matter recycling were conducted at the level of the four functional groups (epigeic, epi-anecic, anecic strict and endogeic), but their effects at taxa level remain largely unknown. Still, within a functional group, anatomic and physiologic earthworm taxa traits are different, which should impact organic matter recycling. This study aims at determining, under controlled conditions, epi-anecic taxa differences in (i) leaf litter mass loss, (ii) assimilation and (iii) impact on microorganisms communities implied in organic matter degradation. In seperate microcosms, we chose 4 epi anecic taxa (Lumbricus rubellus, Lumbricus festivus, Lumbricus centralis and Lumbricus terrestris). Each taxon was exposed separately to leaves of three different plants (Holcus lanatus, Lolium perenne and Corylus avellana). In the same microcosm, leaves of each plant was both placed on the surface and buried 10cm deep. The experiment lasted 10 days for half of the samples and 20 days for the second half. Microorganisms communities were analysed using TRFLP in each earthworm taxon burrow walls at 20 days. We observed differences between epi-anecic taxa depending on species of plant and the duration of the experiment. Results are discussed taking into account physical and chemical properties of these 3 trophic resources (e.g. C/N ratio, phenolic compounds, percentage of lignin and cellulose...).

  11. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  12. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    Science.gov (United States)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  13. Microbially-mediated fluorescent organic matter transformations in the deep ocean

    DEFF Research Database (Denmark)

    Aparicio, Fran L.; Nieto-Cid, Mar; Borrull, Encarna

    2015-01-01

    The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also b....... These findings contribute to the understanding of FDOM variability in deep waters and provide valuable information for studies where fluorescent compounds are used in order to track water masses and/or microbial processes.......The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also...

  14. Urban infrastructure influences dissolved organic matter quality and bacterial metabolism in an urban stream network

    Science.gov (United States)

    Urban streams are degraded by a suite of factors, including burial beneath urban infrastructure (i.e., roads, parking lots) that eliminates light and reduces direct organic matter inputs to streams, with likely consequences for organic matter metabolism by microbes and carbon lim...

  15. Degradation of riverine dissolved organic matter by seawater bacteria

    NARCIS (Netherlands)

    Rochelle-Newall, E.J.; Pizay, M-D.; Middelburg, J.J.; Boschker, H.T.S.; Gattuso, J.P.

    2004-01-01

    The functional response of a seawater bacterial community transplanted into freshwater dissolved organic matter (DOM) was investigated together with the response of natural populations of bacteria to size-fractioned natural source water. Seawater bacteria were incubated over a period of 8 d in

  16. Hydrocarbon prospects of the western continental slope of India as indicatEd. by surficial enrichment of organic carbon

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    The sediments from the continental mid-slope (150-1500 m depth) of the western margin are highly enriched in organic carbon (upto 16%) occurring as a long and wide band off Bombay to southern tip of India. Organic carbon is essentially of marine...

  17. Impact of Urbanisation on Soil Organic Matter Content in chernozems in Vojvodina region

    Science.gov (United States)

    Samardžić, Miljan; Vasin, Jovica; Jajić, Igor; Vasenev, Ivan

    2017-04-01

    Vojvodina is the northern province of Serbia and the chief agricultural centre of the country. The main soil type in Vojvodina is chernozem (60% of total area), and it is under heavy anthropogenic pressure. Changes in soil organic matter amount resulting from switching from natural to urban ecosystems on Vojvodina's chernozem were not thoroughly researched in the past, which gave us unique insight in soil organic matter losses under human activity, namely urbanisation. The research has been carried out during July 2016 at Nature reserve Čarnok (as a control) and urban settlements Zmajevo, Vrbas and Kula, which are located 12 km from each other and Čarnok. Urban locations were lawns, chosen according to information from the owners (no known ploughing, no addition of sandy or clay material during last 70 years, no grass sowing and only direct human activity is trimming of grass). The results showed significant reduction of humus content in urban ecosystems: Čarnok (control, natural reserve) humus 5,33%, organic C 3,488%; Zmajevo humus 2,51%, organic C 1,963%; Vrbas humus 3,81%, organic C 4,216%; Kula humus 1,95%, organic C 1,517%. The differences in organic carbon also showed basically the same trend with notable exception of Vrbas. These differences in soil organic matter content is generally based on grass trimming practices. In Zmajevo, grass was trimmed monthly, with removal of biomass from the lawn, in Kula grass was trimmed twice per month with removal of biomass and in Vrbas trimming was performed once per week, with shredding of biomass and leaving it on the lawn. The conclusion was that land use change has advert impact on soil organic matter content in urban ecosystems, and that within it human practices such as trimming have significant impact on it.

  18. The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China

    Science.gov (United States)

    Yu, Bingsong; Dong, Hailiang; Jiang, Hongchen; Lv, Guo; Eberl, Dennis D.; Li, Shanying; Kim, Jinwook

    2009-01-01

    The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our

  19. Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties

    NARCIS (Netherlands)

    Martínez-García, Laura B.; Korthals, Gerard; Brussaard, Lijbert; Jørgensen, Helene Bracht; Deyn, de Gerlinde B.

    2018-01-01

    It is well recognized that organic soil management stimulates bacterial biomass and activity and that including cover crops in the rotation increases soil organic matter (SOM). Yet, to date the relative impact of different cover crop species and organic vs. non-organic soil management on soil

  20. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake

    Directory of Open Access Journals (Sweden)

    L. P. M. Brandão

    2018-05-01

    Full Text Available Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil to evaluate the effects of increased concentrations of allochthonous and autochthonous OM, and differences in light availability on the light absorption characteristics of chromophoric dissolved organic matter (CDOM. Autochthonous OM deriving from phytoplankton ( ∼  Chl a was stimulated by addition of nutrients, while OM from degradation of terrestrial leaves increased allochthonous OM, and neutral shading was used to manipulate light availability. Effects of the additions and shading on DOC, Chl a, nutrients, total suspended solid concentrations (TSM and spectral CDOM absorption were monitored every 3 days. CDOM quality was characterized by spectral indices (S250–450, S275–295, S350–450, SR and SUVA254. Effects of carbon sources and shading on the spectral CDOM absorption was investigated through principal component (PCA and redundancy (RDA analyses. The two different OM sources affected CDOM quality very differently and shading had minor effects on OM levels, but significant effects on OM quality, especially in combination with nutrient additions. Spectral indices (S250–450 and SR were mostly affected by allochthonous OM addition. The PCA showed that enrichment by allochthonous carbon had a strong effect on the CDOM spectra in the range between 300 and 400 nm, while the increase in autochthonous carbon increased absorption at wavelengths below 350 nm. Our study shows that small inputs of allochthonous OM can have large effects on the spectral light absorption compared to large production of autochthonous OM, with important implications for carbon cycling in tropical lakes.

  1. Utilization of organic matter by invertebrates along an estuarine gradient in an intermittently open estuary

    Science.gov (United States)

    Lautenschlager, Agnes D.; Matthews, Ty G.; Quinn, Gerry P.

    2014-08-01

    In intermittently open estuaries, the sources of organic matter sustaining benthic invertebrates are likely to vary seasonally, particularly between periods of connection and disconnection with the ocean and higher and lower freshwater flows. This study investigated the contribution of allochthonous and autochthonous primary production to the diet of representative invertebrate species using stable isotope analysis (SIA) during the austral summer and winter (2008, 2009) in an intermittently open estuary on the south-eastern coast of Australia. As the study was conducted towards the end of a prolonged period of drought, a reduced influence of freshwater/terrestrial organic matter was expected. Sampling was conducted along an estuarine gradient, including upper, middle and lower reaches and showed that the majority of assimilated organic matter was derived from autochthonous estuarine food sources. Additionally, there was an input of allochthonous organic matter, which varied along the length of the estuary, indicated by distinct longitudinal trends in carbon and nitrogen stable isotope signatures along the estuarine gradient. Marine seaweed contributed to invertebrate diets in the lower reaches of the estuary, while freshwater/terrestrial organic matter had increased influence in the upper reaches. Suspension-feeding invertebrates derived large parts of their diet from freshwater/terrestrial material, despite flows being greatly reduced in comparison with non-drought years.

  2. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chia-Chuan; Kar, Sandeep [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Jean, Jiin-Shuh, E-mail: jiinshuh@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan (China); Lee, Yao-Chang [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Sracek, Ondra [OPV s.r.o. (Groundwater Protection Ltd.), Bělohorská 31, 169 00 Praha 6 (Czech Republic); Department of Geology, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Li, Zhaohui [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States); Bundschuh, Jochen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Faculty of Engineering and Surveying and National Centre for Engineering in Agriculture, The University of Southern Queensland, Toowoomba (Australia); Yang, Huai-Jen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Chen, Chien-Yen [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan (China)

    2013-11-15

    Highlights: ► Study represents geochemical characteristics and their spatial variability among six mud volcanoes of southern Taiwan. ► Anoxic mud volcanic fluids containing high NaCl imply connate water as the possible source. ► δ{sup 18}O-rich fluids is associated with silicate and carbonate mineral released through water–rock interaction. ► High As content in mud and its sequential extraction showed mostly adsorbed As on organic and sulphidic phases. ► Organic matter specially humic acid showed redox dependence and it may play an important role in binding and mobility of arsenic. -- Abstract: The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ{sup 18}O-rich fluids may be associated with silicate and carbonate mineral released through water–rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of

  3. Effects of cattle and poultry manures on organic matter content and ...

    African Journals Online (AJOL)

    The organic fertilizer showed significant effect on earthworms populations Hyperiodrilus africanus (Oligochaeta, Eudrilidae) in the soil, with 128 and 85% respectively about the poultry and cattle manures compared to the control (p < 0.01). Key words: Cattle manure, poultry manure, cassava, organic matter, cation exchange ...

  4. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  5. Selective depletion of organic matter in mottled podzol horizons

    NARCIS (Netherlands)

    Buurman, P.; Schellekens, J.; Fritze, H.; Nierop, K.G.J.

    2007-01-01

    Abstract: Some well-drained podzols on quartz sands in the Netherlands and neighbouring Belgium and Germany show mottling in all horizons due to selective removal of organic matter. Phospholipid analysis and morphology of the mottles suggests that this removal is due to activity of fungi.

  6. Contribution to physico-chemical study of Timahdit bituminous schists (Morocco): Organic matters and metalloporphyrins

    International Nuclear Information System (INIS)

    Saoiabi, A.

    1982-01-01

    The Timahdit bituminous schists have been analysed by different methods. The experimental results obtained using these methods concern the behaviour of the schists and the Kerogen facing the pyrolysis, as well as the separation of the hydrocarbons and the metalloporphyrins. For this purpose the techniques used are: 'Rock Eval' pyrolysis, thermogravimetric analysis and electron paramagnetic resonance (E.P.R.) for the raw rock and the Kerogen; infrared (I.R.), gas chromatography and E.P.R. for the extracted organic matters; E.P.R., I.R., nuclear magnetic resonance (N.M.R.), ultraviolet (U.V.) and mass spectrometry for the metalloporphyrins identification and characterization. The analysis of these schists has shown that: We can extract per solvent only 1% of organic matters, ferric oxide hasn't any effect neither on the pyrolysis nor on the organic matters extraction and that the Kerogen of these schists are relatively rich in hydrocarbonic compounds. The gas chromatography reveal the presence of alkanes with odd number of carbons and isoprenoids. All these criteria indicate an immature, little developped organic matter which having probably a marine origin but possessing a good oil potential. It has also been observed that a part of Iron, Nickel and Vanadium in the schists are incorporated into the organic matters. Nickel and Vanadium are into macrocycles which are porphyrins. A method for extracting and separating these porphyrins has been developped. 43 figs., 21 tabs., 58 refs. (author)

  7. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  8. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    Science.gov (United States)

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  9. In Situ Mapping of the Organic Matter in Carbonaceous Chondrites and Mineral Relationships

    Science.gov (United States)

    Clemett, Simon J.; Messenger, S.; Thomas-Keprta, K. L.; Ross, D. K.

    2012-01-01

    Carbonaceous chondrite organic matter represents a fossil record of reactions that occurred in a range of physically, spatially and temporally distinct environments, from the interstellar medium to asteroid parent bodies. While bulk chemical analysis has provided a detailed view of the nature and diversity of this organic matter, almost nothing is known about its spatial distribution and mineralogical relationships. Such information is nevertheless critical to deciphering its formation processes and evolutionary history.

  10. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter.

    Science.gov (United States)

    Liu, Chia-Chuan; Kar, Sandeep; Jean, Jiin-Shuh; Wang, Chung-Ho; Lee, Yao-Chang; Sracek, Ondra; Li, Zhaohui; Bundschuh, Jochen; Yang, Huai-Jen; Chen, Chien-Yen

    2013-11-15

    The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ(18)O-rich fluids may be associated with silicate and carbonate mineral released through water-rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Thallium and Silver binding to dissolved organic matter

    Science.gov (United States)

    Benedetti, M. F.; Martin, L.; Simonucci, C.; Viollier, E.

    2017-12-01

    Silver (Ag) and thallium (Tl) are potential contaminants at the vicinity of mining sites and are harmful pollutants. Silver can be found in mine but also as released by the dissolution of Silver nanoparticles, a major new emerging contaminant. Tl is both lithophilic and calcophilic elements and found in sulphur ores (associated with lead, zinc, antimony…) or in rocks containing K-feldspar. Speciation of Ag and Tl is poorly known mainly due to their low concentrations in aquatic environments. Review of Ag and Tl geochemistry clearly shows a lack of quantitative information about interactions with natural organic matter. Organic ligands could play an important role in Ag or Tl bioavailability, chemical reactivity (adsorption or photo oxidation inhibition or catalysis) and hence geochemical transfers. Based on equilibrium between two solutions that are separated by a selectively permeable membrane, the so-called "Donnan membrane technique" (DMT) provides a measure of free ion concentrations. Analytes measurements are performed by HR-ICP-MS Element 2 (Thermo Scientific). Experimental setup allows the Donnan equilibrium to be reached after 100 and 120 hours for Tl. Experiments performed with purified natural organic matter allow calculating complexation constants in multiple pH conditions. With this work, we contribute new data and interpretations to an active debate on Ag and Tl geochemical modeling. In conclusion, this work brings a new view on risk assessment for mining activities.

  12. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Sadeghi-Nassaj

    2018-02-01

    Full Text Available Background Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM. A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named “extractive” species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM. However, the effects of sea cucumbers on CDOM are still unknown. Methods During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (−holothurian only contained around 810 individuals of Anemonia sulcata, whereas the other tank (+holothurian also included 90 individuals of Holothuria tubulosa and Holothuria forskali. We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm and qualitative (spectral slopes optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H and –holothurians (−H. We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four –H tanks that contained only 80 individuals of A. sulcata. Results In the time-series, absorption coefficients at 325 nm (a325 and spectral slopes from 275 to 295 nm (S275−295 were significantly lower in the effluent of the +holothurian tank (average: 0.33 m−1 and 16 µm−1, respectively than in the effluent of the −holothurian tank (average: 0.69 m−1 and 34 µm−1, respectively, the former

  13. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  14. Characterization of Soil Organic Matter from African Dark Earth (AfDE) Soils

    Science.gov (United States)

    Plante, A. F.; Fujiu, M.; Ohno, T.; Solomon, D.; Lehmann, J.; Fraser, J. A.; Leach, M.; Fairhead, J.

    2014-12-01

    Anthropogenic Dark Earths are soils generated through long-term human inputs of organic and pyrogenic materials. These soils were originally discovered in the Amazon, and have since been found in Australia and in this case in Africa. While tropical soils are typically characterized by low soil organic matter (SOM) concentrations, African Dark Earths (AfDE) are black, highly fertile and carbon-rich soils formed through an extant but ancient soil management system. The objective of this study was to characterize the organic matter accumulated in AfDE and contrast it with non-AfDE soils. Characterization of bulk soil organic matter of several (n=11) AfDE and non-AfDE pairs of surface (0-15 cm) soils using thermal analysis techniques (TG-DSC-EGA) resulted in substantial differences in SOM composition and the presence of pyrogenic C. Such pyrogenic organic matter is generally considered recalcitrant, but the fertility gains in AfDE are generated by labile, more rapidly cycling pools of SOM. As a result, we characterized hot water- and pyrophosphate-extractable pools of SOM using fluorescence (EEM/PARAFAC) and high resolution mass spectrometry (FT-ICR-MS). EEM/PARAFAC data suggests that AfDE samples had a greater fraction of their DOM that was more humic-like than the paired non-AfDE samples. Similarly, FT-ICR-MS analyses of extracts suggest that differences among the sites analyzed were larger than between the paired AfDE and non-AfDE extracts. Overall, in spite of substantial differences in the composition of bulk SOM, the extractable fractions appear to be relatively similar between the AfDE and non-AfDE soils.

  15. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  16. Nature and reactivity of organic matter in argillaceous formations: example of the Callovo-Oxfordian of Bure (France)

    International Nuclear Information System (INIS)

    Michels, R.; Elie, M.; Faure, P.; Huault, V.; Martinez, L.; Bartier, D.; Fleck, S.; Hautevelle, Y.

    2004-01-01

    In carbon cycle models, it is admitted that less than 1% of produced organic carbon is transferred to the geological cycle as sedimentary organic matter (Tissot and Welte, 1984). Although, coal or petroleum source rocks are most well known, sedimentary organic matter also occurs in various concentrations throughout many different rock facies. Organic matter is therefore a witness of the record of environmental changes as well as biomass evolution through time. It is also a reliable tracer of diagenetic conditions, from sediment deposition to metamorphism and subsurface alteration. Especially in the case of argillaceous sediments, known for their potential proneness of organic matter, the study of fossil organic matter is able to unravel a large amount of information concerning the geological past (depositional conditions and preservation, paleo-environment, burial, thermal history) as well as the future (effects of induced thermal perturbation, oxidative alteration, biodegradation). We are presenting here data obtained on the Callovo-Oxfordian argillaceous formations of Bure (France), which are the target layers for the installation of a future laboratory. (authors)

  17. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols

    Science.gov (United States)

    Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.

    2012-04-01

    Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with

  18. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    Science.gov (United States)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher

  19. Selective depletion of organic matter in mottled podzol horizons

    NARCIS (Netherlands)

    Buurman, P.; Schellekens, J.F.P.; Fritze, H.; Nierop, K.G.J.

    2007-01-01

    Some well-drained podzols on quartz sands in the Netherlands and neighbouring Belgium and Germany show mottling in all horizons due to selective removal of organic matter. Phospholipid analysis and morphology of the mottles suggests that this removal is due to a combination of bacteria, fungi, and

  20. Degradation Mechanisms of Colloidal Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    -diffusible organic matter in a biofilm reactor. DH depends on the combined volumetric and surface hydraulic loading rate, Q2/(AV). In full-scale wastewater treatment plants, the degradation mechanism presented in this paper can explain important differences between the performance of trickling filters and RBC...

  1. Fluorescent dissolved organic matter in the continental shelf waters ...

    Indian Academy of Sciences (India)

    Fluorescent dissolved organic matter (FDOM) of southwestern Bay of Bengal surface water during southwest monsoon consisted five fluorophores, three humic-like and two protein-like. The humification index (HIX) and humic fluorophores, viz., visible (C), marine (M) and UV (A) humic-likes indicated, better than ...

  2. Mechanistic modelling of the vertical soil organic matter profile

    NARCIS (Netherlands)

    Braakhekke, M.C.

    2014-01-01

    Soil organic matter (SOM) constitutes a large global pool of carbon that may play a considerable role for future climate. The vertical distribution of SOM in the profile may be important due to depth-dependence of physical, chemical, and biological conditions, and links to physical processes

  3. Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland

    Science.gov (United States)

    Misz-Kennan, Magdalena

    2010-01-01

    Self-heating and self-combustion are currently taking place in some coal waste dumps in the Upper Silesian Coal Basin, Poland, e.g. the dumps at Rymer Cones, Starzykowiec, and the Marcel Coal Mine, all in the Rybnik area. These dumps are of similar age and self-heating and combustion have been occurring in all three for many years. The tools of organic petrography (maceral composition, rank, etc.), gas chromatography-mass spectrometry, and proximate and ultimate analysis are used to investigate the wastes. Organic matter occurs in quantities up to 85 vol.%, typically a few to several vol.%, in the wastes. All three maceral groups (vitrinite, liptinite, and inertinite) are present as unaltered and variously-altered constituents associated with newly-formed petrographic components (bitumen expulsions, pyrolytic carbon). The predominant maceral group is vitrinite with alterations reflected in the presence of irregular cracks, oxidation rims and, rarely, devolatilisation pores. In altered wastes, paler grey-vitrinite and/or coke dominates. The lack of plasticity, the presence of paler-coloured particles, isotropic massive coke, dispersed coked organic matter, and expulsions of bitumens all indicate that heating was slow and extended over a long time. Macerals belonging to other groups are present in unaltered form or with colours paler than the colours of the parent macerals. Based on the relative contents of organic compounds, the most important groups of these identified in the wastes are n-alkanes, acyclic isoprenoids, hopanes, polycyclic aromatic hydrocarbons (PAHs) and their derivatives, phenol and its derivatives. These compounds occur in all wastes except those most highly altered where they were probably destroyed by high temperatures. These compounds were generated mainly from liptinite-group macerals. Driven by evaporation and leaching, they migrated within and out of the dump. Their presence in some wastes in which microscopically visible organic matter is

  4. Pore water geochemistry and the oxidation of sedimentary organic matter: Hatteras Abyssal Plain 1981

    International Nuclear Information System (INIS)

    Heggie, D.; Lewis, T.; Graham, D.

    1985-01-01

    This report presents the pore water geochemistry from R/V an Endeavor cruise to an area of the Hatteras Abyssal Plain between 31 0 45' - 34 0 00'N and 69 0 37.5 - 72 0 07.5'W. The authors report on the down core variations of the products of organic matter oxidation, the stoichiometry of reactions and make a preliminary assessment of the rates of organic matter oxidation at several core locations. The authors found concentrations of total inorganic nitrogen species; nitrate, nitrite and ammonia in pore waters to be less than those predicted from a model of organic matter oxidation (Froelich et al. 1979) in sediments. The observations indicate that nitrogen is depleted over carbon as compared to typical marine organic matter. The down-core nitrate profiles over the study area were used to infer depths at which oxygen is near totally consumed in the sediments and hence to compute rates of oxygen consumption. The authors found oxygen consumption rates to vary by nearly an order of magnitude between core locations (1.7 - >15μmO 2 cm -2 yr -1 ). A simple model which combines the computed rates of oxidant consumption and the stoichiometry of organic matter oxidation was used to make estimates of organic carbon oxidation rates. These latter were found to vary between 1.3 and > 11.5 μm C cm -2 yr -1 . Highest carbon oxidation rates were found at the western boundary of the study area, and in all cases oxygen consumption was responsible for >85% of carbon oxidized. 11 references, 5 figures, 4 tables

  5. Origin of heat-induced structural changes in dissolved organic matter

    Czech Academy of Sciences Publication Activity Database

    Drastík, M.; Novák, František; Kučerík, J.

    2013-01-01

    Roč. 90, č. 2 (2013), s. 789-795 ISSN 0045-6535 Institutional support: RVO:60077344 Keywords : dissolved organic matter * humic substances * hydration * hysteresis Subject RIV: DF - Soil Science Impact factor: 3.499, year: 2013

  6. Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter.

    Science.gov (United States)

    Murata, Tomoyoshi

    2010-01-01

    The present study was performed to examine the effects of soluble organic matter and pH on the solubility of Bi in relation to inference with the behavior of metallic Bi dispersed in soil and water environments using EDTA, citric acid, tartaric acid, L-cysteine, soil humic acids (HA), and dissolved organic matter (DOM) derived from the soil organic horizon. The solubility of Bi by citric acid, tartaric acid, L-cysteine, HA, and DOM showed pH dependence, while that by EDTA did not. Bi solubility by HA seemed to be related to the distribution of pKa (acid dissociation constant) values of acidic functional groups in their molecules. That is, HA extracted at pH 3.2 solubilized Bi preferentially in the acidic range, while HA extracted at pH 8.4 showed preferential solubilization at neutral and alkaline pH. This was related to the dissociation characteristics of functional groups, their binding capacity with Bi, and precipitation of Bi carbonate or hydroxides. In addition to the dissociation characteristics of functional groups, the unique structural configuration of the HA could also contribute to Bi-HA complex formation. The solubility of Bi by naturally occurring DOM derived from the soil organic horizon (Oi) and its pH dependence were different from those associated with HA and varied among tree species.

  7. Investigation of water-soluble organic matter extracted from shales during leaching experiments

    Science.gov (United States)

    Zhu, Yaling; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.; Horsfield, Brian

    2017-04-01

    The huge volumes and unknown composition of flowback and produced waters cause major public concerns about the environmental and social compatibility of hydraulic fracturing and the exploitation of gas from unconventional reservoirs. Flowback and produced waters contain not only residues of fracking additives but also chemical species that are dissolved from the shales themselves during fluid-rock interaction. Knowledge of the composition, size and structure of dissolved organic carbon (DOC) as well as the main controls on the release of DOC are a prerequisite for a better understanding of these interactions and its effects on composition of flowback and produced water. Black shales from four different geological settings and covering a maturity range Ro = 0.3-2.6% were extracted with deionized water. The DOC yields were found to decrease rapidly with increasing diagenesis and remain low throughout catagenesis. Four DOC fractions have been qualitatively and quantitatively characterized using size-exclusion chromatography. The concentrations of individual low molecular weight organic acids (LMWOA) decrease with increasing maturity of the samples except for acetate extracted from the overmature Posidonia shale, which was influenced by hydrothermal brines. The oxygen content of the shale organic matter also shows a significant influence on the release of organic acids, which is indicated by the positive trend between oxygen index (OI) and the concentrations of formate and acetate. Based on our experiments, both the properties of the organic matter source and the thermal maturation progress of the shale organic matter significantly influence the amount and quality of extracted organic compounds during the leaching experiments.

  8. Use of isotopes in organic matter studies: a discussion illustrated by recent applications

    International Nuclear Information System (INIS)

    Warembourg, F.R.

    1982-01-01

    After a presentation of the various concepts leading to the advantageous use of isotope tracers in soil organic matter and related studies, a discussion is proposed around three main types of methods which are related to the time scale of the processes occurring in the soil organic matter transformations. Examples help to illustrate the purpose. Static methods describing the state of soil organic matter such as carbon dating. Long term dynamic studies involving the use of labelled plant materials and their applications in situ. Short term dynamic studies as an insight into the short term lived processes such as biotic and abiotic energetic activivation, flushes, priming effect, nitrogen fixation. More than an exhaustive enumeration of the litterature, the main objective of this presentation will tend to be a comprehensive analysis of the many problems arising from the study of soil activities and of the modern approaches of investigation. (Author) [pt

  9. Phytoplankton Do Not Produce Carbon-Rich Organic Matter in High CO2 Oceans

    Science.gov (United States)

    Kim, Ja-Myung; Lee, Kitack; Suh, Young-Sang; Han, In-Seong

    2018-05-01

    The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here we evaluated the generality of C-rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.

  10. Rate of Decomposition of Organic Matter in Soil as Influenced by Repeated Air Drying-Rewetting and Repeated Additions of Organic Material

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1974-01-01

    Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized...... of the treatment was least in the soil which had been incubated with the labeled material for the longest time. Additions of unlabeled, decomposable organic material also increased the rate of decomposition of the labeled organic matter. The evolution of labeled CO2 during the 1st month of incubation after...... addition was in some cases 4–10 times larger than the evolution from the controls. During the continued incubation the evolution decreased almost to the level of the controls, indicating that the effect was related to the increased biological activity in the soils during decomposition of the added material...

  11. Effectivity of the Earthworms Pheretima hupiensis, Eudrellus sp. and Lumbricus sp. on the Organic Matter Decomposition Process

    Directory of Open Access Journals (Sweden)

    Ea Kosman Anwar

    2009-05-01

    Full Text Available The earthworms are the one of soil fauna component in soil ecosystem have an important role in organic matter decomposition procces. The earthworm feed plant leaf and plant matter up to apart and dissolved. Earthworm metabolisms produce like faeces that mixed with decomposed organic matter mean vermicompost. The vermicompost fertility varies because of some kind of earthworm differ in “niche” and attitude. The experiment was to study the effectivity of earthworm on organic matter decomposition which has been conducted in Soil Biological and Healthy Laboratory and Green House of Soil Research Institute Bogor, during 2006 Budget Year. The three kind of earthworms i.e Pheretima hupiensis, Lumbricus sp. and Eudrellus sp. combined with three kind of organic matter sources i.e rice straw, trash and palm oil plant waste (compost heap. The result shows that the Lumbricus sp. are the most effective decomposer compared to Pheretima hupiensis and Eudrellus sp. and the organic matter decomposed by Lumbricus sp. as followed: market waste was decomposed of 100%, palm oil empty fruit bunch (compost heap 95.8 % and rice straw 84.9%, respectively. Earthworm effectively decreased Fe, Al, Mn, Cu dan Zn.

  12. Light fraction of soil organic matter under different management ...

    African Journals Online (AJOL)

    A study on light fraction organic matter was carried out on the soil from three different management systems namely; Gmelina arborea, Tectona grandis and Leucaena leucocephala plantations in the University of Agriculture, Abeokuta Nigeria. Soil samples were collected in each of the three management site at five auger ...

  13. The NAA of trace elements and its application in the identification of the type of sedimentary organic matter

    International Nuclear Information System (INIS)

    Tong Chunhan; Li Guodong

    1998-01-01

    The type of sedimentary organic matter is an important parameter in evaluating an oil or gas field. Since the conventional organic geochemistry methods for determining the type meet unsurmountable difficulties when the maturity of organic matter is high, a new method to identify the type according to V and Ni contents in soluble organic matter based on NAA has been developed. Details of the method are introduced and an applied example is given

  14. Dynamics of organic matter in a Mediterranean mixed forest exposed to chronic gamma radiation

    International Nuclear Information System (INIS)

    Tabone, E.; Poinsot-Balaguer, N.

    1987-01-01

    An area of mixed forest [white oak (Quercus pubescens W.) and evergreen oak (Quercus ilex L.)] in Cadarache (Southern France) has been irradiated for 14 years by a 137 Cs source. Radiation effects on soil organic matter were investigaed at five stations along the gradient towards the source and in a control area of non-irradiatd forest. The highest radiation levels (60-100 mGy x h -1 ) killed trees and shrubs so that there were no ongoing litter inputs to soils in the three nearest stations to the source. Inputs from annuals and radiation tolerant perennials were insignificant in these sites. At lower radiation levels (15 mGy x h -1 ) litter standing crops are increasing. The carbon and nitrogen balance between input and the decomposition of organic matter showed two main patterns. In the areas without litter input the total C and N standing crops were significantly lower than in areas receiving litter, though maintained at a higher level than expected because of the residual organic matter from dead plants. Water trickling down the slope was also a source of N inputs. Principal components analysis showed ordination of the sites according to levels of irradiation and descriminating between C and N concentrations in sites according to litter inputs. On a basis of soil water contents the stations are located on the first axis according to soil organic matter concentrations. Irradiation has a range of direct and indirect effects on soil organic matter but lack of litter input is a key factor. (author)

  15. Storage and turnover of organic matter in soil

    Energy Technology Data Exchange (ETDEWEB)

    Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

    2008-07-15

    Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect

  16. Storage and export of organic matter in a headwater stream: responses to long-term detrital manipulations

    Science.gov (United States)

    Sue L. Eggert; J. Bruce Wallace; Judy L. Meyer; Jackson R. Webster

    2012-01-01

    Riparian habitats provide organic matter inputs that influence stream biota and ecosystem processes in forested watersheds. Over a 13-yr period, we examined the effects of litter exclusion, small- and large-wood removal, and the addition of leaf species of varying detrital quality on organic matter standing crop and export of organic and inorganic particles in a high-...

  17. The effect of cellular organic matter produced by cyanobacteria Microcystis aeruginosa on water purification

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Pivokonská, Lenka; Bäumeltová, Jitka; Bubáková, Petra

    2009-01-01

    Roč. 57, č. 2 (2009), s. 121-129 ISSN 0042-790X R&D Projects: GA ČR GA103/07/0295 Institutional research plan: CEZ:AV0Z20600510 Keywords : AOM (Algal Organic Matter) * COM (Cellular Organic Matter) * Destabilisation * Aggregation * Reaction conditions * Water treatment Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2009 http://versita.metapress.com/content/808770041t311071/fulltext.pdf

  18. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.

    Science.gov (United States)

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A

    2017-03-01

    The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios

  19. Iron oxides and quality of organic matter in sugarcane harvesting systems

    Directory of Open Access Journals (Sweden)

    Diogo Mazza Barbieri

    2014-08-01

    Full Text Available Improvements in working conditions, sustainable production, and competitiveness have led to substantial changes in sugarcane harvesting systems. Such changes have altered a number of soil properties, including iron oxides and organic matter, as well as some chemical properties, such as the maximum P adsorption capacity of the soil. The aim of this study was to characterize the relationship between iron oxides and the quality of organic matter in sugarcane harvesting systems. For that purpose, two 1 ha plots in mechanically and manually harvested fields were used to obtain soil samples from the 0.00-0.25 m soil layer at 126 different points. The mineralogical, chemical, and physical results were subjected to descriptive statistical analyses, such as the mean comparison test, as well as to multivariate statistical and principal component analyses. Multivariate tests allowed soil properties to be classified in two different groups according to the harvesting method: manual harvest with the burning of residual cane, and mechanical harvest without burning. The mechanical harvesting system was found to enhance pedoenvironmental conditions, leading to changes in the crystallinity of iron oxides, an increase in the humification of organic matter, and a relative decrease in phosphorus adsorption in this area compared to the manual harvesting system.

  20. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    Science.gov (United States)

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  1. Challenges in modelling dissolved organic matter dynamics in agricultural soil using DAISY

    DEFF Research Database (Denmark)

    Gjettermann, Birgitte; Styczen, Merete; Hansen, Hans Christian Bruun

    2008-01-01

    pedotransfer functions taking into account the soil content of organic matter, Al and Fe oxides. The turnover of several organic matter pools including one DOM pool are described by first-order kinetics. The DOM module was tested at field scale for three soil treatments applied after cultivating grass....... In the subsoil, the observed concentrations of DOC were steadier and the best simulations were obtained using a high k. The model shows that DOC and DON concentrations are levelled out in the subsoils due to soil buffering. The steady concentration levels were based on the Ceq for each horizon and the kinetic...

  2. Bacterial cell wall preservation during organic matter diagenesis in sediments off Peru

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Niggemann, Jutta; Jørgensen, Bo Barker

    BACTERIAL CELL WALL PRESERVATION DURING ORGANIC MATTER DIAGENESIS IN SEDIMENTS OFF PERU The spatial distribution of total hydrolysable amino acids, total hydrolysable amino sugars and amino acid enantiomers (D- and L-forms) were investigated in surface sediments at 20 stations in the Peru margin: 9......°45 S - 13º32 S. The objective of this study was to assess the preservation of bacterial cell walls during diagenesis of organic matter. Bacterial cell walls were traced by analysis of biomarkers uniquely produced by bacteria (D-amino acids and muramic acid). The diagenetic status of the sediments......:00 Presentation is given by student: No...

  3. Photobiogeochemistry of organic matter. Principles and practices in water environments

    Energy Technology Data Exchange (ETDEWEB)

    Mostofa, Khan M.G. [Chinese Academy of Sciences, Guiyang, Guizhou (China). Inst. of Geochemistry; Yoshioka, Takahito [Kyoto Univ. (Japan). Field Science Education; Mottaleb, M. Abdul [Northwest Missouri State Univ., MO (United States). Dept. of Chemistry and Physics; Vione, Davide (eds.) [Turin Univ. (Italy). Dipt. di Chimica Analitica

    2013-03-01

    Gives a comprehensive account of photo and biological processes of key biogeochemical functions and their interrelations in the aquatic environment. Discusses essential issues refering to the aquatic environment. Designed as a study text for students. Photoinduced processes, caused by natural sunlight, are key functions for sustaining all living organisms through production and transformation of organic matter (OM) in the biosphere. Production of hydrogen peroxide (H2O2) from OM is a primary step of photoinduced processes, because H2O2 acts as strong reductant and oxidant. It is potentially important in many aquatic reactions, also in association with photosynthesis. Allochthonous and autochthonous dissolved organic matter (DOM) can be involved into several photoinduced or biological processes. DOM subsequently undergoes several physical, chemical, photoinduced and biological processes, which can be affected by global warming. This book is uniquely structured to overview some vital issues, such as: DOM; H2O2 and ROOH; HO x; Degradation of DOM; CDOM, FDOM; Photosynthesis; Chlorophyll; Metal complexation, and Global warming, as well as their mutual interrelationships, based on updated scientific results''.

  4. Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion?

    Science.gov (United States)

    Hulatt, Chris J; Thomas, David N

    2010-11-01

    Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.

  5. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    International Nuclear Information System (INIS)

    Nagy, B.; Rigali, M.J.; Davis, D.W.; Parnell, J.

    1991-01-01

    Some of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the re-solidified, graphitic bituminous organics at Oklo thus enhanced radionuclide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lanthanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pre-treated nuclear waste warrants further investigation. (author)

  6. Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain river

    Science.gov (United States)

    Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay

    2010-01-01

    We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...

  7. Rate of uptake and distribution of Hg in dissolved organic carbon compounds in darkwater ecosystems by ICP-MS and enriched stable isotope spiking

    International Nuclear Information System (INIS)

    Telmer, Kevin; Dario Bermudez, Rafael; Veiga, Marcello M.; Souza, Terezinha Cid da

    2001-01-01

    The role of natural organic acids on mercury binding, transportation, net uptake rates and possibly net methylation rates will be evaluated by tracing these processes with isotope enriched mercury and ICP-MS technology. The correlation between dissolved organic matter and Hg in waters is well documented. It appears that organic acids can react with mercury residing in or emitted from different sources such as soils (particularly hydromorphic soils), laterites, natural degassing, forest fires, fuel combustion, gold mining activities, etc. to form soluble Hg-organo-complexes. The formation of these complexes is believed to greatly enhance Hg transport and be an important preliminary step in the formation of Methyl-Hg and biological uptake. The rates of these reactions and the key organic compounds involved in mercury binding will be determined by reacting isotopically-enriched Hg with samples containing a variety of concentrations and types of organic acids and subsequently analysing both reactants and organisms exposed to the reactants (bioassays) for Hg isotopes by ICP-MS. The Hg spike will allow the precise determination of rates of uptake and the most active agents of uptake. Initially, the method will be used to examine total Hg uptake and distribution but if technological limitations are overcome, this same approach can be used to determine net rates of methylation and net MeHg uptake. After the method is validated the experimental design can be altered to test the relative effects of such things as the addition of CO 2 (pH change), or adding a substrate such as Fe-Mn oxyhydroxides. The addition of synthetic materials such as mulched automobile tires, can also be tested with the goal developing a pragmatic remedial method for Hg containment. Ultimately, this research should contribute to an understanding of mercury mobilization, transport and bio-concentration mechanisms, and provide a basis for developing management and treatment strategies. Emphasis will be

  8. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico

    2017-04-19

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes in many marine environments more than half of the total activity. This high proportion causes an uncoupling between hydrolysis rates and the actual bacterial activity. However, we do not know what factors control the proportion of dissolved relative to total EEA, nor how this may change in the future ocean. To resolve this, we performed laboratory experiments with water from the Great Barrier Reef (Australia) to study the effects of temperature and dissolved organic matter sources on EEA and the proportion of dissolved EEA. We found that warming increases the rates of organic matter hydrolysis and reduces the proportion of dissolved relative to total EEA. This suggests a potential increase of the coupling between organic matter hydrolysis and heterotrophic activities with increasing ocean temperatures, although strongly dependent on the organic matter substrates available. Our study suggests that local differences in the organic matter composition in tropical coastal ecosystems will strongly affect the proportion of dissolved EEA in response to ocean warming.

  9. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    Science.gov (United States)

    Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...

  10. The Changes of P-fractions and Solubility of Phosphate Rock in Ultisol Treated by Organic Matter and Phosphate Rock

    Directory of Open Access Journals (Sweden)

    Heru Bagus Pulunggono

    2012-09-01

    Full Text Available Phosphorus (P is one of the essential elements for plant, however, its availability is mostly very low in acid soils. It is well documented that application of phosphate rock and organic matter are able to change the level of availability of P-form in acid soils. The objective of the research were to evaluate the changes of P-fractions ( resin-P, NaHCO3-Pi, and NaHCO3-Po and phosphate rock dissolution which were induced by application of organic matter (Imperata cylindrica, Pueraria javanica, dan Colopogonium mucunoides and phosphate rock in Utisol Lampung. The experiment was designed in a completely randomized design with three factors and three replications. The first factor was the types of organic matter (I. cylindrica, P. javanica, and C. mucunoides, the second factor was the rate of organic matter (0, 2.5, and 5%, and the third factor was the rate of phosphate rock (0, 40, and 80 mg P kg-1. The results showed that in the rate of 0 and 1% organic matter, the type of organic matter did not affect P-fraction of NaHCO3-Pi, but in the rate of 2.5 and 5%, NaHCO3-Pi due to application of P. javanica, and C. mucunoides higher than due to application of I. cylindrica. However, the increasing rate of organic matter increased NaHCO3-Pi. Then, P-fraction of Resin-Pi was affected by the type of organic matter, the rate of organic matter, and the rate of phosphate rock, respectively. P-fraction of resin-Pi due to application of P. javanica, and C. mucunoides was higher than due to application of I. cylindrica, but the effect of P. javanica, and C. mucunoides was not different. Increasing the rate of organic matter and phosphate rock increased P-fraction of resin-Pi and NaHCO3-Pi, but P-fraction of NaHCO3-Po was not affected by all treatments. Meanwhile, dissolution of phosphate rock was affected by the kind of organic matter and soil reaction. In the rate of 5% organic matter, dissolution of phosphate rock by application of I. cylindrica (70% was higher

  11. Using organic matter to increase soil fertility in Burundi: potentials and limitations

    Science.gov (United States)

    Kaboneka, Salvator

    2015-04-01

    Agriculture production in Burundi is dominated by small scale farmers (0.5 ha/household) who have only very limited access to mineral inputs. In the past, farmers have relied on fallow practices combined with farm yard manures to maintain and improve soil fertility. However, due to the high population growth and high population density (370/km²), fallow practices are nowadays no longer feasible, animal manures cannot be produced in sufficient quantities to maintain soil productivity and food insecurity has become a quasi permanent reality. Most Burundian soils are characterized by 1:1 types of clay minerals (kaolinite) and are acidic in nature. Such soils are of very low cation exchange capacity (CEC). To compare the effect of % clays and % organic matter (% C), correlations tests have been conducted between the two parameters and the CEC. It was found that in high altitude kaolinitic and acidic soils, CEC was highly correlated to % C and less correlated to % clay, suggesting that organic matter could play an important role in improving fertility and productivity of these soils. Based on these findings, additional studies have been conducted to evaluate the fertilizer and soil amendment values of animal manures (cattle, goat, chicken), and leguminous (Calliandra calothyrsus, Gliricidia sepium, Senna simea, Senna spectabilis) and non-leguminous (Tithonia diversifolia) foliar biomass. It was observed that chicken manure significantly reduces Al3+ levels in acidic soils, while Tithonia diversifolia outperforms in nutrient releases compared to the commonly known leguminous agroforestry shrubs and trees indicated above. Although the above mentioned organic sources can contribute to the soil nutrients supply, the quantities potentially available on farm are generally small. The only solution is to supplement these organic sources with other organic sources (compost, organic household waste), chemical fertilizers and mineral amendments (lime) to achieve Integrated Soil

  12. Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants

    International Nuclear Information System (INIS)

    D'Souza, T.J.

    1980-10-01

    Studies were undertaken to examine the influence of interaction of clay minerals and organic matter on the uptake of radiocesium by two pasture plants, namely, ryegrass (Lolium italicum L) and red clover (Trifolium pratense L). The clay minerals used were bentonite (2.1 layer type) and kaolinite (1/1 layer type). Mixtures of clay and sand were prepared with 0.5, 10, 20 and 40 per cent clay and treated with organic matter (forest turf) at 0,5 and 10 per cent of the clay-sand mixtures. Results indicated that 134 Cs uptake by plants grown on the kaolinite-clay medium was greater than that on the bentonite-clay medium at a given organic matter level. Increasing the clay content of mixtures resulted in reduction in 134 Cs uptake by both plant species. The plant uptake of 134 Cs increased with additions of organic matter at a given clay content. (author)

  13. Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests.

    Directory of Open Access Journals (Sweden)

    Nina Siebers

    Full Text Available The impact of termites on nutrient cycling and tropical soil formation depends on their feeding habits and related material transformation. The identification of food sources, however, is difficult, because they are variable and changed by termite activity and nest construction. Here, we related the sources and alteration of organic matter in nests from seven different termite genera and feeding habits in the Terra Firme rainforests to the properties of potential food sources soil, wood, and microepiphytes. Chemical analyses comprised isotopic composition of C and N, cellulosic (CPS, non-cellulosic (NCPS, and N-containing saccharides, and molecular composition screening using pyrolysis-field ionization mass spectrometry (Py-FIMS. The isotopic analysis revealed higher soil δ13C (-27.4‰ and δ15N (6.6‰ values in nests of wood feeding Nasutitermes and Cornitermes than in wood samples (δ13C = -29.1‰, δ15N = 3.4‰, reflecting stable-isotope enrichment with organic matter alterations during or after nest construction. This result was confirmed by elevated NCPS:CPS ratios, indicating a preferential cellulose decomposition in the nests. High portions of muramic acid (MurAc pointed to the participation of bacteria in the transformation processes. Non-metric multidimensional scaling (MDS revealed increasing geophagy in the sequence Termes < Embiratermes < Anoplotermes and increasing xylophagy for Cornitermes < Nasutitermes., and that the nest material of Constrictotermes was similar to the microepiphytes sample, confirming the report that Constrictotermes belongs to the microepiphyte-feeders. We therewith document that nest chemistry of rainforest termites shows variations and evidence of modification by microbial processes, but nevertheless it primarily reflects the trophic niches of the constructors.

  14. Organic matter and soil structure in the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  15. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    Falck, W.E.

    1989-01-01

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and protons and metal cations. A concise definition of natural organic matter is given and their properties are outlined. These materials are macromolecules which exhibit a polyelectrolyte character owing to numerous dissociable functional groups which are attached to their carbon backbone or from integral parts of the structure. The polyelectrolyte character is thought to be responsible for their conformation, hydrogen bonding or bridging by metal cations between subunits being important mechanisms. Environmental parameters like pH and ionic strength thus will have profound effects on the conformation of natural organic matter, the properties of which can change from being a flexible polymer to being a rigid gel. Binding mechanisms and binding strengh are discussed and an overview of relevant techniques of investigation is given. This work is part of the Commission's Mirage project - Phase 2, research area Geochemistry of actinides and fission products in natural aquifer systems

  16. A review of observations of organic matter in fogs and clouds: Origin, processing and fate

    Science.gov (United States)

    Herckes, Pierre; Valsaraj, Kalliat T.; Collett, Jeffrey L.

    2013-10-01

    While fog and cloud composition has been studied for decades, most of the research was limited to inorganic species and fog acidity. Recently the focus has shifted towards organic matter in the atmospheric aqueous phase of fogs and clouds: its origin, reactivity and fate. An impressive number of fog and cloud chemistry observational studies have been performed over the last decade throughout the world. In the present work we will review the state of knowledge of atmospheric organic matter processing by fogs, with a focus on field observations. We start by reviewing observational studies in general and then discuss our knowledge on the occurrence of organic matter in fogs, its solubility, characterization and molecular speciation. Organic carbon concentrations can vary widely from approximately 1 mg C/L in remote marine environments to more than 100 mg C/L in polluted radiation fogs, accounting for a substantial part of fogwater solutes. The carbonaceous material can enter the droplets from the gas and particle phase and the scavenging behavior of fogs will be detailed. Observational studies showed evidence of aqueous phase transformation of organic material, in particular secondary organic aerosol (SOA) generation, in fog. Recent observations of biological material in fog suggest also an impact of biological processing within the droplets on fog organic matter. The review will end with a discussion of the impact of fog on the deposition fluxes of organic material and hence its atmospheric lifetime.

  17. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  18. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil

    Science.gov (United States)

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a 13C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of 12CO2 and 13CO2 were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum. PMID:21753801

  19. Ranking metrics in gene set enrichment analysis: do they matter?

    Science.gov (United States)

    Zyla, Joanna; Marczyk, Michal; Weiner, January; Polanska, Joanna

    2017-05-12

    There exist many methods for describing the complex relation between changes of gene expression in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter, which could affect the final result, is the choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor results. In this work 28 benchmark data sets were used to evaluate the sensitivity and false positive rate of gene set analysis for 16 different ranking metrics including new proposals. Furthermore, the robustness of the chosen methods to sample size was tested. Using k-means clustering algorithm a group of four metrics with the highest performance in terms of overall sensitivity, overall false positive rate and computational load was established i.e. absolute value of Moderated Welch Test statistic, Minimum Significant Difference, absolute value of Signal-To-Noise ratio and Baumgartner-Weiss-Schindler test statistic. In case of false positive rate estimation, all selected ranking metrics were robust with respect to sample size. In case of sensitivity, the absolute value of Moderated Welch Test statistic and absolute value of Signal-To-Noise ratio gave stable results, while Baumgartner-Weiss-Schindler and Minimum Significant Difference showed better results for larger sample size. Finally, the Gene Set Enrichment Analysis method with all tested ranking metrics was parallelised and implemented in MATLAB, and is available at https://github.com/ZAEDPolSl/MrGSEA . Choosing a ranking metric in Gene Set Enrichment Analysis has critical impact on results of pathway enrichment analysis. The absolute value of Moderated Welch Test has the best overall sensitivity and Minimum Significant Difference has the best overall specificity of gene set analysis. When the number of non-normally distributed genes is high, using Baumgartner

  20. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    Science.gov (United States)

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  1. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    Science.gov (United States)

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  2. A divergent heritage for complex organics in Isheyevo lithic clasts

    Science.gov (United States)

    van Kooten, Elishevah M. M. E.; Nagashima, Kazuhide; Kasama, Takeshi; Wampfler, Susanne F.; Ramsey, Jon P.; Frimann, Søren; Balogh, Zoltan I.; Schiller, Martin; Wielandt, Daniel P.; Franchi, Ian A.; Jørgensen, Jes K.; Krot, Alexander N.; Bizzarro, Martin

    2017-05-01

    Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus, understanding the origin of COM, including their formation pathway(s) and environment(s), is critical to elucidate the origin of life on Earth as well as assessing the potential habitability of exoplanetary systems. The Isheyevo CH/CBb carbonaceous chondrite contains chondritic lithic clasts with variable enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data are complemented by electron microprobe analyses of the clast mineral chemistry and bulk Mg and Cr isotopes obtained by inductively coupled plasma and thermal ionization mass spectrometry, respectively (MC-ICPMS and TIMS). Weakly hydrated (A) clasts largely consist of Mg-rich anhydrous silicates with local hydrated veins composed of phyllosilicates, magnetite and globular and diffuse organic matter. Extensively hydrated clasts (H) are thoroughly hydrated and contain Fe-sulfides, sometimes clustered with organic matter, as well as magnetite and carbonates embedded in a phyllosilicate matrix. The A-clasts are characterized by a more 15N-rich bulk nitrogen isotope composition (δ15N = 200-650‰) relative to H-clasts (δ15N = 50-180‰) and contain extremely 15N-rich domains with δ15N < 5000‰. The D/H ratios of the clasts are correlated with the degree of clast hydration and define two distinct populations, which we interpret as reflecting mixing between D-poor fluid(s) and distinct organic endmember components that are variably D-rich. High-resolution N isotope data of 15N

  3. Adsorption of organic matter contained in industrial phosphoric acid onto bentonite: Batch contact time and kinetic study

    International Nuclear Information System (INIS)

    Mellah, Abdelhamid

    1992-12-01

    The soluble organic matter present in industrial phosphoric acid can strongly affect the uranium recovery during its solvent extraction by forming stable foams and emulsions. The removal of these organics is an important step both for the production of decontaminated fertilizers and the successful recovery of uranium. The equilibrium isotherms of organic matter adsorption onto bentonite show that the data correlated well with freundlich's model and that the adsorption is physical in nature. the maximum monomolecular capacity (Qo) according to the Langmuir model is 153 mg/g for an initial organic matter concentration of 251.5 mg/1, at 30 oC. The operating parameters (agitation speed, solid/liquid ratio, temperature, particle size and initial organic matter concentration) influenced the rate of adsorption. The adsorption isotherm of uranium onto bentonite exhibits and anomalous shape similar to the Z-type isotherm reported by Giles et al

  4. Effects of cattle and poultry manures on organic matter content and ...

    African Journals Online (AJOL)

    hope&shola

    ferrallitic soils amended with cattle and poultry manures under cassava (Manihot esculenta Crantz) cultivation. Therefore ... The manure treatment significantly increased the soil organic matter contents from ...... Tropical (CIAT), Cali, Colombia.

  5. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil

    Science.gov (United States)

    Kogut, B. M.; Yashin, M. A.; Semenov, V. M.; Avdeeva, T. N.; Markina, L. G.; Lukin, S. M.; Tarasov, S. I.

    2016-01-01

    The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2-1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3-4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44-70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2-1, 0.5-0.25, and fractions to the total C0 reserve are 14-21%; the contributions of each of the other fractions are 4-12%. The chemically labile and biologically active components of humic substances reflect the quality changes of soil organic matter under agrogenic impacts. A conceptual scheme has been proposed for the subdivision of soil organic matter into the active, slow (intermediate), and passive pools. In the humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6-11, 34-65, and 26-94% of the total Corg, respectively.

  6. Long-term citrus organic farming strategy results in soil organic matter recovery

    Science.gov (United States)

    Novara, Agata; Pereira, Paulo; Barone, Ettore; Giménez Morera, Antonio; Keesstra, Saskia; Gristina, Luciano; Jordán, Antonio; Parras-Alcantara, Luis; Cerdà, Artemi

    2017-04-01

    ABSTRACT Soils play a key role in the Earth System (Keesstra et al., 2012; Brevick et al., 2015). Soils are a key resource for the human societies (Mol and Keesstra, 2012) and they are relevant to achieve the sustainability such as the United Nations Goals highlight (Keesstra et al., 2016). Agriculture soils, especially those under conventional tillage, are prone to organic matter mineralization, soil erosion, compaction and increase of greenhouse gases emission (Novara et al., 2011; Bruun et al., 2015; de Moraes et al., 2015; Choudhury et al., 2016; del Mar et al., 2016). The adoption of organic farming and sustainable management practices may provide a sustainable crop productivity, and in the meanwhile mitigate the negative impact of agriculture on ecosystem services benefits (Laudicina et al., 2015; Parras-Alcantara et al., 2015; 2016). The aim of this study was to examine, under field conditions, the long-term changes of soil organic matter under organic farming management in citrus orchards in Mediterranean environment and evaluate the ecosystem service on C sequestration in terms of economic benefits. The research was carried out at the Alcoleja Experimental Station located in the Cànyoles river watershed in the Eastern Spain on 45year old citrus plantation. Soil Organic Matter (SOM) content was monitored for 20 years at 6 different soil depth. The profitability of citrus plantation was estimated under conventional and organic management. Results showed that SOM in the 0-30 cm soil depth was the double after 20 years of organic farming management, ranging from 0.8 g kg-1 in 1995 to 1.5 g kg-1 in 2006. The highest SOM increase was in the top soil layer (368% of SOM increase in comparison to the initial SOM content) and decreased with soil depth. The effect of organic farming was relevant after 5 years since land management change, indicating that in Mediterranean environment the duration of long term studies should be higher than five years and proper policy

  7. CO2 Losses from Terrestrial Organic Matter through Photodegradation

    Science.gov (United States)

    Rutledge, S.; Campbell, D. I.; Baldocchi, D. D.; Schipper, L. A.

    2010-12-01

    Net ecosystem exchange (NEE) is the sum of CO2 uptake by plants and CO2 losses from both living plants and dead organic matter. In all but a few ecosystem scale studies on terrestrial carbon cycling, losses of CO2 from dead organic matter are assumed to be the result of microbial respiration alone. Here we provide evidence for an alternative, previously largely underestimated mechanism for ecosystem-scale CO2 emissions. The process of photodegradation, the direct breakdown of organic matter by solar radiation, was found to contribute substantially to the ecosystem scale CO2 losses at both a bare peatland in New Zealand, and a summer-dead grassland in California. Comparisons of daytime eddy covariance (EC) data with data collected at the same time using an opaque chamber and the CO2 soil gradient technique, or with night-time EC data collected during similar moisture and temperature conditions were used to quantify the direct effect of exposure of organic matter to solar radiation. At a daily scale, photodegradation contributed up to 62% and 92% of summer mid-day CO2 fluxes at the de-vegetated peatland and at the grassland during the dry season, respectively. Irradiance-induced CO2 losses were estimated to be 19% of the total annual CO2 loss at the peatland, and almost 60% of the dry season CO2 loss at the grassland. Small-scale measurements using a transparent chamber confirmed that CO2 emissions from air-dried peat and grass occurred within seconds of exposure to light when microbial activity was inhibited. Our findings imply that photodegradation could be important for many ecosystems with exposed soil organic matter, litter and/or standing dead material. Potentially affected ecosystems include sparsely vegetated arid and semi-arid ecosystems (e.g. shrublands, savannahs and other grasslands), bare burnt areas, agricultural sites after harvest or cultivation (especially if crop residues are left on the surface), deciduous forests after leaf fall, or ecosystems

  8. Nonlinearities and transit times in soil organic matter models: new developments in the SoilR package

    Science.gov (United States)

    Sierra, Carlos; Müller, Markus

    2016-04-01

    SoilR is an R package for implementing diverse models representing soil organic matter dynamics. In previous releases of this package, we presented the implementation of linear first-order models with any number of pools as well as radiocarbon dynamics. We present here new improvements of the package regarding the possibility to implement models with nonlinear interactions among state variables and the possibility to calculate ages and transit times for nonlinear models with time dependencies. We show here examples on how to implement model structures with Michaelis-Menten terms for explicit microbial growth and resource use efficiency, and Langmuir isotherms for representing adsorption of organic matter to mineral surfaces. These nonlinear terms can be implemented for any number of organic matter pools, microbial functional groups, or mineralogy, depending on user's requirements. Through a simple example, we also show how transit times of organic matter in soils are controlled by the time-dependencies of the input terms.

  9. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles.

    Science.gov (United States)

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Byung J; An, Kwang Guk; Kim, Sang Don

    2011-06-01

    The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.

  10. Formation and Stability of Microbially Derived Soil Organic Matter

    Science.gov (United States)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  11. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) SOURCE CHARACTERIZATION IN THE LOUISIANA BIGHT

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) in the Mississippi plume region may have several distinct sources: riverine (terrestrial soils), wetland (terrestrial plants), biological production (phytoplankton, zooplankton, microbial), and sediments. Complex mixing, photodegradati...

  12. Dynamics of the organic matter from the soil resulting from the changes of the Amazon northeastern ground use

    International Nuclear Information System (INIS)

    Camargo, Plinio Barbosa de; Martinelli, Luiz Antonio; Victoria, Reynaldo Luiz; Trumbore, Susan

    1997-01-01

    Aiming a better understanding of the problems related with carbon dynamic in the Amazon soils, soil profiles have been sampled for the determination of: soil carbon content and the variations between areas covered with natural forests, pastures and brush woods; average permanence time of the soil organic matter and the variations between different vegetal covering types; soil organic matter quality in terms of the refractory characteristics and the variation resulting from the changes in the vegetation type. The obtained answers define the soil organic matter dynamic itself. Therefore, the organic matter elementary analysis has been combined, by determining the carbon concentration, with the use of carbon natural isotope 14 C and the stable 13 C

  13. Search for EPR markers of the history and origin of the insoluble organic matter in extraterrestrial and terrestrial rocks

    Science.gov (United States)

    Gourier, Didier; Binet, Laurent; Scrzypczak, Audrey; Derenne, Sylvie; Robert, François

    2004-05-01

    The insoluble organic matter (IOM) of three carbonaceous meteorites (Orgueil, Murchison and Tagish Lake meteorites) and three samples of cherts (microcrystalline SiO 2 rock) containing microfossils with age ranging between 45 million years and 3.5 billion years is studied by electron paramagnetic resonance (EPR). The age of the meteorites is that of the solar system (4.6 billion years). The purpose of this work was to determine the EPR parameters, which allow us to discriminate between biogenic and extra terrestrial origin for the organic matter. Such indicators should be relevant for the controversy regarding the biogenicity of the organic matter in the oldest cheroot (3.5 billion years) and in Martian meteorites containing microbe-like microstructures. The organic matter of meteorites contains a high concentration of diradicaloid moieties characterised by a diamagnetic ground state S=0 and a thermally accessible triplet state S=1. The three meteorites exhibit the same singlet-triplet gap (ST gap) Δ E≈0.1 eV. To the best of our knowledge, such diradicaloids are unknown in insoluble organic matter of terrestrial origin. We have also shown that the EPR linewidth of insoluble organic matter in cherts and coals decrease logarithmically with the age of the organic matter. We conclude from this result that the organic matter in the oldest cherts (3.5 billion years) has the same age as their SiO 2 matrix, and is not due to a latter contamination by bacteria, as was recently found in meteoritic samples.

  14. Influence of humified organic matter on copper behavior in acid polluted soils

    International Nuclear Information System (INIS)

    Fernandez-Calvino, D.; Soler-Rovira, P.; Polo, A.; Arias-Estevez, M.; Plaza, C.

    2010-01-01

    The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg -1 and Cu concentrations from 11 to 666 mg kg -1 . The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg -1 , and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter. - The effect of organic matter quality on Cu adsorption in acid soils was low compared with other soil characteristics such as pH or degree of Cu saturation.

  15. Disturbance of Soil Organic Matter and Nitrogen Dynamics: Implications for Soil and Water Quality

    Science.gov (United States)

    2004-06-30

    Elliott, E.T., 1992. Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783. Dale, V.H...C.A., Elliott, E.T., 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal...1645-1650. Van Straalen, N.M. 1997. How to measure no effect. 2. Threshold effects in ecotoxicology . Environmetrics 8: 249-253. Verburg, P.S.J

  16. The energetic and chemical signatures of persistent soil organic matter

    DEFF Research Database (Denmark)

    Barré, Pierre; Plante, Alain F.; Cecillon, Lauric

    2016-01-01

    A large fraction of soil organic matter (OM) resists decomposition over decades to centuries as indicated by long radiocarbon residence times, but the mechanisms responsible for the long-term (multi-decadal) persistence are debated. The current lack of mechanistic understanding limits our ability...

  17. Relationship between Mineral and Organic Matter in Shales: The Case of Shahejie Formation, Dongying Sag, China

    Directory of Open Access Journals (Sweden)

    Xiang Zeng

    2018-05-01

    Full Text Available Types of organic matter and mineral associations and microstructures of shales can reflect the depositional mechanism and sedimentary environment. Therefore, analysis of organic matter and mineral associations is a prerequisite for research on fine-grained sedimentary rocks. Shales from the Eocene Shahejie Formation in the Dongying Sag of China were selected to classify their lithofacies and to investigate the characteristics of their organic matter and mineral associations. This analysis identified six lithofacies (e.g., laminated shales and massive mudstones; in all the lithofacies, clay minerals exhibit a positive correlation with detrital minerals, thus indicating that they were derived from the same source. The comprehensive analysis of mineral and organic matter associations reveals that detrital minerals were deposited with low-hydrogen index (HI OM. The deposition of detrital minerals was mainly a physical process. Clay minerals can undergo deposition in one of two ways due to their surface charge: they can either aggregate with high-HI OM via chemical deposition, thus forming organic-rich laminae, or they can be deposited together with low-HI OM via physical deposition, thus forming clay-rich laminae or a massive matrix. Carbonate minerals, which often coexist with high-HI OM, are biological sediments. The analysis of the sedimentary characteristics of these organic matter and mineral associations indicates that the sedimentary processes differ between various lithofacies: e.g., the discontinuous laminated shale represents the product of biophysical processes. Differences in depositional mechanisms are also present in each sub-member. Therefore, it is important to analyze the properties of minerals and organic matter, as well as their associations, to more deeply understand the classification of lithofacies and the depositional processes of shales and mudstones.

  18. Use of carbon-14 in soil organic matter studies

    International Nuclear Information System (INIS)

    Vimal, O.P.; Kamath, M.B.

    1974-01-01

    Despite a great deal of research work on various aspects of soil organic matter, there are many gaps in the knowledge of the process of humus formation. These limitations arise mainly from the complex and heterogenous nature of soil humus substances, analytical problems in separating the fresh and decomposable materials from the old stabilized true humus substances and the lack of a clear understanding of the chemical structure of the humic acid molecule. During recent years, the use of carbon-14 has helped to trace within soil, transformation of a number of metabolites upto the point where they turn into humus. These studies have changed the concepts of the formation and stability of soil humus substances, their colloidal chemical properties and the uptake of organomolecules by plant roots. The present paper presents a synoptic view of the use of radiocarbon in studying the kinetics of humification, nature of precursors in humic acid formation, turnover of soil organic matter and the direct effects of humus substances on plant growth. (author)

  19. The Interacting controls of pyrolysis temperature and plant taxa on pyrogenic organic matter stability and decomposition in a Northern Michigan forest soil

    Science.gov (United States)

    Gibson, C. D.; Filley, T. R.; Bird, J. A.; Hatton, P. J.; Stark, R. E.; Nadelhoffer, K. J.

    2017-12-01

    Pyrogenic organic matter (PyOM) produced during forest fires is considered a large sink of stable soil organic matter (SOM) in boreal-temperate forest ecotones, where fire frequency and intensity is growing with changing climate. Understanding how changes in fire regime and predicted shifts in plant taxa will interact to affect PyOM dynamics in soil is imperative to assessing the impact of climate change on SOM maintenance. The stability of PyOM in soil may be co-determined by the physiochemical structure imparted on PyOM during pyrolysis and by its initial taxa-dependent wood chemistry and anatomy. To determine PyOM-C turnover rates in soil, we followed the fate of 13C-enriched wood or PyOM (200, 300, 450, or 600°C) derived from red maple (RM) or jack pine (JP) wood in soil from a recently burned forest in northern Michigan, USA. We found that pyrolysis temperature-controlled physiochemical changes influenced, with threshold dynamics, PyOM stability resulting in mean residence times of 2 (PyOM 200°C) to 450 years for both taxa, confirming that most PyOM (wood taxa did affect PyOM C MRT, in part due to differences in the amount of water soluble C released by PyOM during the initial decomposition dynamics in soil.

  20. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    Science.gov (United States)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    In Mediterranean areas, the loss of soil physical quality is of particular concern due to the vulnerability of these ecosystems in relation to unfavourable climatic conditions, which usually lead to soil degradation processes and severe decline of its functionality. As a result, increasing scientific attention is being paid on the exploration of soil properties which could be readily used as quality indicators, including organic matter which, in fact, represents a key factor in the maintenance of soil physical status. In this line, the present research tackles the assessment of the quality of several soils from central Spain with the purpose of identifying the physical properties most closely correlated with the organic matter, considering not only the quantity but also the quality of the different C-forms. The studied attributes consist of a series of physical properties determined in field and laboratory conditions-total porosity, aggregate stability, available water capacity, air provision, water infiltration rate and soil hydric saturation-.The bulk organic matter was characterised by solid-state 13C NMR spectroscopy and the major organic fractions (lipids, free particulate organic matter, fulvic acids, humic acids and humin) were quantified using standard procedures. The humic acids were also analysed by visible and infrared spectroscopies. The use of multidimensional scaling to classify physical properties in conjunction with molecular descriptors of soil organic matter, suggested significant correlations between the two set of variables, which were confirmed with simple and canonical regression models. The results pointed to two well-defined groups of physical attributes in the studied soils: (i) those associated with organic matter of predominantly aromatic character (water infiltration descriptors), and (ii) soil physical variables related to organic matter with marked aliphatic character, high preservation of the lignin signature and comparatively low

  1. Effect of Trichoderma-enriched organic charcoal in the integrated wood protection strategy.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    Full Text Available The gradual elimination of chromium from wood preservative formulations results in higher Cu leaching and increased susceptibility to wood decay fungi. Finding a sustainable strategy in wood protection has become of great interest among researchers. The objective of these in vitro studies was to demonstrate the effect of T-720-enriched organic charcoal (biochar against five wood decay basidiomycetes isolated from strongly damaged poles. For this purpose, the antagonistic potential of Trichoderma harzianum (strain T-720 was confirmed among other four Trichoderma spp. against five brown-rot basidiomycetes in dual culture tests. T-720 was genetically transformed and tagged with the green fluorescent protein (GFP in order to study its antagonistic mechanism against wood decay basidiomycetes. It was also demonstrated that T-720 inhibits the oxalic acid production by basidiomycetes, a well-known mechanism used by brown-rot fungi to detoxify Cu from impregnated wood. Additionally, this study evaluated the effect of biochar, alone or in combination with T-720, on Cu leaching by different preservatives, pH stabilization and prevention of wood decay caused by five basidiomycetes. Addition of biochar resulted in a significant Cu binding released from impregnated wood specimens. T-720-enriched biochar showed a significant reduction of wood decay caused by four basidiomycetes. The addition of T-720-enriched biochar to the soil into which utility poles are placed may improve the efficiency of Cr-free wood preservatives.

  2. Stability of Soil Organic Matter in Alpine Ecosystems: No Relationship with Vegetation

    Science.gov (United States)

    Matteodo, M.; Sebag, D.; Vittoz, P.; Verrecchia, E. P.

    2016-12-01

    There is an emerging understanding of mechanisms governing soil organic matter (SOM) stability, which is challenging the historical view of carbon persistence1. According to this alternative vision, SOM stability is not directly regulated by the molecular structure of plant inputs (i.e. the historical view), but the biotic and abiotic conditions of the surrounding environment which play a major role and mediate the influence of compound chemistry. The persistence of SOM is thus influenced by ecological conditions, controlling the access and activity of decomposers' enzymes and being ecosystem-dependent. In this study, we investigated differences of (1) carbon content, and (2) stability of organic matter in litter and organomineral layers from the most widespread plant communities at the subalpine-alpine level of the Swiss Alps. For this purpose, 230 samples from 47 soil profiles have been analysed across seven plant communities, along a subalpine-alpine elevation gradient. Both calcareous and siliceous grasslands were studied, as well as snowbed and ridge communities. Aboveground litter and A horizons were sampled and analysed using Rock-Eval Pyrolysis, a proxy-technique commonly used for the investigation of organic matter composition and stability2,3. Results show that the litter layers of the seven plant communities are significantly different in terms of total organic carbon (TOC) content, but slightly variable in terms of stability. The situation is radically different in the organomineral horizons where the amount of organic carbon is interestingly homogeneous, as well as the SOM stability. In mineral horizons, the amount and stability of SOM are mainly driven by the geological settings, and therefore vary in the different plant communities. These results show a clear disconnection between organic, organomineral, and mineral horizons in terms of factors governing soil organic matter stability. Consistent with the recent view of the carbon balance, plant input

  3. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Science.gov (United States)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  4. Bioavailability and export of dissolved organic matter from a tropical river during base- and stormflow conditions

    Science.gov (United States)

    Tracy N. Wiegner; Randee L. Tubal; Richard A. MacKenzie

    2009-01-01

    Concentrations, bioavailability, and export of dissolved organic matter (DOM), particulate organic matter (POM), and nutrients from the Wailuku River, Hawai'i, U.S.A., were examined under base- and stormflow conditions. During storms, DOM and POM concentrations increased approximately by factors of 2 and 11, respectively, whereas NO3...

  5. In situ characterization of organic matter in two primitive chondrites through correlated microanalytical techniques

    Science.gov (United States)

    Wende, A. M.; Nittler, L.; Steele, A.; Herd, C. D.

    2009-12-01

    Primitive meteorites contain up to 2 wt % C, much of it in the form of insoluble organic matter (IOM). Bulk analyses have revealed the IOM to be marked by large D and 15N enrichments relative to terrestrial values. Isotopic imaging studies have revealed the presence of `hotspots’, sub-μm to μm-sized regions of IOM exhibiting extreme isotope enrichments. An interesting subpopulation of organic grains, ’nanoglobules’, which have hollow, spherical morphologies, is known to account for a portion of these hot spots. Previous work has suggested that nanoglobules can be identified in situ by native UV fluorescence. The isotopic enrichments are believed to point to low-T chemical fractionations either in the interstellar medium (ISM) or the outer regions of the early Solar System. As part of a larger study investigating the origin and evolution of IOM in the Solar System, a correlated, in situ, microanalytical approach was employed to characterize local isotopic and morphological heterogeneities in IOM in the highly primitive chondrites QUE 99177 (CR3) and Tagish Lake (C-ung). Previous NanoSIMS ion imaging of a QUE 99177 section revealed the spatial and isotopic distribution of C in the matrix with a spatial resolution of 200 nm. Manual definition of >3300 C-rich regions in the NanoSIMS images indicates that grains smaller than 1 μm across, which account for 80% of the IOM area, have a size distribution that is similar to estimates of the size distribution of carbonaceous dust in the diffuse ISM, supporting an interstellar origin for the IOM. Micro-Raman spectroscopy, which is highly sensitive to the degree of disorder in carbonaceous materials, was attempted on the same regions analyzed by NanoSIMS in QUE 99177. Unfortunately, surface damage due to both the prior SIMS analyses and removal of a prior C coat precluded acquisition of useful Raman spectra. Consequently, future correlated work will entail performing Raman analyses on uncoated samples prior to SIMS

  6. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    Falck, W.E.

    1989-01-01

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and metal cations and protons. A comprehensive overview over the properties of natural organic matter is given and experimental techniques are presented briefly. Two major concepts of modelling have been identified: discrete ligand models and continuous distribution model. Different modelling approaches like Discrete Ligand Models (s.s.), Random-Structure Model, Affinity Spectra, Statistical Distribution Models, Continuous Stability Function Models and surface sorption models and their advantages/disadvantages are discussed. (author)

  7. Effect of concentration of dispersed organic matter on optical maturity parameters. Interlaboratory results of the organic matter concentration working group of the ICCP

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca Filho, J.G.; Kern, M.L.; Mendonca, J.O. [Palynofacies and Organic Facies Laboratory (LAFO), DEGL, IGEO, UFRJ, Cidade Universitaria, Rio de Janeiro (Brazil); Araujo, C.V.; Menezes, T.R.; Souza, I.V.A.F. [Petrobras R and D Center, Rio de Janeiro (Brazil); Borrego, A.G.; Suarez-Ruiz, I. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain); Cook, A.; Ranasinghe, P. [Keiraville Konsultants Pty. Ltd, NSW (Australia); Flores, D. [University of Porto, Departamento de Geologia (Portugal); Hackley, P. [U.S. Geological Survey, MS 956 National Center Reston, VA (United States); Hower, J.C. [University of Kentucky, Center for Applied Energy Research, Lexington (United States); Kommeren, K. [Shell International Exploration and Production, Rijswijk (Netherlands); Kus, J. [Germany Federal Institute for Geosciences and Natural Resources in Geozentrum, Hannover (Germany); Mastalerz, M. [Indiana Geological Survey, Indiana University, Bloomington (United States); Newman, J. [Newman Energy Research Ltd, Christchurch (New Zealand); Ujiie, Y. [Graduate School of Science and Technology, Hirosaki University (Japan)

    2010-12-01

    The main objective of this work was to study the effect of the kerogen isolation procedures on maturity parameters of organic matter using optical microscopes. This work represents the results of the Organic Matter Concentration Working Group (OMCWG) of the International Committee for Coal and Organic Petrology (ICCP) during the years 2008 and 2009. Four samples have been analysed covering a range of maturity (low and moderate) and terrestrial and marine geological settings. The analyses comprise random vitrinite reflectance measured on both kerogen concentrate and whole rock mounts and fluorescence spectra taken on alginite. Eighteen participants from twelve laboratories from all over the world performed the analyses. Samples of continental settings contained enough vitrinite for participants to record around 50 measurements whereas fewer readings were taken on samples from marine setting. The scatter of results was also larger in the samples of marine origin. Similar vitrinite reflectance values were in general recorded in the whole rock and in the kerogen concentrate. The small deviations of the trend cannot be attributed to the acid treatment involved in kerogen isolation but to reasons related to components identification or to the difficulty to achieve a good polish of samples with high mineral matter content. In samples difficult to polish, vitrinite reflectance was measured on whole rock tended to be lower. The presence or absence of rock fabric affected the selection of the vitrinite population for measurement and this also had an influence in the average value reported and in the scatter of the results. Slightly lower standard deviations were reported for the analyses run on kerogen concentrates. Considering the spectral fluorescence results, it was observed that the {lambda}max presents a shift to higher wavelengths in the kerogen concentrate sample in comparison to the whole-rock sample, thus revealing an influence of preparation methods (acid treatment

  8. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations.

    Science.gov (United States)

    García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco

    2018-02-01

    Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biodegradability of organic matter associated with sewer sediments during first flush.

    Science.gov (United States)

    Sakrabani, Ruben; Vollertsen, Jes; Ashley, Richard M; Hvitved-Jacobsen, Thorkild

    2009-04-01

    The high pollution load in wastewater at the beginning of a rain event is commonly known to originate from the erosion of sewer sediments due to the increased flow rate under storm weather conditions. It is essential to characterize the biodegradability of organic matter during a storm event in order to quantify the effect it can have further downstream to the receiving water via discharges from Combined Sewer Overflow (CSO). The approach is to characterize the pollutograph during first flush. The pollutograph shows the variation in COD and TSS during a first flush event. These parameters measure the quantity of organic matter present. However these parameters do not indicate detailed information on the biodegradability of the organic matter. Such detailed knowledge can be obtained by dividing the total COD into fractions with different microbial properties. To do so oxygen uptake rate (OUR) measurements on batches of wastewater have shown itself to be a versatile technique. Together with a conceptual understanding of the microbial transformation taking place, OUR measurements lead to the desired fractionation of the COD. OUR results indicated that the highest biodegradability is associated with the initial part of a storm event. The information on physical and biological processes in the sewer can be used to better manage sediment in sewers which can otherwise result in depletion of dissolved oxygen in receiving waters via discharges from CSOs.

  10. Natural organic matter (NOM) in South African waters: NOM ...

    African Journals Online (AJOL)

    In order to remove natural organic matter (NOM) from water in a water treatment train, the composition of the NOM in the source water must be taken into account, especially as it may not necessarily be uniform since the composition is dependent on the local environment. The main thrust of this study was to ascertain ...

  11. Changes in N cycling induced by Ulva detritus enrichment of sediments

    DEFF Research Database (Denmark)

    Garcia-Robledo, Emilio; Revsbech, Niels Peter; Risgaard-Petersen, Nils

    2013-01-01

    Macroalgal accumulation and decomposition in shallow water environments typically result in an increase in the organic matter content of the sediment, affecting both benthic metabolism and nutrient dynamics. The present study investigates how a pulse addition of Ulva detritus to estuarine sediment...... of oxygen and nitrate. Nitrification increased significantly in response to enhanced NH4 + supply from decomposition of the Ulva detritus. Aerobic ammonia oxidation exceeded rates of nitrite oxidation, leading to accumulation of NO2 − in the oxic zone of the sediment. Nitrite and NO3 − produced via...... nitrification diffused up to the sediment surface, inducing a net efflux to the water column, and downwards, supporting a high rate of denitrification coupled to nitrification. The present study shows that organic enrichment with Ulva detritus enhances sediment oxygen uptake, nitrification and denitrification...

  12. A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2008-02-01

    Full Text Available With the global aerosol-climate model ECHAM5-HAM we investigate the potential influence of organic aerosol originating from the ocean on aerosol mass and chemical composition and the droplet concentration and size of marine clouds. We present sensitivity simulations in which the uptake of organic matter in the marine aerosol is prescribed for each aerosol mode with varying organic mass and mixing state, and with a geographical distribution and seasonality similar to the oceanic emission of dimethyl sulfide. Measurements of aerosol mass, aerosol chemical composition and cloud drop effective radius are used to assess the representativity of the model initializations. Good agreement with the measurements is obtained when organic matter is added to the Aitken, accumulation and coarse modes simultaneously. Representing marine organics in the model leads to higher cloud drop number concentrations and thus smaller cloud drop effective radii, and this improves the agreement with measurements. The mixing state of the organics and the other aerosol matter, i.e. internal or external depending on the formation process of aerosol organics, is an important factor for this. We estimate that globally about 75 Tg C yr−1 of organic matter from marine origin enters the aerosol phase, with comparable contributions from primary emissions and secondary organic aerosol formation.

  13. Bacterial community evolutions driven by organic matter and powder activated carbon in simultaneous anammox and denitrification (SAD) process.

    Science.gov (United States)

    Ge, Cheng-Hao; Sun, Na; Kang, Qi; Ren, Long-Fei; Ahmad, Hafiz Adeel; Ni, Shou-Qing; Wang, Zhibin

    2018-03-01

    A distinct shift of bacterial community driven by organic matter (OM) and powder activated carbon (PAC) was discovered in the simultaneous anammox and denitrification (SAD) process which was operated in an anti-fouling submerged anaerobic membrane bio-reactor. Based on anammox performance, optimal OM dose (50 mg/L) was advised to start up SAD process successfully. The results of qPCR and high throughput sequencing analysis indicated that OM played a key role in microbial community evolutions, impelling denitrifiers to challenge anammox's dominance. The addition of PAC not only mitigated the membrane fouling, but also stimulated the enrichment of denitrifiers, accounting for the predominant phylum changing from Planctomycetes to Proteobacteria in SAD process. Functional genes forecasts based on KEGG database and COG database showed that the expressions of full denitrification functional genes were highly promoted in R C , which demonstrated the enhanced full denitrification pathway driven by OM and PAC under low COD/N value (0.11). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter.

    Science.gov (United States)

    Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li

    2013-01-01

    Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. PHOTOREACTIVITY OF CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...

  16. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Šafaříková, Jana; Barešová, Magdalena; Pivokonská, Lenka; Kopecká, Ivana

    2014-01-01

    Roč. 51, March (2014), s. 37-46 ISSN 0043-1354 R&D Projects: GA AV ČR IAA200600902 Institutional support: RVO:67985874 Keywords : Algal organic matter * Extracellular organic matter * Cellular organic matter * Peptide/protein content * Hydrophobicity * Molecular weight fraction ation Subject RIV: BK - Fluid Dynamics Impact factor: 5.528, year: 2014 http://www.sciencedirect.com/science/article/pii/S004313541301021X

  17. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species.

    Science.gov (United States)

    Armas, Cristina; Kim, John H; Bleby, Timothy M; Jackson, Robert B

    2012-01-01

    Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter ((15)N-OM) in the upper layer and tested whether decomposition, mineralization and uptake of (15)N were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH(4)(+)-N in ingrowth cores was highest in the W treatment, and NO(3)(-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf (15)N contents and the (15)N uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or (15)N uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.

  18. Organic carbon and humic acids in sediments of the Arabian Sea and factors governing their distribution

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    acids are enriched on the slope compared to the inner and outer shelf. While upwelling, primary productivity and redox conditions at the bottom are known to influence organic matter accumulation in sediments, bacterial population and sediment texture...

  19. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity

    Science.gov (United States)

    Kebukawa, Yoko; Chan, Queenie H. S.; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E.

    2017-01-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies. PMID:28345041

  20. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    Science.gov (United States)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  1. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials

    International Nuclear Information System (INIS)

    Yang, Y.; Zhang, N.; Xue, M.; Lu, S.T.; Tao, S.

    2011-01-01

    The microbial activity in soils was a critical factor governing the degradation of organic micro-pollutants. The present study was conducted to analyze the effects of soil organic matter on the development of degradation potentials for polycyclic aromatic hydrocarbons (PAHs). Most of the degradation kinetics for PAHs by the indigenous microorganisms developed in soils can be fitted with the Logistic growth models. The microbial activities were relatively lower in the soils with the lowest and highest organic matter content, which were likely due to the nutrition limit and PAH sequestration. The microbial activities developed in humic acid (HA) were much higher than those developed in humin, which was demonstrated to be able to sequester organic pollutants stronger. The results suggested that the nutrition support and sequestration were the two major mechanisms, that soil organic matter influenced the development of microbial PAHs degradation potentials. - Research highlights: → PAH degradation kinetics obey Logistic model. → Degradation potentials depend on soil organic carbon content. → Humin inhibits the development of PAH degradation activity. → Nutrition support and sequestration regulate microbial degradation capacity. - Soil organic matter regulated PAH degradation potentials through nutrition support and sequestration.

  2. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    Science.gov (United States)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  3. Turnover of soil organic matter under pasture as determined by 13C natural abundance

    International Nuclear Information System (INIS)

    Skjemstad, J.O.; Prebble, R.E.; Feuve, R.P.

    1990-01-01

    The change in vegetation cover from rainforest with a C 3 photosynthetic pathway to grasses with C 4 pathways was used to follow input rates and turnover of organic matter in a krasnozem over an 83 year period. The measurement of δ 13 C values on soils from three depths (0.0-7.5, 7.5-15.0, 60.0-80.0 cm) indicated that charcoal was a serious contaminant in the light fractions ( 1.6 Mg m -3 fraction from the three depths were calculated as 60, 75 and 276 years respectively, compared with 75, 108 and 348 years for the organic matter within microaggregates from the same horizons. It is concluded that the presence of microaggregates is an important factor in stabilizing organic matter in this soil type. Some difficulties with the technique are also discussed. 36 refs., 2 figs., 4 tabs

  4. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-08-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  5. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-06-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  6. Application of Remote Sensing for Mapping Soil Organic Matter Content

    Directory of Open Access Journals (Sweden)

    Bangun Muljo Sukojo

    2010-10-01

    Full Text Available Information organic content is important in monitoring and managing the environment as well as doing agricultural production activities. This research tried to map soil organic content in Malang using remote sensing technology. The research uses 6 bands of data captured by Landsat TM (Thematic Mapper satellite (band 1, 2, 3, 4, 5, 7. The research focuses on pixels having Normalized Difference Soil Index (NDSI more than 0.3. Ground-truth data were collected by analysing organic content of soil samples using Black-Walkey method. The result of analysis shows that digital number of original satellite image can be used to predict soil organic matter content. The implementation of regression equation in predicting soil organic content shows that 63.18% of research area contains of organic in a moderate category.

  7. Distinct optical chemistry of dissolved organic matter in urban pond ecosystems

    Czech Academy of Sciences Publication Activity Database

    McEnroe, N. A.; Williams, C. J.; Xenopoulos, M. A.; Porcal, Petr; Frost, P. C.

    2013-01-01

    Roč. 8, č. 11 (2013), e80334 E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : dissolved organic matter * photodegradation * fluorescence * PARAFAC Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.534, year: 2013

  8. The method for determination of parameters of the phenomenological continual model of soil organic matter transformation

    Directory of Open Access Journals (Sweden)

    S. I. Bartsev

    2015-06-01

    Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in first­order partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.

  9. The Effect of Organic Phosphorus and Nitrogen Enriched Manure on Nutritive Value of Sweet Corn Stover

    Science.gov (United States)

    Lukiwati, D. R.; Pujaningsih, R. I.; Murwani, R.

    2018-02-01

    The experiment aimed to evaluate the effect of some manure enriched with phosphorus (P) and nitrogen (N) organic (‘manure plus’) on crude protein and mineral production of sweet corn (Zea mays saccharata)and quality of fermented stover as livestock feed. A field experiment was conducted on a vertisol soil (low pH, nitrogen and low available Bray II extractable P). Randomized block design with 9 treatments in 3 replicates was used in this experiment. The treatments were T1(TSP), T2 (SA), T3 (TSP+SA), T4 (manure), T5 (manure+PR), T6 (manure+guano), T7 (manure+N-legume), T8 (manure+PR+N-legume), T9 (manure +guano+N-legume). Data were analyzed using analysis of variance (ANOVA) and the differences between treatment means were examined by Duncan Multiple Range Test (DMRT). Results of the experiment showed that the treatment significantly affected to the crude protein and calcium production of stover and nutrient concentration of fermented stover, but it is not affected to P production of stover. The result of DMRT showed that the effect of ‘manure plus’ was not significantly different on CP and Ca production of stover, mineral concentration, in vitro DMD and OMD of fermented stover, compared to inorganic fertilization. Conclusion, manure enriched with organic NP, resulted in similar on CP and Ca production of stover and nutrient concentration of fermented stover compared to inorganic fertilizer. Thus, organic-NP enriched manure could be an alternative and viable technology to utilize low grade of phosphate rock, guano and Gliricidea sepium to produce sweet corn in vertisol soil.

  10. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest

    Science.gov (United States)

    Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron

    2017-11-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.

  11. The use of activated carbons for removing organic matter from groundwater

    Directory of Open Access Journals (Sweden)

    Kaleta Jadwiga

    2017-09-01

    Full Text Available The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.

  12. Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation

    Science.gov (United States)

    Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen

    2014-05-01

    Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic

  13. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels

    DEFF Research Database (Denmark)

    Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian

    2017-01-01

    shales are enriched in redox-sensitive trace metals, have high concentrations of total organic carbon (TOC), high hydrogen index (HI) and iron speciation indicating deposition under anoxic conditions. In contrast, the green-gray shales show no trace metal enrichments, have low TOC, low HI and iron...... speciation consistent with an oxygenated depositional setting. Altogether, unit 1 displays alternations between oxic and anoxic depositional environments, driving differences in carbon preservation consistent with observations from the modern ocean. We combined our TOC and HI results to calculate...

  14. Micropore characteristics of organic matter pools in cemented and non-cemented podzolic horizons

    NARCIS (Netherlands)

    Catoni, M.; D'amico, M.E.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Bonifacio, E.

    2014-01-01

    In Podzols, organic matter (OM) is stabilized mainly by interaction with minerals, as a direct consequence of pedogenic processes. Metal-organic associations strongly affect OM surface features, particularly microporosity. Cemented ortstein horizons (CM) may form during podzolization, accompanied by

  15. Drivers of fluorescent dissolved organic matter in the global epipelagic ocean

    KAUST Repository

    Catalá , T. S.; Á lvarez-Salgado, X. A.; Otero, J.; Iuculano, F.; Companys, B.; Horstkotte, B.; Romera-Castillo, C.; Nieto-Cid, M.; Latasa, M.; Moran, Xose Anxelu G.; Gasol, J. M.; Marrasé , C.; Stedmon, C. A.; Reche, I.

    2016-01-01

    Fluorescent dissolved organic matter (FDOM) in open surface waters (< 200 m) of the Atlantic, Pacific, and Indian oceans was analysed by excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC). A four-component PARAFAC

  16. Organic matter fuel briquettes as a forest conservation tool in Lake ...

    African Journals Online (AJOL)

    Organic matter fuel briquettes as a forest conservation tool in Lake Malawi National Park: research note. ... Open Access DOWNLOAD FULL TEXT ... towards fuel briquettes, cost is the limiting factor when people choose their fuel source.

  17. Effect of four herbicides on microbial population, soil organic matter ...

    African Journals Online (AJOL)

    The effect of four herbicides (atrazine, primeextra, paraquat and glyphosate) on soil microbial population, soil organic matter and dehydrogenase activity was assessed over a period of six weeks. Soil samples from cassava farms were treated with herbicides at company recommended rates. Soil dehydrogenase activity was ...

  18. Reactivity of Organic Matter and other Reductants in Aquifer Sediments

    NARCIS (Netherlands)

    Hartog, N.

    2003-01-01

    The molecular composition and the carbon isotope signature of sedimentary organic matter (SOM) and indicate that SOM is predominantly derived from higher land plants in sediments of both terrestrial as marine origins. The reactivity of SOM in the aquifer sediments studied is determined by the extent

  19. Thermodynamic constrains on the flux of organic matter through a peatland ecosystem

    Science.gov (United States)

    Worrall, Fred; Moody, Catherine; Clay, Gareth; Kettridge, Nick; Burt, Tim

    2017-04-01

    The transformations and transitions of organic matter into, through and out of a peatland ecosystem must obey the 2nd law of thermodynamics. Beer and Blodau (Geochimica Cosmochimica Acta, 2007, 71, 12, 2989-3002) showed that the evolution of CH4 in peatlands was constrained by equilibrium occurring at depth in the peat as the pore water became a closed system. However, that study did not consider the transition in the solid components of the organic matter flux through the entire ecosystem. For this study, organic matter samples were taken from each organic matter reservoir and fluvial transfer pathway and analysed the samples by elemental analysis and bomb calorimetry. The samples analysed were: above- and below-ground biomass, heather, mosses, sedges, plant litter layer, peat soil, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, and plant protein. It was possible to calculate ∆H_f^OM ∆S_f^OM and ∆G_f^OM for each of the samples and standards. By assuming that each thermodynamic property can be expressed per g C and that any increase in ∆G_f^OM can be balanced by the production of CO2, DOM or CH4 then it is possible to predict the consequences of the fixation of 1 g of carbon in a peatland soil. The value of ∆G_f^OMincreases from glucose to components of the biomass: 1g of C fixed as glucose by photosynthesis would result in 0.68 g C as biomass and 0.32 g C as CO2. The transition from biomass to litter could occur spontaneously but the transition from surface to 1m depth in the peat profile would release 0.18 g C as CO2 per 1 g of carbon entering the peat profile. Therefore, for every 1 g of carbon fixed from photosynthesis then 0.44g of C would be released as CO2 and 0.54 g C would be present at 1 m depth. Alternatively, if DOM only

  20. A divergent heritage for complex organics in Isheyevo lithic clasts

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M.M.E.; Nagashima, Kazuhide; Kasama, Takeshi

    2017-01-01

    enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data...

  1. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer...... geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence...... can recycle significant amounts of carbon in wetland soils and might contribute to observed radiocarbon reservoir effects influencing Δ14C signatures in peat deposits....

  2. Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    J. M. S. Franz

    2012-11-01

    Full Text Available Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ, are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N and increasing release of sediment-bound phosphate (P into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP and particulate (POC, PON, POP organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and

  3. Carbon stable isotope composition of charophyte organic matter in a small and shallow Spanish water body as a baseline for future trophic studies

    Directory of Open Access Journals (Sweden)

    María Antonia Rodrigo

    2015-12-01

    Full Text Available Quantitative descriptions of foodweb structure based on isotope niche space require knowledge of producers’ isotopic signatures. In freshwater ecosystems charophytes are one of the main components of submerged vegetation and the feeding base for many herbivorous consumers, but knowledge about their organic carbon isotopic signatures is sparse. In this study, the δ13C organic values (and organic %C and %N of the four species of submerged macrophytes (three charophytes - Chara hispida, Nitella hyalina and Tolypella glomerata - and one angiosperm, Myriophyllum spicatum growing in a newly created shallow pond were measured monthly over a period of one year, to discern if i all charophyte species susceptible to being food for consumers and growing in the same waterbody have the same C isotopic composition; ii the δ13C values of a charophyte species change on a seasonal and spatial scale; iii the different parts (apical nodes, internodes, rhizoids, reproductive organs, oospores of a charophyte species have the same isotopic composition. The δ13C, %C and %N values of organic matter in the sediments where the plants were rooted were also measured as well as several limnological variables. The δ13C values for the angiosperm (-13.7±0.7‰ indicated 13C-enrichment, whereas the N. hyalina δ13C values were the most negative (-22.4±0.7‰. The mean δ13C value for C. hispida was -19.0±1.0‰ and -20.7±0.8‰ for T. glomerata. C. hispida δ13C values had a significant seasonal variation with 13C-poor values in the cold season, and slight spatial differences. Statistically significant differences were found between charophyte rhizoids (13C-enriched and the other parts of the thalli. The δ13C values in the sediments varied throughout time (-13‰ to -26‰. The C content was lower in the charophytes than in the angiosperm and there were no large differences among the charophytes. Charophyte fructifications were enriched in organic C compared to the

  4. Analysis of the organic matter which are present in solid organic wastes from urban areas

    International Nuclear Information System (INIS)

    Canellas, Luciano Pasqualoto; Santos, Gabriel de Araujo; Amarai Sobrinho, Nelson Moura Brasil do; Mazur, Nelson; Moraes, Anselmo Alpande

    1997-01-01

    This study analyses the organic matter which are present in the solid wastes from the Rio de Janeiro city - Brazil. The humic acids were extracted and purified. After the purification, the humic acids were dried by lyophilization. Visible UV, infrared and NMR spectra were obtained for the humic acids extracted

  5. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels

    OpenAIRE

    Rochelle-Newall, E.; Delille, B.; Frankignoulle, M.; Gattuso, J.-P.; Jacquet, S.; Riebesell, Ulf; Terbrüggen, A.; Zondervan, I.

    2004-01-01

    Chromophoric dissolved organic matter (CDOM) represents the optically active fraction of the bulk dissolved organic matter (DOM) pool. Recent evidence pointed towards a microbial source of CDOM in the aquatic environment and led to the proposal that phytoplankton is not a direct source of CDOM, but that heterotrophic bacteria, through reprocessing of DOM of algal origin, are an important source of CDOM. In a recent experiment designed at looking at the effects of elevated pCO2 on blooms of th...

  6. Organic matter and soil water content influence on BRS 188 castor bean growth

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Rogerio Dantas de; Araujo, Ester Luiz de; Nascimento, Elka Costa Santos; Barros Junior, Genival [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Guerra, Hugo O. Carvallo; Chaves, Lucia Helena G. [Universidade Federal de Campina Grande (UAEAg/UFCG), PB (Brazil). Unidade Academica de Engenharia Agricola

    2008-07-01

    The castor bean culture has been highlighted due to the several applications of its oil, which constitutes one of the best row materials for biodiesel manufacturing, and the base for several other industrial products. The objective of the present work was to study the effect of different soil water and soil organic matter on the castor bean growth. The experiment was conducted from April to August 2006 under greenhouse conditions using a randomized block 2x4 factorial design with two soil organic mater content (5.0 g.kg{sup -1} e 25.0 g.kg{sup -1}), four levels of available water (100, 90, 80 e 70% ) and three replicates. For this, 24 plastic containers, 75 kg capacity, were used on which was grown one plant 120 days after the seedling. At regular intervals the plant height was measured and the results analyzed statistically. For the qualitative treatments (with and without organic matter) the treatment means were compared through the Tukey test. For the quantitative ones (water levels) were used regressions. The castor bean cultivar height was significantly influenced by the organic matter content only after 80 days. Castor bean height increased significantly with the soil water content after 40 days of growing. (author)

  7. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic

    Science.gov (United States)

    Lutz Schirrmeister; Guido Grosse; Sebastian Wetterich; Pier Paul Overduin; Jens Straub; Edward A.G. Schuur; Hans-Wolfgang. Hubberton

    2011-01-01

    Permafrost deposits constitute a large organic carbon pool highly vulnerable to degradation and potential carbon release due to global warming. Permafrost sections along coastal and river bank exposures in NE Siberia were studied for organic matter (OM) characteristics and ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly decomposed, and...

  8. Effect of organic matter and Si liquid fertilizer on growth and yield of sugar cane

    Directory of Open Access Journals (Sweden)

    Djajadi Djajadi

    2017-02-01

    Full Text Available Sugarcane is known to absorb more Si than any other nutrient from the soil; therefore continuous cropping of the plant at the same soil would bring consequences of more Si and organic matter depletion. Silicon (Si is considered as a beneficial nutrient for sugarcane production while organic matter is well known as soil amendment. Field study was carried out to know the effect of organic and Si liquid fertilizer on growth, Si and N uptake, and yield of cane variety of PSBM 901. The study field was located at Kempleng village, Purwoasri, East Java and the study was done from May 2013 up to September 2014. Split plot design with three replicates was employed to arrange treatments. Organic matter types (no organic matter, Crotalaria juncea and manure were set as main plots while Si liquid fertilizer concentration (0, 15% Si and 30% S were arranged as sub plots. C juncea was planted at 15 days before planting of sugar cane, and after 35 days the C juncea were chopped and mixed into the soil. Manure was added one week before sugar cane was planted. Si liquid fertilizer was sprayed to the whole part of sugar cane plant at 30 and 50 days after sugar cane was planted. All treatments received basal fertilizer of 800 kg ZA/ha, 200 kg SP 36/ha and 300 kg KCl/ha. Results showed that interaction between organic matter and Si liquid fertilizer significantly affected on Si and N absorption, length of stem, yield and rendement of sugar cane. Addition of manure and followed by spraying of 30% Si liquid fertilizer gave the highest value of S and N absorption (869 g SiO2/plant and 720 g N/plant, cane yield (155.74 tons/ha and rendement (8.15%.

  9. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    Science.gov (United States)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  10. Organic matter dynamics and stable isotope signature as tracers of the sources of suspended sediment

    Directory of Open Access Journals (Sweden)

    Y. Schindler Wildhaber

    2012-06-01

    Full Text Available Suspended sediment (SS and organic matter in rivers can harm brown trout Salmo trutta by affecting the health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C, and nitrogen (N during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase of pasture and arable land downstream of the river. The mean fraction of SS originating from upper watershed riverbed sediment decreased from up to downstream and increased during high flow at all measuring sites along the course of the river. During base flow conditions, the major sources of SS are pasture, forest and arable land. The latter increased during rainy and warmer winter periods, most likely because both triggered snow melt and thus erosion. The measured increase in DOC and nitrate concentrations during high flow support these modeling results. Enhanced soil erosion processes on pasture and arable land are expected with increasing heavy rain events and less snow during winter seasons due to climate change. Consequently, SS and organic

  11. A laboratory examination of organic matter degradation in a B horizon soil from post-mining reconstructed prime farmland soil

    International Nuclear Information System (INIS)

    Felton, G.K.; Taraba, J.L.

    1994-01-01

    A laboratory study was conducted to assess the effect of reclamation treatment on the aerobic degradation rate of organic matter composed of horse faeces, urine, and straw bedding. It was hypothesized that different physical treatments of soil removed during the mining process would alter the rate of organic matter decomposition. The soils were from the B horizon of reclaimed prime farmland. The B horizon was reconstructed using one of two treatments: soil direct hauled from the mining site to the reconstruction site; soil hauled from a 6-month-old stockpile. The soil that was immediately replaced exhibited organic matter degradation rates similar to a control whereas the stockpiled soil organic matter degradation rates were depressed. This implies that stockpiling adversely affects the microbial population. Prescription limiting, typically done during reclamation, did have the desired effect on pH and did not interfere with organic matter degradation. 15 refs., 1 fig., 4 tabs

  12. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  13. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    KAUST Repository

    Maeng, Sungkyu

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. © 2012 Elsevier B.V.

  14. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study.

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. On the nature of organic matter from natural and contaminated materials : isolation methods, characterisation and application to geochemical modelling

    NARCIS (Netherlands)

    Zomeren, van A.

    2008-01-01

    Natural organic matter (NOM) is the material that is formed after the natural
    decomposition and transformation of dead plant and animal matter. The fresh
    organic matter (e.g. plant leaves or animal debris) is decomposed and
    transformed by microbial activity. As such, NOM is found

  16. Evaluation of the uranium enrichment demonstration plant project

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the organization system of the uranium enrichment business is evaluated, based on the operation of the uranium enrichment demonstration plant. As a result, in uranium enrichment technology development or business, it was acknowledged that maintenance of the organization which has the Trinity of a research/engineering/operation was necessary in an industrialization stage by exceptional R and D cycle. Japan Nuclear Fuel Ltd. (JNFL) set up the Rokkashomura Aomori Uranium Enrichment Research and Development Center in November 2000. As a result, the system that company directly engaged in engineering development was prepared. And results obtained in this place is expected toward certain establishment of the uranium enrichment business of Japan. (author)

  17. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy

    DEFF Research Database (Denmark)

    Hambly, Adam; Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs...

  18. Organic Matter and Barium Absorption by Plant Species Grown in an Area Polluted with Scrap Metal Residue

    Directory of Open Access Journals (Sweden)

    Cleide Aparecida Abreu

    2012-01-01

    Full Text Available The effect of organic matter addition on Ba availability to Helianthus annuus L., Raphanus sativus L., and Ricinus communis L. grown on a Neossolo Litólico Chernossólico fragmentário (pH 7.5, contaminated with scrap residue was evaluated. Four rates (0, 20, 40, and 80 Mg ha−1, organic carbon basis of peat or sugar cane filter, with three replicates, were tested. Plant species were grown until the flowering stage. No effect of organic matter addition to soil on dry matter yield of oilseed radish shoots was observed, but there was an increase in sunflower and castor oil plant shoots when sugar cane filter cake was used. The average Ba transferred from roots to shoots was more than 89% for oilseed radish, 71% for castor oil plants, and 59% for sunflowers. Organic matter treatments were not efficient in reducing Ba availability due to soil liming.

  19. The global distribution and dynamics of chromophoric dissolved organic matter.

    Science.gov (United States)

    Nelson, Norman B; Siegel, David A

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) is a ubiquitous component of the open ocean dissolved matter pool, and is important owing to its influence on the optical properties of the water column, its role in photochemistry and photobiology, and its utility as a tracer of deep ocean biogeochemical processes and circulation. In this review, we discuss the global distribution and dynamics of CDOM in the ocean, concentrating on developments in the past 10 years and restricting our discussion to open ocean and deep ocean (below the main thermocline) environments. CDOM has been demonstrated to exert primary control on ocean color by its absorption of light energy, which matches or exceeds that of phytoplankton pigments in most cases. This has important implications for assessing the ocean biosphere via ocean color-based remote sensing and the evaluation of ocean photochemical and photobiological processes. The general distribution of CDOM in the global ocean is controlled by a balance between production (primarily microbial remineralization of organic matter) and photolysis, with vertical ventilation circulation playing an important role in transporting CDOM to and from intermediate water masses. Significant decadal-scale fluctuations in the abundance of global surface ocean CDOM have been observed using remote sensing, indicating a potentially important role for CDOM in ocean-climate connections through its impact on photochemistry and photobiology.

  20. The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation.

    Science.gov (United States)

    Naceradska, Jana; Pivokonsky, Martin; Pivokonska, Lenka; Baresova, Magdalena; Henderson, Rita K; Zamyadi, Arash; Janda, Vaclav

    2017-05-01

    The study investigates the effect of permanganate pre-oxidation on the coagulation of peptides/proteins of Microcystis aeruginosa which comprise a major proportion of the organic matter during cyanobacterial bloom decay. Four different permanganate dosages (0.1, 0.2, 0.4 and 0.6 mg KMnO 4 mg -1 DOC) were applied prior to coagulation by ferric sulphate. Moreover, changes in sample characteristics, such as UV 254 , DOC content and molecular weight distribution, after pre-oxidation were monitored. The results showed that permanganate pre-oxidation led to a reduction in coagulant dose, increased organic matter removals by coagulation (by 5-12% depending on permanganate dose), microcystin removal (with reductions of 91-96%) and a shift of the optimum pH range from 4.3 to 6 without to 5.5-7.3 with pre-oxidation. Degradation of organic matter into inorganic carbon and adsorption of organic matter onto hydrous MnO 2 are suggested as the main processes responsible for coagulation improvement. Moreover, permanganate prevented the formation of Fe-peptide/protein complexes that inhibit coagulation at pH about 6.2 without pre-oxidation. The study showed that carefully optimized dosing of permanganate improves cyanobacterial peptide/protein removal, with the benefit of microcystin elimination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Using thermal analysis to evaluate the fire effects on organic matter content of Andisols

    Directory of Open Access Journals (Sweden)

    J. Neris

    2013-09-01

    Full Text Available Soil organic compounds play a relevant role in aggregate stability and thus, in the susceptibility of soils to erosion. Thermal analysis (N2 and air and chemical oxidation techniques (dichromate and permanganate oxidation were used to evaluate the effects of a forest fire on the organic matter of Andisols. Both thermal analysis and chemical methods showed a decrease in the organic matter content and an increase in the recalcitrance of the remaining organic compounds in the burned zones. Thermal analysis indicated an increase in the thermal stability of the organic compounds of fire-affected soils and a lower content of both labile and recalcitrant pools as a consequence of the fire. However, this decrease was relatively higher in the labile pool and lower in the recalcitrant one, indicative of an increase in the recalcitrance of the remaining organic compounds. Apparently, black carbon did not burn under our experimental conditions. Under N2, the results showed a lower labile and a higher recalcitrant and refractory contents in burned and some unburned soils, possibly due to the lower decomposition rate under N2 flux. Thermal analysis using O2 and the chemical techniques showed a positive relation, but noticeable differences in the total amount of the labile pool. Thermal analysis methods provide direct quantitative information useful to characterize the soil organic matter quality and to evaluate the effects of fire on soils.

  2. Palynofacies reveal fresh terrestrial organic matter inputs in the terminal lobes of the Congo deep-sea fan

    Science.gov (United States)

    Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe

    2017-08-01

    The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.

  3. Evaluation of Water Vapor Sorption Hysteresis in Soils: The Role of Organic Matter and Clay

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    an important role. It is clear that modeling physical and biological soil processes is more accurate when SWC hysteresis is considered, particularly at low potentials where small differences in water content are associated with large changes in potential energy. The objectives of the presented study were to......: (i) evaluate and compare recently developed methods (MBET-n, Dh and SPN) for quantifying hysteresis in soils and pure clays, and (ii) investigate the role of organic matter (OM) and clay content and type on hysteresis. Five pure clays and two sets of soils with gradients in organic matter and clay....... For the SPN method, large contents of organic matter and clay in soils are associated with increased hysteresis. For both MBET-n and Dh methods, no clear trends of clay or OM contents effects on hysteresis was observed....

  4. Characterizing natural organic matter in drinking water treatment processes and trains

    NARCIS (Netherlands)

    Baghoth, S.A.

    2012-01-01

    Natural organic matter (NOM) generally influences water treatment processes such as coagulation, oxidation, adsorption, and membrane filtration. NOM contributes colour, taste and odour in drinking water, fouls membranes, serves as a precursor for disinfection by-products, increases the exhaustion

  5. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high-OM). The cul......Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high......-OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial......) and an endocellulase activity of 44.2 +/- 1.1 nmol g(-1) h(-1). (C) 1999 Elsevier Science B.V. All rights reserved....

  6. Radiocarbon dating of fluvial organic matter reveals land-use impacts in boreal peatlands

    DEFF Research Database (Denmark)

    Hulatt, Chris J.; Kaartokallio, Hermanni; Oinonen, Markku

    2014-01-01

    This study measured the effects of land use on organic matter released to surface waters in a boreal peat catchment using radiocarbon dating of particulate and dissolved organic carbon (POC and DOC), DOC concentration, stable carbon and nitrogen isotope composition, and optical measurements. Undi...

  7. Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight

    Science.gov (United States)

    Mitra, Siddhartha; Bianchi, Thomas S.; Guo, Laodong; Santschi, Peter H.

    2000-10-01

    Concentrations of lignin-phenols were analyzed in high molecular weight dissolved organic matter (0.2 μm > HMW DOM > 1 kDa) isolated from surface waters of the Chesapeake Bay (C. Bay), and surface and bottom waters of the Middle Atlantic Bight (MAB). The abundance of lignin-phenols in HMW DOM was higher in the C. Bay (0.128 ± 0.06 μg L -1) compared to MAB surface waters (0.016 ± 0.004 μg L -1) and MAB bottom waters (0.005 ± 0.003 μg L -1). On an organic carbon-normalized basis, lignin-phenol abundances in the HMW DOM (i.e., Λ 6), were significantly higher ( p vanillin (Ad/Al) V in HMW DOM, indicative of lignin decay, ranged from 0.611 to 1.37 in C. Bay, 0.534 to 2.62 in MAB surface waters, and 0.435 to 1.96 in MAB bottom water. Ratios of S/V and (Ad/Al) V showed no significant differences between each environment, providing no evidence of any compositionally distinct input of terrestrial organic matter into each environment. When considering depth profiles of suspended particulate matter in the MAB, with C:N ratios, and bulk radiocarbon ages and stable carbon isotopic values in HMW DOM isolated from these areas, two scenarios present themselves regarding the sources and transport of terrestrially derived HMW DOM in the MAB. Scenario #1 assumes that a low amount of refractory terrestrial organic matter and old DOC are uniformly distributed in the oceans, both in surface and bottom waters, and that primary production in surface waters increases DOC with low lignin and younger DOC which degrades easily. In this case, many of the trends in age and biomarker composition likely reflect general patterns of Atlantic Ocean surface and bottom water circulation in the area of the MAB. Scenario 2 assumes terrestrial organic matter in bottom waters of the MAB may have originated from weathered shelf and slope sediments in nearshore areas via a combination of mechanisms (e.g., diffusion, recent resuspension events, and/or desorption of DOM from riverine POM buried deep

  8. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  9. Differential chemical fractionation of dissolved organic matter during sorption by Fe mineral phases in a tropical soil from the Luquillo Critical Zone Observatory

    Science.gov (United States)

    Plante, A. F.; Coward, E.; Ohno, T.; Thompson, A.

    2017-12-01

    Fe-bearing mineral phases contribute substantially to adsorption and stabilization of soil organic matter (SOM), due largely to their high specific surface area (SSA) and reactivity. While the importance of adsorption onto mineral surfaces has been well-elucidated, selectivity of various mineral and organic phases remains poorly understood. The goals of this work were to: 1) quantify the contributions of Fe-minerals of varying crystallinity to dissolved organic matter (DOM) sorption, and 2) characterize the molecular fractionation of DOM induced by reactions at the mineral interface, using a highly-weathered Oxisol from the Luquillo Critical Zone Observatory (LCZO). Three selective dissolution experiments targeting Fe-mineral phases were followed by specific surface area (SSA) analysis of the residues and characterization of extracted DOM by high resolution mass spectrometry (FT-ICR-MS). Fe-depleted extraction residue samples, untreated control soil samples, and Fe-enriched ferrihydrite-coated soil samples were then subjected to a batch sorption experiment with litter-derived DOM. Results of selective dissolution experiments indicated that a substantial proportion of soil SSA was derived from extracted Fe-bearing phases, and FT-ICR-MS analysis of extracted DOM revealed distinct chemical signatures. Sorbed C concentrations were well correlated with Fe contents induced by treatments, and thus SSA. Molecular characterization of the DOM post-sorption indicated that poorly crystalline Fe phases preferentially adsorbed highly unsaturated aromatic compounds, and higher-crystallinity Fe phases were associated with more aliphatic compounds. These findings suggests that molecular fractionation via organomineral complexation may act as a physicochemical filter of DOM released to the critical zone.

  10. Root-derived organic matter confines sponge community composition in mangrove ecosystems

    NARCIS (Netherlands)

    Hunting, E.R.; Ubels, S.M.; Kraak, M.H.S.; van der Geest, H.G.

    2013-01-01

    Introduction Caribbean mangrove-associated sponge communities are very distinct from sponge communities living on nearby reefs, but the mechanisms that underlie this distinction remain uncertain. It has been hypothesized that dissolved organic matter (DOM) leaching from mangrove roots and the

  11. Productivity variations, oxygen minimum zone and their impact on organic enrichment in the sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.

    of Somalia, the Arabian Peninsula, Iran, Pakistan and Eastern and Western shelves of India (except a part of inner shelf), irrespective of primary productivity variation (Fig. 3), is mainly ascribed to decomposition of organic matter in contact.... Nevertheless, moderate to very high concentrations of organic carbon (Fig. 1) are invariably associated with the entire slope sediments, forming a long and wide band in contact with oxygen minima from Saurashtra to the southern tip of India. It may...

  12. Distribution and sources of sedimentary organic matter in a tropical estuary, south west coast of India (Cochin estuary): A baseline study

    International Nuclear Information System (INIS)

    Gireeshkumar, T.R.; Deepulal, P.M.; Chandramohanakumar, N.

    2013-01-01

    Highlights: ► We report δ 13 C and δ 15 N values of sedimentary organic matter from the Cochin estuary. ► δ 13 C and δ 15 N values ranged from −27.5‰ to −21.7‰ and δ 15 N 3.1–6.7‰ respectively. ► Organic matter is found to be mixture terrestrial and marine derived materials. ► The δ 15 N values displayed a complex behavior in the study region. ► The fraction of terrestrial derived organic matter was estimated. -- Abstract: Surface sediments samples were collected from 9 stations of the Cochin estuary during the monsoon, post-monsoon and pre-monsoon seasons and were analyzed for grain size, total organic carbon (OC), total nitrogen (TN) and stable isotopic ratios of carbon (δ 13 C) and nitrogen (δ 15 N) to identify major sources of organic matter in surface sediments. Sediment grain size is found to be the key factor influencing the organic matter accumulation in surface sediments. The δ 13 C values ranges from −27.5‰ to −21.7‰ in surface sediments with a gradual increase from inner part of the estuary to the seaward side that suggest an increasing contribution of marine autogenous organic matter towards the seaward side. The δ 15 N value varies between 3.1‰ and 6.7‰ and it exhibits complex spatial and seasonal distributions in the study area. It is found that the dynamic cycling of nitrogen through various biogeochemical and organic matter degradation processes modifies the OC/TN ratios and δ 15 N to a considerable degree. The fraction of terrestrial organic matter in the total organic matter pool ranges from 13% to 74% in the surface sediments as estimated by δ 13 C based two end member mixing model

  13. Lead sequestration and species redistribution during soil organic matter decomposition

    Science.gov (United States)

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  14. Identifying the source, transport path and sinks of sewage derived organic matter

    International Nuclear Information System (INIS)

    Mudge, Stephen M.; Duce, Caroline E.

    2005-01-01

    Since sewage discharges can significantly contribute to the contaminant loadings in coastal areas, it is important to identify sources, pathways and environmental sinks. Sterol and fatty alcohol biomarkers were quantified in source materials, suspended sediments and settling matter from the Ria Formosa Lagoon. Simple ratios between key biomarkers including 5β-coprostanol, cholesterol and epi-coprostanol were able to identify the sewage sources and effected deposition sites. Multivariate methods (PCA) were used to identify co-varying sites. PLS analysis using the sewage discharge as the signature indicated ∼ 25% of the variance in the sites could be predicted by the sewage signature. A new source of sewage derived organic matter was found with a high sewage predictable signature. The suspended sediments had relatively low sewage signatures as the material was diluted with other organic matter from in situ production. From a management viewpoint, PLS provides a useful tool in identifying the pathways and accumulation sites for such contaminants. - Multivariate statistical analysis was used to identify pathways and accumulation sites for contaminants in coastal waters

  15. Soil organic matter reduces the sorption of arsenate and phosphate

    NARCIS (Netherlands)

    Verbeeck, M.; Hiemstra, T.; Thiry, Y.; Smolders, E.

    2017-01-01

    The arsenate (AsO4) and phosphate (PO4) mobility in aerobic soil is affected by soil organic matter (OM). This study was set up to quantify the interaction between OM and AsO4 with an observational, experimental and computational approach. The adsorption of

  16. Organic matter and heavy metals in grey-water sludge | Eriksson ...

    African Journals Online (AJOL)

    Grey-water intended for non-potable reuse is being intensively studied, but little attention has been given to the associated solid fraction, the grey-water sludge. In this study grey-water sludge originating from bathroom grey-water has been screened with respect to organic matter; particles; short-chain fatty alcohols and ...

  17. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinghua; Lu, Xiuyang; Yuan, Lei; Liu, Xin [Department of Chemical and Biochemical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang (China)

    2009-09-15

    Biomass continues to be an important candidate as a renewable resource for energy, chemicals, and feedstock. Decomposition of biomass in high temperature liquid water is a promising technique for producing industrially important chemicals such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid with high efficiency. Hexose, which is the hydrolysis product of cellulose, will be one of the most important starting chemicals in the coming society that is highly dependent on biomass. Taking fructose as a model compound, its decomposition kinetics in organic acids-enriched high temperature liquid water was studied in the temperature range from 180 C to 220 C under the pressure of 10 MPa to further improve reaction rate and selectivity of the decomposition reactions. The results showed that the reaction rate is greatly enhanced with the addition of organic acids, especially formic acid. The effects of temperature, residence time, organic acids and their concentrations on the conversion of fructose and yield of 5-HMF were investigated. The evaluated apparent activation energies of fructose decomposition are 126.8 {+-} 3.3 kJ mol{sup -1} without any catalyst, 112.0 {+-} 13.7 kJ mol{sup -1} catalyzed with formic acid, and 125.6 {+-} 3.8 kJ mol{sup -1} catalyzed with acetic acid, respectively, which shows no significant difference. (author)

  18. Abiotic reaction of iodate with sphagnum peat and other natural organic matter

    International Nuclear Information System (INIS)

    Steinberg, S.M.; Kimble, G.; Schmett, G.T.; Emerson, D.W.; Turner, M.F.; Rudin, M.

    2008-01-01

    Previous studies have shown that iodine (including 129 I) can be strongly retained in organic-rich surface soils and sediment and that a large fraction of soluble iodine may be associated with dissolved humic material. Iodate (IO 3 - ) reacts with natural organic matter (NOM) producing either hypoiodous acid (HIO) or I 2 as an intermediate. This intermediate is subsequently incorporated into the organic matter. Based on reactions of model compounds, we infer that iodine reacts with peat by aromatic substitution of hydrogen on phenolic constituents of the peat. Alternatively, the intermediate, HIO or I 2 , may be reduced to iodide (I - ). The pH (and temperature) dependence of the IO 3 - reaction (reduction) has been explored with sphagnum peat, alkali lignin, and several model compounds. The incorporation of iodine into NOM has been verified by pyrolysis gas chromatography/mass spectrometry (GC/MS). Model compound studies indicate that reduction of IO 3 - to HIO may result from reaction with hydroquinone (or semiquinone) moieties of the peat. (author)

  19. Role of organic carbon in uranium enrichment in the black shales of Jhamarkotra formation of Aravalli Supergroup - a case study

    International Nuclear Information System (INIS)

    Purohit, Ritesh

    2010-01-01

    An illustration on role of TOC (Total organic carbon) in uranium enrichment is examined in present study from the Jhamarkotra Formation of the Palaeoproterozoic Aravalli Supergroup. The study unravels uranium ion mobility during secondary enrichment process which is governed by the depositional environment. Contrasting black shales facies, though coeval, show selective uranium mineralization. This variability is in discordance with the TOC content of the black shale facies, which in turn are governed by the different microenvironmental conditions. Uranium concentrations in the studied black shales are found to be independent of the TOC. The concentration is dependent on uranium ion carrier during secondary enrichment. (author)

  20. Preservation of organic matter in nontronite against iron redox cycling.

    Science.gov (United States)

    Zeng, Q.

    2015-12-01

    It is generally believed that clay minerals can protect organic matter from degradation in redox active environments, but both biotic and abiotic factors can influence the redox process and thus potentially change the clay-organic associations. However, the specific mechanisms involved in this process remain poorly understood. In this study, a model organic compound, 12-Aminolauric acid (ALA) was selected to intercalate into the structural interlayer of nontronite (an iron-rich smectite, NAu-2) to form an ALA-intercalated NAu-2 composite (ALA-NAu-2). Shawanella putrefaciens CN32 and sodium dithionite were used to reduce structural Fe(III) to Fe(II) in NAu-2 and ALA-NAu-2. The bioreduced ALA-NAu-2 was subsequently re-oxidized by air. The rates and extents of bioreduction and air re-oxidation were determined with wet chemistry methods. ALA release from ALA-NAu-2 via redox process was monitored. Mineralogical changes after iron redox cycle were investigated with X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy. At the beginning stage of bioreduction, S. putrefaciens CN32 reduced Fe(III) from the edges of nontronite and preferentially reduced and dissolved small and poorly crystalline particles, and released ALA, resulting a positive correlation between ALA release and iron reduction extent (80%). Because bacteria are the principal agent for mediating redox process in natural environments, our results demonstrated that the structural interlayer of smectite can serve as a potential shelter to protect organic matter from oxidation.