WorldWideScience

Sample records for organic compunds detection

  1. Sorption of lipophilic organic compunds to wood and implications for their environmental fate

    Trapp, Stefan; Miglioranza, S.B.; Mosbæk, Hans

    2001-01-01

    The sorption from water to wood (KWood) of 10 organic chemicals (logKOW, 1.48-6.20) was experimentally determined for oak (Quercus robur) and basket willow (Salix viminalis). Linear regression yielded log KWood ) -0.27 (( 0.25) + 0.632 (( 0.063)log KOW for oak (r ) 0.90, n ) 27) and log KWood ) -...... time. If metabolism inside the stem occurs, wood can serve as a “safe sink” for environmental chemicals. This might be of use in phytoremediation....

  2. Volatile Organic Compunds (Environmental Health Student Portal)

    ... Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home Chemicals Volatile ...

  3. Methane oxidation and degradation of organic compounds in landfill soil covers

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  4. Organizing the early detection of cancers

    Nyamdavaa, N.

    1995-01-01

    In early detection and diagnosing cancers: 1. organizing the preventive different examinations among the population in the servicing sphere, involving the family doctors to them. 2.Discharging the patients from hospitals after making the complex analysis to negate cancers and consulting with gynaecologist regardless the diagnosis of female in-patients aged over 20 who were hospitalized. 3.Making the analysis to negate cancers to the in-patients with indefinite diagnosis for the period of 14 days since their hospitalization and also the in-patients, who were shivered indefinitely.4.Making the analysis to negate cancers to all persons, who are first visited at out-patient clinics in the given year, who aged over 40, consulting the female patient, who aged over 25 with gynaecologist and making the USV examination to the persons, who were ill with infectious hepatitis now virus carriers at least 2 times for year

  5. Detecting organic gunpowder residues from handgun use

    MacCrehan, William A.; Ricketts, K. Michelle; Baltzersen, Richard A.; Rowe, Walter F.

    1999-02-01

    The gunpowder residues that remain after the use of handguns or improvised explosive devices pose a challenge for the forensic investigator. Can these residues be reliably linked to a specific gunpowder or ammunition? We investigated the possibility by recovering and measuring the composition of organic additives in smokeless powder and its post-firing residues. By determining gunpowder additives such as nitroglycerin, dinitrotoluene, ethyl- and methylcentralite, and diphenylamine, we hope to identify the type of gunpowder in the residues and perhaps to provide evidence of a match to a sample of unfired powder. The gunpowder additives were extracted using an automated technique, pressurized fluid extraction (PFE). The conditions for the quantitative extraction of the additives using neat and solvent-modified supercritical carbon dioxide were investigated. All of the major gunpowder additives can be determined with baseline resolution using capillary electrophoresis (CE) with a micellar agent and UV absorbance detection. A study of candidate internal standards for use in the CE method is also presented. The PFE/CE technique is used to evaluate a new residue sampling protocol--asking shooters to blow their noses. In addition, an initial investigation of the compositional differences among unfired and post-fired .22 handgun residues is presented.

  6. New Organic Scintillators for Neutron Detection

    2016-03-01

    gamma rays. For heterogeneous or dense materials such as samples of metals , oxides , and nuclear waste, gamma ray attenuation can be too high to...highly enriched uranium and weapons grade plutonium. Neutrons and gamma rays are two signatures of these materials. Gamma ray detection techniques are... uranium ). Thus, neutron detection is an important component of the overall detection techniques used in identifying SNMs. Important requirements for

  7. Syntheses of organic compounds in the presence of the fused iron catalyst and their mechanisms and kinetics

    Glebov, L. S.; Kliger, G. A.

    1989-10-01

    New synthetic possibilities of the reduced promoted fused iron catalyst in intermolecular and intramolecular amination, cyanation, hydrogenation-dehydrogenation, and hydrodeoxygenation reactions and intermolecular and intramolecular dehydration, polymerisation, and isotope exchange are examined. The mechanisms and kinetics of the reactions leading to the synthesis of amines, alcohols, hydrocarbons, and other organic compunds are discussed. A laser Raman spectroscopic method is described for the investigation of heterogeneous organic catalysis in situ. The bibliography includes 148 references.

  8. Detection of organic matter in interstellar grains.

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  9. Electrochemiluminescence polymerase chain reaction detection of genetically modified organisms

    Liu Jinfeng; Xing Da; Shen Xingyan; Zhu Debin

    2005-01-01

    With the development of biotechnology, more and more genetically modified organisms (GMOs) have entered commercial market. Because of the safety concerns, detection and characterization of GMOs have attracted much attention recently. Electrochemiluminescence (ECL) method is a chemiluminescent (CL) reaction of species generated electrochemically on an electrode surface. It is a highly efficient and accurate detection method. In this paper, ECL polymerase chain reaction (PCR) combined with two types of nucleic acid probes hybridization was applied to detect GMOs for the first time. Whether the organisms contain GM components was discriminated by detecting the cauliflower mosaic virus 35S (CaMV35S) promoter and nopaline synthase (NOS) terminator. The experiment results show that the detection limit is 100 fmol of PCR products. The promoter and the terminator can be clearly detected in GMOs. The method may provide a new means for the detection of GMOs due to its simplicity and high efficiency

  10. Detection of organic compounds with whole-cell bioluminescent bioassays.

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  11. Radiometric method for the rapid detection of Leptospira organisms

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-01-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with 14 C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques

  12. Radiometric method for the rapid detection of Leptospira organisms

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  13. Safety assessment and detection methods of genetically modified organisms.

    Xu, Rong; Zheng, Zhe; Jiao, Guanglian

    2014-01-01

    Genetically modified organisms (GMOs), are gaining importance in agriculture as well as the production of food and feed. Along with the development of GMOs, health and food safety concerns have been raised. These concerns for these new GMOs make it necessary to set up strict system on food safety assessment of GMOs. The food safety assessment of GMOs, current development status of safety and precise transgenic technologies and GMOs detection have been discussed in this review. The recent patents about GMOs and their detection methods are also reviewed. This review can provide elementary introduction on how to assess and detect GMOs.

  14. Risk-based fault detection using Self-Organizing Map

    Yu, Hongyang; Khan, Faisal; Garaniya, Vikram

    2015-01-01

    The complexity of modern systems is increasing rapidly and the dominating relationships among system variables have become highly non-linear. This results in difficulty in the identification of a system's operating states. In turn, this difficulty affects the sensitivity of fault detection and imposes a challenge on ensuring the safety of operation. In recent years, Self-Organizing Maps has gained popularity in system monitoring as a robust non-linear dimensionality reduction tool. Self-Organizing Map is able to capture non-linear variations of the system. Therefore, it is sensitive to the change of a system's states leading to early detection of fault. In this paper, a new approach based on Self-Organizing Map is proposed to detect and assess the risk of fault. In addition, probabilistic analysis is applied to characterize the risk of fault into different levels according to the hazard potential to enable a refined monitoring of the system. The proposed approach is applied on two experimental systems. The results from both systems have shown high sensitivity of the proposed approach in detecting and identifying the root cause of faults. The refined monitoring facilitates the determination of the risk of fault and early deployment of remedial actions and safety measures to minimize the potential impact of fault. - Highlights: • A new approach based on Self-Organizing Map is proposed to detect faults. • Integration of fault detection with risk assessment methodology. • Fault risk characterization into different levels to enable focused system monitoring

  15. The Preservation and Detection of Organic Matter within Jarosite

    Lewis, J. M. T.; Eigenbrode, J. L.; McAdam, A.; Andrejkovicova, S. C.; Knudson, C. A.; Wong, G. M.; Millan, M.; Freissinet, C.; Szopa, C.; Li, X.; Bower, D. M.

    2017-12-01

    Since its arrival at Mt. Sharp in 2014 the Mars Science Laboratory Curiosity rover has been examining the mountain's lower stratigraphy, which shows a progression from clay-bearing to sulfate-bearing strata. Clay minerals are known to be effective long-term preservers of organic matter [1], but it is important to also consider the potential for Martian sulfate minerals to host organic molecules. The Sample Analysis at Mars (SAM) instrument suite on board the rover uses pyrolysis to liberate organic fragments from sampled materials [2]. However, the surface of Mars hosts widespread oxychlorine phases, which thermally decompose to release oxygen and chlorine that can degrade and destroy organic signals [3]. Francois et al. (2016) demonstrated that synthetic magnesium sulfate can incorporate phthalic acid and protect it from oxychlorine phases during pyrolysis [4]. Magnesium sulfate as well as calcium sulfate and jarosite have all been observed by instruments on the rover. The addition of organic standards to the starting materials in jarosite synthesis reactions has conclusively demonstrated that jarosite can incorporate organic molecules. The samples were analyzed by SAM-like evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC-MS) and the influence of perchlorates assessed. Jarosite has been observed by multiple missions to the Martian surface and from orbit, thus the probability of future organic detection missions encountering the mineral is high. Samples from this study were examined by laser desorption/ionization mass spectrometry and Raman spectroscopy, which will be utilized by the ExoMars rover and Mars 2020 rover respectively. The data inform the sampling and analysis strategies for sulfate-rich regions of Mars for present and future organic-detection missions. [1] Farmer & Des Marais (1999) JGR: Planets 104, [2] Mahaffy et al., (2012) Space Science Reviews 170 [3] Glavin et al., (2013) JGR: Planets 118 [4] Francois et al., (2016) JGR

  16. Organic materials and devices for detecting ionizing radiation

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  17. Detection of semi-volatile organic compounds in permeable ...

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  18. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  19. Phylogenetically informed logic relationships improve detection of biological network organization

    2011-01-01

    Background A "phylogenetic profile" refers to the presence or absence of a gene across a set of organisms, and it has been proven valuable for understanding gene functional relationships and network organization. Despite this success, few studies have attempted to search beyond just pairwise relationships among genes. Here we search for logic relationships involving three genes, and explore its potential application in gene network analyses. Results Taking advantage of a phylogenetic matrix constructed from the large orthologs database Roundup, we invented a method to create balanced profiles for individual triplets of genes that guarantee equal weight on the different phylogenetic scenarios of coevolution between genes. When we applied this idea to LAPP, the method to search for logic triplets of genes, the balanced profiles resulted in significant performance improvement and the discovery of hundreds of thousands more putative triplets than unadjusted profiles. We found that logic triplets detected biological network organization and identified key proteins and their functions, ranging from neighbouring proteins in local pathways, to well separated proteins in the whole pathway, and to the interactions among different pathways at the system level. Finally, our case study suggested that the directionality in a logic relationship and the profile of a triplet could disclose the connectivity between the triplet and surrounding networks. Conclusion Balanced profiles are superior to the raw profiles employed by traditional methods of phylogenetic profiling in searching for high order gene sets. Gene triplets can provide valuable information in detection of biological network organization and identification of key genes at different levels of cellular interaction. PMID:22172058

  20. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  1. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Bajaj, P N; Sapre, A V; Mittal, J P; Mukherjee, T [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2006-10-15

    Singlet molecular oxygen ({sup 1}O{sub 2}) is an excited state of molecular oxygen, having antiparallel spin in the same {pi} antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  2. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    Barik, Atanu; Indira Priyadarsini, K.; Hari Mohan; Bajaj, P.N.; Sapre, A.V.; Mittal, J.P.; Mukherjee, T.

    2006-10-01

    Singlet molecular oxygen ( 1 O 2 ) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  3. Mobile Anomaly Detection Based on Improved Self-Organizing Maps

    Chunyong Yin

    2017-01-01

    Full Text Available Anomaly detection has always been the focus of researchers and especially, the developments of mobile devices raise new challenges of anomaly detection. For example, mobile devices can keep connection with Internet and they are rarely turned off even at night. This means mobile devices can attack nodes or be attacked at night without being perceived by users and they have different characteristics from Internet behaviors. The introduction of data mining has made leaps forward in this field. Self-organizing maps, one of famous clustering algorithms, are affected by initial weight vectors and the clustering result is unstable. The optimal method of selecting initial clustering centers is transplanted from K-means to SOM. To evaluate the performance of improved SOM, we utilize diverse datasets and KDD Cup99 dataset to compare it with traditional one. The experimental results show that improved SOM can get higher accuracy rate for universal datasets. As for KDD Cup99 dataset, it achieves higher recall rate and precision rate.

  4. Method and apparatus for detecting micro-organisms

    Mirsky, J.

    1976-01-01

    A method and apparatus is described for determining the presence and quantity of microorganisms, such as bacteria, fungi and yeast, in a given sample. The apparatus includes two sealed containers, a portion of which may be penetrated by a sharp instrument, as for example, glass vials with flexible septum tops. One container includes a radioactive nutrient medium which is capable of supporting the life process of the microorganism whose presence is being tested. The second container includes a liquid scintillation solution which absorbs the product of metabolism of the organisms. The sample is introduced into the first sealed container, for example, by means of a standard syringe. Any microorganisms present will consume the radioactive nutrient and as a result produce radioactive waste. Means are then applied to penetrate the containers and allow the flow of the radioactive metabolic product from the first container to the second container while preventing any contamination from the ambient. The liquid scintillation solution will emit light in proportion to the amount of the product of metabolism collected from the first container. This light may be detected by standard liquid scintillation counters, thus providing a qualitative and quantitative measure of the microorganism in the tested sample

  5. Humidity Detection Using Metal Organic Framework Coated on QCM

    Kosuru, Lakshmoji

    2016-06-28

    Quartz crystal microbalance (QCM) coated with poly-4-vinylpyridine (PVP) and metal organic framework HKUST-1 are investigated and compared for humidity sensing. Drop casting method is employed to coat the PVP and HKUST-1 solutions onto the surface of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH) from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times of these sensors are studied. The sensitivities of uncoated, PVP, and HKUST-1 coated QCM sensors are 7 Hz, 48 Hz, and 720 Hz, respectively, in the range of 22% RH–69% RH. The extraction of desorption rate and adsorption energy associated with the adsorption and desorption of water molecules on these surfaces reveals that HKUST-1 has better sensing properties than PVP and uncoated QCM sensors. In this work, the HKUST-1 coated QCM is shown to be a promising material for moisture detection.

  6. Self-organized fluorescent nanosensors for ratiometric Pb2+ detection.

    Arduini, Maria; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2007-07-31

    Silica nanoparticles (60 nm diameter) doped with fluorescent dyes and functionalized on the surface with thiol groups have been proved to be efficient fluorescent chemosensors for Pb2+ ions. The particles can detect a 1 microM metal ion concentration with a good selectivity, suffering only interference from Cu2+ ions. Analyte binding sites are provided by the simple grafting of the thiol groups on the nanoparticles. Once bound to the particles surface, the Pb2+ ions quench the emission of the reporting dyes embedded. Sensor performances can be improved by taking advantage of the ease of production of multishell silica particles. On one hand, signaling units can be concentrated in the external shells, allowing a closer interaction with the surface-bound analyte. On the other, a second dye can be buried in the particle core, far enough from the surface to be unaffected by the Pb2+ ions, thus producing a reference signal. In this way, a ratiometric system is easily prepared by simple self-organization of the particle components.

  7. Volatile organic compounds discrimination based on dual mode detection

    Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2018-06-01

    We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.

  8. Humidity Detection Using Metal Organic Framework Coated on QCM

    Lakshmoji Kosuru

    2016-01-01

    Full Text Available Quartz crystal microbalance (QCM coated with poly-4-vinylpyridine (PVP and metal organic framework HKUST-1 are investigated and compared for humidity sensing. Drop casting method is employed to coat the PVP and HKUST-1 solutions onto the surface of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times of these sensors are studied. The sensitivities of uncoated, PVP, and HKUST-1 coated QCM sensors are 7 Hz, 48 Hz, and 720 Hz, respectively, in the range of 22% RH–69% RH. The extraction of desorption rate and adsorption energy associated with the adsorption and desorption of water molecules on these surfaces reveals that HKUST-1 has better sensing properties than PVP and uncoated QCM sensors. In this work, the HKUST-1 coated QCM is shown to be a promising material for moisture detection.

  9. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  10. An Infrared Fiber-Optic Raman Sensor for Field Detecting of Organic Biomarkers, Phase I

    National Aeronautics and Space Administration — High throughput, fast detection and characterization of inorganic and organic biomarkers have become important challenge for future lunar robotic rover exploration...

  11. Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems

    Graeme Williams

    2014-02-01

    Full Text Available The rapid development of microfluidics and lab-on-a-chip (LoC technologies have allowed for the efficient separation and manipulation of various biomaterials, including many diagnostically relevant species. Organic electronics have similarly enjoyed a great deal of research, resulting in tiny, highly efficient, wavelength-selective organic light-emitting diodes (OLEDs and organic photodetectors (OPDs. We consider the blend of these technologies for rapid detection and diagnosis of biological species. In the ideal system, optically active or fluorescently labelled biological species can be probed via light emission from OLEDs, and their subsequent light emission can be detected with OPDs. The relatively low cost and simple fabrication of the organic electronic devices suggests the possibility of disposable test arrays. Further, with full integration, the finalized system can be miniaturized and made simple to use. In this review, we consider the design constraints of OLEDs and OPDs required to achieve fully organic electronic optical bio-detection systems. Current approaches to integrated LoC optical sensing are first discussed. Fully realized OLED- and OPD-specific photoluminescence detection systems from literature are then examined, with a specific focus on their ultimate limits of detection. The review highlights the enormous potential in OLEDs and OPDs for integrated optical sensing, and notes the key avenues of research for cheap and powerful LoC bio-detection systems.

  12. Miniaturised Optical Fibre Sensor for Dew Detection Inside Organ Pipes

    Francesco Baldini

    2008-01-01

    Full Text Available A new optical sensor for the continuous monitoring of the dew formation inside organ pipes was designed. This aspect is particularly critical for the conservation of organs in unheated churches since the dew formation or the condensation on the pipe surfaces can contribute to many kinds of physical and chemical disruptive mechanisms. The working principle is based on the change in the reflectivity which is observed on the surface of the fibre tip, when a water layer is formed on its distal end. Intensity changes of the order of 35% were measured, following the formation of the water layer on the distal end of a 400/430 μm optical fibre. Long-term tests carried out placing the fibre tip inside the base of an in-house-made metallic foot of an organ pipe located in an external environment revealed the consistency of the proposed system.

  13. Statistics provide guidance for indigenous organic carbon detection on Mars missions.

    Sephton, Mark A; Carter, Jonathan N

    2014-08-01

    Data from the Viking and Mars Science Laboratory missions indicate the presence of organic compounds that are not definitively martian in origin. Both contamination and confounding mineralogies have been suggested as alternatives to indigenous organic carbon. Intuitive thought suggests that we are repeatedly obtaining data that confirms the same level of uncertainty. Bayesian statistics may suggest otherwise. If an organic detection method has a true positive to false positive ratio greater than one, then repeated organic matter detection progressively increases the probability of indigeneity. Bayesian statistics also reveal that methods with higher ratios of true positives to false positives give higher overall probabilities and that detection of organic matter in a sample with a higher prior probability of indigenous organic carbon produces greater confidence. Bayesian statistics, therefore, provide guidance for the planning and operation of organic carbon detection activities on Mars. Suggestions for future organic carbon detection missions and instruments are as follows: (i) On Earth, instruments should be tested with analog samples of known organic content to determine their true positive to false positive ratios. (ii) On the mission, for an instrument with a true positive to false positive ratio above one, it should be recognized that each positive detection of organic carbon will result in a progressive increase in the probability of indigenous organic carbon being present; repeated measurements, therefore, can overcome some of the deficiencies of a less-than-definitive test. (iii) For a fixed number of analyses, the highest true positive to false positive ratio method or instrument will provide the greatest probability that indigenous organic carbon is present. (iv) On Mars, analyses should concentrate on samples with highest prior probability of indigenous organic carbon; intuitive desires to contrast samples of high prior probability and low prior

  14. Simulation of Neutron Backscattering applied to organic material detection

    Forero, N. C.; Cruz, A. H.; Cristancho, F.

    2007-01-01

    The Neutron Backscattering technique is tested when performing the task of localizing hydrogenated explosives hidden in soil. Detector system, landmine, soil and neutron source are simulated with Geant4 in order to obtain the number of neutrons detected when several parameters like mine composition, relative position mine-source and soil moisture are varied

  15. Molecular approaches to detect and study the organisms causing ...

    This review will summarise the molecular approaches used to detect and analyse the genomes of Babesia bovis, B. bigemina and Anaplasma marginale which cause bovine babesiosis and anaplasmosis. These tick borne diseases are widely distributed in Africa, Asia, Australia, and Central and South America and for ...

  16. Antimicrobial packaging with natural compunds - a review

    Renata Dobrucka

    2016-12-01

    Full Text Available Background:  Packaging problems are an integral part of logistics and the implementation of packaging significantly affects the effectiveness of logistics processes, as a factor which increases the safety and the quality of products being transported. Active packaging is an area of technology needed to meet the requirements of the contemporary consumer. Active packaging creates additional opportunities in systems for packing goods, as well as offering a solution in which the packaging, the product and surroundings interact. Furthermore, active packaging allows packaging to interact with food and the environment and play a dynamic role in food preservation. The main role of antimicrobial packaging is to inhibit the growth of microorganisms that reduce the quality of the packaged product. Methods: The application of natural antimicrobial agents appears to be safe for food products. Also, these compounds have potential applications as a natural preservative in the food packaging industry. This study presents some antibacterial agents, namely chitosan, nisin and pectins. Results and conclusion: Natural substances used in active packaging can eliminate the danger of chemical substances migrating to food.

  17. Application of organic semiconductors for the detection of ionizing radiations

    Kozelj, M.; Cvikl, B.; Korosak, D.

    2006-01-01

    One year aged organic bilayer Al/PCTDA/CuPc/ITO structure prepared with ICB deposition method has been used to evaluate the influence of ionising radiation to electrical properties of the structure. Small sources of α, β and γ radiation were used for preliminary measurements. Capacitance and current measurements were performed on samples with and without presence of ionising radiation and results compared. Effect of β and γ radiation has not been confirmed due to the limited activity of available sources. Presence of α radiation has noticeably changed the capacitance of reversely biased structure and produced increase of current through the structure. We have tried to explain the capacitance properties using the model previously developed for the organic bilayer structures, but we did not manage to resolve all effects involved. (author)

  18. Real time in situ detection of organic nitrates in atmospheric aerosols.

    Rollins, Andrew W; Smith, Jared D; Wilson, Kevin R; Cohen, Ronald C

    2010-07-15

    A novel instrument is described that quantifies total particle-phase organic nitrates in real time with a detection limit of 0.11 microg m(-3) min(-1), 45 ppt min(-1) (-ONO(2)). Aerosol nitrates are separated from gas-phase nitrates with a short residence time activated carbon denuder. Detection of organic molecules containing -ONO(2) subunits is accomplished using thermal dissociation coupled to laser induced fluorescence detection of NO(2). This instrument is capable of high time resolution (seconds) measurements of particle-phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in secondary organic aerosol generated from high-NO(x) photooxidation of limonene, alpha-pinene, Delta-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15% of the total SOA mass.

  19. Holographic detection of hydrocarbon gases and other volatile organic compounds.

    Martínez-Hurtado, J L; Davidson, C A B; Blyth, J; Lowe, C R

    2010-10-05

    There is a need to develop sensors for real-time monitoring of volatile organic compounds (VOCs) and hydrocarbon gases in both external and indoor environments, since these compounds are of growing concern in human health and welfare. Current measurement technology for VOCs requires sophisticated equipment and lacks the prospect for rapid real-time monitoring. Holographic sensors can give a direct reading of the analyte concentration as a color change. We report a technique for recording holographic sensors by laser ablation of silver particles formed in situ by diffusion. This technique allows a readily available hydrophobic silicone elastomer to be transformed into an effective sensor for hydrocarbon gases and other volatile compounds. The intermolecular interactions present between the polymer and molecules are used to predict the sensor performance. The hydrophobicity of this material allows the sensor to operate without interference from water and other atmospheric gases and thus makes the sensor suitable for biomedical, industrial, or environmental analysis.

  20. [Genetically modified organisms in food--production, detection and risks].

    Zeljezić, Davor

    2004-11-01

    The first genetically modified plant (GMP) was a tobacco resistant to antibiotics in 1983. In 1996, the first genetically altered crop, a delayed-ripening tomato was commercially released. In the year 2003, the estimated global area of GM crops for was 67.7 million hectares. To produce such a plant a gene of interest has to be isolated from the donor. Together with a promoter, terminator sequence and marker gene it has to be introduced into the plant cell which is then stimulated to generate a whole GMP expressing new characteristics (herbicide/insect resistance, delayed ripening). The last few months have seen a strong public debate over genetically modified organisms which has raised scientific, economic, political, and ethical issues. Some questions concerning the safety of GMPs are still to be answered, and decisions about their future should be based on scientifically validated information.

  1. Detection and traceability of genetically modified organisms in the food production chain

    Miraglia, M.; Berdal, K.G.; Brera, C.; Corbisier, P.; Holst - Jensen, A.; Kok, E.J.; Marvin, H.J.P.; Schimmel, H.; Rentsch, J.; Rie, van J.P.P.F.; Zagon, J.

    2004-01-01

    Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend

  2. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  3. An Anomaly Detection Algorithm of Cloud Platform Based on Self-Organizing Maps

    Jun Liu

    2016-01-01

    Full Text Available Virtual machines (VM on a Cloud platform can be influenced by a variety of factors which can lead to decreased performance and downtime, affecting the reliability of the Cloud platform. Traditional anomaly detection algorithms and strategies for Cloud platforms have some flaws in their accuracy of detection, detection speed, and adaptability. In this paper, a dynamic and adaptive anomaly detection algorithm based on Self-Organizing Maps (SOM for virtual machines is proposed. A unified modeling method based on SOM to detect the machine performance within the detection region is presented, which avoids the cost of modeling a single virtual machine and enhances the detection speed and reliability of large-scale virtual machines in Cloud platform. The important parameters that affect the modeling speed are optimized in the SOM process to significantly improve the accuracy of the SOM modeling and therefore the anomaly detection accuracy of the virtual machine.

  4. Localised states in organic semiconductors and their detection

    Imperia, Paolo

    2002-06-01

    New polymers and low molecular compounds, suitable for organic light emitting devices and organic electronic applications, have been synthesised in this years in order to obtain electron transport characteristics compatible with requirements for applications in real plastic devices. However, despite of the technological importance and of the relevant progress in devices manufacture, fundamental physical properties of such class of materials are still not enough studied. In particular extensive presence of distributions of localised states inside the band gap has a deep impact on their electronic properties. Such presence of shallow traps as well as the influence of the sample preparation conditions on deep and shallow localised states have not been, until now, systematically explored. The thermal techniques are powerful tools in order to study localised levels in inorganic and organic materials. Thermally stimulated luminescence (TSL), thermally stimulated currents (TSC) and thermally stimulated depolarisation currents (TSDC) allow to deeply look to shallow and deep trap levels as well as they permit to study, in synergy with dielectric spectroscopy (DES), polarisation and depolarisation effects. We studied, by means of numerical simulations, the first and the second order kinetic equations characterised by negligible and strong re-trapping respectively. We included in the equations Gaussian, exponential and quasi-continuous distributions of localised states. The shapes of the theoretical peaks have been investigated by means of systematic variation of the two main parameters of the equations, i. e. the energy trap depth E and the frequency factor a and of the parameters regulating the distributions, in particular for a Gaussian distribution the distribution width s and the integration limits. The theoretical findings have been applied to experimental glow curves. Thin films of polymers and low molecular compounds. Polyphenylquinoxalines, trisphenylquinoxalines and

  5. Multiwalled carbon nanotubes sensor for organic liquid detection at room temperature

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-04-01

    We have explored the possibility of using multiwalled carbon nanotubes (MWCNTs) as room temperature chemical sensor for the detection of organic liquids such as ethanol, propanol, methanol and toluene. MWCNTs were synthesized by thermal chemical vapor deposition (TCVD) technique. The interdigitated electrodes were fabricated by conventional photolithography technique. The sensor was fabricated by drop depositing MWCNT suspension onto the interdigitated electrodes. The sensing properties of MWCNTs sensor was studied for organic liquids detection. The resistance of sensor was found to increase upon exposure to these liquids. Sensor shows good reversibility and fast response at room temperature. Charge transfer between the organic liquid and sensing element is the dominant sensing mechanism.

  6. Magnesium Sulfate as a Key Mineral for the Detection of Organic Molecules on Mars Using Pyrolysis

    Francois, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes.This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (700C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  7. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  8. Hierarchical Self Organizing Map for Novelty Detection using Mobile Robot with Robust Sensor

    Sha'abani, M N A H; Miskon, M F; Sakidin, H

    2013-01-01

    This paper presents a novelty detection method based on Self Organizing Map neural network using a mobile robot. Based on hierarchical neural network, the network is divided into three networks; position, orientation and sensor measurement network. A simulation was done to demonstrate and validate the proposed method using MobileSim. Three cases of abnormal events; new, missing and shifted objects are employed for performance evaluation. The result of detection was then filtered for false positive detection. The result shows that the inspection produced less than 2% false positive detection at high sensitivity settings

  9. Crosslinked plastic scintillators: A new detection system for radioactivity measurement in organic and aggressive media

    Bagán, Héctor; Tarancón, Alex; Ye, Lei; García, José F.

    2014-01-01

    Highlights: • A crosslinked plastic scintillatior for radioactivity measurement was developed. • The effect of C-PS composition in the detection efficiency was evaluated. • C-PS permits the measurement of radioactivity in organic and aggressive media. • C-PS exhibits high detection efficiency in water and even higher in organic media. • C-PS exhibits good reproducibility under different polymerisations with elevated yield. - Abstract: The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values

  10. Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer

    Razu, Md Enayet; Kim, Jungkyu; Stockton, Amanda M.; Turin, Paul; Butterworth, Anna

    2017-01-01

    Abstract Enceladus presents an excellent opportunity to detect organic molecules that are relevant for habitability as well as bioorganic molecules that provide evidence for extraterrestrial life because Enceladus' plume is composed of material from the subsurface ocean that has a high habitability potential and significant organic content. A primary challenge is to send instruments to Enceladus that can efficiently sample organic molecules in the plume and analyze for the most relevant molecules with the necessary detection limits. To this end, we present the scientific feasibility and engineering design of the Enceladus Organic Analyzer (EOA) that uses a microfluidic capillary electrophoresis system to provide sensitive detection of a wide range of relevant organic molecules, including amines, amino acids, and carboxylic acids, with ppm plume-detection limits (100 pM limits of detection). Importantly, the design of a capture plate that effectively gathers plume ice particles at encounter velocities from 200 m/s to 5 km/s is described, and the ice particle impact is modeled to demonstrate that material will be efficiently captured without organic decomposition. While the EOA can also operate on a landed mission, the relative technical ease of a fly-by mission to Enceladus, the possibility to nondestructively capture pristine samples from deep within the Enceladus ocean, plus the high sensitivity of the EOA instrument for molecules of bioorganic relevance for life detection argue for the inclusion of EOA on Enceladus missions. Key Words: Lab-on-a-chip—Organic biomarkers—Life detection—Planetary exploration. Astrobiology 17, 902–912. PMID:28915087

  11. Design of a DNA chip for detection of unknown genetically modified organisms (GMOs).

    Nesvold, Håvard; Kristoffersen, Anja Bråthen; Holst-Jensen, Arne; Berdal, Knut G

    2005-05-01

    Unknown genetically modified organisms (GMOs) have not undergone a risk evaluation, and hence might pose a danger to health and environment. There are, today, no methods for detecting unknown GMOs. In this paper we propose a novel method intended as a first step in an approach for detecting unknown genetically modified (GM) material in a single plant. A model is designed where biological and combinatorial reduction rules are applied to a set of DNA chip probes containing all possible sequences of uniform length n, creating probes capable of detecting unknown GMOs. The model is theoretically tested for Arabidopsis thaliana Columbia, and the probabilities for detecting inserts and receiving false positives are assessed for various parameters for this organism. From a theoretical standpoint, the model looks very promising but should be tested further in the laboratory. The model and algorithms will be available upon request to the corresponding author.

  12. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Chang-Hwan Kim

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  13. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Kim, Chang-Hwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  14. Sulfate minerals: a problem for the detection of organic compounds on Mars?

    Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A

    2015-03-01

    The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.

  15. Detection of single quantum dots in model organisms with sheet illumination microscopy

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany); Wagner, Toni U. [Institute of Physiological Chemistry I, Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Harms, Gregory S., E-mail: gregory.harms@virchow.uni-wuerzburg.de [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany)

    2009-12-18

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 {mu}m. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  16. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  17. Detection of single quantum dots in model organisms with sheet illumination microscopy

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir; Wagner, Toni U.; Harms, Gregory S.

    2009-01-01

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 μm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  18. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    a color difference map which gives a unique fingerprint for each explosive and volatile organic compound. Such sensing technology can be used to screen for relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas phase. This sensor......In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  19. The scent of colorectal cancer: detection by volatile organic compound analysis

    de Boer, Nanne K. H.; de Meij, Tim G. J.; Oort, Frank A.; Ben Larbi, Ilhame; Mulder, Chris J. J.; van Bodegraven, Adriaan A.; van der Schee, Marc P.

    2014-01-01

    The overall metabolic state of an individual is reflected by emitted volatile organic compounds (VOCs), which are gaseous carbon-based chemicals. In this review, we will describe the potential of VOCs as fully noninvasive markers for the detection of neoplastic lesions of the colon. VOCs are

  20. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection

    Slobodian, P.; Říha, Pavel; Lengálová, A.; Svoboda, P.; Sáha, P.

    2011-01-01

    Roč. 49, č. 7 (2011), s. 2499-2507 ISSN 0008-6223 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * KMnO 4 oxidation * electrical resistance * organic vapor detection * adsorption /desorption cycles Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.378, year: 2011

  1. Detection of Volatile Organic Compound Gas Using Localized Surface Plasmon Resonance of Gold Nanoparticles

    Sri Nengsih; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahaya

    2011-01-01

    This paper reports on the detection of several organic vapors using the unique characteristic of localized surface plasmon resonance (LSPR) gold nanoparticles. Gold nanoparticles on quartz substrate were prepared using seed mediated growth method. In a typical process, gold nanoparticles with average size ca. 36 nm were obtained to densely grown on the substrate. Detection of gas was based on the change in the LSPR of the gold nanoparticles film upon the exposure to the gas sample. It was found that gold nanoparticles were sensitive to the presence of volatile organic compound (VOC) gas from the change in the surface plasmon resonance (SPR) intensity. The mechanism for the detection of VOCs gas will be discussed. (author)

  2. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; hide

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  3. A method for detecting the presence of organic fraction in nucleation mode sized particles

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  4. Method for the detection and isolation of traces of organic fluorine compounds in plants

    Wade, R H; Ross, J M; Benedict, H M

    1964-01-01

    A method for the detection and isolation of sub-microgram quantities of organic fluorine compounds from plant materials in the presence of much larger amounts of inorganic fluoride is presented. The procedure consists first of a rapid screening step for use with large numbers of vegetable samples and extracts and, second, of a chromatographic step to isolate and characterize any fluoro-organics found. These methods are developed in light of specific chemical characteristics of organic fluorine compounds as a general class. A modification of SOEP's quantitative sub-micro fluoride analytical method is presented as applicable to these isolation methods. Microgram quantities of organic fluorine compounds were found in the plant materials investigated but at a level too low for isolation and identification.

  5. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  6. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    Arney, Giada N.; Meadows, Victoria S.; Tovar, Guadalupe; Schwieterman, Edward [University of Washington Astronomy Department, Box 351580, U.W. Seattle, WA 98195 (United States); Domagal-Goldman, Shawn D.; Deming, Drake; Robinson, Tyler D. [NASA Astrobiology Institute Virtual Planetary Laboratory, Box 351580, U.W. Seattle, WA 98195 (United States); Wolf, Eric T., E-mail: giada.n.arney@nasa.gov [University of Colorado at Boulder Laboratory for Astrophysics and Space Physics, 1234 Innovation Drive, Boulder, CO 80303 (United States)

    2017-02-10

    Hazes are common in known planetary atmospheres, and geochemical evidence suggests that early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zones of several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), ϵ Eridani (K2V), and σ Boötis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze because of the formation of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs, whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope , haze makes gaseous absorption features at wavelengths < 2.5 μ m 2–10 σ shallower than a haze-free planet, and methane and carbon dioxide are detectable at >5 σ . A haze absorption feature can be detected at 5 σ near 6.3 μ m, but a higher signal-to-noise ratio is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 pc using a coronagraphic 10 m class ultraviolet–visible–near-infrared telescope, a UV–blue haze absorption feature would be strongly detectable at >12 σ in 200 hr.

  7. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  8. Quantitative Prediction of Solvation Free Energy in Octanol of Organic Compounds

    Eduardo J. Delgado

    2009-03-01

    Full Text Available The free energy of solvation, ΔGS0 , in octanol of organic compunds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a ΔGS0 range from about –50 to 0 kJ·mol-1. The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ·mol-1, just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  9. Extended-gate organic field-effect transistor for the detection of histamine in water

    Minamiki, Tsukuru; Minami, Tsuyoshi; Yokoyama, Daisuke; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2015-04-01

    As part of our ongoing research program to develop health care sensors based on organic field-effect transistor (OFET) devices, we have attempted to detect histamine using an extended-gate OFET. Histamine is found in spoiled or decayed fish, and causes foodborne illness known as scombroid food poisoning. The new OFET device possesses an extended gate functionalized by carboxyalkanethiol that can interact with histamine. As a result, we have succeeded in detecting histamine in water through a shift in OFET threshold voltage. This result indicates the potential utility of the designed OFET devices in food freshness sensing.

  10. Detection and traceability of genetically modified organisms in the food production chain.

    Miraglia, M; Berdal, K G; Brera, C; Corbisier, P; Holst-Jensen, A; Kok, E J; Marvin, H J P; Schimmel, H; Rentsch, J; van Rie, J P P F; Zagon, J

    2004-07-01

    Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend this labelling to foods without any traces of transgenics. These new legislations would also impose labelling and a traceability system based on documentation throughout the food and feed manufacture system. The regulatory issues of risk analysis and labelling are currently harmonised by Codex Alimentarius. The implementation and maintenance of the regulations necessitates sampling protocols and analytical methodologies that allow for accurate determination of the content of genetically modified organisms within a food and feed sample. Current methodologies for the analysis of genetically modified organisms are focused on either one of two targets, the transgenic DNA inserted- or the novel protein(s) expressed- in a genetically modified product. For most DNA-based detection methods, the polymerase chain reaction is employed. Items that need consideration in the use of DNA-based detection methods include the specificity, sensitivity, matrix effects, internal reference DNA, availability of external reference materials, hemizygosity versus homozygosity, extrachromosomal DNA, and international harmonisation. For most protein-based methods, enzyme-linked immunosorbent assays with antibodies binding the novel protein are employed. Consideration should be given to the selection of the antigen bound by the antibody, accuracy, validation, and matrix effects. Currently, validation of detection methods for analysis of genetically modified organisms is taking place. In addition, new methodologies are developed, including the use of microarrays, mass spectrometry, and surface plasmon resonance. Challenges for GMO detection include the detection of transgenic material in materials

  11. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    Cai, Min [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  12. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms.

    de Souza, Lesley S; Godwin, James C; Renshaw, Mark A; Larson, Eric

    2016-01-01

    Environmental DNA (eDNA) holds great promise for conservation applications like the monitoring of invasive or imperiled species, yet this emerging technique requires ongoing testing in order to determine the contexts over which it is effective. For example, little research to date has evaluated how seasonality of organism behavior or activity may influence detection probability of eDNA. We applied eDNA to survey for two highly imperiled species endemic to the upper Black Warrior River basin in Alabama, US: the Black Warrior Waterdog (Necturus alabamensis) and the Flattened Musk Turtle (Sternotherus depressus). Importantly, these species have contrasting patterns of seasonal activity, with N. alabamensis more active in the cool season (October-April) and S. depressus more active in the warm season (May-September). We surveyed sites historically occupied by these species across cool and warm seasons over two years with replicated eDNA water samples, which were analyzed in the laboratory using species-specific quantitative PCR (qPCR) assays. We then used occupancy estimation with detection probability modeling to evaluate both the effects of landscape attributes on organism presence and season of sampling on detection probability of eDNA. Importantly, we found that season strongly affected eDNA detection probability for both species, with N. alabamensis having higher eDNA detection probabilities during the cool season and S. depressus have higher eDNA detection probabilities during the warm season. These results illustrate the influence of organismal behavior or activity on eDNA detection in the environment and identify an important role for basic natural history in designing eDNA monitoring programs.

  13. Detection beyond Debye's length with an electrolyte-gated organic field-effect transistor.

    Palazzo, Gerardo; De Tullio, Donato; Magliulo, Maria; Mallardi, Antonia; Intranuovo, Francesca; Mulla, Mohammad Yusuf; Favia, Pietro; Vikholm-Lundin, Inger; Torsi, Luisa

    2015-02-04

    Electrolyte-gated organic field-effect transistors are successfully used as biosensors to detect binding events occurring at distances from the transistor electronic channel that are much larger than the Debye length in highly concentrated solutions. The sensing mechanism is mainly capacitive and is due to the formation of Donnan's equilibria within the protein layer, leading to an extra capacitance (CDON) in series to the gating system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics

    Southard, Adrian E.; Getty, Stephanie A.; Balvin, Manuel; Cook, Jamie E.; Espiritu, Ana Mellina; Kotecki, Carl; Towner, Deborah W.; Dworkin, J. P.; Glavin, Daniel P.; Mahaffy, Paul R.; hide

    2014-01-01

    The OASIS (Organics Analyzer for Sampling Icy surfaces) microchip enables electrospray or thermospray of analyte for subsequent analysis by the OASIS time-of-flight mass spectrometer. Electrospray of buffer solution containing the nucleobase adenine was performed using the microchip and detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be performed using a test fixture and vacuum chamber developed especially for optimization of ion spray at atmosphere and in low pressure environments.

  15. Intelligent Machine Vision for Automated Fence Intruder Detection Using Self-organizing Map

    Veldin A. Talorete Jr.; Sherwin A Guirnaldo

    2017-01-01

    This paper presents an intelligent machine vision for automated fence intruder detection. A series of still captured images that contain fence events using Internet Protocol cameras was used as input data to the system. Two classifiers were used; the first is to classify human posture and the second one will classify intruder location. The system classifiers were implemented using Self-Organizing Map after the implementation of several image segmentation processes. The human posture classifie...

  16. Capillary electrophoresis with electrochemiluminescent detection for highly sensitive assay of genetically modified organisms.

    Guo, Longhua; Yang, Huanghao; Qiu, Bin; Xiao, Xueyang; Xue, Linlin; Kim, Donghwan; Chen, Guonan

    2009-12-01

    A capillary electrophoresis coupled with electrochemiluminescent detection system (CE-ECL) was developed for the detection of polymerase chain reaction (PCR) amplicons. The ECL luminophore, tris(1,10-phenanthroline) ruthenium(II) (Ru(phen)(3)(2+)), was labeled to the PCR primers before amplification. Ru(phen)(3)(2+) was then introduced to PCR amplicons by PCR amplification. Eventually, the PCR amplicons were separated and detected by the homemade CE-ECL system. The detection of a typical genetically modified organism (GMO), Roundup Ready Soy (RRS), was shown as an example to demonstrate the reliability of the proposed approach. Four pairs of primers were amplified by multiple PCR (MPCR) simultaneously, three of which were targeted on the specific sequence of exogenous genes of RRS, and another was targeted on the endogenous reference gene of soybean. Both the conditions for PCR amplification and CE-ECL separation and detection were investigated in detail. Results showed that, under the optimal conditions, the proposed method can accurately identifying RRS. The corresponding limit of detection (LOD) was below 0.01% with 35 PCR cycles.

  17. Photonic-Crystal-Based Thin Film Sensor for Detecting Volatile Organic Compounds

    Chang, Hyung Kwan; Park, Jung Yul [Sogang Univ., Seoul (Korea, Republic of)

    2016-03-15

    Early detection of toxic gases, such as volatile organic compounds (VOCs), is important for safety and environmental protection. However, the conventional detection methods require long-term measurement times and expensive equipment. In this study, we propose a thin-film-type chemical sensor for VOCs, which consists of self assembled monosize nanoparticles for 3-D photonic crystal structures and polydimthylsiloxane (PDMS) film. It is operated without any external power source, is truly portable, and has a fast response time. The structure color of the sensor changes when it is exposed to VOCs, because VOCs induce a swelling of the PDMS. Therefore, using this principle of color change, we can create a thin-film sensor for immediate detection of various types of VOCs. The proposed device evidences that a fast response time of just seconds, along with a clear color change, are successfully observed when the sensor is exposed to gas-phase VOCs.

  18. Comparison between genetic algorithm and self organizing map to detect botnet network traffic

    Yugandhara Prabhakar, Shinde; Parganiha, Pratishtha; Madhu Viswanatham, V.; Nirmala, M.

    2017-11-01

    In Cyber Security world the botnet attacks are increasing. To detect botnet is a challenging task. Botnet is a group of computers connected in a coordinated fashion to do malicious activities. Many techniques have been developed and used to detect and prevent botnet traffic and the attacks. In this paper, a comparative study is done on Genetic Algorithm (GA) and Self Organizing Map (SOM) to detect the botnet network traffic. Both are soft computing techniques and used in this paper as data analytics system. GA is based on natural evolution process and SOM is an Artificial Neural Network type, uses unsupervised learning techniques. SOM uses neurons and classifies the data according to the neurons. Sample of KDD99 dataset is used as input to GA and SOM.

  19. The Detection of Hot Cores and Complex Organic Molecules in the Large Magellanic Cloud

    Sewiło, Marta; Indebetouw, Remy; Charnley, Steven B.; Zahorecz, Sarolta; Oliveira, Joana M.; van Loon, Jacco Th.; Ward, Jacob L.; Chen, C.-H. Rosie; Wiseman, Jennifer; Fukui, Yasuo; Kawamura, Akiko; Meixner, Margaret; Onishi, Toshikazu; Schilke, Peter

    2018-02-01

    We report the first extragalactic detection of the complex organic molecules (COMs) dimethyl ether (CH3OCH3) and methyl formate (CH3OCHO) with the Atacama Large Millimeter/submillimeter Array (ALMA). These COMs, together with their parent species methanol (CH3OH), were detected toward two 1.3 mm continuum sources in the N 113 star-forming region in the low-metallicity Large Magellanic Cloud (LMC). Rotational temperatures ({T}{rot}∼ 130 K) and total column densities ({N}{rot}∼ {10}16 cm‑2) have been calculated for each source based on multiple transitions of CH3OH. We present the ALMA molecular emission maps for COMs and measured abundances for all detected species. The physical and chemical properties of two sources with COMs detection, and the association with H2O and OH maser emission, indicate that they are hot cores. The fractional abundances of COMs scaled by a factor of 2.5 to account for the lower metallicity in the LMC are comparable to those found at the lower end of the range in Galactic hot cores. Our results have important implications for studies of organic chemistry at higher redshift.

  20. Research of Organic Pollutants Detection in the Roadside Soil at the Suburb of the North China

    Liu, X Y; Li, C; Mao, G C; Dai, C L; Zhu, Q Y; Sun, J X; Li, Y L

    2006-01-01

    With the development of society and economy, more and more automobile and vehicle run in the various roads. Car tail gas can not only pollute the air, but also can still result in the pollution of soil and ground water even underground water. Soil pollution coming from car tail gas is investigated in detail by experimental detection by Geofina Hydrocarbon Meter (GHM) made in Norway in this paper. Experiment samples are collected from thruway and highway side, and the organic pollutants of the samples are analyzed by the GHM instrument. Experiment shows that various kinds of organic pollutants are found in the samples, such as 14 species normal alkanes, 25 species aromatics, 13 species heteocycle compounds and 9 species phenols and so on. The characteristics of organic pollution resulted from car tail gas in the soil are obtained by detection analysis. The soil pollution caused by car tail gas has heavy toxicity to human being and the natural entironment. Consequently, organic contamination in the soil by the tail gas can't be neglected. The relevant investigation should be made so that some precautionary and cure measures may be proposed as soon as possible

  1. Detection of organ dysfunction by hypotension and/or hyperlactemia in septic patients

    Nissen, Janet Yde; Dynesen, Jens Jacob Østergaard; Pedersen, Marie Kristine Jessen

    physician documented a suspicion/confirmation of infection within the first 24h of admission. Diagnoses were confirmed by expert proof reading, and calculation of inter-rater agreement. Severe sepsis-defining organ dysfunction cut-offs were adapted from SSC-2012 (Gold Standard). “Simple tool” hypotension...... fulfilling the inclusion criteria. 494 patients (51%) were suspected to have infection within the first 24h of admission. Inter-rater agreement regarding suspected infection was 81% (pSimple tool” detected 73......BackgroundThe definitions of sepsis were updated February 2016[1] - organ dysfunctions remain the turning point between “simple infection” and sepsis (previously severe sepsis). Hypotension and hyperlactatemia define two of many organ dysfunctions presented in the most recent Surviving Sepsis...

  2. Volatile Organic Compound (VOC) Analysis For Disease Detection: Proof Of Principle For Field Studies Detecting Paratuberculosis And Brucellosis

    Knobloch, Henri; Köhler, Heike; Nicola, Commander; Reinhold, Petra; Turner, Claire; Chambers, Mark

    2009-05-01

    A proof of concept investigation was performed to demonstrate that two independent infectious diseases of cattle result in different patterns of volatile organic compounds (VOC) in the headspace of serum samples detectable using an electronic nose (e-nose). A total of 117 sera from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis (paraTB, n = 43) or Brucella sp. (n = 26) and sera from corresponding control animals (n = 48) were randomly and analysed blind to infection status using a ST214 e-nose (Scensive Ltd, Leeds, UK). Samples were collected under non-standardised conditions on different farms from the UK (brucellosis) and Germany (paraTB). The e-nose could differentiate the sera from brucellosis infected, paraTB infected and healthy animals at the population level, but the technology used was not suitable for determination of the disease status of individual animals. Nevertheless, the data indicate that there are differences in the sensor responses depending on the disease status, and therefore, it shows the potential of VOC analysis from serum headspace samples for disease detection.

  3. Detection of Organic Matter in Greenland Ice Cores by Deep-UV Fluorescence

    Willis, M.; Malaska, M.; Wanger, G.; Bhartia, R.; Eshelman, E.; Abbey, W.; Priscu, J. C.

    2017-12-01

    The Greenland Ice Sheet is an Earthly analog for icy ocean worlds in the outer Solar System. Future missions to such worlds including Europa, Enceladus, and Titan may potentially include spectroscopic instrumentation to examine the surface/subsurface. The primary goal of our research is to test deep UV/Raman systems for in the situ detection and localization of organics in ice. As part of this effort we used a deep-UV fluorescence instrument able to detect naturally fluorescent biological materials such as aromatic molecules found in proteins and whole cells. We correlated these data with more traditional downstream analyses of organic material in natural ices. Supraglacial ice cores (2-4 m) were collected from several sites on the southwest outlet of the Greenland Ice Sheet using a 14-cm fluid-free mechanical coring system. Repeat spectral mapping data were initially collected longitudinally on uncut core sections. Cores were then cut into 2 cm thick sections along the longitudinal axis, slowly melted and analyzed for total organic carbon (TOC), total dissolved nitrogen (TDN), and bacterial density. These data reveal a spatial correlation between organic matter concentration, cell density, and the deep UV fluorescence maps. Our results provide a profile of the organics embedded within the ice from the top surface into the glacial subsurface, and the TOC:TDN data from the clean interior of the cores are indicative of a biological origin. This work provides a background dataset for future work to characterize organic carbon in the Greenland Ice Sheet and validation of novel instrumentation for in situ data collection on icy bodies.

  4. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  5. Intelligent Machine Vision for Automated Fence Intruder Detection Using Self-organizing Map

    Veldin A. Talorete Jr.

    2017-03-01

    Full Text Available This paper presents an intelligent machine vision for automated fence intruder detection. A series of still captured images that contain fence events using Internet Protocol cameras was used as input data to the system. Two classifiers were used; the first is to classify human posture and the second one will classify intruder location. The system classifiers were implemented using Self-Organizing Map after the implementation of several image segmentation processes. The human posture classifier is in charge of classifying the detected subject’s posture patterns from subject’s silhouette. Moreover, the Intruder Localization Classifier is in charge of classifying the detected pattern’s location classifier will estimate the location of the intruder with respect to the fence using geometric feature from images as inputs. The system is capable of activating the alarm, display the actual image and depict the location of the intruder when an intruder is detected. In detecting intruder posture, the system’s success rate of 88%. Overall system accuracy for day-time intruder localization is 83% and an accuracy of 88% for night-time intruder localization

  6. JRC GMO-Matrix: a web application to support Genetically Modified Organisms detection strategies.

    Angers-Loustau, Alexandre; Petrillo, Mauro; Bonfini, Laura; Gatto, Francesco; Rosa, Sabrina; Patak, Alexandre; Kreysa, Joachim

    2014-12-30

    The polymerase chain reaction (PCR) is the current state of the art technique for DNA-based detection of Genetically Modified Organisms (GMOs). A typical control strategy starts by analyzing a sample for the presence of target sequences (GM-elements) known to be present in many GMOs. Positive findings from this "screening" are then confirmed with GM (event) specific test methods. A reliable knowledge of which GMOs are detected by combinations of GM-detection methods is thus crucial to minimize the verification efforts. In this article, we describe a novel platform that links the information of two unique databases built and maintained by the European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) at the Joint Research Centre (JRC) of the European Commission, one containing the sequence information of known GM-events and the other validated PCR-based detection and identification methods. The new platform compiles in silico determinations of the detection of a wide range of GMOs by the available detection methods using existing scripts that simulate PCR amplification and, when present, probe binding. The correctness of the information has been verified by comparing the in silico conclusions to experimental results for a subset of forty-nine GM events and six methods. The JRC GMO-Matrix is unique for its reliance on DNA sequence data and its flexibility in integrating novel GMOs and new detection methods. Users can mine the database using a set of web interfaces that thus provide a valuable support to GMO control laboratories in planning and evaluating their GMO screening strategies. The platform is accessible at http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/ .

  7. A conceptual basis to encode and detect organic functional groups in XML.

    Sankar, Punnaivanam; Krief, Alain; Vijayasarathi, Durairaj

    2013-06-01

    A conceptual basis to define and detect organic functional groups is developed. The basic model of a functional group is termed as a primary functional group and is characterized by a group center composed of one or more group center atoms bonded to terminal atoms and skeletal carbon atoms. The generic group center patterns are identified from the structures of known functional groups. Accordingly, a chemical ontology 'Font' is developed to organize the existing functional groups as well as the new ones to be defined by the chemists. The basic model is extended to accommodate various combinations of primary functional groups as functional group assemblies. A concept of skeletal group is proposed to define the characteristic groups composed of only carbon atoms to be regarded as equivalent to functional groups. The combination of primary functional groups with skeletal groups is categorized as skeletal group assembly. In order to make the model suitable for reaction modeling purpose, a Graphical User Interface (GUI) is developed to define the functional groups and to encode in XML format appropriate to detect them in chemical structures. The system is capable of detecting multiple instances of primary functional groups as well as the overlapping poly-functional groups as the respective assemblies. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Predicting behavioural responses to novel organisms: state-dependent detection theory.

    Trimmer, Pete C; Ehlman, Sean M; Sih, Andrew

    2017-01-25

    Human activity alters natural habitats for many species. Understanding variation in animals' behavioural responses to these changing environments is critical. We show how signal detection theory can be used within a wider framework of state-dependent modelling to predict behavioural responses to a major environmental change: novel, exotic species. We allow thresholds for action to be a function of reserves, and demonstrate how optimal thresholds can be calculated. We term this framework 'state-dependent detection theory' (SDDT). We focus on behavioural and fitness outcomes when animals continue to use formerly adaptive thresholds following environmental change. In a simple example, we show that exposure to novel animals which appear dangerous-but are actually safe-(e.g. ecotourists) can have catastrophic consequences for 'prey' (organisms that respond as if the new organisms are predators), significantly increasing mortality even when the novel species is not predatory. SDDT also reveals that the effect on reproduction can be greater than the effect on lifespan. We investigate factors that influence the effect of novel organisms, and address the potential for behavioural adjustments (via evolution or learning) to recover otherwise reduced fitness. Although effects of environmental change are often difficult to predict, we suggest that SDDT provides a useful route ahead. © 2017 The Author(s).

  9. Predicting behavioural responses to novel organisms: state-dependent detection theory

    Sih, Andrew

    2017-01-01

    Human activity alters natural habitats for many species. Understanding variation in animals' behavioural responses to these changing environments is critical. We show how signal detection theory can be used within a wider framework of state-dependent modelling to predict behavioural responses to a major environmental change: novel, exotic species. We allow thresholds for action to be a function of reserves, and demonstrate how optimal thresholds can be calculated. We term this framework ‘state-dependent detection theory’ (SDDT). We focus on behavioural and fitness outcomes when animals continue to use formerly adaptive thresholds following environmental change. In a simple example, we show that exposure to novel animals which appear dangerous—but are actually safe—(e.g. ecotourists) can have catastrophic consequences for ‘prey’ (organisms that respond as if the new organisms are predators), significantly increasing mortality even when the novel species is not predatory. SDDT also reveals that the effect on reproduction can be greater than the effect on lifespan. We investigate factors that influence the effect of novel organisms, and address the potential for behavioural adjustments (via evolution or learning) to recover otherwise reduced fitness. Although effects of environmental change are often difficult to predict, we suggest that SDDT provides a useful route ahead. PMID:28100814

  10. Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens

    O. Zielinski

    2009-09-01

    Full Text Available Marine environments are influenced by a wide diversity of anthropogenic and natural substances and organisms that may have adverse effects on human health and ecosystems. Real-time measurements of pollutants, toxins, and pathogens across a range of spatial scales are required to adequately monitor these hazards, manage the consequences, and to understand the processes governing their magnitude and distribution. Significant technological advancements have been made in recent years for the detection and analysis of such marine hazards. In particular, sensors deployed on a variety of mobile and fixed-point observing platforms provide a valuable means to assess hazards. In this review, we present state-of-the-art of sensor technology for the detection of harmful substances and organisms in the ocean. Sensors are classified by their adaptability to various platforms, addressing large, intermediate, or small areal scales. Current gaps and future demands are identified with an indication of the urgent need for new sensors to detect marine hazards at all scales in autonomous real-time mode. Progress in sensor technology is expected to depend on the development of small-scale sensor technologies with a high sensitivity and specificity towards target analytes or organisms. However, deployable systems must comply with platform requirements as these interconnect the three areal scales. Future developments will include the integration of existing methods into complex and operational sensing systems for a comprehensive strategy for long-term monitoring. The combination of sensor techniques on all scales will remain crucial for the demand of large spatial and temporal coverage.

  11. New trends in bioanalytical tools for the detection of genetically modified organisms: an update.

    Michelini, Elisa; Simoni, Patrizia; Cevenini, Luca; Mezzanotte, Laura; Roda, Aldo

    2008-10-01

    Despite the controversies surrounding genetically modified organisms (GMOs), the production of GM crops is increasing, especially in developing countries. Thanks to new technologies involving genetic engineering and unprecedented access to genomic resources, the next decade will certainly see exponential growth in GMO production. Indeed, EU regulations based on the precautionary principle require any food containing more than 0.9% GM content to be labeled as such. The implementation of these regulations necessitates sampling protocols, the availability of certified reference materials and analytical methodologies that allow the accurate determination of the content of GMOs. In order to qualify for the validation process, a method should fulfil some criteria, defined as "acceptance criteria" by the European Network of GMO Laboratories (ENGL). Several methods have recently been developed for GMO detection and quantitation, mostly based on polymerase chain reaction (PCR) technology. PCR (including its different formats, e.g., double competitive PCR and real-time PCR) remains the technique of choice, thanks to its ability to detect even small amounts of transgenes in raw materials and processed foods. Other approaches relying on DNA detection are based on quartz crystal microbalance piezoelectric biosensors, dry reagent dipstick-type sensors and surface plasmon resonance sensors. The application of visible/near-infrared (vis/NIR) spectroscopy or mass spectrometry combined with chemometrics techniques has also been envisaged as a powerful GMO detection tool. Furthermore, in order to cope with the multiplicity of GMOs released onto the market, the new challenge is the development of routine detection systems for the simultaneous detection of numerous GMOs, including unknown GMOs.

  12. Detection of PPCPs in marine organisms from contaminated coastal waters of the Saudi Red Sea.

    Ali, Aasim M; Rønning, Helene Thorsen; Sydnes, Leiv K; Alarif, Walied M; Kallenborn, Roland; Al-Lihaibi, Sultan S

    2018-04-15

    The occurrence of PPCPs in macroalgae, barnacle and fish samples from contaminated coastal waters of the Saudi Red Sea is reported. Solvent extraction followed by solid phase extraction was applied to isolate the compounds, and their quantification was carried out by high performance liquid chromatography-tandem mass spectrometry. Atenolol, ranitidine, chlorpheniramine, DEET, and atrazine were detected in one or more macroalgae at caffeine, methylparaben, and carbamazepine were present atmaximum concentrations of 41.3, 44.3, and 1.7ng/g (on a dry weight basis=dw), respectively. Eleven PPCPs were detected in the barnacle samples at concentrations between contaminated waters where a continuous supply of non-persistent contaminants such as PPCPs is available for long-term exposure of local benthic organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Thermal neutron detection by means of an organic solid-state track detector

    Doerschel, B.; Streubel, G.

    1979-01-01

    Thermal neutrons can be detected by means of organic solid-state track detectors if they are combined with radiators in which charged secondary particles are produced in neutron interaction processes. The secondary particles can produce etchable tracks in the detector material. For thermal neutron fluence determination from the track densities, the thermal neutron sensitivity was calculated for cellulose triacetate detectors with LiF radiators, taking into account energy and angular distribution of the alpha particles produced in the LiF radiator. This value is in good agreement with the sensitivity measured during irradiation in different neutron fields if corrections are considered the production of etchable or visuable tracks. Measuring range and measuring accuracy meet the requirements of thermal neutron detection in personnel dosimetry. Possibilities of extending the measuring range are discussed. (author)

  14. Chemical intermediate detection following corona discharge on volatile organic compounds: general method using molecular beam techniques

    He Luning; Sulkes, Mark

    2011-01-01

    Nonthermal plasma (NTP)-based treatments of volatile organic compounds (VOCs) have potential for effective environmental remediation. Theory and experiment that consider the basic science pertaining to discharge events have helped improve NTP remediation outcomes. If direct information on early post-discharge chemical intermediates were also available, it would likely lead to additional improvement in NTP remediation outcomes. To this point, however, experiments yielding direct information on post-NTP VOC intermediates have been limited. An approach using supersonic expansion molecular beam methods offers general promise for detection of post-discharge VOC intermediates. To illustrate the potential utility of these methods, we present mass spectra showing the growth of early products formed when pulsed corona discharges were carried out on toluene in He and then in He with added O 2 . Good general detection of neutral post-discharge species was obtained using 800 nm 150 fs photoionization pulses.

  15. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  16. Laser induced fluorescence technique for detecting organic matter in East China Sea

    Chen, Peng; Wang, Tianyu; Pan, Delu; Huang, Haiqing

    2017-10-01

    A laser induced fluorescence (LIF) technique for fast diagnosing chromophoric dissolved organic matter (CDOM) in water is discussed. We have developed a new field-portable laser fluorometer for rapid fluorescence measurements. In addtion, the fluorescence spectral characteristics of fluorescent constituents (e.g., CDOM, chlorophyll-a) were analyzed with a spectral deconvolution method of bi-Gaussian peak function. In situ measurements by the LIF technique compared well with values measured by conventional spectrophotometer method in laboratory. A significant correlation (R2 = 0.93) was observed between fluorescence by the technique and absorption by laboratory spectrophotometer. Influence of temperature variation on LIF measurement was investigated in lab and a temperature coefficient was deduced for fluorescence correction. Distributions of CDOM fluorescence measured using this technique in the East China Sea coast were presented. The in situ result demonstrated the utility of the LIF technique for rapid detecting dissolved organic matter.

  17. Developing the Cleanliness Requirements for an Organic-detection Instrument MOMA-MS

    Perry, Radford; Canham, John; Lalime, Erin

    2015-01-01

    The cleanliness requirements for an organic-detection instrument, like the Mars Organic Molecule Analyzer Mass Spectrometer (MOMA-MS), on a Planetary Protection Class IVb mission can be extremely stringent. These include surface molecular and particulate, outgassing, and bioburden. The prime contractor for the European Space Agencys ExoMars 2018 project, Thales Alenia Space Italy, provided requirements based on a standard, conservative approach of defining limits which yielded levels that are unverifiable by standard cleanliness verification methods. Additionally, the conservative method for determining contamination surface area uses underestimation while conservative bioburden surface area relies on overestimation, which results in inconsistencies for the normalized reporting. This presentation will provide a survey of the challenge to define requirements that can be reasonably verified and still remain appropriate to the core science of the ExoMars mission.

  18. Induction of prophage lambda by chlorinated organics: Detection of some single-species/single-site carcinogens

    DeMarini, D.M.; Brooks, H.G. (Environmental Protection Agency, Research Triangle Park, NC (United States))

    1992-01-01

    Twenty-eight chlorinated organic compounds were evaluated for their ability to induce DNA damage using the Microscreen prophage-induction assay in Escherichia coli. Comparison of the performance characteristics of the prophage-induction and Salmonella assays to rodent carcinogenicity assays showed that the prophage-induction assay had a somewhat higher specificity than did the Salmonella assay (70% vs. 50%); sensitivity, concordance, and positive and negative predictivity were similar for the two microbial assays. The Microscreen prophage-induction assay failed to detect eight carcinogens, perhaps due to toxicity or other unknown factors; five of these eight carcinogens were detected by the Salmonella assay. However, the prophage-induction assay did detect six carcinogens that were not detected by the Salmonella assay, and five of these were single-species, single-site carcinogens, mostly mouse liver carcinogens. Some of these carcinogens, such as the chloroethanes, produce free radicals, which may be the basis for their carcinogenicity and ability to induce prophage. The prophage-induction (or other SOS) assay may be useful in identifying some genotoxic chlorinated carcinogens that induce DNA damage that do not revert the standard Salmonella tester strains.

  19. Direct Electrical Detection of Iodine Gas by a Novel Metal-Organic-Framework-Based Sensor.

    Small, Leo J; Nenoff, Tina M

    2017-12-27

    High-fidelity detection of iodine species is of utmost importance to the safety of the population in cases of nuclear accidents or advanced nuclear fuel reprocessing. Herein, we describe the success at using impedance spectroscopy to directly detect the real-time adsorption of I 2 by a metal-organic framework zeolitic imidazolate framework (ZIF)-8-based sensor. Methanolic suspensions of ZIF-8 were dropcast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 °C. Using an unoptimized sensor geometry, I 2 was readily detected at 25 °C in air within 720 s of exposure. The specific response is attributed to the chemical selectivity of the ZIF-8 toward I 2 . Furthermore, equivalent circuit modeling of the impedance data indicates a >10 5 × decrease in ZIF-8 resistance when 116 wt % I 2 is adsorbed by ZIF-8 at 70 °C in air. This irreversible decrease in resistance is accompanied by an irreversible loss in the long-range crystallinity, as evidenced by X-ray diffraction and infrared spectroscopy. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. This report demonstrates how selective I 2 adsorption by ZIF-8 can be leveraged to create a highly selective sensor using >10 5 × changes in impedance response to enable the direct electrical detection of environmentally relevant gaseous toxins.

  20. Visual detection of multiple genetically modified organisms in a capillary array.

    Shao, Ning; Chen, Jianwei; Hu, Jiaying; Li, Rong; Zhang, Dabing; Guo, Shujuan; Hui, Junhou; Liu, Peng; Yang, Litao; Tao, Sheng-Ce

    2017-01-31

    There is an urgent need for rapid, low-cost multiplex methodologies for the monitoring of genetically modified organisms (GMOs). Here, we report a C[combining low line]apillary A[combining low line]rray-based L[combining low line]oop-mediated isothermal amplification for M[combining low line]ultiplex visual detection of nucleic acids (CALM) platform for the simple and rapid monitoring of GMOs. In CALM, loop-mediated isothermal amplification (LAMP) primer sets are pre-fixed to the inner surface of capillaries. The surface of the capillary array is hydrophobic while the capillaries are hydrophilic, enabling the simultaneous loading and separation of the LAMP reaction mixtures into each capillary by capillary forces. LAMP reactions in the capillaries are then performed in parallel, and the results are visually detected by illumination with a hand-held UV device. Using CALM, we successfully detected seven frequently used transgenic genes/elements and five plant endogenous reference genes with high specificity and sensitivity. Moreover, we found that measurements of real-world blind samples by CALM are consistent with results obtained by independent real-time PCRs. Thus, with an ability to detect multiple nucleic acids in a single easy-to-operate test, we believe that CALM will become a widely applied technology in GMO monitoring.

  1. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework

    Xie, Jian; Wang, Yaxing; Liu, Wei; Yin, Xuemiao; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao [School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Zou, Youming [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui (China); Albrecht-Schmitt, Thomas E. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL (United States); Liu, Guokui [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-19

    Precise detection of low-dose X- and γ-radiations remains a challenge and is particularly important for studying biological effects under low-dose ionizing radiation, safety control in medical radiation treatment, survey of environmental radiation background, and monitoring cosmic radiations. We report here a photoluminescent uranium organic framework, whose photoluminescence intensity can be accurately correlated with the exposure dose of X- or γ-radiations. This allows for precise and instant detection of ionizing radiations down to the level of 10{sup -4} Gy, representing a significant improvement on the detection limit of approximately two orders of magnitude, compared to other chemical dosimeters reported up to now. The electron paramagnetic resonance analysis suggests that with the exposure to radiations, the carbonyl double bonds break affording oxo-radicals that can be stabilized within the conjugated uranium oxalate-carboxylate sheet. This gives rise to a substantially enhanced equatorial bonding of the uranyl(VI) ions as elucidated by the single-crystal structure of the γ-ray irradiated material, and subsequently leads to a very effective photoluminescence quenching through phonon-assisted relaxation. The quenched sample can be easily recovered by heating, enabling recycled detection for multiple runs. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Semi-automatic detection and correction of body organ motion, particularly cardiac motion in SPECT studies

    Quintana, J.C.; Caceres, F.; Vargas, P.

    2002-01-01

    Aim: Detect patient motion during SPECT imaging. Material and Method: SPECT study is carried out on a patient's body organ, such as the heart, and frame of image data are thereby acquired. The image data in these frames are subjected to a series of mappings and computations, from which frame containing a significant quantity of organ motion can be identified. Quantification of motion occurs by shifting some of the mapped data within a predetermined range, and selecting that data shift which minimizes the magnitude of a motion sensitive mathematical function. The sensitive mathematical function is constructed from all set of image frames using the pixel data within a region covering the body organ. Using cine display of planar image data, the operator defines the working region by marking two points, which define two horizontal lines covering the area of the body organ. This is the only operator intervention. The mathematical function integrates pixel data from all set of image frames and therefore does not use derivatives which may cause distortion in noisy data. Moreover, as a global function, this method is superior than that using frame-to-frame cross-correlation function to identify motion between adjacent frames. Using standard image processing software, the method was implemented computationally. Ten SPECT studies with movement (Sestamibi cardiac studies and 99m-ECD brain SPECT studies) were selected plus two others with no movement. The acquisition SPECT protocol for the cardiac study was as follow: Step and shoot mode, non-circular orbit, 64 stops 20s each, 64x64x16 matrix and LEHR colimator. For the brain SPECT, 128 stops over 360 0 were used. Artificial vertical displacements (±1-2 pixels) over several frames were introduced in those studies with no movement to simulate patient motion. Results: The method was successfully tested in all cases and was capable to recognize SPECT studies with no body motion as well as those with body motion (both from the

  3. A global organism detection and monitoring system for non-native species

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  4. Detection and mapping of organic molecules in Titan's atmosphere using ALMA

    Cordiner, Martin

    2016-06-01

    Titan's atmospheric photochemistry results in the production of a wide range of organic molecules, including hydrocarbons, nitriles, aromatics and other complex species of possible pre-biotic relevance. Studies of Titan's atmospheric chemistry thus provide a unique opportunity to explore the origin and evolution of organic matter in primitive (terrestrial) planetary atmospheres. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new facility, well suited to the study of molecular emission from Titan's upper and middle-atmosphere. Results will be presented from our ongoing studies of Titan using ALMA data obtained during the period 2012-2014 [1,2], including detection and mapping of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH. In addition, combining data from multiple ALMA Band 6 observations, we obtained high-resolution spectra with unprecedented sensitivity, enabling the first detection of C2H3CN (vinyl cyanide) on Titan, and derived a mean C2H3CN C2H5CN abundance ratio above 300 km of 0.3. Vinyl cyanide has recently been investigated as a possible constituent of (pre-biotic) vesicle membranes in Titan's liquid CH4 oceans [3]. Radiative transfer models and possible chemical formation pathways for the detected molecules will be discussed. ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere for gases inaccessible to previous studies, and therefore provide new insights into photochemical production and transport, particularly at higher altitudes. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with the molecular distributions found in previous studies at infrared wavelengths by Voyager and Cassini, but high-altitude longitudinal asymmetries in our nitrile data indicate that the mesosphere may be more spatially variable than previously thought.

  5. Stress-induced chemical detection using flexible metal-organic frameworks.

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  6. Possible role of organic peroxides in the detection of irradiated food

    Qi Shengchu; Wu Jilan

    1993-01-01

    In order to determine the level of organic peroxides induced by autooxidation, random sampling of pork has been performed. The organic peroxide content in unirradiated pork has been estimated as (5.4 ± 3.0) x10 -5 mol.kg -1 . The dependence of yield of peroxide in pork, minced meat and braised chicken on absorbed dose has been investigated. For killing trichinae 0.5 ∼ 1 kGy is used, the quantity of peroxide in pork will be 4x10 -4 mol.kg -1 for 1 kGy, which is 3.7 ∼ 7.4 times greater than the background. If 3 kGy is used to eliminate Salmonella, the quantity of peroxides in pork will be 1.3 x10 -3 mol.kg -1 , which approaches 24 times greater than the average value of background. When minced meat was irradiated in the presence of air, a chain reaction took place with G value 30.2. Radiation processing dose of braised chicken for shelf-life extension is ∼ 9kGy, organic peroxide content in braised chicken fat is 32.5 x10 -4 mol.kg -1 , which is about 14.7 times greater than average value (2.2x10 -4 mol.kg -1 ) in unirradiated one. Applying the peroxide method to qualitatively detect irradiated food containing fat is satisfactory, if combined with measuring the ESR signal of irradiated bone which will improve the detection method. (author)

  7. Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis.

    Arasaradnam, Ramesh P; McFarlane, Michael J; Ryan-Fisher, Courtenay; Westenbrink, Erik; Hodges, Phoebe; Hodges, Paula; Thomas, Matthew G; Chambers, Samantha; O'Connell, Nicola; Bailey, Catherine; Harmston, Christopher; Nwokolo, Chuka U; Bardhan, Karna D; Covington, James A

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer related death in Europe and the USA. There is no universally accepted effective non-invasive screening test for CRC. Guaiac based faecal occult blood (gFOB) testing has largely been superseded by Faecal Immunochemical testing (FIT), but sensitivity still remains poor. The uptake of population based FOBt testing in the UK is also low at around 50%. The detection of volatile organic compounds (VOCs) signature(s) for many cancer subtypes is receiving increasing interest using a variety of gas phase analytical instruments. One such example is FAIMS (Field Asymmetric Ion Mobility Spectrometer). FAIMS is able to identify Inflammatory Bowel disease (IBD) patients by analysing shifts in VOCs patterns in both urine and faeces. This study extends this concept to determine whether CRC patients can be identified through non-invasive analysis of urine, using FAIMS. 133 patients were recruited; 83 CRC patients and 50 healthy controls. Urine was collected at the time of CRC diagnosis and headspace analysis undertaken using a FAIMS instrument (Owlstone, Lonestar, UK). Data was processed using Fisher Discriminant Analysis (FDA) after feature extraction from the raw data. FAIMS analyses demonstrated that the VOC profiles of CRC patients were tightly clustered and could be distinguished from healthy controls. Sensitivity and specificity for CRC detection with FAIMS were 88% and 60% respectively. This study suggests that VOC signatures emanating from urine can be detected in patients with CRC using ion mobility spectroscopy technology (FAIMS) with potential as a novel screening tool.

  8. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection.

    Wang, Yuedan; Zhou, Zhou; Qing, Xing; Zhong, Weibing; Liu, Qiongzhen; Wang, Wenwen; Li, Mufang; Liu, Ke; Wang, Dong

    2016-08-01

    Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 μA/dec in the 10(-5)-10(-2) M Pb(2+) concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb(2+) with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application. Graphical Abstract The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.

  9. Multi-Layer Organic Squaraine-Based Photodiode for Indirect X-Ray Detection

    Iacchetti, Antonio; Binda, Maddalena; Natali, Dario; Giussani, Mattia; Beverina, Luca; Fiorini, Carlo; Peloso, Roberta; Sampietro, Marco

    2012-10-01

    The paper presents an organic-based photodiode coupled to a CsI(Tl) scintillator to realize an X-ray detector. A suitable blend of an indolic squaraine derivative and of fullerene derivative has been used for the photodiode, thus allowing external quantum efficiency in excess of 10% at a wavelength of 570 nm, well matching the scintillator output spectrum. Thanks to the additional deposition of a 15 nm thin layer of a suitable low electron affinity polymer, carriers injection from the metal into the organic semiconductor has been suppressed, and dark current density as low as has been obtained, which is comparable to standard Si-based photodiodes. By using a collimated X-ray beam impinging onto the scintillator mounted over the photodiode we have been able to measure current variations in the order of 150 pA on a dark current floor of less than 50 pA when operating the X-ray tube in switching mode, thus proving the feasibility of indirect X-ray detection by means of organic semiconductors.

  10. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  11. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Scanning of Open Data for Detection of Emerging Organized Crime Threats

    Pastor Pastor, Raquel; Larsen, Henrik Legind

    2017-01-01

    In fighting organized crime, open data provide an important source for both detecting emerging threats, as well as forecasting future threats. This allows the police to plan their resources and capacity for countering the threats in due time to prevent it or at least to mitigate its effects....... A vital part of a system supporting the police analysts for this purpose is an efficient and effective system for scanning the open data providing information about the relevant factors in the environment. This chapter presents the ePOOLICE project, aimed at developing a solution, the “ePOOLICE system...... in deploying such systems. One of the outcomes from the end-user evaluation of the prototype was the desire to integrate internal data to support not only strategic, but also operational analysis and investigation....

  13. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review

    Cédric Tarayre

    2016-05-01

    Full Text Available Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs, accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells.

  14. Near-infrared imaging system for detecting small organic foreign substances in foods

    Tashima, Hiroto; Genta, Tsuneaki; Ishii, Yuya; Ishiyama, Takeshi; Arai, Shinichi; Fukuda, Mitsuo

    2013-09-01

    Contamination of foodstuffs with foreign substances is a serious problem because it often has negative effects on consumer health. However, detection of small organic substances in foods can be difficult because they are undetectable with traditional inspection apparatus. In this work, we developed new equipment that can detect small organic contaminant substances in food at high speed using a near-infrared (NIR) imaging technique. The absorption spectra of various foods were measured, and the spectra showed low absorbance at wavelengths from 600 nm to 1150 nm. Based on the observable wavelength range of a CMOS camera, which has a high dynamic range, superluminescent diodes (SLDs) with a wavelength of 830 nm were selected as light sources. We arranged 40 SLDs on a flat panel and placed a diffusion panel over them. As a result, uniformly distributed light with an intensity of 0.26 mW/cm2 illuminated an area of 6.0 cm × 6.0 cm. Insects (3 mm wide) and hairs (0.1 mm in diameter) were embedded in stacked ham slices and in chocolate, with a total thickness of 5 mm in each case, and the transmission images were observed. Both insects and hairs were clearly observed as dark shadows with high contrast. We also compensated the images by using software developed in this study to eliminate low spatial frequency components in the images and improve the sharpness and contrast. As a result, the foreign substances were more clearly distinguished in the 5-mm-thick ham.

  15. Stress-induced chemical detection using flexible metal-organic frameworks.

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  16. Fault detection of sensors in nuclear reactors using self-organizing maps

    Barbosa, Paulo Roberto; Tiago, Graziela Marchi [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Guarulhos, SP (Brazil); Pereira, Iraci Martinez, E-mail: martinez@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work a Fault Detection System was developed based on the self-organizing maps methodology. This method was applied to the IEA-R1 research reactor at IPEN using a database generated by a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab Guide toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. In order to test the model ability for fault detection, faults were artificially produced. As the value of the maximum calibration error for special thermocouples is +- 0.5 deg C, it had been inserted faults in the sensor signals with the purpose to produce the database considered in this work. The results show a high percentage of correct classification, encouraging the use of the technique for this type of industrial application. (author)

  17. Detecting cardiometabolic syndrome using World Health Organization public health action points for Asians and Pacific Islanders.

    Grandinetti, Andrew; Kaholokula, Joseph K; Mau, Marjorie K; Chow, Dominic C

    2010-01-01

    To assess the screening characteristics of World Health Organization (WHO) body mass index action points for cardiometabolic syndrome (CMS) in Native Hawaiians and people of Asian ancestry (ie, Filipino and Japanese). Cross-sectional data were collected from 1,452 residents of a rural community of Hawai'i between 1997 and 2000, of which 1,198 were analyzed in this study. Ethnic ancestry was determined by self-report. Metabolic status was assessed using National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII) criteria. Screening characteristics of WHO criteria for overweight and obesity were compared to WHO public health action points or to WHO West Pacific Regional Office (WPRO) cut-points. Among Asian-ancestry participants, WHO public health action points improved both sensitivity and specificity for detecting CMS. However, similar improvements were not observed for WPRO criteria for Native Hawaiians. Moreover, predictive values were high regardless of which criteria were utilized due to high CMS prevalence. WHO public health actions points for Asians provide a significant improvement in sensitivity in detection of CMS. However, predictive value, which varies greatly with disease prevalence, should be considered when deciding which criteria to apply.

  18. Metal-organic gel enhanced fluorescence anisotropy for sensitive detection of prostate specific antigen

    Zhao, Ting Ting; Peng, Zhe Wei; Yuan, Dan; Zhen, Shu Jun; Huang, Cheng Zhi; Li, Yuan Fang

    2018-03-01

    In this contribution, we demonstrated that Cu-based metal-organic gel (Cu-MOG) was able to serve as a novel amplification platform for fluorescence anisotropy (FA) assay for the first time, which was confirmed by the sensitive detection of a common cancer biomarker, prostate specific antigen (PSA). The dye-labeled probe aptamer (PA) product was adsorbed onto the benzimidazole derivative-containing Cu-MOG via electrostatic incorporation and strong π-π stacking interactions, which significantly increased the FA value due to the enlargement of the molecular volume of the PA/Cu-MOG complex. With the introduction of target PSA, the FA value was obviously decreased on account of the specific recognition between PSA and PA which resulted in the detachment of PA from the surface of MOG. The linear range was from 0.5-8 ng/mL, with a detection limit of 0.33 ng/mL. Our work has thus helped to demonstrate promising application of MOG material in the fields of biomolecules analysis and disease diagnosis.

  19. Fault detection of sensors in nuclear reactors using self-organizing maps

    Barbosa, Paulo Roberto; Tiago, Graziela Marchi; Bueno, Elaine Inacio; Pereira, Iraci Martinez

    2011-01-01

    In this work a Fault Detection System was developed based on the self-organizing maps methodology. This method was applied to the IEA-R1 research reactor at IPEN using a database generated by a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab Guide toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. In order to test the model ability for fault detection, faults were artificially produced. As the value of the maximum calibration error for special thermocouples is +- 0.5 deg C, it had been inserted faults in the sensor signals with the purpose to produce the database considered in this work. The results show a high percentage of correct classification, encouraging the use of the technique for this type of industrial application. (author)

  20. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection.

    Mannelli, Ilaria; Minunni, Maria; Tombelli, Sara; Mascini, Marco

    2003-03-01

    A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.

  1. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms

    Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki

    2015-01-01

    In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.

  2. Detecting Renibacterium salmoninarum in wild brown trout by use of multiple organ samples and diagnostic methods

    Guomundsdottir, S.; Applegate, Lynn M.; Arnason, I.O.; Kristmundsson, A.; Purcell, Maureen K.; Elliott, Diane G.

    2017-01-01

    Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease (BKD), is endemic in many wild trout species in northerly regions. The aim of the present study was to determine the optimal R. salmoninarum sampling/testing strategy for wild brown trout (Salmo trutta L.) populations in Iceland. Fish were netted in a lake and multiple organs—kidney, spleen, gills, oesophagus and mid-gut—were sampled and subjected to five detection tests i.e. culture, polyclonal enzyme-linked immunosorbent assay (pELISA) and three different PCR tests. The results showed that each fish had encountered R. salmoninarum but there were marked differences between results obtained depending on organ and test. The bacterium was not cultured from any kidney sample while all kidney samples were positive by pELISA. At least one organ from 92.9% of the fish tested positive by PCR. The results demonstrated that the choice of tissue and diagnostic method can dramatically influence the outcome of R. salmoninarum surveys.

  3. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms.

    Demeke, Tigst; Dobnik, David

    2018-07-01

    The number of genetically modified organisms (GMOs) on the market is steadily increasing. Because of regulation of cultivation and trade of GMOs in several countries, there is pressure for their accurate detection and quantification. Today, DNA-based approaches are more popular for this purpose than protein-based methods, and real-time quantitative PCR (qPCR) is still the gold standard in GMO analytics. However, digital PCR (dPCR) offers several advantages over qPCR, making this new technique appealing also for GMO analysis. This critical review focuses on the use of dPCR for the purpose of GMO quantification and addresses parameters which are important for achieving accurate and reliable results, such as the quality and purity of DNA and reaction optimization. Three critical factors are explored and discussed in more depth: correct classification of partitions as positive, correctly determined partition volume, and dilution factor. This review could serve as a guide for all laboratories implementing dPCR. Most of the parameters discussed are applicable to fields other than purely GMO testing. Graphical abstract There are generally three different options for absolute quantification of genetically modified organisms (GMOs) using digital PCR: droplet- or chamber-based and droplets in chambers. All have in common the distribution of reaction mixture into several partitions, which are all subjected to PCR and scored at the end-point as positive or negative. Based on these results GMO content can be calculated.

  4. Rapid detection of pathogenic bacteria by volatile organic compound (VOC) analysis

    Senecal, Andre G.; Magnone, Joshua; Yeomans, Walter; Powers, Edmund M.

    2002-02-01

    Developments in rapid detection technologies have made countless improvements over the years. However, because of the limited sample that these technologies can process in a single run, the chance of capturing and identifying a small amount of pathogens is difficult. The problem is further magnified by the natural random distribution of pathogens in foods. Methods to simplify pathogenic detection through the identification of bacteria specific VOC were studied. E. coli O157:H7 and Salmonella typhimurium were grown on selected agar medium to model protein, and carbohydrate based foods. Pathogenic and common spoilage bacteria (Pseudomonas and Morexella) were screened for unique VOC production. Bacteria were grown on agar slants in closed vials. Headspace sampling was performed at intervals up to 24 hours using Solid Phase Micro-Extraction (SPME) techniques followed by GC/MS analysis. Development of unique volatiles was followed to establish sensitivity of detection. E. coli produced VOC not found in either Trypticase Soy Yeast (TSY) agar blanks or spoilage organism samples were - indole, 1-decanol, and 2-nonanone. Salmonella specific VOC grown on TSY were 3-methyl-1-butanol, dimethyl sulfide, 2-undecanol, 2-pentadecanol and 1-octanol. Trials on potato dextrose agar (PDA) slants indicated VOC specific for E. coli and Salmonella when compared to PDA blanks and Pseudomonas samples. However, these VOC peaks were similar for both pathogens. Morexella did not grow on PDA slants. Work will continue with model growth mediums at various temperatures, and mixed flora inoculums. As well as, VOC production based on the dynamics of bacterial growth.

  5. Detection of Organic Compounds in Ice Cores for Application to Palaeoclimate Reconstruction - Methodological Development

    Giorio, C.; King, A. C. F.; Wolff, E. W.; Kalberer, M.; Thomas, E. R.; Mulvaney, R.

    2016-12-01

    Records of inorganic gases and particles trapped in ice core layers have provided some of the most important insights to our understanding of climate of the last 800,000 years. Organic compounds within the ice, however, are an un-tapped reservoir of information. In particular, two groups of compounds emitted from the terrestrial biosphere, fatty acids and terpene secondary oxidation aerosols (SOAs), display characteristics required for ice core paleoclimate reconstruction; emission rates depend on atmospheric states (e.g. temperature), compounds survive long-distance transport in the atmosphere to high altitudes and latitudes (Grannas et al., 2004; Fu et al., 2013 among others), and are shown to survive in ice layers up to 450 yrs old for fatty acids in Greenland (Kawamura et al., 1996) and 350 yrs for SOAs in Alaska (Pokhrel et al., 2015). Here, we aim to develop a single method for quantification of all compounds of interest over longer timescales and further locations using liquid chromatography (LC) ultrahigh resolution mass spectrometry (LTQ Orbitrap). Initial quantification of compound contamination from sources such as drilling fluids and storage bags, diffusing through outer ice core surfaces, suggests compound contamination is limited to the outer few mm's of ice over periods of a few months. Detection limits were in the order of 1-5 ppb for the compounds of interest, leading to the trial of pre-concentration methods using stir bar sorbtive extraction (SBSE) to facilitate detection of ppt concentration levels, as expected for these types of compounds based on previous analysis of snow samples (Pokhrel et al., 2015). Detection of these compounds seems highly viable, with promise for long-term records being achieved in the near future. Fu et al.(2013) Biogeosciences, 10(2), 653-667; Grannas et al.(2004) Global Biogeochem. Cycles, 18, GB1006; Kawamura et al.(1996) Geophys. Res. Lett., 23(19), 2665-2668; Pokhrel et al.(2015) Atmos. Environ., 130, 105-112.

  6. Detection of colorectal cancer (CRC by urinary volatile organic compound analysis.

    Ramesh P Arasaradnam

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer related death in Europe and the USA. There is no universally accepted effective non-invasive screening test for CRC. Guaiac based faecal occult blood (gFOB testing has largely been superseded by Faecal Immunochemical testing (FIT, but sensitivity still remains poor. The uptake of population based FOBt testing in the UK is also low at around 50%. The detection of volatile organic compounds (VOCs signature(s for many cancer subtypes is receiving increasing interest using a variety of gas phase analytical instruments. One such example is FAIMS (Field Asymmetric Ion Mobility Spectrometer. FAIMS is able to identify Inflammatory Bowel disease (IBD patients by analysing shifts in VOCs patterns in both urine and faeces. This study extends this concept to determine whether CRC patients can be identified through non-invasive analysis of urine, using FAIMS. 133 patients were recruited; 83 CRC patients and 50 healthy controls. Urine was collected at the time of CRC diagnosis and headspace analysis undertaken using a FAIMS instrument (Owlstone, Lonestar, UK. Data was processed using Fisher Discriminant Analysis (FDA after feature extraction from the raw data. FAIMS analyses demonstrated that the VOC profiles of CRC patients were tightly clustered and could be distinguished from healthy controls. Sensitivity and specificity for CRC detection with FAIMS were 88% and 60% respectively. This study suggests that VOC signatures emanating from urine can be detected in patients with CRC using ion mobility spectroscopy technology (FAIMS with potential as a novel screening tool.

  7. Detecting un-authorized genetically modified organisms (GMOs) and derived materials.

    Holst-Jensen, Arne; Bertheau, Yves; de Loose, Marc; Grohmann, Lutz; Hamels, Sandrine; Hougs, Lotte; Morisset, Dany; Pecoraro, Sven; Pla, Maria; Van den Bulcke, Marc; Wulff, Doerte

    2012-01-01

    Genetically modified plants, in the following referred to as genetically modified organisms or GMOs, have been commercially grown for almost two decades. In 2010 approximately 10% of the total global crop acreage was planted with GMOs (James, 2011). More than 30 countries have been growing commercial GMOs, and many more have performed field trials. Although the majority of commercial GMOs both in terms of acreage and specific events belong to the four species: soybean, maize, cotton and rapeseed, there are another 20+ species where GMOs are commercialized or in the pipeline for commercialization. The number of GMOs cultivated in field trials or for commercial production has constantly increased during this time period. So have the number of species, the number of countries involved, the diversity of novel (added) genetic elements and the global trade. All of these factors contribute to the increasing complexity of detecting and correctly identifying GMO derived material. Many jurisdictions, including the European Union (EU), legally distinguish between authorized (and therefore legal) and un-authorized (and therefore illegal) GMOs. Information about the developments, field trials, authorizations, cultivation, trade and observations made in the official GMO control laboratories in different countries around the world is often limited, despite several attempts such as the OECD BioTrack for voluntary dissemination of data. This lack of information inevitably makes it challenging to detect and identify GMOs, especially the un-authorized GMOs. The present paper reviews the state of the art technologies and approaches in light of coverage, practicability, sensitivity and limitations. Emphasis is put on exemplifying practical detection of un-authorized GMOs. Although this paper has a European (EU) bias when examples are given, the contents have global relevance. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity

    Tao, Jifang; Wang, Xuerui; Sun, Tao; Cai, Hong; Wang, Yuxiang; Lin, Tong; Fu, Dongliang; Ting, Lennon Lee Yao; Gu, Yuandong; Zhao, Dan

    2017-01-01

    Detection of volatile organic compounds (VOCs) at parts-per-billion (ppb) level is one of the most challenging tasks for miniature gas sensors because of the high requirement on sensitivity and the possible interference from moisture. Herein, for the first time, we present a novel platform based on a hybrid photonic cavity with metal-organic framework (MOF) coatings for VOCs detection. We have fabricated a compact gas sensor with detection limitation ranging from 29 to 99 ppb for various VOCs including styrene, toluene, benzene, propylene and methanol. Compared to the photonic cavity without coating, the MOF-coated solution exhibits a sensitivity enhancement factor up to 1000. The present results have demonstrated great potential of MOF-coated photonic resonators in miniaturized gas sensing applications.

  9. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    Starkenburg, Daken J. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA; Johns, Paul M. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611, USA; Detection Systems Group, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Baciak, James E. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA; Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611, USA; Nino, Juan C. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA; Xue, Jiangeng [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA

    2017-12-14

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from an X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.28 µGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.

  10. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.; Nino, Juan C.; Xue, Jiangeng

    2017-12-01

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from an X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.18 μGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.

  11. WATSON: Detecting organic material in subsurface ice using deep-UV fluorescence and Raman spectroscopy

    Eshelman, E.; Wanger, G.; Manatt, K.; Malaska, M.; Willis, M.; Abbey, W.; Doloboff, I.; Beegle, L. W.; DeFlores, L. P.; Priscu, J. C.; Lane, A. L.; Carrier, B. L.; Mellerowicz, B.; Kim, D.; Paulsen, G.; Zacny, K.; Bhartia, R.

    2017-12-01

    Future astrobiological missions to Europa and other ocean worlds may benefit from next-generation instrumentation capable of in situ organic and life detection in subsurface ice environments. WATSON (Wireline Analysis Tool for in Situ Observation of Northern ice sheets) is an instrument under development at NASA's Jet Propulsion Laboratory. WATSON contains high-TRL instrumentation developed for SHERLOC, the Mars 2020 deep-UV fluorescence and Raman spectrometer, including a 248.6 nm NeCu hollow cathode laser as an excitation source. In WATSON, these technologies provide spectroscopic capabilities highly sensitive to many organic compounds, including microbes, in an instrument package approximately 1.2 m long with a 101.6 mm diameter, designed to accommodate a 108 mm ice borehole. Interrogation into the ice wall with a laser allows for a non-destructive in situ measurement that preserves the spatial distribution of material within the ice. We report on a successful deployment of WATSON to Kangerlussuaq, Greenland, where the instrument was lowered to a 4.5 m depth in a hand-cored hole on the Kangerlussuaq sector of the Greenland ice sheet. Motorized stages within the instrument were used to raster a laser across cm-scale regions of the interior surface of the borehole, obtaining fluorescence spectral maps with a 200 µm spatial resolution and a spectral range from 265 nm to 440 nm. This region includes the UV emission bands of many aromatic compounds and microbes, and includes the water and ice Raman O-H stretching modes. We additionally report on experiments designed to inform an early-2018 deployment to Kangerlussuaq where WATSON will be incorporated into a Honeybee Robotics planetary deep drill, with a goal of drilling to a depth of 100 m and investigating the distribution of organic material within the ice sheet. These experiments include laboratory calibrations to determine the sensitivity to organic compounds embedded in ice at various depths, as well as

  12. Immunological detection of small organic molecules in the presence of perchlorates: relevance to the life marker chip and life detection on Mars.

    Rix, Catherine S; Sims, Mark R; Cullen, David C

    2011-11-01

    The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from

  13. Highly Sensitive Magnetic-SERS Dual-Function Silica Nanoprobes for Effective On-Site Organic Chemical Detection

    Jeong, Cheolhwan; Kim, Hyung-Mo; Park, So Yeon; Cha, Myeong Geun; Park, Sung-Jun; Kyeong, San; Pham, Xuan-Hung; Hahm, Eunil; Ha, Yuna; Jeong, Dae Hong; Jun, Bong-Hyun; Lee, Yoon-Sik

    2017-01-01

    We report magnetic silver nanoshells (M-AgNSs) that have both magnetic and SERS properties for SERS-based detection. The M-AgNSs are composed of hundreds of Fe3O4 nanoparticles for rapid accumulation and bumpy silver shell for sensitive SERS detection by near-infrared laser excitation. The intensity of the SERS signal from the M-AgNSs was strong enough to provide single particle-level detection. We obtained much stronger SERS signal intensity from the aggregated M-AgNSs than from the non-aggregated AgNSs. 4-Fluorothiophenol was detected at concentrations as low as 1 nM, which corresponds to 0.16 ppb. The limit of detection for tetramethylthiuram disulfide was 10 μM, which corresponds to 3 ppm. The M-AgNSs can be used to detect trace amounts of organic molecules using a portable Raman system. PMID:28608835

  14. Highly Sensitive Magnetic-SERS Dual-Function Silica Nanoprobes for Effective On-Site Organic Chemical Detection

    Cheolhwan Jeong

    2017-06-01

    Full Text Available We report magnetic silver nanoshells (M-AgNSs that have both magnetic and SERS properties for SERS-based detection. The M-AgNSs are composed of hundreds of Fe3O4 nanoparticles for rapid accumulation and bumpy silver shell for sensitive SERS detection by near-infrared laser excitation. The intensity of the SERS signal from the M-AgNSs was strong enough to provide single particle-level detection. We obtained much stronger SERS signal intensity from the aggregated M-AgNSs than from the non-aggregated AgNSs. 4-Fluorothiophenol was detected at concentrations as low as 1 nM, which corresponds to 0.16 ppb. The limit of detection for tetramethylthiuram disulfide was 10 μM, which corresponds to 3 ppm. The M-AgNSs can be used to detect trace amounts of organic molecules using a portable Raman system.

  15. Quartz tuning fork based sensor for detection of volatile organic compounds: towards breath analysis

    Sampson, Abraham; Panchal, Suresh; Phadke, Apoorva; Kashyap, A.; Suman, Jilma; Unnikrishnan, G.; Datar, Suwarna

    2018-04-01

    Several volatile organic compounds (VOCs) are present in the exhaled human breath whose concentration can vary depending on the physiological changes occurring within a human being. These changes in the concentration or the occurrence of a particular VOC can be used as signature of a particular disease in a person. In the present work, a sensor has been developed to detect VOCs such as 1,4-dimethoxy-2,3-butanediol (BD), and cyclohexanone (CH), acetone, methanol and ethanol. Except for BD and CH, the rest of the VOCs are present in a healthy person in ppm levels. CH and BD have been reported to be present in the exhaled human breath of breast cancer patients in ppm levels and can be used to distinguish between a healthy person and a person with breast cancer. The selectivity of the sensor towards these two compounds in the presence of other VOCs commonly present in human breath like acetone, ethanol and methanol has been studied. The sensor has been developed using modified Quartz Tuning Forks (QTFs) with the intent of developing an array of such sensors identifying different VOCs present in a healthy human’s breath. Two differently modified QTFs have been used to detect 1 ppm of 1,4-dimethoxy-2,3-butanediol and 20 ppm of cyclohexanone. Linear Discriminants Analysis (LDA) has been used to classify seven different VOCs. For this purpose, features extracted from sensor responses -shift in resonant frequency, response time and recovery time of the sensors- have been used as features in the model. Differently modified array of QTFs along with the use of LDA can be a useful pathway towards development of a QTF based sensor array for human breath analysis.

  16. Metal-Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules.

    Xu, Tao; Xu, Pengcheng; Zheng, Dan; Yu, Haitao; Li, Xinxin

    2016-12-20

    As one of typical VOCs, xylene is seriously harmful to human health. Nowadays, however, there is really lack of portable sensing method to directly detect environmental xylene that has chemical inertness. Especially when the concentration of xylene is lower than the human olfactory threshold of 470 ppb, people are indeed hard to be aware of and avoid this harmful vapor. Herein the metal-organic framework (MOF) of HKUST-1 is first explored for sensing to the nonpolar molecule of p-xylene. And the sensing mechanism is identified that is via host-guest interaction of MOF with xylene molecule. By loading MOFs on mass-gravimetric resonant-cantilevers, sensing experiments for four MOFs of MOF-5, HKUST-1, ZIF-8, and MOF-177 approve that HKUST-1 has the highest sensitivity to p-xylene. The resonant-gravimetric sensing experiments with our HKUST-1 based sensors have demonstrated that trace-level p-xylene of 400 ppb can be detected that is lower than the human olfactory threshold of 470 ppb. We analyze that the specificity of HKUST-1 to xylene comes from Cu 2+ -induced moderate Lewis acidity and the "like dissolves like" interaction of the benzene ring. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to elucidate the adsorbing/sensing mechanism of HKUST-1 to p-xylene, where p-xylene adsorbing induced blue-shift phenomenon is observed that confirms the sensing mechanism. Our study also indicates that the sensor shows good selectivity to various kinds of common interfering gases. And the long-term repeatability and stability of the sensing material are also approved for the usage/storage period of two months. This research approves that the MOF materials exhibit potential usages for high performance chemical sensors applications.

  17. Detection of arboviruses and other micro-organisms in experimentally infected mosquitoes using massively parallel sequencing.

    Sonja Hall-Mendelin

    Full Text Available Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.

  18. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes.

    Lee, K H; Ruby, E G

    1992-03-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both luminous and non-visibly luminous V. fischeri colonies by DNA-DNA hybridization. The probes were specific, hybridizing at least 50 to 100 times more strongly to immobilized DNAs from V. fischeri strains than to those of pure cultures of other related species. Thus, even non-visibly luminous V. fischeri colonies could be identified among colonies obtained from natural seawater samples by their probe-positive reaction. Bacteria in seawater samples, obtained either within or distant from squid habitats, were collected on membrane filters and incubated until colonies appeared. The filters were then observed for visibly luminous V. fischeri colonies and hybridized with the lux gene probes to determine the number of total V. fischeri colonies (both luminous and non-visibly luminous). We detected no significant differences in the abundance of luminous V. fischeri CFU in any of the water samples observed (

  19. In Situ Detection of Organic Molecules on the Martian Surface With the Mars Organic Molecule Analyzer (MOMA) on Exomars 2018

    Li, Xiang; Brinckerhoff, William B.; Pinnick, Veronica T; van Amerom, Friso H. W.; Danell, Ryan M.; Arevalo, Ricardo D., Jr.; Getty, Stephanie; Mahaffy, Paul R.

    2015-01-01

    The Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars rover will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. The MOMA instrument is centered around a miniaturized linear ion trap (LIT) that facilitates two modes of operation: i) pyrolysisgas chromatography mass spectrometry (pyrGC-MS); and, ii) laser desorptionionization mass spectrometry (LDI-MS) at ambient Mars pressures. The LIT also enables the structural characterization of complex molecules via complementary analytical capabilities, such as multi-frequency waveforms (i.e., SWIFT) and tandem mass spectrometry (MSMS). When combined with the complement of instruments in the rovers Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds.

  20. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    Bartosz Szulczyński; Jacek Gębicki

    2017-01-01

    The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs) in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric), photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their ...

  1. A remotely triggered fast neutron detection instrument based on a plastic organic scintillator

    Jones, A. R.; Aspinall, M. D.; Joyce, M. J.

    2018-02-01

    A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.

  2. High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds

    Zhang, Shao-Lin; Zhang, Zhijun; Yang, Woo-Chul

    2016-01-01

    Despite the great progress in the theory and experimental verification we made in past decade, the practical application of graphene is still hindered by the lack of efficient, economical, scalable, ease-processing exfoliation method. Herein, we propose a facile, low-cost, and efficient liquid-phase exfoliation process using low boiling-temperature solvent mixture to fabricate few-layer graphene in large scale. The Hansen solubility parameter theory was applied to help optimize the composition of solvent mixture. Aqueous-based ternary-solvent mixture, for the first time, was adapted to exfoliate graphene. We demonstrate that the exfoliation efficiency using ternary-solvent mixture surpasses that from binary-solvent approach. The final product concentration after optimization was over 260 μg/ml. The concentrated graphene dispersion was used to fabricate gas sensor for detecting volatile organic gases. Taking advantage of large surface area, large number of adsorption sites, and well-preserved basal plane, the mass-produced graphene nanosheets exhibited promising sensing potential toward ethanol and methanol vapors.

  3. Finding the joker among the maize endogenous reference genes for genetically modified organism (GMO) detection.

    Paternò, Annalisa; Marchesi, Ugo; Gatto, Francesco; Verginelli, Daniela; Quarchioni, Cinzia; Fusco, Cristiana; Zepparoni, Alessia; Amaddeo, Demetrio; Ciabatti, Ilaria

    2009-12-09

    The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed.

  4. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-01-01

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water

  5. The objects of visuospatial short-term memory: Perceptual organization and change detection.

    Nikolova, Atanaska; Macken, Bill

    2016-01-01

    We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy.

  6. Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection

    Rattanabut, Chanoknan; Wongwiriyapan, Winadda; Muangrat, Worawut; Bunjongpru, Win; Phonyiem, Mayuree; Song, Young Jae

    2018-04-01

    In this paper, we present a gas sensor for volatile organic compound (VOC) detection based on graphene and poly(methyl methacrylate) (GR/PMMA) composite laminates fabricated using CVD-grown graphene. Graphene was transferred to a poly(ethylene terephthalate) (PET) substrate by PMMA-supported wet transfer process without PMMA removal in order to achieve the deposition of GR/PMMA composite laminates on PET. The GR/PMMA and graphene sensors show completely different sensitivities to VOC vapors. The GR/PMMA and graphene sensors showed the highest sensitivities to dichloromethane (DCM). The response of the GR/PMMA sensor to DCM was 3 times higher than that of the graphene sensor but the GR/PMMA sensor hardly responded to acetone, chloroform, or benzene. The sensing mechanism of the graphene sensor can be based on the dielectric constant of VOCs, the size of VOC molecule, and electron hopping effects on defect graphene, while that of the GR/PMMA sensor can be explained in terms of the polymer swelling owing to the Hansen solubility parameter.

  7. Characterization of Screen-Printed Organic Electrochemical Transistors to Detect Cations of Different Sizes

    Laura Contat-Rodrigo

    2016-09-01

    Full Text Available A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs based on poly(3,4-ethylenedioxythiophene doped with polysterene sulfonate (PEDOT:PSS. Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B. The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag. The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na+ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl− counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes.

  8. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  9. Detecting climate-change responses of plants and soil organic matter using isotopomers

    Schleucher, Jürgen; Ehlers, Ina; Segura, Javier; Haei, Mahsa; Augusti, Angela; Köhler, Iris; Zuidema, Pieter; Nilsson, Mats; Öquist, Mats

    2015-04-01

    Responses of vegetation and soils to environmental changes will strongly influence future climate, and responses on century time scales are most important for feedbacks on the carbon cycle, climate models, prediction of crop productivity, and for adaptation to climate change. That plants respond to increasing CO2 on century time scales has been proven by changes in stomatal index, but very little is known beyond this. In soil, the complexity of soil organic matter (SOM) has hampered a sufficient understanding of the temperature sensitivity of SOM turnover. Here we present new stable isotope methodology that allows detecting shifts in metabolism on long time scales, and elucidating SOM turnover on the molecular level. Compound-specific isotope analysis measures isotope ratios of defined metabolites, but as average of the entire molecule. Here we demonstrate how much more detailed information can be obtained from analyses of intramolecular distributions of stable isotopes, so-called isotopomer abundances. As key tool, we use nuclear magnetic resonance (NMR) spectroscopy, which allows detecting isotope abundance with intramolecular resolution and without risk for isotope fractionation during analysis. Enzyme isotope fractionations create non-random isotopomer patterns in biochemical metabolites. At natural isotope abundance, these patterns continuously store metabolic information. We present a strategy how these patterns can be used as to extract signals on plant physiology, climate variables, and their interactions. Applied in retrospective analyses to herbarium samples and tree-ring series, we detect century-time-scale metabolic changes in response to increasing atmospheric CO2, with no evidence for acclimatory reactions by the plants. In trees, the increase in photosynthesis expected from increasing CO2 ("CO2 fertilization) was diminished by increasing temperatures, which resolves the discrepancy between expected increases in photosynthesis and commonly observed

  10. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    Bartosz Szulczyński

    2017-03-01

    Full Text Available The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric, photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their metrological parameters—measurement range, limit of detection, measurement resolution, sensitivity and response time—were presented. Moreover, development trends and prospects of improvement of the metrological parameters of these sensors were highlighted.

  11. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.

  12. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  13. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)

    Wong, Chi Lok; Dinish, U. S.; Schmidt, Michael Stenbæk

    2014-01-01

    chemical sensing layer for the enrichment of gas molecules on sensor surface. The leaning nano-pillar substrate also showed highly reproducible SERS signal in cyclic VOCs detection, which can reduce the detection cost in practical applications. Further, multiplex SERS detection on different combination...... device for multiplex, specific and highly sensitive detection of complex VOCs samples that can find potential applications in exhaled breath analysis, hazardous gas analysis, homeland security and environmental monitoring....

  14. Organizing heterogeneous samples using community detection of GIMME-derived resting state functional networks.

    Kathleen M Gates

    Full Text Available Clinical investigations of many neuropsychiatric disorders rely on the assumption that diagnostic categories and typical control samples each have within-group homogeneity. However, research using human neuroimaging has revealed that much heterogeneity exists across individuals in both clinical and control samples. This reality necessitates that researchers identify and organize the potentially varied patterns of brain physiology. We introduce an analytical approach for arriving at subgroups of individuals based entirely on their brain physiology. The method begins with Group Iterative Multiple Model Estimation (GIMME to assess individual directed functional connectivity maps. GIMME is one of the only methods to date that can recover both the direction and presence of directed functional connectivity maps in heterogeneous data, making it an ideal place to start since it addresses the problem of heterogeneity. Individuals are then grouped based on similarities in their connectivity patterns using a modularity approach for community detection. Monte Carlo simulations demonstrate that using GIMME in combination with the modularity algorithm works exceptionally well--on average over 97% of simulated individuals are placed in the accurate subgroup with no prior information on functional architecture or group identity. Having demonstrated reliability, we examine resting-state data of fronto-parietal regions drawn from a sample (N = 80 of typically developing and attention-deficit/hyperactivity disorder (ADHD -diagnosed children. Here, we find 5 subgroups. Two subgroups were predominantly comprised of ADHD, suggesting that more than one biological marker exists that can be used to identify children with ADHD based from their brain physiology. Empirical evidence presented here supports notions that heterogeneity exists in brain physiology within ADHD and control samples. This type of information gained from the approach presented here can assist in

  15. Flocked nylon swabs versus RODAC plates for detection of multidrug-resistant organisms on environmental surfaces in intensive care units.

    Okamoto, K; Rhee, Y; Schoeny, M; Lolans, K; Cheng, J; Reddy, S; Weinstein, R A; Hayden, M K; Popovich, K J

    2018-01-01

    To compare two culture methods [nylon fiber flocked swabs with broth enrichment versus RODAC ('replicate organism detection and counting') plates] for recovery of multidrug-resistant organisms, 780 environmental surfaces in 63 rooms of patients on contact precautions in four intensive care units at one hospital were examined. Among sites that had at least one positive culture, swab culture with broth enrichment detected the target organisms more frequently than RODAC plates (37.5% vs 26.0%, P = 0.06). There was moderate agreement between the two methods (κ = 0.44) with agreement better for small or flat surfaces compared to large or irregular surfaces. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. High-sensitivity ultraviolet photoemission spectroscopy technique for direct detection of gap states in organic thin films

    Bussolotti, Fabio, E-mail: fabio@ims.ac.jp

    2015-10-01

    Highlights: • Density of gap states in organic thin film was detected by photoemission spectroscopy. • Inert gas exposure affects the density of gap states in organic thin films. • Density of gap states controls the energy level alignment at the organic/inorganic and organic/organic interfaces. - Abstract: We developed ultrahigh sensitivity, low-background ultraviolet photoemission spectroscopy (UPS) technique which does not introduce detectable radiation damages into organic materials. The UPS allows to detect density of states of the order of ∼10{sup 16} states eV{sup −1} cm{sup −3} even for radiation-sensitive organic films, this results being comparable to electrical measurements of charge trapping centers. In this review we introduce the method of ultrahigh sensitivity photoemission measurement and we present some results on the energy distribution of gap states in pentacene (Pn) films deposited on SiO{sub 2} and Au(1 1 1) substrate. For Pn/SiO{sub 2} thin film the results show that exposure to inert gas (N{sub 2} and Ar) atmosphere produces a sharp rise in gap states from 10{sup 16} to 10{sup 18} states eV{sup −1} cm{sup −3} and pushes the Fermi level closer to the valence band (0.15–0.17 eV), as does exposure to O{sub 2} (0.20 eV), while no such gas-induced effects are observed for Pn/Au(1 1 1) system. The results demonstrate that these gap states originate from small imperfections in the Pn packing structure, which are induced by gas penetration into the film through the Pn crystal grain boundaries. Similar results were obtained for CuPc/F{sub 16}CuPc thin films, a prototypical example of donor/acceptor interface for photovoltaic application.

  17. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature

    Lawrence, Stephen J.

    2006-01-01

    This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.

  18. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences.

    Lee, David; La Mura, Maurizio; Allnutt, Theo R; Powell, Wayne

    2009-02-02

    The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  19. Determination of organic peroxides by liquid chromatography with on-line post-column ultraviolet irradiation and peroxyoxalate chemiluminescence detection.

    Wada, Mitsuhiro; Inoue, Keiyu; Thara, Ayuko; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka

    2003-02-14

    A HPLC method was developed for the simultaneous determination of organic peroxides and hydrogen peroxide with peroxyoxalate chemiluminescence (PO-CL) detection following on-line UV irradiation. Organic peroxides [i.e., benzoyl peroxide (BP), tert.-butyl hydroperoxide (BHP), tert.-butyl perbenzoate (BPB), cumene hydroperoxide (CHP)] were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide, which was determined by PO-CL detection. The conditions for UV irradiation and PO-CL detection were optimized by a flow injection analysis (FIA) system. Generation of hydrogen peroxide from peroxides with on-line UV irradiation also was confirmed by the FIA system by incorporating an enzyme column reactor immobilized with catalase. The separation of four organic peroxides and hydrogen peroxide by HPLC was accomplished isocratically on an ODS column within 30 min. The detection limits (signal-to-noise ratio=3) were 1.1 microM for hydrogen peroxide, 6.8 microM for BP, 31.3 microM for BHP, 7.5 microM for BPB and 1.3 microM for CHP. The proposed method was applied to the determination of BP in wheat flour.

  20. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-05-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  1. Detection of genetically modified organisms in foreign-made processed foods containing corn and potato.

    Monma, Kimio; Araki, Rie; Sagi, Naoki; Satoh, Masaki; Ichikawa, Hisatsugu; Satoh, Kazue; Tobe, Takashi; Kamata, Kunihiro; Hino, Akihiro; Saito, Kazuo

    2005-06-01

    Investigations of the validity of labeling regarding genetically modified (GM) products were conducted using polymerase chain reaction (PCR) methods for foreign-made processed foods made from corn and potato purchased in the Tokyo area and in the USA. Several kinds of GM crops were detected in 12 of 32 samples of processed corn samples. More than two GM events for which safety reviews have been completed in Japan were simultaneously detected in 10 samples. GM events MON810 and Bt11 were most frequently detected in the samples by qualitative PCR methods. MON810 was detected in 11 of the 12 samples, and Bt11 was detected in 6 of the 12 samples. In addition, Roundup Ready soy was detected in one of the 12 samples. On the other hand, CBH351, for which the safety assessment was withdrawn in Japan, was not detected in any of the 12 samples. A trial quantitative analysis was performed on six of the GM maize qualitatively positive samples. The estimated amounts of GM maize in these samples ranged from 0.2 to 2.8%, except for one sample, which contained 24.1%. For this sample, the total amount found by event-specific quantitative analysis was 23.8%. Additionally, Roundup Ready soy was detected in one sample of 21 potato-processed foods, although GM potatoes were not detected in any sample.

  2. Preliminary investigation into the use of surface modification techniques to detect organic materials in meteorites

    Goodyear, M. D.; Gilmour, I.; Pearson, V. K.

    2011-01-01

    Many carbonaceous chondrites (CCs) display evidence of aqueous and/or thermal alteration of their component minerals. In addition, CCs also contain up to ca. 5% carbon, much of which is organic, insoluble, involatile and unreactive, and known as insoluble organic material (IOM). It is not known if there is a causal connection between the mineral alteration, and formation or modification of organic materials; however by understanding the relationships between them, any connections (chemical or...

  3. Polymer Compund Refractive Lenses for Hard X-ray Nanofocusing

    Krywka, Christina; Last, Arndt; Marschall, Felix; Markus, Otto; Georgi, Sebastian; Mueller, Martin; Mohr, Jürgen

    2016-01-01

    Compound refractive lenses fabricated out of SU-8 negative photoresist have been used to generate a nanofocused, i.e. sub-μm sized X-ray focal spot at an X-ray nanodiffraction setup. X-ray microscopy and X-ray diffraction techniques have conceptually different demands on nanofocusing optical elements and so with the application of X-ray nanodiffraction in mind, this paper presents the results of an initial characterization of polymer lenses used as primary focusin...

  4. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    Yu, Zongchao; Wang, Fengqin; Lin, Xiangyi; Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun; Zhao, Yongnan; Li, Guodong

    2015-01-01

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn_3L_3(DMF)_2 (1) and Zn_3L_3(DMA)_2(H_2O)_3 (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe"3"+ and Al"3"+ by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe"3"+. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe"3"+ or Al"3"+.

  5. Study of various n-type organic semiconductors on ultraviolet detective and electroluminescent properties of optoelectronic integrated device

    Deng, Chaoxu; Shao, Bingyao; Zhao, Dan; Zhou, Dianli; Yu, Junsheng

    2017-11-01

    Organic optoelectronic integrated device (OID) with both ultraviolet (UV) detective and electroluminescent (EL) properties was fabricated by using a thermally activated delayed fluorescence (TADF) semiconductor of (4s, 6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as an emitter. The effect of five kinds of n-type organic semiconductors (OSCs) on the enhancement of UV detective and EL properties of OID was systematically studied. The result shows that two orders of magnitude in UV detectivity from 109 to 1011 Jones and 3.3 folds of luminance from 2499 to 8233 cd m-2 could be achieved. The result shows that not only the difference of lowest unoccupied molecular orbital (LUMO) between active layer and OSC but also the variety of electron mobility have a significant effect on the UV detective and EL performance through adjusting electron injection/transport. Additionally, the optimized OSC thickness is beneficial to confine the leaking of holes from the active layer to cathode, leading to the decrease of dark current for high detective performance. This work provides a useful method on broadening OSC material selection and device architecture construction for the realization of high performance OID.

  6. Nuclear medicine in the monitoring of organ function and the detection of injury related to cancer therapy

    Valdes Olmos, R.A.; Hoefnagel, C.A.; Schoot, J.B. van der

    1993-01-01

    This article emphasizes the role of nuclear medicine in the monitoring of function to prevent or limit injury in organs in which toxicity related to cancer therapy may have implications for the survival and/or the quality of life of the patient. After a brief discussion of the advantages of nuclear medicine techniques in detecting organ injury, the effect of radiation therapy and chemotherapy on normal tissue is discussed, underlining the need to characterize adverse effects of cancer therapy in long-term survivors. The use of radionuclides to document organ injury and effects from cancer therapy in heart, digestive tract, kidneys, lungs major salivary glands skeleton and brain is then reviewed. In a short section the potential applicability of positron emission tomography in documenting organ toxicity during cancer therapy is discussed. Thanks to the various available radiopharmaceuticals, the ability of the tracers to document specific functional aspects, the improved methods for visualization and quantitation of organ injury and the possibilities of physiological or pharmacological intervention, nuclear medicine gives the clinician potent tools for the monitoring of organ function at risk during cancer therapy. The trend to intensify cancer treatment by combining various treatment modalities and the increasing chances of prolonged survival in a large number of patients call for effective integration of nuclear medicine methods into the recommended guidelines for grading organ injury in clinical oncology. (orig.)

  7. Detecting elusive criminals: research for tackling Europe's grand challange of transnational organized crime

    Dongen, T. van; Selleslaghs, J.; Gehem, M.

    2012-01-01

    Organized crime for the European market is a multi-billion dollar business that feeds on, as well as sustains, poverty and poor governmental control. As factors like the economic crisis and the emergence and growth of urban slums will sustain organized crime, this threat is likely to stay with us in

  8. Organics.

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  9. Organizers.

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…

  10. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes

    Corrado Napoli

    2018-03-01

    Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.

  11. Development of the GC-MS organic aerosol monitor (GC-MS OAM) for in-field detection of particulate organic compounds

    Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.

    2017-11-01

    Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.

  12. Secondary ion mass spectrometry and environment. SIMS as applied to the detection of stable and radioactive isotopes in marine organisms

    Chassard-Bouchaud, C.; Escaig, F.; Hallegot, P.

    1984-01-01

    Several marine species of economical interest, Crustacea (crabs and prawns) and Molluscs (common mussels and oysters) were collected from coastal waters of France: English Channel, Atlantic Ocean and Mediterranean Sea and of Japan. Microanalyses which were performed at the tissue and cell levels, using Secondary Ion Mass Spectrometry, revealed many contaminants; stable isotopes as well as radioactive actinids such as uranium were detected. Uptake, storage and excretion target organs were identified [fr

  13. Self-organization in irregular landscapes: Detecting autogenic interactions from field data using descriptive statistics and dynamical systems theory

    Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.

    2015-12-01

    The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not

  14. A Hybrid Heuristic Optimization Approach for Leak Detection in Pipe Networks Using Ordinal Optimization Approach and the Symbiotic Organism Search

    Chao-Chih Lin

    2017-10-01

    Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.

  15. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  16. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment.

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-08-04

    Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.

  17. Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests

    Ren, Jianwei

    2017-10-01

    Full Text Available Research on metal–organic framework (MOF) materials has gathered increasing interest starting from the early excitement as porous materials for gas storage down to various novel applications as catalysts, heat energy storage materials, chemical...

  18. Organizations

    Hatch, Mary Jo

    and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from......Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  19. Detection of genetically modified organisms (GMOs using isothermal amplification of target DNA sequences

    La Mura Maurizio

    2009-02-01

    Full Text Available Abstract Background The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR. Here we have applied the loop-mediated isothermal amplification (LAMP method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene junctions. Results We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. Conclusion This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  20. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  1. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth.

    Kohnen, Markus V; Schmid-Siegert, Emanuel; Trevisan, Martine; Petrolati, Laure Allenbach; Sénéchal, Fabien; Müller-Moulé, Patricia; Maloof, Julin; Xenarios, Ioannis; Fankhauser, Christian

    2016-12-01

    In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs. © 2016 American Society of Plant Biologists. All rights reserved.

  2. Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics

    Scharnberg, M.; Hu, J.; Kanzow, J.; Raetzke, K.; Adelung, R.; Faupel, F.; Pannemann, C.; Hilleringmann, U.; Meyer, S.; Pflaum, J.

    2005-01-01

    The metallization of organic thin films is a crucial point in the development of molecular electronics. However, there is no method established yet to detect trace amounts of metal atoms in those thin films. Radiotracer measurements can quantify even very small amounts of material penetrating into the bulk, in our case less than 0.01% of a monolayer. Here, the application of this technique on two different well-characterized organic thin film systems (diindenoperylene and pentacene) is demonstrated. The results show that Ag is mainly adsorbed on the surface, but indicate that already at moderate deposition temperatures Ag can penetrate into the organic thin films and agglomerate at the film/substrate interface

  3. Water and organic nitrate detection in an AMS. Laboratory characterization and application to ambient measurements

    Mensah, Amewu A.

    2011-08-12

    Atmospheric aerosols were studied by three different means. Laboratory experiments determined the relative ionization efficiency of water (RIE{sub H2O}) in an Aerodyne Aerosol Mass Spectrometers (AMS), simulation chamber experiments gave insight to the reaction products of biogenic volatile organic compounds (BVOC) oxidation products, and the findings were applied to two field campaign measurements at Cabauw, NL, in May 2008 and February 2009. Knowing the liquid water content of aerosol particles is vital for the assessment of their climate forcing potential. A value of 2 for RIE{sub H2O} was determined by studying oxalate salts with different amounts of crystal water. BVOCs contribute much more to the global budget of VOCs than anthropogenic ones but oxidation products in terms of secondary organic aerosol often correlate to anthropogenic tracers such as NO{sub x} from fossil fuel burning. In atmospheric simulation chamber experiments, organic nitrates from BVOC-NO{sub 3} oxidation showed higher vapor pressures than pure organic compounds produced in the same reactions. Organic nitrates comprised up to approx. 41 % of the particulate phase. A specific fragmentation ratio of nitrate (NO{sub 2}{sup +}/NO{sup +}) of 0.1 was found by high resolution AMS analysis differing strongly from the value of 0.4 known for the most abundant ambient NO{sub 3} specie (NH{sub 4}NO{sub 3}). Ambient average particulate mass loadings were 9.72 {mu}g/m{sup 3} dominated by organics (40 %) in 2008 and 5.62 {mu}g/m{sup 3} dominated by nitrate (42 %) in 2009. Data comparison to collocated instruments showed good agreement. Positive Matrix Factorization analysis of the particulate organic fraction distinguished semi and low volatile oxygenated organic aerosol (OOA) as well as hydrocarbon like organic aerosol (HOA) in both campaigns. An additional highly oxygenated OA with a mass spectrum very similar to fulvic acid was found in 2008. The average contribution of organic nitrate to the

  4. Development of an Extraterrestrial Organic Analyzer (EOA) for Highly Sensitive Organic Detection on an Ice Shell Impact Penetrator (IceShIP)

    Stockton, A. M.; Duca, Z. A.; Cato, M.; Cantrell, T.; Kim, J.; Putman, P.; Schmidt, B. E.

    2016-12-01

    Kinetic penetrators have the potential to enable low cost in situ measurements of the ice of worlds including Europa and Enceladus [1]. Their small size and mass, critical to limiting their kinetic energy, makes them ideal small landers riding on primarily orbiter missions, while enabling sampling at several m depth due to burial and excavation. In situ microfluidic-based organic analysis systems are a powerful, miniaturized approach for detecting markers of habitability and recent biological activity. Development of microfluidic technology, like that of the Mars Organic Analyzer (MOA) [2,3] and Enceladus Organic Analyzer (EOA), has led to an instrument capable of in situ organic chemical analysis compatible with a kinetic penetrator platform. This technology uses an integrated microfluidic processor to prepare samples for analysis via fluorescent derivatization prior to highly sensitive laser-induced fluorescence (LIF) detection. Selective derivatization in the presence of a chiral selector enables distinction between amino acid enantiomers. Finite element analysis of the core microfluidic processing and analytical device indicated that the device itself is more than capable of surviving the stresses associated with an impact acceleration of >50,000g. However, a number of developments were still required to enable a flight-ready system. Preliminary experiments indicated that moving from a pneumatically-actuated to a hydraulically-actuated microvalve system may provide better impact resistance. A hydraulically-actuated microvalve system was developed and tested. A modification of an established microfabricated LIF detection system would use indium bump bonding to permanently weld optical components using standard microfabrication techniques with perfect alignment. Recent work has also focused on developing and characterizing impact-resistant electronics. This work shows the low-TRL development of EOA's LIF and microfluidic subsystems for future planetary impact

  5. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides.

    Jingquan Li

    Full Text Available Acetylcholinesterase (AChE is commonly used for the detection of organophosphate (OP and carbamate (CB insecticides. However, the cost of this commercially available enzyme is high, making high-throughput insecticide detection improbable. In this study we constructed a new AChE yeast expression system in Saccharomyces cerevisiae for the expression of a highly reactive recombinant AChE originating from Drosophila melanogaster (DmAChE. Specifically, the coding sequence of DmAChE was fused with the 3'-terminal half of an α-agglutinin anchor region, along with an antigen tag for the detection of the recombinant protein. The target sequence was cloned into the yeast expression vector pYes-DEST52, and the signal peptide sequence was replaced with a glucoamylase secretion region for induced expression. The resultant engineered vector was transformed into S. cerevisiae. DmAChE was expressed and displayed on the cell surface after galactose induction. Our results showed that the recombinant protein displayed activity comparable to the commercial enzyme. We also detected different types of OP and CB insecticides through enzyme inhibition assays, with the expressed DmAChE showing high sensitivity. These results show the construction of a new yeast expression system for DmAChE, which can subsequently be used for detecting OP and CB insecticides with reduced economic costs.

  6. Detecting and Eliminating Interfering Organic Compounds in Waters Analyzed for Isotopic Composition by Crds

    Richman, B. A.; Hsiao, G. S.; Rella, C.

    2010-12-01

    Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally

  7. Cytogenetic methods for the detection of radiation-induced chromosome damage in aquatic organisms

    Kligerman, A.D.

    1979-01-01

    One means of evaluating the genetic effects of radiation on the genomes of aquatic organisms is to screen radiation-exposed cells for chromosome aberrations. A brief literature review of studies dealing with radiation-induced chromosome damage in aquatic organisms is presented, and reasons are given detailing why most previous studies are of little quantitative value. Suggestions are made for obtaining adequate qualitative and quantitative data through the use of modern cytogenetic methods and a model systems approach to the study of cytogenetic radiation damage in aquatic organisms. Detailed procedures for both in vivo and in vitro cytogenetic methods are described, and experimental considerations are discussed. Finally, suggestions for studies that could be of value in establishing protective guidelines for aquatic ecosystems are presented. (author)

  8. Detection of nitro-organic and peroxide explosives in latent fingermarks by DART- and SALDI-TOF-mass spectrometry.

    Rowell, Frederick; Seviour, John; Lim, Angelina Yimei; Elumbaring-Salazar, Cheryl Grace; Loke, Jason; Ma, Jan

    2012-09-10

    The ability of two mass spectrometric methods, surface-assisted laser desorption/ionization-time of flight-mass spectrometry (SALDI-TOF-MS) and direct analysis in real time (DART-MS), to detect the presence of seven common explosives (six nitro-organic- and one peroxide-type) in spiked latent fingermarks has been examined. It was found that each explosive could be detected with nanogram sensitivity for marks resulting from direct finger contact with a glass probe by DART-MS or onto stainless steel target plates using SALDI-TOF-MS for marks pre-dusted with one type of commercial black magnetic powder. These explosives also could be detected in latent marks lifted from six common surfaces (paper, plastic bag, metal drinks can, wood laminate, adhesive tape and white ceramic tile) whereas no explosive could be detected in equivalent pre-dusted marks on the surface of a commercial lifting tape by the DART-MS method due to high background interference from the tape material. The presence of TNT and Tetryl could be detected in pre-dusted latent fingermarks on a commercial lifting tape for up to 29 days sealed and stored under ambient conditions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  10. Detection of genetically modified organisms in soy products sold in Turkish market

    Merve Mandaci

    2014-12-01

    Full Text Available PCR-based technique for GMO detection is the most reliable choice because of its high sensitivity and specificity. As a candidate of the European Union, Turkey must comply with the rules for launching into the market, traceability, and labeling of GMOs as established by EU legislation. Therefore, the objective of this study is to assess soybean products in the Turkish market to verify compliance with legislation using qualitative Polymerase Chain Reaction (PCR assay to detect the presence of GM soybean and to quantify its amount of GM soybean in the samples tested positive using real-time PCR. DNA extracted by the modified CTAB method was properly used for PCR amplification of food materials. The amplification of a 118 bp DNA fragment of the lectin gene from soybean by PCR was successfully achieved in all samples. The GMO screening was based on the detection of 35S promoter and NOS terminator sequences. The GM positive samples were subjected to detection of Roundup ReadyTM soybean (RR using quantitative real-time PCR. It was found that 100% of the tested food samples contained less than 0.1 per cent of EPSPS gene.

  11. Gas sensors for detection of volatile organic compounds at room temperature

    Nguyen, Minh Quyen

    2017-01-01

    The need of detecting acetone in ambient environment in laboratories and factories to monitor leakage and prevent accidents for human safety and health protection has involved numerous studies. Also, in human breath, acetone at ppm level is present amongst more than two hundred kinds of other

  12. PCR-free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy.

    Xiaoming Zhou

    2009-11-01

    Full Text Available The safety of genetically modified organisms (GMOs has attracted much attention recently. Polymerase chain reaction (PCR amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS. The cauliflower mosaic virus 35S (CaMV35S promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 microg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.

  13. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach

    Martin, Julien; Royle, J. Andrew; MacKenzie, Darryl I.; Edwards, Holly H.; Kery, Marc; Gardner, Beth

    2011-01-01

    Summary 1. Binomial mixture models use repeated count data to estimate abundance. They are becoming increasingly popular because they provide a simple and cost-effective way to account for imperfect detection. However, these models assume that individuals are detected independently of each other. This assumption may often be violated in the field. For instance, manatees (Trichechus manatus latirostris) may surface in turbid water (i.e. become available for detection during aerial surveys) in a correlated manner (i.e. in groups). However, correlated behaviour, affecting the non-independence of individual detections, may also be relevant in other systems (e.g. correlated patterns of singing in birds and amphibians). 2. We extend binomial mixture models to account for correlated behaviour and therefore to account for non-independent detection of individuals. We simulated correlated behaviour using beta-binomial random variables. Our approach can be used to simultaneously estimate abundance, detection probability and a correlation parameter. 3. Fitting binomial mixture models to data that followed a beta-binomial distribution resulted in an overestimation of abundance even for moderate levels of correlation. In contrast, the beta-binomial mixture model performed considerably better in our simulation scenarios. We also present a goodness-of-fit procedure to evaluate the fit of beta-binomial mixture models. 4. We illustrate our approach by fitting both binomial and beta-binomial mixture models to aerial survey data of manatees in Florida. We found that the binomial mixture model did not fit the data, whereas there was no evidence of lack of fit for the beta-binomial mixture model. This example helps illustrate the importance of using simulations and assessing goodness-of-fit when analysing ecological data with N-mixture models. Indeed, both the simulations and the goodness-of-fit procedure highlighted the limitations of the standard binomial mixture model for aerial

  14. Resting 123I-BMIPP scintigraphy for detection of organic coronary stenosis and therapeutic outcome in patients with chest pain

    Yamabe, Hiroshi; Fujiwara, Sei; Rin, Kouten; Ando, Makoto; Yokoyama, Mitsuhiro; Sakamoto, Takaaki; Ishida, Toshiharu; Itagane, Hiroshi; Mori, Takao

    2000-01-01

    Resting 123 I-BMIPP scintigraphy can detect coronary artery disease based on persistent abnormality of myocardial fatty acid metabolism after transient ischemia. The present study aimed to determine the value of resting 123 I-BMIPP scintigraphy in diagnosing coronary artery disease and predicting the therapeutic outcome in patients with chest pain symptom. Five hospitals participated in this study, and scintigraphic and angiographic studies were performed in 104 patients without myocardial infarction. Twenty of them had non-coronary artery disease (chest pain syndrome), 26 had stable effort angina, 35 had unstable angina with organic coronary lesions, and 23 had vasospastic angina without significant organic stenosis. Overall sensitivity for diagnosing angina pectoris (stable, unstable and vasospastic) was 45%, and overall specificity for excluding non-coronary artery disease was 80%. The incidence of positive 123 I-BMIPP was 54% among patients with organic coronary stenosis (50% in stable angina and 61% in unstable angina with organic stenosis), but it was low (22%) in vasospastic angina without organic stenosis. Patients with advanced coronary stenosis and multi-vessel disease were found to have a higher incidence of positive 123 I-BMIPP. A positive 123 I-BMIPP result was correlated with a higher rate of subsequent intervention therapy (catheter intervention or CABG) than a negative result (48% versus 27%, p=0.03 at one month; and 63% versus 35%, p=0.008 at one year). Resting 123 I-BMIPP scintigraphy was valuable in detecting advanced coronary lesions in angina patients associated with a high incidence of subsequent intervention therapy. (author)

  15. Organism Detection in Permeable Pavement Parking Lot Infiltrates at the Edison Environmental Center, New Jersey

    Three types of permeable pavements were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared t...

  16. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging

    Organic residues on equipment surfaces in poultry processing plants can generate cross- contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of stainless steel proces...

  17. Detection of pesticides residues in water samples from organic and conventional paddy fields of Ledang, Johor, Malaysia

    Abdullah, Md Pauzi; Othman, Mohamed Rozali; Ishak, Anizan; Nabhan, Khitam Jaber

    2016-11-01

    Pesticides have been used extensively by the farmers in Malaysia during the last few decades. Sixteen water samples, collected from paddy fields both organic and conventional, from Ledang, Johor, were analyzed to determine the occurrence and distribution of organochlorine (OCPs) and organophosphorus (OPPs) pesticide residues. GC-ECD instrument was used to identify and determine the concentrations of these pesticide residues. Pesticide residues were detected in conventional fields in the range about 0.036-0.508 µg/L higher than detected in organic fields about 0.015-0.428 µg/L. However the level of concentration of pesticide residues in water sample from both paddy fields are in the exceed limit for human consumption, according to European Economic Commission (EEC) (Directive 98/83/EC) at 0.1 µg/L for any pesticide or 0.5 µg/L for total pesticides. The results that the organic plot is still contaminated with pesticides although pesticides were not use at all in plot possibly from historical used as well as from airborne contamination.

  18. Spatial statistical analysis of organs for intelligent CAD and its application to disease detection

    Takizawa, Hotaka

    2009-01-01

    The present article reports our research that was performed in a research project supported by a Grantin-Aid for Scientific Research on Priority Area from the Ministry of Education, Culture Sports, Science and Technology, JAPAN, from 2003 to 2006. Our method developed in the research acquired the trend of variation of spatial relations between true diseases, false positives and image features through statistical analysis of a set of medical images and improved the accuracy of disease detection by predicting their occurrence positions in an image based on the trend. This article describes the formulation of the method in general form and shows the results obtained by applying the method to chest X-ray CT images for detection of pulmonary nodules. (author)

  19. Data in support of the detection of genetically modified organisms (GMOs in food and feed samples

    Noor Alasaad

    2016-06-01

    The methods applied in the brief data are based on DNA analysis by Polymerase Chain Reaction (PCR. This technique is specific, practical, reproducible and sensitive enough to detect up to 0.1% GMO in food and/or feedstuffs. Furthermore, all of the techniques mentioned are economic and can be applied in Syria and other developing countries. For all these reasons, the DNA-based analysis methods were chosen and preferred over protein-based analysis.

  20. On the ability of the Viking gas chromatograph-mass spectrometer to detect organic matter.

    Biemann, Klaus

    2007-06-19

    A recent paper by Navarro-Gonzalez et al. [Navarro-Gonzalez R, Navarro KF, de la Rosa J, Iniguez E, Molina P, Miranda LD, Morales P, Cienfuegos E, Coll P, Raulin F, et al. (2006) Proc Natl Acad Sci USA 103:16089-16094] claims to show that the Viking GCMS (gas chromatograph-mass spectrometer) experiment, which carried out a search for organic matter at the surface of Mars in 1976, "may have been blind to low levels of organics." To rebut this assertion, the Viking experiment, test data, and results on Mars are reviewed, and the fallacies in the design, execution, and interpretation of the new experiments presented by Navarro-Gonzalez et al. are critically examined.

  1. Data in support of the detection of genetically modified organisms (GMOs) in food and feed samples.

    Alasaad, Noor; Alzubi, Hussein; Kader, Ahmad Abdul

    2016-06-01

    Food and feed samples were randomly collected from different sources, including local and imported materials from the Syrian local market. These included maize, barley, soybean, fresh food samples and raw material. GMO detection was conducted by PCR and nested PCR-based techniques using specific primers for the most used foreign DNA commonly used in genetic transformation procedures, i.e., 35S promoter, T-nos, epsps, cryIA(b) gene and nptII gene. The results revealed for the first time in Syria the presence of GM foods and feeds with glyphosate-resistant trait of P35S promoter and NOS terminator in the imported soybean samples with high frequency (5 out of the 6 imported soybean samples). While, tests showed negative results for the local samples. Also, tests revealed existence of GMOs in two imported maize samples detecting the presence of 35S promoter and nos terminator. Nested PCR results using two sets of primers confirmed our data. The methods applied in the brief data are based on DNA analysis by Polymerase Chain Reaction (PCR). This technique is specific, practical, reproducible and sensitive enough to detect up to 0.1% GMO in food and/or feedstuffs. Furthermore, all of the techniques mentioned are economic and can be applied in Syria and other developing countries. For all these reasons, the DNA-based analysis methods were chosen and preferred over protein-based analysis.

  2. Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs.

    Boettcher, K J; Ruby, E G

    1995-02-01

    Vibrio fischeri is the specific light organ symbiont of the sepiolid squid species Euprymna scolopes and Euprymna morsei. Both species of squid are luminescent by virtue of their bacterial symbionts, but the natural symbionts of E. scolopes do not produce visible luminescence in laboratory culture. The primary cause of this depressed luminescence by E. scolopes symbionts in culture was found to be the production of relatively low levels of V. fischeri autoinducer, a positive transcriptional coregulator of the lux regulon, identified as N-(3-oxohexanoyl) homoserine lactone. Concentrations of autoinducer activity produced by these symbionts in culture were quantified and found to be at least 10-fold lower than those produced by E. morsei isolates (which are visibly luminous outside the association) and perhaps 10,000-fold lower than those of the brightest V. fischeri strains. Despite the differences in their symbiont strains, the intact light organs of the two species of squid contained comparable amounts of extractable autoinducer activity (between 100 and 200 pg per adult animal). The chromatographic behavior of this autoinducer activity on reverse-phase high-performance liquid chromatography was consistent with its presumptive identification as V. fischeri autoinducer. Within the 5-microliter volume of the epithelial core of the light organ in which the symbiotic V. fischeri strains are housed, these amounts would result in an effective autoinducer concentration of at least 100 nM. Because these levels are over 40-fold higher than the concentration needed for the induction of luminescence of bacteria in culture, we conclude that the inherent degree of autoinducer production by strains of V. fischeri may not influence their effectiveness as light organ symbionts. Furthermore, this study provides the first direct evidence that the phenomenon of cell density-dependent autoinduction, discovered and described first for laboratory cultures of V. fischeri but believed to

  3. Detection of irradiation history for health foods. Calcium salt of organic acid and its basic ingredient

    Sekiguchi, Masayuki; Nakagawa, Seiko; Yunoki, Shunji; Ohyabu, Yoshimi

    2013-01-01

    Calcium carbonate and calcium salt of organic acid are well-known food additives used for the improvement of the shelf life and eating quality of health food. Calcium carbonate is a precursor in the synthesis of calcium salts of organic acid. Certain calcium carbonates made of natural limestone mined from very old stratum have silicate minerals exposed to a low level of natural radiation over a long period of time and food additives derived from calcium carbonates contained of such silicate minerals are possible to classify as irradiated foods by PSL and TL analysis in spite of non-irradiation. The study of calcium carbonates and calcium salts of organic acid obtained from different producers were allow to provided appropriate decisions by using the information of both the TL response (Glow1 peak temperature and TL ratio) and PSL ratio. ESR measurements of radicals in such food additives caused by gamma- irradiation were effective tool for correctly determining for irradiation history of those because the measurements were not affected by silicate minerals contained in those. (author)

  4. The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results.

    Navarro-González, Rafael; Navarro, Karina F; de la Rosa, José; Iñiguez, Enrique; Molina, Paola; Miranda, Luis D; Morales, Pedro; Cienfuegos, Edith; Coll, Patrice; Raulin, François; Amils, Ricardo; McKay, Christopher P

    2006-10-31

    The failure of Viking Lander thermal volatilization (TV) (without or with thermal degradation)-gas chromatography (GC)-MS experiments to detect organics suggests chemical rather than biological interpretations for the reactivity of the martian soil. Here, we report that TV-GC-MS may be blind to low levels of organics on Mars. A comparison between TV-GC-MS and total organics has been conducted for a variety of Mars analog soils. In the Antarctic Dry Valleys and the Atacama and Libyan Deserts we find 10-90 mug of refractory or graphitic carbon per gram of soil, which would have been undetectable by the Viking TV-GC-MS. In iron-containing soils (jarosites from Rio Tinto and Panoche Valley) and the Mars simulant (palogonite), oxidation of the organic material to carbon dioxide (CO(2)) by iron oxides and/or their salts drastically attenuates the detection of organics. The release of 50-700 ppm of CO(2) by TV-GC-MS in the Viking analysis may indicate that an oxidation of organic material took place. Therefore, the martian surface could have several orders of magnitude more organics than the stated Viking detection limit. Because of the simplicity of sample handling, TV-GC-MS is still considered the standard method for organic detection on future Mars missions. We suggest that the design of future organic instruments for Mars should include other methods to be able to detect extinct and/or extant life.

  5. The limitations on organic detection in Mars-like soils by thermal volatilization–gas chromatography–MS and their implications for the Viking results

    Navarro-González, Rafael; Navarro, Karina F.; de la Rosa, José; Iñiguez, Enrique; Molina, Paola; Miranda, Luis D.; Morales, Pedro; Cienfuegos, Edith; Coll, Patrice; Raulin, François; Amils, Ricardo; McKay, Christopher P.

    2006-01-01

    The failure of Viking Lander thermal volatilization (TV) (without or with thermal degradation)–gas chromatography (GC)–MS experiments to detect organics suggests chemical rather than biological interpretations for the reactivity of the martian soil. Here, we report that TV–GC–MS may be blind to low levels of organics on Mars. A comparison between TV–GC–MS and total organics has been conducted for a variety of Mars analog soils. In the Antarctic Dry Valleys and the Atacama and Libyan Deserts we find 10–90 μg of refractory or graphitic carbon per gram of soil, which would have been undetectable by the Viking TV–GC–MS. In iron-containing soils (jarosites from Rio Tinto and Panoche Valley) and the Mars simulant (palogonite), oxidation of the organic material to carbon dioxide (CO2) by iron oxides and/or their salts drastically attenuates the detection of organics. The release of 50–700 ppm of CO2 by TV–GC–MS in the Viking analysis may indicate that an oxidation of organic material took place. Therefore, the martian surface could have several orders of magnitude more organics than the stated Viking detection limit. Because of the simplicity of sample handling, TV–GC–MS is still considered the standard method for organic detection on future Mars missions. We suggest that the design of future organic instruments for Mars should include other methods to be able to detect extinct and/or extant life. PMID:17060639

  6. Does Fine Needle Aspiration Microbiology Offer Any Benefit Over Wound Swab in Detecting the Causative Organisms in Surgical Site Infections?

    Sudharsanan, Sundaramurthi; Gs, Sreenath; Sureshkumar, Sathasivam; Vijayakumar, Chellappa; Sujatha, Sistla; Kate, Vikram

    2017-09-01

    The objective of this study is to determine the role of ne needle aspiration microbiology (FNAM) in detecting the causative organisms of postoperative surgical site infections (SSIs) in comparison with the standard technique of surface swabbing. Ma- terials and Methods. In this study, 150 patients with SSIs following elective and emergency operations were included. In all patients, FNAM was performed along with conventional surface swabbing to identify the causative microorganism. Sensitivity of surface swab and FNAM was calculated as the number of samples collected from the diagnosed case of SSI. A total of 115 positive cultures were obtained from the 150 patients with SSIs; surface swab was positive in 110 cases and FNAM was positive in 94 cases. The mean number of organisms isolated by surface swab, and FNAM was 0.95 and 0.8, respectively. The sensitivity of surface swab was 94.3% in elective cases and 96.25% in emergency cases. The sensitivity of FNAM was 82.8% in elective cases and 82.5% in emergency cases. The sensitivity and negative predictive value of FNAM and surface swab did not signi cantly differ in clean elective cases. The overall sensitivity of surface swab and FNAM was 95.65% and 81.7%, respectively. Comparing the antibiotic suscep- tibility pattern, no difference was observed when the same organ- ism was isolated by both methods, indicating that FNAM does not offer bene t over the conventional wound surface swab in detecting microorganisms in SSI in both elective and emergency surgeries. In certain cases with unexplained wound infections, FNAM can be used as an investigation to identify speci c pathogens not detected by conventional surface swab.

  7. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone

    Glavin, D.; Freissnet, C.; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R. E.; Steele, A.; Archer, D.; Brunner, A.; Buch, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.

  8. Sensing element for detection of polar organic vapours on the base of polyaniline-composite - Effect of substrate surface area

    Olejnik, Robert; Babar, Dipak Gorakh; Slobodian, Petr; Matyas, Jiri

    2016-01-01

    Conductive polymer polyaniline (PANI) was synthesized by oxidative polymerization of aniline hydrochloride as a source of aniline and ammonium persulfate as an oxidation agent. The polymerization process is relatively easy and cheap. The reaction was carried out in presence of polymer substrate, in our case polyethylene terephthalate (PET) as a representative of smooth surface substrate and polyvinylidenfluoride (PVDF) nanofibers membrane as a representative of porous substrate. Both these substrates were covered by polyaniline (PANI) and used as a sensing element for organic vapors detection. The detection was made by measuring and the record of the change of resistivity during adsorption and desorption of saturated vapors. The result shows that sensitivity decreases with increasing polarity of chosen solvent in order N,N- Dimethylformamide (DMF), N,N-Dimethylacetamide (DMAc) and Dimethyl sulfoxide (DMSO). The PANI base sensing element on PVDF substrate improves sensitivity, selectivity and it also has good reversibility and repeatability. (paper)

  9. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products.

    Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana

    2016-07-01

    The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.

  10. Introducing of the methods of pollutants detecting and species used as experiment organisms in testing laboratories (ro

    Romeo T. Cristina

    2012-12-01

    Full Text Available Zebrafish are vertebrate animals often used in research for wastewaters, environment chemicals, cancer and diabetes drugs due to their speed and ease for handling and obtaining test results. Organisms capacity to detect and avoid contaminated soils reveals soils stressor potential and has an ecological relevance indepted with its direct relationship to soil biodiversity and it’s quality as a habitat for the organism. Soil pollution tests were accomplished on arthropods (Collembola, earthworms, oligochaete worms (Enchytraeidae, this being behavior modification tests, observing which species avoids contaminated soils and if response intensity depends on contamination degree. Using Daphnia sp. for testing it’s possible because of their sensibility to an amount of aquatic pollutants and also for their small sizes involving a use of small volumes of test substance and water for dilution.

  11. Self-organizing neural networks for automatic detection and classification of contrast-enhancing lesions in dynamic MR-mammography

    Vomweg, T.W.; Teifke, A.; Kauczor, H.U.; Achenbach, T.; Rieker, O.; Schreiber, W.G.; Heitmann, K.R.; Beier, T.; Thelen, M.

    2005-01-01

    Purpose: Investigation and statistical evaluation of 'Self-Organizing Maps', a special type of neural networks in the field of artificial intelligence, classifying contrast enhancing lesions in dynamic MR-mammography. Material and Methods: 176 investigations with proven histology after core biopsy or operation were randomly divided into two groups. Several Self-Organizing Maps were trained by investigations of the first group to detect and classify contrast enhancing lesions in dynamic MR-mammography. Each single pixel's signal/time curve of all patients within the second group was analyzed by the Self-Organizing Maps. The likelihood of malignancy was visualized by color overlays on the MR-images. At last assessment of contrast-enhancing lesions by each different network was rated visually and evaluated statistically. Results: A well balanced neural network achieved a sensitivity of 90.5% and a specificity of 72.2% in predicting malignancy of 88 enhancing lesions. Detailed analysis of false-positive results revealed that every second fibroadenoma showed a 'typical malignant' signal/time curve without any chance to differentiate between fibroadenomas and malignant tissue regarding contrast enhancement alone; but this special group of lesions was represented by a well-defined area of the Self-Organizing Map. Discussion: Self-Organizing Maps are capable of classifying a dynamic signal/time curve as 'typical benign' or 'typical malignant'. Therefore, they can be used as second opinion. In view of the now known localization of fibroadenomas enhancing like malignant tumors at the Self-Organizing Map, these lesions could be passed to further analysis by additional post-processing elements (e.g., based on T2-weighted series or morphology analysis) in the future. (orig.)

  12. Current PCR Methods for the Detection, Identification and Quantification of Genetically Modified Organisms(GMOs: a Brief Review

    Gadani F

    2014-12-01

    Full Text Available Analytical methods based on the polymerase chain reaction (PCR technology are increasingly used for the detection of deoxyribonucleic acid (DNA sequences associated with genetically modified organisms (GMOs. In the European Union and Switzerland, mandatory labeling of novel foods and food ingredients consisting of, or containing GMOs is required according to food regulations and is triggered by the presence of newly introduced foreign DNA sequences, or newly expressed proteins. In order to meet regulatory and consumer demand, numerous PCR-based methods have been developed which can detect, identify and quantify GMOs in agricultural crops, food and feed. Moreover, the determination of genetic identity allows for segregation and traceability (identity preservation throughout the supply chain of GM crops that have been enhanced with value-added quality traits. Prerequisites for GMO detection include a minimum amount of the target gene and prior knowledge of the type of genetic modification, such as virus or insect resistance traits, including controlling elements (promoters and terminators. Moreover, DNA extraction and purification is a critical step for the preparation of PCR-quality samples, particularly for processed agricultural crops such as tobacco. This paper reviews the state-of-the-art of PCR-based method development for the qualitative and quantitative determination and identification of GMOs, and includes a short summary of official and validated GMO detection methods.

  13. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid.

    Zhang, Lijun; Wang, Guiheng; Wu, Di; Xiong, Can; Zheng, Lei; Ding, Yunsheng; Lu, Hongbo; Zhang, Guobing; Qiu, Longzhen

    2018-02-15

    In this study, an organic electrochemical transistor sensor (OECT) with a molecularly imprinted polymer (MIP)-modified gate electrode was prepared for the detection of ascorbic acid (AA). The combination of the amplification function of an OECT and the selective specificity of MIPs afforded a highly sensitive, selective OECT sensor. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were carried out to monitor the stepwise fabrication of the modified electrodes and the adsorption capacity of the MIP/Au electrodes. Atomic force microscopy was employed for examining the surface morphology of the electrodes. Important detection parameters, pH and detection temperature were optimized. With the change in the relative concentration of AA from 1μM to 100μM, the MIP-OECT sensor exhibited a low detection limit of 10nM (S/N > 3) and a sensitivity of 75.3μA channel current change per decade under optimal conditions. In addition, the MIP-OECT sensor exhibited excellent specific recognition ability to AA, which prevented the interference from other structurally similar compounds (e.g., aspartic acid, glucose, uric acid, glycine, glutathione, H 2 O 2 ), and common metal ions (K + , Na + , Ca 2+ , Mg 2+ , and Fe 2+ ). In addition, a series of vitamin C beverages were analyzed to demonstrate the feasibility of the MIP-OECT sensor. Using the proposed principle, several other sensors with improved performance can be constructed via the modification of organic electrochemical transistors with appropriate MIP films. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Spatial biomarker of disease and detection of spatial organization of cellular receptors

    Salaita, Khalid S.; Nair, Pradeep M.; Das, Debopriya; Gray, Joe W.; Groves, John T.

    2017-07-18

    A signature of a condition of a live cell is established in an assay that allows distribution of the receptors on the cell surface in response to binding a ligand. The receptors can be optically detected and quantified to provide a value for the condition, Test drugs can be screened for therapeutic potential in the assay: a potentially efficacious drug is identified by an ability to modulate an established signature. The receptor distribution signature can be corroborated with an mRNA expression profile of several genes, indicating, for example, metastasis.

  15. Model of hierarchical self-organizing neural networks for detecting and classifying diabetic retinopathy

    Hossein Ghayoumi Zadeh

    2018-04-01

    Conclusion: These days, the cases of diabetes with hypertension are constantly increasing, and one of the main adverse effects of this disease is related to eyes. In this respect, the diagnosis of retinopathy, which is the same as identification of exudates, microanurysm and bleeding, is of particular importance. The results show that the proposed model is able to detect lesions in diabetic retinopathy images and classify them with an acceptable accuracy. In addition, the results suggest that this method has an acceptable performance compared to other methods.

  16. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-01-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  17. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  18. High sensitivity of a carbon nanowall-based sensor for detection of organic vapours

    Slobodian, P.; Cvelbar, U.; Říha, Pavel; Olejník, R.; Matyáš, J.; Filipič, G.; Watanabe, H.; Tajima, S.; Kondo, H.; Sekine, M.; Hori, M.

    2015-01-01

    Roč. 110, č. 5 (2015), s. 90515-90520 ISSN 2046-2069 Grant - others:Ministerstvo školství, mládeže a tělovýchovy (MŠMT)(CZ) LO1504; Slovenian Research Agency(SI) L2-6769; Slovenian Research Agency(SI) Bi-JAP-2015-2017-3; JSPS Grant-in-Aid for Exploratory Research(JP) 25600123 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : carbon nanowalls * sensing properties * volatile organic vapours Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.289, year: 2015

  19. Detection of 14C in natural trace organics recovered from groundwater

    Murphy, E.; Long, A.; Davis, S.N.; Donahue, D.

    1985-01-01

    Radiocarbon measurements on dissolved inorganic carbon (DIC) in groundwater have given the authors insight into chemical and hydrological processes occurring in aquifers. Carbon-14 analyses on various dissolved organic carbon (DOC) fractions from groundwater are only starting, but, as is true for DIC 14 C measurements, their significance reaches beyond dating of water and into chemical processes in the aquifer and recharge zone. When combined with information on the chemical character of the DOC, 14 C data may clarify the origin and diagenesis of organic carbon in groundwater. In the past, research into the 14 C has been discouraged by the low concentrations of DOC in groundwater, typically in the μg/l range. The tandem accelerator at the University of Arizona can analyze 14 C in as little as 1 mg of carbon, thus requiring isolation of the DOC from 200 l or less of groundwater. This paper describes the techniques bring used for separation of the DOC in groundwater, some of the data collected, and the significance of these data

  20. Evaluation of Petrifilms(TM) as a diagnostic test to detect bovine mastitis organisms in Kenya.

    Gitau, George K; Bundi, Royford M; Vanleeuwen, John; Mulei, Charles M

    2013-03-01

    The study purpose was to validate Petrifilms(TM) (3M Microbiology, 2005) against standard culture methods in the diagnosis of bovine mastitis organisms in Kenya. On 128 smallholder dairy cattle farms in Kenya, between June 21, 2010 and August 31, 2010, milk samples from 269 cows that were positive on California Mastitis Test (CMT) were cultured using standard laboratory culture methods and Petrifilms(TM) (Aerobic Count and Coliform Count -3M Microbiology, 2005), and results were compared. Staphylococcus aureus was the most common bacterium isolated (73 % of samples). Clinical mastitis was found in only three cows, and there were only two Gram-negative isolates, making it impossible to examine the agreement between the two tests for Gram-negative- or clinical mastitis samples. The observed agreement between the standard culture and Petrifilm(TM) (3M Microbiology, 2005) results for Gram-positive isolates was 85 %, and there was fair agreement beyond that expected due to chance alone, with a kappa (κ) of 0.38. Using culture results as a gold standard, the Petrifilms(TM) had a sensitivity of 90 % for Gram-positive samples and specificity of 51 %. With 87 % of CMT-positive samples resulting in Gram-positive pathogens cultured, there was a positive predictive value of 93 % and a negative predictive value of 43 %. Petrifilms(TM) should be considered for culture of mastitis organisms in developing countries, especially when Gram-positive bacteria are expected.

  1. Cupric Oxide (CuO) Oxidation Detects Pyrogenic Carbon in Burnt Organic Matter and Soils

    Hatten, Jeff; Goñi, Miguel

    2016-01-01

    Wildfire greatly impacts the composition and quantity of organic carbon stocks within watersheds. Most methods used to measure the contributions of fire altered organic carbon–i.e. pyrogenic organic carbon (Py-OC) in natural samples are designed to quantify specific fractions such as black carbon or polyaromatic hydrocarbons. In contrast, the CuO oxidation procedure yields a variety of products derived from a variety of precursors, including both unaltered and thermally altered sources. Here, we test whether or not the benzene carboxylic acid and hydroxy benzoic acid (BCA) products obtained by CuO oxidation provide a robust indicator of Py-OC and compare them to non-Py-OC biomarkers of lignin. O and A horizons from microcosms were burned in the laboratory at varying levels of fire severity and subsequently incubated for 6 months. All soils were analyzed for total OC and N and were analyzed by CuO oxidation. All BCAs appeared to be preserved or created to some degree during burning while lignin phenols appeared to be altered or destroyed to varying extents dependent on fire severity. We found two specific CuO oxidation products, o-hydroxybenzoic acid (oBd) and 1,2,4-benzenetricarboxylic acid (BTC2) that responded strongly to burn severity and withstood degradation during post-burning microbial incubations. Interestingly, we found that benzene di- and tricarboxylic acids (BDC and BTC, respectively) were much more reactive than vanillyl phenols during the incubation as a possible result of physical protection of vanillyl phenols in the interior of char particles or CuO oxidation derived BCAs originating from biologically available classes of Py-OC. We found that the ability of these compounds to predict relative Py-OC content in burned samples improved when normalized by their respective BCA class (i.e. benzene monocarboxylic acids (BA) and BTC, respectively) and when BTC was normalized to total lignin yields (BTC:Lig). The major trends in BCAs imparted by burning

  2. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.

    Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin

    2017-11-03

    Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.

  3. Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran.

    Hu, Huawen; Xin, John H; Hu, Hong; Wang, Xiaowen; Lu, Xinkun

    2014-06-06

    In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD) was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB) into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  4. Organic Liquids-Responsive β-Cyclodextrin-Functionalized Graphene-Based Fluorescence Probe: Label-Free Selective Detection of Tetrahydrofuran

    Huawen Hu

    2014-06-01

    Full Text Available In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  5. FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS

    Mandell, Avi M.; Mumma, Michael J.; Villanueva, Geronimo [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bast, Jeanette; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Blake, Geoffrey A. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Salyk, Colette, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-10

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C{sub 2}H{sub 2} in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of {approx}500 at 3 {mu}m, revealing multiple emission features of H{sub 2}O, OH, HCN, and C{sub 2}H{sub 2}. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH{sub 4} and NH{sub 3}. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 Degree-Sign , suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).

  6. Detection of organic free radicals in irradiated pepper by electron spin resonance

    Ukai, Mitsuko; Shimoyama, Yuhei

    2002-01-01

    Using electron spin resonance (ESR) spectroscopy, we revealed various free radicals in a Japanese commercially available black pepper before and after γ-irradiation. The representative ESR spectrum of the pepper is composed of a sextet centered at g=2.0, a singlet at the same g-value and a singlet at g=4.0. The first one is attributable to a signal with hyperfine interactions of Mn 2+ ion (7.4 mT). The second one is due to an organic free radical. The third one may be originated from Fe 3+ ion of the non-hem Fe in proteins. A pair of signals appeared in the black pepper after γ-irradiation. The progressive saturation behavior reconfirmed the signal identification for the radicals in the black pepper. (author)

  7. Detecting and quantifying ongoing decay of organic archaeological remains - a discussion of different approaches

    Matthiesen, Henning

    2015-01-01

    are well protected and are not undergoing rapid decay, and it requires a detailed knowledge of decay processes and rates. For instance it is well established that the presence of water is of paramount importance for the preservation of organic material, and there are several examples where archaeological....... Thus, for the management of archaeological sites it is necessary to develop tools and methods that allow us to discover ongoing decay as fast as possible. Furthermore, in order to prioritize between excavation, in situ preservation and mitigation the decay rate should be evaluated on a quantitative...... scale to determine if the archaeological remains can be preserved for centuries, decades or only a few years under different conditions. This is a challenging task as archaeological sites and materials are often heterogeneous and have been subjected to different site formation processes. This paper...

  8. Detection of silver-stained nucleolar organizer regions in the peripheral blood T lymphocytes in nasopharyngeal carcinoma patients

    Li Xianming; Wu Dong; Chen Shanyi; Ren Zheping; Chen Yixin; Wang Xiuqing

    2002-01-01

    Objective: To evaluate the clinical significance of detecting silver-stained nucleolar organizer regions (Ag-NOR) in the peripheral blood T lymphocytes in nasopharyngeal carcinoma (NPC) patients. Methods: Ag-NOR in the peripheral blood T lymphocytes detected in 36 healthy subjects served as control. Those in 73 newly diagnosed but untreated, 11 recurrent (and/or metastatic) and 32 treated NPC patients in follow-up were monitored. The dynamic variations in the level of Ag-NORs in the peripheral blood T lymphocytes in the pre-radiotherapy (pre-RT), during RT and post-RT were evaluated in part of the newly diagnosed patients. Results: The level of Ag-NORs in the peripheral blood T lymphocytes in all groups of NPC patients were significantly lower as compared to the health controls (P 0.05). The level of Ag-NORs during RT significantly decreased as compared to that of pre-RT (P 0.05). Conclusions: Detection of Ag-NORs in the peripheral blood T lymphocytes is of significance in evaluating the outcome, predicting prognosis and even in making the diagnosis and staging for NPC patients

  9. A nanoscale Zr-based fluorescent metal-organic framework for selective and sensitive detection of hydrogen sulfide

    Li, Yanping; Zhang, Xin; Zhang, Ling; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2017-11-01

    Hydrogen sulfide (H2S) has been commonly viewed as a gas signaling molecule in various physiological and pathological processes. However, the highly efficient H2S detection still remains challenging. Herein, we designed a new robust nano metal-organic framework (MOF) UiO-66-CH=CH2 as a fluorescent probe for rapid, sensitive and selective detection of biological H2S. UiO-66-CH=CH2 was prepared by heating ZrCl4 and 2-vinylterephthalic acid via a simple method. UiO-66-CH=CH2 displayed fluorescence quenching to H2S and kept excellent selectivity in the presence of biological relevant analytes especially the cysteine and glutathione. This MOF-based probe also exhibited fast response (10 s) and high sensitivity with a detection limit of 6.46 μM which was within the concentration range of biological H2S in living system. Moreover, this constructed MOF featured water-stability, nanoscale (20-30 nm) and low toxicity, which made it a promising candidate for biological H2S sensing.

  10. Seasonal dynamics of endoparasitic infections at an organic goat farm and the impact of detected infections on milk production.

    Kyriánová, Iveta A; Vadlejch, Jaroslav; Kopecký, Oldřich; Langrová, Iva

    2017-11-01

    This study evaluated patterns and species composition of parasitic infections detected over a 1-year period at an organic goat farm. As a result of coprological examination, the overall prevalence of observed strongylids (99%), coccidia of the genus Eimeria (98%), and Muellerius capillaris lungworms (93%) was calculated. The most prevalent strongylids recovered from incubated fecal samples were Haemonchus contortus (42%), genera Trichostrongylus (23%), Oesophagostomum columbianum (13%), and Teladorsagia circumcincta (11%). A maximum intensity of coccidia infection 5150 oocysts per gram, strongylids infection 9900 eggs per gram and lungworm infection 867.26 larvae per gram were detected. The various effects (including environment, host, and parasites) on milk yield, lactose, protein, and fat were evaluated using generalized linear mixed models. Milk yield (P goat. With the intensity of infection detected in our study, only protein content was affected (P goat itself can substantially decrease protein content but has much less of an effect on fat, milk yield, and lactose. Based on our results, we can conclude that a low intensity of parasitic infections does not significantly affect milk yield and the qualitative parameters of milk.

  11. Detection of pathogenic micro-organisms on children's hands and toys during play.

    Martínez-Bastidas, T; Castro-del Campo, N; Mena, K D; Castro-del Campo, N; León-Félix, J; Gerba, C P; Chaidez, C

    2014-06-01

    This study aimed to determine if the children's leisure activities impact the presence of pathogens on their hands and toys. To assess the microbiological hazard in playground areas, a pilot study that included 12 children was conducted. We then conducted an intervention study; children's hands and toys were washed before playing. Faecal coliforms, pathogenic bacteria and Giardia lamblia were quantified by membrane filtration, selective media and flotation techniques, respectively; rotavirus, hepatitis A and rhinovirus by RT-PCR. Pilot study results revealed faecal contamination on children's hands and toys after playing on sidewalks and in public parks. Pathogenic bacteria, hepatitis A and G. lamblia on children's hands were also found. In the intervention study, Staphylococcus aureus and Klebsiella pneumoniae were found on children's hands at concentrations up to 2·5 × 10(4) and 1 × 10(4) CFU hands(-1), respectively. E. coli and Kl. pneumoniae were detected on toys (2·4 × 10(3) and 2·7 × 10(4) CFU toy(-1), respectively). Salmonella spp, Serratia spp and G. lamblia cysts were also present on toys. Children's play activities influence microbial presence on hands and toys; the transfer seems to occur in both ways. Control strategy needs to be implemented to protect children from infectious diseases. © 2014 The Society for Applied Microbiology.

  12. Risk profile of breast cancer following atypical hyperplasia detected through organized screening.

    Buckley, Elizabeth; Sullivan, Tom; Farshid, Gelareh; Hiller, Janet; Roder, David

    2015-06-01

    Few population-based data are available indicating the breast cancer risk following detection of atypia within a breast screening program. Prospectively collected data from the South Australian screening program were linked with the state cancer registry. Absolute and relative breast cancer risk estimates were calculated for ADH and ALH separately, and by age at diagnosis and time since diagnosis. Post-hoc analysis was undertaken of the effect of family history on breast cancer risk. Women with ADH and ALH had an increase in relative risk for malignancy (ADH HR 2.81 [95% CI 1.72, 4.59] and (ALH HR 4.14 [95% CI 1.97, 8.69], respectively. Differences in risk profile according to time since diagnosis and age at diagnosis were not statistically significant. Estimates of the relative risk of breast cancer are necessary to inform decisions regarding clinical management and/or treatment of women with ADH and ALH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Statistical framework for detection of genetically modified organisms based on Next Generation Sequencing.

    Willems, Sander; Fraiture, Marie-Alice; Deforce, Dieter; De Keersmaecker, Sigrid C J; De Loose, Marc; Ruttink, Tom; Herman, Philippe; Van Nieuwerburgh, Filip; Roosens, Nancy

    2016-02-01

    Because the number and diversity of genetically modified (GM) crops has significantly increased, their analysis based on real-time PCR (qPCR) methods is becoming increasingly complex and laborious. While several pioneers already investigated Next Generation Sequencing (NGS) as an alternative to qPCR, its practical use has not been assessed for routine analysis. In this study a statistical framework was developed to predict the number of NGS reads needed to detect transgene sequences, to prove their integration into the host genome and to identify the specific transgene event in a sample with known composition. This framework was validated by applying it to experimental data from food matrices composed of pure GM rice, processed GM rice (noodles) or a 10% GM/non-GM rice mixture, revealing some influential factors. Finally, feasibility of NGS for routine analysis of GM crops was investigated by applying the framework to samples commonly encountered in routine analysis of GM crops. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Vibrational spectroscopy as a probe to rapidly detect, identify, and characterize micro-organisms

    Sockalingum, Ganesh D.; Lamfarraj, Hasnae; Beljebbar, Abdelilah; Pina, Patrick; Delavenne, Marc; Witthuhn, Fabienne; Allouch, Pierre; Manfait, Michel

    1999-04-01

    Fast and exact identification of a great number of microorganisms is becoming a serious challenge. Differentiation and identification of microorganisms is today mainly achieved by the use of a variety of distinct techniques based on morphological, serological aspects and a set of biochemical test. Vibrational spectroscopic techniques can be complementary and useful methods in this field due to their rapidity, 'fingerprinting' capabilities, and the molecular information that they can provide. Using SERS at Ag colloids, we have conducted pilot studies to rapidly detect and identify bacterial clinical strains. Using a Raman microspectrometer equipped with a He/Ne laser, a first attempt to record SERS spectra was made on colloidal solutions. Spectra were of good quality but not very reproducible due to the movement of the microorganisms. Strains were then put in presence of Ag colloids and direct on-plate analysis was performed. Spectra were more reproducible, with diminished fluorescence, and reveal characteristic cellular-level information. Different growth conditions and colloid preparations have been tested. Pseudomonas aeruginosa and Escherichia coli clinical strains, responsible for nosocomial infections, have been our first test samples. An attempt has also been made to record SERS data from gold colloids in view of future measurement in the near-IR. Spectroscopic data are compared with ATR-FTIR results.

  15. Detection of organic vapors on sputtered and annealed thin Au films

    Kvitek, O.; Kopacek, V.; Reznickova, A.; Svorcik, V.

    2018-03-01

    Unique optical properties of metal nanostructures enable construction of new types of chemical sensors. Nanostructures composed of Au on glass substrate were prepared by annealing of 2-20 nm thick sputtered Au films at 300 °C for 1 h. The annealing leads to transformation of the as sputtered continuous Au layers to a nanoisland structure. The forming nanostructure shows a strong, well defined surface plasmon resonance absorption band in UV-Vis spectrum, which is useful for construction of a chemical sensor. The samples were used to detect vapors of acetone and water in an experimental testing apparatus. The achieved signal-to-noise ratio was 583 and 386 for acetone and water vapors, respectively on the nanostructure prepared from 4 nm thick Au layer. The nanostructured sensitive layers, however, showed poor signal stability; therefore a polymer overlayer was introduced to protect it. The employed polystyrene film prepared by spin-coating improved sensitivity and selectivity of the sensor, while the dynamic properties of the sensing influenced only slightly.

  16. The detection of organic solvent vapor by using polymer coated chemocapacitor sensor

    Rusdiarna Indrapraja, Apik; Rivai, Muhammad; Arifin, Achmad; Purwanto, Djoko

    2017-05-01

    A chemocapacitor consists of planar interdigital electrodes (IDE) made by two comb electrodes on a substrate. A dielectric film was applied on the electrodes in which the absorbed vapor will modify its permittivity. This study has fabricated chemocapacitor with the IDE distance of 0.5 mm, while the dielectric film was a sensitive layer consisting of a polymeric material. The deposition of the polymeric film was accomplished by drop casting. A sensor array consisting of four chemocapacitors coated with different polymers namely PEG-1540, PEG-20M, PEG-6000, and PVP was used to obtain the pattern of shift in the capacitance. The integrated circuit AD7746 was used as the capacitance to-digital converter (CDC). The organic solvents of ethanol, benzene, and aceton were used as the vapor samples in this experiment. The results showed that the change in the capacitance value increases proportionally to the concentration of vapour where sensors coated with PEG-1540 and PVP have higher sensitivity, i.e. 0.0028pF/part per thousand and 0.0027pF/part per thousand, respectively. Based on the capacitance to digital conversion capabilities, the system provides there solution of 0.4084ppm. The sensor array could produce a different pattern for each of the vapor sample. The Neural Network pattern recognition system could identify the type of vapor automatically with the root mean square error of 10-5

  17. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Detection of perturbation phases and developmental stages in organisms from DNA microarray time series data.

    Marianne Rooman

    Full Text Available Available DNA microarray time series that record gene expression along the developmental stages of multicellular eukaryotes, or in unicellular organisms subject to external perturbations such as stress and diauxie, are analyzed. By pairwise comparison of the gene expression profiles on the basis of a translation-invariant and scale-invariant distance measure corresponding to least-rectangle regression, it is shown that peaks in the average distance values are noticeable and are localized around specific time points. These points systematically coincide with the transition points between developmental phases or just follow the external perturbations. This approach can thus be used to identify automatically, from microarray time series alone, the presence of external perturbations or the succession of developmental stages in arbitrary cell systems. Moreover, our results show that there is a striking similarity between the gene expression responses to these a priori very different phenomena. In contrast, the cell cycle does not involve a perturbation-like phase, but rather continuous gene expression remodeling. Similar analyses were conducted using three other standard distance measures, showing that the one we introduced was superior. Based on these findings, we set up an adapted clustering method that uses this distance measure and classifies the genes on the basis of their expression profiles within each developmental stage or between perturbation phases.

  19. Iterative User Interface Design for Automated Sequential Organ Failure Assessment Score Calculator in Sepsis Detection.

    Aakre, Christopher Ansel; Kitson, Jaben E; Li, Man; Herasevich, Vitaly

    2017-05-18

    The new sepsis definition has increased the need for frequent sequential organ failure assessment (SOFA) score recalculation and the clerical burden of information retrieval makes this score ideal for automated calculation. The aim of this study was to (1) estimate the clerical workload of manual SOFA score calculation through a time-motion analysis and (2) describe a user-centered design process for an electronic medical record (EMR) integrated, automated SOFA score calculator with subsequent usability evaluation study. First, we performed a time-motion analysis by recording time-to-task-completion for the manual calculation of 35 baseline and 35 current SOFA scores by 14 internal medicine residents over a 2-month period. Next, we used an agile development process to create a user interface for a previously developed automated SOFA score calculator. The final user interface usability was evaluated by clinician end users with the Computer Systems Usability Questionnaire. The overall mean (standard deviation, SD) time-to-complete manual SOFA score calculation time was 61.6 s (33). Among the 24% (12/50) usability survey respondents, our user-centered user interface design process resulted in >75% favorability of survey items in the domains of system usability, information quality, and interface quality. Early stakeholder engagement in our agile design process resulted in a user interface for an automated SOFA score calculator that reduced clinician workload and met clinicians' needs at the point of care. Emerging interoperable platforms may facilitate dissemination of similarly useful clinical score calculators and decision support algorithms as "apps." A user-centered design process and usability evaluation should be considered during creation of these tools. ©Christopher Ansel Aakre, Jaben E Kitson, Man Li, Vitaly Herasevich. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 18.05.2017.

  20. Detecting signatures of stochastic self-organization in US money and velocity measures

    Serletis, Apostolos; Uritskaya, Olga Y.

    2007-11-01

    In this paper, we continue the research by Serletis [Random walks, breaking trend functions, and the chaotic structure of the velocity of money, J. Bus. Econ. Stat. 13 (1995) 453-458] and Serletis and Shintani [Chaotic monetary dynamics with confidence, J. Macroeconomics 28 (2006) 228-252] by applying the method of detrended fluctuation analysis (DFA)-introduced by Peng et al. [Mosaic organization of DNA nucleotides, Phys. Rev. E 49 (1994) 1685-1689] and adapted to the analysis of long-range correlations in economic data by Uritskaya [Forecasting of magnitude and duration of currency crises based on analysis of distortions of fractal scaling in exchange rate fluctuations, Noise and fluctuations in econophysics and finance, Proc. SPIE 5848 (2005) 17-26; Fractal methods for modeling and forecasting of currency crises, in: Proceedings of the fourth International Conference on Modeling and Analysis of Safety and Risk in Complex Systems, SPbSU Press, St.Petersburg, 2005, pp. 210-215]-to investigate the dynamical structure of United States money and velocity measures. We use monthly data over the time period from 1959:1 to 2006:2, at each of the four levels of monetary aggregation, M1, M2, M3, and MZM, making comparisons among simple-sum, Divisia, and currency equivalent (CE) methods of aggregation. The results suggest that the sum and Divisia monetary aggregates are more appropriate for measuring long-term tendencies in money supply dynamics while the CE aggregates are more sensitive measures of short-term processes in the economy.

  1. Optimization of interferon gamma ELISPOT assay to detect human cytomegalovirus specific T-cell responses in solid organ transplants.

    Abate, Davide; Saldan, Alda; Forner, Gabriella; Tinto, Daniel; Bianchin, Alice; Palù, Giorgio

    2014-02-01

    Assessing the CMV specific CMI in transplant subjects represents a promising strategy to determine the risk of infection on individual basis. In this study 61 adult CMV IgG seropositive solid organ transplant recipients were examined in order to improve the efficacy of CMI detection. For this purpose, pair-wise comparisons were conducted comparing positive control stimuli PWM and PMA/iono and CMV stimuli, pp65 peptide pool and whole CMV particle. Rosette pre-depletion of blood was also investigated for detecting CD4+ or CD8+ T-cell responses using the IFN-g ELISPOT assay. In the time-points 30-180 days after transplantation, PMA/iono produced statistically significant higher responses compared to PWM, probably because PMA/iono activation pathway is independent from the effect of immunosuppressive drugs. The data showed that 11% of transplant patients displayed very low or undetectable responses to pp65 peptide pool antigen while having sustained high responses to whole CMV particle. In addition, in all the subjects analyzed, CMI responses to CMV particle produced a statistically significant higher number of spots compared to pp65 peptide pool antigen. Rosette pre-depletion of whole blood proved to be effective in detecting CD4+ or CD8+ T-cell responses similarly to flow cytometry. Taken together, the following recommendations are suggested to optimize the CMV-ELISPOT for transplantation settings: (1) use PMA/iono as positive control; (2) whole virus particle should be used to avoid peptide-related false negative responses; (3) a rosette pre-depletion step may be useful to detect CD4+ or CD8+ T-cell responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Detection of HLA Antibodies in Organ Transplant Recipients – Triumphs and Challenges of the Solid Phase Bead Assay

    Tait, Brian D.

    2016-01-01

    This review outlines the development of human leukocyte antigen (HLA) antibody detection assays and their use in organ transplantation in both antibody screening and crossmatching. The development of sensitive solid phase assays such as the enzyme-linked immunosorbent assay technique, and in particular the bead-based technology has revolutionized this field over the last 10–15 years. This revolution however has created a new paradigm in clinical decision making with respect to the detection of low level pretransplant HLA sensitization and its clinical relevance. The relative sensitivities of the assays used are discussed and the relevance of conflicting inter-assay results. Each assay has its advantages and disadvantages and these are discussed. Over the last decade, the bead-based assay utilizing the Luminex® fluorocytometer instrument has become established as the “gold standard” for HLA antibody testing. However, there are still unresolved issues surrounding this technique, such as the presence of denatured HLA molecules on the beads which reveal cryptic epitopes and the issue of appropriate fluorescence cut off values for positivity. The assay has been modified to detect complement binding (CB) in addition to non-complement binding (NCB) HLA antibodies although the clinical relevance of the CB and NCB IgG isotypes is not fully resolved. The increase sensitivity of the Luminex® bead assay over the complement-dependent cytotoxicity crossmatch has permitted the concept of the “virtual crossmatch” whereby the crossmatch is predicted to a high degree of accuracy based on the HLA antibody specificities detected by the solid phase assay. Dialog between clinicians and laboratory staff on an individual patient basis is essential for correct clinical decision making based on HLA antibody results obtained by the various techniques. PMID:28018342

  3. First Detection of Water Ice and Organics on an Asteroid: A Possible Link to the Origin of Earth's Water

    Hargrove, Kelsey D.; Campins, H.; Pinilla-Alonso, N.; Howell, E. S.; Kelley, M. S.; Licandro, J.; Mothédiniz, T.; Fernández, Y.; Ziffer, J.

    2010-05-01

    We report the detection of water ice and organics on the surface of asteroid 24 Themis. Our rotationally-resolved infrared (2-4 µm) spectra of this asteroid indicate that the ice and organics are widespread on its surface. The spectral difference with other asteroids observed in the same manner, makes 24 Themis unique so far. Our identification of water ice and organic compounds on this asteroid agrees with independent results (Rivkin and Emery 2010). At first glance, the presence of any surface ice on 24 Themis, particularly over a significant fraction of its surface, is puzzling because of the instability for exposed water ice at Themis's heliocentric distance ( 3.2 AU). Nevertheless, there are several possible sources for this unstable ice and identifying them is likely to be diagnostic of other processes on primitive asteroids. The presence of water ice on 24 Themis supports the idea that ice sublimation drives the cometary activity in two small members of the Themis dynamical family, labeled "Main Belt comets” by Hsieh and Jewitt (2006). It also helps to address other relevant questions, such as, how abundant is water ice in the outer asteroid belt and where was the "snow” line when the solar system formed? The answers to these questions could transform current views of primitive asteroids, delivery of water and organic molecules to Earth, and models of Solar System formation. This research was published in the April 29, 2010 issue of the journal Nature. Hargrove and Campins are visiting astronomers at the Infrared Telescope Facility (IRTF), which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration

  4. A Novel Method for Detection of Phosphorylation in Single Cells by Surface Enhanced Raman Scattering (SERS) using Composite Organic-Inorganic Nanoparticles (COINs)

    Shachaf, Catherine M.; Elchuri, Sailaja V.; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N.; Mitchell, Dennis J.; Zhang, Jingwu; Swartz, Kenneth B.; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P.

    2009-01-01

    Background Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. Methodology/Principal Findings To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using ?Composite Organic-Inorganic Nanoparticles? (COINs) Raman nanoparticles. COINs are Surface-Enhan...

  5. A luminescent Cd(II)-based metal-organic framework for detection of Fe(III) ions in aqueous solution

    Li, Fen-Fang; Zhu, Miao-Li; Lu, Li-Ping

    2018-05-01

    A novel Cd((II)-organic framework [Cd(Hcbic)]n (H3cbic = 1-(4-carboxybenz-yl)-1H-benzoim-idazole-5, 6-dicarboxylic acid) was assembled and characterized by X-ray single crystal analysis. The Cd-MOF features one-dimensional left and right-handed double helical chains with screw-pitch of about 4.727 Å and the 4-methyl benzoic acid groups of Hcbic2- ligands in MOF-1 play many ribbons distributing in the two sides of the 2D networks. It is found that MOF-1 shows high selectivity (KSV = 1.8 × 105 L / mol) for Fe3+ ions in water solution with luminescent quenching because of the existence of uncoordinated carboxyl groups within open frameworks, which indicates that MOF-1 is a simple and reliable detection sensing reagent for Fe3+ in practical applications.

  6. A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives

    Hu, Xiao-Li; Wang, Xin-Long; Su, Zhong-Min

    2018-02-01

    A novel Zn-MOF (metal organic framework) [Zn3(NTB)2(DMA)2]·12DMA (NTB = 4,4‧,4″-nitrilotrisbenzoic acid; DMA = N,N-dimethylacetamide) (1) was obtained under solvothermal condition. The resulted MOF which is based on {Zn3} SBU displays an interesting (3,6)-connected three-dimensional net with nanosized, hexagonal channels. Additionally, 1 can be a useful fluorescent indicator for the detection of nitroaromatic explosives qualitatively and quantitatively via a strong quenching effect, especially for picric acid (PA). With increasing - NO2 groups, energy transfer from the electron-donating framework to high electron deficiency becomes more, making the effect of fluorescence quenching more obvious. The result demonstrates that the photo-induced electron transfer (PET) is responsible for the emission quenching.

  7. A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition

    Li, Haiwei; Feng, Xiao; Guo, Yuexin; Chen, Didi; Li, Rui; Ren, Xiaoqian; Jiang, Xin; Dong, Yuping; Wang, Bo

    2014-03-01

    A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.

  8. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.

  9. Fluorescent metal-organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution.

    Yang, Cheng-Xiong; Ren, Hu-Bo; Yan, Xiu-Ping

    2013-08-06

    Fluorescent metal-organic frameworks (MOFs) have received great attention in sensing application. Here, we report the exploration of fluorescent MIL-53(Al) for highly selective and sensitive detection of Fe(3+) in aqueous solution. The cation exchange between Fe(3+) and the framework metal ion Al(3+) in MIL-53(Al) led to the quenching of the fluorescence of MIL-53(Al) due to the transformation of strong-fluorescent MIL-53(Al) to weak-fluorescent MIL-53(Fe), allowing highly selective and sensitive detection of Fe(3+) in aqueous solution with a linear range of 3-200 μM and a detection limit of 0.9 μM. No interferences from 0.8 M Na(+); 0.35 M K(+); 11 mM Cu(2+); 10 mM Ni(2+); 6 mM Ca(2+), Pb(2+), and Al(3+); 5.5 mM Mn(2+); 5 mM Co(2+) and Cr(3+); 4 mM Hg(2+), Cd(2+), Zn(2+), and Mg(2+); 3 mM Fe(2+); 0.8 M Cl(-); 60 mM NO2(-) and NO3(-); 10 mM HPO4(2-), H2PO4(-), SO3(2-), SO4(2-), and HCOO(-); 8 mM CO3(2-), HCO3(-), and C2O4(2-); and 5 mM CH3COO(-) were found for the detection of 150 μM Fe(3+). The possible mechanism for the quenching effect of Fe(3+) on the fluorescence of MIL-53(Al) was elucidated by inductively coupled plasma-mass spectrometry, X-ray diffraction spectrometry, and Fourier transform infrared spectrometry. The specific cation exchange behavior between Fe(3+) and the framework Al(3+) along with the excellent stability of MIL-53(Al) allows highly selective and sensitive detection of Fe(3+) in aqueous solution. The developed method was applied to the determination of Fe(3+) in human urine samples with the quantitative spike recoveries from 98.2% to 106.2%.

  10. Detection of Simian Immunodeficiency Virus in Semen, Urethra, and Male Reproductive Organs during Efficient Highly Active Antiretroviral Therapy

    Matusali, G.; Dereuddre-Bosquet, N.; Le Tortorec, A.; Moreau, M.; Satie, A.-P.; Mahé, D.; Roumaud, P.; Bourry, O.; Sylla, N.; Bernard-Stoecklin, S.; Pruvost, A.; Le Grand, R.

    2015-01-01

    ABSTRACT A number of men receiving prolonged suppressive highly active antiretroviral therapy (HAART) still shed human immunodeficiency virus (HIV) in semen. To investigate whether this seminal shedding may be due to poor drug penetration and/or viral production by long-lived cells within male genital tissues, we analyzed semen and reproductive tissues from macaques chronically infected with simian immunodeficiency virus mac251 (SIVmac251) who were treated for 4 months with HAART, which was intensified over the last 7 weeks with an integrase inhibitor. We showed that a subset of treated animals continued shedding SIV in semen despite efficient HAART. This shedding was not associated with low antiretroviral drug concentrations in semen or in testis, epididymis, seminal vesicles, and prostate. HAART had no significant impact on SIV RNA in the urethra, whereas it drastically reduced SIV RNA levels in the prostate and vas deferens and to a lesser extent in the epididymis and seminal vesicle. The only detectable SIV RNA-positive cells within the male genital tract after HAART were urethral macrophages. SIV DNA levels in genital tissues were not decreased by HAART, suggesting the presence throughout the male genital tract of nonproductively infected cells. In conclusion, our results demonstrate that 4 months of HAART induced variable and limited control of viral infection in the male reproductive organs, particularly in the urethra, and suggest that infected long-lived cells in the male genital tract may be involved in persistent seminal shedding during HAART. These results pave the way for further investigations of male genital organ infection in long-term-treated infected individuals. IMPORTANCE A substantial subset of men receiving prolonged HAART suppressing viral loads in the blood still harbor HIV in semen, and cases of sexual transmission have been reported. To understand the origin of this persistence, we analyzed the semen and male reproductive tissues from SIV

  11. Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element

    Elkington, D., E-mail: Daniel.Elkington@newcastle.edu.au; Wasson, M.; Belcher, W.; Dastoor, P. C.; Zhou, X. [Centre for Organic Electronics, The University of Newcastle, Callaghan 2308 (Australia)

    2015-06-29

    The effect of device architecture upon the response of printable enzymatic glucose sensors based on poly(3-hexythiophene) (P3HT) organic thin film transistors is presented. The change in drain current is used as the basis for glucose detection and we show that significant improvements in drain current response time can be achieved by modifying the design of the sensor structure. In particular, we show that eliminating the dielectric layer and reducing the thickness of the active layer reduce the device response time considerably. The results are in good agreement with a diffusion based model of device operation, where an initial rapid dedoping process is followed by a slower doping of the P3HT layer from protons that are enzymatically generated by glucose oxidase (GOX) at the Nafion gate electrode. The fitted diffusion data are consistent with a P3HT doping region that is close to the source-drain electrodes rather than located at the P3HT:[Nafion:GOX] interface. Finally, we demonstrate that further improvements in sensor structure and morphology can be achieved by inkjet-printing the GOX layer, offering a pathway to low-cost printed biosensors for the detection of glucose in saliva.

  12. Snowflake-Shaped ZnO Nanostructures-Based Gas Sensor for Sensitive Detection of Volatile Organic Compounds

    Tianli Han

    2017-01-01

    Full Text Available Volatile organic compounds (VOCs have been considered severe risks to human health. Gas sensors for the sensitive detection of VOCs are highly required. However, the preparation of gas-sensing materials with a high gas diffusion performance remains a great challenge. Here, through a simple hydrothermal method accompanied with a subsequent thermal treatment, a special porous snowflake-shaped ZnO nanostructure was presented for sensitive detection of VOCs including diethyl ether, methylbenzene, and ethanol. The fabricated gas sensors exhibit a good sensing performance including high responses to VOCs and a short response/recovery time. The responses of the ZnO-based gas sensor to 100 ppm ethanol, methylbenzene, and diethyl ether are about 27, 21, and 11, respectively, while the response times to diethyl ether and methylbenzene are less than 10 seconds. The gas adsorption-desorption kinetics is also investigated, which shows that the gas-sensing behaviors to different target gases are remarkably different, making it possible for target recognition in practical applications.

  13. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  14. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis

    Itoh, Toshio; Akamatsu, Takafumi; Tsuruta, Akihiro; Shin, Woosuck

    2017-01-01

    We investigated selective detection of the target volatile organic compounds (VOCs) nonanal, n-decane, and acetoin for lung cancer-related VOCs, and acetone and methyl i-butyl ketone for diabetes-related VOCs, in humid air with simulated VOC contamination (total concentration: 300 μg/m3). We used six “grain boundary-response type” sensors, including four commercially available sensors (TGS 2600, 2610, 2610, and 2620) and two Pt, Pd, and Au-loaded SnO2 sensors (Pt, Pd, Au/SnO2), and two “bulk-response type” sensors, including Zr-doped CeO2 (CeZr10), i.e., eight sensors in total. We then analyzed their sensor signals using principal component analysis (PCA). Although the six “grain boundary-response type” sensors were found to be insufficient for selective detection of the target gases in humid air, the addition of two “bulk-response type” sensors improved the selectivity, even with simulated VOC contamination. To further improve the discrimination, we selected appropriate sensors from the eight sensors based on the PCA results. The selectivity to each target gas was maintained and was not affected by contamination. PMID:28753948

  15. Detection of explosives in traces by laser induced breakdown spectroscopy: Differences from organic interferents and conditions for a correct classification

    Lazic, V.; Palucci, A.; Jovicevic, S.; Carpanese, M.

    2011-01-01

    With the aim to study and to improve LIBS capability for detecting residues of energetic compounds in air surrounding, nine types of explosives and some potential interferents, placed in small quantities on a metallic support, were interrogated by a laser. Shot-to-shot behavior of the line intensities relative to the sample constituents was studied. The detected plasma was not stoichiometric and the line intensities, as well as their ratios, were changing even for an order of magnitude from one sampling point to another, particularly in the case of aromatic compounds. We explained some sources of such LIBS signal's behavior and this allowed us to establish a data processing procedure, which leads to a good linearization among the data sets. In this way, it was possible to determine some real differences between the LIBS spectra from explosives and interferents, and to correlate them with molecular formulas, with some known pathways for the molecule's decomposition and with successive chemical reactions in the plasma. Number spectral parameters, which distinguish the each studied explosive from other organic materials, were also determined and compared with previously published results relative to percentages of correct classifications for the same explosives. Experimental conditions for reliable recognition of the explosives by LIBS in air are also suggested, together with the parameters that should be considered or discarded from the classification procedure.

  16. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.

    Guven, Burcu; Boyacı, İsmail Hakkı; Tamer, Ugur; Çalık, Pınar

    2012-01-07

    In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner. This journal is © The Royal Society of Chemistry 2012

  17. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    Jae-Sung Lee

    2014-07-01

    Full Text Available We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone. To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt’s dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylaminocinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.

  18. Integrating Flexible Sensor and Virtual Self-Organizing DC Grid Model With Cloud Computing for Blood Leakage Detection During Hemodialysis.

    Huang, Ping-Tzan; Jong, Tai-Lang; Li, Chien-Ming; Chen, Wei-Ling; Lin, Chia-Hung

    2017-08-01

    Blood leakage and blood loss are serious complications during hemodialysis. From the hemodialysis survey reports, these life-threatening events occur to attract nephrology nurses and patients themselves. When the venous needle and blood line are disconnected, it takes only a few minutes for an adult patient to lose over 40% of his / her blood, which is a sufficient amount of blood loss to cause the patient to die. Therefore, we propose integrating a flexible sensor and self-organizing algorithm to design a cloud computing-based warning device for blood leakage detection. The flexible sensor is fabricated via a screen-printing technique using metallic materials on a soft substrate in an array configuration. The self-organizing algorithm constructs a virtual direct current grid-based alarm unit in an embedded system. This warning device is employed to identify blood leakage levels via a wireless network and cloud computing. It has been validated experimentally, and the experimental results suggest specifications for its commercial designs. The proposed model can also be implemented in an embedded system.

  19. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone?

    Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R.; Steele, A.; Franz, H.; Archer, D.; Brinkerhoff, W.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest (RN), revealed chlorinated hydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. Chlorobenzene (CBZ) was also identified by SAM GCMS at RN at trace levels (approx.0.007 nmol) and was attributed to the reaction of chlorine with the Tenax polymers used in the hydrocarbon traps. After the RN analyses, Curiosity traveled to Yellowknife Bay and drilled two separate holes designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. In addition, higher abundances and a more diverse suite of chlorinated hydrocarbons in CB compared to RN suggests that martian or meteoritic organic sources may be preserved in the mudstone. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.

  20. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle A.; Raymond, Peter A.; Butler, Kenna D.; Dornblaser, Mark M.; Heckman, Katherine

    2014-11-01

    Recent warming at high latitudes has accelerated permafrost thaw, which can modify soil carbon dynamics and watershed hydrology. The flux and composition of dissolved organic matter (DOM) from soils to rivers are sensitive to permafrost configuration and its impact on subsurface hydrology and groundwater discharge. Here, we evaluate the utility of DOM composition and age as a tool for detecting permafrost thaw in three rivers (Beaver, Birch, and Hess Creeks) within the discontinuous permafrost zone of interior Alaska. We observed strong temporal controls on Δ14C content of hydrophobic acid isolates (Δ14C-HPOA) across all rivers, with the most enriched values occurring during spring snowmelt (75 ± 8‰) and most depleted during winter flow (-21 ± 8‰). Radiocarbon ages of winter flow samples ranged from 35 to 445 yr BP, closely tracking estimated median base flow travel times for this region (335 years). During spring snowmelt, young DOM was composed of highly aromatic, high molecular-weight compounds, whereas older DOM of winter flow had lower aromaticity and molecular weight. We observed a significant correlation between Δ14C-HPOA and UV absorbance coefficient at 254 nm (α254) across all study rivers. Using α254 as an optical indicator for Δ14C-HPOA, we also observed a long-term decline in α254 during maximum annual thaw depth over the last decade at the Hess Creek study site. These findings suggest a shift in watershed hydrology associated with increasing active layer thickness. Further development of DOM optical indicators may serve as a novel and inexpensive tool for detecting permafrost degradation in northern watersheds.

  1. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes †

    Lee, Kyu-Ho; Ruby, Edward G.

    1992-01-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both luminous and non-visibly luminous V. fischeri colonies by DNA-DNA hybridization. The probes were specific, hybridizing at least 50 to 100 times more strongly to immobilized DNAs from V. fischeri strains than to those of pure cultures of other related species. Thus, even non-visibly luminous V. fischeri colonies could be identified among colonies obtained from natural seawater samples by their probe-positive reaction. Bacteria in seawater samples, obtained either within or distant from squid habitats, were collected on membrane filters and incubated until colonies appeared. The filters were then observed for visibly luminous V. fischeri colonies and hybridized with the lux gene probes to determine the number of total V. fischeri colonies (both luminous and non-visibly luminous). We detected no significant differences in the abundance of luminous V. fischeri CFU in any of the water samples observed (≤1 to 3 CFU/100 ml). However, probe-positive colonies of V. fischeri (up to 900 CFU/100 ml) were found only in seawater collected from within the natural habitats of the squids. A number of criteria were used to confirm that these probe-positive strains were indistinguishable from symbiotic V. fischeri. Therefore, the luxA and luxR gene probes were species specific and gave a reliable estimate of the number of culturable V. fischeri colonies in natural water samples. Images PMID:16348678

  2. Thermochemolysis: A New Sample Preparation Approach for the Detection of Organic Components of Complex Macromolecules in Mars Rocks via Gas Chromatography Mass Spectrometry in SAM on MSL

    Eugenbrode, J.; Glavin, D.; Dworkin, J.; Conrad, P.; Mahaffy, P.

    2011-01-01

    Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature.

  3. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    bacteria was clearly distinct from similar GC/MS analyses of the carbonaceous meteorite Murchison that was dominated by sulfur containing aromatic compounds. A similar comparison, if organic compounds are detected by SAM on Mars, could be useful to help discriminate between meteoritic or biological origins.

  4. Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode.

    Liu, Rong; Ishimatsu, Ryoichi; Yahiro, Masayuki; Adachi, Chihaya; Nakano, Koji; Imato, Toshihiko

    2015-01-01

    A compact photometric detector was constructed from an organic light emitting diode (OLED) based on a europium complex, europium(diben-zoylmethanato)3(bathophenanthroline) (Eu(DBM)3bath), as the light source and an organic photodiode (OPD) fabricated from a hetero-junction of two layers of copper phthalocyanine (CuPc)/fullerene (C60) as the photo-detector on a microchip prepared from poly(dimethylsiloxan) (PDMS) and was applied to the determination of phosphate. The OLED and the OPD were fabricated by a vapor deposition method on an indium tin oxide (ITO) coated glass substrate with the following layered structure; Glass (0.7 mm)/ITO (110 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl amino]-biphenyl (α-NPD) (30 nm)/4,4'-di(N-carbazolyl)biphenyl (CBP): Eu(3+) (8 wt%, 30 nm)/bathocuproine (BCP) (30 nm)/aluminum tris(8-hydroxyquinoline) (Alq3) (25 nm)/magnesium and silver (MgAg) (100 nm)/Ag (10nm) and Glass (0.7 mm)/ITO (110 nm)/CuPc (35 nm)/C60 (50 nm)/BCP (10 nm)/Ag (50 nm), respectively. The OLED based on the europium complex emitted a sharp light at the wavelength of 612 nm with a full width at half maximum (FWHM) of 8 nm. The performance of the photometric detector assembled was evaluated based on measurements of the absorbance of different concentrations of malachite green (MG) solutions for a batch system with 1cm long path length. The molar absorptive coefficient of the MG solution, calculated from the photocurrent of the OPD, was in good agreement with the value reported in the literature. A microchip with two inlets and one outlet U-shaped channel was prepared by a conventional photolithograph method. The OLED and the OPD were configured so as to face each other through the PDMS microchip in parallel in order to align the light axis of the OLED and the OPD with the flow cell (optical path length of 5mm), which was located at the end of outlet. For the determination of phosphate, an ion-association reaction between MG and a molybdenum-phosphate complex was utilized

  5. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-01-01

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  6. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection.

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-06-28

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  7. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection

    Peng, Yongwu

    2017-06-03

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  8. 3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation

    Chen, Jianjun; Su, Huilan; You, Xueling; Gao, Jing; Lau, Woon Ming; Zhang, Di

    2014-01-01

    Graphical abstract: - Highlights: • Contrive a multifunctional SERS substrate with 3D sub-micrometer structure and multicomponent. • The blue wing of butterfly (Euploea mulciber) is used as template for Ag/TiO 2 nanocomposites. • The 3D submicrostructures Ag/TiO 2 presents superior SERS effect and photocatalytic activity. • Pave a facile route to prepare multifunctional material by utilizing smart structural designs in nature. - Abstract: The blue wing of butterfly Euploea mulciber is used as a template to generate Ag/TiO 2 nanocomposites. Thereinto, Ag nanoparticles are deposited uniformly onto TiO 2 substrate with three dimensional (3D) submicrometer structures. This unique 3D sub-micrometer structures featured with ridges, ribs and struts can provide a large number of active “hot spots” for enhanced Raman signal. Meanwhile, depositing Ag onto the TiO 2 surface can greatly boost its SERS effect and photocatalytic activity by bringing additional electrons into the molecules and inhibiting electrons–holes recombination. Thus, the as-prepared 3D Ag/TiO 2 submicrostructures can not only offer sensitive and reproducible SERS signals, but also present superior photocatalytic activity, which can be utilized to detect and eliminate organic pollutants

  9. Effective Enrichment and Detection of Trace Polycyclic Aromatic Hydrocarbons in Food Samples based on Magnetic Covalent Organic Framework Hybrid Microspheres.

    Li, Ning; Wu, Di; Hu, Na; Fan, Guangsen; Li, Xiuting; Sun, Jing; Chen, Xuefeng; Suo, Yourui; Li, Guoliang; Wu, Yongning

    2018-04-04

    The present study reported a facile, sensitive, and efficient method for enrichment and determination of trace polycyclic aromatic hydrocarbons (PAHs) in food samples by employing new core-shell nanostructure magnetic covalent organic framework hybrid microspheres (Fe 3 O 4 @COF-(TpBD)) as the sorbent followed by HPLC-DAD. Under mild synthetic conditions, the Fe 3 O 4 @COF-(TpBD) were prepared with the retention of colloidal nanosize, larger specific surface area, higher porosity, uniform morphology, and supermagnetism. The as-prepared materials showed an excellent adsorption ability for PAHs, and the enrichment efficiency of the Fe 3 O 4 @COF-(TpBD) could reach 99.95%. The obtained materials also had fast adsorption kinetics and realized adsorption equilibrium within 12 min. The eluent was further analyzed by HPLC-DAD, and good linearity was observed in the range of 1-100 ng/mL with the linear correlation being above 0.9990. The limits of detection (S/N = 3) and limits of quantitation (S/N = 10) for 15 PAHs were in the range of 0.83-11.7 ng/L and 2.76-39.0 ng/L, respectively. For the application, the obtained materials were employed for the enrichment of trace PAHs in food samples and exhibited superior enrichment capacity and excellent applicability.

  10. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China

    Sun, Mingming; Ye, Mao; Wu, Jun; Feng, Yanfang; Wan, Jinzhong; Tian, Da; Shen, Fangyuan; Liu, Kuan; Hu, Feng; Li, Huixin; Jiang, Xin; Yang, Linzhang; Kengara, Fredrick Orori

    2015-01-01

    Co-contaminated soils by organic pollutants (OPs), antibiotics and antibiotic resistance genes (ARGs) have been becoming an emerging problem. However, it is unclear if an interaction exists between mixed pollutants and ARG abundance. Therefore, the potential relationship between OP contents and ARG and class 1 integron-integrase gene (intI1) abundance was investigated from seven dairy farms in Nanjing, Eastern China. Phenanthrene, pentachlorophenol, sulfadiazine, roxithromycin, associated ARG genes, and intI1 had the highest detection frequencies. Correlation analysis suggested a stronger positive relationship between the ARG abundance and the bioaccessible OP content than the total OP content. Additionally, the significant correlation between the bioaccessible mixed pollutant contents and ARG/intI1 abundance suggested a direct/indirect impact of the bioaccessible mixed pollutants on soil ARG dissemination. This study provided a preliminary understanding of the interaction between mixed pollutants and ARGs in co-contaminated soils. - Highlights: • Coexistence of OPs, antibiotics, and ARGs in dairy farm soils was ubiquitous. • Bioaccessible pollutants exhibited positive correlation with ARG abundance. • ARGs significantly correlated with intI1. • Bioaccessible pollutants demonstrated strong correlation with intI1. • The intI1 gene might serve as a potential proxy for mixed pollution. - Coexistence of mixed OPs and ARGs in dairy farm soils was ubiquitous; a positive correlation can be found between the bioaccessible OP fractions and ARG/intI1 abundance.

  11. Bacteriological detection of Salmonella in the presence of competitive micro-organisms (A collaborative study amongst the National Reference Laboratories for Salmonella)

    Voogt N; Veld PH in 't; Nagelkerke N; Henken AM; MGB

    1997-01-01

    A second bacteriological collaborative study in which the National Reference Laboratories (NRLs) for Salmonella participated was organized by the Community Reference Laboratory for Salmonella. The main objective of this study was to evaluate differences in results between the NRLs of detection of

  12. Detection of organ movement in cervix cancer patients using a fluoroscopic electronic portal imaging device and radiopaque markers

    Kaatee, Robert S.J.P.; Olofsen, Manouk J.J.; Verstraate, Marjolein B.J.; Quint, Sandra; Heijmen, Ben J.M.

    2002-01-01

    Purpose: To investigate the use of a fluoroscopic electronic portal imaging device (EPID) and radiopaque markers to detect internal cervix movement. Methods and Materials: For 10 patients with radiopaque markers clamped to the cervix, electronic portal images were made during external beam irradiation. Bony structures and markers in the portal images were registered with the same structures in the corresponding digitally reconstructed radiographs of the planning computed tomogram. Results: The visibility of the markers in the portal images was good, but their fixation should be improved. Generally, the correlation between bony structure displacements and marker movement was poor, the latter being substantially larger. The standard deviations describing the systematic and random bony anatomy displacements were 1.2 and 2.6 mm, 1.7 and 2.9 mm, and 1.6 and 2.7 mm in the lateral, cranial-caudal, and dorsal-ventral directions, respectively. For the marker movement those values were 3.4 and 3.4 mm, 4.3 and 5.2 mm, 3.2 and 5.2 mm, respectively. Estimated clinical target volume to planning target volume (CTV-PTV) planning margins (∼11 mm) based on the observed overall marker displacements (bony anatomy + internal cervix movement) are only marginally larger than the margins required to account for internal marker movement alone. Conclusions: With our current patient setup techniques and methods of setup verification and correction, the required CTV-PTV margins are almost fully determined by internal organ motion. Setup verification and correction using radiopaque markers might allow decreasing those margins, but technical improvements are needed

  13. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue.

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-05

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. [The advantages of early midtrimester targeted fetal systematic organ screening for the detection of fetal anomalies--will a global change start in Israel?].

    Bronshtein, Moshe; Solt, Ido; Blumenfeld, Zeev

    2014-06-01

    Despite more than three decades of universal popularity of fetal sonography as an integral part of pregnancy evaluation, there is still no unequivocal agreement regarding the optimal dating of fetal sonographic screening and the type of ultrasound (transvaginal vs abdominal). TransvaginaL systematic sonography at 14-17 weeks for fetal organ screening. The evaluation of over 72.000 early (14-17 weeks) and late (18-24 weeks) fetal ultrasonographic systematic organ screenings revealed that 96% of the malformations are detectable in the early screening with an incidence of 1:50 gestations. Only 4% of the fetal anomalies are diagnosed later in pregnancy. Over 99% of the fetal cardiac anomalies are detectable in the early screening and most of them appear in low risk gestations. Therefore, we suggest a new platform of fetal sonographic evaluation and follow-up: The extensive systematic fetal organ screening should be performed by an expert sonographer who has been trained in the detection of fetal malformations, at 14-17 weeks gestation. This examination should also include fetal cardiac echography Three additional ultrasound examinations are suggested during pregnancy: the first, performed by the patient's obstetrician at 6-7 weeks for the exclusion of ectopic pregnancy, confirmation of fetal viability, dating, assessment of chorionicity in multiple gestations, and visualization of maternal adnexae. The other two, at 22-26 and 32-34 weeks, require less training and should be performed by an obstetrician who has been qualified in the sonographic detection of fetal anomalies. The advantages of early midtrimester targeted fetal systematic organ screening for the detection of fetal anomalies may dictate a global change.

  15. Karyometry detects subvisual differences in chromatin organization state between cribriform and flat high-grade prostatic intraepithelial neoplasia.

    Montironi, Rodolfo; Thompson, Deborah; Scarpelli, Marina; Mazzucchelli, Roberta; Peketi, Prasanthi; Hamilton, Peter W; Bostwick, David G; Bartels, Peter H

    2004-08-01

    This digital texture analysis-based study evaluates the chromatin organization state in flat and cribriform high-grade prostatic intraepithelial neoplasia (PIN), in the adjacent normal looking secretory epithelium and in the co-occurring adenocarcinoma. Digital texture analysis (karyometry) was carried out on hematoxylin and eosin-stained sections from 24 radical prostatectomy specimens with high-grade PIN (12 with flat and 12 with cribriform architectural pattern, respectively) and cancer. Quantification was also conducted on the normal looking secretory epithelium. Discriminant analysis and the nonsupervised learning algorithm P-index were used to identify suitable subsets of features useful for the discrimination and classification of pathological groups and to explore multivariate data structure in the pathological subgroups. The average nuclear abnormality increases monotonically from the histologically normal appearing secretory epithelium to high-grade PIN and to adenocarcinoma. The nuclei from the so-called perimeter compartment of the flat high-grade PIN lesions show a higher nuclear abnormality compared to the nuclei of the cribriform high-grade PINs. Discriminant analysis shows that flat and cribriform high-grade PINs fall into two populations. Processing by the nonsupervised learning algorithm P-index revealed the existence of three well-defined, distinct subpopulations of nuclei of different chromatin phenotype. In the flat high-grade PIN lesions the proportions of nuclei in the three subpopulations are 16.5% (low abnormality), 25.0% (mid abnormality) and 58.5% (high abnormality), respectively. In the cribriform high-grade PIN lesions, 100% of the nuclei are in the mid-abnormality subpopulation. These differences are also discernible in the co-occurring adenocarcinoma and the histologically normal appearing secretory epithelium. To conclude, karyometry and statistical analysis detect the existence of distinct cell subpopulations of different chromatin

  16. Detection of Histoplasma capsulatum in Organic Fertilizers by Hc100 Nested Polymerase Chain Reaction and Its Correlation with the Physicochemical and Microbiological Characteristics of the Samples.

    Gómez, Luisa F; Torres, Isaura P; Jiménez-A, María Del Pilar; McEwen, Juan Gmo; de Bedout, Catalina; Peláez, Carlos A; Acevedo, José M; Taylor, María L; Arango, Myrtha

    2018-05-01

    Histoplasma capsulatum is the causative agent of histoplasmosis and this fungus inhabits soils rich in phosphorus and nitrogen that are enriched with bird and bat manure. The replacement of organic matter in agroecosystems is necessary in the tropics, and the use of organic fertilizers has increased. Cases and outbreaks due to the presence of the fungus in these components have been reported. The Instituto Colombiano Agropecuario resolution 150 of 2003 contains the parameters set by the Colombian Technical Standard (NTC 5167) on the physicochemical and microbiological features of fertilizers, but it does not regulate the search for H. capsulatum . The aim of this study was to demonstrate H. capsulatum presence in organic fertilizers by nested polymerase chain reaction (PCR). A total of 239 samples were collected: 201 (84.1%) corresponded to organic fertilizers, 30 (12.5%) to bird excrement, and 8 (3.4%) to cave soils. The Hc100 nested PCR had a detection limit of 0.1 pg/µL and a specificity of 100%. A total of 25 (10.5%) samples were positive and validated by sequencing. Seven of the positive samples represented locations where H. capsulatum was previously detected, suggesting the persistence of the fungus. No significant correlations were detected between the physicochemical and microbiological parameters with the presence of H. capsulatum by nested PCR, indicating the fungus existence in organic fertilizers that complied with the NTC 5167. The Hc100 nested PCR targeting H. capsulatum standardized in this work will improve the evaluation of organic fertilizers and ensure the prevention of outbreaks and cases due to manufacturing, marketing, and use of fertilizers contaminated with H. capsulatum .

  17. Gas chromatography of organic microcontaminants using atomic emission and mass spectrometric detection combined in one instrument (GC-AED/MS)

    Mol, H.G.J.; Hankemeier, T.; Brinkman, U.A.T.

    1999-01-01

    This study describes the coupling of an atomic-emission detector and mass-spectrometric detector to a single gas chromatograph. Splitting of the column effluent enables simultaneous detection by atomic-emission detection (AED) and mass spectrometry (MS) and yields a powerful system for the target

  18. Detection of organic compound signatures in infra-red, limb emission spectra observed by the MIPAS-B2 balloon instrument

    J. J. Remedios

    2007-01-01

    Full Text Available Organic compounds play a central role in troposphere chemistry and increasingly are a viable target for remote sensing observations. In this paper, infra-red spectral features of three organic compounds are investigated in thermal emission spectra recorded on a flight on 8 May 1998 near Aire sur l'Adour by a balloon-borne instrument, MIPAS-B2, operating at high spectral resolution. It is demonstrated, for the first time, that PAN and acetone can be detected in infra-red remote sensing spectra of the upper troposphere; detection results are presented at tangent altitudes of 10.4 km and 7.5 km (not acetone. In addition, the results provide the first observation of spectral features of formic acid in thermal emission, as opposed to solar occultation, and confirm that concentrations of this gas are measurable in the mid-latitude upper troposphere, given accurate spectroscopic data. For PAN, two bands are observed centred at 794 cm−1 and 1163 cm−1. For acetone and formic acid, one band has been detected for each so far with band centres at 1218 cm−1 and 1105 cm−1 respectively. Mixing ratios inferred at 10.4 km tangent altitude are 180 pptv and 530 pptv for PAN and acetone respectively, and 200 pptv for formic acid with HITRAN 2000 spectroscopy. Accuracies are on the order of 15 to 40%. The detection technique applied here is verified by examining weak but known signatures of CFC-12 and HCFC-22 in the same spectral regions as those of the organic compounds, with results confirming the quality of both the instrument and the radiative transfer model. The results suggest the possibility of global sensing of the organic compounds studied here which would be a major step forward in verifying and interpreting global tropospheric model calculations.

  19. In situ characterization of martian materials and detection of organic compounds with the MOMA investigation onboard the ExoMars rover

    Arevalo, R. D., Jr.; Grubisic, A.; van Amerom, F. H. W.; Danell, R.; Li, X.; Kaplan, D.; Pinnick, V. T.; Brinckerhoff, W. B.; Getty, S.; Goesmann, F.

    2017-12-01

    Ground-based observations (e.g., via the NASA Infrared Telescope Facility) and in situ investigations, including flybys (e.g., Mariner Program), orbiters (most recently MAVEN and ExoMars TGO), stationary landers (i.e., Viking, Pathfinder and Phoenix), and mobile rovers (i.e., Sojourner, Spirit/Opportunity and Curiosity), have enabled the progressive exploration of the Martian surface. Evidence for liquid water, manifest as hydrated and amorphous materials representative of alteration products of primary minerals/lithologies, and geomorphological features such as recurring slope lineae (RSL), valley networks and open-basin lakes, indicates that Mars may have hosted habitable environments, at least on local scales (temporally and spatially). However, the preservation potential of molecular biosignatures in the upper meter(s) of the surface is limited by destructive cosmic radiation and oxidative chemical reactions. Moreover, the determination of indigenous versus exogenous origins, and biotic versus abiotic formation mechanisms of detected organic material, provide additional challenges for future missions to the red planet. The Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars rover, set to launch in 2020, provides an unprecedented opportunity to discover unambiguous indicators of life. The MOMA instrument will investigate the compositions of materials collected during multiple vertical surveys, extending as deep as two meters below the surface, via: i) gas chromatography mass spectrometry, a method geared towards the detection of volatile organics and the determination of molecular chirality, mapping to previous in situ Mars investigations; and, ii) laser desorption mass spectrometry, a technique commonly employed in research laboratories to detect larger, more refractory organic materials, but a first for spaceflight applications. Selective ion excitation and tandem mass spectrometry (MS/MS) techniques support the isolation and disambiguation of complex

  20. Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater.

    Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian

    2018-02-05

    A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.

  1. Exploration of Volatile Organic Molecules for Detection of the Brown Tree Snake and Other Non-Indigenous Species

    Nielsen, Bruce

    2004-01-01

    HQ PACAF submitted high ranked Environmental Safety and Occupational Health (ESOH) Need 1301, "Detect Brown Tree Snakes in Cargo and Craft to Prevent Spread to Other Areas of the Pacific and Mainland United States...

  2. Exploration of Volatile Organic Molecules for Detection of the Brown Tree Snake and Other Non-Indigenous Species

    Nielsen, Bruce

    2004-01-01

    ...." A reliable, portable, cost-effective device capable of detecting and locating the BTS in and around aircraft, ships, and cargo would greatly enhance the efforts to control the BTS and prevent...

  3. ScienceHub data set for "Detection of semi-volatile organic compounds in permeable pavement infiltrate"

    U.S. Environmental Protection Agency — Observed permeable pavement infiltrate concentrations by EPA (1996) method 8270C Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) with...

  4. Incidental Detection of Metastatic Lobular Breast Carcinoma in the Female Internal Genital Organs 2 Years Following Modified Radical Mastectomy

    Tsai-Fang Lee

    2005-12-01

    Conclusions: The present case provides evidence of breast cancer metastasis to the female internal genital organs. We suggest close gynecologic follow-up after surgical and medical management of breast cancer.

  5. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes †

    Lee, Kyu-Ho; Ruby, Edward G.

    1992-01-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both lu...

  6. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments

    Walia, S.; Khan, A.; Rosenthal, N.

    1990-01-01

    Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community

  7. Ratiometric Fluorescence Sensing and Real-Time Detection of Water in Organic Solvents with One-Pot Synthesis of Ru@MIL-101(Al)-NH2.

    Yin, Hua-Qing; Yang, Ji-Chun; Yin, Xue-Bo

    2017-12-19

    Ratiometric fluorescence detection attracts much attention because of its decreased environmental influence and easy-to-differentiate color and intensity change. Herein, a guest-encapsulation metal-organic framework (MOF), Ru@MIL-NH 2 , is prepared with 2-aminoterephthalic acid, AlCl 3 , and Ru(bpy) 3 2+ by a simple one-pot method for ratiometric fluorescence sensing of water in organic solvents. The rational selection of the excitation wavelength provides dual emission at 465 and 615 nm from Ru@MIL-NH 2 under a single excitation of 300 nm. High sensitivity, low detection limit (0.02% v/v), wide response range (0-100%), and fast response (less than 1 min) are obtained for ratiometric fluorescence sensing of water under single excitation with Ru@MIL-NH 2 as the probe. Moreover, the result of water content is independent of the concentration of Ru@MIL-NH 2 as the merit of ratiometric fluorescence detection. The response mechanism reveals that the protonation of the nitrogen atom of the MIL-NH 2 , the π-conjugation system, and the stable fluorescence of Ru(bpy) 3 2+ achieve the ratiometric fluorescence. The analysis of real spirit samples confirms the proposed method. A test strip is prepared with Ru@MIL-NH 2 for convenient use. We believe that such turn-on ratiometric host-guest MOFs and the rational selection of excitation wavelength will offer guidance for ratiometric fluorescence detection with wide applications.

  8. Comparison of Electrochemical Immunosensors and Aptasensors for Detection of Small Organic Molecules in Environment, Food Safety, Clinical and Public Security

    Benoit Piro

    2016-02-01

    Full Text Available We review here the most frequently reported targets among the electrochemical immunosensors and aptasensors: antibiotics, bisphenol A, cocaine, ochratoxin A and estradiol. In each case, the immobilization procedures are described as well as the transduction schemes and the limits of detection. It is shown that limits of detections are generally two to three orders of magnitude lower for immunosensors than for aptasensors, due to the highest affinities of antibodies. No significant progresses have been made to improve these affinities, but transduction schemes were improved instead, which lead to a regular improvement of the limit of detections corresponding to ca. five orders of magnitude over these last 10 years. These progresses depend on the target, however.

  9. Fast detection and characterization of organic and inorganic gunshot residues on the hands of suspects by CMV-GC-MS and LIBS.

    Tarifa, Anamary; Almirall, José R

    2015-05-01

    A rapid method for the characterization of both organic and inorganic components of gunshot residues (GSR) is proposed as an alternative tool to facilitate the identification of a suspected shooter. In this study, two fast screening methods were developed and optimized for the detection of organic compounds and inorganic components indicative of GSR presence on the hands of shooters and non-shooters. The proposed methods consist of headspace extraction of volatile organic compounds using a capillary microextraction of volatiles (CMV) device previously reported as a high-efficiency sampler followed by detection by GC-MS. This novel sampling technique has the potential to yield fast results (LIBS) screening method for the detection of the inorganic components indicative of the presence of GSR (Sb, Pb and Ba) is described. The sampling method for the inorganics consists of liquid extraction of the target elements from the same cotton swabs (previously analyzed for VOCs) and an additional 30 swab samples followed by spiking 1μL of the extract solution onto a Teflon disk and then analyzed by LIBS. Advantages of LIBS include fast analysis (~12s per sample) and high selectivity and sensitivity, with expected LODs 0.1-18ng for each of the target elements after sampling. The analytical performance of the LIBS method is also compared to previously reported methods (inductively coupled plasma-optical emission spectroscopy). The combination of fast CMV sampling, unambiguous organic compound identification with GC-MS and fast LIBS analysis provides the basis for a new comprehensive screening method for GSR. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Detection of reciprocal chromosome translocations as an indicator of organism exposure to ionizing radiation by FISH-WCP method

    Holeckova, B.; Sivikova, K.; Dianovsky, J.; Piesova, E.; Lakatosova, M.

    2006-01-01

    Chromosome translocations are considered to be the gold standard for assessing ionizing radiation exposure. Because translocations are inherently more stable through cell division than dicentrics, translocations have become the aberration of choice for evaluating many types of exposure. Fluorescence in situ hybridization with whole chromosome painting probes (FISH-WCP) has been shown to be a rapid method of detecting chromosomal rearrangements, and appears to be especially useful for analysis of induced translocations. The present paper shortly describes FISH-WCP method for detection of reciprocal translocations as indicators of exposure to ionizing radiation. (authors)

  11. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  12. Doping-assisted low-pressure photoionization mass spectrometry for the real-time detection of lung cancer-related volatile organic compounds.

    Li, Zhen; Xu, Ce; Shu, Jinian; Yang, Bo; Zou, Yao

    2017-04-01

    Real-time detection of lung cancer-related volatile organic compounds (VOCs) is a promising, non-intrusive technique for lung cancer (LC) prescreening. In this study, a novel method was designed to enhance the detection selectivity and sensitivity of LC-related polar VOCs by dichloromethane (CH 2 Cl 2 ) doping-assisted low-pressure photoionization mass spectrometry (LPPI-MS). Compared with conventional LPPI-MS, CH 2 Cl 2 doping-assisted LPPI-MS boosted the peak intensities of n-propanol, n-pentanal, acetone, and butyl acetate in nitrogen specifically by 53, 18, 16, and 43 times, respectively. The signal intensities of their daughter ions were inhibited or reduced. At relative humidity (RH) of 20%, the sensitivities of n-propanol, n-pentanal, acetone, and butyl acetate detection ranged from 116 to 452 counts/ppbv with a detection time of 10s and R 2 >0.99 for the linear calibration curves. The method was also applicable under higher RH levels of 50% and 90%. Breath samples obtained from 10 volunteers and spiked samples were investigated. Eight-fold enhancements in the signal intensities of polar VOCs were observed in the normal and spiked samples. These preliminary results demonstrate the efficacy of the dichloromethane doping-assisted LPPI technique for the detection of LC-related polar VOCs. Further studies are indispensible to illustrating the detailed mechanism and applying the technique to breath diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode

    Sorina Motoc

    2016-10-01

    Full Text Available In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP and diclofenac (DCF in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA and multiple-pulsed amperometry (MPA. This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved.

  14. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode.

    Motoc, Sorina; Manea, Florica; Iacob, Adriana; Martinez-Joaristi, Alberto; Gascon, Jorge; Pop, Aniela; Schoonman, Joop

    2016-10-17

    In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP) and diclofenac (DCF) in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF) electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV) was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA) and multiple-pulsed amperometry (MPA). This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved.

  15. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products

    Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J.; Kok, Esther; Shi, Jianxin; Zel, Jana

    2016-01-01

    The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however,

  16. Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms

    Gasparic, M.B.; Cankar, K.; Zel, J.; Gruden, K.

    2008-01-01

    Background: The real-time polymerase chain reaction is currently the method of choice for quantifying nucleic acids in different DNA based quantification applications. It is widely used also for detecting and quantifying genetically modified components in food and feed, predominantly employing

  17. Imaging-in-flow: digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms

    Zetsche, E.-M.; El Mallahi, A.; Dubois, F.; Yourassowsky, C.; Kromkamp, J.C.; Meysman, F.J.R.

    2014-01-01

    Traditional taxonomic identification of planktonic organisms is based on light microscopy, which is both time-consuming and tedious. In response, novel ways of automated (machine) identification, such as flow cytometry, have been investigated over the last two decades. To improve the taxonomic

  18. Detecting domestic violence: Showcasing a knowledge browser based on formal concept analysis and emergent self organizing maps

    Elzinga, P.; Poelmans, J.; Viaene, S.; Dedene, G.; Cordeiro, J.; Filipe, J.

    2009-01-01

    Over 90% of the case data from police inquiries is stored as unstructured text in police databases. We use the combination of Formal Concept Analysis and Emergent Self Organizing Maps for exploring a dataset of unstructured police reports out of the Amsterdam-Amstelland police region in the

  19. Pretreatment of various feedstocks for lactic acid production: detection of sugars, organic acids and furanics in liquid fractions

    Harmsen, P.F.H.; Lips, S.J.J.; Bakker, R.R.C.

    2012-01-01

    Barley straw, sugarcane bagasse and empty fruit bunches were pretreated under acid- and alkaline conditions. Solid phase was separated from the liquid phase and the concentration of dissolved monomeric sugars, organic acids and furanics was determined. Acid hydrolysis yielded monomeric xylose

  20. Simultaneous determination of low-molecular-weight organic acids and chlorinated acid herbicides in environmental water by a portable CE system with contactless conductivity detection.

    Xu, Yan; Wang, Weilong; Li, Sam Fong Yau

    2007-05-01

    This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.

  1. Simultaneous detection of genetically modified organisms by multiplex ligation-dependent genome amplification and capillary gel electrophoresis with laser-induced fluorescence.

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2010-07-01

    In this work, an innovative method useful to simultaneously analyze multiple genetically modified organisms is described. The developed method consists in the combination of multiplex ligation-dependent genome dependent amplification (MLGA) with CGE and LIF detection using bare-fused silica capillaries. The MLGA process is based on oligonucleotide constructs, formed by a universal sequence (vector) and long specific oligonucleotides (selectors) that facilitate the circularization of specific DNA target regions. Subsequently, the circularized target sequences are simultaneously amplified with the same couple of primers and analyzed by CGE-LIF using a bare-fused silica capillary and a run electrolyte containing 2-hydroxyethyl cellulose acting as both sieving matrix and dynamic capillary coating. CGE-LIF is shown to be very useful and informative for optimizing MLGA parameters such as annealing temperature, number of ligation cycles, and selector probes concentration. We demonstrate the specificity of the method in detecting the presence of transgenic DNA in certified reference and raw commercial samples. The method developed is sensitive and allows the simultaneous detection in a single run of percentages of transgenic maize as low as 1% of GA21, 1% of MON863, and 1% of MON810 in maize samples with signal-to-noise ratios for the corresponding DNA peaks of 15, 12, and 26, respectively. These results demonstrate, to our knowledge for the first time, the great possibilities of MLGA techniques for genetically modified organisms analysis.

  2. Trace detection of organic compounds in complex sample matrixes by single photon ionization ion trap mass spectrometry: real-time detection of security-relevant compounds and online analysis of the coffee-roasting process.

    Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf

    2009-06-01

    An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.

  3. Dansyl-labeled anionic amphiphile with a hexadecanoic carbon chain: Synthesis and detection for shape transitions in organized molecular assemblies

    Gao, Lining; Xia, Huiyun; Wang, Xiaoman; Li, Li; Chen, Huaxin

    2015-03-01

    The probing properties of a new fluorophore-labeled anionic surfactant, sodium 16-(N-dansyl)aminocetylate (16-DAN-ACA) were investigated systematically in molecular assemblies, especially in the transitions between micelles and vesicles. 16-DAN-ACA can efficiently differentiate the two different aggregate types in mixed cationic and anionic surfactant systems. The fluorescence anisotropy of 16-DAN-ACA was found to be sensitive for directly detecting the micellar growth in micelles containing oppositely charged surfactants; both cationic cetyltrimethylammonium bromide (CTAB) systems and anionic sodium dodecyl sulfate (SDS) systems were studied. The results indicated that the 16-DAN-ACA is a good fluorescent probe for differentiating the different aggregates, and even more can be used to detect the micellar growth.

  4. Feasibility for detection of autofluorescent signatures in rat organs using a novel excitation-scanning hyperspectral imaging system

    Favreau, Peter F.; Deal, Joshua A.; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2016-04-01

    The natural fluorescence (autofluorescence) of tissues has been noted as a biomarker for cancer for several decades. Autofluorescence contrast between tumors and healthy tissues has been of significant interest in endoscopy, leading to development of autofluorescence endoscopes capable of visualizing 2-3 fluorescence emission wavelengths to achieve maximal contrast. However, tumor detection with autofluorescence endoscopes is hindered by low fluorescence signal and limited quantitative information, resulting in prolonged endoscopic procedures, prohibitive acquisition times, and reduced specificity of detection. Our lab has designed a novel excitation-scanning hyperspectral imaging system with high fluorescence signal detection, low acquisition time, and enhanced spectral discrimination. In this study, we surveyed a comprehensive set of excised tissues to assess the feasibility of detecting tissue-specific pathologies using excitation-scanning. Fresh, untreated tissue specimens were imaged from 360 to 550 nm on an inverted fluorescence microscope equipped with a set of thin-film tunable filters (Semrock, A Unit of IDEX). Images were subdivided into training and test sets. Automated endmember extraction (ENVI 5.1, Exelis) with PCA identified endmembers within training images of autofluorescence. A spectral library was created from 9 endmembers. The library was used for identification of endmembers in test images. Our results suggest (1) spectral differentiation of multiple tissue types is possible using excitation scanning; (2) shared spectra between tissue types; and (3) the ability to identify unique morphological features in disparate tissues from shared autofluorescent components. Future work will focus on isolating specific molecular signatures present in tissue spectra, and elucidating the contribution of these signatures in pathologies.

  5. Evaluation of emplacement sensors for detecting radiation and volatile organic compounds and for long-term monitoring access tubes for the BWCS

    Lord, D.L.; Averill, R.H.

    1997-10-01

    This document evaluates sensors for detecting contaminants in the excavated waste generated by the Buried Waste Containment System (BWCS). The Barrier Placement Machine (BPM) removes spoils from under a landfill or plume and places it on a conveyor belt on the left and right sides of the BPM. The spoils will travel down the conveyor belts past assay monitors and be deposited on top of the site being worked. The belts are 5 ft wide and transport approximately 15 ft3 /minute of spoils. This corresponds to a 10 ft per hour BPM advance rate. With a 2 in. spoils height the belt speed would be 3.6 in. per second. The spoils being removed are expected to be open-quotes cleanclose quotes (no radiation or volatile organics above background levels). To ensure that the equipment is not digging through a contaminated area, assay equipment will monitor the spoils for mg radiation and volatile organic compounds (VOCs). The radiation monitors will check for gross radiation indication. Upon detection of radiation levels above a predetermined setpoint, further evaluation will be performed to determine the isotopes present and their quantity. This will require hand held monitors and a remote monitoring station. Simultaneously, VOC monitors will monitor for predetermined volatile/semi-volatile organic compounds. A Fourier-Transform Infrared Spectrometer (FTIR) monitor is recommended for this operation. Specific site requirements and regulations will determine setpoints and operation scenarios. If VOCs are detected, the data will be collected and recorded. A flat panel display will be mounted in the BPM operator''s cab showing the radio nuclide and VOC monitoring data. As the BPM advances, a 3-in. diameter PVC tube will be placed on the bottom of the barrier slot in front of the 12 to 16-in. containment barrier being emplaced

  6. Combined detection of depression and anxiety in epilepsy patients using the Neurological Disorders Depression Inventory for Epilepsy and the World Health Organization well-being index

    Hansen, Christian Pilebæk; Amiri, Moshgan

    2015-01-01

    PURPOSE: To validate the Danish version of the Neurological Disorders Depression Inventory for Epilepsy (NDDI-E), and compare it with the World Health Organization index for psychological well-being (WHO-5) as screening tests for depression and anxiety in epilepsy patients. METHODS: Epilepsy...... outpatients filled out NDDI-E and WHO-5. A Mini International Neuropsychiatric Interview (MINI) as gold standard for psychiatric diagnoses was carried out with every patient. RESULTS: We included 124 epilepsy patients. According to MINI, 5% had depression without anxiety, 6% anxiety without depression, and 6...... there are 17% false positives. CONCLUSION: NDDI-E in Danish is valid and slightly better than WHO-5 in the detection of depression in epilepsy patients. WHO-5 is valid for the detection of anxiety disorders. Combined use of NDDI-E and WHO-5 is recommended, since 95% of all epilepsy patients with depression and...

  7. Encapsulation of Hemin in Metal-Organic Frameworks for Catalyzing the Chemiluminescence Reaction of the H2O2-Luminol System and Detecting Glucose in the Neutral Condition.

    Luo, Fenqiang; Lin, Yaolin; Zheng, Liyan; Lin, Xiaomei; Chi, Yuwu

    2015-06-03

    Novel metal-organic frameworks (MOFs) based solid catalysts have been synthesized by encapsulating Hemin into the HKUST-1 MOF materials. These have been first applied in the chemiluminescence field with outstanding performance. The functionalized MOFs not only maintain an excellent catalytic activity inheriting from Hemin but also can be cyclically utilized as solid mimic peroxidases in the neutral condition. The synthesized Hemin@HKUST-1 composites have been used to develop practical sensors for H2O2 and glucose with wide response ranges and low detection limits. It was envisioned that catalyst-functionalized MOFs for chemiluminescence sensing would have promising applications in green, selective, and sensitive detection of target analytes in the future.

  8. The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds

    Carrick M. Eggleston

    2009-06-01

    Full Text Available An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL to quantify Fe2+(aq in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM, and samples from two natural water systems were used to amend standard solutions of Fe2+(aq. Slopes of the response curves from ferrous iron standards (1 – 100 nM were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter.

  9. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Catherine M Shachaf

    Full Text Available Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities.To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry.Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  10. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).

    Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P

    2009-01-01

    Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  11. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  12. Application of an immunoperoxidase staining method for detection of 7,8-dihydro-8-oxodeoxyguanosine as a biomarker of chemical-induced oxidative stress in marine organisms

    Machella, Nicola; Regoli, Francesco; Cambria, Antonio; Santella, Regina M.

    2004-01-01

    7,8-Dihydro-8-oxodeoxyguanosine (8-oxo-dG) is a typical modification of DNA caused by oxygen free radicals and can be an useful biomarker for pollutants inducing oxidative stress. An immunoperoxidase method using monoclonal antibody 1F7 toward 8-oxo-dG was applied to tissues and smeared cells of marine organisms for detection and quantification of oxidative DNA damage in such models. The assay, previously employed on human cells, was assessed for the first time on Mediterranean mussels (Mytilus galloprovincialis) and European eels (Anguilla anguilla), exposed to model pro-oxidant chemicals, namely benzo[a]pyrene (B[a]P) and copper. Quantification of 8-oxo-dG was microscopically carried out and expressed as relative nuclear staining intensity. Higher levels of oxidative DNA damage were detected in the digestive glands of treated mussels compared to controls, while the effect was less pronounced in haemocytes, characterized by more elevated basal levels of 8-oxo-dG. The assay was suitable for detection of 8-oxo-dG also in fish liver sections indicating consistent damage after B[a]P exposure. The main advantage of the immunohistochemical approach is the elimination of DNA extraction which considerably reduces the processing of biological samples. In addition, the assay requires small amounts of frozen tissues or fixed cells for detection of 8-oxo-dG and is potentially able to discriminate variable susceptibility to oxidative stress in different cell types. Although further investigations are required for the improvement and the validation of the assay in field conditions, laboratory exposures provided useful indications on the consistency of the approach and the efficacy of antibody 1F7 in marine organisms for a rapid assessment of pollutant-induced oxidative DNA damage

  13. Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks.

    Wang, Zonghua; Yan, Zhiyong; Wang, Feng; Cai, Jibao; Guo, Lei; Su, Jiakun; Liu, Yang

    2017-11-15

    A turn-on photoelectrochemical (PEC) biosensor based on the surface defect recognition and multiple signal amplification of metal-organic frameworks (MOFs) was proposed for highly sensitive protein kinase activity analysis and inhibitor evaluation. In this strategy, based on the phosphorylation reaction in the presence of protein kinase A (PKA), the Zr-based metal-organic frameworks (UiO-66) accommodated with [Ru(bpy) 3 ] 2+ photoactive dyes in the pores were linked to the phosphorylated kemptide modified TiO 2 /ITO electrode through the chelation between the Zr 4+ defects on the surface of UiO-66 and the phosphate groups in kemptide. Under visible light irradiation, the excited electrons from [Ru(bpy) 3 ] 2+ adsorbed in the pores of UiO-66 injected into the TiO 2 conduction band to generate photocurrent, which could be utilized for protein kinase activities detection. The large surface area and high porosities of UiO-66 facilitated a large number of [Ru(bpy) 3 ] 2+ that increased the photocurrent significantly, and afforded a highly sensitive PEC analysis of kinase activity. The detection limit of the as-proposed PEC biosensor was 0.0049UmL -1 (S/N!=!3). The biosensor was also applied for quantitative kinase inhibitor evaluation and PKA activities detection in MCF-7 cell lysates. The developed visible-light PEC biosensor provides a simple detection procedure and a cost-effective manner for PKA activity assays, and shows great potential in clinical diagnosis and drug discoveries. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules

    Guo, Tian-Long [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan); Li, Ji-Guang, E-mail: LI.Jiguang@nims.go.jp [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan); Sun, Xudong, E-mail: xdsun@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Sakka, Yoshio [Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan)

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag{sup +} concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50 mM of Ag{sup +}, 30 s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~ 1.1 × 10{sup 6} and a low relative standard deviation of ~ 0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. - Highlights: • A facile synthetic technique of growing SERS active Ag substrates onto Cu micro-grid has been systematically studied. • Changing processing parameters has yielded Ag crystals of various morphologies and SERS performances. • PVP additive was observed to suppress Ag dendrite crystallization for nearly monodispersed Ag polyhedrons/nanoplates. • PVP modified SERS substrate exhibits excellent EF and RSD values in the repeated detection of 10 μM R6G analyte.

  15. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    Hai Xiao

    2006-08-01

    Full Text Available A fiber optic intrinsic Fabry-Perot interferometric (IFPI chemical sensor wasdeveloped by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolitesynthesized on the cleaved endface of a single mode fiber. The sensor operated bymonitoring the optical thickness changes of the zeolite thin film caused by the adsorption oforganic molecules into the zeolite channels. The optical thickness of the zeolite thin filmwas measured by white light interferometry. Using methanol, 2-propanol, and toluene as themodel chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolvedorganics in water with high sensitivity.

  16. Simple approach to detection and estimation of photoactivity of silver particles on graphene oxide in aqueous-organic dispersion

    Vlasov, D. V.; Vlasova, T. D.; Apresyan, L. A.; Krasovskiy, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The effect of sediment flotation was observed in dispersion of graphene oxide flakes with Ag-particles deposited thereon in the aqueous-organic (containing dimethylformamide) under the visible light action, with subsequent stabilization of the dispersion, which does not occur in the absence of Ag-particles. The main reason for this laser light induced movement of sediment graphene oxide flakes may be associated with the appearance of small bubbles. The further development of this approach seem to be able to estimate the of graphene flakes photoactivity with different activating particles.

  17. Chemotaxonomic markers of organic, natural, and genetically modified soybeans detected by direct infusion electrospray ionization mass spectrometry

    Santos, L.S.; Catharino, R.R.; Eberlin, M.N.; Tsai, S.M.

    2006-01-01

    The crude methanolic extracts of a single bean from samples of organic, natural or genetically modified (GM) soybeans [Glycine max. (Merrill) L.] were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS). These extracts, containing the most polar natural products of soybeans (free aglycones, monoglucosides, diglucosides and esters including isoflavones and flavones) provide characteristic fingerprinting mass spectra owing to different proportions or sets of components. Spectra distinctiveness is confirmed by chemometric multivariate analysis of the ESIMS data, which place the three-types of beans into well-defined groups. When ESI-MS is applied, these polar components constitute therefore unique chemotaxonomic markers able to provide fast soybean typification. (author)

  18. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules.

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag(+) concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50mM of Ag(+), 30s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~1.1 × 10(6) and a low relative standard deviation of ~0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Monoclonal antibodies to snakehead, Channa striata immunoglobulins: detection and quantification of immunoglobulin-positive cells in blood and lymphoid organs.

    Sood, Neeraj; Chaudhary, Dharmendra K; Rathore, Gaurav; Singh, Akhilesh; Lakra, W S

    2011-02-01

    Snakehead Channa striata is an important freshwater food fish in many Southeast Asian countries. Three monoclonal antibodies (C9, C10 and D10) were developed against purified serum immunoglobulins of Channa striata (Cs-Ig) and characterized. C9 and D10 MAbs were specific to heavy chain, while C10 MAb detected only unreduced Cs-Ig in western blotting. In competitive ELISA, C9 and C10 MAbs were specific to C. striata Ig and showed no cross reactivity with serum Ig of other fish species i.e. Channa punctatus, Channa marulius, Clarias batrachus and Labeo rohita. D10 MAb showed reactivity to serum Ig of C. striata and C. marulius. In FACS analysis of gated lymphocytes, the percentage of Ig+ cells detected by C9 MAb was 18.2%, 27.7% and 10.3% in blood, spleen and kidney, respectively (n=3, body weight 500-600 g). However, only a few cells (0.5%) were found to be Ig+ in thymus (n=5). C9 MAb was also successfully employed to demonstrate Ig+ cells in blood smears and formalin fixed sections of spleen and kidney. These findings suggest that the spleen plays an important role in humoral immunity as compared to head kidney. Further, these MAbs can be useful immunological tool in monitoring health status of cultured C. striata. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Performances and stability of a 2.4 ton Gd organic liquid scintillator target for ν-bar e detection

    Barabanov, I R; Bezrukov, L B; Danilov, N A; Krilov, Yu S; Yanovich, E A; Malguin, A S; Cattadori, C M; Vacri, A di; Ioannucci, L; Bruno, G; Aglietta, M; Bonardi, A; Fulgione, W; Porta, A; Kemp, E; Selvi, M

    2010-01-01

    In this paper we report the performance and the chemical and physical properties of a 2 x 1.2 ton organic liquid scintillator target doped with Gd up to ∼ 0.1%, and the results of a 3 year long stability survey of the target. In particular we have measured and monitored the optical and fluorescent properties of the Gd-doped liquid scintillator (LS), the amount of both Gd and primary fluor in solution, and the performance of the two Gd doped targets as neutron detectors, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the targets being continuously monitored. From the spectrophotometric measurements performed on samples periodically extracted along the three years, we can exclude, at 99% C.L. level, a degradation of the light transmittance of the Gd-doped liquid scintillator larger than 1% y -1 ; from the in-tank measurements no significant decrease of the neutron capture efficiency and neutron capture time is observed. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period.

  1. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms.

    Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten

    2015-10-01

    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.

  2. High-energy X-ray detection using organic luminescent materials: a novel application for radiation therapy

    Schimitberger, Thiago; Ferreira, Giovana Ribeiro; Silva, Mariana de Melo; Saraiva, M.F.; Bianchi, Rodrigo Fernando

    2010-01-01

    In this work, it is presented the characterization and fabrication of a novel ionizing radiation sensor for high energy X-ray (6 MeV). It is used organic luminescent materials usually applied in light-emitting and nanostructure device, but still few explored in radiation dosimetry. Organic solutions of tris(8-hydroxyquinolinato) aluminum - Alq_3 and poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] - MEH-PPV were prepared to better study the impact of spectral overlap between the Alq_3 emission and MEH-PPV absorption. It is observed a blue-shift on the photoluminescence of the MEH-PPV/Alq_3 solution system from red-orange (λ_m_a_x = 598 nm) to green (λ_m_a_x = 545 nm) when the radiation dose changes from 0 to 100 Gy. This effect is attributed to the photooxidation process of MEH-PPV and was employed to design dose accumulation sensors in order to represent easily the radiation dose for cancer treatment. (author)

  3. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques

    Bettinardi, Valentino; Picchio, Maria; Di Muzio, Nadia; Gianolli, Luigi; Gilardi, Maria Carla; Messa, Cristina

    2010-01-01

    Purpose: To describe the degradation effects produced by respiratory organ and lesion motion on PET/CT images and to define the role of respiratory gated (RG) 4D-PET/CT techniques to compensate for such effects. Methods: Based on the literature and on our own experience, technical recommendations and clinical indications for the use of RG 4D PET/CT have been outlined. Results: RG 4D-PET/CT techniques require a state of the art PET/CT scanner, a respiratory monitoring system and dedicated acquisition and processing protocols. Patient training is particularly important to obtain a regular breathing pattern. An adequate number of phases has to be selected to balance motion compensation and statistical noise. RG 4D PET/CT motion free images may be clinically useful for tumour tissue characterization, monitoring patient treatment and target definition in radiation therapy planning. Conclusions: RG 4D PET/CT is a valuable tool to improve image quality and quantitative accuracy and to assess and measure organ and lesion motion for radiotherapy planning.

  4. Methodology for the detection of contamination by hydrocarbons and further soil sampling for volatile and semi-volatile organic enrichment in former petrol stations, SE Spain

    Rosa María Rosales Aranda

    2012-01-01

    Full Text Available The optimal detection and quantification of contamination plumes in soil and groundwater by petroleum organic compounds, gasoline and diesel, is critical for the reclamation of hydrocarbons contaminated soil at petrol stations. Through this study it has been achieved a sampling stage optimization in these scenarios by means of the location of potential contamination areas before sampling with the application of the 2D electrical resistivity tomography method, a geophysical non destructive technique based on resistivity measurements in soils. After the detection of hydrocarbons contaminated areas, boreholes with continuous coring were performed in a petrol station located in Murcia Region (Spain. The drillholes reached depths down to 10 m and soil samples were taken from each meter of the drilling. The optimization in the soil samples handling and storage, for both volatile and semi-volatile organic compounds determinations, was achieved by designing a soil sampler to minimize volatilization losses and in order to avoid the manual contact with the environmental samples during the sampling. The preservation of soil samples was performed according to Europe regulations and US Environmental Protection Agency recommendations into two kinds of glass vials. Moreover, it has been taken into account the determination techniques to quantify the hydrocarbon pollution based on Gas Chromatography with different detectors and headspace technique to reach a liquid-gas equilibrium for volatile analyses.

  5. The point-of-care colorimetric detection of the biomarker of phenylamine in the human urine based on Tb3+ functionalized metal-organic framework.

    Qin, Si-Jia; Yan, Bing

    2018-07-05

    Phenylamine has been recognized as one of the most important industrially relevant ingredient and a crucial intermediate in chemical products. Yet, its internal exposure detection in human remains largely elusive due to the lack of potent monitoring method. Hereby this issue is addressed with a probe based on lanthanide functionalized organic-inorganic hybrid material Al(OH)(bpydc) (1) through post-synthetically modified metal-organic framework. The as-synthesized Tb 3+ @1 exhibits the strong luminescence of Tb 3+ originated from efficient energy transfer from the ligand, which can sense the biological metabolite p-aminophenol (PAP) of the phenylamine in the human urine. Linear correlation between the integrated fluorescence intensity and the concentration of PAP was investigated, enabling quantitative analysis of PAP in physiologically ranges (0.005-5 mg mL -1 ) with low detection limit (5 μg mL -1 ). This probe demonstrates excellent sensitivity, high selectivity, good reusability and quick response to PAP. Furthermore, a simple and rapid smartphone-based medical portable test paper was developed, whose quantitative color change can be easily distinguished visually. Hence, the PAP sensing platform can serve as a potential diagnostic tool for home monitoring of PAP. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Simultaneous high-performance liquid chromatographic determination of nitrate, nitrite, and organic pesticides in soil solution using a multidimensional column with ultraviolet detection

    Nkedi-Kizza, P.; Owusu-Yaw, J.

    1992-01-01

    In many fertilizer trials, the amount of nitrate-nitrogen in soil solution must be quantified frequently because nitrate is easily leached. Because pesticides are generally applied to cropland with fertilizers, quantitative information is needed on the concentration of these chemicals still available in the soil. Information on nitrite, nitrate and pesticide concentrations in food, water and environmental samples is essential because of their toxicity and potential for groundwater and surface water contamination. Most of the methods currently used for nitrate determination also account for nitrite, because nitrite and some organics act as interferences. Some of the existing analytical methods require sample reduction or derivatization, complex solvent mixtures or large sample volumes which make analysis times long. A High-Performance Liquid Chromatography (HPLC) method has been developed for the simultaneous determination of nitrate, nitrite and organic pesticides in soil solution samples and extracts using a multidimensional separator column with ultraviolet detection at 220 nm. The method is rapid and requires small sample volumes (20 μL). It is a sensitive method which is suitable for routine analyses of up to 100 samples per day. A comparison of this method with standard ion chromatography with conductivity detection showed very good agreement between the two methods for the analysis of NO3- and NO2-

  7. Techniques of DNA hybridization detect small numbers of mycobacteria with no cross-hybridization with non-mycobacterial respiratory organisms

    Shoemaker, S.A.; Fisher, J.H.; Scoggin, C.H.

    1985-01-01

    The traditional methods used in identifying mycobacteria, such as acid-fast bacillus stains and culture, are often time-consuming, insensitive, and nonspecific. As part of an ongoing program to improve diagnosis and characterization of mycobacteria, the authors have found that deoxyribonucleic acid (DNA) hybridization techniques using isotopically labeled, single-stranded, total DNA can be used to detect as little as 10(-4) micrograms of Mycobacterium tuberculosis (MTb) DNA. This amount of DNA represents approximately 2 X 10(4) genomes. They have also shown the MTb DNA is sufficiently different from the DNA of non-mycobacterial microorganisms such that cross-hybridization with MTb DNA does not occur under the hybridization conditions employed. The authors speculate that DNA hybridization techniques may allow the rapid, sensitive, and specific identification of mycobacteria

  8. Copper-Based Metal-Organic Framework Nanoparticles with Peroxidase-Like Activity for Sensitive Colorimetric Detection of Staphylococcus aureus.

    Wang, Shuqin; Deng, Wenfang; Yang, Lu; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo

    2017-07-26

    Cu-MOF nanoparticles with an average diameter of 550 nm were synthesized from 2-aminoterephthalic acid and Cu(NO 3 ) 2 by a mixed solvothermal method. The Cu-MOF nanoparticles can show peroxidase-like activity that can catalyze 3,3',5,5'-tetramethylbenzidine to produce a yellow chromogenic reaction in the presence of H 2 O 2 . The presence of abundant amine groups on the surfaces of Cu-MOF nanoparticles enables facile modification of Staphylococcus aureus (S. aureus) aptamer on Cu-MOF nanoparticles. By combining Cu-MOF-catalyzed chromogenic reaction with aptamer recognition and magnetic separation, a simple, sensitive, and selective colorimetric method for the detection of S. aureus was developed.

  9. Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms

    Žel Jana

    2008-03-01

    Full Text Available Abstract Background The real-time polymerase chain reaction is currently the method of choice for quantifying nucleic acids in different DNA based quantification applications. It is widely used also for detecting and quantifying genetically modified components in food and feed, predominantly employing TaqMan® and SYBR® Green real-time PCR chemistries. In our study four alternative chemistries: Lux™, Plexor™, Cycling Probe Technology and LNA® were extensively evaluated and compared using TaqMan® chemistry as a reference system. Results Amplicons were designed on the maize invertase gene and the 5'-junction of inserted transgene and plant genomic DNA in MON 810 event. Real-time assays were subsequently compared for their efficiency in PCR amplification, limits of detection and quantification, repeatability and accuracy to test the performance of the assays. Additionally, the specificity of established assays was checked on various transgenic and non-transgenic plant species. The overall applicability of the designed assays was evaluated, adding practicability and costs issues to the performance characteristics. Conclusion Although none of the chemistries significantly outperformed the others, there are certain characteristics that suggest that LNA® technology is an alternative to TaqMan® when designing assays for quantitative analysis. Because LNA® probes are much shorter they might be especially appropriate when high specificity is required and where the design of a common TaqMan® probe is difficult or even impossible due to sequence characteristics. Plexor™ on the other hand might be a method of choice for qualitative analysis when sensitivity, low cost and simplicity of use prevail.

  10. An off-on Fluorescent Sensor for Detecting a Wide Range of Water Content in Organic Solvents

    Kim, Kanghyeon; Lee, Wanjin; Kim, Jae Nyoung; Kim, Hyung Jin [Chonnam National Univ., Gwangju (Korea, Republic of)

    2013-08-15

    This paper describes the synthesis and water sensing properties of a fluorescent photoinduced electron transfer (PET) sensor (5) with an extended operating sensing range. The 1,8-naphthalimide derivative (5) attached with a piperazine group and a carboxylic group was synthesized and applied as a fluorescent water sensor in water-miscible organic solvents. The fluorescence intensity of the dye 5 increased with increasing water content up to 80% (v/v) and the fluorescence intensities were enhanced 45-, 67- and 122-fold in aqueous EtOH, DMF and DMSO solutions, respectively. In aqueous acetone solution, the enhancement of the fluorescence intensities was somewhat lower (30-fold) but the response range was wider (0-90%, v/v)

  11. A comparison of cationic polymerization and esterification for end-point detection in the catalytic thermometric titration of organic bases.

    J Greenhow, E; Viñas, P

    1984-08-01

    A systematic comparison has been made of two indicator systems for the non-aqueous catalytic thermometric titration of strong and weak organic bases. The indicator reagents, alpha-methylstyrene and mixtures of acetic anhydride and hydroxy compounds, are shown to give results (for 14 representative bases) which do not diner significantly in coefficient of variation or titration error. Calibration graphs for all the samples, in the range 0.01-0.1 meq, are linear, with correlation coefficients of 0.995 or better. Aniline, benzylamine, n-butylamine, morpholine, pyrrole, l-dopa, alpha-methyl-l-dopa, dl-alpha-alanine, dl-leucine and l-cysteine cannot be determined when acetic anhydride is present in the sample solution, but some primary and second amines can. This is explained in terms of rates of acetylation of the amino groups.

  12. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  13. The potential of volatile organic compounds for the detection of active disease in patients with ulcerative colitis.

    Smolinska, A; Bodelier, A G L; Dallinga, J W; Masclee, A A M; Jonkers, D M; van Schooten, F-J; Pierik, M J

    2017-05-01

    To optimise treatment of ulcerative colitis (UC), patients need repeated assessment of mucosal inflammation. Current non-invasive biomarkers and clinical activity indices do not accurately reflect disease activity in all patients and cannot discriminate UC from non-UC colitis. Volatile organic compounds (VOCs) in exhaled air could be predictive of active disease or remission in Crohn's disease. To investigate whether VOCs are able to differentiate between active UC, UC in remission and non-UC colitis. UC patients participated in a 1-year study. Clinical activity index, blood, faecal and breath samples were collected at each out-patient visit. Patients with clear defined active faecal calprotectin >250 μg/g and inactive disease (Simple Clinical Colitis Activity Index Non-UC colitis was confirmed by stool culture or radiological evaluation. Breath samples were analysed by gas chromatography time-of-flight mass spectrometry and kernel-based method to identify discriminating VOCs. In total, 72 UC (132 breath samples; 62 active; 70 remission) and 22 non-UC-colitis patients (22 samples) were included. Eleven VOCs predicted active vs. inactive UC in an independent internal validation set with 92% sensitivity and 77% specificity (AUC 0.94). Non-UC colitis patients could be clearly separated from active and inactive UC patients with principal component analysis. Volatile organic compounds can accurately distinguish active disease from remission in UC and profiles in UC are clearly different from profiles in non-UC colitis patients. VOCs have demonstrated potential as new non-invasive biomarker to monitor inflammation in UC. © 2017 John Wiley & Sons Ltd.

  14. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  15. Headspace solid-phase microextraction for the determination of volatile organic sulphur and selenium compounds in beers, wines and spirits using gas chromatography and atomic emission detection.

    Campillo, Natalia; Peñalver, Rosa; López-García, Ignacio; Hernández-Córdoba, Manuel

    2009-09-25

    A rapid and solvent-free method for the determination of eight volatile organic sulphur and two selenium compounds in different beverage samples using headspace solid-phase microextraction and gas chromatography with atomic emission detection has been developed. The bonded carboxen/polydimethylsiloxane fiber was the most suitable for preconcentrating the analytes from the headspace of the sample solution. Volumes of 20 mL of undiluted beer were used while, in the case of wines and spirits, sample:water ratios of 5:15 and 2:18, respectively, were used, in order to obtain the maximum sensitivity. Quantitation was carried out by using synthetic matrices of beer and wine, and a spiked sample for spirits, and using ethyl methyl sulphide and isopropyl disulphide as internal standards. Detection limits ranged from 8 ng L(-1) to 40 ng mL(-1), depending on the compound and the beverage sample analyzed, with a fiber time exposure of 20 min at ambient temperature. The optimized method was successfully applied to different samples, some of the studied compounds being detected at concentration levels in the 0.04-152 ng mL(-1) range.

  16. First Results of a Detection Sensor for the Monitoring of Laying Hens Reared in a Commercial Organic Egg Production Farm Based on the Use of Infrared Technology

    Mauro Zaninelli

    2016-10-01

    Full Text Available The development of a monitoring system to identify the presence of laying hens, in a closed room of a free-range commercial organic egg production farm, was the aim of this study. This monitoring system was based on the infrared (IR technology and had, as final target, a possible reduction of atmospheric ammonia levels and bacterial load. Tests were carried out for three weeks and involved 7 ISA (Institut de Sélection Animale brown laying hens. The first 5 days was used to set up the detection sensor, while the other 15 days were used to evaluate the accuracy of the resulting monitoring system, in terms of sensitivity and specificity. The setup procedure included the evaluation of different color background (CB thresholds, used to discriminate the information contents of the thermographic images. At the end of this procedure, a CB threshold equal to an increase of 3 °C from the floor temperature was chosen, and a cutoff level of 196 colored pixels was identified as the threshold to use to classify a positive case. The results of field tests showed that the developed monitoring system reached a fine detection accuracy (sensitivity = 97.9% and specificity = 94.9% and the IR technology proved to be a possible solution for the development of a detection sensor necessary to reach the scope of this study.

  17. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed.

    Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich

    2013-10-30

    Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.

  18. First Results of a Detection Sensor for the Monitoring of Laying Hens Reared in a Commercial Organic Egg Production Farm Based on the Use of Infrared Technology.

    Zaninelli, Mauro; Redaelli, Veronica; Tirloni, Erica; Bernardi, Cristian; Dell'Orto, Vittorio; Savoini, Giovanni

    2016-10-21

    The development of a monitoring system to identify the presence of laying hens, in a closed room of a free-range commercial organic egg production farm, was the aim of this study. This monitoring system was based on the infrared (IR) technology and had, as final target, a possible reduction of atmospheric ammonia levels and bacterial load. Tests were carried out for three weeks and involved 7 ISA (Institut de Sélection Animale) brown laying hens. The first 5 days was used to set up the detection sensor, while the other 15 days were used to evaluate the accuracy of the resulting monitoring system, in terms of sensitivity and specificity. The setup procedure included the evaluation of different color background (CB) thresholds, used to discriminate the information contents of the thermographic images. At the end of this procedure, a CB threshold equal to an increase of 3 °C from the floor temperature was chosen, and a cutoff level of 196 colored pixels was identified as the threshold to use to classify a positive case. The results of field tests showed that the developed monitoring system reached a fine detection accuracy (sensitivity = 97.9% and specificity = 94.9%) and the IR technology proved to be a possible solution for the development of a detection sensor necessary to reach the scope of this study.

  19. Detecting exposure to environmental organic toxins in individual cells: towards development of a micro-fabricated device

    Holman, Hoi-Ying N.; Zhang, Miqin; Goth-Goldstein, Regine; Martin, Michael C.; Russell, Marion; McKinney, Wayne R.; Ferrari, Mauro; Hunter-Cevera, Jennie C.

    1999-01-01

    A new method is being developed to quickly screen for the human exposure potential to polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs). The development involves two key elements: identifying suitable signals that represent intracellular changes that are specific to PAH and OC exposure, and constructing a device to guide the biological cell growth so that signals from individual cells are consistent and reproducible. We are completing the identification of suitable signals by using synchrotron radiation-based (SR) Fourier-transform infrared (FTIR) spectromicroscopy in the mid-infrared region (4000-400 cm-1). Distinct changes have been observed in the IR spectra after treatment of human cells in culture medium with PAHs and OCs. The potential use of this method for detecting exposure to PAHs and OCs has been tested and compared to a reverse transcription polymerase chain reaction (RT-PCR) assay that quantifies increased expression of the CYP1A1 gene in response to exposure to PAHs or OCs

  20. Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection

    Brown, J. A.; Goldblum, B. L., E-mail: bethany@nuc.berkeley.edu; Brickner, N. M.; Daub, B. H.; Kaufman, G. S.; Bibber, K. van; Vujic, J. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Bernstein, L. A.; Bleuel, D. L.; Caggiano, J. A.; Hatarik, R.; Phillips, T. W.; Zaitseva, N. P. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Wender, S. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-05-21

    The neutron time-of-flight (nTOF) diagnostics used to characterize implosions at the National Ignition Facility (NIF) has necessitated the development of novel scintillators that exhibit a rapid temporal response and high light yield. One such material, a bibenzyl-stilbene mixed single-crystal organic scintillator grown in a 99.5:0.5 ratio in solution, has become the standard scintillator used for nTOF diagnostics at NIF. The prompt fluorescence lifetime and relative light yield as a function of proton energy were determined to calibrate this material as a neutron detector. The temporal evolution of the intensity of the prompt fluorescent response was modeled using first-order reaction kinetics and the prompt fluorescence decay constant was determined to be 2.46 ± 0.01 (fit) ± 0.13 (systematic) ns. The relative response of the bibenzyl-stilbene mixed crystal generated by recoiling protons was measured, and results were analyzed using Birks' relation to quantify the non-radiative quenching of excitation energy in the scintillator.

  1. The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo.

    Pereira, Claudia V; Nadanaciva, Sashi; Oliveira, Paulo J; Will, Yvonne

    2012-02-01

    Nowadays the 'redox hypothesis' is based on the fact that thiol/disulfide couples such as glutathione (GSH/GSSG), cysteine (Cys/CySS) and thioredoxin ((Trx-(SH)2/Trx-SS)) are functionally organized in redox circuits controlled by glutathione pools, thioredoxins and other control nodes, and they are not in equilibrium relative to each other. Although ROS can be important intermediates of cellular signaling pathways, disturbances in the normal cellular redox can result in widespread damage to several cell components. Moreover, oxidative stress has been linked to a variety of age-related diseases. In recent years, oxidative stress has also been identified to contribute to drug-induced liver, heart, renal and brain toxicity. This review provides an overview of current in vitro and in vivo methods that can be deployed throughout the drug discovery process. In addition, animal models and noninvasive biomarkers are described. Reducing post-market drug withdrawals is essential for all pharmaceutical companies in a time of increased patient welfare and tight budgets. Predictive screens positioned early in the drug discovery process will help to reduce such liabilities. Although new and more efficient assays and models are being developed, the hunt for biomarkers and noninvasive techniques is still in progress.

  2. Study of intramolecular isotope heterogeneity of organic oxy acids in order to detect sophisticated wines and juice drinks

    Kuzmina Helen

    2014-01-01

    Full Text Available According to International Code of Oenological Practices it is allowed to use acide L(+tartrique for wine acidification, while use of synthetic dihydroxysuccinic acid is forbidden. Today it is impossible to differentiate natural dihydroxysuccinic acid from synthetic one by standard techniques. Even by using very sensitive method of isotope mass spectrometry certain difficulties emerge because total isotope characteristics of carbon of dihydroxysuccinic acid of different nature have the same values. However, isotope characteristics of carbon of intramolecular structural groups of dihydroxysuccinic acid made of different raw materials differ significantly. This allows specifying the nature of dihydroxysuccinic acid that is used for making of wines and juice drinks. In Russia, scientific and research institute of beer brewing and wine-making industry carried out a work for studying isotope characteristics of intramolecular isotope heterogeneity of dihydroxysuccinic acid from different origins in order to identify wines and juice drinks. Isotope characteristics of organic oxy acids from different origins were studied including them obtained by synthetic way and numeric range of value δ13 C,‰ were specified. The obtained results allow performing identification tests of wines and juice drinks to find out the products that contain not specified additives as that allowed for its use in production process.

  3. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  4. Fluorescent Polystyrene Films for the Detection of Volatile Organic Compounds Using the Twisted Intramolecular Charge Transfer Mechanism.

    Borelli, Mirko; Iasilli, Giuseppe; Minei, Pierpaolo; Pucci, Andrea

    2017-08-06

    Thin films of styrene copolymers containing fluorescent molecular rotors were demonstrated to be strongly sensitive to volatile organic compounds (VOCs). Styrene copolymers of 2-[4-vinyl(1,1'-biphenyl)-4'-yl]-cyanovinyljulolidine (JCBF) were prepared with different P(STY- co -JCBF)(m) compositions (m% = 0.10-1.00) and molecular weights of about 12,000 g/mol. Methanol solutions of JCBF were not emissive due to the formation of the typical twisted intramolecular charge transfer (TICT) state at low viscosity regime, which formation was effectively hampered by adding progressive amounts of glycerol. The sensing performances of the spin-coated copolymer films (thickness of about 4 µm) demonstrated significant vapochromism when exposed to VOCs characterized by high vapour pressure and favourable interaction with the polymer matrix such as THF, CHCl₃ and CH₂Cl₂. The vapochromic response was also reversible and reproducible after successive exposure cycles, whereas the fluorescence variation scaled linearly with VOC concentration, thus suggesting future applications as VOC optical sensors.

  5. Sensor array for the detection of organic and inorganic contaminants in post-consumer recycled plastics for food contact.

    Davis, Nathan; Danes, Jeffrey E; Vorst, Keith

    2017-10-01

    Post-consumer recycled (PCR) plastic material is made by collecting used plastic products (e.g., bottles and other plastic packaging materials) and reprocessing them into solid-state pellets or flakes. Plastic recycling has positive environmental benefits, but may also carry potential drawbacks due to unwanted organic and inorganic contaminants. These contaminants can migrate into food packaging made from these recycled plastic materials. The purpose of this research was to identify economically viable real-time monitoring technologies that can be used during the conversion of virgin and recycled resin feedstocks (i.e., various blends of virgin pellets and recycled solid-state pellet or mechanically ground flake) to final articles to ensure the safety, quality and sustainability of packaging feedstocks. Baseline analysis (validation) of real-time technologies was conducted using industry-standard practices for polymer analysis. The data yielded supervised predictive models developed by training sessions completed in a controlled laboratory setting. This technology can be employed to evaluate compliance and aid converters in commodity sourcing of resin without exceeding regulatory thresholds. Furthermore, this technology allowed for real-time decision and diversion strategies during the conversion of resin and flake to final articles or products to minimise the negative impact on human health and environmental exposure.

  6. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection

    Bechelany, M; Brodard, P; Philippe, L; Michler, J, E-mail: mikhael.bechelany@empa.c, E-mail: pierre.brodard@empa.c [Laboratory for Mechanics of Materials and Nanostructures, EMPA, Swiss Federal Laboratories for Materials Testing and Research, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2009-11-11

    The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (E{sub F} = 5.5 x 10{sup 5}) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.

  7. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection

    Bechelany, M.; Brodard, P.; Philippe, L.; Michler, J.

    2009-11-01

    The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (EF = 5.5 × 105) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.

  8. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection

    Bechelany, M; Brodard, P; Philippe, L; Michler, J

    2009-01-01

    The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (E F = 5.5 x 10 5 ) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.

  9. Direct and simultaneous detection of organic and inorganic ingredients in herbal powder preparations by Fourier transform infrared microspectroscopic imaging.

    Chen, Jian-Bo; Sun, Su-Qin; Tang, Xu-Dong; Zhang, Jing-Zhao; Zhou, Qun

    2016-08-05

    Herbal powder preparation is a kind of widely-used herbal product in the form of powder mixture of herbal ingredients. Identification of herbal ingredients is the first and foremost step in assuring the quality, safety and efficacy of herbal powder preparations. In this research, Fourier transform infrared (FT-IR) microspectroscopic identification method is proposed for the direct and simultaneous recognition of multiple organic and inorganic ingredients in herbal powder preparations. First, the reference spectrum of characteristic particles of each herbal ingredient is assigned according to FT-IR results and other available information. Next, a statistical correlation threshold is determined as the lower limit of correlation coefficients between the reference spectrum and a larger number of calibration characteristic particles. After validation, the reference spectrum and correlation threshold can be used to identify herbal ingredient in mixture preparations. A herbal ingredient is supposed to be present if correlation coefficients between the reference spectrum and some sample particles are above the threshold. Using this method, all kinds of herbal materials in powder preparation Kouqiang Kuiyang San are identified successfully. This research shows the potential of FT-IR microspectroscopic identification method for the accurate and quick identification of ingredients in herbal powder preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Detection of irradiation induced changes on the activity and diversity of soil organisms: the effect of soil type

    Parekh, N.R.; Beresford, N.A.; Black, H.I.J.; Potter, E.D.; Poskitt, J.M.; Dodd, B.A.

    2004-01-01

    Whilst non-radiological environmental impact assessments consider impacts on ecosystem function by assessing soil health the techniques of doing so have rarely been applied to radiological studies. Our aim in the study described was to measure the effects of irradiation treatments on soil communities from three different soils. Undisturbed soil cores from two temperate woodland sites (deciduous and coniferous) and a grassland site were irradiated to give a range of cumulative doses from 0 160 Gy. All cores were incubated at 15 deg C and three cores from each treatment sampled after <1, 3 and 8 days post irradiation. Soil samples were analysed for the presence and abundance of fauna, fungi and heterotrophic bacteria. The activity and functional diversity of soil microbial communities was also assessed in terms of their potential to utilise a range of carbon sources. There was a small impact on Oribatid mites at the highest dose but no significant effect on other soil faunal groups. Although significant changes in the numbers of cultivable fungi or fast growing heterotrophic bacteria were not observed at any of the treatment doses, the numbers of cultivable Pseudomonas spp. declined in all three soil types after irradiation at 80 and 160 Gy. This decline was greatest in the coniferous forest soil. Microbial communities from this soil also showed a dramatic decrease in metabolic activity and in the number of substrates utilised after irradiation at 160 Gy as compared with control non-irradiated samples. Our results show that the affects of gamma irradiation on soil microorganisms are more pronounced in the two organic forest soils as compared to the mineral grassland soil. These differences can be related to two factors; variations in the physico-chemical shielding properties of the soils and differences in the indigenous communities in terms of radioresistant species. (author)

  11. Detection of microbial volatile organic compounds (MVOC) by means of ion mobility spectroscopy (IMS); Detektion leicht fluechtiger organischer Verbindungen mikrobiellen Ursprungs (MVOC) mittels Ionenmobilitaetsspektrometrie (IMS)

    Tiebe, Carlo

    2010-07-01

    Traces of microbial volatile organic compounds (MVOCs) can indicate the growth of moulds in the indoor air. The application of ion mobility spectrometry (IMS) is a very promising method for the detection of these MVOCs due to its high sensitivity. A mobile IMS device was tested to use this analytical-chemical method for in situ indoor air diagnostics. The first part of this work describes the test gas generation of 14 MVOCs in the laboratory. The test gases were produced by preparation of permeation procedures. Due to the MVOCs test gases IMS parameters like reduced mobility (K{sub 0}), relative drift time (t{sub rd}), the concentration dependency of MVOCs signals were determined and the limit of detection (LOD) was calculated. The LODs are in the range of 2 to 192 {mu}g m{sup -3} (1 to 51 ppb{sub V}). In the second part of this manuscript seven different mould species were cultivated on nutrient media and their MVOCs emissions were explored. It was found out, that the MVOCs emissions of moulds have a dependency of species and of their cultivation time. These results are confirmed by principal component analysis (PCA). The identification of these MVOCs was performed by test-related GC-MS analysis and approved these results. The MVOCs emissions were explored in the cultivation of mould mixtures on three different building materials. The IMS-results were interpreted chemo metrically by PCA. It was possible to find different emission patterns of cultivated moulds on building materials without an identification of the MVOCs inside the emission chamber. In 27 field trials of different indoor environments (rooms) the IMS was tested to detect MVOCs. In 59 % of the cases a positive correlation is determined between visible mould-infested rooms and the detected MVOCs by IMS. (orig.)

  12. The asylum-jihadism nexus: non-government actors and detection of jihadism among asylum seekers. : A case study of the Dutch Refugee Council and the guardianship organization for unaccompanied minors (Nidos).

    van Wijk, J.; Bolhuis, M.P.

    2017-01-01

    This article explores why, how and to what extent two non-government organizations working with asylum seekers in the Netherlands engage in the detection of jihadism. It concludes that the organizations acknowledge the importance of sharing possible signs of jihadism with relevant governmental

  13. Organic spintronics

    Naber, W J M; Faez, S; Wiel, W G van der

    2007-01-01

    We review the emerging field of organic spintronics, where organic materials are applied as a medium to transport and control spin-polarized signals. The contacts for injecting and detecting spins are formed by ferromagnetic metals, oxides, or inorganic semiconductors. First, the basic concepts of spintronics and organic electronics are addressed, and phenomena which are in particular relevant for organic spintronics are highlighted. Experiments using different organic materials, including carbon nanotubes, organic thin films, self-assembled monolayers and single molecules are then reviewed. Observed magnetoresistance points toward successful spin injection and detection, but spurious magnetoresistance effects can easily be confused with spin accumulation. A few studies report long spin relaxation times and lengths, which forms a promising basis for further research. We conclude with discussing outstanding questions and problems. (topical review)

  14. Highlight on the indigenous organic molecules detected on Mars by SAM and potential sources of artifacts and backgrounds generated by the sample preparation

    Buch, A.; Belmahdi, I.; Szopa, C.; Freissinet, C.; Glavin, D. P.; Coll, P. J.; Cabane, M.; Millan, M.; Eigenbrode, J. L.; Navarro-Gonzalez, R.; Stern, J. C.; Pinnick, V. T.; Coscia, D.; Teinturier, S.; Stambouli, M.; Dequaire, T.; Mahaffy, P. R.

    2015-12-01

    Among the experiments which explore the martian soil aboard the Curiosity Rover, SAM experiment is mainly dedicated to the search for indigenous organic compounds. To reach its goals SAM can operate in different analysis modes: Pyrolysis-GC-MS and Pyrolysis-MS (EGA). In addition SAM includes wet chemistry experiments [1] to supports extraction of polar organic compounds from solid samples that improves their detection either by increasing the release of chemical species from solid sample matrices, or by changing their chemical structure to make compounds more amenable to gas chromatography mass spectrometry (GCMS). The two wet chemistry experimental capabilities of SAM provide alternatives to the nominal inert-thermal desorption/pyrolysis analytical protocol and are more aptly suited for polar components: MTBSTFA derivatization [2-3] and TMAH thermochemolysis [4-5]. Here we focus on the MTBSTFA derivatization experiment. In order to build a support used to help the interpretation of SAM results, we have investigated the artifacts and backgrounds sources generated by the all analysis process: Solid sample were heated up to approximately 840°C at a rate of 35°C/min under He flow. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (Tenax®) over a specific temperature range. Adsorbed volatiles on the GC injection trap (IT) were then released into the GC column (CLP-MXT 30m x 0.25mm x 0.25μm) by rapidly heating the IT to 300°C. Then, in order better understand the part of compounds detected coming from internal reaction we have performed several lab experiments to mimic the SAM device: Among the sources of artifact, we test: (1) the thermal stability and the organic material released during the degradation of Tenax® and carbosieve, (2) the impact of MTBSTFA and a mixture of DMF and MTBSTFA on the adsorbent, (3) the reaction between the different adsorbents (Tenax® and Carbosieve) and calcium perchlorate and then (4) the sources

  15. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  16. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  17. Inorganic-organic Ag-rhodamine 6G hybrid nanorods: "turn on" fluorescent sensors for highly selective detection of Pb2+ ions in aqueous solution.

    Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D

    2012-02-07

    Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.

  18. Automatic on-line monitoring of atmospheric volatile organic compounds: Gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems

    Blas, Maite de; Navazo, Marino; Alonso, Lucio; Durana, Nieves; Iza, Jon

    2011-01-01

    Traditionally air quality networks have been carrying out the continuous, on-line measurement of volatile organic compounds (VOC) in ambient air with GC-FID. In this paper some identification and coelution problems observed while using this technique in long-term measurement campaigns are described. In order to solve these problems a GC-MS was set up and operated simultaneously with a GC-FID for C 2 -C 11 VOCs measurement. There are few on-line, unattended, long term measurements of atmospheric VOCs performed with GC-MS. In this work such a system has been optimized for that purpose, achieving good repeatability, linearity, and detection limits of the order of the GC-FID ones, even smaller in some cases. VOC quantification has been made by using response factors, which is not frequent in on-line GC-MS. That way, the identification and coelution problems detected in the GC-FID, which may led to reporting erroneous data, could be corrected. The combination of GC-FID and GC-MS as complementary techniques for the measurement of speciated VOCs in ambient air at sub-ppbv levels is proposed. Some results of the measurements are presented, including concentration values for some compounds not found until now on public ambient air VOC databases, which were identified and quantified combining both techniques. Results may also help to correct previously published VOC data with wrongly identified compounds by reprocessing raw chromatographic data.

  19. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

    Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J

    2014-04-01

    The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.

  20. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms.

    Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao

    2013-01-02

    Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.

  1. In-Vivo Detection and Tracking of T Cells in Various Organs in a Melanoma Tumor Model by 19F-Fluorine MRS/MRI.

    Christine Gonzales

    populations was insufficient for 19F-MRS/MRI detection in the tumor. While OVA-peptide-activated T cells (TOVA-act showed highest infiltration into all organs, SP were detected more reliably by 19F-MRS/MRI, most likely explained by cell division of TOVA-act after injection, which dilutes the 19F content in the T cell-infiltrated organs. Non-dividing 19F-labeled cell species appear most promising to be tracked by 19F-MRS/MRI.

  2. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  3. Sorption of chromium (VI) by Mg/Fe hydrotalcite type compunds

    García-Sosa, I., E-mail: irma.garcia@inin.gob.mx; Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química (Mexico); Nava, N., E-mail: tnava@imp.mx; Navarrete, J. [Instituto Mexicano del Petróleo (Mexico); Olguín, M. T., E-mail: teresa.olguin@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química (Mexico); Escobar, Luis, E-mail: luis.escobar@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Física (Mexico); López-Castañares, R., E-mail: rlc@anuies.mx; Olea-Cardoso, O., E-mail: olc@anuies.mx [Universidad Autónoma del Edo. de México, Facultad de Química (Mexico)

    2015-06-15

    The synthesis by co-precipitation and characterization by X-ray diffraction, Raman and Mössbauer spectroscopies of Mg-Fe-hydrotalcite compounds, and their sorption capacities for Cr(VI) in aqueous media were carried out. The average sorption capacity of Cr(VI) for the non-thermal treated samples was of 6.2 mg/g. The ferrihydrite was omnipresent in all prepared hydrotalcite samples. A brief discussion is made on the role of both the hydrotalcite and ferrihydrite for removing such amount of Cr(VI)

  4. Organization Design

    Milton Harris; Artur Raviv

    2002-01-01

    This paper attempts to explain organization structure based on optimal coordination of interactions among activities. The main idea is that each manager is capable of detecting and coordinating interactions only within his limited area of expertise. Only the CEO can coordinate company wide interactions. The optimal design of the organization trades off the costs and benefits of various configurations of managers. Our results consist of classifying the characteristics of activities and manager...

  5. Rapid evaluation technique to differentiate mushroom disease-related moulds by detecting microbial volatile organic compounds using HS-SPME-GC-MS.

    Radványi, Dalma; Gere, Attila; Jókai, Zsuzsa; Fodor, Péter

    2015-01-01

    Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to analyse microbial volatile organic compounds (MVOCs) of mushroom disease-related microorganisms. Mycogone perniciosa, Lecanicillum fungicola var. fungicola, and Trichoderma aggressivum f. europaeum species, which are typically harmful in mushroom cultivation, were examined, and Agaricus bisporus (bisporic button mushroom) was also examined as a control. For internal standard, a mixture of alkanes was used; these were introduced as the memory effect of primed septa in the vial seal. Several different marker compounds were found in each sample, which enabled us to distinguish the different moulds and the mushroom mycelium from each other. Monitoring of marker compounds enabled us to investigate the behaviour of moulds. The records of the temporal pattern changes were used to produce partial least squares regression (PLS-R) models that enabled determination of the exact time of contamination (the infection time of the media). Using these evaluation techniques, the presence of mushroom disease-related fungi can be easily detected and monitored via their emitted MVOCs.

  6. Lanthanum-Based Metal-Organic Frameworks for Specific Detection of Sudan Virus RNA Conservative Sequences down to Single-Base Mismatch.

    Yang, Shui-Ping; Zhao, Wei; Hu, Pei-Pei; Wu, Ke-Yang; Jiang, Zhi-Hong; Bai, Li-Ping; Li, Min-Min; Chen, Jin-Xiang

    2017-12-18

    Reactions of La(NO 3 ) 3 ·6H 2 O with the polar, tritopic quaternized carboxylate ligands N-carboxymethyl-3,5-dicarboxylpyridinium bromide (H 3 CmdcpBr) and N-(4-carboxybenzyl)-3,5-dicarboxylpyridinium bromide (H 3 CbdcpBr) afford two water-stable metal-organic frameworks (MOFs) of {[La 4 (Cmdcp) 6 (H 2 O) 9 ]} n (1, 3D) and {[La 2 (Cbdcp) 3 (H 2 O) 10 ]} n (2, 2D). MOFs 1 and 2 absorb the carboxyfluorescein (FAM)-tagged probe DNA (P-DNA) and quench the fluorescence of FAM via a photoinduced electron transfer (PET) process. The nonemissive P-DNA@MOF hybrids thus formed in turn function as sensing platforms to distinguish conservative linear, single-stranded RNA sequences of Sudan virus with high selectivity and low detection limits of 112 and 67 pM, respectively (at a signal-to-noise ratio of 3). These hybrids also exhibit high specificity and discriminate down to single-base mismatch RNA sequences.

  7. 3D TiO{sub 2} submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation

    Chen, Jianjun [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Su, Huilan, E-mail: hlsu@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); You, Xueling; Gao, Jing [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Lau, Woon Ming [Chengdu Green Energy and Green Manufacturing Technology R and D Center, Sichuan 610207 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Zhang, Di, E-mail: zhangdi@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-01-01

    Graphical abstract: - Highlights: • Contrive a multifunctional SERS substrate with 3D sub-micrometer structure and multicomponent. • The blue wing of butterfly (Euploea mulciber) is used as template for Ag/TiO{sub 2} nanocomposites. • The 3D submicrostructures Ag/TiO{sub 2} presents superior SERS effect and photocatalytic activity. • Pave a facile route to prepare multifunctional material by utilizing smart structural designs in nature. - Abstract: The blue wing of butterfly Euploea mulciber is used as a template to generate Ag/TiO{sub 2} nanocomposites. Thereinto, Ag nanoparticles are deposited uniformly onto TiO{sub 2} substrate with three dimensional (3D) submicrometer structures. This unique 3D sub-micrometer structures featured with ridges, ribs and struts can provide a large number of active “hot spots” for enhanced Raman signal. Meanwhile, depositing Ag onto the TiO{sub 2} surface can greatly boost its SERS effect and photocatalytic activity by bringing additional electrons into the molecules and inhibiting electrons–holes recombination. Thus, the as-prepared 3D Ag/TiO{sub 2} submicrostructures can not only offer sensitive and reproducible SERS signals, but also present superior photocatalytic activity, which can be utilized to detect and eliminate organic pollutants.

  8. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enhanced Isotopic Ratio Outlier Analysis (IROA Peak Detection and Identification with Ultra-High Resolution GC-Orbitrap/MS: Potential Application for Investigation of Model Organism Metabolomes

    Yunping Qiu

    2018-01-01

    Full Text Available Identifying non-annotated peaks may have a significant impact on the understanding of biological systems. In silico methodologies have focused on ESI LC/MS/MS for identifying non-annotated MS peaks. In this study, we employed in silico methodology to develop an Isotopic Ratio Outlier Analysis (IROA workflow using enhanced mass spectrometric data acquired with the ultra-high resolution GC-Orbitrap/MS to determine the identity of non-annotated metabolites. The higher resolution of the GC-Orbitrap/MS, together with its wide dynamic range, resulted in more IROA peak pairs detected, and increased reliability of chemical formulae generation (CFG. IROA uses two different 13C-enriched carbon sources (randomized 95% 12C and 95% 13C to produce mirror image isotopologue pairs, whose mass difference reveals the carbon chain length (n, which aids in the identification of endogenous metabolites. Accurate m/z, n, and derivatization information are obtained from our GC/MS workflow for unknown metabolite identification, and aids in silico methodologies for identifying isomeric and non-annotated metabolites. We were able to mine more mass spectral information using the same Saccharomyces cerevisiae growth protocol (Qiu et al. Anal. Chem 2016 with the ultra-high resolution GC-Orbitrap/MS, using 10% ammonia in methane as the CI reagent gas. We identified 244 IROA peaks pairs, which significantly increased IROA detection capability compared with our previous report (126 IROA peak pairs using a GC-TOF/MS machine. For 55 selected metabolites identified from matched IROA CI and EI spectra, using the GC-Orbitrap/MS vs. GC-TOF/MS, the average mass deviation for GC-Orbitrap/MS was 1.48 ppm, however, the average mass deviation was 32.2 ppm for the GC-TOF/MS machine. In summary, the higher resolution and wider dynamic range of the GC-Orbitrap/MS enabled more accurate CFG, and the coupling of accurate mass GC/MS IROA methodology with in silico fragmentation has great

  10. Enhanced Isotopic Ratio Outlier Analysis (IROA) Peak Detection and Identification with Ultra-High Resolution GC-Orbitrap/MS: Potential Application for Investigation of Model Organism Metabolomes.

    Qiu, Yunping; Moir, Robyn D; Willis, Ian M; Seethapathy, Suresh; Biniakewitz, Robert C; Kurland, Irwin J

    2018-01-18

    Identifying non-annotated peaks may have a significant impact on the understanding of biological systems. In silico methodologies have focused on ESI LC/MS/MS for identifying non-annotated MS peaks. In this study, we employed in silico methodology to develop an Isotopic Ratio Outlier Analysis (IROA) workflow using enhanced mass spectrometric data acquired with the ultra-high resolution GC-Orbitrap/MS to determine the identity of non-annotated metabolites. The higher resolution of the GC-Orbitrap/MS, together with its wide dynamic range, resulted in more IROA peak pairs detected, and increased reliability of chemical formulae generation (CFG). IROA uses two different 13 C-enriched carbon sources (randomized 95% 12 C and 95% 13 C) to produce mirror image isotopologue pairs, whose mass difference reveals the carbon chain length (n), which aids in the identification of endogenous metabolites. Accurate m/z, n, and derivatization information are obtained from our GC/MS workflow for unknown metabolite identification, and aids in silico methodologies for identifying isomeric and non-annotated metabolites. We were able to mine more mass spectral information using the same Saccharomyces cerevisiae growth protocol (Qiu et al. Anal. Chem 2016) with the ultra-high resolution GC-Orbitrap/MS, using 10% ammonia in methane as the CI reagent gas. We identified 244 IROA peaks pairs, which significantly increased IROA detection capability compared with our previous report (126 IROA peak pairs using a GC-TOF/MS machine). For 55 selected metabolites identified from matched IROA CI and EI spectra, using the GC-Orbitrap/MS vs. GC-TOF/MS, the average mass deviation for GC-Orbitrap/MS was 1.48 ppm, however, the average mass deviation was 32.2 ppm for the GC-TOF/MS machine. In summary, the higher resolution and wider dynamic range of the GC-Orbitrap/MS enabled more accurate CFG, and the coupling of accurate mass GC/MS IROA methodology with in silico fragmentation has great potential in

  11. Chromogenic media for the detection and/or enumeration of Listeria monocytogenes - results of trials performed by a working group of the International Organization for Standardization - ISO/TC 34/SC 9

    Beumer, R.R.; Hazeleger, W.C.

    2007-01-01

    The solid selective media PALCAM and Oxford agar originally described in the ISO (International Organization for Standardization) Standard 11290 part 1 and part 2 "Microbiology of food and animal feeding stuffs - Horizontal method for the detection and enumeration of Listeria monocytogenes", suffer

  12. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms.

    Lausch, V; Hermann, P; Laue, M; Bannert, N

    2014-06-01

    Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.

  13. Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125(Ti)/TiO2

    Jin, Dangqin; Yu, Liangyun; Xu, Qin; Hu, Xiaoya

    2015-01-01

    We describe a sensitive photoelectrochemical (PEC) sensor for the determination of the herbicide clethodim. The PEC sensor was constructed by using amino-MIL-125/TiO 2 (MIL stands for Materials from Institute Lavoisier), an amino-functionalized metal-organic framework (MOF) modified with TiO2. The amino-MIL-125/TiO 2 was synthesized by a simple one-step solvothermal method and placed on a glassy carbon electrode where it displays photoelectrocatalytic activity. Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and X-ray diffractometry (XRD) were used to characterize the amino-MIL-125/TiO2. In the sensing process, amino-MIL-125/TiO 2 is illuminated by visible light to produce electrons. These excited electrons are delivered to the glassy carbon electrode, leaving positively charged holes (h+) on the surface of the amino-MIL-125/TiO 2 . The holes react with H 2 O to generate hydroxy radicals (•OH). Clethodim rapidly attacks the hydroxy radicals and improves the efficiency of charge separation, this leading to an enhanced photocurrent. Under the optimal experimental conditions, this photoelectrochemical method enables clethodim to be quantified in the concentration range from 0.2 to 25 μmol L −1 , with a detection limit (3 S/N) of 10 nmol L −1 . The assay was applied to the determination of clethodim in soil samples, and results were in acceptable agreement with data obtained by liquid chromatography/mass spectrometry. (author)

  14. Detection of fluorescent organic nanoparticles by confocal laser endomicroscopy in a rat model of Barrett’s esophageal adenocarcinoma

    Dassie E

    2015-10-01

    Full Text Available Elisa Dassie,1,2,* Diletta Arcidiacono,2,3,* Iga Wasiak,4 Nunzio Damiano,5 Luigi Dall’Olmo,6 Cinzia Giacometti,7 Sonia Facchin,3 Mauro Cassaro,7 Ennio Guido,8 Franca De Lazzari,8 Oriano Marin,9,10 Tomasz Ciach,4 Suzanne Fery-Forgues,11,12 Alfredo Alberti,1,2 Giorgio Battaglia,13 Stefano Realdon13 1Department of Molecular Medicine, University of Padua, 2Venetian Institute of Molecular Medicine, 3Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; 4Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland; 5Department of Biomedical Sciences, University of Padua, Padua, 6Department of Emergency Medicine, “Santi Giovanni e Paolo” Hospital, Venice, 7Anatomic Pathology Unit, ULSS 15, Alta Padovana, Camposampiero, 8Gastroenterology Unit, Sant’Antonio Hospital, 9Interdepartmental Research Centre for Innovative Biotechnologies (CRIBI, University of Padua, 10Proteomics Facility, Azienda Ospedaliera di Padova, Padua, 11CNRS, ITAV-USR 3505, Toulouse, France; 12Université de Toulouse, ITAV-USR 3505, Toulouse, France; 13Endoscopy Unit, Veneto Institute of Oncology (IOV-IRCCS, Padua, Italy *These authors contributed equally to this work Abstract: For many years, novel strategies for cancer detection and treatment using nanoparticles (NPs have been developed. Esophageal adenocarcinoma is the sixth leading cause of cancer-related deaths in Western countries, and despite recent advances in early detection and treatment, its prognosis is still very poor. This study investigated the use of fluorescent organic NPs as potential diagnostic tool in an experimental in vivo model of Barrett’s esophageal adenocarcinoma. NPs were made of modified polysaccharides loaded with [4-(dicyanomethylene-2-methyl-6-(4-dimethylaminostyryl-4H-pyran] (DCM, a well-known fluorescent dye. The NP periphery might or might not be decorated with ASYNYDA peptide that has an affinity for esophageal cancer cells

  15. Detecting small-scale spatial differences and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-04-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial and temporal changes in SOC stocks, particularly pronounced on arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal as well as small-scale spatial dynamics of ΔSOC. Therefore, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) was used. To verify our method, results were compared with ΔSOC observed by soil resampling. AC measurements were performed from 2010 to 2014 under a silage maize/winter fodder rye/sorghum-Sudan grass hybrid/alfalfa crop rotation at a colluvial depression located in the hummocky ground moraine landscape of NE Germany. Widespread in large areas of the formerly glaciated Northern Hemisphere, this depression type is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity in soil properties, such as SOC and nitrogen (Nt). After monitoring the initial stage during 2010, soil erosion was experimentally simulated by incorporating topsoil material from an eroded midslope soil into the plough layer of the colluvial depression. SOC stocks were quantified before and after soil manipulation and at the end

  16. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-03-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able

  17. Biomarker case-detection and prediction with potential for functional psychosis screening: development and validation of a model related to biochemistry, sensory neural timing and end organ performance.

    Stephanie eFryar-Williams

    2016-04-01

    Full Text Available The Mental Health Biomarker Project aimed to discover case-predictive biomarkers for functional psychosis. In a retrospective, cross-sectional study, candidate marker results from 67, highly-characterized symptomatic participants were compared with results from 67 gender and age matched controls. Urine samples were analysed for catecholamines, their metabolites and hydroxylpyrolline-2-one, an oxidative stress marker. Blood samples were analyzed for vitamin and trace element cofactors of enzymes in the catecholamine synthesis and metabolism pathways. Cognitive, auditory and visual processing measures were assessed using a simple 45 minute, office-based procedure. Receiver Operating Curve (ROC and Odds Ratio analysis discovered biomarkers for deficits in folate, vitamin D and B6 and elevations in free copper to zinc ratio, catecholamines and the oxidative stress marker. Deficits were discovered in peripheral visual and auditory end-organ function, intra-cerebral auditory and visual processing speed and dichotic-listening performance. 15 ROC biomarker variables were divided into 5 functional domains. Through a repeated ROC process, individual ROC variables, followed by domains and finally the overall 15 set model, were dichotomously scored and tallied for abnormal results upon which it was found that ≥ 3 out of 5 abnormal domains achieved an AUC of 0.952 with a sensitivity of 84 per cent and a specificity of 90 percent. Six additional middle ear biomarkers in a 21 biomarker set increased sensitivity to 94% percent. Fivefold cross-validation yielded a mean sensitivity of 85% for the 15 biomarker set. Non-parametric regression analysis confirmed that ≥ 3 out of 5 abnormally scored domains predicted > 50% risk of case-ness whilst 4 abnormally-scored domains predicted 88% risk of case-ness and 100% diagnostic certainty was reached when all 5 domains were abnormally scored. These findings require validation in prospective cohorts and other mental

  18. The Sample at Mars Analysis (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars

    Sutter, Brad; Eigenbrode, Jennifer L.; Steele, Andrew; Ming, Douglas W.

    2016-01-01

    Sedimentary rock samples heated to 860 degrees Centigrade in the SAM (Sample at Mars) instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 degrees Centigrade), complex refractory organics/amorphous carbon (300-600 degrees Centigrade), and/or magmatic carbon (greater than 600 degrees Centigrade) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 degrees Centigrade) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 parts per million C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worst-case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1 percent of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 by 10 (sup 5) cells per gram sediment (assumes 9 by 10 (sup -7) microgram per cell and 0.5 micrograms C per microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on

  19. Detection of Porcine Circovirus Type 2 and Viral Replication by In Situ Hybridization in Primary Lymphoid Organs From Naturally and Experimentally Infected Pigs

    Hansen, Mette Sif; Segalés, J.; Fernandes, L.

    2013-01-01

    was not detected in the experimentally PCV2-inoculated pigs or the control animals. Among the PMWS-affected pigs, 19 of 20 (95%) thymuses were positive for PCV2 by CP ISH, and 7 of 19 (37%) of these also supported viral replication. By CP ISH, PCV2 was detected in 16 of 33 (48%) bone marrow samples, and 5 of 16...

  20. Non-linear effects in the radiolysis-optically detected ESR of radical-ion pairs in liquid and glassy solutions. Reactions and motion of organic radicals as studied by ESR and OD ESR spectroscopy

    Antzutkin, O.

    1992-01-01

    This thesis is divided into two sections. The first part covers an introduction to the Optically Detected Electron Spin Resonance (OD ESR) spectroscopy and a short description of the OD ESR spectrometer built in Linkoeping University in 1991. In the second section the following topics are discussed: Non-linear effects in OD ESR spectroscopy and Reactions and motion of organic radicals trapped in freon matrices. (19 refs.)

  1. Development and Validation of a P-35S, T-nos, T-35S and P-FMV Tetraplex Real-time PCR Screening Method to Detect Regulatory Genes of Genetically Modified Organisms in Food.

    Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda

    2014-10-01

    In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.

  2. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs.

  3. ANALYSIS OF SECONDARY ORGANIC AEROSOL COMPOUNDS FROM THE PHOTOOXIDATION OF D-LIMONENE IN THE PRESENCE OF NO X AND THEIR DETECTION IN AMBIENT PM 2.5

    Chemical analysis of secondary organic aerosol (SOA) from the photooxidation of a d-limonene/NOx/air mixture was carried out. SOA, generated in a smog chamber, was collected on Zefluor filters. To determine the structural characteristics of the compounds, the filter sample...

  4. Towards improving detection of early warning signals within organizations : an approach to the identification and utilization of underlying factors from an organizational perspective

    Luyk, J.

    2011-01-01

    In today’s society, there is a strong need for organizations to proactively manage risk given the increasing product, process and business chain complexity they are facing, and the increasingly dynamic and competitive environment in which they are operating. At the same time, these trends add to the

  5. Luminescent MOFs comprising mixed tritopic linkers and Cd(II)/Zn(II) nodes for selective detection of organic nitro compounds and iodine capture

    Rachuri, Yadagiri; Bisht, Kamal Kumar [Analytical Discipline and Centralized Instrument Facility, CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India); Academy of Scientific and Innovative Research (AcSIR), CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India); Parmar, Bhavesh [Analytical Discipline and Centralized Instrument Facility, CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India); Suresh, Eringathodi, E-mail: esuresh@csmcri.org [Analytical Discipline and Centralized Instrument Facility, CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India); Academy of Scientific and Innovative Research (AcSIR), CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India)

    2015-03-15

    Two CPs ([Cd{sub 3}(BTC){sub 2}(TIB){sub 2}(H{sub 2}O){sub 4}].(H{sub 2}O){sub 2}){sub n} (1) and ([Zn{sub 3}(BTC){sub 2}(TIB){sub 2}].(H{sub 2}O){sub 6}){sub n} (2) composed of tripodal linkers BTC (1,3,5-benzenetricarboxylate) and TIB (1,3,5-tris(imidazol-1-ylmethyl)benzene) were synthesized via solvothermal route and structurally characterized. Single crystal structural analysis reveals 1 possesses a novel 3D framework structure, whereas 2 represents a previously established compound. Owing to the d{sup 10} configuration of metal nodes and robust 3D frameworks, 1 and 2 exhibit excellent fluorescence properties which have been exploited to sense organic nitro compounds in vapor phase. Compound 1 demonstrates selective sensing of nitromethane over structurally similar methanol with ca. 70 and 43% fluorescence quenching in case of former and later. Similarly, 58% fluorescence quenching was observed in case of nitrobenzene over the structurally resembling toluene for which 30% quenching was observed. Compound 2 did not show any preference for nitro compounds and exhibited comparable fluorescence quenching when exposed to the vapors of nitro or other geometrically resembling organic molecules. Furthermore, adsorption experiments revealed that 1 and 2 can uptake 2.74 and 14.14 wt% molecular iodine respectively in vapor phase which can be released in organic solvents such as hexane and acetonitrile. The maximal iodine uptake in case of 1 and 2 corresponds to 0.15 and 0.80 molecules of iodine per formula unit of respective frameworks. Comprehensive structural description, thermal stability and luminescence behavior for both CPs has also been presented. - Graphical abstract: Two 3D luminescent CPs comprising mixed tripodal ligands have been hydrothermally synthesized and structurally characterized. Iodine encapsulation capacity of synthesized CPs is evaluated and their fluorescence quenching in presence of small organic molecules is exploited for sensing of nitro

  6. Organization and ELISA-Based Results of the First Proficiency Testing to Evaluate the Ability of European Union Laboratories to Detect Staphylococcal Enterotoxin Type B (SEB in Buffer and Milk

    Yacine Nia

    2016-09-01

    Full Text Available The aim of this work was to organize the first proficiency test (PT dedicated to staphylococcal enterotoxin B (SEB detection in milk and buffer solutions. This paper describes the organization of the PT trial according to EN ISO 17043 requirements. Characterization of the SEB stock solution was performed using SDS-PAGE and SE-specific ELISA, and amino acid analysis was used to assign its protein concentration. The solution was then used to prepare six PT materials (four milk and two buffer batches at a ng/g toxin level, which included one blank and one SEA-containing milk as specificity control. Suitable material homogeneity and stability were assessed using screening and quantitative ELISAs. Among the methods used by the participants, ELISA-based methods demonstrated their efficiency for the detection of SEB in both simple and complex matrices. The results serve as a basis for further improving the detection capabilities in expert laboratories and can therefore be considered as a contribution to biopreparedness.

  7. Organization within Organization Studies

    Lopdrup-Hjorth, Thomas

    This paper explores how prevalent contemporary problematizations of organizations coincide with a widespread assessment that Organization Studies (OS) has run out of steam. This impasse, the paper argues, is largely due to the emergence of an organization-phobia that has come to seize several...... strands of theorizing. By attending to the wide-ranging and far-reaching history of this organization-phobia, the paper argues that OS has become increasingly incapable of speaking about its core object. I show how organizations went from being conceptualized as entities of major importance to becoming...... credibility and legitimacy to begin with, the organization-phobia resulting from this history has been implicated in dismantling organizations, and in making OS progressively irrelevant to a wider public....

  8. Surface-enhanced Raman spectroscopy introduced into the International Standard Organization (ISO) regulations as an alternative method for detection and identification of pathogens in the food industry.

    Witkowska, Evelin; Korsak, Dorota; Kowalska, Aneta; Księżopolska-Gocalska, Monika; Niedziółka-Jönsson, Joanna; Roźniecka, Ewa; Michałowicz, Weronika; Albrycht, Paweł; Podrażka, Marta; Hołyst, Robert; Waluk, Jacek; Kamińska, Agnieszka

    2017-02-01

    We show that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast, reliable, and easy method for detection and identification of food-borne bacteria, namely Salmonella spp., Listeria monocytogenes, and Cronobacter spp., in different types of food matrices (salmon, eggs, powdered infant formula milk, mixed herbs, respectively). The main aim of this work was to introduce the SERS technique into three ISO (6579:2002; 11290-1:1996/A1:2004; 22964:2006) standard procedures required for detection of these bacteria in food. Our study demonstrates that the SERS technique is effective in distinguishing very closely related bacteria within a genus grown on solid and liquid media. The advantages of the proposed ISO-SERS method for bacteria identification include simplicity and reduced time of analysis, from almost 144 h required by standard methods to 48 h for the SERS-based approach. Additionally, PCA allows one to perform statistical classification of studied bacteria and to identify the spectrum of an unknown sample. Calculated first and second principal components (PC-1, PC-2) account for 96, 98, and 90% of total variance in the spectra and enable one to identify the Salmonella spp., L. monocytogenes, and Cronobacter spp., respectively. Moreover, the presented study demonstrates the excellent possibility for simultaneous detection of analyzed food-borne bacteria in one sample test (98% of PC-1 and PC-2) with a goal of splitting the data set into three separated clusters corresponding to the three studied bacteria species. The studies described in this paper suggest that SERS represents an alternative to standard microorganism diagnostic procedures. Graphical Abstract New approach of the SERS strategy for detection and identification of food-borne bacteria, namely S. enterica, L. monocytogenes, and C. sakazakii in selected food matrices.

  9. A Eu(III) doped metal-organic framework conjugated with fluorescein-labeled single-stranded DNA for detection of Cu(II) and sulfide.

    Weng, Han; Yan, Bing

    2017-10-02

    In this paper, Bio-MOF-1 is prepared as reported and then Eu 3+ is introduced into it via cation exchange method. A FAM-labeled ssDNA is chosen to fabricate with the obtained Eu 3+ @Bio-MOF-1. A luminescent hybrid material is assembled, which can exhibit the fluorescence of Eu 3+ and FAM simultaneously by adjusting the ratio of FAM-ssDNA and Eu 3+ @Bio-MOF-1. The sample is then used for the detecting of metal ions, results shows which has good selectively for Cu 2+ (LOD = 0.14 μM, 0-250 μM). The introduction of Cu 2+ can quench the fluorescence of FAM while the luminescent intensity of Eu 3+ enhancing. After the detection of Cu 2+ , the Cu 2+ involved hybrid system can then be further employed for the detection of S 2- (LOD = 1.3 μM, 0-50 μM). Low concentration of S 2- can make the luminescent intensity of Eu 3+ decrease gradually while high concentration of S 2- can further recover the luminescent of FAM, which is quenched by Cu 2+ . Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chemometric analysis for the detection of biogenic amines in Chilean Cabernet Sauvignon wines: a comparative study between organic and nonorganic production.

    Yañez, L; Saavedra, J; Martínez, C; Córdova, A; Ganga, M A

    2012-08-01

    In this work, the presence of biogenic amines (BAs) was correlated with the type of wine grape culture (traditional or organic) and their concentration in the different stages of winemaking (must, alcoholic fermentation [AF] and malolactic fermentation [MLF]). The formation of BA occurred mainly during MLF in which the percentages for putrescine, cadaverine, phenylethylamine, histamine, and tyramine were 100%, 70%, 13%, 61%, and 44% for the wines produced with traditional grapes and 100%, 94%, 25%, 88%, and 13% for the wines produced with organic grapes, respectively. In general, these latter wines exhibited a lower concentration of total amines. The principal component analysis and partial least-square discriminate analysis indicated that the generation of BA has a certain behavioral pattern in the wines analyzed, which is associated with the different stages of wine production and with the type of culture (traditional or organic) used in the wine grapes. Chemometrics tools can be useful as a method of characterization and classification in a global overview of the process variables involved in the development of toxic chemicals in foods, such as the production of BA in wine. © 2012 Institute of Food Technologists®

  11. Self-organizing neural networks for automatic detection and classification of contrast-enhancing lesions in dynamic MR-mammography; Selbstorganisierende neuronale Netze zur automatischen Detektion und Klassifikation von Kontrast(mittel)-verstaerkten Laesionen in der dynamischen MR-Mammographie

    Vomweg, T.W.; Teifke, A.; Kauczor, H.U.; Achenbach, T.; Rieker, O.; Schreiber, W.G.; Heitmann, K.R.; Beier, T.; Thelen, M. [Klinik und Poliklinik fuer Radiologie, Klinikum der Univ. Mainz (Germany)

    2005-05-01

    Purpose: Investigation and statistical evaluation of 'Self-Organizing Maps', a special type of neural networks in the field of artificial intelligence, classifying contrast enhancing lesions in dynamic MR-mammography. Material and Methods: 176 investigations with proven histology after core biopsy or operation were randomly divided into two groups. Several Self-Organizing Maps were trained by investigations of the first group to detect and classify contrast enhancing lesions in dynamic MR-mammography. Each single pixel's signal/time curve of all patients within the second group was analyzed by the Self-Organizing Maps. The likelihood of malignancy was visualized by color overlays on the MR-images. At last assessment of contrast-enhancing lesions by each different network was rated visually and evaluated statistically. Results: A well balanced neural network achieved a sensitivity of 90.5% and a specificity of 72.2% in predicting malignancy of 88 enhancing lesions. Detailed analysis of false-positive results revealed that every second fibroadenoma showed a 'typical malignant' signal/time curve without any chance to differentiate between fibroadenomas and malignant tissue regarding contrast enhancement alone; but this special group of lesions was represented by a well-defined area of the Self-Organizing Map. Discussion: Self-Organizing Maps are capable of classifying a dynamic signal/time curve as 'typical benign' or 'typical malignant'. Therefore, they can be used as second opinion. In view of the now known localization of fibroadenomas enhancing like malignant tumors at the Self-Organizing Map, these lesions could be passed to further analysis by additional post-processing elements (e.g., based on T2-weighted series or morphology analysis) in the future. (orig.)

  12. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry.

    Du, Bowen; Lofton, Jonathan M; Peter, Katherine T; Gipe, Alexander D; James, C Andrew; McIntyre, Jenifer K; Scholz, Nathaniel L; Baker, Joel E; Kolodziej, Edward P

    2017-09-20

    Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log K ow vs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban

  13. Swellable molecularly imprinted polyN-(N-propyl)acrylamide particles for detection of emerging organic contaminants using surface plasmon resonance spectroscopy.

    Lavine, Barry K; Westover, David J; Kaval, Necati; Mirjankar, Nikhil; Oxenford, Leah; Mwangi, George K

    2007-05-15

    Lightly crosslinked theophylline imprinted polyN-(N-propyl)acrylamide particles (ca. 300nm in diameter) that are designed to swell and shrink as a function of analyte concentration in aqueous media were spin coated onto a gold surface. The nanospheres responded selectively to the targeted analyte due to molecular imprinting. Chemical sensing was based on changes in the refractive index of the imprinted particles that accompanied swelling due to binding of the targeted analyte, which was detected using surface plasmon resonance (SPR) spectroscopy. Because swelling leads to an increase in the percentage of water in the polymer, the refractive index of the polymer nanospheres decreased as the particles swelled. In the presence of aqueous theophylline at concentrations as low as 10(-6)M, particle swelling is both pronounced and readily detectable. The full scale response of the imprinted particles to template occurs in less than 10min. Swelling is also reversible and independent of the ionic strength of the solution in contact with the polymer. Replicate precision is less than 10(-4) RI units. By comparison, there is no response to caffeine which is similar in structure to theophylline at concentrations as high as 1x10(-2)M. Changes in the refractive index of the imprinted polymer particles, as low as 10(-4) RI units could be readily detected. A unique aspect of the prepared particles is the use of light crosslinking rather than heavy crosslinking. This is a significant development as it indicates that heavy crosslinking is not entirely necessary for selectivity in molecular imprinting with polyacrylamides.

  14. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks.

    Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2015-08-12

    A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Detection of low-frequency organized structures in night-time air flow within a spruce canopy on the upwind and downwind sides of a mountain ridge

    Potužníková, Kateřina; Sedlák, Pavel; Koucká Knížová, Petra

    2015-01-01

    Roč. 16, č. 4 (2015), s. 432-437 ISSN 1530-261X R&D Projects : GA ČR(CZ) GP205/05/P564; GA ČR(CZ) GA15-24688S; GA AV ČR(CZ) IAA300420803 Institutional support: RVO:68378289 Keywords : nocturnal boundary layer * turbulence * organized structures * complex terrain * forest canopy * wavelet transform Subject RIV: DG - Athmosphere Science s, Meteorology Impact factor: 1.570, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/asl.578/epdf

  16. Aflatoxin B1 Detection Using a Highly-Sensitive Molecularly-Imprinted Electrochemical Sensor Based on an Electropolymerized Metal Organic Framework

    Mengjuan Jiang

    2015-09-01

    Full Text Available A sensitive electrochemical molecularly-imprinted sensor was developed for the detection of aflatoxin B1 (AFB1, by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles in the presence of AFB1 as a template molecule. The extraction of the template leads to the formation of cavities that are able to specifically recognize and bind AFB1 through π-π interactions between AFB1 molecules and aniline moities. The performance of the developed sensor for the detection of AFB1 was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as a redox probe, the electron transfer rate increasing when the concentration of AFB1 increases, due to a p-doping effect. The molecularly-imprinted sensor exhibits a broad linear range, between 3.2 fM and 3.2 µM, and a quantification limit of 3 fM. Compared to the non-imprinted sensor, the imprinting factor was found to be 10. Selectivity studies were also performed towards the binding of other aflatoxins and ochratoxin A, proving good selectivity.

  17. Validate or falsify: Lessons learned from a microscopy method claimed to be useful for detecting Borrelia and Babesia organisms in human blood.

    Aase, Audun; Hajdusek, Ondrej; Øines, Øivind; Quarsten, Hanne; Wilhelmsson, Peter; Herstad, Tove K; Kjelland, Vivian; Sima, Radek; Jalovecka, Marie; Lindgren, Per-Eric; Aaberge, Ingeborg S

    2016-01-01

    A modified microscopy protocol (the LM-method) was used to demonstrate what was interpreted as Borrelia spirochetes and later also Babesia sp., in peripheral blood from patients. The method gained much publicity, but was not validated prior to publication, which became the purpose of this study using appropriate scientific methodology, including a control group. Blood from 21 patients previously interpreted as positive for Borrelia and/or Babesia infection by the LM-method and 41 healthy controls without known history of tick bite were collected, blinded and analysed for these pathogens by microscopy in two laboratories by the LM-method and conventional method, respectively, by PCR methods in five laboratories and by serology in one laboratory. Microscopy by the LM-method identified structures claimed to be Borrelia- and/or Babesia in 66% of the blood samples of the patient group and in 85% in the healthy control group. Microscopy by the conventional method for Babesia only did not identify Babesia in any samples. PCR analysis detected Borrelia DNA in one sample of the patient group and in eight samples of the control group; whereas Babesia DNA was not detected in any of the blood samples using molecular methods. The structures interpreted as Borrelia and Babesia by the LM-method could not be verified by PCR. The method was, thus, falsified. This study underlines the importance of doing proper test validation before new or modified assays are introduced.

  18. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis

    Yuan, Dong-hai; Guo, Xu-jing; Wen, Li; He, Lian-sheng; Wang, Jing-gang; Li, Jun-qi

    2015-01-01

    Fluorescence excitation-emission matrix (EEM) spectra coupled with parallel factor analysis (PARAFAC) was used to characterize dissolved organic matter (DOM) derived from macrophyte decomposition, and to study its complexation with Cu (II) and Cd (II). Both the protein-like and the humic-like components showed a marked quenching effect by Cu (II). Negligible quenching effects were found for Cd (II) by components 1, 5 and 6. The stability constants and the fraction of the binding fluorophores for humic-like components and Cu (II) can be influenced by macrophyte decomposition of various weight gradients in aquatic plants. Macrophyte decomposition within the scope of the appropriate aquatic phytomass can maximize the stability constant of DOM-metal complexes. A large amount of organic matter was introduced into the aquatic environment by macrophyte decomposition, suggesting that the potential risk of DOM as a carrier of heavy metal contamination in macrophytic lakes should not be ignored. - Highlights: • Macrophyte decomposition increases fluorescent DOM components in the upper sediment. • Protein-like components are quenched or enhanced by adding Cu (II) and Cd (II). • Macrophyte decomposition DOM can impact the affinity of Cu (II) and Cd (II). • The log K M and f values showed a marked change due to macrophyte decomposition. • Macrophyte decomposition can maximize the stability constant of DOM-Cu (II) complexes. - Macrophyte decomposition DOM can influence on the binding affinity of metal ions in macrophytic lakes

  19. Detection of rabies virus nucleoprotein-RNA in several organs outside the Central Nervous System in naturally-infected vampire bats

    Luiz F. P Vieira

    2011-10-01

    Full Text Available Rabies is a neurological disease, but the rabies virus spread to several organs outside the central nervous system (CNS. The rabies virus antigen or RNA has been identified from the salivary glands, the lungs, the kidneys, the heart and the liver. This work aimed to identify the presence of the rabies virus in non-neuronal organs from naturally-infected vampire bats and to study the rabies virus in the salivary glands of healthy vampire bats. Out of the five bats that were positive for rabies in the CNS, by fluorescent antibody test (FAT, viral isolation in N2A cells and reverse transcription - polymerase chain reaction (RT-PCR, 100% (5/5 were positive for rabies in samples of the tongue and the heart, 80% (4/5 in the kidneys, 40% (2/5 in samples of the salivary glands and the lungs, and 20% (1/5 in the liver by RT-PCR test. All the nine bats that were negative for rabies in the CNS, by FAT, viral isolation and RT-PCR were negative for rabies in the salivary glands by RT-PCR test. Possible consequences for rabies epidemiology and pathogenesis are discussed in this work.

  20. Detection rates, trends in and factors affecting observed levels of selected volatile organic compounds in blood among US adolescents and adults.

    Jain, Ram B

    2017-12-01

    Data from National Health and Nutrition Examination Survey were analyzed to evaluate detection rates, trend in and factors affecting the observed levels of 1,4-dichlorobenzene, benzene, ethylbenzene, o-xylene, styrene, toluene, and m/p-xylene among US adolescents and adults over 2005-2012. Over 2005-20102, among adolescents, detection rates declined by more than 50% for benzene, ethylbenzene, and o-xylene, and among adults, detection rates declined by more than 50% for ethylbenzene and o-xylene and by a little less than 50% for benzene. Among adults, adjusted levels of 1, 4-dichlorobenzene, benzene, ethylbenzene, o-xylene, toluene, and m/p-xylene decreased by 13.7%, 17.1%, 20%, 17.7%, 23.2%, and 18.7% respectively for every two-year survey cycle. Among adolescents, percentage decline in the levels of 1, 4-dichlorobenzene, benzene, ethylbenzene, o-xylene, styrene, toluene, and m/p-xylene was 15.2%, 21.4%, 19.3%, 16.1%, 47.8%, and 17.7% respectively for every two year survey period. The ratio of adjusted geometric means for adult smokers as compared to adult nonsmokers was 10.7 for benzene, 3.5 for ethylbenzene, 2.0 for o-xylene, 3.4 for styrene, 3.5 for toluene, and 2.2 for m/p-xylene. Among adolescents, gender did not affect the adjusted levels of any of the seven VOCs, and the order in which adjusted levels for 1, 4-dichlorobenzene by race/ethnicity was observed was: non-Hispanic white (0.038ng/mL)non-Hispanic black (0.178ng/mL) and most of the pairwise comparisons were statistically significantly different (pvs. 0.025ng/mL). For adults, gender did not affect the adjusted levels of 1, 4-dicholorobenzene, ethylbenzene, o-xylene, styrene, toluene, and m/p-xylene. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. One-step immunochromatographic visual assay for anti-transglutaminase detection in organ culture system: An easy and prompt method to simplify the in vitro diagnosis of celiac disease.

    Di Tola, Marco; Marino, Mariacatia; Casale, Rossella; Borghini, Raffaele; Tiberti, Antonio; Donato, Giuseppe; Occhiuzzi, Umberto; Picarelli, Antonio

    2018-01-01

    Anti-tissue transglutaminase (anti-tTG) and endomysium antibodies (EMA) are detectable in duodenal culture media of celiac disease (CD) patients. To improve the management of this organ culture system, we evaluated the anti-tTG occurrence by immunochromatographic assay (ICA). A total of 103 CD patients and 41 disease controls underwent duodenal biopsy for the organ culture. In culture supernatants, IgA anti-tTG were tested by both enzyme-linked immunosorbent assay (ELISA) and ICA, IgA EMA were searched by indirect immunofluorescence analysis (iIFA). Endomysium antibodies and anti-tTG measured by ELISA were positive in culture media of all CD patients, while anti-tTG detected by ICA were positive in culture media of 87/103 CD patients. Anti-tTG ICA scores significantly correlated with anti-tTG ELISA values (r=.71, Pculture media of most CD patients and the intensity of indicative lines depends on the anti-tTG concentration. Sensitivity and diagnostic accuracy achieved with ICA are lower than those obtained with ELISA but, given that the first is a more easy and prompt method, data suggest the possibility of utilizing it in the in vitro diagnosis of CD. © 2017 Wiley Periodicals, Inc.

  2. Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples.

    Ramaraj, Sukanya; Mani, Sakthivel; Chen, Shen-Ming; Kokulnathan, Thangavelu; Lou, Bih-Show; Ali, M Ajmal; Hatamleh, A A; Al-Hemaid, Fahad M A

    2018-03-15

    Recently, the multiferroic material has fabulous attention in numerous applications owing to its excellent electronic conductivity, unique mechanical property, and higher electrocatalytic activity, etc. In this paper, we reported that the synthesis of bismuth ferrite (BiFeO 3 ) nanosheets integrated functionalized carbon nanofiber (BiFeO 3 NS/F-CNF) nanocomposite using a simple hydrothermal technique. Herein, the structural changes and crystalline property of prepared BiFeO 3 NS/F-CNF nanocomposite were characterized using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). From this detailed structural evolution, the formation of nanosheets like BiFeO 3 and its nanocomposite with F-CNF were scrutinized and reported. Furthermore, the as-prepared BiFeO 3 NS/F-CNF nanocomposite modified glassy carbon electrode (GCE) was applied for electrochemical detection of catechol (CC). As expected, BiFeO 3 NS/F-CNF/GCE shows excellent electrocatalytic activity as well as 3.44 (F-CNF/GCE) and 7.92 (BiFeO 3 NS/GCE) fold higher electrochemical redox response for CC sensing. Moreover, the proposed sensor displays a wide linear range from 0.003 to 78.02 µM with a very low detection limit of 0.0015 µM. In addition, we have validated the real-time application of our developed CC sensor in different water samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Decay of organic free radicals in γ-ray irradiated pepper during thermal treatment as detected by electron spin resonance spectroscopy

    Ukai, Mitsuko; Shimoyama, Yuhei

    2004-01-01

    Using electron spin resonance (ESR) spectroscopy we analysed the thermal decay process of radicals in γ-Irradiated pepper Upon irradiation, the satellite signals were newly induced and appeared at the symmetric positions of the organic free radical, i.e., the g=2.0 signal. Heat treatment decreased the satellite signals exponentially. The ESR signal of the pepper heated for more than 10 min was essentially the same as that before irradiation. To evaluate the radical decay by heat-treatment, we formulated a time-dependent master equation. We could evaluate the time constant of the radical decay based upon the general solution of the equation together with the nonlinear least-squares method

  4. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    A. T. Ahern

    2016-12-01

    Full Text Available Biomass burning is a large source of light-absorbing refractory black carbon (rBC particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  5. Cutaneous leishmaniosis in naturally infected dogs in Paraná, Brazil, and the epidemiological implications of Leishmania (Viannia) braziliensis detection in internal organs and intact skin.

    Marquez, Ellen de Souza; de Castro, Edilene Alcântara; Nabut, Luciene Biazono; da Costa-Ribeiro, Magda Clara Vieira; Dela Coletta Troiano Araújo, Ludmilla; Poubel, Saloe Bispo; Gonçalves, André Luiz; Cruz, Mariza Fordellone Rosa; Dos Santos Trad, Ana Paula Millet Evangelista; Dias, Rafael Andre Ferreira; Navarro, Italmar Teodorico; Thomaz-Soccol, Vanete

    2017-08-30

    Environmental changes have occurred over the years, altering the eco-epidemiological pattern of leishmaniosis in the State of Paraná, Brazil, involving the pillars of the cycle (parasite, vectors, reservoir, and environment) and their interaction. Much has been discussed about the dog's role as a reservoir of the Leishmania (Viannia) braziliensis Vianna, 1911 transmission cycle. However, this question remains unanswered. The purpose of this study was to investigate, using parasitological and molecular methods, different samples in eight naturally infected dogs from an endemic rural locality where only L. (V.) braziliensis is present, and where human cases have been previously notified. Blood and biopsied organ samples from naturally infected dogs were analyzed by culture media, PCR, random amplified polymorphic DNA and sequencing methodologies. Only skin lesions from all dogs yielded positive cultures and when PCR was performed, L. (V.) braziliensis DNA was amplified from intact skin, peripheral blood, bone marrow, spleen, liver and lymph nodes. RAPD was also applied to isolates from the skin lesions, exhibiting the genetic variability of the parasite identified. To confirm which species of Leishmania was amplified in PCR, the sequencing method was performed, verifying 100% similarity with the Viannia subgenus. This study showed that L. (V.) braziliensis can spread to other sites besides the ulcerous lesions, such as intact skin, peripheral blood and internal organs, making it possibility for dogs to serve as active sources of parasite transmission. For definitive proof, xenodiagnostic test on intact skin of infected dogs, should be done. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Detection of volatile organic compounds using an optical fiber sensor coated with a sol-gel silica layer containing immobilized Nile red

    Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Han, Wei; Wei, Fangfang; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2017-04-01

    A simple volatile organic compound (VOC) sensor based on a tapered small core singlemode fiber (SCSMF) structure is reported. The tapered SCSMF fiber structure with a waist diameter of 7.0 μm is fabricated using a customized microheater brushing technique. Silica based material containing immobilized Nile red was prepared by a sol-gel method and was used as a coating applied to the surface of the tapered fiber structure. Different coating thicknesses created by a 2-pass and 4-pass coating process are investigated. The experiments demonstrate that both sensors show a linear response at different gas concentrations to all three tested VOCs (methanol, ethanol and acetone). The sensor with a thicker coating shows better sensitivities but longer response and recovery times. The best measurement resolutions for the 4-pass coating sensor are estimated to be 2.3 ppm, 1.5 ppm and 3.1 ppm for methanol, ethanol and acetone, respectively. The fastest response and recovery time of 1 min and 5 min are demonstrated by the sensor in the case of methanol.

  7. Accurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection.

    Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J

    2018-04-01

    For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.

  8. Performance of QuantiFERON TB Gold test in detecting latent tuberculosis infection in brain-dead organ donors in Iran: a brief report.

    Tabarsi, Payam; Yousefzadeh, Amir; Najafizadeh, Katayoun; Droudinia, Atousa; Bayati, Rouzbeh; Marjani, Majid; Shafaghi, Shadi; Farokhzad, Banafsheh; Javanmard, Pedram; Velayati, Ali Akbar

    2014-11-01

    With regard to the significant morbidity and mortality due to tuberculosis in lung transplant recipients, the identification of brain-dead organ donors with latent tuberculosis by use of the QuantiFERON TB Gold (QFT-G) test may be of help to reduce the risk of TB reactivation and mortality in lung recipients. This study was conducted in the National Research Institute of Tuber-culosis and Lung Diseases (NRITLD) in Iran, from January to March 2013. A total of 38 conse-cutive brain-dead donors, not currently infected with active tuberculosis, were recruited. The medi-cal records of all the study enrollees were reviewed. A whole-blood IFN- release assay (IGRA) in reaction to early secreted antigenic target 6 (ESAT-6), culture filtrate protein 10 (CFP-10), and TB7.7 antigens, was performed and the released Interferon- was measured via enzyme-linked immunosorbent assay (ELISA). The data was analyzed with QFT-G software which was provided by the company. The demographic, characteristics and other variables were entered into SPSS version 11.5. The QFT-G test results of three donors (7.9%) turned out to be positive, negative for 24 donors (63.1%), and indeterminate for 11 cases (28.9%). Our study revealed the potential advantages of QFT-G in lowering the incidence of donor-derived post-transplant tuberculosis among lung recipients. However, a high rate of indeterminate results restricted the performance of QFT-G in this study.

  9. Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution

    Chow, Edith; Herrmann, Jan; Barton, Christopher S.; Raguse, Burkhard; Wieczorek, Lech

    2009-01-01

    The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a 'coffee ring'-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both 'coffee ring' and 'flat' films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the 'coffee ring' film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution

  10. Performance of QuantiFERON TB Gold test in detecting latent tuberculosis infection in brain-dead organ donors in Iran: A brief report

    Payam Tabarsi

    2014-01-01

    Full Text Available With regard to the significant morbidity and mortality due to tuberculosis in lung transplant recipients, the identification of brain-dead organ donors with latent tuberculosis by use of the QuantiFERON TB Gold (QFT-G test may be of help to reduce the risk of TB reactivation and mortality in lung recipients. This study was conducted in the National Research Institute of Tuber-culosis and Lung Diseases (NRITLD in Iran, from January to March 2013. A total of 38 conse-cutive brain-dead donors, not currently infected with active tuberculosis, were recruited. The medi-cal records of all the study enrollees were reviewed. A whole-blood IFN- release assay (IGRA in reaction to early secreted antigenic target 6 (ESAT-6, culture filtrate protein 10 (CFP-10, and TB7.7 antigens, was performed and the released Interferon- was measured via enzyme-linked immunosorbent assay (ELISA. The data was analyzed with QFT-G software which was provided by the company. The demographic, characteristics and other variables were entered into SPSS version 11.5. The QFT-G test results of three donors (7.9% turned out to be positive, negative for 24 donors (63.1%, and indeterminate for 11 cases (28.9%. Our study revealed the potential advantages of QFT-G in lowering the incidence of donor-derived post-transplant tuberculosis among lung recipients. However, a high rate of indeterminate results restricted the performance of QFT-G in this study.

  11. Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution

    Chow, Edith [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia)], E-mail: Edith.Chow@csiro.au; Herrmann, Jan; Barton, Christopher S.; Raguse, Burkhard; Wieczorek, Lech [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia)

    2009-01-19

    The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a 'coffee ring'-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both 'coffee ring' and 'flat' films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the 'coffee ring' film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution.

  12. Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection

    Machado, Maria Elisabete; Cappelli Fontanive, Fernando; Bastos Caramao, Elina; Alcaraz Zini, Claudia [Universidade Federal do Rio Grande do Sul, Instituto de Quimica, Porto Alegre, RS (Brazil); Oliveira, Jose Vladimir de [URI, Universidade Regional Integrada do Alto Uruguai e das Missoes, Erechim, RS (Brazil)

    2011-11-15

    The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO{sub x} gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC x GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC x GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC x GC. (orig.)

  13. Knowledge Organization = Information Organization?

    Hjørland, Birger

    Are the terms ―information organization‖ (IO), ―organization of information‖ (OI) and ―information architecture‖ (IA) synonyms for knowledge organization (KO)? This study uses bibliometric methods, among others, to determine some relations between these terms and their meanings. Apparently the data...... shows that these terms should not be considered synonyms because each of the terms IO, OI, IA and KO produce a different set of high ranked authors, journals and papers. In many cases the terms are, however, used interchangeably (and thus indicating synonymity) and it is argued that the underlying...

  14. Organ Donation

    Organ donation takes healthy organs and tissues from one person for transplantation into another. Experts say that the organs ... and bone marrow Cornea Most organ and tissue donations occur after the donor has died. But some ...

  15. Sorptive extraction using polydimethylsiloxane/metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin

    2014-08-22

    In this work, metal-organic frameworks (MOFs, Al-MIL-53-NH₂) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metal-organic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH₂)-coated stir bars were prepared by the sol-gel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n=7) within one batch and from 6.2% to 16.9% (n=6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good RSDs (n=7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N=3) of the developed method for the target PAHs were found to be in the range of 0.05-2.94 ng/L. The developed method was successfully applied to the analysis of PAHs in Yangtze River and East Lake water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection-An efficient tool for monitoring of inborn metabolic disorders

    Tuma, Petr, E-mail: petr.tuma@lf3.cuni.cz [Institute of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10 (Czech Republic); Samcova, Eva [Institute of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10 (Czech Republic); Stulik, Karel [Department of Analytical Chemistry, Charles University, Albertov 2030, 128 43 Prague 2 (Czech Republic)

    2011-01-24

    A mixture of 29 organic acids (OAs) occurring in urine was analyzed by capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C{sup 4}D) and UV photometric detection. The optimized analytical system involved a 100 cm long polyacrylamide-coated capillary (50 {mu}m i.d.) and the background electrolyte of 20 mM 2-morpholinoethanesulfonic acid (MES)/NaOH + 10% (v/v) methanol, pH 6.0 (pH is related to the 20 mM MES/NaOH buffer in water). The LOD values obtained by C{sup 4}D for the OAs which do not absorb UV radiation range from 0.6 {mu}M (oxalic acid) to 6.8 {mu}M (pyruvic acid); those obtained by UV photometry for the remaining OAs range from 2.9 {mu}M (5-hydroxy-3-indoleacetic acid) to 10.2 {mu}M (uric acid). The repeatability of the procedure developed is characterized by the coefficients of variation, which vary between 0.3% (tartaric acid) and 0.6% (5-hydroxy-3-indoleacetic acid) for the migration time and between 1.3% (tartaric acid) and 3.5% (lactic acid) for the peak area. The procedure permitted quantitation of 20 OAs in a real urine sample and was applied to monitoring of the occurrence of the inborn metabolic fault of methylmalonic aciduria.

  17. Simultaneous quantification of eight organic acid components in Artemisia capillaris Thunb (Yinchen extract using high-performance liquid chromatography coupled with diode array detection and high-resolution mass spectrometry

    Fangjun Yu

    2018-04-01

    Full Text Available We aim to determine the chemical constituents of Yinchen extract and Yinchen herbs using high-performance liquid chromatography coupled with diode array detection and high-resolution mass spectrometry. The method was developed to analyze of eight organic acid components of Yinchen extract (including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, 1,3-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid. The separation was conducted using an Agilent TC-C18 column with acetonitrile – 0.2% formic acid solution as the mobile phases under gradient elution. The analytical method was fully validated in terms of linearity, sensitivity, precision, repeatability as well as recovery, and subsequently the method was performed for the quantitative assessment of Yinchen extracts and Yinchen herbs. In addition, the changes of selected markers were studied when Yinchen herbs decocting in water and isomerization occurred between the chlorogenic acids. The proposed method enables both qualitative and quantitative analyses and could be developed as a new tool for the quality evaluation of Yinchen extract and Yinchen herbs. The changes of selected markers in water decoction process could give us some novel idea when studying the link between substances and drug efficacy. Keywords: Artemisia capillaris Thunb (Yinchen extract, Quality control, Organic acid, Transformation pathways, High-performance liquid chromatography

  18. Ion Formation Resulting from Freezing, Thawing, and Collisional Processes in Plumes Emitted from Planetary Bodies: Implications for Plume Chemistry and the Detection of Trace Organics Present in Enceladus Geysers

    Beauchamp, J. L.; Wiley, J. S.; Thomas, D. A.

    2014-12-01

    Icy plumes emitted into space from Enceladus and other planetary bodies offer the intriguing possibility of sampling the composition of subsurface liquid reservoirs that may comprise habitable zones of particular astrobiological significance in our solar system. Mass spectrometric sampling of plume materials enables the detection of molecules that facilitate an assessment of the extent of chemical and biological evolution that may have occurred in a subsurface sea. In laboratory experiments we have investigated the physical and chemical processes that occur in the complex plume environment that lead to ionization of trace organic constituents, both as a result of the freezing of liquid droplets and the thawing of icy particles. We also demonstrate that collisions between icy particles lead to triboelectric charging. Subsequent discharges between oppositely charged particles result not only in the ionization of trace organics but to chemical reactions between molecular components present in the particles. For example, nitriles react with water to form amides and acids. In particular, icy particles doped with small amounts of aminoacetonitrile and water lead to the formation of the simplest amino acid glycine. The implications which these observations may have for sampling plume composition from orbit in a future mission to Enceladus will be discussed.

  19. Deep K-band Observations of TMC-1 with the Green Bank Telescope: Detection of HC7O, Nondetection of HC11N, and a Search for New Organic Molecules

    Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y.-J.

    2017-12-01

    The 100 m Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8+/- 0.9)× {10}11 cm-2. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H-, and/or reaction of C6H2 + with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the first detections of emission from individual 13C isotopologues of HC7N, and derive abundance ratios HC7N/HCCC13CCCCN = 110 ± 16 and HC7N/HCCCC13CCCN = 96 ± 11, indicative of significant 13C depletion in this species relative to the local interstellar elemental 12C/13C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4× {10}10 {{cm}}-2 (at 95% confidence). This is significantly lower than the value of 2.8× {10}11 {{cm}}-2 previously claimed by Bell et al. and confirms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.

  20. Fermilab | About | Organization | Fermilab Organization

    Industry Students and teachers Media Organization Fermilab Organization Organization Fermilab Org Chart Accelerator Division Accelerator Physics Center CMS Center Core Computing Division ESH&Q FESS Finance Section LBNF Project Line Organization LBNF Project Director LCLS-II

  1. Direct Detection of Complex Organic Products in Ultraviolet (Lyα) and Electron-irradiated Astrophysical and Cometary Ice Analogs Using Two-step Laser Ablation and Ionization Mass Spectrometry

    Henderson, Bryana L.; Gudipati, Murthy S.

    2015-02-01

    As discovery of complex molecules and ions in our solar system and the interstellar medium has proliferated, several groups have turned to laboratory experiments in an effort to simulate and understand these chemical processes. So far only infrared (IR) and ultraviolet (UV) spectroscopy has been able to directly probe these reactions in ices in their native, low-temperature states. Here we report for the first time results using a complementary technique that harnesses two-step two-color laser ablation and ionization to measure mass spectra of energetically processed astrophysical and cometary ice analogs directly without warming the ices—a method for hands-off in situ ice analysis. Electron bombardment and UV irradiation of H2O, CH3OH, and NH3 ices at 5 K and 70 K led to complex irradiation products, including HCO, CH3CO, formamide, acetamide, methyl formate, and HCN. Many of these species, whose assignment was also strengthened by isotope labeling studies and correlate with IR-based spectroscopic studies of similar irradiated ices, are important ingredients for the building blocks of life. Some of them have been detected previously via astronomical observations in the interstellar medium and in cometary comae. Other species such as CH3CO (acetyl) are yet to be detected in astrophysical ices or interstellar medium. Our studies suggest that electron and UV photon processing of astrophysical ice analogs leads to extensive chemistry even in the coldest reaches of space, and lend support to the theory of comet-impact-induced delivery of complex organics to the inner solar system.

  2. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions.

    Rocío-Bautista, Priscilla; Pino, Verónica; Ayala, Juan H; Pasán, Jorge; Ruiz-Pérez, Catalina; Afonso, Ana M

    2016-03-04

    A hybrid material composed by the metal-organic framework (MOF) HKUST-1 and Fe3O4 magnetic nanoparticles (MNPs) has been synthetized in a quite simple manner, characterized, and used in a magnetic-assisted dispersive micro-solid-phase extraction (M-d-μSPE) method in combination with ultra-high-performance liquid chromatography (UHPLC) and fluorescence detection (FD). The application was devoted to the determination of 8 heavy polycyclic aromatic hydrocarbons (PAHs) in different aqueous samples, specifically tap water, wastewaters, and fruit tea infusion samples. The overall M-d-μSPE-UHPLC-FD method was optimized and validated. The method is characterized by: its simplicity in both the preparation of the hybrid material (simple mixing) and the magnetic-assisted approach (∼10min extraction time), the use of low sorbent amounts (20mg of HKUST-1 and 5mg of Fe3O4 MNPs), and the low organic solvent consumption in the overall M-d-μSPE-UHPLC-FD method (1.5mL of acetonitrile in the M-d-μSPE method and 2.8mL of acetonitrile in the UHPLC-FD run). The resulting method has high sensitivity, with LODs down to 0.8ngL(-1); adequate intermediate precision, with relative standard deviation values (RSD) always lower than 6.3% (being the range 5.9-9.0% in tap water for a spiked level of 45ngL(-1), 6.1-14% in wastewaters for a spiked level of 45ngL(-1), and 7.2-17% in fruit tea infusion samples for a spiked level of 45ngL(-1)); and adequate relative recoveries, with average values of 82% in tap water, and 94% and 75% in wastewater and fruit tea infusion samples, respectively, if using the proper matrix-matched calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Toxicity of six heterocyclic nitrogen compounds to Daphnia pulex

    Perry, Cynthia M.; Smith, Stephen B.

    1988-01-01

    We determined the relative toxicities to the aquatic crustacean Daphniz pulex of six heterocyclic nitrogen compunds. These compounds were selected because they were detected in lake trout or walleyes and were commercially available. Stress to the daphnid populations may affect forage fish populations that depend either directly or indirectly on zooplankton as a food source in the Great Lakes.

  4. Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal-Organic Framework.

    Razavi, Sayed Ali Akbar; Masoomi, Mohammad Yaser; Morsali, Ali

    2017-08-21

    To design a robust, π-conjugated, low-cost, and easy to synthesize metal-organic framework (MOF) for cation sensing by the photoluminescence (PL) method, 4,4'-oxybis(benzoic acid) (H 2 OBA) has been used in combination with 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine (DPT) as a tetrazine-functionalized spacer to construct [Zn(OBA)(DPT) 0.5 ]·DMF (TMU-34(-2H)). The tetrazine motif is a π-conjugated, water-soluble/stable fluorophore with relatively weak σ-donating Lewis basic sites. These characteristics of tetrazine make TMU-34(-2H) a good candidate for cation sensing. Because of hydrogen bonding between tetrazine moieties and water molecules, TMU-34(-2H) shows different PL emissions in water and acetonitrile. Cation sensing in these two solvents revealed that TMU-34(-2H) can selectively detect Hg 2+ in water (by 243% enhancement) and in acetonitrile (by 90% quenching). The contribution of electron-donating/accepting characteristics along with solvation effects on secondary interactions of the tetrazine motifs inside the TMU-34(-2H) framework results in different signal transductions. Improved sensitivity and accuracy of detection were obtained using the double solvent sensing method (DSSM), in which different signal transductions of TMU-34(-2H) in water and acetonitrile were combined simultaneously to construct a double solvent sensing curve and formulate a sensitivity factor. Calculation of sensitivity factors for all of the tested cations demonstrated that it is possible to detect Hg 2+ by DSSM with ultrahigh sensitivity. Such a tremendous distinction in the Hg 2+ sensitivity factor is visualizable in the double solvent sensing curve. Thus, by application of DSSM instead of one-dimensional sensing, the interfering effects of other cations are completely eliminated and the sensitivity toward Hg(II) is highly improved. Strong interactions between Hg 2+ and the nitrogen atoms of the tetrazine groups along with easy accessibility of Hg 2+ to the tetrazine groups lead

  5. SCINFUL-QMD: Monte Carlo based computer code to calculate response function and detection efficiency of a liquid organic scintillator for neutron energies up to 3 GeV

    Satoh, Daiki; Sato, Tatsuhiko; Shigyo, Nobuhiro; Ishibashi, Kenji

    2006-11-01

    The Monte Carlo based computer code SCINFUL-QMD has been developed to evaluate response function and detection efficiency of a liquid organic scintillator for neutrons from 0.1 MeV to 3 GeV. This code is a modified version of SCINFUL that was developed at Oak Ridge National Laboratory in 1988, to provide a calculated full response anticipated for neutron interactions in a scintillator. The upper limit of the applicable energy was extended from 80 MeV to 3 GeV by introducing the quantum molecular dynamics incorporated with the statistical decay model (QMD+SDM) in the high-energy nuclear reaction part. The particles generated in QMD+SDM are neutron, proton, deuteron, triton, 3 He nucleus, alpha particle, and charged pion. Secondary reactions by neutron, proton, and pion inside the scintillator are also taken into account. With the extension of the applicable energy, the database of total cross sections for hydrogen and carbon nuclei were upgraded. This report describes the physical model, computational flow and how to use the code. (author)

  6. Detecção e quantificação de organismos geneticamente modificados em alimentos e ingredientes alimentares Detection and quantification of genetically modified organisms in food and food ingredients

    Fabricio Rochedo Conceição

    2006-02-01

    Full Text Available O cumprimento da legislação que regulamenta a comercialização de alimentos e ingredientes contendo Organismos Geneticamente Modificados (OGMs é totalmente dependente da sensibilidade e confiabilidade dos métodos de detecção e quantificação de OGMs. Na presente revisão, foram discutidos os métodos mais relevantes para tais fins, especialmente aqueles que se baseiam na detecção da proteína ou do DNA recombinante, destacando as suas principais propriedades, limitações e vantagens. A regulamentação e algumas sugestões de métodos alternativos para a detecção de OGMs também são abordadas.The enforcement of legislation that regulates the presence of genetically modified organisms (GMOs in food and food ingredients is totally dependent on the sensitivity and reliability of the GMO testing methods. In this review, the most relevant methods such as recombinant proteins or DNA-based methods were discussed, emphasizing their main properties, limitations and advantages. The regulamentation and some suggestions of alternative methods for the detection of GMOs were also discussed.

  7. Cry1A(b)16 toxin from Bacillus thuringiensis: Theoretical refinement of three-dimensional structure and prediction of peptides as molecular markers for detection of genetically modified organisms.

    Plácido, Alexandra; Coelho, Andreia; Abreu Nascimento, Lucas; Gomes Vasconcelos, Andreanne; Fátima Barroso, Maria; Ramos-Jesus, Joilson; Costa, Vladimir; das Chagas Alves Lima, Francisco; Delerue-Matos, Cristina; Martins Ramos, Ricardo; Marani, Mariela M; Roberto de Souza de Almeida Leite, José

    2017-07-01

    Transgenic maize produced by the insertion of the Cry transgene into its genome became the second most cultivated crop worldwide. Cry gene from Bacillus thuringiensis kurstaki expresses protein derivatives of crystalline endotoxins which confer insect resistance onto the maize crop. Mandatory labeling of processed food containing or made by genetically modified organisms is in force in many countries, so, it is very urgent to develop fast and practical methods for GMO identification, for example, biosensors. In the absence of an available empirical structure of Cry1A(b)16 protein, a theoretical model was effectively generated, in this work, by homology modeling and molecular dynamics simulations based on two available homologous protein structures. Molecular dynamics simulations were carried out to refine the selected model, and an analysis of its global structure was performed. The refined models of Cry1A(b)16 showed a standard fold and structural characteristics similar to those seen in Bacillus thuringiensis Cry1A(a) insecticidal toxin and Bacillus thuringiensis serovar kurstaki Cry1A(c) toxin. After in silico analysis of Cry1A(b)16, two immunoreactive candidate peptides were selected and specific polyclonal antibodies were produced resulting in antibody-peptide interaction. Biosensing devices are expected to be developed for detection of the Cry1A(b) protein as a marker of transgenic maize in food. Proteins 2017; 85:1248-1257. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Organic superconductors

    Bulaevskij, L.N.; Shchegolev, I.F.

    1986-01-01

    Main achievements in creating new organic conducting materials - synthetic metals and superconductors, are considered. The processes of superconductivity occurrence in organic materials are discussed. It is shown that conjugated bonds between C and H atoms in organic molecules play an important role in this case. At present ''crystal direction'' in organic superconductor synthesis is mainly developed. Later on, organic superconductor crystals are supposed to be introduced into usual polymers, e.g. polyethylene

  9. Space Detectives

    Tyszka, Steph; Saraiva, Jose; Doran, Rosa

    2017-04-01

    NUCLIO is a Portuguese non-profit organization with a strong record of investing in science education and outreach. We have developed and implemented many activities mostly directed to a young audience, in a bid to awaken and reinforce the interest that young people devote to Astronomy and all things spatial. In this framework, we have created a week-long program called Space Detectives, supported by the Municipality of Cascais, based on a story-line that provided a number of challenges and opportunities for learning matters as diverse as the electro-magnetic spectrum, means of communication, space travel, the martian environment, coding and robotics. We report on the first session that took place in December 2016. We had as participants several kids aged 9 to 12, with a mixed background in terms of interest in the sciences. Their response varied from enthusiastic to somewhat less interested, depending on the nature of the subject and the way it was presented - a reaction not necessarily related to its complexity. This week was taken as something of a trial run, in preparation for the European Commission- funded project "Stories of Tomorrow", to be implemented in schools. The individual activities and the way they were related to the story-line, as well as the smooth transition from one to the next, were subject to an analysis that will allow for improvements in the next installments of this program. We believe this is an excellent approach to the goals of using Space and Astronomy as an anchor for generating and keeping interest in the scientific areas, and of finding new and richer ways of learning.

  10. Organic salmon

    Ankamah Yeboah, Isaac; Nielsen, Max; Nielsen, Rasmus

    . This study identifies the price premium on organic salmon in the Danish retail sale sector using consumer panel scanner data for households by applying the hedonic price model while permitting unobserved heterogeneity between households. A premium of 20% for organic salmon is found. Since this premium...... is closer to organic labeled agriculture products than to ecolabelled capture fisheries products, it indicates that consumers value organic salmon as an agriculture product more than fisheries product....

  11. Organic chemistry

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  12. Organ Trade

    J.A.E. Ambagtsheer (Frederike)

    2017-01-01

    markdownabstractOrgan trade constitutes the sale and purchase of organs for financial or material gain. Although prohibited since the 1980s, an increasing number of reports indicate its proliferation across the globe. Yet, many knowledge gaps exist on organ trade, in particular on the demand -and

  13. Statistical theory of signal detection

    Helstrom, Carl Wilhelm; Costrell, L; Kandiah, K

    1968-01-01

    Statistical Theory of Signal Detection, Second Edition provides an elementary introduction to the theory of statistical testing of hypotheses that is related to the detection of signals in radar and communications technology. This book presents a comprehensive survey of digital communication systems. Organized into 11 chapters, this edition begins with an overview of the theory of signal detection and the typical detection problem. This text then examines the goals of the detection system, which are defined through an analogy with the testing of statistical hypotheses. Other chapters consider

  14. Designing Organizations

    changed dramatically with the advent of: new communication systems, adaptive mechanisms, information technology, knowledge management systems, innovation processes and more. This book systemically examines these developments and their impact on OD with contributions from leading scholars in the area....... The individual chapters are organized into five sections: (1) Putting Contingency Theory in its Place, (2) Focus on Individuals who make up the Organization, (3) Innovation Processes and Organization Design, (4) Adaptation and Technology, and (5) Design for Performance. Each chapter examines aspects of the books...... is a benchmark publication in the field of organization design. By focusing on recent developments in organization design, this book will help to create more thoughtful research and stronger empirical analyses in this important area of management and organization....

  15. Organic electroluminescence

    Kafafi, Zakya H

    2005-01-01

    Organic light-emitting diode(OLED) technology has achieved significant penetration in the commercial market for small, low-voltage and inexpensive displays. Present and future novel technologies based on OLEDs involve rigid and flexible flat panel displays, solid-state lighting, and lasers. Display applications may range from hand-held devices to large flat panel screens that can be rolled up or hung flat on a wall or a ceiling. Organic Electroluminescence gives an overview of the on-going research in the field of organic light-emitting materials and devices, covering the principles of electroluminescence in organic thin films, as well as recent trends, current applications, and future potential uses. The book begins by giving a background of organic electroluminescence in terms of history and basic principles. It offers details on the mechanism(s) of electroluminescence in thin organic films. It presentsin-depth discussions of the parameters that control the external electroluminescence quantum efficien...

  16. True Detective

    Gajhede, Andreas; Westmark, [No Value; Bantoulidis, Georgios

    2016-01-01

    This paper examines the HBO’s television-series True Detective, a 2014 crime drama, attempting to point out the central elements of detective-fiction, to be found in its narrative. True Detective narrative is a heavy text with a number of references from various well-known, non-adjacent texts within the field of weird fiction, horror fiction and detective fiction. Therefore, the case study of this research will focus on narratological and literary analysis, in order to discover the predominan...

  17. Organic optoelectronics

    Hu, Wenping; Gong, Xiong; Zhan, Xiaowei; Fu, Hongbing; Bjornholm, Thomas

    2012-01-01

    Written by internationally recognized experts in the field with academic as well as industrial experience, this book concisely yet systematically covers all aspects of the topic.The monograph focuses on the optoelectronic behavior of organic solids and their application in new optoelectronic devices. It covers organic electroluminescent materials and devices, organic photonics, materials and devices, as well as organic solids in photo absorption and energy conversion. Much emphasis is laid on the preparation of functional materials and the fabrication of devices, from materials synthesis a

  18. Organic synthesis

    Lallemand, J.Y.; Fetizon, M.

    1988-01-01

    The 1988 progress report of the Organic Synthesis Chemistry laboratory (Polytechnic School, France), is presented. The laboratory activities are centered on the chemistry of natural products, which have a biological activity and on the development of new reactions, useful in the organic synthesis. The research works involve the following domains: the natural products chemistry which are applied in pharmacology, the plants and insects chemistry, the organic synthesis, the radical chemistry new reactions and the bio-organic physicochemistry. The published papers, the congress communications and the thesis are listed [fr

  19. Organization aspect

    Grefen, P.W.P.J.; Mehandjiev, N.; Mehandjiev, N.; Grefen, P.W.P.J.

    2010-01-01

    Following the BOAT framework discussed in Chapter 1, this chapter describes the organization aspect of the CrossWork approach. It shows how the business requirements identified in the previous chapter can be fulfilled by dynamic organization structures and business processes in Networks of

  20. Organic hydrotrioxides

    Shereshovets, Valerii V; Khursan, Sergei L; Komissarov, Vladilen D; Tolstikov, Genrikh A

    2001-01-01

    The results of studies on the synthesis, structure, thermochemistry and oxidising capacity of organic hydrotrioxides are generalised. Particular emphasis is placed on the analysis of thermal and catalytic decomposition of ROOOH and on generation of free radicals and singlet molecular oxygen. Problems concerning the mechanisms of formation and decomposition of organic hydrotrioxides are also considered. The bibliography includes 154 references.

  1. Government Organizations

    Krause Hansen, Hans; Salskov-Iversen, Dorte

    2017-01-01

    , with clearly defined boundaries between the public and private; and in terms of polycentrism, where power and authority are seen as dispersed among state and nonstate organizations, including business and civil society organizations. Globalization and new media technologies imply changes in the relationship...... democracy and the public sphere; and discourse approaches to studying the intersections of government, organizational change, and information and communication technology....

  2. Matching Organs

    ... to know FAQ Living donation What is living donation? Organs Types Being a living donor First steps Being ... brochures What Every Patient Needs to Know Living Donation Multiple Listing Visit UNOS Store Learn more How organs are matched How to become a living donor ...

  3. Organ Facts

    ... to know FAQ Living donation What is living donation? Organs Types Being a living donor First steps Being ... brochures What Every Patient Needs to Know Living Donation Multiple Listing Visit UNOS Store Learn more How organs are matched How to become a living donor ...

  4. Designing Organizations

    Book Description The design of organizations has been an ongoing concern of management theory and practice over the past several decades. Over this time, there has been little change in the fundamental theory, principles and concepts of Organization Design (OD). Recently organizational life has...... changed dramatically with the advent of: new communication systems, adaptive mechanisms, information technology, knowledge management systems, innovation processes and more. This book systemically examines these developments and their impact on OD with contributions from leading scholars in the area...... is a benchmark publication in the field of organization design. By focusing on recent developments in organization design, this book will help to create more thoughtful research and stronger empirical analyses in this important area of management and organization....

  5. Organic photovoltaics

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  6. Organic aerosols

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  7. Organ dosimetry

    Kaul, Dean C.; Egbert, Stephen D.; Otis, Mark D.; Kuhn, Thomas; Kerr, George D.; Eckerman, Keith F.; Cristy, Mark; Ryman, Jeffrey C.; Tang, Jabo S.; Maruyama, Takashi

    1987-01-01

    This chapter describes the technical approach, complicating factors, and sensitivities and uncertainties of calculations of doses to the organs of the A-bomb survivors. It is the object of the effort so described to provide data that enables the dosimetry system to determine the fluence, kerma, absorbed dose, and similar quantities in 14 organs and the fetus, specified as being of radiobiological interest. This object was accomplished through the use of adjoint Monte Carlo computations, which use a number of random particle histories to determine the relationship of incident neutrons and gamma rays to those transported to a target organ. The system uses these histories to correlate externally-incident energy- and angle-differential fluences with the fluence spectrum (energy differential only) within the target organ. In order for the system to work in the most efficient manner possible, two levels of data were provided. The first level, represented by approximately 6,000 random adjoint-particle histories, enables the computation of the fluence spectrum with sufficient precision to provide statistically reliable (± 6 %) mean doses within any given organ. With this limited history inventory, the system can be run rapidly for all survivors. Mean organ dose and dose uncertainty are obtainable in this mode. The second mode of operation enables the system to produce a good approximation to fluence spectrum within any organ or to produce the dose in each of an array of organ subvolumes. To be statistically reliable, this level of detail requires far more random histories, approximately 40,000 per organ. Thus, operation of the dosimetry system in this mode (i.e., with this data set) is intended to be on an as-needed, organ-specific basis, since the system run time is eight times that in the mean dose mode. (author)

  8. The organization of organ procurement.

    Prottas, J M

    1989-01-01

    The American organ procurement system has improved and matured in the last five years. At the same time, the basic challenges facing it have remained substantially the same because the moral and legal framework of the system has not changed. Success at organ procurement continues to depend on the voluntary cooperation of medical professionals and the families of potential organ donors. The generosity of the American public is so great that the primary challenge facing organ procurement agencies is obtaining cooperation from hospitals and medical professionals. This calls for a "marketing" orientation aimed at those hospitals and professionals who are most likely to treat potential donors. The last five years have seen a more general acceptance of this appreciation of the central task of organ procurement. As a result, the overall effectiveness of the system has improved, as measured by the number of organs procured on a per capita basis and by the number of multiorgan donors obtained. Much of this improvement can be attributed to the diffusion of organizational techniques and approaches, and this diffusion has been encouraged by the involvement of national organizations and public bodies in the organ procurement community. The system remains uneven in its effectiveness and further improvement is possible. It is also possible that the next general round of improvement will result from the application of businesslike information management and marketing techniques.

  9. Bacteriological detection of Salmonella in the presence of competitive micro-organisms. Bacteriological collaborative study IV amongst the National Reference Laboratories for Salmonella, the use of MSRV as selective enrichment

    Raes M; Nagelkerke N; Henken AM; MGB; IMA

    2000-01-01

    A fourth bacteriological collaborative study was organised by the Community Reference Laboratory for Salmonella. All National Reference Laboratories for Salmonella (NRLs) participated. This study had two objectives: 1) Evaluation of the results of the detection of different contamination levels of

  10. Organic photovoltaics

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  11. Organ Transplantation

    ... Medical Error Mental Health in Children and Adolescents Nanotechnology Nature, Human Nature, and Biotechnology Neonatal Care Newborn ... 415. Sean Vincent Murphy and Anthony Atala, "Organ Engineering: Combining Stem Cells, Biomaterials, and Bioreactors to Produce ...

  12. Organic Conductors

    Andersen, Jan Rud; Jacobsen, Claus S.; Rindorf, Grethe

    1975-01-01

    2,3,6,7-Tetramethyl-1,4,5,8-tetraselenafulvalene reacts with 2,5-dimethyl-7,7′,8,8′-tetracyano-p-quinodi-methane to give a highly conducting organic solid.......2,3,6,7-Tetramethyl-1,4,5,8-tetraselenafulvalene reacts with 2,5-dimethyl-7,7′,8,8′-tetracyano-p-quinodi-methane to give a highly conducting organic solid....

  13. Organic superconductors

    Jerome, D; Ribault, M [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides; Bechgaard, K [Copenhagen Univ. (Denmark). H.C. Oersted Inst.

    1980-07-10

    The history of superconductivity is traced and the recent discovery of the property in organic materials is discussed. It has been shown that in those organic chemicals in which flat molecules are stacked like tiles, conditions are created in which electrons can flow unhindered. It is reasonable to believe that superconductivity at 20k is now a feasible goal though the dream of resistance-less conduction at room temperature still appears a remote dream.

  14. Organic superconductors

    Jerome, D.; Ribault, M.; Bechgaard, K.

    1980-01-01

    The history of superconductivity is traced and the recent discovery of the property in organic materials is discussed. It has been shown that in those organic chemicals in which flat molecules are stacked like tiles, conditions are created in which electrons can flow unhindered. It is reasonable to believe that superconductivity at 20k is now a feasible goal though the dream of resistance-less conduction at room temperature still appears a remote dream. (UK)

  15. Colloidal organization

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  16. Virtual Organizations: Beyond Network Organization

    Liviu Gabriel CRETU

    2006-01-01

    Full Text Available One of the most used buzz-words in (e-business literature of the last decade is virtual organization. The term "virtual" can be identified in all sorts of combinations regarding the business world. From virtual products to virtual processes or virtual teams, everything that is “touched” by the computer’s processing power instantly becomes virtual. Moreover, most of the literature treats virtual and network organizations as being synonyms. This paper aims to draw a much more distinctive line between the two concepts. Providing a more coherent description of what virtual organization might be is also one of our intentions.

  17. Optimizing detectability

    Anon.

    1992-01-01

    HPLC is useful for trace and ultratrace analyses of a variety of compounds. For most applications, HPLC is useful for determinations in the nanogram-to-microgram range; however, detection limits of a picogram or less have been demonstrated in certain cases. These determinations require state-of-the-art capability; several examples of such determinations are provided in this chapter. As mentioned before, to detect and/or analyze low quantities of a given analyte at submicrogram or ultratrace levels, it is necessary to optimize the whole separation system, including the quantity and type of sample, sample preparation, HPLC equipment, chromatographic conditions (including column), choice of detector, and quantitation techniques. A limited discussion is provided here for optimization based on theoretical considerations, chromatographic conditions, detector selection, and miscellaneous approaches to detectability optimization. 59 refs

  18. Detection block

    Bezak, A.

    1987-01-01

    A diagram is given of a detection block used for monitoring burnup of nuclear reactor fuel. A shielding block is an important part of the detection block. It stabilizes the fuel assembly in the fixing hole in front of a collimator where a suitable gamma beam is defined for gamma spectrometry determination of fuel burnup. The detector case and a neutron source case are placed on opposite sides of the fixing hole. For neutron measurement for which the water in the tank is used as a moderator, the neutron detector-fuel assembly configuration is selected such that neutrons from spontaneous fission and neutrons induced with the neutron source can both be measured. The patented design of the detection block permits longitudinal travel and rotation of the fuel assembly to any position, and thus more reliable determination of nuclear fuel burnup. (E.S.). 1 fig

  19. Comparing Face Detection and Recognition Techniques

    Korra, Jyothi

    2016-01-01

    This paper implements and compares different techniques for face detection and recognition. One is find where the face is located in the images that is face detection and second is face recognition that is identifying the person. We study three techniques in this paper: Face detection using self organizing map (SOM), Face recognition by projection and nearest neighbor and Face recognition using SVM.

  20. [Artificial organs].

    Raguin, Thibaut; Dupret-Bories, Agnès; Debry, Christian

    2017-01-01

    Research has been fighting against organ failure and shortage of donations by supplying artificial organs for many years. With the raise of new technologies, tissue engineering and regenerative medicine, many organs can benefit of an artificial equivalent: thanks to retinal implants some blind people can visualize stimuli, an artificial heart can be proposed in case of cardiac failure while awaiting for a heart transplant, artificial larynx enables laryngectomy patients to an almost normal life, while the diabetic can get a glycemic self-regulation controlled by smartphones with an artificial device. Dialysis devices become portable, as well as the oxygenation systems for terminal respiratory failure. Bright prospects are being explored or might emerge in a near future. However, the retrospective assessment of putative side effects is not yet sufficient. Finally, the cost of these new devices is significant even if the advent of three dimensional printers may reduce it. © 2017 médecine/sciences – Inserm.

  1. Organic Computing

    Würtz, Rolf P

    2008-01-01

    Organic Computing is a research field emerging around the conviction that problems of organization in complex systems in computer science, telecommunications, neurobiology, molecular biology, ethology, and possibly even sociology can be tackled scientifically in a unified way. From the computer science point of view, the apparent ease in which living systems solve computationally difficult problems makes it inevitable to adopt strategies observed in nature for creating information processing machinery. In this book, the major ideas behind Organic Computing are delineated, together with a sparse sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.

  2. Safety organization

    Lutz, M.

    1984-06-01

    After a rapid definition of a nuclear basis installation, the national organization of nuclear safety in France is presented, as also the main organizations concerned and their functions. This report shows how the licensing procedure leading to the construction and exploitation of such installations is applied in the case of nuclear laboratories of research and development: examinations of nuclear safety problems are carried out at different levels: - centralized to define the frame out of which the installation has not to operate, - decentralized to follow in a more detailed manner its evolution [fr

  3. Organizing Valuations

    Hauge, Amalie Martinus

    With this dissertation I take up a problem currently traversing popular, political and academic arenas, namely the potential demise of values in public organizations allegedly instigated by management tools deriving from industrial sectors. Taking a pragmatic stance, inspired by John Dewey......, this dissertation sets out to develop a practical and situation-based understanding of the relationship between these management tools, values and organizations, which can contribute to pushing forward the currently detached and polarized debates over New Public Management. In this endeavor the dissertation engages...

  4. Transnational Organizing

    Henriksen, Lasse Folke; Seabrooke, Leonard

    2016-01-01

    An ongoing question for institutional theory is how organizing occurs transnationally, where institution building occurs in a highly ambiguous environment. This article suggests that at the core of transnational organizing is competition and coordination within professional and organizational...... professionals’ operate in two-level professional and organizational networks to control issues. This two-level network provides the context for action in which professionals do their institutional work. The two-level network carries information about professional incentives and also norms about how issues...

  5. Detection device

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  6. Animal Detectives

    Mulvey, Bridget; Warnock, Carly

    2015-01-01

    During a two-week inquiry-based 5E learning cycle unit, children made observations and inferences to guide their explorations of animal traits and habitats (Bybee 2014). The children became "animal detectives" by studying a live-feed webcam and digital images of wolves in their natural habitat, reading books and online sources about…

  7. Malware Detection

    Christodorescu, Mihai; Maughan, Douglas

    2007-01-01

    Shared resources, such as the internet, have created a highly interconnected cyber-infrastructure. Many malicious attacks on critical infrastructures are achieved by malicious code or malware, such as viruses and worms. This book captures the research in the area of malicious code detection, prevention and mitigation.

  8. Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings - Report from the World Health Organization collaborative study on Psychological Problems in General Health Care

    Gater, R; Tansella, M; Korten, A; Tiemens, BG; Mavreas, VG; Olatawura, MO

    Background: Understanding the relevance of biological and social factors to sex differences in the prevalence and detection of depressive and anxiety disorders has been impaired by the lack of standardized research methods across cultures. Method: Prevalence rates of depressive and anxiety disorders

  9. Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal-Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation.

    Liu, Wei; Dai, Xing; Bai, Zhuanling; Wang, Yanlong; Yang, Zaixing; Zhang, Linjuan; Xu, Lin; Chen, Lanhua; Li, Yuxiang; Gui, Daxiang; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2017-04-04

    Uranium is not only a strategic resource for the nuclear industry but also a global contaminant with high toxicity. Although several strategies have been established for detecting uranyl ions in water, searching for new uranium sensor material with great sensitivity, selectivity, and stability remains a challenge. We introduce here a hydrolytically stable mesoporous terbium(III)-based MOF material compound 1, whose channels are as large as 27 Å × 23 Å and are equipped with abundant exposed Lewis basic sites, the luminescence intensity of which can be efficiently and selectively quenched by uranyl ions. The detection limit in deionized water reaches 0.9 μg/L, far below the maximum contamination standard of 30 μg/L in drinking water defined by the United States Environmental Protection Agency, making compound 1 currently the only MOF material that can achieve this goal. More importantly, this material exhibits great capability in detecting uranyl ions in natural water systems such as lake water and seawater with pH being adjusted to 4, where huge excesses of competing ions are present. The uranyl detection limits in Dushu Lake water and in seawater were calculated to be 14.0 and 3.5 μg/L, respectively. This great detection capability originates from the selective binding of uranyl ions onto the Lewis basic sites of the MOF material, as demonstrated by synchrotron radiation extended X-ray adsorption fine structure, X-ray adsorption near edge structure, and first principles calculations, further leading to an effective energy transfer between the uranyl ions and the MOF skeleton.

  10. Particle detection

    Charpak, G.

    2000-01-01

    In this article G.Charpak presents the principles on which particle detection is based. Particle accelerators are becoming more and more powerful and require new detectors able to track the right particle in a huge flux of particles. The gigantic size of detectors in high energy physics is often due to the necessity of getting a long enough trajectory in a magnetic field in order to deduce from the curvature an accurate account of impulses in the reaction. (A.C.)

  11. Organic Nanodiamonds

    Zapata, Todd; Bennett, Neil; Struzhkin, Viktor; Fei, Yingwei; Jelezko, Fedor; Biskupek, Johannes; Kaiser, Ute; Reuter, Rolf; Wrachtrup, Joerg; Ghannam, Fahad Al; Hemmer, Philip

    2017-01-01

    Nano-crystalline diamond is a new carbon phase with numerous intriguing physical and chemical properties and applications. Small doped nanodiamonds for example do find increased use as novel quantum markers in biomedical applications. However, growing doped nanodiamonds below sizes of 5 nm with controlled composition has been elusive so far. Here we grow nanodiamonds under conditions where diamond-like organic seed molecules do not decompose. This is a key first step toward engineered growth ...

  12. IVS Organization

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  13. Organic Nanowires

    Balzer, Frank; Schiek, Manuela; Al-Shamery, Katharina

    Single crystalline nanowires from fluorescing organic molecules like para-phenylenes or thiophenes are supposed to become key elements in future integrated optoelectronic devices [1]. For a sophisticated design of devices based on nanowires the basic principles of the nanowire formation have...... atomic force microscopy and from polarized far-field optical microscopy for various prototypical molecules are reproduced by electrostatic and Monte Carlo calculations. Based on the crystal structure, predictions on the growth habit from other conjugated molecules become in reach....

  14. Organized DFM

    Sato, Takashi; Honma, Michio; Itoh, Hiroyuki; Iriki, Nobuyuki; Kobayashi, Sachiko; Miyazaki, Norihiko; Onodera, Toshio; Suzuki, Hiroyuki; Yoshioka, Nobuyuki; Arima, Sumika; Kadota, Kazuya

    2009-04-01

    The category and objective of DFM production management are shown. DFM is not limited to an activity within a particular unit process in design and process. A new framework for DFM is required. DFM should be a total solution for the common problems of all processes. Each of them must be linked to one another organically. After passing through the whole of each process on the manufacturing platform, quality of final products is guaranteed and products are shipped to the market. The information platform is layered with DFM, APC, and AEC. Advanced DFM is not DFM for partial optimization of the lithography process and the design, etc. and it should be Organized DFM. They are managed with high-level organizational IQ. The interim quality between each step of the flow should be visualized. DFM will be quality engineering if it is Organized DFM and common metrics of the quality are provided. DFM becomes quality engineering through effective implementation of common industrial metrics and standardized technology. DFM is differential technology, but can leverage standards for efficient development.

  15. Intrusion Detection amp Prevention Systems - Sourcefire Snort

    Rajesh Vuppala

    2015-08-01

    Full Text Available Information security is a challenging issue for all business organizations today amidst increasing cyber threats. While there are many alternative intrusion detection amp prevention systems available to choose from selecting the best solution to implement to detect amp prevent cyber-attacks is a difficult task. The best solution is of the one that gets the best reviews and suits the organizations needs amp budget. In this review paper we summarize various classes of intrusion detection and prevention systems compare features of alternative solutions and make recommendation for implementation of one as the best solution for business organization in Fiji.

  16. Detection of the neutrino

    Reines, F.

    1989-01-01

    Using the nuclear bomb developed at Los Alamos as an intense source of neutrinos, the author aimed to build a detector suitable to observe this newly predicted particle for the first time during his work there in the early 1950s. He chose to work on the reaction of beta decay inversion. The discovery of organic liquid scintillation counters brought the possibility of neutrino detection one place closer. Delayed coincidence between positron and neutron capture pulses were planned as a way to eliminate background signals. Experiments finally went ahead using nuclear reactors rather than bombs and was successful although many problems with shielding, and the sheer scale of the apparatus were encountered. (UK)

  17. Statistical analysis of uncertainties of gamma-peak identification and area calculation in particulate air-filter environment radionuclide measurements using the results of a Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) organized intercomparison, Part I: Assessment of reliability and uncertainties of isotope detection and energy precision using artificial spiked test spectra, Part II: Assessment of the true type I error rate and the quality of peak area estimators in relation to type II errors using large numbers of natural spectra

    Zhang, W.; Zaehringer, M.; Ungar, K.; Hoffman, I.

    2008-01-01

    In this paper, the uncertainties of gamma-ray small peak analysis have been examined. As the intensity of a gamma-ray peak approaches its detection decision limit, derived parameters such as centroid channel energy, peak area, peak area uncertainty, baseline determination, and peak significance are statistically sensitive. The intercomparison exercise organized by the CTBTO provided an excellent opportunity for this to be studied. Near background levels, the false-positive and false-negative peak identification frequencies in artificial test spectra have been compared to statistically predictable limiting values. In addition, naturally occurring radon progeny were used to compare observed variance against nominal uncertainties. The results infer that the applied fit algorithms do not always represent the best estimator. Understanding the statistically predicted peak-finding limit is important for data evaluation and analysis assessment. Furthermore, these results are useful to optimize analytical procedures to achieve the best results

  18. Entanglement detection

    Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Institut fuer theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)], E-mail: otfried.guehne@uibk.ac.at; Toth, Geza [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Ikerbasque-Basque Foundation for Science, Alameda Urquijo 36, E-48011 Bilbao (Spain); ICFO-Institute of Photonic Sciences, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2009-04-15

    How can one prove that a given quantum state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given to the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.

  19. Edge Detection,

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  20. Entangling Organizations

    Strand, Anete Mikkala Camille

    2018-01-01

    The chapter accounts for the process of becoming of a changed practice within the area of disability care in the Municipality of Aalborg in Denmark. Across a period of a few months in the fall of 2015 a group of employees across the organization and an action researcher from Aalborg University (t....../ability and thereby the model opened the possibility for reworking the binary of ability/disability to the benefit of restorying the citizen’s ability in the practices of changing the disability care....

  1. Organic superconductivity

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  2. JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for the detection of genotoxic carcinogens: I. Summary of pre-validation study results.

    Uno, Yoshifumi; Kojima, Hajime; Omori, Takashi; Corvi, Raffaella; Honma, Masamistu; Schechtman, Leonard M; Tice, Raymond R; Burlinson, Brian; Escobar, Patricia A; Kraynak, Andrew R; Nakagawa, Yuzuki; Nakajima, Madoka; Pant, Kamala; Asano, Norihide; Lovell, David; Morita, Takeshi; Ohno, Yasuo; Hayashi, Makoto

    2015-07-01

    The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this validation effort was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The purpose of the pre-validation studies (i.e., Phase 1 through 3), conducted in four or five laboratories with extensive comet assay experience, was to optimize the protocol to be used during the definitive validation study. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Organ trade using social networks.

    Alrogy, Waleed; Jawdat, Dunia; Alsemari, Muhannad; Alharbi, Abdulrahman; Alasaad, Abdullah; Hajeer, Ali H

    2016-01-01

    Organ transplantation is recognized worldwide as an effective treatment for organ failure. However, due to the increase in the number of patients requiring a transplant, a shortage of suitable organs for transplantation has become a global problem. Human organ trade is an illegal practice of buying or selling organs and is universally sentenced. The aim of this study was to search social network for organ trade and offerings in Saudi Arabia. The study was conducted from June 22, 2015 to February 19, 2016. The search was conducted on Twitter, Google answers, and Facebook using the following terms: kidney for sale, kidneys for sale, liver for sale, kidney wanted, liver wanted, kidney donor, and liver donor. We found a total of 557 adverts on organ trade, 165 (30%) from donors or sellers, and 392 (70%) from recipients or buyers. On Twitter, we found 472 (85%) adverts, on Google answers 61 (11%), and on Facebook 24 (4%). Organ trade is a global problem, and yet it is increasingly seen in many countries. Although the Saudi Center for Organ Transplantation by-laws specifically prohibits and monitors any form of commercial transplantation, it is still essential to enforce guidelines for medical professionals to detect and prevent such criminal acts.

  4. Organ trade using social networks

    Waleed Alrogy

    2016-01-01

    Full Text Available Organ transplantation is recognized worldwide as an effective treatment for organ failure. However, due to the increase in the number of patients requiring a transplant, a shortage of suitable organs for transplantation has become a global problem. Human organ trade is an illegal practice of buying or selling organs and is universally sentenced. The aim of this study was to search social network for organ trade and offerings in Saudi Arabia. The study was conducted from June 22, 2015 to February 19, 2016. The search was conducted on Twitter, Google answers, and Facebook using the following terms: kidney for sale, kidneys for sale, liver for sale, kidney wanted, liver wanted, kidney donor, and liver donor. We found a total of 557 adverts on organ trade, 165 (30% from donors or sellers, and 392 (70% from recipients or buyers. On Twitter, we found 472 (85% adverts, on Google answers 61 (11%, and on Facebook 24 (4%. Organ trade is a global problem, and yet it is increasingly seen in many countries. Although the Saudi Center for Organ Transplantation by-laws specifically prohibits and monitors any form of commercial transplantation, it is still essential to enforce guidelines for medical professionals to detect and prevent such criminal acts.

  5. Organic photovoltaics

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  6. Smoke detection

    Warmack, Robert J. Bruce; Wolf, Dennis A.; Frank, Steven Shane

    2017-10-17

    Various apparatus and methods for smoke detection are disclosed. In one embodiment, a method of training a classifier for a smoke detector comprises inputting sensor data from a plurality of tests into a processor. The sensor data is processed to generate derived signal data corresponding to the test data for respective tests. The derived signal data is assigned into categories comprising at least one fire group and at least one non-fire group. Linear discriminant analysis (LDA) training is performed by the processor. The derived signal data and the assigned categories for the derived signal data are inputs to the LDA training. The output of the LDA training is stored in a computer readable medium, such as in a smoke detector that uses LDA to determine, based on the training, whether present conditions indicate the existence of a fire.

  7. Signal detection

    Tholomier, M.

    1985-01-01

    In a scanning electron microscope, whatever is the measured signal, the same set is found: incident beam, sample, signal detection, signal amplification. The resulting signal is used to control the spot luminosity with the observer cathodoscope. This is synchronized with the beam scanning on the sample; on the cathodoscope, the image in secondary electrons, backscattered electrons,... of the sample surface is reconstituted. The best compromise must be found between a register time low enough to remove eventual variations (under the incident beam) of the nature of the observed phenomenon, and a good spatial resolution of the image and a signal-to-noise ratio high enough. The noise is one of the basic limitations of the scanning electron microscope performance. The whose measurement line must be optimized to reduce it [fr

  8. GMO Detection

    Ovesná, Jaroslava; Demnerová, Kateřina; Pouchová, Vladimíra

    Modern agriculture and the food industry are under constant pressure to produce healthier, tastier and cheaper food, while at the same time maintaining and improving safety standards. Consequently, these industries are all the time demanding still better, more efficient genotypes of crop species and farm animals suited to a wide range of usages. Farmers, in particular, are calling for species that are more resistant to disease, that have improved adaptation to stress, and that facilitate simpler farming systems while also increasing yield and productivity. At the same time, scientists believe that such animal and crop varieties could provide a source of food for poor countries and, thereby, help to prevent, and ultimately eliminate, third-world malnutrition (Biotechnology Industry Organization, 2008; Monastra & Rossi, 2003; Herdt, 2006).

  9. Entangled Organizations

    Strand, Anete Mikkala Camille

    the model opened the possibility for reworking the binary. The offset of the becoming of the revised model for cooperation was taken from a quantum approach to organizational development and change coined as ‘Organizational scenography’ as part of the methodology of Material Storytelling (Strand 2012). Here...... to embrace other dis/ability care facilities and dis/ability care workers/professionals nearby as well as the neighborhood of the village of citizens surrounding these facilities. Thus reworking previously upheld cuts between areas of responsibility of the Municipality/relatives and of Municipality...... for the employees and thereby support the bringing about of a cultural transformation. A changed relationality indeed brought about though reworking the binary dis/able. From the standpoint of a diffractive methodology (Barad 2007) the paper accounts for this project by being organized in four parts that together...

  10. Organizing Process

    Hull Kristensen, Peer; Bojesen, Anders

    This paper invites to discuss the processes of individualization and organizing being carried out under what we might see as an emerging regime of change. The underlying argumentation is that in certain processes of change, competence becomes questionable at all times. The hazy characteristics...... of this regime of change are pursued through a discussion of competencies as opposed to qualifications illustrated by distinct cases from the Danish public sector in the search for repetitive mechanisms. The cases are put into a general perspective by drawing upon experiences from similar change processes...... in MNCs. The paper concludes by asking whether we can escape from a regime of competence in a world defined by a rhetoric of change and create a more promising world in which doubt and search serve as a strategy for gaining knowledge and professionalism that improve on our capability for mutualism....

  11. Is it clean or contaminated soil? Using petrogenic versus biogenic GC-FID chromatogram patterns to mathematically resolve false petroleum hydrocarbon detections in clean organic soils: a crude oil-spiked peat microcosm experiment.

    Kelly-Hooper, Francine; Farwell, Andrea J; Pike, Glenna; Kennedy, Jocelyn; Wang, Zhendi; Grunsky, Eric C; Dixon, D George

    2013-10-01

    The Canadian Council of Ministers of the Environment (CCME) reference method for the Canada-wide standard (CWS) for petroleum hydrocarbon (PHC) in soil provides chemistry analysis standards and guidelines for the management of contaminated sites. However, these methods can coextract natural biogenic organic compounds (BOCs) from organic soils, causing false exceedences of toxicity guidelines. The present 300-d microcosm experiment used CWS PHC tier 1 soil extraction and gas chromatography-flame ionization detector (GC-FID) analysis to develop a new tier 2 mathematical approach to resolving this problem. Carbon fractions F2 (C10-C16), F3 (C16-C34), and F4 (>C34) as well as subfractions F3a (C16-C22) and F3b (C22-C34) were studied in peat and sand spiked once with Federated crude oil. These carbon ranges were also studied in 14 light to heavy crude oils. The F3 range in the clean peat was dominated by F3b, whereas the crude oils had approximately equal F3a and F3b distributions. The F2 was nondetectable in the clean peat but was a significant component in crude oil. The crude oil–spiked peat had elevated F2 and F3a distributions. The BOC-adjusted PHC F3 calculation estimated the true PHC concentrations in the spiked peat. The F2:F3b ratio of less than 0.10 indicated PHC absence in the clean peat, and the ratio of greater than or equal to 0.10 indicated PHC presence in the spiked peat and sand. Validation studies are required to confirm whether this new tier 2 approach is applicable to real-case scenarios. Potential adoption of this approach could minimize unnecessary ecological disruptions of thousands of peatlands throughout Canada while also saving millions of dollars in management costs. © 2013 SETAC.

  12. Remote detection device and detection method therefor

    Kogure, Sumio; Yoshida, Yoji; Matsuo, Takashiro; Takehara, Hidetoshi; Kojima, Shinsaku.

    1997-01-01

    The present invention provides a non-destructive detection device for collectively, efficiently and effectively conducting maintenance and detection for confirming the integrity of a nuclear reactor by way of a shielding member for shielding radiation rays generated from an objective portion to be detected. Namely, devices for direct visual detection using an under water TV camera as a sensor, an eddy current detection using a coil as a sensor and each magnetic powder flow detection are integrated and applied collectively. Specifically, the visual detection by using the TV camera and the eddy current flaw detection are adopted together. The flaw detection with magnetic powder is applied as a means for confirming the results of the two kinds of detections by other method. With such procedures, detection techniques using respective specific theories are combined thereby enabling to enhance the accuracy for the evaluation of the detection. (I.S.)

  13. Contraband detection

    Gozzani, T.

    1995-01-01

    Inspecting incoming cargo for drugs, explosives and other contraband would quickly overwhelm inspection agencies even if a small percentage of the cargoes were manually searched. Now a new accelerator-based inspection system using pulsed fast neutron analysis (PFNA) allows automated inspection of loaded cargo containers and trucks. A collimated pulsed beam of fast neutrons, scanned over the side of a cargo container as it passes, excites the nuclei of common elements in bulk materials. The primary signals of interest for contraband are gammaray emissions following inelastic scattering of the fast neutrons from carbon and oxygen. Direct imaging of the contents of the material by time-of-flight analysis identifies the position of the interactions, while gamma-ray spectroscopy identifies the elemental gamma rays. The ratio of elements or other combinations of the elemental signatures are used to identify contraband - a high carbon-to-oxygen ratio, for example, is characteristic of drugs. The system incorporates gamma ray detectors, and analogue and digital processors sort the pulses for position and elemental information. Detection algorithms produce three-dimensional images of possible concealed contraband. From these images the inspector can identify suspicious objects within the cargo container

  14. Contraband detection

    Gozzani, T. [Science Applications International Corporation, Santa Clara (United States)

    1995-07-15

    Inspecting incoming cargo for drugs, explosives and other contraband would quickly overwhelm inspection agencies even if a small percentage of the cargoes were manually searched. Now a new accelerator-based inspection system using pulsed fast neutron analysis (PFNA) allows automated inspection of loaded cargo containers and trucks. A collimated pulsed beam of fast neutrons, scanned over the side of a cargo container as it passes, excites the nuclei of common elements in bulk materials. The primary signals of interest for contraband are gammaray emissions following inelastic scattering of the fast neutrons from carbon and oxygen. Direct imaging of the contents of the material by time-of-flight analysis identifies the position of the interactions, while gamma-ray spectroscopy identifies the elemental gamma rays. The ratio of elements or other combinations of the elemental signatures are used to identify contraband - a high carbon-to-oxygen ratio, for example, is characteristic of drugs. The system incorporates gamma ray detectors, and analogue and digital processors sort the pulses for position and elemental information. Detection algorithms produce three-dimensional images of possible concealed contraband. From these images the inspector can identify suspicious objects within the cargo container.

  15. transplanted organs

    Rafal Szadujkis-Szadurski

    2014-08-01

    Full Text Available Rho-kinase and GTP-ase Rho are important regulators of vascular tone and blood pressure. The aim of this study was to investigate the role of Rho-kinase in artery reactions induced by angiotensin II (ANG II and the effects of ischemia-reperfusion injury as well as the function of intra- and extracellular calcium in these reactions. Experiments were performed on mesenteric superior arteries procured from cadaveric organ donors and conserved under the same conditions as transplanted kidneys. The vascular contraction in reaction to ANG II was measured in the presence of Rho-kinase inhibitor Y-27632, after ischemia and reperfusion, in Ca2+ and Ca2+-free solution. The maximal response to ANG II was reduced after ischemia, while an increase was observed after reperfusion. Vascular contraction induced by ANG II was decreased by Y-27632. Y-27632 reduced vascular contraction after reperfusion, both in Ca2+ and Ca2+-free solution. Reperfusion augments vascular contraction in reaction to ANG II. The Rho-kinase inhibitor Y-27632 reduces the hypersensitivity to ANG II after reperfusion mediated by both intra- and extracellular calcium. These results confirm the role of Rho-kinase in receptor-independent function of ANG II and in reperfusion-induced hypersensitivity.

  16. Hierarchical organization versus self-organization

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  17. Acaricidal activities of the essential oil from Rhododendron nivale Hook. f. and its main compund, δ-cadinene against Psoroptes cuniculi.

    Guo, Xiao; Shang, Xiaofei; Li, Bing; Zhou, Xu Zheng; Wen, Hao; Zhang, Jiyu

    2017-03-15

    In this paper, the acaricidal activities of Rhododendron nivale Hook. f. and its main compound, δ-cadinene were investigated, and the chemical composition of the essential oil was analyzed. The results showed that among aqueous, 70% ethanols, acetic ether, chloroform, petroleum ether and essential oil extracts from the shoots and leaves, the essential oil showed the best in vitro acaricidal activity against adult P. cuniculi, which occurred in a concentration- and time-dependent manner. The median lethal time (LT 50 ) values of four concentrations (33.33-4.17mg/ml) of the essential oil ranged from 1.476 to 25.900h, respectively. After the treatment of P. cuniculi with the essential oil and ivermectin, infected rabbits were free of scabs or secretions in the ear canal by day 20. Then, the percent yield of essential oil from the leaves and shoots was 2.45% (w/w), which includes 50 compounds. The primary component identified was terpenes, and among of compounds identified from the essential oil of R. nivale the highest relative content was δ-cadinene, which also presented the marked acaricidal activity against Psoroptes cuniculi in vitro. These findings provide evidence for the use of acaricides as a traditional medicine and indicate that the essential oil and δ-cadinene could be used to control mites in livestock. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Inventory Modelling for a Manufacturer of Sweets : An Evaluation of an Adjusted Compund Renewal Approach for B-Items With A Relative Short Production Lead Time

    Heuts, R.M.J.; Luijten, M.L.J.

    1999-01-01

    In this paper we are especially interested how to optimize the production/inventory control for a manufacturer of sweets, under the following circumstances: short production lead times in combination with an intermittent demand pattern for the so-called B-taste items. As for A-taste items a compound

  19. Ambient air contamination: Characterization and detection techniques

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  20. Database anomalous activities: Detection and quantification

    Costante, E.; Vavilis, S.; Etalle, S.; Petkovic, M.; Zannone, N.

    2013-01-01

    The disclosure of sensitive data to unauthorized entities is a critical issue for organizations. Timely detection of data leakage is crucial to reduce possible damages. Therefore, breaches should be detected as early as possible, e.g., when data are leaving the database. In this paper, we focus on