WorldWideScience

Sample records for organic chemical carcinogens

  1. Carcinogenic and mutagenic properties of chemicals in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Bull, R J

    1985-12-01

    Isolated cases of careless handling of industrial and domestic waste has lead to a wide variety of dangerous chemicals being inadvertently introduced into drinking water. However, chemicals with established carcinogenic and mutagenic properties that occur with a high frequency and in multiple locations are limited in number. To date, the chief offenders have been chemicals of relatively low carcinogenic potency. Some of the more common chemicals are formed as by-products of disinfection. The latter process is generally regarded as essential to the production of a ''microbiologically safe'' drinking water. Consequently, any reductions in what may be a relatively small carcinogenic risk must be balanced against a potential for a higher frequency of waterborne infectious disease. The results of recent toxicological investigations will be reviewed to place the potential carcinogenic and mutagenic hazards frequently associated with drinking water into perspective. First, evidence for the carcinogenicity of certain volatile organic compounds such as trichloroethylene, tetrachloroethylene and carbon tetrachloride is considered. Second, the carcinogenic activity that can be ascribed to various by-products of chlorination is reviewed in some detail. Finally, recent evidence that other chemicals derived from the treatment and distribution of drinking water is highlighted as an area requiring move systematic attention. 72 references.

  2. The effects of environmental chemical carcinogens on the microRNA machinery.

    Science.gov (United States)

    Izzotti, A; Pulliero, A

    2014-07-01

    The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    International Nuclear Information System (INIS)

    Kakehashi, Anna; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2013-01-01

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P 450 inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate

  4. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Kakehashi, Anna; Wei, Min [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585 (Japan); Fukushima, Shoji [Japan Bioassay Research Center, Japan Industrial Safety and Health Association, 2445 Hirasawa, Hadano, Kanagawa 257-0015 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585 (Japan)

    2013-10-28

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P{sub 450} inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate.

  5. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    Directory of Open Access Journals (Sweden)

    Hideki Wanibuchi

    2013-10-01

    Full Text Available This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P450 inducers, such as phenobarbital, a-benzene hexachloride and 1,1-bis(p-chlorophenyl-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate.

  6. Nuclear DNA synthesis rate and labelling index: effects of carcinogenic and non-carcinogenic chemicals on its behaviour in the organism of growing CBA mice

    International Nuclear Information System (INIS)

    Amlacher, E.; Rudolph, C.

    1978-01-01

    Well known bioassays have been compared with the author's thymidine incorporation-screening system and other assays based on biochemical quantification of DNA synthesis as a possibility of identification of carcinogens. The partial inhibition of the whole DNA synthesis in a proliferating cell population after treatment with toxic and carcinogenic chemicals is an early common response especially in hepatectomized animal, livers caused by the effects of those substances. However, by quantitative evaluation of the nuclear DNA synthesis rate as a basic parameter, using autoradiographs of kidney and liver of juvenile growing CBA mice, it is possible to differentiate carcinogenic from non-carcinogenic chemicals by means of silver grain counting after 3 H-TdR incorporation. On the contrary, the whole DNA synthesis, expressed by the 3 H-labelling index (in per cent) of kidney and liver, did not permit such a differentiation in the experimental arrangement used. It could be demonstrated that carcinogenic compounds of different chemical classes partially inhibit the nuclear DNA synthesis rate significantly over a period of more than 24 hours. The tested non-carcinogenic compounds did not show this suppressive effect on the nuclear DNA synthesis rate. (author)

  7. Is ionizing radiation regulated more stringently than chemical carcinogens

    International Nuclear Information System (INIS)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-01-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals and ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens

  8. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com [Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi (India); Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001 (India); Gupta, Shikha; Rai, Premanjali [Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi (India); Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001 (India)

    2013-10-15

    Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models was performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive

  9. Carcinogenicity tests of certain environmental and industrial chemicals

    International Nuclear Information System (INIS)

    Weisburger, E.K.; Ulland, B.M.; Nam, J.; Gart, J.J.; Weisburger, J.H.

    1981-01-01

    Fourteen chemicals of varied uses were tested for carcinogenicity by oral administration in male and female Charles River CD rats. Under the conditions of the tests, propane sultone, propylene imine, and ethylenethiourea, in addition to the positive control N-2-fluorenylacetamide, were carcinogenic. Avadex, bis(2-chloroethyl) ether, the potassium salt of bis(2-hydroxyethyl) dithiocarbamic acid, ethylene carbonate, and semicarbazide hydrochloride were not carcinogenic under the test conditions. Dithiooxamide, glycerol alpha-monochlorohydrin, and thiosemicarbazide gave somewhat ambiguous results, though administered at high enough dose levels to be toxic. An inadequate number of animals survived treatments with sodium azide, sodium bisulfide, and vinylene carbonate, or the animals may not have received sufficiently high doses of the test chemicals to provide maximum test sensitivity. However, there were no indications that these three chemicals were carcinogenic under the test conditions

  10. In vitro transformation: interactions of chemical carcinogens and radiation

    International Nuclear Information System (INIS)

    DiPaolo, J.A.

    1976-01-01

    The development of reproducible quantitative in vitro procedures resulting in neoplastic transformation of mammalian cells has made possible the separation of events related to the process leading to transformation from secondary events that interfere with the early recognition of transformation. The use of chemical carcinogens on Syrian hamster cell strains results in a dose-response relation consistent with a Poisson distribution, indicating that the transformation phenomenon is inductive. In some circumstances, the joint action or interaction of chemical carcinogens with other agents results in an increased incidence of transformation. The pretreatment of Syrian hamster cells with ionizing radiation (250 R) or alkylating chemicals enhances the frequency of transformation on a cell or colony basis ordinarily obtained with known chemical carcinogens. Pretreatment with non-ionizing irradiation (uv, 254 nm) did not have a similar effect. The two types of irradiation and the alkylating agents reduced the cloning efficiency of the cells. X ray alone produced no transformation; the alkylating chemicals produced transformations infrequently, whereas uv produced a significant number of transformations. The number of transformations associated with uv is increased by pretreatment of the cells by x-irradiation. The enhancement of transformation by x-ray or x-ray-type agents appears to be independent of the type of second carcinogen used

  11. Combining QSAR Modeling and Text-Mining Techniques to Link Chemical Structures and Carcinogenic Modes of Action.

    Science.gov (United States)

    Papamokos, George; Silins, Ilona

    2016-01-01

    There is an increasing need for new reliable non-animal based methods to predict and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a computer-based method linking chemical structures with biological activities, is used in predictive toxicology. In this study, we tested the approach to combine QSAR data with literature profiles of carcinogenic modes of action automatically generated by a text-mining tool. The aim was to generate data patterns to identify associations between chemical structures and biological mechanisms related to carcinogenesis. Using these two methods, individually and combined, we evaluated 96 rat carcinogens of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat carcinogens were mainly mutagenic, while the group of carcinogens affecting the hematopoietic system and the liver also included a large proportion of non-mutagens. The automatic literature analysis showed that mutagenicity was a frequently reported endpoint in the literature of these carcinogens, however, less common endpoints such as immunosuppression and hormonal receptor-mediated effects were also found in connection with some of the carcinogens, results of potential importance for certain target organs. The combined approach, using QSAR and text-mining techniques, could be useful for identifying more detailed information on biological mechanisms and the relation with chemical structures. The method can be particularly useful in increasing the understanding of structure and activity relationships for non-mutagens.

  12. Combining QSAR Modeling and Text-Mining Techniques to Link Chemical Structures and Carcinogenic Modes of Action

    Science.gov (United States)

    Papamokos, George; Silins, Ilona

    2016-01-01

    There is an increasing need for new reliable non-animal based methods to predict and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a computer-based method linking chemical structures with biological activities, is used in predictive toxicology. In this study, we tested the approach to combine QSAR data with literature profiles of carcinogenic modes of action automatically generated by a text-mining tool. The aim was to generate data patterns to identify associations between chemical structures and biological mechanisms related to carcinogenesis. Using these two methods, individually and combined, we evaluated 96 rat carcinogens of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat carcinogens were mainly mutagenic, while the group of carcinogens affecting the hematopoietic system and the liver also included a large proportion of non-mutagens. The automatic literature analysis showed that mutagenicity was a frequently reported endpoint in the literature of these carcinogens, however, less common endpoints such as immunosuppression and hormonal receptor-mediated effects were also found in connection with some of the carcinogens, results of potential importance for certain target organs. The combined approach, using QSAR and text-mining techniques, could be useful for identifying more detailed information on biological mechanisms and the relation with chemical structures. The method can be particularly useful in increasing the understanding of structure and activity relationships for non-mutagens. PMID:27625608

  13. Prediction of Chemical Carcinogenicity in Rodents from in vitro Genetic Toxicity Assays

    Science.gov (United States)

    Tennant, Raymond W.; Margolin, Barry H.; Shelby, Michael D.; Zeiger, Errol; Haseman, Joseph K.; Spalding, Judson; Caspary, William; Resnick, Michael; Stasiewicz, Stanley; Anderson, Beth; Minor, Robert

    1987-05-01

    Four widely used in vitro assays for genetic toxicity were evaluated for their ability to predict the carcinogenicity of selected chemicals in rodents. These assays were mutagenesis in Salmonella and mouse lymphoma cells and chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells. Seventy-three chemicals recently tested in 2-year carcinogenicity studies conducted by the National Cancer Institute and the National Toxicology Program were used in this evaluation. Test results from the four in vitro assays did not show significant differences in individual concordance with the rodent carcinogenicity results; the concordance of each assay was approximately 60 percent. Within the limits of this study there was no evidence of complementarity among the four assays, and no battery of tests constructed from these assays improved substantially on the overall performance of the Salmonella assay. The in vitro assays which represented a range of three cell types and four end points did show substantial agreement among themselves, indicating that chemicals positive in one in vitro assay tended to be positive in the other in vitro assays. To help put this project into its proper context, we emphasize certain features of the study: 1) Standard protocols were used to mimic the major use of STTs worldwide--screening for mutagens and carcinogens; no attempt was made to optimize protocols for specific chemicals. 2) The 73 NTP chemicals and their 60% incidence of carcinogenicity are probably not representative of the universe of chemicals but rather reflect the recent chemical selection process for the NTP carcinogenicity assay. 3) The small, diverse group of chemicals precludes a meaningful evaluation of the predictive utility of chemical structure information. 4) The NTP is currently testing these same 73 chemicals in two in vivo STTs for chromosomal effects. 5) Complete data for an additional group of 30 to 40 NTP chemicals will be gathered on

  14. Proposed changes in the classification of carcinogenic chemicals in the work area.

    Science.gov (United States)

    Neumann, H G; Thielmann, H W; Filser, J G; Gelbke, H P; Greim, H; Kappus, H; Norpoth, K H; Reuter, U; Vamvakas, S; Wardenbach, P; Wichmann, H E

    1997-12-01

    Carcinogenic chemicals in the work area are currently classified into three categories in Section III of the German List of MAK and BAT Values. This classification is based on qualitative criteria and reflects essentially the weight of evidence available for judging the carcinogenic potential of the chemicals. It is proposed that these Categories--IIIA1, IIIA2, and IIIB--be retained as Categories 1, 2, and 3, to conform with EU regulations. On the basis of our advancing knowledge of reaction mechanisms and the potency of carcinogens, it is now proposed that these three categories be supplemented with two additional categories. The essential feature of substances classified in the new categories is that exposure to these chemicals does not convey a significant risk of cancer to man, provided that an appropriate exposure limit (MAK value) is observed. It is proposed that chemicals known to act typically by nongenotoxic mechanisms and for which information is available that allows evaluation of the effects of low-dose exposures be classified in Category 4. Genotoxic chemicals for which low carcinogenic potency can be expected on the basis of dose-response relationships and toxicokinetics and for which risk at low doses can be assessed will be classified in Category 5. The basis for a better differentiation of carcinogens is discussed, the new categories are defined, and possible criteria for classification are described. Examples for Category 4 (1,4-dioxane) and Category 5 (styrene) are presented. The proposed changes in classifying carcinogenic chemicals in the work area are presented for further discussion.

  15. Protection by caffeine against oxic radiation damage and chemical carcinogens : mechanistic considerations

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    1992-01-01

    There is little doubt that caffeine administered after exposure to UV light enhances the damage to cells and organisms by inhibiting photoreactivation, excision and/or recombinational repair. However, when already present in the system, it affords remarkable protection not only against O 2 -dependent component of radiation damage, but also against chemical carcinogens that require metabolic activation. Possible mechanistic aspects are discussed briefly. (author). 81 refs

  16. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    International Nuclear Information System (INIS)

    Valerio, Luis G.; Arvidson, Kirk B.; Chanderbhan, Ronald F.; Contrera, Joseph F.

    2007-01-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals

  17. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers

    International Nuclear Information System (INIS)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A. Umran; Ottaviani, Maria Francesca

    2016-01-01

    Highlights: • Differently carcinogenic zeolite fibers were investigated combining physico-chemical methods. • For the first time, zeolite fibers were studied by means of the EPR technique using different spin probes. • The structural properties and the adsorption capability are function of different types and distributions of adsorption sites. • The interacting ability of erionite is higher than that of other fibrous zeolites. • The surface interacting properties may be related with the carcinogenicity of the zeolite fibers. - Abstract: Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si–O–Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.

  18. A novel approach: chemical relational databases, and the role of the ISSCAN database on assessing chemical carcinogenicity.

    Science.gov (United States)

    Benigni, Romualdo; Bossa, Cecilia; Richard, Ann M; Yang, Chihae

    2008-01-01

    Mutagenicity and carcinogenicity databases are crucial resources for toxicologists and regulators involved in chemicals risk assessment. Until recently, existing public toxicity databases have been constructed primarily as "look-up-tables" of existing data, and most often did not contain chemical structures. Concepts and technologies originated from the structure-activity relationships science have provided powerful tools to create new types of databases, where the effective linkage of chemical toxicity with chemical structure can facilitate and greatly enhance data gathering and hypothesis generation, by permitting: a) exploration across both chemical and biological domains; and b) structure-searchability through the data. This paper reviews the main public databases, together with the progress in the field of chemical relational databases, and presents the ISSCAN database on experimental chemical carcinogens.

  19. Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology.

    Science.gov (United States)

    Benigni, Romualdo; Bossa, Cecilia

    2008-01-01

    In the past decades, chemical carcinogenicity has been the object of mechanistic studies that have been translated into valuable experimental (e.g., the Salmonella assays system) and theoretical (e.g., compilations of structure alerts for chemical carcinogenicity) models. These findings remain the basis of the science and regulation of mutagens and carcinogens. Recent advances in the organization and treatment of large databases consisting of both biological and chemical information nowadays allows for a much easier and more refined view of data. This paper reviews recent analyses on the predictive performance of various lists of structure alerts, including a new compilation of alerts that combines previous work in an optimized form for computer implementation. The revised compilation is part of the Toxtree 1.50 software (freely available from the European Chemicals Bureau website). The use of structural alerts for the chemical biological profiling of a large database of Salmonella mutagenicity results is also reported. Together with being a repository of the science on the chemical biological interactions at the basis of chemical carcinogenicity, the SAs have a crucial role in practical applications for risk assessment, for: (a) description of sets of chemicals; (b) preliminary hazard characterization; (c) formation of categories for e.g., regulatory purposes; (d) generation of subsets of congeneric chemicals to be analyzed subsequently with QSAR methods; (e) priority setting. An important aspect of SAs as predictive toxicity tools is that they derive directly from mechanistic knowledge. The crucial role of mechanistic knowledge in the process of applying (Q)SAR considerations to risk assessment should be strongly emphasized. Mechanistic knowledge provides a ground for interaction and dialogue between model developers, toxicologists and regulators, and permits the integration of the (Q)SAR results into a wider regulatory framework, where different types of

  20. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals

    International Nuclear Information System (INIS)

    Venkatapathy, Raghuraman; Wang Chingyi; Bruce, Robert Mark; Moudgal, Chandrika

    2009-01-01

    Determining the carcinogenicity and carcinogenic potency of new chemicals is both a labor-intensive and time-consuming process. In order to expedite the screening process, there is a need to identify alternative toxicity measures that may be used as surrogates for carcinogenic potency. Alternative toxicity measures for carcinogenic potency currently being used in the literature include lethal dose (dose that kills 50% of a study population [LD 50 ]), lowest-observed-adverse-effect-level (LOAEL) and maximum tolerated dose (MTD). The purpose of this study was to investigate the correlation between tumor dose (TD 50 ) and three alternative toxicity measures as an estimator of carcinogenic potency. A second aim of this study was to develop a Classification and Regression Tree (CART) between TD 50 and estimated/experimental predictor variables to predict the carcinogenic potency of new chemicals. Rat TD 50 s of 590 structurally diverse chemicals were obtained from the Cancer Potency Database, and the three alternative toxicity measures considered in this study were estimated using TOPKAT, a toxicity estimation software. Though poor correlations were obtained between carcinogenic potency and the three alternative toxicity (both experimental and TOPKAT) measures for the CPDB chemicals, a CART developed using experimental data with no missing values as predictor variables provided reasonable estimates of TD 50 for nine chemicals that were part of an external validation set. However, if experimental values for the three alternative measures, mutagenicity and logP are not available in the literature, then either the CART developed using missing experimental values or estimated values may be used for making a prediction

  1. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    Huberman, E.; Langenbach, R.

    1977-01-01

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  2. Chemical Carcinogen (Hydrazine et al.) Induced Carcinogenesis of Human Diploid Cells in Vitro

    Science.gov (United States)

    1982-09-07

    untreated cell popula- pared from the stock solutions in complete growth tions were seeded onto CES in vitro. The CES medium (CIM). Thee solutions were added...time from induction pared to metastases IFig. IBl. We want to imply to neoplasia of 6 to 10 wk instead of 1 to 1.5 yr. that these chemical carcinogen...This definition was used because the pathologist was ds:b celular invasion Into CE,, an organ culture, In vitro. Thw two Interpretations am not

  3. Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking

    International Nuclear Information System (INIS)

    Zhang, Nan; Han, Bin; He, Fei; Xu, Jia; Zhao, Ruojie; Zhang, Yujuan; Bai, Zhipeng

    2017-01-01

    To illustrate chemical characteristic of PM 2.5 emission and assess inhalational carcinogenic risk of domestic Chinese cooking, 5 sets of duplicate cooking samples were collected, using the most used 5 types of oil. The mass abundance of 14 elements, 5 water-soluble ions, organic carbon (OC), elemental carbon (EC) and 11 polycyclic aromatic hydrocarbons (PAHs) were calculated; the signature and diagnostic ratio of cooking in the domestic kitchen were analyzed; and carcinogenic risks of heavy metals and PAHs via inhalation were assessed in two scenarios. The analysis showed that OC was the primary composition in the chemical profile; Na was the most abundant element that might be due to the usage of salt; Cr and Pb, NO 3 − and SO 4 2- , Phe, FL and Pyr were the main heavy metals/water-soluble ions/PAHs, respectively. Phe and FL could be used to separate cooking and stationary sources, while diagnostic ratios of BaA/(BaA + CHR), BaA/CHR, BaP/BghiP and BaP/BeP should be applied with caution, as they were influenced by various cooking conditions. Carcinogenic risks of heavy metals and PAHs were evaluated in two scenarios, simulating the condition of cooking with no ventilation and with the range hood on, respectively. The integrated risk of heavy metals and PAHs was 2.7 × 10 −3 and 5.8 × 10 −6 , respectively, during cooking with no ventilation. While with the usage of range hood, only Cr(VI), As and Ni might induce potential carcinogenic risk. The difference in the chemical abundance in cooking sources found between this and other studies underlined the necessity of constructing locally representative source profiles under real conditions. The comparison of carcinogenic risk suggested that the potentially adverse health effects induced by inorganic compositions from cooking sources should not be ignored. Meanwhile, intervention methods, such as the operation of range hood, should be applied during cooking for health protection. - Highlights: • PM 2

  4. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Science.gov (United States)

    Goodson, William H; Lowe, Leroy; Carpenter, David O; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K; Collins, Andrew R; Ward, Andrew; Salzberg, Anna C; Colacci, Annamaria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J; Zhou, Binhua P; Blanco-Aparicio, Carmen; Baglole, Carolyn J; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C; Yedjou, Clement; Curran, Colleen S; Laird, Dale W; Koch, Daniel C; Carlin, Danielle J; Felsher, Dean W; Roy, Debasish; Brown, Dustin G; Ratovitski, Edward; Ryan, Elizabeth P; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L; Van Schooten, Frederik J; Goldberg, Gary S; Wagemaker, Gerard; Nangami, Gladys N; Calaf, Gloria M; Williams, Graeme; Wolf, Gregory T; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R; Scovassi, A Ivana; Klaunig, James E; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R; Woodrick, Jordan; Christopher, Joseph A; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R; Narayanan, Kannan Badri; Cohen-Solal, Karine A; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D'Abronzo, Leandro S; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A; Wade, Mark; Manjili, Masoud H; Lleonart, Matilde E; Xia, Menghang; Gonzalez, Michael J; Karamouzis, Michalis V; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P K; Vadgama, Pankaj; Marignani, Paola A; Ghosh, Paramita M; Ostrosky-Wegman, Patricia; Thompson, Patricia A; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Sing Leung, Po; Nangia-Makker, Pratima; Cheng, Qiang Shawn; Robey, R Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C; Palorini, Roberta; Abd Hamid, Roslida; Langie, Sabine A S; Eltom, Sakina E; Brooks, Samira A; Ryeom, Sandra; Wise, Sandra S; Bay, Sarah N; Harris, Shelley A; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W Kimryn; Engström, Wilhelm; Decker, William K; Bisson, William H; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-06-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. © The Author 2015. Published by Oxford University Press.

  5. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    Science.gov (United States)

    Goodson, William H.; Lowe, Leroy; Carpenter, David O.; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K.; Collins, Andrew R.; Ward, Andrew; Salzberg, Anna C.; Colacci, Anna Maria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J.; Zhou, Binhua P.; Blanco-Aparicio, Carmen; Baglole, Carolyn J.; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C.; Yedjou, Clement; Curran, Colleen S.; Laird, Dale W.; Koch, Daniel C.; Carlin, Danielle J.; Felsher, Dean W.; Roy, Debasish; Brown, Dustin G.; Ratovitski, Edward; Ryan, Elizabeth P.; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L.; Van Schooten, Frederik J.; Goldberg, Gary S.; Wagemaker, Gerard; Nangami, Gladys N.; Calaf, Gloria M.; Williams, Graeme P.; Wolf, Gregory T.; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H. Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K.; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R.; Scovassi, A.Ivana; Klaunig, James E.; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R.; Woodrick, Jordan; Christopher, Joseph A.; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R.; Narayanan, Kannan Badri; Cohen-Solal, Karine A.; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D’Abronzo, Leandro S.; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J.; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A.; Wade, Mark; Manjili, Masoud H.; Lleonart, Matilde E.; Xia, Menghang; Gonzalez Guzman, Michael J.; Karamouzis, Michalis V.; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B.; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P.K.; Vadgama, Pankaj; Marignani, Paola A.; Ghosh, Paramita M.; Ostrosky-Wegman, Patricia; Thompson, Patricia A.; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Leung, Po Sing; Nangia-Makker, Pratima; Cheng, Qiang (Shawn); Robey, R.Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K.; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C.; Palorini, Roberta; Hamid, Roslida A.; Langie, Sabine A.S.; Eltom, Sakina E.; Brooks, Samira A.; Ryeom, Sandra; Wise, Sandra S.; Bay, Sarah N.; Harris, Shelley A.; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C.; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W.Kimryn; Engström, Wilhelm; Decker, William K.; Bisson, William H.; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-01-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. PMID:26106142

  6. Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking.

    Science.gov (United States)

    Zhang, Nan; Han, Bin; He, Fei; Xu, Jia; Zhao, Ruojie; Zhang, Yujuan; Bai, Zhipeng

    2017-08-01

    To illustrate chemical characteristic of PM 2.5 emission and assess inhalational carcinogenic risk of domestic Chinese cooking, 5 sets of duplicate cooking samples were collected, using the most used 5 types of oil. The mass abundance of 14 elements, 5 water-soluble ions, organic carbon (OC), elemental carbon (EC) and 11 polycyclic aromatic hydrocarbons (PAHs) were calculated; the signature and diagnostic ratio of cooking in the domestic kitchen were analyzed; and carcinogenic risks of heavy metals and PAHs via inhalation were assessed in two scenarios. The analysis showed that OC was the primary composition in the chemical profile; Na was the most abundant element that might be due to the usage of salt; Cr and Pb, NO 3 - and SO 4 2- , Phe, FL and Pyr were the main heavy metals/water-soluble ions/PAHs, respectively. Phe and FL could be used to separate cooking and stationary sources, while diagnostic ratios of BaA/(BaA + CHR), BaA/CHR, BaP/BghiP and BaP/BeP should be applied with caution, as they were influenced by various cooking conditions. Carcinogenic risks of heavy metals and PAHs were evaluated in two scenarios, simulating the condition of cooking with no ventilation and with the range hood on, respectively. The integrated risk of heavy metals and PAHs was 2.7 × 10 -3 and 5.8 × 10 -6 , respectively, during cooking with no ventilation. While with the usage of range hood, only Cr(VI), As and Ni might induce potential carcinogenic risk. The difference in the chemical abundance in cooking sources found between this and other studies underlined the necessity of constructing locally representative source profiles under real conditions. The comparison of carcinogenic risk suggested that the potentially adverse health effects induced by inorganic compositions from cooking sources should not be ignored. Meanwhile, intervention methods, such as the operation of range hood, should be applied during cooking for health protection. Copyright © 2017 Elsevier Ltd

  7. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers.

    Science.gov (United States)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A Umran; Ottaviani, Maria Francesca

    2016-04-05

    Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si-O-Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Chemical procedures to detect carcinogenic compound in domestic wastewater

    International Nuclear Information System (INIS)

    Abd Manan T S; Malakahmad A

    2013-01-01

    This review presents chemical methods to detect carcinogenic compound in wastewater. Atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC) and gas chromatography mass spectroscopy (GCMS) and their alternative attached equipments were discussed. The application of each method is elaborated using related studies in the field.

  9. Chemical carcinogenic and mutagenic agents in the workplace, Poland, 2008–2010

    Directory of Open Access Journals (Sweden)

    Katarzyna Konieczko

    2013-04-01

    Full Text Available Background: The aim of this paper is to present a concise but comprehensive information on the occurrence of carcinogenic or mutagenic agents in Polish enterprises and the number of workers exposed to those agents reported to the central register by employers. Objectives and responsibilities of the register, as well as the range and methods of data gathering are discussed. Material and Methods: Data concerning carcinogenic or mutagenic chemical substances and technological processes reported to central register in 2008-2010 were analyzed. Results: In 2008-2010 more than 300 carcinogenic or mutagenic chemical substances were reported to the register. Approximately 2500 plants reported above 150 000 per-person-exposures annually. Among all technological processes regarded as occupational carcinogens, hardwood dusts exposure (about 660 companies; 11 000-13 000 exposed workers each year and exposure to polycyclic aromatic hydrocarbons (PAHs present in coal products (117-125 plantsl 3000 exposed per year were reported. Conclusions: The most widespread carcinogenic/mutagenic substances were: benzene, chromium(VI compounds: potassium dichromate and chromate, chromium(VI trioxide and other chromium compounds, ethylene oxide, asbestos, benzo[a]pyrene and gasoline. The highest number of men was exposed to particular PAHs and benzene , and the majority of women was exposed to benzene, potassium dichromate and chromate, acrylamide, ethylene oxide and gasoline. The lack of clear-cut definitione of occupational exposure to carcinogen creates a problem faced by employers in defining the accurate number of exposed workers. Med Pr 2013;64(2:181–192

  10. Inconsistency... or why differentiate, where prevention is concerned, between radioactive substances and carcinogenic chemicals

    International Nuclear Information System (INIS)

    Choquet, R.; Vinit, J.

    1982-01-01

    Radiotracers, low-activity unsealed radioactive sources, and certain chemical products belong to the list of substances and agents known to promote cancers in humans. The dangers of radiotracers and carcinogenic chemicals being very similar, or even identical, it is inadmissible that preventive measures have not been equally developed and are not viewed in the same way in our country. It should be noted that the International Labour Bureau has long since included radioactive products in the list of carcinogenic substances and agents and treated preventive measures as a whole by proceeding in this way it would be easier to account for the possible combined effects of ionising radiations and chemical molecules. After a review of some facts about cancer the present situation is examined with regard to statutory measures applied on the one hand to radioelements and on the other to chemicals recognised as carcinogenic by international organisations. Proposals are made to remedy this illogical situation [fr

  11. AI AND SAR APPROACHES FOR PREDICTING CHEMICAL CARCINOGENICITY: SURVEY AND STATUS REPORT

    Science.gov (United States)

    A wide variety of artificial intelligence (AI) and structure-activity relationship (SAR approaches have been applied to tackling the general problem of predicting rodent chemical carcinogenicity. Given the diversity of chemical structures and mechanisms relative to this endpoin...

  12. The limits of two-year bioassay exposure regimens for identifying chemical carcinogens.

    Science.gov (United States)

    Huff, James; Jacobson, Michael F; Davis, Devra Lee

    2008-11-01

    Chemical carcinogenesis bioassays in animals have long been recognized and accepted as valid predictors of potential cancer hazards to humans. Most rodent bioassays begin several weeks after birth and expose animals to chemicals or other substances, including workplace and environmental pollutants, for 2 years. New findings indicate the need to extend the timing and duration of exposures used in the rodent bioassay. In this Commentary, we propose that the sensitivity of chemical carcinogenesis bio-assays would be enhanced by exposing rodents beginning in utero and continuing for 30 months (130 weeks) or until their natural deaths at up to about 3 years. Studies of three chemicals of different structures and uses-aspartame, cadmium, and toluene-suggest that exposing experimental animals in utero and continuing exposure for 30 months or until their natural deaths increase the sensitivity of bioassays, avoid false-negative results, and strengthen the value and validity of results for regulatory agencies. Government agencies, drug companies, and the chemical industry should conduct and compare the results of 2-year bioassays of known carcinogens or chemicals for which there is equivocal evidence of carcinogenicity with longer-term studies, with and without in utero exposure. If studies longer than 2 years and/or with in utero exposure are found to better identify potential human carcinogens, then regulatory agencies should promptly revise their testing guidelines, which were established in the 1960s and early 1970s. Changing the timing and dosing of the animal bioassay would enhance protection of workers and consumers who are exposed to potentially dangerous workplace or home contaminants, pollutants, drugs, food additives, and other chemicals throughout their lives.

  13. The association of the original OSHA chemical hazard communication standard with reductions in acute work injuries/illnesses in private industry and the industrial releases of chemical carcinogens.

    Science.gov (United States)

    Oleinick, Arthur

    2014-02-01

    OSHA predicted the original chemical Hazard Communication Standard (HCS) would cumulatively reduce the lost workday acute injury/illness rate for exposure events by 20% over 20 years and reduce exposure to chemical carcinogens. JoinPoint trend software identified changes in the rate of change of BLS rates for days away from work for acute injuries/illnesses during 1992-2009 for manufacturing and nonmanufacturing industries for both chemical, noxious or allergenic injury exposure events and All other exposure events. The annual percent change in the rates was used to adjust observed numbers of cases to estimate their association with the standard. A case-control study of EPA's Toxic Release Inventory 1988-2009 data compared carcinogen and non-carcinogens' releases. The study estimates that the HCS was associated with a reduction in the number of acute injuries/illnesses due to chemical injury exposure events over the background rate in the range 107,569-459,395 (Hudson method/modified BIC model) depending on whether the HCS is treated as a marginal or sole factor in the decrease. Carcinogen releases have declined at a substantially faster rate than control non-carcinogens. The previous HCS standard was associated with significant reductions in chemical event acute injuries/illnesses and chemical carcinogen exposures. © 2013 Wiley Periodicals, Inc.

  14. Effects of combined exposure of F344 rats to inhaled Plutonium-239 dioxide and a chemical carcinogen (NNK)

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, D.L.; Carlton, W.W. [Purdue Univ., Lafayette, IN (United States); Griffith, W.C. [and others

    1995-12-01

    Workers in nuclear weapons facilities have a significant potential for exposure to chemical carcinogens and to radiation from external sources or from internally deposited radionuclides such as {sup 239}Pu. Although the carcinogenic effects of inhaled {sup 239}Pu and many chemicals have been studied individually, very little information is available on their combined effects. One chemical carcinogen that workers could be exposed to via tobacco smoke is the tobacco-specific nitrosamine 4-(N-methyl-n-nitrosamino)-1-(3-pyridyl)-1(3-pyridyl)-1-butanone (NNK), a product of tobacco curing and the pyrolysis of nicotine in tobacco. NNK causes lung tumors in rats, regardless of the route of administration and to a lesser extent liver, nasal, and pancreatic tumors. From the results presented, it can be concluded that exposure to a chemical carcinogen (NNK) in combination with {alpha}-particle radiation from inhaled {sup 239}PuO{sub 2} acts in, at best, an additive manner in inducing lung cancer in rats.

  15. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    Science.gov (United States)

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  16. Assessment of predictivity of volatile organic compounds carcinogenicity and mutagenicity by freeware in silico models.

    Science.gov (United States)

    Guerra, Lília Ribeiro; de Souza, Alessandra Mendonça Teles; Côrtes, Juliana Alves; Lione, Viviane de Oliveira Freitas; Castro, Helena Carla; Alves, Gutemberg Gomes

    2017-12-01

    The application of in silico methods is increasing on toxicological risk prediction for human and environmental health. This work aimed to evaluate the performance of three in silico freeware models (OSIRIS v.2.0, LAZAR, and Toxtree) on the prediction of carcinogenicity and mutagenicity of thirty-eight volatile organic compounds (VOC) related to chemical risk assessment for occupational exposure. Theoretical data were compared with assessments available in international databases. Confusion matrices and ROC curves were used to evaluate the sensitivity, specificity, and accuracy of each model. All three models (OSIRIS, LAZAR and Toxtree) were able to identify VOC with a potential carcinogenicity or mutagenicity risk for humans, however presenting differences concerning the specificity, sensitivity, and accuracy. The best predictive performances were found for OSIRIS and LAZAR for carcinogenicity and OSIRIS for mutagenicity, as these softwares presented a combination of negative predictive power and lower risk of false positives (high specificity) for those endpoints. The heterogeneity of results found with different softwares reinforce the importance of using a combination of in silico models to occupational toxicological risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A Novel Approach: Chemical Relational Databases, and the Role of the ISSCAN Database on Assessing Chemical Carcinogenity

    Science.gov (United States)

    Mutagenicity and carcinogenicity databases are crucial resources for toxicologists and regulators involved in chemicals risk assessment. Until recently, existing public toxicity databases have been constructed primarily as "look-up-tables" of existing data, and most often did no...

  18. Identification and monitoring of non-radiological carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Chuaqui, C A; Petkau, A; Greenstock, C L; Brown, C P [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-09-01

    This study examines the feasibility of identifying and monitoring occupational exposures to non-radiological carcinogens in the workplace at Canadian nuclear establishments (Whiteshell Laboratories, Pickering Nuclear Generating Station, Cameco Limited and Canadian General Electric Company Limited). Recent epidemiological studies recommended that potential confounding factors of a non-radiological nature be identified and analyzed, particularly non-radiological carcinogens that may be present in the workplace at nuclear facilities. The feasibility of identifying and measuring occupational exposures to non-radiological carcinogens in Canadian nuclear facilities is examined. Also, the report describes the problem of chemical carcinogens and the mechanisms involved in chemical carcinogenesis; the epidemiology related to the problem, followed by a description of the analytical aspects of detection, monitoring and analysis of carcinogens, as well as a discussion on the regulatory aspects and the regulations in place; and the findings, recommendations and concluding remarks of this study. Several problem areas became apparent as the study proceeded. For example, the classification of a chemical as a human carcinogen is a difficult problem, as is its adequate monitoring and analysis. This situation reflects, in turn, the regulatory aspects in the workplace. A list of chemical carcinogens used industrially at the four Canadian nuclear facilities has been identified. The list includes arsenic, asbestos, benzene, cadmium, beryllium, nickel, polychlorinated biphenyls, lead and trichloroethylene. Several recommendations are made in relation to the need for practical and efficient monitoring methods for chemical carcinogens, the definition of radiation and chemical dose equivalencies, and the classification of human chemical carcinogens, as well as their disposal. (author). 122 refs., 8 tabs., 6 figs.

  19. Identification and monitoring of non-radiological carcinogens

    International Nuclear Information System (INIS)

    Chuaqui, C.A.; Petkau, A.; Greenstock, C.L.; Brown, C.P.

    1995-09-01

    This study examines the feasibility of identifying and monitoring occupational exposures to non-radiological carcinogens in the workplace at Canadian nuclear establishments (Whiteshell Laboratories, Pickering Nuclear Generating Station, Cameco Limited and Canadian General Electric Company Limited). Recent epidemiological studies recommended that potential confounding factors of a non-radiological nature be identified and analyzed, particularly non-radiological carcinogens that may be present in the workplace at nuclear facilities. The feasibility of identifying and measuring occupational exposures to non-radiological carcinogens in Canadian nuclear facilities is examined. Also, the report describes the problem of chemical carcinogens and the mechanisms involved in chemical carcinogenesis; the epidemiology related to the problem, followed by a description of the analytical aspects of detection, monitoring and analysis of carcinogens, as well as a discussion on the regulatory aspects and the regulations in place; and the findings, recommendations and concluding remarks of this study. Several problem areas became apparent as the study proceeded. For example, the classification of a chemical as a human carcinogen is a difficult problem, as is its adequate monitoring and analysis. This situation reflects, in turn, the regulatory aspects in the workplace. A list of chemical carcinogens used industrially at the four Canadian nuclear facilities has been identified. The list includes arsenic, asbestos, benzene, cadmium, beryllium, nickel, polychlorinated biphenyls, lead and trichloroethylene. Several recommendations are made in relation to the need for practical and efficient monitoring methods for chemical carcinogens, the definition of radiation and chemical dose equivalencies, and the classification of human chemical carcinogens, as well as their disposal. (author). 122 refs., 8 tabs., 6 figs

  20. Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells.

    Directory of Open Access Journals (Sweden)

    Lode Godderis

    Full Text Available Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes, we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose-response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti- apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.

  1. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods.

    Science.gov (United States)

    Zhang, Li; Ai, Haixin; Chen, Wen; Yin, Zimo; Hu, Huan; Zhu, Junfeng; Zhao, Jian; Zhao, Qi; Liu, Hongsheng

    2017-05-18

    Carcinogenicity refers to a highly toxic end point of certain chemicals, and has become an important issue in the drug development process. In this study, three novel ensemble classification models, namely Ensemble SVM, Ensemble RF, and Ensemble XGBoost, were developed to predict carcinogenicity of chemicals using seven types of molecular fingerprints and three machine learning methods based on a dataset containing 1003 diverse compounds with rat carcinogenicity. Among these three models, Ensemble XGBoost is found to be the best, giving an average accuracy of 70.1 ± 2.9%, sensitivity of 67.0 ± 5.0%, and specificity of 73.1 ± 4.4% in five-fold cross-validation and an accuracy of 70.0%, sensitivity of 65.2%, and specificity of 76.5% in external validation. In comparison with some recent methods, the ensemble models outperform some machine learning-based approaches and yield equal accuracy and higher specificity but lower sensitivity than rule-based expert systems. It is also found that the ensemble models could be further improved if more data were available. As an application, the ensemble models are employed to discover potential carcinogens in the DrugBank database. The results indicate that the proposed models are helpful in predicting the carcinogenicity of chemicals. A web server called CarcinoPred-EL has been built for these models ( http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/ ).

  2. Induction of prophage lambda by chlorinated organics: Detection of some single-species/single-site carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Brooks, H.G. (Environmental Protection Agency, Research Triangle Park, NC (United States))

    1992-01-01

    Twenty-eight chlorinated organic compounds were evaluated for their ability to induce DNA damage using the Microscreen prophage-induction assay in Escherichia coli. Comparison of the performance characteristics of the prophage-induction and Salmonella assays to rodent carcinogenicity assays showed that the prophage-induction assay had a somewhat higher specificity than did the Salmonella assay (70% vs. 50%); sensitivity, concordance, and positive and negative predictivity were similar for the two microbial assays. The Microscreen prophage-induction assay failed to detect eight carcinogens, perhaps due to toxicity or other unknown factors; five of these eight carcinogens were detected by the Salmonella assay. However, the prophage-induction assay did detect six carcinogens that were not detected by the Salmonella assay, and five of these were single-species, single-site carcinogens, mostly mouse liver carcinogens. Some of these carcinogens, such as the chloroethanes, produce free radicals, which may be the basis for their carcinogenicity and ability to induce prophage. The prophage-induction (or other SOS) assay may be useful in identifying some genotoxic chlorinated carcinogens that induce DNA damage that do not revert the standard Salmonella tester strains.

  3. Predictive Models for Carcinogenicity and Mutagenicity ...

    Science.gov (United States)

    Mutagenicity and carcinogenicity are endpoints of major environmental and regulatory concern. These endpoints are also important targets for development of alternative methods for screening and prediction due to the large number of chemicals of potential concern and the tremendous cost (in time, money, animals) of rodent carcinogenicity bioassays. Both mutagenicity and carcinogenicity involve complex, cellular processes that are only partially understood. Advances in technologies and generation of new data will permit a much deeper understanding. In silico methods for predicting mutagenicity and rodent carcinogenicity based on chemical structural features, along with current mutagenicity and carcinogenicity data sets, have performed well for local prediction (i.e., within specific chemical classes), but are less successful for global prediction (i.e., for a broad range of chemicals). The predictivity of in silico methods can be improved by improving the quality of the data base and endpoints used for modelling. In particular, in vitro assays for clastogenicity need to be improved to reduce false positives (relative to rodent carcinogenicity) and to detect compounds that do not interact directly with DNA or have epigenetic activities. New assays emerging to complement or replace some of the standard assays include VitotoxTM, GreenScreenGC, and RadarScreen. The needs of industry and regulators to assess thousands of compounds necessitate the development of high-t

  4. The utility of the guppy (Poecilia reticulata) and medaka (Oryzias latipes) in evaluation of chemicals for carcinogenicity.

    Science.gov (United States)

    Kissling, Grace E; Bernheim, Naomi J; Hawkins, William E; Wolfe, Marilyn J; Jokinen, Micheal P; Smith, Cynthia S; Herbert, Ronald A; Boorman, Gary A

    2006-07-01

    There has been considerable interest in the use of small fish models for detecting potential environmental carcinogens. In this study, both guppies (Poecilia reticulata) and medaka (Oryzias latipes) were exposed in the aquaria water to three known rodent carcinogens for up to 16 months. Nitromethane, which caused mammary gland tumors by inhalation exposure in female rats, harderian gland and lung tumors in male and female mice, and liver tumors in female mice by inhalation, failed to increase tumors in either guppies or medaka. Propanediol, which when given in the feed was a multisite carcinogen in both sexes of rats and mice, caused increased liver tumors in male guppies and male medaka. There was reduced survival in female guppies and no increased tumors in female medaka. 1,2,3-Trichloropropane, which when administered by oral gavage was a multisite carcinogen in both sexes of rats and mice, caused an increased incidence of tumors in the liver of both male and female guppies and medaka and in the gallbladder of male and female medaka. The results of this study demonstrate that for these three chemicals, under these specific exposure conditions, the fish appear less sensitive and have a narrower spectrum of tissues affected than rodents. These results suggest that fish models are of limited utility in screening unknown chemicals for potential carcinogenicity.

  5. [Risk assessment of carcinogenic and non-carcinogenic effects in the use of food].

    Science.gov (United States)

    Frolova, O A; Karpova, M V

    2012-01-01

    Application of methodology for assessing the risk of diseases associated with consumption of contaminated foods, is aimed at predicting possible changes in the future and helps to create a framework for the prevention of negative effects on public health. The purpose of the study is assessment of health risks formed under the influence of chemical contaminants that pollute the food. Exponential average daily dose of receipt of chemicals in the body, non-carcinogenic and carcinogenic risks were calculated.

  6. Immunogenicity of guinea pig cells transformed in culture by chemical carcinogens.

    Science.gov (United States)

    Ohanian, S H; McCabe, R P; Evans, C H

    1981-12-01

    The immunogenicity of inbred strain 2/N guinea pig fibroblasts transformed to the malignant state in vitro by chemical carcinogens was evaluated with the use of a variety of in vivo and in vitro methods including delayed-type hypersensitivity skin and tumor transplantation tests and analysis of antibody production by immunofluorescence, complement fixation, and staphylococcal protein A binding tests. Neoplastic transformation was induced by direct treatment of cells in culture with benzo[a]pyrene, 3-methylcholanthrene, or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or by the host-mediated method by which fetuses were exposed to diethylnitrosamine or MNNG in vivo prior to cell culture. Rabbits and syngeneic guinea pigs were inoculated with unirradiated and X-irradiated clonally derived cells. Delayed hypersensitivity skin reactions to immunizing or other cells were equivalent in immunized or control guinea pigs, and no protection to tumor outgrowth from a challenge inoculum of immunizing cells was observed. Antibody activity induced in the sera of immunized guinea pigs was cross-reactive and removed by absorption with nontumorigenic cells. Rabbit antisera after absorption with fetal guinea pig cells were nonreactive with the specific immunizing or other culture cells. Chemical carcinogen-induced neoplastic transformation of guinea pig cells can, therefore, occur without formation of detectable, individually distinct cell surface tumor-specific neoantigens.

  7. Immunogenicity of guinea pig cells transformed in culture by chemical carcinogens

    International Nuclear Information System (INIS)

    Ohanian, S.H.; McCabe, R.P.; Evans, C.H.

    1981-01-01

    The immunogenicity of inbred strain 2/N guinea pig fibroblasts transformed to the malignant state in vitro by chemical carcinogens was evaluated with the use of a variety of in vivo and in vitro methods including delayed-type hypersensitivity skin and tumor transplantation tests and analysis of antibody production by immunofluorescence, complement fixation, and staphylococcal protein A binding tests. Neoplastic transformation was induced by direct treatment of cells in culture with benzo[a]pyrene, 3-methylcholanthrene, or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or by the host-mediated method by which fetuses were exposed to diethylnitrosamine or MNNG in vivo prior to cell culture. Rabbits and syngeneic guinea pigs were inoculated with unirradiated and X-irradiated clonally derived cells. Delayed hypersensitivity skin reactions to immunizing or other cells were equivalent in immunized or control guinea pigs, and no protection to tumor outgrowth from a challenge inoculum of immunizing cells was observed. Antibody activity induced in the sera of immunized guinea pigs was cross-reactive and removed by absorption with nontumorigenic cells. Rabbit anitsera after absorption with fetal guinea pig cells were nonreactive with the specific immunizing or other cultured cells. Chemical carcinogen-induced neoplastic transformation of guinea pig cells can, therefore, occur without formation of detectable, individually distinct cell surface tumor-specific neoantigens

  8. How many food additives are rodent carcinogens?

    Science.gov (United States)

    Johnson, F M

    2002-01-01

    One generally assumes that chemical agents added to foods are reasonably free of risks to human health, and practically everyone consumes some additives in his or her food daily throughout life. In the United States, the 1958 Food Additives Amendment to the Federal Food, Drug and Cosmetic Act of 1938 requires food manufacturers to demonstrate the safety of food additives to the Food and Drug Administration (FDA). The Amendment contains a provision that prohibits approval of an additive if it is found to cause cancer in humans or animals. In the present study, data from the National Toxicology Program rodent bioassay (NTPRB) were used to identify a sample of approximately 50 rodent-tested additives and other chemicals added to food that had been evaluated independently of the FDA/food industry. Surprisingly, the sample shows more than 40% of these food chemicals to be carcinogenic in one or more rodent groups. If this percentage is extrapolated to all substances added to food in the United States, it would imply that more than 1000 of such substances are potential rodent carcinogens. The NTP and FDA test guidelines use similar, though not necessarily identical, rodent test procedures, including near lifetime exposures to the maximum tolerated dose. The FDA specifies that test chemicals should be administered by the oral route. However, the oral route includes three methods of delivering chemicals, that is, mixed in the food or water or delivered by stomach tube (gavage). The NTP data show only 1 of 18 food chemicals mixed in the food are rodent carcinogens, but 16 of 23 gavage-administered food chemicals are carcinogenic to rodents. The distribution suggests that among orally delivered chemicals, those administered in the feed will more likely prove to be noncarcinogens than chemicals given by gavage. The rodent data also reveal that effects may vary according to dose and genotype, as well as by route of administration, to further complicate extrapolation to humans

  9. Persistence of sister chromatid exchanges and in vitro morphological transformation of Syrian hamster fetal cells by chemical and physical carcinogens

    International Nuclear Information System (INIS)

    Popescu, N.C.; Amsbaugh, S.C.; DiPaolo, J.A.

    1985-01-01

    The induction of neoplastic cell transformation is closely associated with DNA alterations which occur shortly after carcinogen exposure. Sister chromatid exchange (SCE) formation is a sensitive indicator of carcinogen-DNA interaction and correlates with the induction of morphological cell transformation. The persistence of lesions generating SCE produced by chemical and physical carcinogens and its relevance to the induction of morphologic transformation was evaluated in coordinated experiments with cultured Syrian hamster fetal cells (HFC). Exponentially growing HFC were exposed for 1 h to benzo[a]pyrene (BP), methyl-methanesulfonate (MMS), cis-platinum (II) diaminedichloride (cis Pt II), N-methyl-N'-nitrosourea (MNU), mitomycin C (MMC), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-acetoxy-2-fluorenyl-acetamide (AcAAF) or u.v. light irradiated. SCE analysis demonstrates that for a period of 48 h after carcinogen exposure, during which time the cells undergo at least four replicative cycles, DNA damage generating SCE induced by all chemical carcinogens either persisted or was partially removed, whereas u.v.-induced lesions were completely removed. An elevated SCE frequency persisted after two additional cell cycles after treatment with BP, AcAAF or MMC without increased cell lethality as compared to other carcinogens whose lesions were completely eliminated during the same period

  10. Changes in the classification of carcinogenic chemicals in the work area. Section III of the German List of MAK and BAT Values.

    Science.gov (United States)

    Neumann, H G; Vamvakas, S; Thielmann, H W; Gelbke, H P; Filser, J G; Reuter, U; Greim, H; Kappus, H; Norpoth, K H; Wardenbach, P; Wichmann, H E

    1998-11-01

    Carcinogenic chemicals in the work area are currently classified into three categories in section III of the German List of MAK and BAT Values (list of values on maximum workplace concentrations and biological tolerance for occupational exposures). This classification is based on qualitative criteria and reflects essentially the weight of evidence available for judging the carcinogenic potential of the chemicals. It is proposed that these categories - IIIA1, IIIA2, IIIB - be retained as Categories 1, 2, and 3, to correspond with European Union regulations. On the basis of our advancing knowledge of reaction mechanisms and the potency of carcinogens, these three categories are supplemented with two additional categories. The essential feature of substances classified in the new categories is that exposure to these chemicals does not contribute significantly to risk of cancer to man, provided that an appropriate exposure limit (MAK value) is observed. Chemicals known to act typically by nongenotoxic mechanisms and for which information is available that allows evaluation of the effects of low-dose exposures, are classified in Category 4. Genotoxic chemicals for which low carcinogenic potency can be expected on the basis of dose-response relationships and toxicokinetics, and for which risk at low doses can be assessed are classified in Category 5. The basis for a better differentiation of carcinogens is discussed, the new categories are defined, and possible criteria for classification are described. Examples for Category 4 (1,4-dioxane) and Category 5 (styrene) are presented.

  11. Policy issues in setting de minimis standards for latent cancer risks of radiation and chemical carcinogens

    International Nuclear Information System (INIS)

    Spangler, M.

    1984-01-01

    In the fuel cycles for the development and utilization of alternative energy resources, the risk of latent cancer arises from a number of sources. Included are ionizing radiation and the carcinogenic potential of polluting chemicals present in certain fuels or in materials associated with the construction, operation, maintenance or waste treatment processes of nuclear power, fossil fuels, synfuels, biomass, and other sources of energy. One aspect of developing a carcinogen guideline policy for a consistent and effective regulatory regime to use in dealing with these assorted carcinogenic risks is the setting of de minimis quantitative standards. In this report, 11 policy issues related to the setting of such regulatory standards are identified and a brief commentary is provided. 15 references, 1 table

  12. Capturing Labile Sulfenamide and Sulfinamide Serum Albumin Adducts of Carcinogenic Arylamines by Chemical Oxidation

    Science.gov (United States)

    Peng, Lijuan; Turesky, Robert J.

    2013-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913

  13. Changes in the classification of carcinogenic chemicals in the work area. (Section III of the German List of MAK and BAT values).

    Science.gov (United States)

    Neumann, H G; Thielmann, H W; Filser, J G; Gelbke, H P; Greim, H; Kappus, H; Norpoth, K H; Reuter, U; Vamvakas, S; Wardenbach, P; Wichmann, H E

    1998-01-01

    Carcinogenic chemicals in the work area were previously classified into three categories in section III of the German List of MAK and BAT values (the list of values on maximum workplace concentrations and biological tolerance for occupational exposures). This classification was based on qualitative criteria and reflected essentially the weight of evidence available for judging the carcinogenic potential of the chemicals. In the new classification scheme the former sections IIIA1, IIIA2, and IIIB are retained as categories 1, 2, and 3, to correspond with European Union regulations. On the basis of our advancing knowledge of reaction mechanisms and the potency of carcinogens, these three categories are supplemented with two additional categories. The essential feature of substances classified in the new categories is that exposure to these chemicals does not contribute significantly to the risk of cancer to man, provided that an appropriate exposure limit (MAK value) is observed. Chemicals known to act typically by non-genotoxic mechanisms, and for which information is available that allows evaluation of the effects of low-dose exposures, are classified in category 4. Genotoxic chemicals for which low carcinogenic potency can be expected on the basis of dose/response relationships and toxicokinetics and for which risk at low doses can be assessed are classified in category 5. The basis for a better differentiation of carcinogens is discussed, the new categories are defined, and possible criteria for classification are described. Examples for category 4 (1,4-dioxane) and category 5 (styrene) are presented.

  14. Trichloroethylene Biotransformation and its Role in Mutagenicity, Carcinogenicity and Target Organ Toxicity

    Science.gov (United States)

    Lash, Lawrence H.; Chiu, Weihsueh A.; Guyton, Kathryn Z.; Rusyn, Ivan

    2014-01-01

    Metabolism is critical for the mutagenicity, carcinogenicity, and other adverse health effects of trichloroethylene (TCE). Despite the relatively small size and simple chemical structure of TCE, its metabolism is quite complex, yielding multiple intermediates and end-products. Experimental animal and human data indicate that TCE metabolism occurs through two major pathways: cytochrome P450 (CYP)-dependent oxidation and glutathione (GSH) conjugation catalyzed by GSH S-transferases (GSTs). Herein we review recent data characterizing TCE processing and flux through these pathways. We describe the catalytic enzymes, their regulation and tissue localization, as well as the evidence for transport and inter-organ processing of metabolites. We address the chemical reactivity of TCE metabolites, highlighting data on mutagenicity of these end-products. Identification in urine of key metabolites, particularly trichloroacetate (TCA), dichloroacetate (DCA), trichloroethanol and its glucuronide (TCOH and TCOG), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC), in exposed humans and other species (mostly rats and mice) demonstrates function of the two metabolic pathways in vivo. The CYP pathway primarily yields chemically stable end-products. However, the GST pathway conjugate S-(1,2-dichlorovinyl)glutathione (DCVG) is further processed to multiple highly reactive species that are known to be mutagenic, especially in kidney where in situ metabolism occurs. TCE metabolism is highly variable across sexes, species, tissues and individuals. Genetic polymorphisms in several of the key enzymes metabolizing TCE and its intermediates contribute to variability in metabolic profiles and rates. In all, the evidence characterizing the complex metabolism of TCE can inform predictions of adverse responses including mutagenesis, carcinogenesis, and acute and chronic organ-specific toxicity. PMID:25484616

  15. Use of short-term test systems for the prediction of the hazard represented by potential chemical carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.

    1990-10-01

    It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs.

  16. Use of short-term test systems for the prediction of the hazard represented by potential chemical carcinogens

    International Nuclear Information System (INIS)

    Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.

    1990-10-01

    It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs

  17. The multitude and diversity of environmental carcinogens

    International Nuclear Information System (INIS)

    Belpomme, D.; Irigaray, P.; Hardell, L.; Clapp, R.; Montagnier, L.; Epstein, S.; Sasco, A.J.

    2007-01-01

    We have recently proposed that lifestyle-related factors, screening and aging cannot fully account for the present overall growing incidence of cancer. In order to propose the concept that in addition to lifestyle related factors, exogenous environmental factors may play a more important role in carcinogenesis than it is expected, and may therefore account for the growing incidence of cancer, we overview herein environmental factors, rated as certainly or potentially carcinogenic by the International Agency for Research on Cancer (IARC). We thus analyze the carcinogenic effect of microorganisms (including viruses), radiations (including radioactivity, UV and pulsed electromagnetic fields) and xenochemicals. Chemicals related to environmental pollution appear to be of critical importance, since they can induce occupational cancers as well as other cancers. Of major concerns are: outdoor air pollution by carbon particles associated with polycyclic aromatic hydrocarbons; indoor air pollution by environmental tobacco smoke, formaldehyde and volatile organic compounds such as benzene and 1,3 butadiene, which may particularly affect children, and food pollution by food additives and by carcinogenic contaminants such as nitrates, pesticides, dioxins and other organochlorines. In addition, carcinogenic metals and metalloids, pharmaceutical medicines and cosmetics may be involved. Although the risk fraction attributable to environmental factors is still unknown, this long list of carcinogenic and especially mutagenic factors supports our working hypothesis according to which numerous cancers may in fact be caused by the recent modification of our environment

  18. Risk Assessment Approaches for Carcinogenic Food Contaminants

    OpenAIRE

    Gillespie, Zoe; Pulido, Olga; Vavasour, Elizabeth

    2011-01-01

    Health Canada has identified the need for a standardized department-wide approach for the risk assessment of carcinogens in foods (e.g., pesticides, food chemical contaminants, veterinary therapeutics). A standardized approach would better facilitate and inform risk management strategies for the control of human exposure to food sources of carcinogens. Within the post- market regulatory context, directly DNA-reactive carcinogens are of most concern because any exposure is theoretically assume...

  19. Comparative experimental study of cancer induced by ionizing radiations or by chemical carcinogens

    International Nuclear Information System (INIS)

    Lafuma, J.

    1983-01-01

    Animal experiments have contributed to specify a number of parameters used in setting human safety limits for ionizing radiation. In the same way, comparisons have been made between cancers induced in man and in animals in well-defined conditions. In order to use the same experimental data for chemical carcinogens, the mechanisms of carcinogenesis should be the same, i.e. additivity of responses instead of synergy of effects, which requires the development of a new experimental method [fr

  20. Chemical-based risk assessment and in vitro models of human health effects induced by organic pollutants in soils from the Olona valley

    Energy Technology Data Exchange (ETDEWEB)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it; Colombo, Andrea; Amodei, Giorgia; Cantù, Stefano; Teoldi, Federico; Cambria, Felice; Rotella, Giuseppe; Natolino, Fabrizio; Lodi, Marco; Benfenati, Emilio

    2013-10-01

    Risk assessment of soils is usually based on chemical measurements and assuming accidental soil ingestion and evaluating induced toxic and carcinogenic effects. Recently biological tools have been coupled to chemical-based risk assessment since they integrate the biological effects of all xenobiotics in soils. We employed integrated monitoring of soils based on chemical analyses, risk assessment and in vitro models in the highly urbanized semirural area of the Olona Valley in northern Italy. Chemical characterization of the soils indicated low levels of toxic and carcinogenic pollutants such as PAHs, PCDD/Fs, PCBs and HCB and human risk assessment did not give any significant alerts. HepG2 and BALB/c 3T3 cells were used as a model for the human liver and as a tool for the evaluation of carcinogenic potential. Cells were treated with soil extractable organic matters (EOMs) and the MTS assay, LDH release and morphological transformation were selected as endpoints for toxicity and carcinogenicity. Soil EOMs induced dose-dependent inhibition of cell growth at low doses and cytotoxicity after exposure to higher doses. This might be the result of block of cell cycle progression to repair DNA damage caused by oxidative stress; if this DNA damage cannot be repaired, cells die. No significant inductions of foci were recorded after exposure to EOMs. These results indicate that, although the extracts contain compounds with proven carcinogenic potential, the levels of these pollutants in the analyzed soils were too low to induce carcinogenesis in our experimental conditions. In this proposed case study, HepG2 cells were found an appropriate tool to assess the potential harm caused by the ingestion of contaminated soil as they were able to detect differences in the toxicity of soil EOMs. Moreover, the cell transformation assay strengthened the combined approach giving useful information on carcinogenic potential of mixtures. Highlights: • A combined approach for risk

  1. Lunasin-aspirin combination against NIH/3T3 cells transformation induced by chemical carcinogens.

    Science.gov (United States)

    Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; de Lumen, Ben O

    2011-06-01

    Carcinogenesis is a multistage process involving a number of molecular pathways sensitive to intervention. Chemoprevention is defined as the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. To achieve greater inhibitory effects on cancer cells, combination of two or more chemopreventive agents is commonly considered as a better preventive and/or therapeutic strategy. Lunasin is a promising cancer preventive peptide identified in soybean and other seeds. Its efficacy has been demonstrated by both in vitro and in vivo models. This peptide has been found to inhibit human breast cancer MDA-MB-231 cells proliferation, suppressing cell cycle progress and inducing cell apoptosis. Moreover, lunasin potentiates the effects on these cells of different synthetic and natural compounds, such as aspirin and anacardic acid. This study explored the role of lunasin, alone and in combination with aspirin and anacardic acid on cell proliferation and foci formation of transformed NIH/3T3 cells induced by chemical carcinogens 7,12-dimethylbenz[a]anthracene or 3-methylcholanthrene. The results revealed that lunasin, acting as a single agent, inhibits cell proliferation and foci formation. When combined with aspirin, these effects were significantly increased, indicating that this combination might be a promising strategy to prevent/treat cancer induced by chemical carcinogens.

  2. Autoradiographic demonstration of unscheduled DNA synthesis in oral tissues treated with chemical carcinogens in short-term organ culture

    International Nuclear Information System (INIS)

    Ide, F.; Umemura, S.; Ishikawa, T.; Takayama, S.

    1981-01-01

    A system in which oral tissues of inbred F344 adult rats and Syrian golden hamster embryos were used in combination with autoradiography was developed for measurement of unscheduled DNA synthesis (UDS). For this, oral mucosa, submandibular gland, tooth germ and mandible in short-term organ cultures were treated with 4-nitroquinoline l-oxide or N-methyl-N-nitrosourea plus (methyl- 3 H)thymidine. Significant numbers of silver grains, indicating UDS, were detected over the nuclei of cells of all these tissues except rat salivary gland after treatment with carcinogens. This autoradiographic method is suitable for detection of UDS in oral tissues in conditions mimicking those in vivo. Results obtained in this study indicated a potential use of this system for studies on the mechanism of carcinogenesis at a cellular level comparable to in vivo carcinogenesis studies on oral tissues. (author)

  3. INTEGRATION OF QSAR AND SAR METHODS FOR THE MECHANISTIC INTERPRETATION OF PREDICTIVE MODELS FOR CARCINOGENICITY

    Directory of Open Access Journals (Sweden)

    Natalja Fjodorova

    2012-07-01

    Full Text Available The knowledge-based Toxtree expert system (SAR approach was integrated with the statistically based counter propagation artificial neural network (CP ANN model (QSAR approach to contribute to a better mechanistic understanding of a carcinogenicity model for non-congeneric chemicals using Dragon descriptors and carcinogenic potency for rats as a response. The transparency of the CP ANN algorithm was demonstrated using intrinsic mapping technique specifically Kohonen maps. Chemical structures were represented by Dragon descriptors that express the structural and electronic features of molecules such as their shape and electronic surrounding related to reactivity of molecules. It was illustrated how the descriptors are correlated with particular structural alerts (SAs for carcinogenicity with recognized mechanistic link to carcinogenic activity. Moreover, the Kohonen mapping technique enables one to examine the separation of carcinogens and non-carcinogens (for rats within a family of chemicals with a particular SA for carcinogenicity. The mechanistic interpretation of models is important for the evaluation of safety of chemicals.

  4. Environmental exposure to carcinogens in northwestern Cameroon

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Twenty-nine (69.0%) [95% CI: 47.0 – 75.0] participants could smell the carcinogenic chemicals they use. Thirty. (71.4%) [95% CI: 65.0 – 77.0] participants had been instructed in the use of protective equipment against carcinogens. Participants used preventive devices like hand gloves, laboratory coats, ...

  5. Biomonitoring human exposure to environmental carcinogenic chemicals

    DEFF Research Database (Denmark)

    Farmer, P.B.; Sepai, O.; Lawrence, R.

    1996-01-01

    for detecting carcinogen-induced damage to DNA and proteins, and subsequent biological effects. These methods were validated with the occupational exposures, which showed evidence of DNA and/or protein and/or chromosome damage in workers in a coke oven plant, garage workers exposed to diesel exhaust and workers...

  6. Effect of DNA type on response of DNA biosensor for carcinogens

    Science.gov (United States)

    Sani, Nor Diyana bt. Md.; Heng, Lee Yook; Surif, Salmijah; Lazim, Azwani Mat

    2013-11-01

    Carcinogens are cancer causing chemicals that can bind to DNA and cause damage to the DNA. These chemicals are available everywhere including in water, air, soil and food. Therefore, a sensor that can detect the presence of these chemicals will be a very useful tool. Since carcinogens bind to DNA, DNA can be used as the biological element in a biosensor. This study has utilized different types of DNA in a biosensor for carcinogen detection. The DNAs include double stranded calf thymus DNA, single stranded calf thymus DNA and guanine rich single stranded DNA. The modified SPE was exposed to a carcinogen followed by interaction with methylene blue which acts as the electroactive indicator. The SPE was then analysed using differential pulse voltammetry (DPV). Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, as well as effect of buffer concentration, buffer pH and ionic strength. The performance of the biosensor was tested on a group 1 carcinogen, formaldehyde. The results indicated that the usage of guanine rich single stranded DNA also gives higher response as carcinogens prefer to bind with guanine compared to other bases.

  7. USING PROTEOMICS TO MONITOR PROTEIN EXPRESSION IN HUMAN CELLS EXPOSED TO CARCINOGENS

    Science.gov (United States)

    People are continuously exposed exogenously to varying amounts of chemicals that have been shown to have carcinogenic properties in experimental systems. It has been estimated that exposure to environmental chemical carcinogens in the environment may contribute significantly to t...

  8. Adolescent Exposure to Toxic Volatile Organic Chemicals From E-Cigarettes.

    Science.gov (United States)

    Rubinstein, Mark L; Delucchi, Kevin; Benowitz, Neal L; Ramo, Danielle E

    2018-04-01

    There is an urgent need to understand the safety of e-cigarettes with adolescents. We sought to identify the presence of chemical toxicants associated with e-cigarette use among adolescents. Adolescent e-cigarette users (≥1 use within the past 30 days, ≥10 lifetime e-cigarette use episodes) were divided into e-cigarette-only users (no cigarettes in the past 30 days, urine 4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL] level 30 pg/mL; n = 16), and never-using controls ( N = 20). Saliva was collected within 24 hours of the last e-cigarette use for analysis of cotinine and urine for analysis of NNAL and levels of 8 volatile organic chemical compounds. Bivariate analyses compared e-cigarette-only users with dual users, and regression analyses compared e-cigarette-only users with dual users and controls on levels of toxicants. The participants were 16.4 years old on average. Urine excretion of metabolites of benzene, ethylene oxide, acrylonitrile, acrolein, and acrylamide was significantly higher in dual users versus e-cigarette-only users (all P < .05). Excretion of metabolites of acrylonitrile, acrolein, propylene oxide, acrylamide, and crotonaldehyde were significantly higher in e-cigarette-only users compared with controls (all P < .05). Although e-cigarette vapor may be less hazardous than tobacco smoke, our findings can be used to challenge the idea that e-cigarette vapor is safe, because many of the volatile organic compounds we identified are carcinogenic. Messaging to teenagers should include warnings about the potential risk from toxic exposure to carcinogenic compounds generated by these products. Copyright © 2018 by the American Academy of Pediatrics.

  9. Influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with carcinogenic and anticoagulant effect of 17β-aminoestrogens

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: socc@puma2.zaragoza.unam.mx [Química Computacional, FES-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, Mexico City (Mexico); Raya, Angélica [Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional (IPN), Silao de la Victoria, Guanajuato (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz - Boca del Río, Universidad Veracruzana, Veracruz (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), Mexico City (Mexico)

    2014-06-25

    Highlights: • The aromatic A-ring of 17β-aminoestrogens contribute to its anticoagulant effect. • The electron-donor substituent groups favored the basicity of 17β-aminoestrogens. • The physicochemical properties are important in the carcinogenic effect of anticoagulant molecules. - Abstract: Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH and HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.

  10. Blood proteins as carcinogen dosimeters

    International Nuclear Information System (INIS)

    Tannenbaum, S.R.; Skipper, P.L.

    1986-01-01

    The problem of quantifying exposure to genotoxins in a given individual represents a formidable challenge. In this paper methods which rely on the covalent binding of carcinogens and their metabolites to blood proteins are described. That carcinogens interact with proteins as well as with DNA has been established, although whether protein-carcinogen adducts can result in genetic damage has not been established. It has been shown, however, that the amount of a protein carcinogen adduct formed may be used as a quantitative measure of exposure to a carcinogen. Such a measure presumably is reflective of the absorption, metabolism, and excretion of the compound in an exposed individual. Protein adduction may reflect exposure in a time-frame of weeks to months. Thus, protein adduct measurement is a form of human chemical dosimetry. Hemoglobin and albumin are promising candidates for such dosimeters. Hemoglobin has a lifetime of about 120 days in humans; thus, circulating levels of carcinogen-modified hemoglobin will reflect the level of carcinogen exposure during a period of nearly four months. It also possesses some metabolic competence, particularly, the ability to oxidize aromatic hydroxylamines to nitroso compounds which react quite efficiently with sulfhydryl groups. Albumin has a half-life of 20 to 25 days in man. This protein does not possess metabolic capacity other than, perhaps, some esterase activity. In contrast to hemoglobin, though, it is not protected by the erythrocyte membrane and might be the target for a greater number of carcinogens. It is present and is synthesized in the same cells in which the reactive metabolic intermediates of carcinogens are mostly formed - the hepatocytes. Also, albumin has a number of high-affinity binding sites for a broad spectrum of xenobiotics and endobiotics. 25 refs., 1 tab

  11. Results of screening NCI/NTP nongenotoxic carcinogens and genotoxic noncarcinogens with the ke test

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.; Bakale, G.; McCreary, R.D.

    1989-01-01

    The interdependence of the electrophilic and carcinogenic properties of chemicals that was demonstrated two decades ago rekindled interest in the somatic mutation theory of carcinogenesis. Interest in this theory grew with the development of a reverse-mutation bacterial assay in the laboratory of B.N. Ames that permitted the mutagenic properties of the chemicals to be determined quickly and yielded results which indicated that ''carcinogens are mutagens.'' Subsequent validation studies of this bioassay, the Salmonella typhimurium/microsome or ''Ames test,'' by Ames' group and others provided additional support for the correlation between mutagenicity and carcinogenicity which led to the worldwide deployment of the Ames test in thousands of laboratories and to the development of more than 100 other short-term tests that continue to be used to identify potential carcinogens via various end-points of genotoxicity. This document discusses electrophilicity, mutagenicity, and carcinogenicity relationships as well as carcinogen-screening of chemicals. 28 refs., 4 tabs

  12. Understanding arsenic carcinogenicity by the use of animal models

    International Nuclear Information System (INIS)

    Wanibuchi, Hideki; Salim, Elsayed I.; Kinoshita, Anna; Shen Jun; Wei Min; Morimura, Keiichirou; Yoshida, Kaoru; Kuroda, Koichi; Endo, Ginji; Fukushima, Shoji

    2004-01-01

    Although numerous epidemiological studies have indicated that human arsenic exposure is associated with increased incidences of bladder, liver, skin, and lung cancers, limited attempts have been made to understand mechanisms of carcinogenicity using animal models. Dimethylarsinic acid (DMA), an organic arsenic compound, is a major metabolite of ingested inorganic arsenics in mammals. Recent in vitro studies have proven DMA to be a potent clastogenic agent, capable of inducing DNA damage including double strand breaks and cross-link formation. In our attempts to clarify DMA carcinogenicity, we have recently shown carcinogenic effects of DMA and its related metabolites using various experimental protocols in rats and mice: (1) a multi-organ promotion bioassay in rats; (2) a two-stage promotion bioassay by DMA of rat urinary bladder and liver carcinogenesis; (3) a 2-year carcinogenicity test of DMA in rats; (4) studies on the effects of DMA on lung carcinogenesis in rats; (5) promotion of skin carcinogenesis by DMA in keratin (K6)/ornithine decarboxylase (ODC) transgenic mice; (6) carcinogenicity of DMA in p53(+/-) knockout and Mmh/8-OXOG-DNA glycolase (OGG1) mutant mice; (7) promoting effects of DMA and related organic arsenicals in rat liver; (8) promoting effects of DMA and related organic arsenicals in a rat multi-organ carcinogenesis test; and (9) 2-year carcinogenicity tests of monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) in rats. The results revealed that the adverse effects of arsenic occurred either by promoting and initiating carcinogenesis. These data, as covered in the present review, suggest that several mechanisms may be involved in arsenic carcinogenesis

  13. EPA's evaluation of the carcinogenic potential of glyphosate

    Science.gov (United States)

    Recently, several international agencies have evaluated the carcinogenic potential of glyphosate. In March 2015, the International Agency for Research on Cancer (IARC), a subdivision of the World Health Organization (WHO), determined that glyphosate was a probable carcinogen (gro...

  14. Transformation assay in Bhas 42 cells: a model using initiated cells to study mechanisms of carcinogenesis and predict carcinogenic potential of chemicals.

    Science.gov (United States)

    Sasaki, Kiyoshi; Umeda, Makoto; Sakai, Ayako; Yamazaki, Shojiro; Tanaka, Noriho

    2015-01-01

    Transformation assays using cultured cells have been applied to the study of carcinogenesis. Although various cell systems exist, few cell types such as BALB/c 3T3 subclones and Syrian hamster embryo cells have been used to study chemically induced two-stage carcinogenesis. Bhas 42 cells were established as a clone by the transfection with the v-Ha-ras gene into mouse BALB/c 3T3 A31-1-1 cells and their subsequent selection based on their sensitivity to 12-O-tetradecanoylphorbol-13-acetate. Using Bhas 42 cells, transformed foci were induced by the treatment with nongenotoxic carcinogens, most of which act as tumor promoters. Therefore, Bhas 42 cells were considered to be a model of initiated cells. Subsequently, not only nongenotoxic carcinogens but also genotoxic carcinogens, most of which act as tumor initiators, were found to induce transformed foci by the modification of the protocol. Furthermore, transformation of Bhas 42 cells was induced by the transfection with genes of oncogenic potential. We interpret this high sensitivity of Bhas 42 cells to various types of carcinogenic stimuli to be related to the multistage model of carcinogenesis, as the transfection of v-Ha-ras gene further advances the parental BALB/c 3T3 A31-1-1 cells toward higher transforming potential. Thus, we propose that Bhas 42 cells are a novel and sensitive cell line for the analysis of carcinogenesis and can be used for the detection of not only carcinogenic substances but also gene alterations related to oncogenesis. This review will address characteristics of Bhas 42 cells, the transformation assay protocol, validation studies, and the various chemicals tested in this assay.

  15. Chemical carcinogens

    National Research Council Canada - National Science Library

    Searle, Charles E

    1976-01-01

    Cancer causing agents are now known to exist throughout the environment-in polluted air and tobacco smoke, in various plants and foods, and in many chemicals that are used in industry and laboratories...

  16. Inter-laboratory study of human in vitro toxicogenomics-based tests as alternative methods for evaluating chemical carcinogenicity : a bioinformatics perspective

    NARCIS (Netherlands)

    Herwig, R; Gmuender, H; Corvi, Raffaella; Bloch, K.M.; Brandenburg, A.; Castell, J; Ceelen, L; Chesne, C; Doktorova, T Y; Jennen, D; Jennings, P; Limonciel, A; Lock, E A; McMorrow, T; Phrakonkham, P; Radford-Smith, G.; Slattery, C; Stierum, R; Vilardell, M; Wittenberger, T; Yildirimman, R; Ryan, M.; Rogiers, Vera; Kleinjans, Jos

    The assessment of the carcinogenic potential of chemicals with alternative, human-based in vitro systems has become a major goal of toxicogenomics. The central read-out of these assays is the transcriptome, and while many studies exist that explored the gene expression responses of such systems,

  17. Indoor air-assessment: Indoor concentrations of environmental carcinogens

    International Nuclear Information System (INIS)

    Gold, K.W.; Naugle, D.F.; Berry, M.A.

    1991-01-01

    In the report, indoor concentration data are presented for the following general categories of air pollutants: radon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAH), pesticides, and inorganic compounds. These pollutants are either known or suspect carcinogens (i.e., radon-222, asbestos) or more complex mixtures or classes of compounds which contain known or suspect carcinogens. Concentration data for individual carcinogenic compounds in complex mixtures are usually far from complete. The data presented for complex mixtures often include compounds which are not carcinogenic or for which data are insufficient to evaluate carcinogenicity. Their inclusion is justified, however, by the possibility that further work may show them to be carcinogens, cocarcinogens, initiators or promotors, or that they may be employed as markers (e.g., nicotine, acrolein) for the estimation of exposure to complex mixtures

  18. Organic mutagens and drinking water in The Netherlands : a study on mutagenicity of organic constituents in drinking water in The Netherlands and their possible carcinogenic effects

    NARCIS (Netherlands)

    Kool, H.J.

    1983-01-01

    Several mutagenic and carcinogenic organic compounds have been detected in Dutch surface waters and in drinking water prepared from these surface waters. Although the levels of these compounds in drinking- and surface water are relatively low, in general below μg per litre, it appeared that organic

  19. The metabolic activation and nucleic acid adducts of naturally-occurring carcinogens: recent results with ethyl carbamate and the spice flavors safrole and estragole

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J A; Miller, E C

    1983-07-01

    A small (approximately 30) but varied group of organic and inorganic compounds appear to be carcinogenic in both humans and experimental animals. A much larger number and wider variety of chemical carcinogens, primarily synthetic organic compounds, are known for experimental animals. These agents include a small (approximately 30) and varied group of metabolites of green plants and fungi. Many more of these carcinogens must exist in the living world. As with the synthetic carcinogens, the majority of these naturally occurring carcinogens are procarcinogens that require metabolic conversion into reactive electrophilic and mutagenic ultimate carcinogens. These strong electrophiles combine covalently and non-enzymatically with nucleophilic sites in DNAs, RNAs, proteins, and small molecules in target tissues. One or more of the DNA adducts appear to initiate carcinogenesis in an irreversible manner. The subsequent promotion step leading to gross tumours may be completed by further administration of carcinogen or by treatment with non-carcinogenic promoters. Roles for the RNA and protein adducts in the carcinogenic process have not been excluded. Recent data on the metabolic activation and reactivity in vivo of the naturally occurring carcinogens ethyl carbamate and certain of the alkenylbenzene spice flavours are illustrative of these principles. These agents can initiate the carcinogenic process in male mouse liver with small doses given prior to weaning. Subsequent growth of the liver and male hormonal factors appear to function as promoters leading to gross hepatic tumors after one year. Reactive electrophilic metabolites of ethyl carbamate and of safrole and estragole and their nucleic acid adducts formed during initiation in mouse liver have been characterized.

  20. Results of screening NCI/NTP nongenotoxic carcinogens and genotoxic noncarcinogens with the k sub e test

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L. (ed.); Bakale, G.; McCreary, R.D.

    1989-01-01

    The interdependence of the electrophilic and carcinogenic properties of chemicals that was demonstrated two decades ago rekindled interest in the somatic mutation theory of carcinogenesis. Interest in this theory grew with the development of a reverse-mutation bacterial assay in the laboratory of B.N. Ames that permitted the mutagenic properties of the chemicals to be determined quickly and yielded results which indicated that carcinogens are mutagens.'' Subsequent validation studies of this bioassay, the Salmonella typhimurium/microsome or Ames test,'' by Ames' group and others provided additional support for the correlation between mutagenicity and carcinogenicity which led to the worldwide deployment of the Ames test in thousands of laboratories and to the development of more than 100 other short-term tests that continue to be used to identify potential carcinogens via various end-points of genotoxicity. This document discusses electrophilicity, mutagenicity, and carcinogenicity relationships as well as carcinogen-screening of chemicals. 28 refs., 4 tabs.

  1. An estimation of the carcinogenic risk associated with the intake of multiple relevant carcinogens found in meat and charcuterie products.

    Science.gov (United States)

    Hernández, Ángel Rodríguez; Boada, Luis D; Almeida-González, Maira; Mendoza, Zenaida; Ruiz-Suárez, Norberto; Valeron, Pilar F; Camacho, María; Zumbado, Manuel; Henríquez-Hernández, Luis A; Luzardo, Octavio P

    2015-05-01

    Numerous epidemiological studies have demonstrated a link between excessive meat consumption and the incidence of various cancers, especially colorectal cancer, and it has been suggested that environmental carcinogens present in meat might be related to the increased risk of cancer associated with this food. However, there are no studies evaluating the carcinogenic potential of meat in relation to its content of carcinogens. Our purpose was to emphasize the relevance of environmental carcinogens existing in meat as a determinant of the association between cancer and meat consumption. Because within Europe, Spain shows high consumption of meat and charcuterie, we performed this study focusing on Spanish population. Based on the preferences of consumers we acquired 100 samples of meat and charcuterie that reflect the variety available in the European market. We quantified in these samples the concentration of 33 chemicals with calculated carcinogenic potential (PAHs, organochlorine pesticides, and dioxin-like PCBs). The carcinogenic risk of these contaminants was assessed for each food using a risk ratio based on the current consumption of meat and charcuterie and the maximum tolerable intake of these foods depending on the level of contamination by the carcinogens they contain. Our results indicate that the current consumption of beef, pork, lamb, chicken, and "chorizo", represents a relevant carcinogenic risk for consumers (carcinogenic risk quotient between 1.33 and 13.98). In order to reduce carcinogenic risk, the study population should halve the monthly consumption of these foods, and also not to surpass the number of 5 servings of beef/pork/chicken (considered together). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Risk assessment of carcinogens in food

    International Nuclear Information System (INIS)

    Barlow, Susan; Schlatter, Josef

    2010-01-01

    Approaches for the risk assessment of carcinogens in food have evolved as scientific knowledge has advanced. Early methods allowed little more than hazard identification and an indication of carcinogenic potency. Evaluation of the modes of action of carcinogens and their broad division into genotoxic and epigenetic (non-genotoxic, non-DNA reactive) carcinogens have played an increasing role in determining the approach followed and provide possibilities for more detailed risk characterisation, including provision of quantitative estimates of risk. Reliance on experimental animal data for the majority of risk assessments and the fact that human exposures to dietary carcinogens are often orders of magnitude below doses used in experimental studies has provided a fertile ground for discussion and diverging views on the most appropriate way to offer risk assessment advice. Approaches used by national and international bodies differ, with some offering numerical estimates of potential risks to human health, while others express considerable reservations about the validity of quantitative approaches requiring extrapolation of dose-response data below the observed range and instead offer qualitative advice. Recognising that qualitative advice alone does not provide risk managers with information on which to prioritise the need for risk management actions, a 'margin of exposure' approach for substances that are both genotoxic and carcinogenic has been developed, which is now being used by the World Health Organization and the European Food Safety Authority. This review describes the evolution of risk assessment advice on carcinogens and discusses examples of ways in which carcinogens in food have been assessed in Europe.

  3. Risk assessment of carcinogens in food.

    Science.gov (United States)

    Barlow, Susan; Schlatter, Josef

    2010-03-01

    Approaches for the risk assessment of carcinogens in food have evolved as scientific knowledge has advanced. Early methods allowed little more than hazard identification and an indication of carcinogenic potency. Evaluation of the modes of action of carcinogens and their broad division into genotoxic and epigenetic (non-genotoxic, non-DNA reactive) carcinogens have played an increasing role in determining the approach followed and provide possibilities for more detailed risk characterisation, including provision of quantitative estimates of risk. Reliance on experimental animal data for the majority of risk assessments and the fact that human exposures to dietary carcinogens are often orders of magnitude below doses used in experimental studies has provided a fertile ground for discussion and diverging views on the most appropriate way to offer risk assessment advice. Approaches used by national and international bodies differ, with some offering numerical estimates of potential risks to human health, while others express considerable reservations about the validity of quantitative approaches requiring extrapolation of dose-response data below the observed range and instead offer qualitative advice. Recognising that qualitative advice alone does not provide risk managers with information on which to prioritise the need for risk management actions, a "margin of exposure" approach for substances that are both genotoxic and carcinogenic has been developed, which is now being used by the World Health Organization and the European Food Safety Authority. This review describes the evolution of risk assessment advice on carcinogens and discusses examples of ways in which carcinogens in food have been assessed in Europe.

  4. QSAR ligand dataset for modelling mutagenicity, genotoxicity, and rodent carcinogenicity

    Directory of Open Access Journals (Sweden)

    Davy Guan

    2018-04-01

    Full Text Available Five datasets were constructed from ligand and bioassay result data from the literature. These datasets include bioassay results from the Ames mutagenicity assay, Greenscreen GADD-45a-GFP assay, Syrian Hamster Embryo (SHE assay, and 2 year rat carcinogenicity assay results. These datasets provide information about chemical mutagenicity, genotoxicity and carcinogenicity.

  5. Mutagenic and carcinogenic structural alerts and their mechanisms of action.

    Science.gov (United States)

    Plošnik, Alja; Vračko, Marjan; Dolenc, Marija Sollner

    2016-09-01

    Knowing the mutagenic and carcinogenic properties of chemicals is very important for their hazard (and risk) assessment. One of the crucial events that trigger genotoxic and sometimes carcinogenic effects is the forming of adducts between chemical compounds and nucleic acids and histones. This review takes a look at the mechanisms related to specific functional groups (structural alerts or toxicophores) that may trigger genotoxic or epigenetic effects in the cells. We present up-to-date information about defined structural alerts with their mechanisms and the software based on this knowledge (QSAR models and classification schemes).

  6. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    Science.gov (United States)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  7. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    International Nuclear Information System (INIS)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M.; Ahr, Hans-Juergen; Schmidt, Ulrich; Enzmann, Harald H.

    2004-01-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using 32 P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had 32 P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  8. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M. [New York Medical College, Department of Pathology, Valhalla (United States); Ahr, Hans-Juergen; Schmidt, Ulrich [Bayer AG, Institute of Toxicology, Wuppertal (Germany); Enzmann, Harald H. [Federal Institute for Drugs and Medical Devices, Bonn (Germany)

    2004-10-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using {sup 32}P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had {sup 32}P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  9. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can

  10. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Science.gov (United States)

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  11. Environmental carcinogenic agents and cancer prevention. Risk assessment and management

    International Nuclear Information System (INIS)

    Tsugane, Shoichiro

    2013-01-01

    Many agents in our environment have been established as being carcinogenic, and in most cases, the carcinogenic properties of these agents were identified because of high-dose occupational or accidental exposure. Risk characterization, taking into account the dose-response relationship, and exposure assessment are essential for risk assessment and subsequent cancer prevention. Based on scientific risk assessment, risk management should be conducted practically by considering the economic, social, political, and other technical issues and by balancing the risks and benefits. Asbestos and environmental tobacco smoke are typical examples of established carcinogenic agents in the general environment, contributing to low-dose exposure. Further epidemiological studies are required to investigate the carcinogenicity of low-dose exposure to known carcinogenic agents such as arsenic and cadmium through dietary intake, radiation via medical and natural exposure, and air pollution due to diesel exhaust. In contrast, occupational chemical exposure to 1,2-dichloropropane and/or dichloromethane, whose carcinogenicity had not been established, was suggested to cause cholangiocarcinoma among workers involved in offset color proof-printing only after a rare situation of high-dose exposure was unveiled. Continuous monitoring of unusual cancer occurrences in target populations such as workers in occupational and regional settings as well as exposure reduction to suspected carcinogenic agents to levels as low as reasonably achievable is essential for reducing the risk of cancer due to environmental carcinogens. (author)

  12. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents.

    OpenAIRE

    Hurley, P M

    1998-01-01

    Of 240 pesticides screened for carcinogenicity by the U.S. Environmental Protection Agency Office of Pesticide Programs, at least 24 (10%) produce thyroid follicular cell tumors in rodents. Thirteen of the thyroid carcinogens also induce liver tumors, mainly in mice, and 9 chemicals produce tumors at other sites. Some mutagenic data are available on all 24 pesticides producing thyroid tumors. Mutagenicity does not seem to be a major determinant in thyroid carcinogenicity, except for possibly ...

  13. Mutagenic and carcinogenic properties of drinking water

    International Nuclear Information System (INIS)

    Kool, H.J.; van Kreijl, C.F.; Hrubec, J.

    1985-01-01

    In this chapter results of oxidation treatments with chlorine, ozone, chlorine dioxide, and ultraviolet (UV), with respect to their effects on activity (Ames test) in drinking water supplies are reviewed. In addition, the authors present the preliminary results of a pilot plant study on the effects of chlorine and chlorine dioxide on mutagenicity. Furthermore, results of several carcinogenicity studies performed with organic drinking water concentrates are discussed in relation to the results of a Dutch carcinogenicity study with mutagenic drinking water concentrates

  14. Evaluation of a chemical risk assessment method of South Korea for chemicals classified as carcinogenic, mutagenic or reprotoxic (CMR).

    Science.gov (United States)

    Kim, Min-Uk; Byeon, Sang-Hoon

    2017-12-12

    Chemicals were used in various fields by the development of industry and science and technology. The Chemical Hazard Risk Management (CHARM) was developed to assess the risk of chemicals in South Korea. In this study, we were to evaluate the CHARM model developed for the effective management of workplace chemicals. We used 59 carcinogenic, mutagenic or reprotoxic (CMR) materials, which are both the work environment measurement result and the usage information among the manufacturer data. The CHARM model determines the risk to human health using the exposure level (based on working environment measurements or a combination of the quantity used and chemical physical properties (e.g., fugacity and volatility)), hazard (using occupational exposure limit (OEL) or Risk phrases (R-phrases)/Hazard statements (H-statements) from the Material Safety Data Sheet (MSDS)). The risk level was lower when using the results of the work environment measurement than when applying the chemical quantity and physical properties in the exposure level evaluation method. It was evaluated as grade 4 for the CMR material in the hazard class determination. The risk assessment method by R-phrases was evaluated more conservatively than the risk assessment method by OEL. And the risk assessment method by H-statements was evaluated more conservatively than the risk assessment method by R-phrases. The CHARM model was gradually conservatively assessed as it proceeded in the next step without quantitative information for individual workplaces. The CHARM is expected to help identify the risk if the hazards and exposure levels of chemicals were identified in individual workplaces. For CMR substances, although CHARM is highly evaluated for hazards, the risk is assessed to be low if exposure levels are assessed low. When evaluating the risk of highly hazardous chemicals such as CMR substances, we believe the model should be adapted to be more conservative and classify these as higher risk. This work is

  15. Cannabis and tobacco smoke are not equally carcinogenic

    Directory of Open Access Journals (Sweden)

    Melamede Robert

    2005-10-01

    Full Text Available Abstract More people are using the cannabis plant as modern basic and clinical science reaffirms and extends its medicinal uses. Concomitantly, concern and opposition to smoked medicine has occurred, in part due to the known carcinogenic consequences of smoking tobacco. Are these reactions justified? While chemically very similar, there are fundamental differences in the pharmacological properties between cannabis and tobacco smoke. Cannabis smoke contains cannabinoids whereas tobacco smoke contains nicotine. Available scientific data, that examines the carcinogenic properties of inhaling smoke and its biological consequences, suggests reasons why tobacco smoke, but not cannabis smoke, may result in lung cancer.

  16. Carcinogenic effect of petroleum and its by-products

    Energy Technology Data Exchange (ETDEWEB)

    Gimadeev, M M

    1962-01-01

    A review of literature on the carcinogenic effect of petroleum and its by-products are briefly discussed. Many of the products can induce hyperkeratosis, folliculitis, verruca, pulmonary adenoma, skin cancer, etc. Their action is mainly local but they can also be multicentric. Although a number of groups have made chemical analyses of various petroleums and peroleum products, results were generally negative with respect to 3,4-benzypyrene, although 40 to 68 microg/g was found in 1 crude petroleum. At present it appears that much of the carcinogenic action of these materials resides in polycyclic hydrocarbons about which little is known.

  17. Recent developments in carcinogenic risk assessment

    International Nuclear Information System (INIS)

    Krewski, D.; Murdoch, D.; Withey, J.R.

    1989-01-01

    In this paper, recent developments in the quantitative assessment of carcinogenic risks based on toxicological and epidemiological data are reviewed. In particular, model-free approaches to low-dose risk assessment which involve only the assumption of low-dose linearity are considered. Measures of carcinogenic potency which avoid the need to extrapolate to low doses are also described. The allometric bases for converting risk estimates between species are then discussed. Pharmacokinetic models for determining the dose delivered to the target tissue are examined, and the implications of using such models in extrapolating between doses, of exposure, and species are examined. The application of these concepts in chemical and radiation carcinogenesis is illustrated by means of brief case studies of methylene chloride and Rn. Biologically motivated cancer models based on the initiation-promotion-progression theory of carcinogenesis are discussed and compared with the classical multistage model. The estimation of risks with time-dependent exposure patterns is considered, and conditions under which the use of a time-weighted average dose is appropriate are identified. Finally, the estimation of carcinogenic risks posed by exposure to complex mixtures is explored. 92 references

  18. Foetal exposure to food and environmental carcinogens in human beings.

    Science.gov (United States)

    Myöhänen, Kirsi; Vähäkangas, Kirsi

    2012-02-01

    Exposure to many different chemicals during pregnancy through maternal circulation is possible. Transplacental transfer of xenobiotics can be demonstrated using human placental perfusion. Also, placental perfusion can give information about the placental kinetics as well as metabolism and accumulation in the placenta because it retains the tissue structure and function. Although human placental perfusion has been used extensively to study the transplacental transfer of drugs, the information on food and environmental carcinogens is much more limited. This review deals with the foetal exposure to food and environmental carcinogens in human beings. In particular, human transplacental transfer of the food carcinogens such as acrylamide, glycidamide and nitrosodimethylamine are in focus. Because these carcinogens are genotoxic, the functional capacity of human placenta to induce DNA adduct formation or metabolize these above mentioned CYP2E1 substrates is of interest in this context. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  19. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents.

    Science.gov (United States)

    Hurley, P M

    1998-08-01

    Of 240 pesticides screened for carcinogenicity by the U.S. Environmental Protection Agency Office of Pesticide Programs, at least 24 (10%) produce thyroid follicular cell tumors in rodents. Thirteen of the thyroid carcinogens also induce liver tumors, mainly in mice, and 9 chemicals produce tumors at other sites. Some mutagenic data are available on all 24 pesticides producing thyroid tumors. Mutagenicity does not seem to be a major determinant in thyroid carcinogenicity, except for possibly acetochlor; evidence is less convincing for ethylene thiourea and etridiazole. Studies on thyroid-pituitary functioning, including indications of thyroid cell growth and/or changes in thyroxine, triiodothyronine, or thyroid-stimulating hormone levels, are available on 19 pesticides. No such antithyroid information is available for etridiazole, N-octyl bicycloheptene dicarboximide, terbutryn, triadimefon, and trifluralin. Of the studied chemicals, only bromacil lacks antithyroid activity under study conditions. Intrathyroidal and extrathyroidal sites of action are found: amitrole, ethylene thiourea, and mancozeb are thyroid peroxidase inhibitors; and acetochlor, clofentezine, fenbuconazole, fipronil, pendimethalin, pentachloronitrobenzene, prodiamine, pyrimethanil, and thiazopyr seem to enhance the hepatic metabolism and excretion of thyroid hormone. Thus, with 12 pesticides that mode of action judgments can be made, 11 disrupt thyroid-pituitary homeostasis only; no chemical is mutagenic only; and acetochlor may have both antithyroid and some mutagenic activity. More information is needed to identify other potential antithyroid modes of thyroid carcinogenic action.

  20. RADON AND CARCINOGENIC RISK IN MOSCOW

    Directory of Open Access Journals (Sweden)

    S. M. Golovanev

    2015-01-01

    Full Text Available Objective: comparative evaluation of carcinogenic risk inMoscowfrom radon in indoor and atmospheric pollutants.Materials and methods: the lung cancer incidence in Moscow; radiation-hygienic passport of the territory; .U.S. EPA estimated average age at all and radon induced deaths, years of life lost; Report of UNSCEAR 2006 and WHO handbook on indoor radon, 2009. Trend analysis of incidence; evaluation of the excess relative risk; assessment of ratio radon-induced population risk and published values оf total population carcinogenic risk from chemical carcinogens.Results: it is shown that the 304 cases of lung cancer per year (1. 85 10-3 on average from 2006 to 2011 (21280diseases for 70 years in addition to background level induced by radon; the differences in average trends of all lungcancer incidence in the districts can exceed 25%.Conclusion. The potential of risk reduction by measures of mitigation radon concentration exceeds 5 times the cost efficiency to reduce emissions from vehicles and can reduce cancer incidence, on average 236 cases per year; population risk 16520 cases over 70 years or save not less than 2832 person-years of life per year. The annual effect of reducing losses from not-survival of 12 years as a result of radon-induced lung cancer deaths exceeds 14160000 dollars. The evaluating of the carcinogenic risk from radon in accordance with the definition of population risk increases the predictive evaluation of the effectiveness of preventive measures more than twice.

  1. The role of microRNAs in the development and progression of chemical-associated cancers

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Beland, Frederick A.; Rusyn, Ivan

    2016-01-01

    Human exposure to certain natural and man-made chemical carcinogens is one of the major risk factors for cancer development. The effect of chemical carcinogens on genetic and epigenetic alterations and their significance in the development of cancer has been well-established. In contrast, the role of microRNAs (miRNAs) in the etiology of chemical-associated cancers remains relatively unexplored despite extensive reports on changes in miRNA expression upon carcinogen exposure. This review summarizes the current knowledge for the role of miRNAs as drivers of chemical-induced carcinogenesis by bridging the gap between carcinogen exposure and cancer development through functional studies. It also emphasizes the potential for miRNA changes as early indicators of the carcinogenic process, markers for carcinogen exposure, and identification of chemical carcinogenic hazards. - Highlights: • Exposure to chemical carcinogens alters microRNA expression. • MicroRNA alterations may have significance in the development of cancer. • MicroRNAs may be early indicators of the carcinogenic process and carcinogen exposure.

  2. The role of microRNAs in the development and progression of chemical-associated cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pogribny, Igor P., E-mail: igor.pogribny@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079 (United States); Beland, Frederick A. [Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079 (United States); Rusyn, Ivan [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX 77843 (United States)

    2016-12-01

    Human exposure to certain natural and man-made chemical carcinogens is one of the major risk factors for cancer development. The effect of chemical carcinogens on genetic and epigenetic alterations and their significance in the development of cancer has been well-established. In contrast, the role of microRNAs (miRNAs) in the etiology of chemical-associated cancers remains relatively unexplored despite extensive reports on changes in miRNA expression upon carcinogen exposure. This review summarizes the current knowledge for the role of miRNAs as drivers of chemical-induced carcinogenesis by bridging the gap between carcinogen exposure and cancer development through functional studies. It also emphasizes the potential for miRNA changes as early indicators of the carcinogenic process, markers for carcinogen exposure, and identification of chemical carcinogenic hazards. - Highlights: • Exposure to chemical carcinogens alters microRNA expression. • MicroRNA alterations may have significance in the development of cancer. • MicroRNAs may be early indicators of the carcinogenic process and carcinogen exposure.

  3. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Kokel, David; Li, Yehua; Qin, Jun; Xue, Ding

    2006-06-01

    Naphthalene (1) and para-dichlorobenzene (PDCB, 2), which are widely used as moth repellents and air fresheners, cause cancer in rodents and are potential human carcinogens. However, their mechanisms of action remain unclear. Here we describe a novel method for delivering and screening hydrophobic chemicals in C. elegans and apply this technique to investigate the ways in which naphthalene and PDCB may promote tumorigenesis in mammals. We show that naphthalene and PDCB inhibit apoptosis in C. elegans, a result that suggests a cellular mechanism by which these chemicals may promote the survival and proliferation of latent tumor cells. In addition, we find that a naphthalene metabolite directly inactivates caspases by oxidizing the active site cysteine residue; this suggests a molecular mechanism by which these chemicals suppress apoptosis. Naphthalene and PDCB are the first small-molecule apoptosis inhibitors identified in C. elegans. The power of C. elegans molecular genetics, in combination with the possibility of carrying out large-scale chemical screens in this organism, makes C. elegans an attractive and economic animal model for both toxicological studies and drug screens.

  4. New perspectives in toxicological information management, and the role of ISSTOX databases in assessing chemical mutagenicity and carcinogenicity.

    Science.gov (United States)

    Benigni, Romualdo; Battistelli, Chiara Laura; Bossa, Cecilia; Tcheremenskaia, Olga; Crettaz, Pierre

    2013-07-01

    Currently, the public has access to a variety of databases containing mutagenicity and carcinogenicity data. These resources are crucial for the toxicologists and regulators involved in the risk assessment of chemicals, which necessitates access to all the relevant literature, and the capability to search across toxicity databases using both biological and chemical criteria. Towards the larger goal of screening chemicals for a wide range of toxicity end points of potential interest, publicly available resources across a large spectrum of biological and chemical data space must be effectively harnessed with current and evolving information technologies (i.e. systematised, integrated and mined), if long-term screening and prediction objectives are to be achieved. A key to rapid progress in the field of chemical toxicity databases is that of combining information technology with the chemical structure as identifier of the molecules. This permits an enormous range of operations (e.g. retrieving chemicals or chemical classes, describing the content of databases, finding similar chemicals, crossing biological and chemical interrogations, etc.) that other more classical databases cannot allow. This article describes the progress in the technology of toxicity databases, including the concepts of Chemical Relational Database and Toxicological Standardized Controlled Vocabularies (Ontology). Then it describes the ISSTOX cluster of toxicological databases at the Istituto Superiore di Sanitá. It consists of freely available databases characterised by the use of modern information technologies and by curation of the quality of the biological data. Finally, this article provides examples of analyses and results made possible by ISSTOX.

  5. Quantitative structure activity relationship for the computational prediction of nitrocompounds carcinogenicity

    International Nuclear Information System (INIS)

    Morales, Aliuska Helguera; Perez, Miguel Angel Cabrera; Combes, Robert D.; Gonzalez, Maykel Perez

    2006-01-01

    Several nitrocompounds have been screened for carcinogenicity in rodents, but this is a lengthy and expensive process, taking two years and typically costing 2.5 million dollars, and uses large numbers of animals. There is, therefore, much impetus to develop suitable alternative methods. One possible way of predicting carcinogenicity is to use quantitative structure-activity relationships (QSARs). QSARs have been widely utilized for toxicity testing, thereby contributing to a reduction in the need for experimental animals. This paper describes the results of applying a TOPological substructural molecular design (TOPS-MODE) approach for predicting the rodent carcinogenicity of nitrocompounds. The model described 79.10% of the experimental variance, with a standard deviation of 0.424. The predictive power of the model was validated by leave-one-out validation, with a determination coefficient of 0.666. In addition, this approach enabled the contribution of different fragments to carcinogenic potency to be assessed, thereby making the relationships between structure and carcinogenicity to be transparent. It was found that the carcinogenic activity of the chemicals analysed was increased by the presence of a primary amine group bonded to the aromatic ring, a manner that was proportional to the ring aromaticity. The nitro group bonded to an aromatic carbon atom is a more important determinant of carcinogenicity than the nitro group bonded to an aliphatic carbon. Finally, the TOPS-MODE approach was compared with four other predictive models, but none of these could explain more than 66% of the variance in the carcinogenic potency with the same number of variables

  6. The influence of thresholds on the risk assessment of carcinogens in food.

    Science.gov (United States)

    Pratt, Iona; Barlow, Susan; Kleiner, Juliane; Larsen, John Christian

    2009-08-01

    The risks from exposure to chemical contaminants in food must be scientifically assessed, in order to safeguard the health of consumers. Risk assessment of chemical contaminants that are both genotoxic and carcinogenic presents particular difficulties, since the effects of such substances are normally regarded as being without a threshold. No safe level can therefore be defined, and this has implications for both risk management and risk communication. Risk management of these substances in food has traditionally involved application of the ALARA (As Low as Reasonably Achievable) principle, however ALARA does not enable risk managers to assess the urgency and extent of the risk reduction measures needed. A more refined approach is needed, and several such approaches have been developed. Low-dose linear extrapolation from animal carcinogenicity studies or epidemiological studies to estimate risks for humans at low exposure levels has been applied by a number of regulatory bodies, while more recently the Margin of Exposure (MOE) approach has been applied by both the European Food Safety Authority and the Joint FAO/WHO Expert Committee on Food Additives. A further approach is the Threshold of Toxicological Concern (TTC), which establishes exposure thresholds for chemicals present in food, dependent on structure. Recent experimental evidence that genotoxic responses may be thresholded has significant implications for the risk assessment of chemicals that are both genotoxic and carcinogenic. In relation to existing approaches such as linear extrapolation, MOE and TTC, the existence of a threshold reduces the uncertainties inherent in such methodology and improves confidence in the risk assessment. However, for the foreseeable future, regulatory decisions based on the concept of thresholds for genotoxic carcinogens are likely to be taken case-by-case, based on convincing data on the Mode of Action indicating that the rate limiting variable for the development of cancer

  7. Carcinogenicity of methyl-tertiary butyl ether in gasoline.

    Science.gov (United States)

    Mehlman, Myron A

    2002-12-01

    Methyl tertiary butyl ether (MTBE) was added to gasoline on a nationwide scale in 1992 without prior testing of adverse, toxic, or carcinogenic effects. Since that time, numerous reports have appeared describing adverse health effects of individuals exposed to MTBE, both from inhalation of fumes in the workplace and while pumping gasoline. Leakage of MTBE, a highly water-soluble compound, from underground storage tanks has led to contamination of the water supply in many areas of the United States. Legislation has been passed by many states to prohibit the addition of MTBE to gasoline. The addition of MTBE to gasoline has not accomplished its stated goal of decreasing air pollution, and it has posed serious health risks to a large portion of the population, particularly the elderly and those with respiratory problems, asthma, and skin sensitivity. Reports of animal studies of carcinogenicity of MTBE began to appear in the 1990s, prior to the widespread introduction of MTBE into gasoline. These reports were largely ignored. In ensuing years, further studies have shown that MTBE causes various types of malignant tumors in mice and rats. The National Toxicology Program (NTP) Board of Scientific Counselors' Report on Carcinogens Subcommittee met in December 1998 to consider listing MTBE as "reasonably anticipated to be a human carcinogen." In spite of recommendations from Dr. Bailer, the primary reviewer, and other scientists on the committee, the motion to list MTBE in the report was defeated by a six to five vote, with one abstention. On the basis of animal studies, it is widely accepted that if a chemical is carcinogenic in appropriate laboratory animal test systems, it must be treated as though it were carcinogenic in humans. In the face of compelling evidence, NTP Committee members who voted not to list MTBE as "reasonably anticipated to be a human carcinogen" did a disservice to the general public; this action may cause needless exposure of many to health risks

  8. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats.

    Science.gov (United States)

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-05-10

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.

  9. Identifying carcinogenic activity of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) through electronic and topological indices

    CERN Document Server

    Braga, R S; Barone, P M V B

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of planar molecules, abundant in urban environment, which can induce chemical carcinogenesis. Their carcinogenic power varies in a large range, from very strong carcinogens to inactive ones. In a previous study, we proposed a methodology to identify the PAHs carcinogenic activity exploring electronic and topological indices. In the present work, we show that it is possible to simplify that methodology and expand its applicability to include methylated PAHs compounds. Using very simple rules, we can predict their carcinogenic activity with high accuracy (approx 89%).

  10. Role of chemical carcinogens in epithelial and mesenchymal neoplasms with tumor initiation-promotion protocol and the effect of 13-cis retinoic acid in chemo prevention

    International Nuclear Information System (INIS)

    Bukhari, S.M.H.; Shahzad, S.Q.; Naeem, S.; Qureshi, G.R.; Naveed, I.A.

    2002-01-01

    Objective: To study the effects of chemical carcinogens on epithelial and mesenchymal tumorigenesis with tumor initiation-promotion protocol and the use of 13-cis retinoic acid as a chemo preventive agent. Design: It was an experimental study. Place and Duration of Study: The study was conducted at Postgraduate Medical Institute (PGML) Lahore for 20 weeks. Materials and Methods: Sixty albino rats were divided into six groups of ten of animals each. First group of animals (control) was not given carcinogens and 13-cis retinoic acid in second group DMBA was applied on the dorsal skin in repeated dos of 100 mu g/ml in acetone, twice a weak. In the third group DMBA was given 100 mu g/ml as single dose while TPA was given 10 mu g//ml in acetone, twice a weak after two weeks of DMBA applications. In fourth group only DMBA 100 mu g/ml in acetone was applied as a single dose. In fifth and sixth groups 13-cis retinoic acid was given topically before and after the application of DMBA and TPA. Results: First and fourth groups did not develop any tumor. In second groups 2 animals developed malignant fibrous histiocytoma, 4 squamous cell carcinoma while 1 dysphasia and 1 carcinoma in situ. Third group developed osteoma (3 animals), papilloma (3 animals, squamous cell carcinoma (01) and dysplasia (01). Conclusion: Our results showed that DMBA acts as tumor initiator while TPA as promoter. DMBA also produces tumors itself when given alone in repeated doses. The chemical carcinogens are not only a cause of epithelial carcinogenesis but also responsible for mesenchymal tumorigenesis. 13 cis retinoic acid was equally effective in both stages of tumorigenesis. It also prevents malignant conversion of chemically induced benign tumors. (author)

  11. Risk assessment of DNA-reactive carcinogens in food.

    Science.gov (United States)

    Jeffrey, A M; Williams, G M

    2005-09-01

    Risk assessment of DNA-reactive carcinogens in food requires knowledge of the extent of DNA damage in the target organ which results from the competition between DNA adduct formation and repair. Estimates of DNA adduct levels can be made by direct measurement or indirectly as a consequence of their presence, for example, by tumor formation in animal models or exposed populations epidemiologically. Food-borne DNA-reactive carcinogens are present from a variety of sources. They are generally not intrinsically DNA-reactive but require bioactivation to DNA-reactive metabolites a process which may be modulated by the compound itself or the presence of other xenobiotics. A single DNA reactant may form several distinct DNA adducts each undergoing different rates of repair. Some DNA reactants may be photochemically activated or produce reactive oxygen species and thus indirect oxidative DNA damage. The levels of DNA adducts arising from exposures influenced by variations in the doses, the frequency with which an individual is exposed, and rates of DNA repair for specific adducts. Each adduct has a characteristic efficiency with which it induces mutations. Based on experience with the well-studied DNA-reactive food carcinogen aflatoxin B(1) (AFB(1)), a limit of 20 ppb or approximately 30 microg/day has been set and is considered a tolerable daily intake (TDI). Since AFB(1) is considered a potent carcinogen, doses of carcinogens is made.

  12. Identification of Radiation Effects on Carcinogenic Food Estimated by Ames Test

    International Nuclear Information System (INIS)

    Afifi, M.; Eid, I.; El - Nagdy, M.; Zaher, R.; Abd El-Karem, H.; Abd EL Karim, A.

    2016-01-01

    A major concern in studies related to carcinogenesis is the exposure to the exogenous carcinogens that may occur in food in both natural and polluted human environments. The purpose of the present study is to examine some of food products by Ames test to find out if food products carcinogenic then expose food to gamma radiation to find out the effect of radiation on it as a treatment. In this study, the food samples were examined by Ames test (Salmonella typhimurium mutagenicity test) to find out that a food product could be carcinogenic or highly mutated. Testing of chemicals for mutagenicity is based on the knowledge that a substance which is mutagenic in the bacterium is more likely than not to be a carcinogen in laboratory animals, and thus , by extension, present a risk of cancer to humans. After that food products that showed mutagenicity exposed to gamma radiation at different doses to examine the effect of gamma radiation on food products. This study represent γ radiation effect on carcinogenic food by using Ames test in the following steps: Detect food by Ames test using Salmonella typhimurium strains in which the colony count /plate for each food sample will show if food is slightly mutated or highly mutated or carcinogenic. If food is highly mutated or carcinogenic with high number of colonies /plate, then the carcinogenic food or highly mutated food exposed to different doses of radiation The applied doses in this study were 0, 2.5, 5, and 10 (KGy). Detect the radiation effect on food samples by Ames test after irradiation. The study shows that mutated and carcinogenic food products estimated by Ames test could be treated by irradiation

  13. Evaluation of the carcinogenic risks at the influence of POPs.

    Science.gov (United States)

    Nazhmetdinova, Aiman; Kassymbayev, Adlet; Chalginbayeva, Altinay

    2017-12-20

    Kazakhstan is included in the list of environmentally vulnerable countries and Kyzylorda oblast in particular. This is due to its geographical, spatial and temporal and socioeconomic features. As part of the program "Integrated approaches in the management of public health in the Aral region", we have carried out an expertise on many samples of natural environments and products. Samples were selected in accordance with sampling procedures according to regulatory documents by specialists of the Pesticide Toxicology Laboratory. It is accredited by the State Standard of the Republic of Kazakhstan, for compliance with ST RK ISO/IEC 17025-2007 "General requirements for the competence of test and calibration laboratories". Gas chromatograph was used for the determination of residues of organochlorine pesticides. For the determination of dioxins, polychlorinated biphenyl was conducted on the gas chromatomass spectrometer with quadruple detector produce by Agilent Company, USA. To assess the risk, we carried out the mathematical calculations according to the risk of chemicals polluting (No P 2.1.10.1920-04, Russia). Calculation of the carcinogenic risk was carried out with the use of data on the size of the exposure and meanings of carcinogenic potential factors (slope factor and unit risk). The evaluation of persistent organic pollutants (POPs), based on the previous results of the research concerning water, soil and food products, was held in five population settlements in Kyzylorda oblast villages: Ayteke bi, Zhalagash, Zhosaly, Shieli and Aralsk town. Pollution with the POPs in the environmental objects by means of exposition and evaluation of the carcinogenic risk to human health is confirmed by the data of the statistical reporting about some morbidity in Kyzylorda oblast, such as skin diseases and subcutaneous tissue, endocrine system diseases, pregnancy complications etc. The received levels of carcinogenic risks, which were first carried out in the Republic of

  14. Respiratory carcinogenicity assessment of soluble nickel compounds.

    OpenAIRE

    Oller, Adriana R

    2002-01-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear...

  15. Synthetic risks, risk potency, and carcinogen regulation.

    Science.gov (United States)

    Viscusi, W K; Hakes, J K

    1998-01-01

    This article analyzes a comprehensive sample of over 350 chemicals tested for carcinogenicity to assess the determinants of the probability of regulation. Controlling for differences in the risk potency and noncancer risks, synthetic chemicals have a significantly higher probability of regulation overall: this is due to the greater likelihood of U.S. Food and Drug Administration (FDA) regulation. Measures of risk potency increase the probability of regulation by the U.S. Environmental Protection Agency (EPA), have a somewhat weaker positive effect on regulation by the U.S. Occupational Safety and Health Administration (OSHA), and decrease the likelihood of regulation by the FDA. The overall regulatory pattern is one in which the FDA targets synthetic chemicals and chemicals that pose relatively minor cancer risk. The EPA particularly performed more sensibly than many critics have suggested.

  16. Classification of carcinogenic and mutagenic properties using machine learning method

    DEFF Research Database (Denmark)

    Moorthy, N. S.Hari Narayana; Kumar, Surendra; Poongavanam, Vasanthanathan

    2017-01-01

    An accurate calculation of carcinogenicity of chemicals became a serious challenge for the health assessment authority around the globe because of not only increased cost for experiments but also various ethical issues exist using animal models. In this study, we provide machine learning...

  17. Indoor air - assessment: Methods of analysis for environmental carcinogens

    International Nuclear Information System (INIS)

    Peterson, M.R.; Naugle, D.F.; Berry, M.A.

    1990-06-01

    The monograph describes, in a general way, published sampling procedures and analytical approaches for known and suspected carcinogens. The primary focus is upon carcinogens found in indoor air, although the methods described are applicable to other media or environments. In cases where there are no published methods for a particular pollutant in indoor air, methods developed for the workplace and for ambient air are included since they should be adaptable to indoor air. Known and suspected carcinogens have been grouped into six categories for the purposes of this and related work. The categories are radon, asbestos, organic compounds, inorganic species, particles, and non-ionizing radiation. Some methods of assessing exposure that are not specific to any particular pollutant category are covered in a separate section. The report is the fifth in a series of EPA/Environmental Criteria and Assessment Office Monographs

  18. Environmental carcinogens in human target tissues in culture: Progress report

    International Nuclear Information System (INIS)

    Hsu, I.C.

    1987-01-01

    We have accumulated more experimental evidences that demonstrated the comparative approaches with human cells will allow us to predict human risk with good accuracy following exposure to toxic chemicals. We also synthesized several carcinogenic DNA adducts, i.e., the major benzo[a]pyrene DNA adduct, 0 6 -methyldeoxyguanosine, 7-methyl- deoxyguanosine and 2-methyl-deoxyguanosine to be used as standards for quantitating DNA adduct formation in carcinogen exposed cells. A simple synthetic method was developed for preparation of the major B[a]p DNA adduct with yields better than those reported. The main accomplishments related to the originally stated objectives are summarized. 8 refs., 2 figs., 1 tab

  19. DNA repair studies in mouse germ cells exposed to two carcinogens and two non-carcinogens

    International Nuclear Information System (INIS)

    Sega, G.A.; Owens, J.G.

    1987-01-01

    An in vivo test was used to measure induced unscheduled DNA synthesis (UDS) in the germ cells of male mice exposed to the carcinogens benzo(a)pyrene [B(a)P] and 2-acetylaminofluorene (2AAF), and to the noncarcinogens pyrene (PYR) and 4-acetylaminofluorene (4AAF). Early spermatids, a DNA-repair competent stage, were used to test the effects of all chemicals. After chemical treatment and testicular injection of [ 3 H]dThd, sperm were recovered 16 days later from the caudal epididymides (these sperm were in early spermatid stages at the time of treatment) and assayed for the unscheduled incorporation of [ 3 H]dThd using liquid scintillation counting (LSC). Exposures of 2AAF ranged from 125 to 1600 mg/kg, 4AAF from 125 to 2000 mg/kg, PYR from 100 to 600 mg/kg, B(a)P from 100 to 400 mg/kg. Chemicals were administered both by intraperitoneal (i.p.) injection and by gavage. Methyl methanesulfonate (MMS) was used as a positive control

  20. Chronic Dermal Toxicity of Epoxy Resins I. Skin Carcinogenic Potency and General Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Holland, J.M.

    2001-01-16

    Epoxy resins are a diverse class of chemicals that differ in structure, physical properties, and, presumably, biological activity. The purpose of these experiments was to compare the chronic dermal toxicity and carcinogenicity of selected commercial epoxy resins and to determine the potential for positive synergistic carcinogenic interactions between different resins. This work is an extension and continuation of a Department of Energy sponsored program to evaluate epoxy resins for potential occupational health risks. The materials examined were chosen on the basis of their interest to the U.S. government. They are representative of the manufacturer's production at the time, and therefore the data are completely valid only for the specific production period. Results of the experimental exposures will be reported in two parts. This report describes the test materials, their chemical and physical characteristics and the experimental design. General (systemic) toxicity will be evaluated and the skin carcinogenicity of the materials compared. A subsequent report will provide morphological descriptions of skin and significant internal pathology induced by the various treatments.

  1. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish.

    Science.gov (United States)

    Sugimura, Takashi; Wakabayashi, Keiji; Nakagama, Hitoshi; Nagao, Minako

    2004-04-01

    Research leading to the discovery of a series of mutagenic and carcinogenic heterocyclic amines (HCAs) was inspired by the idea that smoke produced during cooking of food, especially meat or fish, might be carcinogenic. More than ten kinds of HCAs, actually produced by cooking or heating of meat or fish, have now been isolated and their structures determined, most being previously unregistered compounds. They are highly mutagenic towards Salmonella typhimurium in the presence of S9 mix and are also mutagenic in vitro and in vivo toward mammalian cells. HCAs have now been chemically synthesized in quantity and subjected to long-term animal testing. When HCAs were fed in the diet, rodents developed cancers in many organs, including the colon, breast and prostate, and one HCA produced hepatomas in monkeys. The lesions exhibited alteration in genes including Apc, beta-catenin and Ha-ras, and these changes provide clues to the induction mechanisms. The HCAs are oxidized to hydroxyamino derivatives by cytochrome P450s, and further converted to ester forms by acetyltransferase and sulfotransferase. Eventually, they produce DNA adducts through the formation of N-C bonds at guanine bases. There are HCA-sensitive and resistant strains of rodents and a search for the responsible genes is now under way. While the content of HCAs in dishes consumed in ordinary life is low and not sufficient in itself to explain human cancer, the coexistence of many other mutagens/carcinogens of either autobiotic or xenobiotic type and the possibility that HCAs induce genomic instability and heightened sensitivity to tumor promoters suggest that avoidance of exposure to HCAs or reduction of HCAs' biological effects as far as possible are to be highly recommended. Usage of microwave ovens for cooking and supplementation of the diet, for example with soy-isoflavones, which have been found to suppress the occurrence of HCA-induced breast cancers, should be encouraged. Advice to the general public

  2. The effectiveness of chemical carcinogens to induce atherosclerosis in the white carneau pigeon

    International Nuclear Information System (INIS)

    Revis, N.W.; Bull, R.; Laurie, D.; Schiller, C.A.

    1984-01-01

    The frequency of atherosclerotic lesions of the abdominal aorta has been reported to increase significantly in chickens exposed to benzo(a)pyrene and 7,12-dimethylbenz(a,h)anthracene. The present studies were performed to determine in another experimental model frequently used in atherosclerotic studies (i.e. White Carneau Pigeons) whether these and other chemical carcinogens enhance atherosclerosis. The induction and enhancement of atherosclerotic lesions were observed in pigeons treated with 7,12-dimethylbenz(a,h)anthracene, benzo(a)pyrene and 3-methylcholanthrene. The number and size of plaques in the aorta were frequently greater in pigeons treated with the higher concentrations (i.e. 100 mg/kg) of these 3 polycyclic aromatic hydrocarbons. Benzo(e)pyrene and 2,4,6-trichlorophenol were ineffective in the induction or enhancement of atherosclerosis in the pigeons. The results of the present and previous studies suggest that the polycyclic aromatic hydrocarbons (excluding benzo(e)pyrene) may be the only potential atherogens in avian atherosclerosis. This relationship may be associated with how these hydrocarbons are transported in the plasma (i.e. by lipoproteins) as demonstrated by the present distribution studies (author)

  3. Differences in gene expression profiles in the liver between carcinogenic and non-carcinogenic isomers of compounds given to rats in a 28-day repeat-dose toxicity study

    International Nuclear Information System (INIS)

    Nakayama, Koji; Kawano, Yukiko; Kawakami, Yuuki; Moriwaki, Norichika; Sekijima, Masaru; Otsuka, Masanori; Yakabe, Yoshikuni; Miyaura, Hideki; Saito, Koichi; Sumida, Kayo; Shirai, Tomoyuki

    2006-01-01

    Some compounds have structural isomers of which one is apparently carcinogenic, and the other not. Because of the similarity of their chemical structures, comparisons of their effects can allow gene expression elicited in response to the basic skeletons of the isomers to be disregarded. We compared the gene expression profiles of male Fischer 344 rats administered by daily oral gavage up to 28 days using an in-house oligo microarray. 2-Acetylaminofluorene (2-AAF), 2,4-diaminotoluene (2,4-DAT), 2-nitropropane (2-NP), and 2-nitro-p-phenylenediamine (2-NpP) are hepatocarcinogenic. However, their isomers, 4-acetylaminofluorene (4-AAF), 2,6-diaminotoluene (2,6-DAT), 1-nitropropane (1-NP), and 4-nitro-o-phenylenediamine (4-NoP), are non-hepatocarcinogenic. Because of the limited carcinogenicity of 2-NpP, we attempted to perform two-parametric comparison analyses with (1) a set of 4 isomers: 2-AAF, 2,4-DAT, 2-NP, and 2-NpP as 'carcinogenic', and 4-AAF, 2,6-DAT, 1-NP, and 4-NoP as 'non-carcinogenic'; and (2) a set of 3 isomers: 2-AAF, 2,4-DAT, and 2-NP, as 'carcinogenic', and 4-AAF, 2,6-DAT, and 1-NP as 'non-carcinogenic'. After ratio filtering and Welch's approximate t-test analysis, 54 and 28 genes were selected from comparisons between the sets of 3 and 4 isomers, respectively, for day 28 data. Using hierarchical clustering analysis with the 54 or 28 genes, 2-AAF, 2,4-DAT, and 2-NP clustered into a 'carcinogenic' branch. 2-NpP was in the same cluster as 4-NoP and 4-AAF. This clustering corresponded to the previous finding that 2-NpP is not carcinogenic in male Fischer 344 rats, which indicates that comparing the differences in gene expression elicited by different isomers is an effective method of developing a prediction system for carcinogenicity

  4. Risk assessment of DNA-reactive carcinogens in food

    International Nuclear Information System (INIS)

    Jeffrey, A.M.; Williams, G.M.

    2005-01-01

    Risk assessment of DNA-reactive carcinogens in food requires knowledge of the extent of DNA damage in the target organ which results from the competition between DNA adduct formation and repair. Estimates of DNA adduct levels can be made by direct measurement or indirectly as a consequence of their presence, for example, by tumor formation in animal models or exposed populations epidemiologically. Food-borne DNA-reactive carcinogens are present from a variety of sources. They are generally not intrinsically DNA-reactive but require bioactivation to DNA-reactive metabolites a process which may be modulated by the compound itself or the presence of other xenobiotics. A single DNA reactant may form several distinct DNA adducts each undergoing different rates of repair. Some DNA reactants may be photochemically activated or produce reactive oxygen species and thus indirect oxidative DNA damage. The levels of DNA adducts arising from exposures influenced by variations in the doses, the frequency with which an individual is exposed, and rates of DNA repair for specific adducts. Each adduct has a characteristic efficiency with which it induces mutations. Based on experience with the well-studied DNA-reactive food carcinogen aflatoxin B 1 (AFB 1 ), a limit of 20 ppb or ∼30 μg/day has been set and is considered a tolerable daily intake (TDI). Since AFB 1 is considered a potent carcinogen, doses of 32 P-postlabeling or the use of surrogates such as hemoglobin adducts, together with approaches to evaluate the results. A discussion of approaches to estimating possible threshold effects for DNA-reactive carcinogens is made

  5. Mequindox Induced Genotoxicity and Carcinogenicity in Mice

    Directory of Open Access Journals (Sweden)

    Qianying Liu

    2018-04-01

    Full Text Available Mequindox (MEQ, acting as an inhibitor of deoxyribonucleic acid (DNA synthesis, is a synthetic heterocyclic N-oxides. To investigate the potential carcinogenicity of MEQ, four groups of Kun-Ming (KM mice (50 mice/sex/group were fed with diets containing MEQ (0, 25, 55, and 110 mg/kg for one and a half years. The result showed adverse effects on body weights, feed consumption, hematology, serum chemistry, organ weights, relative organ weights, and incidence of tumors during most of the study period. Treatment-related changes in hematology, serum chemistry, relative weights and histopathological examinations revealed that the hematological system, liver, kidneys, and adrenal glands, as well as the developmental and reproductive system, were the main targets after MEQ administration. Additionally, MEQ significantly increased the frequency of micronucleated normochromatic erythrocytes in bone marrow cells of mice. Furthermore, MEQ increased the incidence of tumors, including mammary fibroadenoma, breast cancer, corticosuprarenaloma, haemangiomas, hepatocarcinoma, and pulmonary adenoma. Interestingly, the higher incidence of tumors was noted in M25 mg/kg group, the lowest dietary concentration tested, which was equivalent to approximately 2.25 and 1.72 mg/kg b.w./day in females and males, respectively. It was assumed that the lower toxicity might be a reason for its higher tumor incidence in M25 mg/kg group. This finding suggests a potential relationships among the dose, general toxicity and carcinogenicity in vivo, and further study is required to reveal this relationship. In conclusion, the present study demonstrates that MEQ is a genotoxic carcinogen in KM mice.

  6. A role of low dose chemical mixtures in adipose tissue in carcinogenesis.

    Science.gov (United States)

    Lee, Duk-Hee; Jacobs, David R; Park, Ho Yong; Carpenter, David O

    2017-11-01

    The Halifax project recently hypothesized a composite carcinogenic potential of the mixture of low dose chemicals which are commonly encountered environmentally, yet which are not classified as human carcinogens. A long neglected but important fact is that adipose tissue is an important exposure source for chemical mixtures. In fact, findings from human studies based on several persistent organic pollutants in general populations with only background exposure should be interpreted from the viewpoint of chemical mixtures because serum concentrations of these chemicals can be seen as surrogates for chemical mixtures in adipose tissue. Furthermore, in conditions such as obesity with dysfunctional adipocytes or weight loss in which lipolysis is increased, the amount of the chemical mixture released from adipose tissue to circulation is increased. Thus, both obesity and weight loss can enhance the chance of chemical mixtures reaching critical organs, however paradoxical this idea may be when fat mass is the only factor considered. The complicated, interrelated dynamics of adipocytes and chemical mixtures can explain puzzling findings related to body weight among cancer patients, including the obesity paradox. The contamination of fat in human diet with chemical mixtures, occurring for reasons similar to contamination of human adipose tissue, may be a missing factor which affects the association between dietary fat intake and cancer. The presence of chemical mixtures in adipose tissue should be considered in future cancer research, including clinical trials on weight management among cancer survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Toxic and carcinogenic agents in dry and moist snuff.

    Science.gov (United States)

    Hoffmann, D; Adams, J D; Lisk, D; Fisenne, I; Brunnemann, K D

    1987-12-01

    The oral use of snuff is causatively associated with cancer of the oral cavity. Since most epidemiologic studies to date relate to the long-term use of dry snuff, which has dominated the U.S. smokeless tobacco market in the past, the concentrations of several toxic and carcinogenic agents in the three most popular dry snuff brands have been compared with those in the five most popular moist snuff brands sold in the United States. All eight samples were analyzed for nitrate, alkaloids, polyphenols, volatile carbonyl compounds, lead, cadmium, selenium, and the carcinogenic compounds benzo[a]pyrene (CAS: 50-32-8), polonium-210 (CAS: 13981-52-7), volatile N-nitrosamines (VNAs), N-nitrosodiethanolamine (CAS: 1116-54-7), and the tobacco-specific N-nitrosamines (TSNAs). Most of the snuff brands were rich in nitrate (greater than or equal to 1.5%), total polyphenols (greater than 2%), and in nicotine (greater than or equal to 1.5%), which is the habituating factor in tobacco use. Concentrations of the VNAs were significantly above the permissible limits set for some food products; the concentrations of the TSNAs in both snuff types exceeded the levels of nitrosamines in other consumer products by at least two to three orders of magnitude. The extremely high levels of the TSNAs in snuff have remained unchanged during the last decade and present the major carcinogenic risk factor for the oral use of snuff. Polonium-210 contributes further to the carcinogenic risk associated with snuff. The chemical-analytical data presented in this study do not indicate marked differences in the carcinogenic potential of moist snuff compared to dry snuff.

  8. A review of mammalian carcinogenicity study design and potential effects of alternate test procedures on the safety evaluation of food ingredients.

    Science.gov (United States)

    Hayes, A W; Dayan, A D; Hall, W C; Kodell, R L; Williams, G M; Waddell, W D; Slesinski, R S; Kruger, C L

    2011-06-01

    Extensive experience in conducting long term cancer bioassays has been gained over the past 50 years of animal testing on drugs, pesticides, industrial chemicals, food additives and consumer products. Testing protocols for the conduct of carcinogenicity studies in rodents have been developed in Guidelines promulgated by regulatory agencies, including the US EPA (Environmental Protection Agency), the US FDA (Food and Drug Administration), the OECD (Organization for Economic Co-operation and Development) for the EU member states and the MAFF (Ministries of Agriculture, Forestries and Fisheries) and MHW (Ministry of Health and Welfare) in Japan. The basis of critical elements of the study design that lead to an accepted identification of the carcinogenic hazard of substances in food and beverages is the focus of this review. The approaches used by entities well-known for carcinogenicity testing and/or guideline development are discussed. Particular focus is placed on comparison of testing programs used by the US National Toxicology Program (NTP) and advocated in OECD guidelines to the testing programs of the European Ramazzini Foundation (ERF), an organization with numerous published carcinogenicity studies. This focus allows for a good comparison of differences in approaches to carcinogenicity testing and allows for a critical consideration of elements important to appropriate carcinogenicity study designs and practices. OECD protocols serve as good standard models for carcinogenicity testing protocol design. Additionally, the detailed design of any protocol should include attention to the rationale for inclusion of particular elements, including the impact of those elements on study interpretations. Appropriate interpretation of study results is dependent on rigorous evaluation of the study design and conduct, including differences from standard practices. Important considerations are differences in the strain of animal used, diet and housing practices, rigorousness

  9. Factors modifying sensitivity to carcinogens and the problem of threshold in carcinogenesis

    International Nuclear Information System (INIS)

    Anisimov, V.N.

    1983-01-01

    Maximum allowable concentrations of chemical carcinogens and dose rates of ionizing radiation have been under extensive study both experimentally and epidemiologically. The problem of the carcinogenic hazards of low-level radiation is a very difficult one: in epidemiological studies it is hard to take into account the many factors (e.g. diseases, diet, genetic peculiarities) that may affect sensitivity to radiation; in experimental studies it is hard to extrapolate with accuracy from one species to another or from the individual threshold to that of the whole population. Age, enzyme activity, sex, and DNA repair capability also modify sensitivity to radiation; when factors such as these are better understood it is expected that epidemiological studies will give a solution that allows estimation of the carcinogenic risk from low-level radiation and hence establishment of a threshold dose. (author)

  10. In vitro screening of inhibition of PPAR-γ activity as a first step in identification of potential breast carcinogens

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Lundqvist, J.; Petersen, R. K.

    2015-01-01

    and estrogen biosynthesis ultimately leading to breast cancer. If other organic solvents inhibit PPAR-γ activity, they should also lead to increased oestrogen biosynthesis and thus be potential breast carcinogens. Ten commonly used hydrophilic organic solvents were first tested in a cell-based screening assay...... followed by a well-established steroidogenesis assay for production of sex hormones in exposed H295 R cells may provide a screening tool for potential breast carcinogens. This initial screening thus identified ethylene glycol and possibly ethyl acetate as potential breast carcinogens....

  11. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  12. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-01-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater

  13. Carcinogen-induced damage to DNA

    International Nuclear Information System (INIS)

    Strauss, B.; Altamirano, M.; Bose, K.; Sklar, R.; Tatsumi, K.

    1979-01-01

    Human cells respond to carcinogen-induced damage in their DNA in at least two ways. The first response, excision repair, proceeds by at least three variations, depending on the nature of the damage. Nucleotide excision results in relatively large repair patches but few free DNA breaks, since the endonuclease step is limiting. Apurinic repair is characterized by the appearance of numerous breaks in the DNA and by short repair patches. The pathways behave as though they function independently. Lymphoic cells derived from a xeroderma pigmentosum complementation group C patient are deficient in their ability to perform nucleotide excision and also to excise 6 methoxyguanine adducts, but they are apurinic repair competent. Organisms may bypass damage in their DNA. Lymphoblastoid cells, including those derived from xeroderma pigmentosum treated with 3 H-anti-BPDE, can replicate their DNA at low doses of carcinogen. Unexcised 3 H is found in the light or parental strand of the resulting hybrid DNA when replication occurs in medium with BrdUrd. This observation indicates a bypass reaction occurring by a mechanism involving branch migration at DNA growing points. Branch migration in DNA preparations have been observed, but the evidence is that most occurs in BrdUrd-containing DNA during cell lysis. The measurement of the bifilarly substituted DNA resulting from branch migration is a convenient method of estimating the proportion of new synthesis remaining in the vicinity of the DNA growing point. Treatment with carcinogens or caffeine results in accumulation of DNA growing points accompanied by the synthesis of shortened pieces of daughter DNA

  14. The carcinogenicity of 1-methyl-3(p-bromophenyl)-1-nitrosourea (Br-MPNU).

    Science.gov (United States)

    Warzok, R; Martin, J; Mendel, J; Thust, R; Schwarz, H

    1983-01-01

    In long-term experiments with Hooded rats the carcinogenic potential of 1-methyl-3(p-bromophenyl)-1-nitrosourea (Br-MPNU) could be demonstrated for the first time. Br-MPNU is formed also endogenously after combined administration of 1-methyl-3(p-bromophenyl)-urea (Br-MPU) and sodium nitrite. After repeated intragastric administration of 0.33 mmol Br-MPU and 0.73 mmol NaNO2 per kg b.w. papillomas and carcinomas of the forestomach developed in 83%. After repeated administration of 0.28 mmol Br-MPNU per kg b.w. these neoplasms were observed in 88%. The comparison of results obtained in similar experiments with 1-methyl-3-phenyl-1-nitrosourea shows that bromine substitution led to a reduction of the carcinogenic activity. The present paper is part of a complex program studying the interrelationships between structure, physico-chemical properties, mutagenicity and carcinogenicity of nitrosoureas.

  15. Comparative evaluation of genetic toxicity patterns of carcinogens and noncarcinogens: strategies for predictive use of short-term assays

    International Nuclear Information System (INIS)

    Tennant, R.W.; Spalding, J.W.; Stasiewicz, S.; Caspary, W.D.; Mason, J.M.; Resnick, M.A.

    1987-01-01

    The results of a recent comprehensive evaluation of the relationship between four measures of in vitro genetic toxicity and the capacity of the chemicals to induce neoplasia in rodents carry some important implications. The results showed that while the Salmonella mutagenesis assay detected only about half of the carcinogenes as mutagens, the other three in vitro assays (mutagenesis in MOLY cells or induction of aberrations or SCEs in CHO cells) did not complement Salmonella since they failed to effectively discriminate between the carcinogens and noncarcinogens found negative in the Salmonella assay. The specificity of the Salmonella assay for this group of 73 chemicals was relatively high (only 4 of 29 noncarcinogens were positive). Therefore, the authors have begun to evaluate in vivo genetic toxicity assays for their ability to complement Salmonella in the identification of carcinogens

  16. Carcinogenic activity of polycyclic hydrocarbons on man and animals

    Energy Technology Data Exchange (ETDEWEB)

    Shabad, L M

    1976-03-01

    Basic facts are reported on the carcinogenic activity of polycyclic aromatic hydrocarbons (PAH) towards humans and animals. Benzyprene (BP) is taken as a standard indicator for PAH. Studies of the distribution of BP in atmosphere, hydrosphere, in soil, in plants, and in animals led to an understanding of the accumulation and breakdown of this chemical. On this basis, safety limits were set as a prophylactic measure.

  17. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline

    Directory of Open Access Journals (Sweden)

    Buonaguro Franco M

    2009-06-01

    Full Text Available Abstract Virtually all cases of cervical cancer are caused by persistent infections with a restricted set of human papillomaviruses (HPV. Some HPV types, like HPV16 and HPV18, are clear and powerful carcinogens. However, the categorization of the most weakly carcinogenic HPV types is extremely challenging. The decisions are important for screening test and vaccine development. This article describes for open discussion an approach recently taken by a World Health Organization International Agency for Research on Cancer (IARC Monographs Working Group to re-assess the carcinogenicity of different HPV types.

  18. Free radicals in chemical carcinogenesis.

    Science.gov (United States)

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  19. Characterization of the chemicals used in hydraulic fracturing fluids for wells located in the Marcellus Shale Play.

    Science.gov (United States)

    Chen, Huan; Carter, Kimberly E

    2017-09-15

    Hydraulic fracturing, coupled with the advances in horizontal drilling, has been used for recovering oil and natural gas from shale formations and has aided in increasing the production of these energy resources. The large volumes of hydraulic fracturing fluids used in this technology contain chemical additives, which may be toxic organics or produce toxic degradation byproducts. This paper investigated the chemicals introduced into the hydraulic fracturing fluids for completed wells located in Pennsylvania and West Virginia from data provided by the well operators. The results showed a total of 5071 wells, with average water volumes of 5,383,743 ± 2,789,077 gal (mean ± standard deviation). A total of 517 chemicals was introduced into the formulated hydraulic fracturing fluids. Of the 517 chemicals listed by the operators, 96 were inorganic compounds, 358 chemicals were organic species, and the remaining 63 cannot be identified. Many toxic organics were used in the hydraulic fracturing fluids. Some of them are carcinogenic, including formaldehyde, naphthalene, and acrylamide. The degradation of alkylphenol ethoxylates would produce more toxic, persistent, and estrogenic intermediates. Acrylamide monomer as a primary degradation intermediate of polyacrylamides is carcinogenic. Most of the chemicals appearing in the hydraulic fracturing fluids can be removed when adopting the appropriate treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Predictive Models for Carcinogenicity and Mutagenicity: Frameworks,State-of-the-Art, and Perspectives

    Science.gov (United States)

    Mutagenicity and carcinogenicity are endpoints of major environmental and regulatory concern. These endpoints are also important targets for development of alternative methods for screening and prediction due to the large number of chemicals of potential concern and the tremendou...

  1. Cea-Expo: A facility exposure matrix to assess passed exposure to chemical carcinogens and radionuclides of nuclear workers

    International Nuclear Information System (INIS)

    Telle-Lamberton, M.; Bouville, P.; Bergot, D.; Gagneau, M.; Marot, S.; Telle-Lamberton, M.; Giraud, J.M.; Gelas, J.M.

    2005-01-01

    A 'Facility-Exposure Matrix' (FEM) is proposed to assess exposure to chemical carcinogens and radionuclides in a cohort of nuclear workers. Exposures are to be attributed in the following way: a worker reports to an administrative unit and/or is monitored for exposure to ionising radiation in a specific workplace. These units are connected with a list of facilities for which exposure is assessed through a group of experts. The entire process of the FEM applied in one of the nuclear centres included in the study shows that the FEM is feasible: exposure durations as well as groups of correlated exposures are presented but have to be considered as possible rather than positive exposures. Considering the number of facilities to assess (330), ways to simplify the method are proposed: (i) the list of exposures will be restricted to 18 chemical products retained from an extensive bibliography study; (ii) for each of the following classes of facilities: nuclear reactors, fuel fabrication, high-activity laboratories and radiation chemistry, accelerators and irradiators, waste treatment, biology, reprocessing, fusion, occupational exposure will be deduced from the information already gathered by the initial method. Besides taking into account confusion factors in the low doses epidemiological study of nuclear workers, the matrix should help in the assessment of internal contamination and chemical exposures in the nuclear industry. (author)

  2. Testing of chemicals for genetic activity with Saccharomyces cerevisiae: a report of the U. S. Environmental Protection Agency Gene-Tox Program

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.K.; von Borstel, R.C.; von Halle, E.S.; Parry, J.M.; Siebert, D.; Zetterberg, G.; Barale, R.; Loprieno, N.

    1984-01-01

    This review article with over 200 references summarizes the results of mutation screening tests with 492 chemicals using saccharomyces cerevisiae as the test organism. In addition, an extensive description of S. cerevisiae as a test organism is given. Yeast can be used to study genetic effects both in mitotic and in meiotic cells because it can be cultured as a stable haploid or a stable diploid. The most commonly used genetic endpoint has been mitotic recombination either as mitotic crossing-over or mitotic gene conversion. Data were available on tests with 492 chemicals, of which 249 were positive, as reported in 173 articles or reports. The genetic test/carcinogenicity accuracy was 0.74, based on the carcinogen listing established in the gene-tox program. The yeast tests supplement the bacterial tests for detecting agents that act via radical formation, antibacterial drugs, and other chemicals interfering with chromosome segregation and recombination processes.

  3. Potential for occupational and environmental exposure to ten carcinogens in Toronto

    Energy Technology Data Exchange (ETDEWEB)

    Muller, P. [ToxProbe Inc., Toronto, ON (Canada)

    2002-03-01

    A study was conducted in which several contaminants were assessed for their toxicological properties, potencies and occupational and environmental exposures in the city of Toronto. The contaminants included 1,3-butadiene, asbestos, benzene, cadmium, chromium, dioxins, formaldehyde, polycyclic aromatic hydrocarbons (PAHs), tetrachloroethylene, and trichloroethylene. The International Agency for Research on Cancer, the United States Environmental Protection Agency, and Health Canada have classified 9 of the 10 substances as human carcinogens. Tetrachloroethylene was classified as a probable human carcinogen. It was noted that there is no level of exposure for these chemicals that is without some risk. The information on the levels of selected contaminants in the workplace were obtained from existing literature. The sectors with the highest number of potentially exposed workers to these contaminants include the textiles industry, footwear manufacturing, wood products manufacturing, rubber products manufacturing, non-metallic mineral products manufacturing, fabricated metal products manufacturing, construction, land transport, and household services. The report discussed sources of emissions, routes and pathways of exposures and environmental levels, including outdoor air levels water concentrations, soil concentrations, and food concentrations. The report does not estimate the actual risk to Toronto residents due to environmental exposure to these carcinogens because data are insufficient to conduct such an assessment. However, some previous studies have indicated that exposure from ambient and indoor air has the greatest impact on human health. It is recommended that the city of Toronto remain up to date on the regulatory status of these chemicals. refs., tabs., figs., appendices.

  4. Tobacco and chemicals (image)

    Science.gov (United States)

    Some of the chemicals associated with tobacco smoke include ammonia, carbon dioxide, carbon monoxide, propane, methane, acetone, hydrogen cyanide and various carcinogens. Other chemicals that are associated with chewing ...

  5. Repair of DNA treated with lambda-irradiation and chemical carcinogens. Progress report, 1984-1985

    International Nuclear Information System (INIS)

    Goldthwait, D.A.

    1985-01-01

    Research progress is reported in the following areas: (1) DNA repair in HeLa cells; (2) a search for human transposable elements; (3) the effect of radiation and carcinogens on the activation of LTR sequences; and (4) studies on oncogenes of central nervous system tumors

  6. Assessment and management of chemical exposure in the Mohs laboratory.

    Science.gov (United States)

    Gunson, Todd H; Smith, Harvey R; Vinciullo, Carl

    2011-01-01

    The correct handling, storage, and disposal of chemicals used in the processing of tissue for Mohs micrographic surgery are essential. To identify the chemicals involved in the preparation of Mohs frozen sections and assess the associated occupational health risks. To quantify exposure levels of hazardous chemicals and ensure that they are minimized. A risk assessment form was completed for each chemical. Atmospheric sampling was performed at our previous laboratory for formaldehyde and volatile organic compounds. These data were used in the design of our new facility, where testing was repeated. Twenty-five chemicals were identified. Ten were classified as hazardous substances, 10 were flammable, six had specific disposal requirements, four were potential carcinogens, and three were potential teratogens. Formaldehyde readings at our previous laboratory were up to eight times the national exposure standard. Testing at the new laboratory produced levels well below the exposure standards. Chemical exposure within the Mohs laboratory can present a significant occupational hazard. Acutely toxic and potentially carcinogenic formaldehyde was found at high levels in a relatively standard laboratory configuration. A laboratory can be designed with a combination of physical environment and operational protocols that minimizes hazards and creates a safe working environment. © 2010 by the American Society for Dermatologic Surgery, Inc.

  7. Modelling of carcinogenic effects resulting from the combined action of radon and smoking

    Energy Technology Data Exchange (ETDEWEB)

    Ryabova, S.V.; Petin, V.G. [Medical Radiological Research Centre, Obninsk (Russian Federation)

    2002-03-01

    A simple mathematical model designed for the description of cell survival [1] and later developed for the evaluation of mutagenic effects [2] was proposed for the optimisation of the determination and prognosis of levels of carcinogenic effects in organisms, resulting from the combined action of different agents. The model postulates that the occurrence of synergism is to be expected as a result of additional carcinogenic damage arising from the interaction of sublesions induced by the two agents under investigation. These molecular sublesions are suggested to be non-carcinogenic, if each agent is taken separately. The main conclusion pertaining to this model is the existence of the highest level of synergistic effect. The model predicts the input values and conditions under which this level is reached. The synergistic effect appeared to decline with any deviation from the optimal value for the ratio of carcinogenic effects produced by each agent alone. These conclusions were verified by comparison with experimental data published by other researchers. (orig.)

  8. JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for the detection of genotoxic carcinogens: I. Summary of pre-validation study results.

    Science.gov (United States)

    Uno, Yoshifumi; Kojima, Hajime; Omori, Takashi; Corvi, Raffaella; Honma, Masamistu; Schechtman, Leonard M; Tice, Raymond R; Burlinson, Brian; Escobar, Patricia A; Kraynak, Andrew R; Nakagawa, Yuzuki; Nakajima, Madoka; Pant, Kamala; Asano, Norihide; Lovell, David; Morita, Takeshi; Ohno, Yasuo; Hayashi, Makoto

    2015-07-01

    The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this validation effort was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The purpose of the pre-validation studies (i.e., Phase 1 through 3), conducted in four or five laboratories with extensive comet assay experience, was to optimize the protocol to be used during the definitive validation study. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Detection of carcinogen-DNA adducts by radioimmunoassay

    International Nuclear Information System (INIS)

    Poirier, M.C.; Yuspa, S.H.; Weinstein, I.B.; Blobstein, S.

    1977-01-01

    Covalent binding of carcinogen to nucleic acids is believed to be an essential component of the carcinogenic process, so it is desirable to have highly sensitive and specific methods for detecting such adducts in cells and tissues exposed to known and suspected carcinogens. A radioimmunoassay is here described capable of detecting nanogram amounts of DNA adducts resulting from the covalent binding of the carcinogen N-2-acetylaminofluorene and its activated N-acetoxy derivative. (author)

  10. Comet assay evaluation of six chemicals of known genotoxic potential in rats.

    Science.gov (United States)

    Hobbs, Cheryl A; Recio, Leslie; Streicker, Michael; Boyle, Molly H; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L

    2015-07-01

    As a part of an international validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals. Copyright © 2015

  11. Detection of genotoxic and non-genotoxic carcinogens in Xpc−/−p53+/− mice

    International Nuclear Information System (INIS)

    Melis, Joost P.M.; Speksnijder, Ewoud N.; Kuiper, Raoul V.; Salvatori, Daniela C.F.; Schaap, Mirjam M.; Maas, Saskia; Robinson, Joke; Verhoef, Aart; Benthem, Jan van; Luijten, Mirjam; Steeg, Harry van

    2013-01-01

    An accurate assessment of the carcinogenic potential of chemicals and pharmaceutical drugs is essential to protect humans and the environment. Therefore, substances are extensively tested before they are marketed to the public. Currently, the rodent two-year bioassay is still routinely used to assess the carcinogenic potential of substances. However, over time it has become clear that this assay yields false positive results and also has several economic and ethical drawbacks including the use of large numbers of animals, the long duration, and the high cost. The need for a suitable alternative assay is therefore high. Previously, we have proposed the Xpa*p53 mouse model as a very suitable alternative to the two-year bioassay. We now show that the Xpc*p53 mouse model preserves all the beneficial traits of the Xpa*p53 model for sub-chronic carcinogen identification and can identify both genotoxic and non-genotoxic carcinogens. Moreover, Xpc*p53 mice appear to be more responsive than Xpa*p53 mice towards several genotoxic and non-genotoxic carcinogens. Furthermore, Xpc*p53 mice are far less sensitive than Xpa*p53 mice for the toxic activity of DNA damaging agents and as such clearly respond in a similar way as wild type mice do. These advantageous traits of the Xpc*p53 model make it a better alternative for in vivo carcinogen testing than Xpa*p53. This pilot study suggests that Xpc*p53 mice are suited for routine sub-chronic testing of both genotoxic and non-genotoxic carcinogens and as such represent a suitable alternative to possibly replace the murine life time cancer bioassay. Highlights: ► The Xpc*p53 mouse model is able to identify genotoxic and non-genotoxic carcinogens. ► Time, animals and cost can be significantly reduced compared to the 2-year bioassay. ► Xpc*p53 mice are more advantageous for carcinogen identification than Xpa*p53 mice. ► Xpc*p53 mice exhibit a wild type response upon exposure to genotoxicants.

  12. Reduction in health risk induced by semi-volatile organic compounds and metals in a drinking water treatment plant

    International Nuclear Information System (INIS)

    Zhao, F.; Yin, J.; Zhang, X. X.; Chen, Y.; Zhang, Y.; Wu, B.; Li, M.

    2015-01-01

    This study investigated health risk reduction in a drinking water treatment plant of Nanjing City (China) based on chemical detection of 22 semi-volatile organic compounds (SVOCs) and 24 metallic elements in source water and drinking water during 2009–2011. Chemical analysis showed that 15 SVOCs and 9 metals were present in the water. Health risk assessment revealed that hazard quotient of each pollutant and hazard index (HI) of all the detectable pollutants were below 1.00, indicating that the chemicals posed negligible non-carcinogenic risk to local residents. Benzo(a)pyrene may induce carcinogenic risk since its risk index via both oral and dermal exposure exceeded the safety level (1.00E-6), but other SVOCs induced no carcinogenic risk. Total HI of the SVOCs was 1.08E-3 for the source water and 1.56E-3 for the drinking water, suggesting that the used conventional treatment processes (coagulation/sedimentation, sand filtration and chlorine disinfection) cannot effectively reduce the non-carcinogenic risk. The source water had higher carcinogenic risk than the drinking water, but risk index of the drinking water still exceeded 1.00E-6. This study might serve as a basis for health risk assessment of drinking water and also as a benchmark for the authorities to reduce health risk arising from trace-level hazardous pollutants.

  13. Advancing the 3Rs in regulatory toxicology - Carcinogenicity testing: Scope for harmonisation and advancing the 3Rs in regulated sectors of the European Union.

    Science.gov (United States)

    Annys, Erwin; Billington, Richard; Clayton, Rick; Bremm, Klaus-Dieter; Graziano, Michael; McKelvie, Jo; Ragan, Ian; Schwarz, Michael; van der Laan, Jan Willem; Wood, Charles; Öberg, Mattias; Wester, Piet; Woodward, Kevin N

    2014-07-01

    Different government agencies operating in the European Union regulate different types of chemical products but all require testing for carcinogenicity to support applications for product marketing and commercialisation. A conference was held in Brussels in 2013 where representatives of the pharmaceutical, animal health, chemical and plant protection industries, together with representatives of regulatory agencies, universities and other stakeholders, met under the auspices of The European Partnership for Alternative Approaches to Animal Testing (EPAA) to discuss the varying requirements for carcinogenicity testing, and how these studies might be refined to improve hazard evaluation and risk assessment while implementing principles of the 3Rs (replacement, refinement and reduction in animal studies). While there are some similarities, the regulatory approaches in pharmaceutical, animal health, chemical and plant protection sectors have varying degrees of flexibility in requirements for carcinogenicity testing, to an extent reflecting concerns over the magnitude and duration of human exposure, either directly as in therapeutic exposure to pharmaceuticals, or indirectly through the ingestion of residues of veterinary drugs or plant protection chemicals. The article discusses these differences and other considerations for modified carcinogenicity testing paradigms on the basis of scientific and 3Rs approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Retraction: Evaluation of Carcinogenic Effects of Electromagnetic Fields (Emf

    Directory of Open Access Journals (Sweden)

    Bakir Mehic

    2010-08-01

    Full Text Available This retracts the article "EVALUATION OF CARCINOGENIC EFFECTS OF ELECTROMAGNETIC FIELDS (EMF" on page 245. The Editor-in-chief of the Bosnian Journal ofBasic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: “Evaluation of carcinogenic effects of electromagnetic fields (EMF” published in Bosn J Basic Med Sci. 2010 Aug;10(3:245-50.After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.

  15. An overview of the report: Correlation between carcinogenic potency and the maximum tolerated dose: Implications for risk assessment

    International Nuclear Information System (INIS)

    Krewski, D.; Gaylor, D.W.; Soms, A.P.; Szyszkowicz, M.

    1993-01-01

    Current practice in carcinogen bioassay calls for exposure of experimental animals at doses up to and including the maximum tolerated dose (MTD). Such studies have been used to compute measures of carcinogenic potency such as the TD 50 as well as unit risk factors such as q 1 for predicting low-dose risks. Recent studies have indicated that these measures of carcinogenic potency are highly correlated with the MTD. Carcinogenic potency has also been shown to be correlated with indicators of mutagenicity and toxicity. Correlation of the MTDs for rats and mice implies a corresponding correlation in TD 50 values for these two species. The implications of these results for cancer risk assessment are examined in light of the large variation in potency among chemicals known to induce tumors in rodents. 119 refs., 2 figs., 4 tabs

  16. Critical effective methods to detect genotoxic carcinogens and neoplasm-promoting agents.

    Science.gov (United States)

    Weisburger, J H; Williams, G M

    1991-01-01

    Neoplasia in fish can result from contamination of waters with carcinogens and promoters. Cancer in fish, therefore, is a possible indicator of cancer risk to man and serves as a guide to the need for preventive approaches involving improved means of waste disposal and environmental hygiene. Moreover, cancer in fish indicates that this important food source may be contaminated. Detection of genotoxic carcinogens to which fish are exposed can be achieved quickly and efficiently by carefully selected batteries of complementary in vitro and in vivo bioassays. One such battery consists of the Ames test, a reverse mutation assay in prokaryotic Salmonella typhimurium, and the Williams test, involving DNA repair in freshly explanted metabolically highly competent liver cells from diverse species, including humans. Determination of DNA-carcinogen adducts by varied techniques, including 32P-postlabeling, as well as DNA breakage, mammalian cell mutagenicity, chromosome aberrations, sister chromatid exchange, or cell transformation represent additional approaches, each with its own advantages and disadvantages. More research is needed on systems to apprehend neoplasm promoters, but tests to determine interruption of intercellular communications through gap junctions appear promising. Other approaches rely on measurement of enzymes such as ornithine decarboxylase and protein kinase C. Approaches to the definition of risk to fish or humans require characterization of the genotoxic or nongenotoxic properties of a chemical, relative potency data obtained in select, limited rodent bioassays, and knowledge of prevailing environmental concentrations of specific carcinogens.

  17. Review of short-term screening tests for mutagens, toxigens, and carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Carney, H.J.; Hass, B.S.

    1979-07-01

    In order to test the thousands of man-made chemicals in the environment for carcinogenic and genetic hazards, a multitude of short-term screening tests has been developed to complement long-term mammalian bioassays and epidemiological studies. These tests cover a broad spectrum of organisms, and include the use of naked and viral nucleic acids, bacteria, fungi, higher plants, insects in vitro mammalian cell cultures (cell transformation, cell-mediated mutagenesis, DNA repair, and chromosome aberration tests) and live mammals. Assay end points include effects on nucleic acids, DNA repair synthesis, point or gene mutation, structural and numerical chromosome aberrations, cytological alterations, and in vitro cell transformation. The present review describes and compares these assays. In addition, it discusses their historical development, the problems and limitations associated with their use, and their implementation in comprehensive testing programs. It is intended to provide overview and specific information to the laboratory that is in the process of establishing genetic toxicological systems. (The literature is reviewed to January 1978.)

  18. Genotoxicity and carcinogenicity of diesel soot and oil shale dust, two markedly different particles with associated organic content

    International Nuclear Information System (INIS)

    Mauderly, J.L.; Barr, E.B.; Bechtold, W.E.

    1987-01-01

    Levels of DNA adducts in lungs of rats were measured by 32 P postlabeling techniques after 240-mo exposure to either diesel exhaust or oil shale dusts. Preliminary results suggest that whole-lung adduct levels from chronic inhalation exposures are not predictive for carcinogenicity. Lung tumors were observed in animals exposed to diesel exhaust. Carcinogenicity was correlated to the mutagenicity of extracts and severity of epithelial proliferation

  19. Chemically induced immunotoxicity in a medium-term multiorgan bioassay for carcinogenesis with Wistar rats

    International Nuclear Information System (INIS)

    Spinardi-Barbisan, Ana Lucia Tozzi; Kaneno, Ramon; Barbisan, Luis Fernando; Viana de Camargo, Joao Lauro; Rodrigues, Maria Aparecida Marchesan

    2004-01-01

    A variety of chemicals can adversely affect the immune system and influence tumor development. The modifying potential of chemical carcinogens on the lymphoid organs and cytokine production of rats submitted to a medium-term initiation-promotion bioassay for carcinogenesis was investigated. Male Wistar rats were sequentially initiated with N-nitrosodiethylamine (DEN), N-methyl-N-nitrosourea (MNU), N-butyl-N-(4hydroxybutyl)nitrosamine (BBN), dihydroxy-di-n-propylnitrosamine (DHPN), and 1,2-dimethylhydrazine (DMH) during 4 weeks. Two initiated groups received phenobarbital (PB) or 2-acetylaminofluorene (2-AAF) for 25 weeks and two noninitiated groups received only PB or 2-AAF. A nontreated group was used as control. Lymphohematopoietic organs, liver, kidneys, lung, intestines, and Zymbal's gland were removed for histological analysis. Interleukin (IL)-2, IL-12, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-10, and transforming growth factor beta1 (TGF-β1) levels were determined by ELISA in spleen cell culture supernatants. At the fourth week, exposure to the initiating carcinogens resulted in cell depletion of the thymus, spleen and bone marrow, and impairment of IL-2, IL-12, and IFN-γ production. However, at the 30th week, no important alterations were observed both in lymphoid organs and cytokine production in the different groups. The results indicate that the initiating carcinogens used in the present protocol exert toxic effects on the lymphoid organs and affect the production of cytokines at the initiation step of carcinogenesis. This early and reversible depression of the immune surveillance may contribute to the survival of initiated cells facilitating the development of future neoplasia

  20. The use of dose-response data in a margin of exposure approach to carcinogenic risk assessment for genotoxic chemicals in food.

    Science.gov (United States)

    Benford, Diane J

    2016-05-01

    Genotoxic substances are generally not permitted for deliberate use in food production. However, an appreciable number of known or suspected genotoxic substances occur unavoidably in food, e.g. from natural occurrence, environmental contamination and generation during cooking and processing. Over the past decade a margin of exposure (MOE) approach has increasingly been used in assessing the exposure to substances in food that are genotoxic and carcinogenic. The MOE is defined as a reference point on the dose-response curve (e.g. a benchmark dose lower confidences limit derived from a rodent carcinogenicity study) divided by the estimated human intake. A small MOE indicates a higher concern than a very large MOE. Whilst the MOE cannot be directly equated to risk, it supports prioritisation of substances for further research or for possible regulatory action, and provides a basis for communicating to the public. So far, the MOE approach has been confined to substances for which carcinogenicity data are available. In the absence of carcinogenicity data, evidence of genotoxicity is used only in hazard identification. The challenge to the genetic toxicology community is to develop approaches for characterising risk to human health based on data from genotoxicity studies. In order to achieve wide acceptance, it would be important to further address the issues that have been discussed in the context of dose-response modelling of carcinogenicity data in order to assign levels of concern to particular MOE values, and also whether it is possible to make generic conclusions on how potency in genotoxicity assays relates to carcinogenic potency. © Crown copyright 2015.

  1. A biological basis for the linear non-threshold dose-response relationship for low-level carcinogen exposure

    International Nuclear Information System (INIS)

    Albert, R.E.

    1981-01-01

    This chapter examines low-level dose-response relationships in terms of the two-stage mouse tumorigenesis model. Analyzes the feasibility of the linear non-threshold dose-response model which was first adopted for use in the assessment of cancer risks from ionizing radiation and more recently from chemical carcinogens. Finds that both the interaction of B(a)P with epidermal DNA of the mouse skin and the dose-response relationship for the initiation stage of mouse skin tumorigenesis showed a linear non-threshold dose-response relationship. Concludes that low level exposure to environmental carcinogens has a linear non-threshold dose-response relationship with the carcinogen acting as an initiator and the promoting action being supplied by the factors that are responsible for the background cancer rate in the target tissue

  2. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  3. Carcinogens, Teratogens and Mutagens: Their Impact on Occupational Health, Particularly for Women in Veterinary Medicine.

    Science.gov (United States)

    Milligan, J. E.; And Others

    1983-01-01

    Pregnant women, especially those working in veterinary medicine, face occupational health/disease risks from mutagens, teratogens, and carcinogens. These hazards can be placed into three categories: physical, chemical, and biological. Each of these hazards is discussed with examples. (Author/JN)

  4. Chemical pollution of environment in the cities of Central Siberia: risk for the health of the population

    Directory of Open Access Journals (Sweden)

    Ludmila Klimatskaya

    2015-03-01

    Full Text Available pollution in cities including the problem of risk assessment. The aim of the study is to determine carcinogenic and non-carcinogenic risks for the health of the population due to chemical contamination of air, water and food in the cities of the Krasnoyarsk region. Material and methods. The research was conducted in the Center of Hygiene and Epidemiology in the Krasnoyarsk region. 5122 samples of air, 4863 samples of water and 6915 samples of food stuff have been analyzed. Concentration of chemical substances was the base on which individual carcinogenesis risk (ICR and population carcinogenic conventional risks (PCCR and non carcinogenic risks [1] have been calculated. In the industrial cities chemical pollution of air, water and food stuff including carcinogenic substances creates carcinogenic and non-carcinogenic risks of morbidity of the population with the reinforcement of the complex impact, “with” which greatly exceeds the maximum acceptable risks. Results. Chemical pollution of environmental facilities in cities of the Krasnoyarsk region produce complex carcinogenic and non-carcinogenic risks which exceed maximum limit. The greatest shares in structure of complex carcinogenic risks are made in food stuff and water consumption in structure of complex non-carcinogenic risks as a result of air pollution and food stuff pollution. Conclusions. Obtained data could be used to set priorities in preventive measures to preserve health of the population in industrial cities of the Krasnoyarsk region.

  5. Results of the International Validation of the in vivo rodent alkaline comet assay for the detection of genotoxic carcinogens: Individual data for 1,2-dibromoethane, p-anisidine, and o-anthranilic acid in the 2nd step of the 4th phase Validation Study under the JaCVAM initiative.

    Science.gov (United States)

    Takasawa, Hironao; Takashima, Rie; Narumi, Kazunori; Kawasako, Kazufumi; Hattori, Akiko; Kawabata, Masayoshi; Hamada, Shuichi

    2015-07-01

    As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative International Validation Study of an in vivo rat alkaline comet assay, we examined 1,2-dibromoethane (DBE), p-anisidine (ASD), and o-anthranilic acid (ANT) to investigate the effectiveness of the comet assay in detecting genotoxic carcinogens. Each of the three test chemicals was administered to 5 male Sprague-Dawley rats per group by oral gavage at 48, 24, and 3h before specimen preparation. Single cells were collected from the liver and glandular stomach at 3h after the final dosing, and the specimens prepared from these two organs were subjected to electrophoresis under alkaline conditions (pH>13). The percentage of DNA intensity in the comet tail was then assessed using an image analysis system. A micronucleus (MN) assay was also conducted using these three test chemicals with the bone marrow (BM) cells collected from the same animals simultaneously used in the comet assay, i.e., combination study of the comet assay and BM MN assay. A genotoxic (Ames positive) rodent carcinogen, DBE gave a positive result in the comet assay in the present study, while a genotoxic (Ames positive) non-carcinogen, ASD and a non-genotoxic (Ames negative) non-carcinogen, ANT showed negative results in the comet assay. All three chemicals produced negative results in the BM MN assay. While the comet assay findings in the present study were consistent with those obtained from the rodent carcinogenicity studies for the three test chemicals, we consider the positive result in the comet assay for DBE to be particularly meaningful, given that this chemical produced a negative result in the BM MN assay. Therefore, the combination study of the comet assay and BM MN assay is a useful method to detect genotoxic carcinogens that are undetectable with the BM MN assay alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Elimination kinetic model for organic chemicals in earthworms.

    NARCIS (Netherlands)

    Dimitrova, N.; Dimitrov, S.; Georgieva, D.; van Gestel, C.A.M.; Hankard, P.; Spurgeon, D.J.; Li, H.; Mekenyan, O.

    2010-01-01

    Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of

  7. Electrophoretic mobility of PM2 DNA treated with ultimate chemical carcinogens or with ultraviolet light

    International Nuclear Information System (INIS)

    Thielmann, H.W.; Hecht, R.

    1980-01-01

    Superhelical DNA of the Pseudomonas phage PM2 was irradiated with UV-light or reacted with covalently binding carcinogens, such as 7-bromomethyl-benz[a]anthracene, (Ac) 2 ONFln, K-region epoxides, and alkylating agents. Migration velocity of the DNA products was determined using agarose gel electrophoresis. In gels of more than 1.3%-1.9% agarose, modified PM2 DNA exhibited a dose-(concentration-)dependent decrease of migration velocity. This phenomenon is probably due to a decrease in superhelix density which caused the compact DNA coil to assume eventually an open-circular conformation. Comparison of the extent of DNA modification with the decrease of migration velocity revealed that the superhelical structure sensitively reflected the chemical DNA alterations. DNA species exhibiting in 1.6% agarose gels, a migration velocity of up to 30% of that of control DNA showed an increase of velocity in 0.4% agarose. Therefore, in 1.3%-1.9% agarose gels, the decrease of superhelix density is accompanied by an increase of the frictional coefficient, whereas in 0.4%-0.9% agarose gels the same decrease of superhelix density apparently led to a higher degree of flexibility of the macromolecule and/or exposure of additional electric charges. (orig.) [de

  8. A call to expand regulation to all carcinogenic fibrous minerals

    Science.gov (United States)

    Baumann, F.; Steele, I.; Ambrosi, J.; Carbone, M.

    2013-05-01

    The regulatory term "asbestos" groups only the six fibrous minerals that were commercially used among approximately 400. The carcinogenicity of these six regulated minerals has been largely demonstrated and is related to fiber structure, fiber length/diameter ratio, and bio-persistence. From a public perception, the generic term "asbestos" refers to the fibrous minerals that cause asbestosis, mesothelioma and other cancers. However, other non-regulated fibrous minerals are potentially as dangerous as the regulatory asbestos because they share similar physical and chemical properties, epidemiological studies have demonstrated their relationship with asbestos-related diseases, and both in vitro and in vivo experiments have established the toxicity of these minerals. For example, the non-regulated asbestiform winchite and richterite minerals that contaminated the vermiculite mined from Libby, Montana, (USA) were associated with mesothelioma, lung cancer and asbestosis observed among the area's residents and miners. Many other examples of non-regulated carcinogenic fibrous minerals include, but are not limited to, antigorite, arfvedsonite, balangeroite, carlosturanite, erionite, fluoro-edenite, hornblende, mordenite, palygorskite, and sepiolite. To propose a regulatory definition that would provide protection from all carcinogenic fibers, we have conducted an interdisciplinary literature review to compare the characteristics of "asbestos" and of non-regulated mineral fibers that relate to carcinogenicity. We specifically studied two non-regulated fibrous minerals that are associated with asbestos-related diseases: the serpentine antigorite and the zeolite erionite. Both examples underscore the problem of regulation based on commercial, rather than scientific principles: 1) the occurrence of fibrous antigorite in materials used to pave roads has been correlated with high mesothelioma rates in New Caledonia. Antigorite was also the cause of asbestosis in Poland, and in

  9. Sorption of organic chemicals at biogeochemical interfaces - calorimetric measurements

    Science.gov (United States)

    Krüger, J.; Lang, F.; Siemens, J.; Kaupenjohann, M.

    2009-04-01

    Biogeochemical interfaces in soil act as sorbents for organic chemicals, thereby controlling the degradation and mobility of these substances in terrestrial environments. Physicochemical properties of the organic chemicals and the sorbent determine sorptive interactions. We hypothesize that the sorption of hydrophobic organic chemicals ("R-determined" chemicals) is an entropy-driven partitioning process between the bulk aqueous phase and biogeochemical interface and that the attachment of more polar organic chemicals ("F-determined" chemicals) to mineral surfaces is due to electrostatic interactions and ligand exchange involving functional groups. In order to determine thermodynamic parameters of sorbate/sorbent interactions calorimetric titration experiments have been conducted at 20˚ C using a Nanocalorimeter (TAM III, Thermometric). Solutions of different organic substances ("R-determined" chemicals: phenanthrene, bisphenol A, "F-determined" chemicals: MCPA, bentazone) with concentrations of 100 mol l-1 were added to suspensions of pure minerals (goethite, muscovite, and kaolinite and to polygalacturonic acid (PGA) as model substance for biofilms in soil. Specific surface, porosity, N and C content, particle size and point of zero charge of the mineral were analyzed to characterize the sorbents. The obtained heat quantities for the initial injection of the organic chemicals to the goethite were 55 and 71 J for bisphenol A and phenanthrene ("R-determined representatives") and 92 and 105 J for MCPA and bentazone ("F-determined" representatives). Further experiments with muscovite, kaolinite and PGA are in progress to determine G and H of the adsorption process.

  10. Repair of DNA treated with γ-irradiation and chemical carcinogens. Final report, June 1, 1981-May 31, 1984

    International Nuclear Information System (INIS)

    Goldthwait, D.A.

    1984-01-01

    Work done in the past three years has been on DNA repair, on genetic transposition and on the effect of carcinogens on alu sequence transcription. DNA repair work was completed on β-propiolactone DNA adducts, on procaryotic and eucaryotic enzymes capable of removal of 3-methyladenine from DNA, and on in vitro repair of neucleosomal core particle DNA and chromatin DNA. Attempts were made to isolate a human transposable element through the isolation of double stranded RNA and probing of a human library. Experiments were also done to determine whether carcinogens altered the expression of alu sequences in human DNA

  11. Correlation of initiating potency of skin carcinogens with potency to induce resistance to terminal differentiation in cultured mouse keratinocytes

    International Nuclear Information System (INIS)

    Kilkenny, A.E.; Morgan, D.; Spangler, E.F.; Yuspa, S.H.

    1985-01-01

    The induction by chemical carcinogens of resistance to terminal differentiation in cultured mouse keratinocytes has been proposed to represent a cellular change associated with the initiation phase of skin carcinogenesis. Previous results with this culture model indicated that the number of differentiation-resistant foci was correlated with the dose and known potency for several chemical carcinogens. Assay conditions were optimized to provide quantitative results for screening a variety of carcinogens for their potency as inducers of foci resistant to terminal differentiation. Eight skin initiators of varying potency and from different chemical classes and ultraviolet light were studied for their activity to induce this alteration in cultured epidermal cells from newborn BALB/c mice. There was an excellent positive correlation for the potency of these agents as initiators in vivo and as inducers of altered differentiation in vitro. The induction of resistant foci was independent of the relative cytotoxic effects of each agent except where cytotoxicity was extensive and reduced the number of foci. The results support the hypothesis that initiation of carcinogenesis in skin results in an alteration in the program of epidermal cell differentiation. The results also suggest that the assay is useful for identifying relative potency classes (strong, moderate, weak) of initiating agents

  12. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    International Nuclear Information System (INIS)

    Chen, Yuanhong; Huang, Changjiang; Bai, Chenglian; Du, Changchun; Liao, Junhua; Dong, Qiaoxiang

    2016-01-01

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl_2), benzo[a]pyrene (BaP), and

  13. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanhong [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Bai, Chenglian; Du, Changchun; Liao, Junhua [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035 (China)

    2016-01-25

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl{sub 2}), benzo[a]pyrene (BaP), and

  14. Methodology in use for the assessment of carcinogenic risk. II. Radiation. Oncology overview

    International Nuclear Information System (INIS)

    1983-04-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Assessment of carcinogenic risk from environmental and occupational exposures to ionizing radiation; Assessment of carcinogenic risk from exposure to ionizing radiation used for medical diagnosis or treatment; Assessment of carcinogenic risk from exposure to ionizing radiation following nuclear bomb explosions; Comparison of risk from radiation sources with risk from nonradiation sources; Experimental studies to assess risk of carcinogenesis following exposure to ionizing radiation; Theoretical aspects of dose-response relationships in the assessment of carcinogenic risk from exposure to ionizing radiation; Public policy and standards for acceptable risk from exposure to ionizing radiation; General reviews on the assessment of risk from exposure to ionizing radiation

  15. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Hung [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China); Chou, Pei-Hsin [Department of Environmental Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Chen, Pei-Jen, E-mail: chenpj@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China)

    2014-07-30

    Highlights: • We assess ecotoxicological impact of azole fungicides in the aquatic environment. • Carcinogenic and non-carcinogenic azoles show different CYP activities in medaka. • We compare azole-induced CYP expression and carcinogenesis between fish and rodents. • Liver CYP-enzyme induction is a key event in conazole-induced tumorigenesis. • We suggest toxicity evaluation methods for azole fungicides using medaka fish. - Abstract: Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish

  16. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish

    International Nuclear Information System (INIS)

    Lin, Chun-Hung; Chou, Pei-Hsin; Chen, Pei-Jen

    2014-01-01

    Highlights: • We assess ecotoxicological impact of azole fungicides in the aquatic environment. • Carcinogenic and non-carcinogenic azoles show different CYP activities in medaka. • We compare azole-induced CYP expression and carcinogenesis between fish and rodents. • Liver CYP-enzyme induction is a key event in conazole-induced tumorigenesis. • We suggest toxicity evaluation methods for azole fungicides using medaka fish. - Abstract: Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish

  17. Radiation, chemicals and combined effects

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1991-01-01

    A brief background has been provided on current carcinogenic risks from ionizing radiation and their magnitude in background circumstances. The magnitude of the risks from possibly carcinogenic chemicals at background levels in air, water and food are surprisingly similar. The exception is, perhaps, for the single source of radon which, while variable, on the average stands out above all other sources. Some basic principles concerning the interaction of combined radiation and chemicals and some practical examples where the two interact synergistically to enhance radiation effects has also been provided. Areas for human research in the future are discussed. (Author)

  18. Chemistry of mutagens and carcinogens in broiled food.

    Science.gov (United States)

    Nishimura, S

    1986-01-01

    From a chemical point of view, the following subjects are important areas in studies on mutagens and carcinogens in broiled foods. In addition to heterocyclic amines which need microsomal activation, the structural elucidation of more labile direct-acting mutagens is necessary. It is known that there are still various unknown minor mutagens in broiled foods. Although the structural characterization of such compounds is more difficult, it is important since they might be hazardous in spite of their low mutagenicity. A more feasible and easier method for quantitative analysis of mutagens, in addition to HPLC and GC/MS methods presently employed, must be developed. The mechanism of formation of mutagens by broiling of food should be studied. An effective chemical method to prevent formation of mutagens or to destroy them, once formed, should be developed. PMID:3757944

  19. Carcinogenicity/tumour promotion by NDL PCB

    Energy Technology Data Exchange (ETDEWEB)

    Schrenk, D. [Kaiserslautern Univ. (Germany). Food Chemistry and Environmental Toxicology

    2004-09-15

    Polychlorinated biphenyls (PCBs) belong to the group of persistent environmental pollutants exhibiting neurotoxic, teratogenic and tumour-promoting effects in experimental animal models. PCB congeners can be divided into 'dioxinlike' and 'non-dioxinlike' congeners on the basis of their ability to act as aryl hydrocarbon receptor (AhR) agonists. Like the most toxic dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 'dioxinlike' PCBs bind to the AhR and show characteristic effects on the expression of AhR-regulated genes including the induction of cytochrome P450 (CYP) 1A1. On the other hand, 'non-dioxinlike' PCB congeners have a lower or no binding affinity to the AhR, but exhibit a 'phenobarbital-type' induction of CYP 2B1/2 activity. A carcinogenic potential of PCBs has been demonstrated with technical mixtures such as Aroclors or Clophens. In these studies the liver and the thyroid gland were found to be the principal target organs of PCB-mediated carcinogenesis in rodents. No studies have been published, however, on the carcinogenicity of individual congeners. In two-stage initiation-promotion protocols in rats, both technical mixtures and individual 'dioxinlike' and 'non-dioxinlike' congeners were reported to act as liver tumour promoters.

  20. Search for Internal Cancers in Mice Tattooed with Inks of High Contents of Potential Carcinogens

    DEFF Research Database (Denmark)

    Sepehri, Mitra; Lerche, Catharina M; Hutton Carlsen, Katrina

    2017-01-01

    on the Danish market due to the measured contents of potential carcinogens; benzo(a)pyrene and 2-anisidine, respectively. The mice were housed for 1 year after tattooing, and autopsy study on internal organs was performed. Tissue samples were systematically taken from major organs for screening of subclinical...

  1. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, Fatih; Hicyilmaz, Hicran [Suleyman Demirel University, School of Medicine, Department of Biochemistry, Isparta (Turkey)

    2007-10-15

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. (orig.)

  2. Evaluation of carcinogenic risk to public health of the republic of Khakassia associated with consumption of drinking water

    Directory of Open Access Journals (Sweden)

    E.A. Pivovarov

    2016-09-01

    Full Text Available During the observation period for 2011–2015 in the Republic of Khakassia it has been revealed that 63.2 % of samples of drinking water contain the excess of А α due to natural radionuclides 234 U, 238 U. Within the limits of MPC the carcinogenic hazardous substances: cadmium, lead, arsenic, beryllium, chromium have been detected. Individual risks of occurrence of stochastic effects in the form of malignant tumors, caused by natural radionuclides in drinking water in different administrative territories of the Republic, vary in the range of 3.14–7.81•10 –6 cases/year; collective risks 0.013–0.288 cases/year on the corresponding amount of population. Individual cancer risks are determined by the content of carcinogenic chemicals in drinking water, in different administrative territories of the Republic it varies in the range between 5.29•10 –5 – 1.04•10 –4 cases/year; collective risks of 0.88–2.704 event/year on the corresponding amount of population. The total population carcinogenic risks caused by content of carcinogenic chemicals and PRN in drinking water, for the period of observation were as follows: Altaisky (2.903 at 26.000 of population, Beysky (1.123 at 18.500 of population, Bogradsky (0,98 at 15,000 of population, Shirinsky (2.63 at 27100 of population, Ordzhonikidzevsky (1.178 at 11900 of population, and Ust-Abakansky (2.79 at 41100 of population. The contribution of drinking water into primary ontological morbidity of population in administrative territories of the Republic was equaled to 0.5–1 %. Therefore, currently, the events aimed at reducing the carcinogenic risks caused by drinking water are not required. At the same time, due to the high seismic activity in the Republic for the last five years, the laboratory monitoring of drinking water on indicators of radiation safety and the evaluation of the carcinogenic risks continues in the prescribed amount.

  3. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    Science.gov (United States)

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application

  4. Non-genotoxic carcinogens: early effects on gap junctions, cell proliferation and apoptosis in the rat

    International Nuclear Information System (INIS)

    Mally, Angela; Chipman, James Kevin

    2002-01-01

    Non-genotoxic carcinogens are thought to induce tumour formation by disturbing the balance between cell growth and cell death. Gap junctions (GJ) contribute to the maintenance of tissue homeostasis by allowing the intercellular exchange of growth regulatory signals and potential inhibition of GJ intercellular communication through loss of connexin (Cx) plaques has been shown to be involved in the cancer process. We have investigated the time- and dose-dependent effects of the non-genotoxic hepatocarcinogens Wy-14,643, 2,3,7,8-tetrachlorodibenzo-p-dioxin, methapyrilene and hexachlorobenzene and the male rat kidney carcinogens chloroform, p-dichlorobenzene and d-limonene on gap junction plaque expression in relation to proliferation and apoptosis. With the exception of limonene, all non-genotoxic carcinogens significantly reduced the expression of GJ plaques containing Cx32 in their respective target tissue. No dose-dependent, significant effects were seen in non-target organs. Although alteration of Cx32 expression did not appear to correlate with induction of cell proliferation, out data suggest that the interaction of both processes--interference of GJ coupled with a proliferative stimulus (at the carcinogenic dose)--may be important in non-genotoxic carcinogenesis and provide a potential alert for non-genotoxic carcinogens in short-term toxicity tests

  5. Concentrations of environmental organic contaminants in meat and meat products and human dietary exposure: A review.

    Science.gov (United States)

    Domingo, José L

    2017-09-01

    Meat and meat products is one of the most relevant food groups in an important number of human diets. Recently, the IARC, based on results of a number of epidemiological studies, classified the consumptions of red meat and processed meat as "probably carcinogenic to humans" and as "carcinogenic to humans", respectively. It was suggested that the substances responsible of the potential carcinogenicity would be mainly generated during meat processing, such as curing and smoking, or when meat is heated at high temperatures. However, the exposure to environmental pollutants through meat consumption was not discussed. The purpose of the present paper was to review recent studies reporting the concentrations of PCDD/Fs, DL-PCBs and PAHs in meat and meat products, as well as the human exposure to these pollutants through the diet. It is concluded that the health risks derived from exposure to carcinogenic environmental contaminants must be considered in the context of each specific diet, which besides meat and meat products, includes other foodstuffs containing also chemical pollutants, some of them with carcinogenic potential. Anyhow, meat and meat products are not the main food group responsible of the dietary exposure to carcinogenic (or probably carcinogenic) environmental organic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Site-specific induction of nuclear anomalies (apoptotic bodies and micronuclei) by carcinogens in mice

    International Nuclear Information System (INIS)

    Ronen, A.; Heddle, J.A.

    1984-01-01

    The usefulness of nuclear anomalies (NA) as a short-term test for indication of carcinogens in the mouse colon has been suggested previously by experiments in which colon-specific carcinogens induced NA in the colon, whereas non-colon carcinogens were, in general, impotent in that organ. We have extended this work to other sites in the digestive tract of female C57BL/6 mice treated with gamma-rays, 1,2-dimethylhydrazine dihydrochloride, or N-methylnitrosourea. Each agent induced NA at all of the sites examined. The frequency of NA at different times after treatment depended upon both the agent used and the site examined. 1,2-Dimethylhydrazine dihydrochloride (which is known to induce tumors predominantly in the colon) induces NA with the highest efficiency (relative to gamma-rays) in the descending colon. N-Methylnitrosourea (which induces tumors mainly in the forestomach) induces NA with the highest efficiency in the forestomach. These results further support the usefulness of the assay in that the frequency of NA produced at the various sites by 1,2-dimethylhydrazine dihydrochloride and N-methylnitrosourea correlates with that found in the carcinogenicity studies

  7. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    International Nuclear Information System (INIS)

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of [3H]thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone, tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity

  8. Chromium carcinogenicity: California strategies.

    Science.gov (United States)

    Alexeeff, G V; Satin, K; Painter, P; Zeise, L; Popejoy, C; Murchison, G

    1989-10-01

    Hexavalent chromium was identified by California as a toxic air contaminant (TAC) in January 1986. The California Department of Health Services (CDHS) concurred with the findings of the International Agency for Research on Cancer that there is sufficient evidence to demonstrate the carcinogenicity of chromium in both animals and humans. CDHS did not find any compelling evidence demonstrating the existence of a threshold with respect to chromium carcinogenesis. Experimental data was judged inadequate to assess potential human reproductive risks from ambient exposures. Other health effects were not expected to occur at ambient levels. The theoretically increased lifetime carcinogenic risk from a continuous lifetime exposure to hexavalent chromium fell within the range 12-146 cancer cases per nanogram hexavalent chromium per cubic meter of air per million people exposed, depending on the potency estimate used. The primary sources found to contribute significantly to the risk of exposure were chrome platers, chromic acid anodizing facilities and cooling towers utilizing hexavalent chromium as a corrosion inhibitor. Evaluation of genotoxicity data, animal studies and epidemiological studies indicates that further consideration should be given to the potential carcinogenicity of hexavalent chromium via the oral route.

  9. Predicting degradability of organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Finizio, A; Vighi, M [Milan Univ. (Italy). Ist. di Entomologia Agraria

    1992-05-01

    Degradability, particularly biodegradability, is one of the most important factors governing the persistence of pollutants in the environment and consequently influencing their behavior and toxicity in aquatic and terrestrial ecosystems. The need for reliable persistence data in order to assess the environmental fate and hazard of chemicals by means of predictive approaches, is evident. Biodegradability tests are requested by the EEC directive on new chemicals. Neverthless, degradation tests are not easy to carry out and data on existing chemicals are very scarce. Therefore, assessing the fate of chemicals in the environment from the simple study of their structure would be a useful tool. Rates of degradation are a function of the rates of a series of processes. Correlation between degradation rates and structural parameters are will be facilitated if one of the processes is rate determining. This review is a survey of studies dealing with relationships between structure and biodegradation of organic chemicals, to identify the value and limitations of this approach.

  10. QSAR screening of 70,983 REACH substances for genotoxic carcinogenicity, mutagenicity and developmental toxicity in the ChemScreen project

    DEFF Research Database (Denmark)

    Wedebye, Eva Bay; Dybdahl, Marianne; Nikolov, Nikolai Georgiev

    2015-01-01

    The ChemScreen project aimed to develop a screening system for reproductive toxicity based on alternative methods. QSARs can, if adequate, contribute to the evaluation of chemical substances under REACH and may in some cases be applied instead of experimental testing to fill data gaps...... for information requirements. As no testing for reproductive effects should be performed in REACH on known genotoxic carcinogens or germ cell mutagens with appropriate risk management measures implemented, a QSAR pre-screen for 70,983 REACH substances was performed. Sixteen models and three decision algorithms...... were used to reach overall predictions of substances with potential effects with the following result: 6.5% genotoxic carcinogens, 16.3% mutagens, 11.5% developmental toxicants. These results are similar to findings in earlier QSAR and experimental studies of chemical inventories, and illustrate how...

  11. Environmental exposure to carcinogens in northwestern Cameroon ...

    African Journals Online (AJOL)

    African Health Sciences ... Humans can prevent themselves from a number of workplace and environmental carcinogens. ... Methods: A structured questionnaire was used to collect information on carcinogen exposure in the workplace and environment through trained field staff from volunteers after gaining informed ...

  12. Biological effects of radiation and chemical agents with special regard to repair processes

    International Nuclear Information System (INIS)

    Altmann, H.; Wottawa, A.

    1980-01-01

    It is reasonably certain that the introduction or increase of pollutants in the environment can augment mutagenic and carcinogenic effects. These effects are operationally definable, but the genetic organization and the underlying mechanisms of DNA repair, mutagenesis and carcinogenesis are so complex as to make the extrapolation of results from mutagenicity test data to carcinogenicity somewhat uncertain. The subject is reviewed. Recent discoveries in gene organization and expression include overlapping genes in bacteriophages, split genes, processing of RNA and splicing, translocation of genes in eukaryotes, inactivation of the X-chromosome in mammals, etc. Apart from the genetic regulation, plasmids, insertion sequences and mutators can additionally affect mutation frequency. Cancers due to gene mutations, viruses, chemicals and physical agents are known. However, little is known about the epigenetic mechanisms involved. The value of mutagenicity test data is beyond question, but in view of the extraordinary complexities encountered our extrapolations will be more sound if the data have the underpinning of basic information. (author)

  13. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  14. Varied exposure to carcinogenic, mutagenic, and reprotoxic (CMR) chemicals in occupational settings in France

    Energy Technology Data Exchange (ETDEWEB)

    Havet, Nathalie [Univ. Claude Bernard Lyon 1 (France). Lab. SAF; Penot, Alexis [Lyon Univ. (France). ENS Lyon, GATE-UMR 5824-CNRS; Morelle, Magali; Perrier, Lionel [Lyon Univ. (France). Direction de la Recherche Clinique et de l' Innovation; Charbotel, Barbara [Univ. Claude Bernard Lyon 1 (France). Centre Hospitalier Lyon Sud Service des Maladies Professionnelles; Fervers, Beatrice [Lyon Univ. (France). Dept. Cancer and Environment

    2017-02-15

    To explore varied exposure to carcinogenic, mutagenic, and reprotoxic chemicals (CMR) for French employees. Our study assessed data from the French national cross-sectional survey of occupational risks (SUMER) that was conducted in 2010 in a national representative sample of employees. We selected 28 CMR agents that were classified by the International Agency for Research on Cancer or European Union as being known or presumed to have CMR potential in humans. The association of individual and job characteristics with exposure prevalence, duration, and intensity of the CMR agents during a 1-week period was examined using multilevel logistic regression analysis. Overall, 10.4% of employees in 2010 were exposed to one or more CMR agents at their workplace, and 3.4% were subjected to multiple CMR exposures. Blue-collar workers, night-shift workers and workers with short-term employment contracts experienced higher exposure prevalence (p < 0.01) and intensity (p < 0.05). Bluecollar workers and shift workers experienced also longer exposure duration (p < 0.001). Conversely, managers, workers of large companies, and women were less exposed to CMR agents (p < 0.001). The presence of a Committee for Health, Safety, and Working Conditions, and intervention by Occupational Health and Safety officers were significantly associated with reduced exposure intensities (p < 0.001 and p < 0.05). Establishment of European CMR regulations and the existence of an applicable substitution principle reduced the exposure duration (p < 0.001) and intensity (p < 0.05). Our results point out disparities in CMR exposure and identify high-priority targets for prevention measures to help reducing social health discrepancies.

  15. Varied exposure to carcinogenic, mutagenic, and reprotoxic (CMR) chemicals in occupational settings in France

    International Nuclear Information System (INIS)

    Havet, Nathalie; Penot, Alexis; Morelle, Magali; Perrier, Lionel; Charbotel, Barbara; Fervers, Beatrice

    2017-01-01

    To explore varied exposure to carcinogenic, mutagenic, and reprotoxic chemicals (CMR) for French employees. Our study assessed data from the French national cross-sectional survey of occupational risks (SUMER) that was conducted in 2010 in a national representative sample of employees. We selected 28 CMR agents that were classified by the International Agency for Research on Cancer or European Union as being known or presumed to have CMR potential in humans. The association of individual and job characteristics with exposure prevalence, duration, and intensity of the CMR agents during a 1-week period was examined using multilevel logistic regression analysis. Overall, 10.4% of employees in 2010 were exposed to one or more CMR agents at their workplace, and 3.4% were subjected to multiple CMR exposures. Blue-collar workers, night-shift workers and workers with short-term employment contracts experienced higher exposure prevalence (p < 0.01) and intensity (p < 0.05). Bluecollar workers and shift workers experienced also longer exposure duration (p < 0.001). Conversely, managers, workers of large companies, and women were less exposed to CMR agents (p < 0.001). The presence of a Committee for Health, Safety, and Working Conditions, and intervention by Occupational Health and Safety officers were significantly associated with reduced exposure intensities (p < 0.001 and p < 0.05). Establishment of European CMR regulations and the existence of an applicable substitution principle reduced the exposure duration (p < 0.001) and intensity (p < 0.05). Our results point out disparities in CMR exposure and identify high-priority targets for prevention measures to help reducing social health discrepancies.

  16. Ovarian toxicity and carcinogenicity in eight recent national toxicology program studies

    Energy Technology Data Exchange (ETDEWEB)

    Maronpot, R.R.

    1987-08-01

    Ovarian toxicity and/or carcinogenicity has been documented for at least eight chemicals recently tested in National Toxicity Program prechronic and chronic rodent studies. The chemicals that yielded treatment-related ovarian lesions were 1,3-butadiene, 4-vinylcyclohexene, vinylcylohexene deipoxide, nitrofurantoin, nitrofurazone, benzene, ..delta..-9-tetrahydrocannabinol, and tricresylphosphate. Typical nonneoplastic ovarian changes included hypoplasia, atrophy, follicular necrosis, and tubular hyperplasia. The most commonly observed treatment-related neoplasms were granulosa cell tumors and benign mixed tumors. A relationship between antecedent ovarian hypoplasia, atrophy, and hyperplasia and subsequent ovarian neoplasia is supported by some of these National Toxicology Program studies. Pathologic changes in other tissues such as the adrenal glands and uterus were associated with the treatment-related ovarian changes.

  17. DNA repair synthesis in rat retinal ganglion cells treated with chemical carcinogens or ultraviolet light in vitro, with special reference to aging and repair level

    International Nuclear Information System (INIS)

    Ishikawa, T.; Takayama, S.; Kitagawa, T.

    1978-01-01

    A system in which the retinal tissues of noninbred Wistar rats were used in combination with autoradiography was developed for measurement of DNA repair synthesis in ganglion cells of the central nervous system. Retinal tissues in short-term organ culture were treated with various carcinogens plus tritiated thymidine ([methyl -3 H]dThd) or were irradiated with uv light and then treated with [methyl -3 H]dThd. Preliminary study with retinal tissues from rats at various ages revealed no age-associated changes in the levels of unscheduled DNA synthesis in ganglion cells

  18. Immunologic methods for monitoring carcinogen exposure

    Science.gov (United States)

    Santella, Regina M.; Perera, Frederica P.; Zhang, Yu J.; Chen, Chen J.; Young, Tie L.

    1993-03-01

    Immunologic methods have been developed for monitoring human exposure to environmental and occupational carcinogens. These methods involve the development of monoclonal and polyclonal antisera which specifically recognize the carcinogens themselves or their DNA or protein adducts. Antisera recognizing the DNA adducts of several polycyclic aromatic hydrocarbon diol epoxides have been used in competitive enzyme-linked immunosorbent assays to monitor adducts in tissue or blood samples. Elevated levels of DNA adducts have been seen in mononuclear cells of smokers and in total white blood cells of foundry and coke oven workers. Environmental exposure to PAH has been measured in individuals living in a highly polluted region of Poland. Antisera recognizing PAH-DNA adducts have also been used in immunohistochemical studies to monitor adducts in specific cells of biopsy samples. The DNA adducts of aflatoxin B1 have been monitored in liver tissue of hepatocellular carcinoma patients in Taiwan. Detectable adducts were seen in 50 - 70% of the patients suggesting that dietary exposure to this carcinogen may be a risk factor for cancer induction. Thus, immunoassays for monitoring exposure to carcinogens are an important tool in epidemiologic studies.

  19. Malignant transformation in vitro: criteria, biological markers, and application in environmental screening of carcinogens

    International Nuclear Information System (INIS)

    Borek, C.

    1979-01-01

    Biological markers which distinguish malignantly transformed fibroblasts from their normal counterpart include pleomorphic morphology, lowered requirement for nutritional factors, loss of density inhibition of growth, complex topography as discernible by scanning electron microscopy, loss in surface proteins, incomplete glycosylation of membrane glycolylipids and glycoproteins, increased production of specific proteases, decreased organization of the cytoskeleton, and acquisition of neoantigens. Several of these markers are not consistently found in transformed epithelial cells and therefore cannot serve to distinguish unequivocally neoplastic epithelial cells from the normal counterparts. The only criteria associated with the transformed nature of both fibroblasts and epithelial cells are the ability of the cells to proliferate in semisolid medium and to induce tumors in appropriate hosts. In vitro systems represent a powerful tool for screening the mutagenic/oncogenic potential of physical, chemical, and environmental agents. Fibroblasts rather than epithelial cells are preferred for this purpose at the present time because of the clear-cut phenotypic differences between the normal and the transformed cells. These systems have been useful in establishing that malignant transformation can be induced by doses as low as 1 rad of X rays or 0.1 rad of neutrons, and that fractionation at low dose levelsleads to enhanced transformation. They have been useful in identifying a large number of hazardous chemicals and in evaluating the relationship between the mutagenic and carcinogenic potential of radiation and chemicals

  20. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  1. Identifying occupational carcinogens: an update from the IARC Monographs.

    Science.gov (United States)

    Loomis, Dana; Guha, Neela; Hall, Amy L; Straif, Kurt

    2018-05-16

    The recognition of occupational carcinogens is important for primary prevention, compensation and surveillance of exposed workers, as well as identifying causes of cancer in the general population. This study updates previously published lists of known occupational carcinogens while providing additional information on cancer type, exposure scenarios and routes, and discussing trends in the identification of carcinogens over time. Data were extracted from International Agency for Research on Cancer (IARC) Monographs covering the years 1971-2017, using specific criteria to ensure occupational relevance and provide high confidence in the causality of observed exposure-disease associations. Selected agents were substances, mixtures or types of radiation classified in IARC Group 1 with 'sufficient evidence of carcinogenicity' in humans from studies of exposed workers and evidence of occupational exposure documented in the pertinent monograph. The number of known occupational carcinogens has increased over time: 47 agents were identified as known occupational carcinogens in 2017 compared with 28 in 2004. These estimates are conservative and likely underestimate the number of carcinogenic agents present in workplaces. Exposure to these agents causes a wide range of cancers; cancers of the lung and other respiratory sites, followed by skin, account for the largest proportion. The dominant routes of exposure are inhalation and dermal contact. Important progress has been made in identifying occupational carcinogens; nevertheless, there is an ongoing need for research on the causes of work-related cancer. Most workplace exposures have not been evaluated for their carcinogenic potential due to inadequate epidemiologic evidence and a paucity of quantitative exposure data. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis.

    Science.gov (United States)

    Hu, Zhiwei; Brooks, Samira A; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Prudhomme, Kalan R; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Lowe, Leroy; Jensen, Lasse; Bisson, William H; Kleinstreuer, Nicole

    2015-06-01

    One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Intrinsic denervation of the colon is associated with a decrease of some colonic preneoplastic markers in rats treated with a chemical carcinogen

    Directory of Open Access Journals (Sweden)

    M.V.O. Vespúcio

    2008-04-01

    Full Text Available Denervation of the colon is protective against the colon cancer; however, the mechanisms involved are unknown. We tested the hypothesis that the denervated colonic mucosa could be less responsive to the action of the chemical carcinogen dimethylhydrazine (DMH. Three groups of 32 male Wistar rats were treated as follows: group 1 (G1 had the colon denervated with 0.3 mL 1.5 mM benzyldimethyltetradecylammonium (benzalkonium chloride, BAC; G2 received a single ip injection of 125 mg/kg DMH; G3 was treated with BAC + the same dose and route of DMH. A control group (Sham, N = 32 did not receive any treatment. Each group was subdivided into four groups according to the sacrifice time (1, 2, 6, and 12 weeks after DMH. Crypt fission index, ß-catenin accumulated crypts, aberrant crypt foci, and cell proliferation were evaluated and analyzed by ANOVA and the Student t-test. G3 animals presented a small number of aberrant crypt foci and low crypt fission index compared to G2 animals after 2 and 12 weeks, respectively. From the second week on, the index of ß-catenin crypt in G3 animals increased slower than in G2 animals. From the 12th week on, G2 animals presented a significant increase in cell proliferation when compared to the other groups. Colonic denervation plays an anticarcinogenic role from early stages of colon cancer development. This finding can be of importance for the study of the role of the enteric nervous system in the carcinogenic process.

  4. Chemical and radioactive carcinogens in cigarettes: associated health impacts and responses of the tobacco industry, U.S. Congress, and federal regulatory agencies.

    Science.gov (United States)

    Moeller, Dade W; Sun, Lin-Shen C

    2010-11-01

    ²¹⁰Po and ²¹⁰Pb were discovered in tobacco in 1964. This was followed by detailed assessments of the nature of their deposition, and accompanying dose rates to the lungs of cigarette smokers. Subsequent studies revealed: (1) the sources and pathways through which they gain access to tobacco; (2) the mechanisms through which they preferentially deposit in key segments of the bronchial epithelium; and (3) the fact that the accompanying alpha radiation plays a synergistic role in combination with the chemical carcinogens, to increase the fatal cancer risk coefficient in cigarette smokers by a factor of 8 to 25. Nonetheless, it was not until 2009 that Congress mandated that the Food and Drug Administration require that the cigarette industry reveal the presence of these carcinogens. In the meantime, cigarette smoking has become not only the number one source of cancer deaths in the United States, but also a major contributor to heart disease and other health impacts. If the latter effects are included, smoking is estimated to have caused an average of 443,000 deaths and 5.1 million years of potential life lost among the U.S. population each year from 2000 through 2004. The estimated associated collective dose is more than 36 times that to the workers at all the U.S. nuclear power plants, U.S. Department of Energy nuclear weapons facilities, and crews of all the vessels in the U.S. Nuclear Navy. This unnecessary source of lung cancer deaths demands the utmost attention of the radiation protection and public health professions.

  5. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers.

    Science.gov (United States)

    Efferth, Thomas; Volm, Manfred

    2017-07-01

    The detoxification of toxic substances is of general relevance in all biological systems. The plethora of exogenous xenobiotic compounds and endogenous toxic metabolic products explains the evolutionary pressure of all organisms to develop molecular mechanisms to detoxify and excrete harmful substances from the body. P-glycoprotein and other members of the ATP-binding cassette (ABC) transporter family extrude innumerous chemical compounds out of cells. Their specific expression in diverse biological contexts cause different phenotypes: (1) multidrug resistance (MDR) and thus failure of cancer chemotherapy, (2) avoidance of accumulation of carcinogens and prevention of carcinogenesis in healthy tissues, (3) absorption, distribution, metabolization and excretion (ADME) of pharmacological drugs in human patients, (4) protection from environmental toxins in aquatic organisms (multi-xenobiotic resistance, MXR). Hence ABC-transporters may have opposing effects for organismic health reaching from harmful in MDR of tumors to beneficial for maintenance of health in MXR. While their inhibition by specific inhibitors may improve treatment success in oncology and avoid carcinogenesis, blocking of ABC-transporter-driven efflux by environmental pollutants leads to ecotoxicological consequences in marine biotopes. Poisoned seafood may enter the food-chain and cause intoxications in human beings. As exemplified with ABC-transporters, joining forces in interdisciplinary research may, therefore, be a wise strategy to fight problems in human medicine and environmental sciences.

  6. Changes of 67Ga-citrate accumulation in the rat liver during feeding with chemical carcinogen 3'-Methyl-4-dimethylaminoazobenzene

    International Nuclear Information System (INIS)

    Sasaki, Toru; Kojima, Shuji; Kubodera, Akiko.

    1982-01-01

    The changes of 67 Ga-citrate( 67 Ga) in the rat liver during feeding with chemical carcinogen 3'-methyl- 4-dimethylaminoazobenzene (3'-Me-DAB) were studied for 20 weeks. The results were shown as follows: Elevated 67 Ga accumulation in the rat liver was first observed at 3rd week after the start of 3'-Me-DAB feeding. There was decrease from the 3-week level at about the 6th week, followed by a sustained increase. The accumulation of 67 Ga in the gram liver at 20th week was about 2.3 times higher than that of the control. There was close correlation between the 67 Ga accumulation pattern and the patterns of the hepatic #betta#-glutamyltranspeptidase and glucose-6-phosphate dehydrogenase activities at l ate stages during hepatocarcinogenesis. In subcellular distribution of 67 Ga, remarkable changes were seen in 800 x g fraction. Grom these studies, it is suggested that 67 Ga may bind with components in 800 x g fraction, concerned with one pathological changes induced by 3'-Me-DAB. (author)

  7. Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage.

    Science.gov (United States)

    Farmer, Peter B; Singh, Rajinder; Kaur, Balvinder; Sram, Radim J; Binkova, Blanka; Kalina, Ivan; Popov, Todor A; Garte, Seymour; Taioli, Emanuela; Gabelova, Alena; Cebulska-Wasilewska, Antonina

    2003-11-01

    Exposure to high levels of environmental air pollution is known to be associated with an increased carcinogenic risk. The individual contribution to this risk derived from specific carcinogenic chemicals within the complex mixture of air pollution is less certain, but may be explored by the use of molecular epidemiological techniques. Measurements of biomarkers of exposure, of effect and of susceptibility provide information of potential benefit for epidemiological and cancer risk assessment. The application of such techniques has been mostly concerned in the past with the carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) that are associated with particulate matter in air pollution, and has showed clear evidence of genotoxic effects, such as DNA adducts, chromosome aberrations (CA) and ras oncogene overexpression, in environmentally exposed Czech and Polish populations. We are currently extending these studies by an investigation of populations exposed to environmental pollution in three European countries, Czech Republic, Slovak Republic and Bulgaria. This pays particular attention to PAHs, but also investigates the extent of radically induced (oxidative) DNA damage in the exposed populations. Policemen, bus drivers and controls, who carried personal monitors to determine their exposures to PAHs have been studied, and blood and urine were collected. Antioxidant and dietary status were assessed in these populations. Stationary monitors were also used for ambient air monitoring. Amongst the parameters studied in the biological samples were: (a) exposure biomarkers, such as PAH adducts with DNA, p53 and p21(WAF1) protein levels, (b) oxidative DNA damage, (c) the biological effect of the exposure by measurement of chromosome damage by fluorescence in situ hybridisation (FISH) or conventional methods, and (d) polymorphisms in carcinogen metabolising and DNA repair enzymes. Repair ability was also measured by the Comet assay. In vitro systems are being evaluated to

  8. Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics.

    Science.gov (United States)

    Vanparys, Philippe; Corvi, Raffaella; Aardema, Marilyn J; Gribaldo, Laura; Hayashi, Makoto; Hoffmann, Sebastian; Schechtman, Leonard

    2012-04-11

    Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Enhanced chemical sensing organic thin-film transistors

    Science.gov (United States)

    Tanese, M. C.; Torsi, L.; Farinola, G. M.; Valli, L.; Hassan Omar, O.; Giancane, G.; Ieva, E.; Babudri, F.; Palmisano, F.; Naso, F.; Zambonin, P. G.

    2007-09-01

    Organic thin film transistor (OTFT) sensors are capable of fast, sensitive and reliable detection of a variety of analytes. They have been successfully tested towards many chemical and biological "odor" molecules showing high selectivity, and displaying the additional advantage of being compatible with plastic technologies. Their versatility is based on the possibility to control the device properties, from molecular design up to device architecture. Here phenylene-thiophene based organic semiconductors functionalized with ad hoc chosen side groups are used as active layers in sensing OTFTs. These materials, indeed, combine the detection capability of organic molecules (particularly in the case of bio-substituted systems) with the electronic properties of the conjugated backbone. A new OTFT structure including Langmuir-Schäfer layer by layer organic thin films is here proposed to perform chemical detection of organic vapors, including vapor phase chiral molecules such as citronellol vapors, with a detection limit in the ppm range. Thermally evaporated α6T based OTFT sensors are used as well to be employed as standard system in order to compare sensors performances.

  10. Removal of trace organic chemical contaminants by a membrane bioreactor.

    Science.gov (United States)

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  11. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models.

    Science.gov (United States)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Destruction of carcinogenic and mutagenic N-nitrosamides in laboratory wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lunn, G.; Sansone, E.B.; Andrews, A.W.; Castegnaro, M.; Malaveille, C.; Michelon, J.; Brouet, I.; Keefer, L.K.

    1984-01-01

    The chemical degradation of five N-nitrosamides used widely for the experimental induction of cancer has been studied with the goal of identifying, and experimentally validating, reliable methods that can be recommended for the destruction of carcinogenic N-nitrosoureas and related compounds in laboratory wastes. Although data are not yet complete, preliminary evidence indicates that none of the five methods studied thus far is ideal for hazard-control purposes. Decomposition with 1 mol/L potassium hydroxide solution destroyed the N-nitrosamides, but generated diazoalkanes, which are carcinogenic, toxic and potentially explosive. Treatment with strong acid in the presence of sulfamic acid or iron filings completely decomposed all N-nitrosamides without forming diazoalkanes, but failed in the presence of solvents which were immiscible with water. Cleavage with hydrogen bromide in glacial acetic acid proceeded to a point of maximum degradation, following which gradual reformation of the N-nitrosamide was observed. Permanganate oxidation was effective in sulfuric acid solution, but was incomplete when an alcohol or dimethyl sulfoxide was present. Salmonella typhimurium tester strains TA1535, TA1530 and TA100, detected mutagenic degradation products in each of the destruction methods, with the exception of the hydrobromic acid/acetic acid procedure.

  13. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    Science.gov (United States)

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  14. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    Science.gov (United States)

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biology Today. Thinking Chemically about Biology.

    Science.gov (United States)

    Flannery, Maura C.

    1990-01-01

    Discussed are applications of biochemistry. Included are designed drugs, clever drugs, carcinogenic structures, sugary wine, caged chemicals, biomaterials, marine chemistry, biopolymers, prospecting bacteria, and plant chemistry. (CW)

  16. Chemical Carcinogenesis Research Information System (CCRIS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CCRIS database contains chemical records with carcinogenicity, mutagenicity, tumor promotion, and tumor inhibition test results. CCRIS provides historical...

  17. Mutagenicity of chemicals in genetically modified animals

    NARCIS (Netherlands)

    Willems MI; van Benthem J; LEO

    2001-01-01

    The strategy for assessing human health risks of chemicals consists of a large number of tests in different research disciplines. Tests include acute and chronic toxicity, genotoxicity, reproduction toxicity and carcinogenicity. Genotoxic properties of chemicals are assessed in short-term in vitro

  18. [Assessment of non-carcinogenic risk for the health of the child population under the consumption of drinking water].

    Science.gov (United States)

    Stepanova, N V; Valeeva, E R; Fomina, S F; Ziyatdinova, A I

    In the article there are given results of the evaluation of non-carcinogenic risks for the health of the child population residing in different areas (districts) of the city of Kazan with the aim of the subsequent comprehensive assessment of the pollutants in drinking water. Assessment of the risk for the human health was performed correspondingly to with the P 2.1.10.1920-04 for oral route of exposure in accordance to the chemical composition of drinking water with account for the standard and regional factors of the exposure. The results of the risk assessment under the consumption of drinking tap water by the child population with localized place of residence permit to reveal areas with a high level of health risk in the city. The screening assessment of carcinogenic risk due to the consumption of chemicals with drinking water revealed differences in regional and standard values of the exposure factors. This affects both on the value of the chronic average daily intake of chemical contaminants in drinking water and the level of risk under the consumption of drinking water by the child population.

  19. Encoding of Fundamental Chemical Entities of Organic Reactivity Interest using chemical ontology and XML.

    Science.gov (United States)

    Durairaj, Vijayasarathi; Punnaivanam, Sankar

    2015-09-01

    Fundamental chemical entities are identified in the context of organic reactivity and classified as appropriate concept classes namely ElectronEntity, AtomEntity, AtomGroupEntity, FunctionalGroupEntity and MolecularEntity. The entity classes and their subclasses are organized into a chemical ontology named "ChemEnt" for the purpose of assertion, restriction and modification of properties through entity relations. Individual instances of entity classes are defined and encoded as a library of chemical entities in XML. The instances of entity classes are distinguished with a unique notation and identification values in order to map them with the ontology definitions. A model GUI named Entity Table is created to view graphical representations of all the entity instances. The detection of chemical entities in chemical structures is achieved through suitable algorithms. The possibility of asserting properties to the entities at different levels and the mechanism of property flow within the hierarchical entity levels is outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Physical and chemical characteristics of melon in organic farming

    Directory of Open Access Journals (Sweden)

    Rosete A. G. Kohn

    2015-07-01

    Full Text Available Melon farming is characterized as an important family agriculture activity and the organic production of fruits and vegetables has shown a large growth in terms of areas in Brazil and around the world. This work aimed to study the postharvest quality of melon cultivated in an organic system. The organic treatments constituted of base fertilizer with cattle manure vermicompost (recommended dose, ½ dose and double dose plus the use of biofertilizer (sprayed or sprayed + irrigated, and an additional treatment with chemical fertilization. The postharvest quality was evaluated through physico-chemical and phytochemical attributes. The organic management with half the recommended dose of vermicompost plus the sprayed biofertilizer and the chemical fertilization management produced fruits with higher levels of sugar, total carotenoids, ascorbic acid and folates, obtaining more balanced fruits, with a better phytochemical quality. The antioxidant capacity was defined mainly by the presence of the phenolic compounds, which were influenced by the type and the dose of the evaluated fertilizers, with superiority in the organic treatments with double the dose of cattle manure vermicompost.

  1. A study of tobacco carcinogenesis XLVIII. Carcinogenicity of N'-nitrosonornicotine in mink (Mustela vison).

    Science.gov (United States)

    Koppang, N; Rivenson, A; Reith, A; Dahle, H K; Evensen, O; Hoffmann, D

    1992-11-01

    During tobacco processing and smoking, nicotine and nornicotine give rise to N'-nitrosonornicotine (NNN), a highly abundant, strong carcinogen. NNN is known to exert carcinogenic activity in mice, rats and hamsters. Major target organs for NNN carcinogenicity in the rat are the esophagus and the nasal mucosa, and in the Syrian golden hamster trachea and nasal mucosa. In comparison with the rat, the mink (Mustela vison) has a markedly expanded nasal mucosa. Therefore, we explored in this study whether the mink could serve as a non-rodent model for nasal carcinogenesis using NNN as the carcinogen. Twenty random-bred mink, beginning at the age of 3 weeks, received twice weekly s.c. injections of NNN, a total dose of 11.9 mM per animal over a 38 week period. All of the 19 mink at risk developed malignant tumors of both the respiratory and the olfactory region of the nose within 3.5 years. In most animals the malignant tumors, primarily esthesioneuroepithelioma, invaded the brain. Remarkably, NNN induced no other tumors in the mink. None of the control animals developed nasal tumors nor tumors at other sites during the 3.5 years of the assay. The historical data from the farm did not reveal any spontaneous occurrence of nasal tumors in mink at any age. This study supports the concept that NNN is a proven carcinogen for multiple species of mammals and that the mink can serve as a non-rodent, non-inbred animal model for nasal carcinogenesis, especially since NNN induces only tumors in the nasal cavity in this species and not at other sites, as it does in mice, rats and hamsters.

  2. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0.

    Science.gov (United States)

    Schneider, Ismael Luís; Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana Milena; Silva E Silva, Gabriel; Balzaretti, Naira; Braga, Marcel Ferreira; Oliveira, Luís Felipe Silva

    2016-01-15

    Nitro-polycyclic aromatic hydrocarbons (NPAHs) represent a group of organic compounds of significant interest due to their presence in airborne particulates of urban centers, wide distribution in the environment, and mutagenic and carcinogenic properties. These compounds, associated with atmospheric particles of size PM1.0) using infrared spectrometry. Carcinogenic and mutagenic risks of the studied NPAHs associated with PM1.0 samples were also determined for two sampling sites: Canoas and Sapucaia do Sul. The results showed that NPAH standard spectra can effectively identify NPAHs in PM1.0 samples. The transmittance and emissivity sample spectra showed broader bands and lower relative intensity than the standard NPAH spectra. The carcinogenic risk and the total mutagenic risk were calculated using the toxic equivalent factors and mutagenic potency factors, respectively. Canoas showed the highest total carcinogenic risk, while Sapucaia do Sul had the highest mutagenic risk. The seasonal analysis suggested that in the study area the ambient air is more toxic during the cold periods. These findings might of significant importance for the decision and policy making authorities.

  3. Microwaves in organic chemistry and organic chemical

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The usual way of applying heat to a chemical reaction is the use of a Bunsen burner, an oil or some other type of bath, or an electric heater. In inorganic chemistry, microwave technology has been used since the late 1970s while it has been implemented in organic chemistry since the mid-1980s. Microwave heating has been used in the food industry for almost fifty years. The shorter reaction times and expanded reaction range that is offered by microwave technology are suited to the increased demands in industry. For example, there is a requirement in the pharmaceutical industry for a higher number of a novel chemical entities to be produced, which requires chemists to employ a number of resources to reduce time for the production of compounds. Also, microwaves are used in the food industry, as well as in the pyrolysis of waste materials, sample preparation, the solvent extraction of natural products and the hydrolysis of proteins and peptides.

  4. An analysis of pharmaceutical experience with decades of rat carcinogenicity testing: support for a proposal to modify current regulatory guidelines.

    Science.gov (United States)

    Sistare, Frank D; Morton, Daniel; Alden, Carl; Christensen, Joel; Keller, Douglas; Jonghe, Sandra De; Storer, Richard D; Reddy, M Vijayaraj; Kraynak, Andrew; Trela, Bruce; Bienvenu, Jean-Guy; Bjurström, Sivert; Bosmans, Vanessa; Brewster, David; Colman, Karyn; Dominick, Mark; Evans, John; Hailey, James R; Kinter, Lewis; Liu, Matt; Mahrt, Charles; Marien, Dirk; Myer, James; Perry, Richard; Potenta, Daniel; Roth, Arthur; Sherratt, Philip; Singer, Thomas; Slim, Rabih; Soper, Keith; Fransson-Steen, Ronny; Stoltz, James; Turner, Oliver; Turnquist, Susan; van Heerden, Marjolein; Woicke, Jochen; DeGeorge, Joseph J

    2011-06-01

    Data collected from 182 marketed and nonmarketed pharmaceuticals demonstrate that there is little value gained in conducting a rat two-year carcinogenicity study for compounds that lack: (1) histopathologic risk factors for rat neoplasia in chronic toxicology studies, (2) evidence of hormonal perturbation, and (3) positive genetic toxicology results. Using a single positive result among these three criteria as a test for outcome in the two-year study, fifty-two of sixty-six rat tumorigens were correctly identified, yielding 79% test sensitivity. When all three criteria were negative, sixty-two of seventy-six pharmaceuticals (82%) were correctly predicted to be rat noncarcinogens. The fourteen rat false negatives had two-year study findings of questionable human relevance. Applying these criteria to eighty-six additional chemicals identified by the International Agency for Research on Cancer as likely human carcinogens and to drugs withdrawn from the market for carcinogenicity concerns confirmed their sensitivity for predicting rat carcinogenicity outcome. These analyses support a proposal to refine regulatory criteria for conducting a two-year rat study to be based on assessment of histopathologic findings from a rat six-month study, evidence of hormonal perturbation, genetic toxicology results, and the findings of a six-month transgenic mouse carcinogenicity study. This proposed decision paradigm has the potential to eliminate over 40% of rat two-year testing on new pharmaceuticals without compromise to patient safety.

  5. Carotenoids Database: structures, chemical fingerprints and distribution among organisms.

    Science.gov (United States)

    Yabuzaki, Junko

    2017-01-01

    To promote understanding of how organisms are related via carotenoids, either evolutionarily or symbiotically, or in food chains through natural histories, we built the Carotenoids Database. This provides chemical information on 1117 natural carotenoids with 683 source organisms. For extracting organisms closely related through the biosynthesis of carotenoids, we offer a new similarity search system 'Search similar carotenoids' using our original chemical fingerprint 'Carotenoid DB Chemical Fingerprints'. These Carotenoid DB Chemical Fingerprints describe the chemical substructure and the modification details based upon International Union of Pure and Applied Chemistry (IUPAC) semi-systematic names of the carotenoids. The fingerprints also allow (i) easier prediction of six biological functions of carotenoids: provitamin A, membrane stabilizers, odorous substances, allelochemicals, antiproliferative activity and reverse MDR activity against cancer cells, (ii) easier classification of carotenoid structures, (iii) partial and exact structure searching and (iv) easier extraction of structural isomers and stereoisomers. We believe this to be the first attempt to establish fingerprints using the IUPAC semi-systematic names. For extracting close profiled organisms, we provide a new tool 'Search similar profiled organisms'. Our current statistics show some insights into natural history: carotenoids seem to have been spread largely by bacteria, as they produce C30, C40, C45 and C50 carotenoids, with the widest range of end groups, and they share a small portion of C40 carotenoids with eukaryotes. Archaea share an even smaller portion with eukaryotes. Eukaryotes then have evolved a considerable variety of C40 carotenoids. Considering carotenoids, eukaryotes seem more closely related to bacteria than to archaea aside from 16S rRNA lineage analysis. : http://carotenoiddb.jp. © The Author(s) 2017. Published by Oxford University Press.

  6. Further improvement of genetic and cytogenetic test pattern with increased relevance predicting carcinogenic and pharmacological effects

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, D.

    1982-08-01

    Testing of chemicals for their genetic activity by applying only one method has the disadvantage, that the results are of limited value. However, a combination of several test systems in such a manner that the apparent difference between the results allows additional conclusions about the pharmacokinetic properties of the substances tested, the correlation between molecular mutations and cytogenetic effects and the possible carcinogenic activity. Three nitrofuran derivatives (nitrofurantoin, carofur and FANFT) tested in six different in vitro and in vivo mutagenicity tests partly showed strong genetic activity without metabolic activation and weak cytogenetic effects. However, polycyclic hydrocarbons needed mammalian metabolism to display their mutagenicity: Dimethylbenzoanthracene and benzo(a)pyrene could be activated by liver microsomes and showed also cytogenetic effects, but phenanthrene was only active in the SCE-test. Out of nine heavy metal salts potassium chromate, potassium dichromate, calcium chromate and cis-dichloro diammine-Pt(II) were effective in at least one genetic and one cytogenetic test. The correlation between mutagenic and the known carcinogenic activity of all test substances was good in the case of the hydrocarbons and the nitrofuran derivatives; the heavy metal salts, however, are of low relevance for the carcinogenicity of the metals itself.

  7. 32P-postlabeling assay in mice of transplacental DNA damage induced by the environmental carcinogens safrole, 4-aminobiphenyl, and benzo(a)pyrene

    International Nuclear Information System (INIS)

    Lu, L.J.; Disher, R.M.; Reddy, M.V.; Randerath, K.

    1986-01-01

    Transplacental exposure of fetuses to carcinogens is known to induce tumors in the offspring, often with a high incidence and short latency. While covalent adduction of DNA appears to be essential for tumor initiation, little is known about the binding of carcinogens to the DNA of fetal tissues. A sensitive 32 P-postlabeling method enabled us to study the binding of the environmental carcinogens safrole (600 mumol/kg p.o.), 4-aminobiphenyl (800 mumol/kg), and benzo(a)pyrene (200 mumol/kg) to the DNA of various maternal and fetal tissues after administration of test carcinogens to pregnant ICR mice on day 18 of gestation. The results show that these carcinogens bound to the DNA of maternal and fetal liver, lung, kidney, heart, brain, intestine, skin, maternal uterus, and placenta, with organ-specific quantitative and qualitative differences. It was possible for the first time to analyze DNA adduct patterns in minute amounts of tissue, for example those available from fetal heart. The covalent binding index 24 h after safrole treatment was estimated for the different organs and ranged from 0.1 to 247 and 0.1 to 5.8 for maternal and fetal DNA, respectively. Covalent binding index values of 0.2 to 13 and 0.1 to 0.3 for maternal and fetal DNA, respectively, were found for 4-aminobiphenyl. Benzo(a)pyrene treatment yielded covalent binding index values of 0.6 to 6.5 and 0.3 to 0.7 for maternal and fetal DNA, respectively. In both maternal and fetal tissues, safrole exhibited preferential binding to liver DNA. 4-Aminobiphenyl bound preferentially to DNA of maternal liver and kidney but showed no preference among fetal tissues. Benzo(a)pyrene exhibited weak tissue preference in both maternal and fetal organs

  8. Estimating risk at a Superfund site contaminated with radiological and chemical wastes

    International Nuclear Information System (INIS)

    Temeshy, A.; Liedle, J.M.; Sims, L.M.; Efird, C.R.

    1992-01-01

    This paper describes the method and results for estimating carcinogenic and noncarcinogenic effects at a Superfund site that is radiologically and chemically contaminated. Risk to receptors from disposal of waste in soil and resulting contamination of groundwater, air, surface water, and sediment is quantified. Specific risk assessment components which are addressed are the exposure assessment, toxicity assessment, and the resulting risk characterization. In the exposure assessment, potential exposure pathways are identified using waste disposal inventory information for soil and modeled information for other media. Models are used to calculate future radionuclide concentrations in groundwater, soil, surface water and air. Chemical exposure concentrations are quantified using site characterization data. Models are used to determine concentrations of chemicals in surface water and in air. Toxicity parameters used to quantify the dose-response relationship associated with the carcinogenic contaminants are slope factors and with noncarcinogenic contaminants are reference doses. In the risk characterization step, results from the exposure assessment and toxicity assessment are summarized and integrated into quantitative risk estimates for carcinogens and hazard induces for noncarcinogens. Calculated risks for carcinogenic contaminants are compared with EPA's target risk range. At WAG 6, the risk from radionuclides and chemicals for an on-WAG homesteader exceeds EPA's target risk range. Hazard indices are compared to unity for noncarcinogenic contaminants. At WAG 6, the total pathway hazard index for the on-WAG homesteader exceeds unity

  9. Mycotoxins as human carcinogens-the IARC Monographs classification.

    Science.gov (United States)

    Ostry, Vladimir; Malir, Frantisek; Toman, Jakub; Grosse, Yann

    2017-02-01

    Humans are constantly exposed to mycotoxins (e.g. aflatoxins, ochratoxins), mainly via food intake of plant and animal origin. The health risks stemming from mycotoxins may result from their toxicity, in particular their carcinogenicity. In order to prevent these risks, the International Agency for Research on Cancer (IARC) in Lyon (France)-through its IARC Monographs programme-has performed the carcinogenic hazard assessment of some mycotoxins in humans, on the basis of epidemiological data, studies of cancer in experimental animals and mechanistic studies. The present article summarizes the carcinogenic hazard assessments of those mycotoxins, especially aflatoxins (aflatoxin B 1 , B 2 , G 1 , G 2 and M 1 ), fumonisins (fumonisin B 1 and B 2 ) and ochratoxin A (OTA). New information regarding the genotoxicity of OTA (formation of OTA-DNA adducts), the role of OTA in oxidative stress and the identification of epigenetic factors involved in OTA carcinogenesis-should they indeed provide strong evidence that OTA carcinogenicity is mediated by a mechanism that also operates in humans-could lead to the reclassification of OTA.

  10. Exploring the Molecular Mechanisms of Nickel-Induced Genotoxicity and Carcinogenicity: A Literature Review

    Science.gov (United States)

    Cameron, Keyuna S.; Buchner, Virginia; Tchounwou, Paul B.

    2011-01-01

    Nickel, a naturally occurring element that exists in various mineral forms, is mainly found in soil and sediment, and its mobilization is influenced by the physicochemical properties of the soil. Industrial sources of nickel include metallurgical processes such as electroplating, alloy production, stainless steel, and nickel-cadmium batteries. Nickel industries, oil- and coal-burning power plants, and trash incinerators have been implicated in its release into the environment. In humans, nickel toxicity is influenced by the route of exposure, dose, and solubility of the nickel compound. Lung inhalation is the major route of exposure for nickel-induced toxicity. Nickel may also be ingested or absorbed through the skin. The primary target organs are the kidneys and lungs. Other organs such as the liver, spleen, heart and testes may also be affected to a lesser extent. Although the most common health effect is an allergic reaction, research has also demonstrated that nickel is carcinogenic to humans. The focus of the present review is on recent research concerning the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity. We first present a background on the occurrence of nickel in the environment, human exposure, and human health effects. PMID:21905451

  11. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  12. Dietary Carcinogens and Anticarcinogens.

    Science.gov (United States)

    Ames, Bruce N.

    1983-01-01

    Describes 16 mutagens/carcinogens found in plant food and coffee as well as several anticarcinogens also found in such food. Speculates on relevant biochemical mechanisms, particularly the role of oxygen radicals and their inhibitors in the fat/cancer relationship, promotion, anticarcinogenesis, and aging. (JN)

  13. Studies on carcinogenicity or anticarcinogenicity of isonicotinic acid hydrazide and caffeine by nine-week assay system

    International Nuclear Information System (INIS)

    Yun, Taik Koo; Oh, Yeong Ram; Kim, Sung Ho

    1986-12-01

    According to many surveys, cancer is one of the major causes of death in most developed countries and the incidence of cancer appears to be on the increase. Therefore, many studies on detection of carcinogenic or anticarcinogenic agents need urgently. The purpose of this investigation is evaluation the carcinogenic or anticarcinogenic effect of INH and caffeine, which were interpreted as showing either the presence or the absence of a carcinogenic or anticarcinogenic effect, using nine-week assay system. The non-inbred NIH(GP) newborn mice were injected subcutaneously with NIH(400,425, 450 or 480 μg/ head) or caffeine (75 or 100 μg/head) for evaluation of carcinogenicity. Caffeine (1 or 2 mg/ml of drinking water) was administered orally to the mice, which were injected subcutaneously with BP(500μg/head) at new-born, during 6 weeks after weaning for evaluation of anticarcinogenicity. Each group was killed at 9 weeks after the start of exanination. All major organs were examined grossly and histopathologically. Decreased lung adenoma incidence was observed statistically significant in mice fed with caffeine 1 mg(18.8%) or 2 mg(5.1%) per ml of drinking water compared to BP control group (41.3%). However, there was no statistical difference in the incidence of lung and other site tumor between the INH group and the normal control group or between caffeine injection group and normal control group. This result will be contribute to the prevention of cancer from the viewpoint of identifying carcinogenic or anticarcinogenic agents from the environment. (Author)

  14. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds

    International Nuclear Information System (INIS)

    Helguera, Aliuska Morales; Cordeiro, M. Natalia D.S.; Perez, Miguel Angel Cabrera; Combes, Robert D.; Gonzalez, Maykel Perez

    2008-01-01

    In this work, Quantitative Structure-Activity Relationship (QSAR) modelling was used as a tool for predicting the carcinogenic potency of a set of 39 nitroso-compounds, which have been bioassayed in male rats by using the oral route of administration. The optimum QSAR model provided evidence of good fit and performance of predicitivity from training set. It was able to account for about 84% of the variance in the experimental activity and exhibited high values of the determination coefficients of cross validations, leave one out and bootstrapping (q 2 LOO = 78.53 and q 2 Boot = 74.97). Such a model was based on spectral moments weighted with Gasteiger-Marsilli atomic charges, polarizability and hydrophobicity, as well as with Abraham indexes, specifically the summation solute hydrogen bond basicity and the combined dipolarity/polarizability. This is the first study to have explored the possibility of combining Abraham solute descriptors with spectral moments. A reasonable interpretation of these molecular descriptors from a toxicological point of view was achieved by means of taking into account bond contributions. The set of relationships so derived revealed the importance of the length of the alkyl chains for determining carcinogenic potential of the chemicals analysed, and were able to explain the difference between mono-substituted and di-substituted nitrosoureas as well as to discriminate between isomeric structures with hydroxyl-alkyl and alkyl substituents in different positions. Moreover, they allowed the recognition of structural alerts in classical structures of two potent nitrosamines, consistent with their biotransformation. These results indicate that this new approach has the potential for improving carcinogenicity predictions based on the identification of structural alerts

  15. Biomarkers of carcinogen exposure and early effects.

    OpenAIRE

    2006-01-01

    The purpose of this review is to summarise the current situation regarding the types and uses of biomarkers of exposure and effect for the main classes of food-derived genotoxic carcinogens, and to consider some aspects of the intercomparison between these biomarkers. The biomarkers of exposure and early effects of carcinogens that have been most extensively developed are those for genotoxic agents and for compounds that generate hydroxyl radicals and other reactive radical species, and it is...

  16. A one-electron oxidation of carcinogenic nonaminoazo dye Sudan I by horseradish peroxidase

    Czech Academy of Sciences Publication Activity Database

    Semanská, M.; Dračínský, Martin; Martínek, V.; Hudeček, J.; Hodek, P.; Frei, E.; Stiborová, M.

    2008-01-01

    Roč. 29, č. 5 (2008), s. 712-716 ISSN 0172-780X Grant - others:GA MŠk(CZ) 1M0505; GA ČR(CZ) GA203/06/0329 Program:1M Institutional research plan: CEZ:AV0Z40550506 Keywords : carcinogen * Sudan I * peroxidase * NMR spectroscopy * mechanism of oxidation Subject RIV: CC - Organic Chemistry Impact factor: 1.359, year: 2008 http://node.nel.edu

  17. Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis.

    Science.gov (United States)

    García-Nieto, Pablo E; Schwartz, Erin K; King, Devin A; Paulsen, Jonas; Collas, Philippe; Herrera, Rafael E; Morrison, Ashby J

    2017-10-02

    The development of many sporadic cancers is directly initiated by carcinogen exposure. Carcinogens induce malignancies by creating DNA lesions (i.e., adducts) that can result in mutations if left unrepaired. Despite this knowledge, there has been remarkably little investigation into the regulation of susceptibility to acquire DNA lesions. In this study, we present the first quantitative human genome-wide map of DNA lesions induced by ultraviolet (UV) radiation, the ubiquitous carcinogen in sunlight that causes skin cancer. Remarkably, the pattern of carcinogen susceptibility across the genome of primary cells significantly reflects mutation frequency in malignant melanoma. Surprisingly, DNase-accessible euchromatin is protected from UV, while lamina-associated heterochromatin at the nuclear periphery is vulnerable. Many cancer driver genes have an intrinsic increase in carcinogen susceptibility, including the BRAF oncogene that has the highest mutation frequency in melanoma. These findings provide a genome-wide snapshot of DNA injuries at the earliest stage of carcinogenesis. Furthermore, they identify carcinogen susceptibility as an origin of genome instability that is regulated by nuclear architecture and mirrors mutagenesis in cancer. © 2017 The Authors.

  18. Non-covalent interactions of the carcinogen (+)-anti-BPDE with exon 1 of the human K-ras proto-oncogene

    Science.gov (United States)

    Rodriguez, Jorge H.; Deligkaris, Christos

    2013-03-01

    Investigating the complementary, but different, effects of physical (non-covalent) and chemical (covalent) mutagen-DNA and carcinogen-DNA interactions is important for understanding possible mechanisms of development and prevention of mutagenesis and carcinogenesis. A highly mutagenic and carcinogenic metabolite of the polycyclic aromatic hydrocarbon benzo[ α]pyrene, namely (+)-anti-BPDE, is known to undergo both physical and chemical complexation with DNA. The major covalent adduct, a promutagenic, is known to be an external (+)-trans-anti-BPDE-N2-dGuanosine configuration whose origins are not fully understood. Thus, it is desirable to study the mechanisms of external non-covalent BPDE-DNA binding and their possible relationships to external covalent trans adduct formation. We present a detailed codon-by-codon computational study of the non-covalent interactions of (+)-anti-BPDE with DNA which explains and correctly predicts preferential (+)-anti-BPDE binding at minor groove guanosines. Due to its relevance to carcinogenesis, the interaction of (+)-anti-BPDE with exon 1 of the human K-ras gene has been studied in detail. Present address: Department of Physics, Drury University

  19. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  20. Quality and Chemical Composition of Organic and Non-Organic Vetiver Oil

    Directory of Open Access Journals (Sweden)

    Asep Kadarohman

    2014-03-01

    Full Text Available Vetiver oil (Vetiveria zizanoides has been used as perfume materials, cosmetics, fragrance soaps, anti-inflammation, repellent, and insecticidal agents. Organic vetiver oil has higher economical value than non-organic vetiver oil and it has been regarded to be able to compete in the global market. Therefore, studies have been carried out using 1 hectare of land and the first generation of organic vetiver oil has produced 0.57% of yield, greater than non-organic (0.50%. The quality of organic and non-organic vetiver oil was analyzed by Indonesian Standard (SNI parameter, pesticide residue test, chemical composition by GC/MS, and the appearance of vetiver root. In general, the result of organic and non-organic vetiver oil has fulfilled the national standard; the quality of organic vetiver oil was better than non-organic one. Physically, the appearance of organic vetiver root was better than non-organic vetiver root; organic vetiver root was denser, more appealing, and did not have any black spots. The pesticide residue of organic vetiver oil was lower than non-organic vetiver oil. Based on SNI test, vetiverol (oxygen compounds in organic vetiver oil was higher than non-organic vetiver oil.

  1. Carcinogenicity of individual and a mixture of dioxin-like compounds in female Harlan Sprague Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Walker, N.; Nyska, A. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Crockett, P. [Constella Group, Research Triangle Park, NC (US)] (and others)

    2004-09-15

    The human health risk posed by exposure to persistent organochlorine pollutants (POPs), including polychlorinated-dioxins (PCDDs), -furans (PCDFs) and - biphenyls (PCBs), present in the food and the environment is one of widespread concern throughout the industrialized world. The dioxin Toxic Equivalency Factor (TEF) approach is currently the most feasible interim approach for assessing and managing the risk posed by exposure to mixtures of these compounds and has been formally adopted by regulatory bodies in many countries, the International Programme on Chemical Safety and the World Health Organization. The TEF methodology is a relative potency scheme that estimates the total exposure and biological effects of a mixture of chemicals based on a common mechanism of action involving an initial binding of the compound to the Aryl hydrocarbon receptor (AhR). An implicit assumption of the TEF methodology is that the combined risk of effects of the different congeners is dose additive. Therefore, the total dioxin toxic equivalents (TEQs) of a mixture of PCDDs, PCDFs, and PCBs may be estimated by the summation of the mass of each compound in the mixture after adjustment for its potency relative to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While dose additivity is supported for certain mixtures for some biological endpoints in some experimental models, this has never been evaluated for cancer risk. Here we present a summary of four chronic rodent bioassay conducted by the National Toxicology Program (US Department of Health and Human Services) that evaluated the carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3.3',4,4',5- pentachlorobiphenyl (PCB126) and 2,3,4,7,8 pentachlorodibenzofuran (PeCDF) and a mixture of these three dioxin-like compounds in female Harlan Sprague Dawley rats. Data from these studies will be used to test the hypothesis of dose-additivity of carcinogenicity by a defined mixture of dioxin-like compounds.

  2. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  3. Carcinogenic compounds in alcoholic beverages: an update.

    Science.gov (United States)

    Pflaum, Tabea; Hausler, Thomas; Baumung, Claudia; Ackermann, Svenja; Kuballa, Thomas; Rehm, Jürgen; Lachenmeier, Dirk W

    2016-10-01

    The consumption of alcoholic beverages has been classified as carcinogenic to humans by the International Agency for Research on Cancer (IARC) since 1988. More recently, in 2010, ethanol as the major constituent of alcoholic beverages and its metabolite acetaldehyde were also classified as carcinogenic to humans. Alcoholic beverages as multi-component mixtures may additionally contain further known or suspected human carcinogens as constituent or contaminant. This review will discuss the occurrence and toxicology of eighteen carcinogenic compounds (acetaldehyde, acrylamide, aflatoxins, arsenic, benzene, cadmium, ethanol, ethyl carbamate, formaldehyde, furan, glyphosate, lead, 3-MCPD, 4-methylimidazole, N-nitrosodimethylamine, pulegone, ochratoxin A, safrole) occurring in alcoholic beverages as identified based on monograph reviews by the IARC. For most of the compounds of alcoholic beverages, quantitative risk assessment provided evidence for only a very low risk (such as margins of exposure above 10,000). The highest risk was found for ethanol, which may reach exposures in ranges known to increase the cancer risk even at moderate drinking (margin of exposure around 1). Other constituents that could pose a risk to the drinker were inorganic lead, arsenic, acetaldehyde, cadmium and ethyl carbamate, for most of which mitigation by good manufacturing practices is possible. Nevertheless, due to the major effect of ethanol, the cancer burden due to alcohol consumption can only be reduced by reducing alcohol consumption in general or by lowering the alcoholic strength of beverages.

  4. Occupational chemical exposures in artificial organic fiber industries

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, S S; Cohen, M B

    1984-05-01

    This review discusses artificial organic fibers that are produced from materials of natural origin such as rayons, cellulose triacetates and proteins; or made from polymerised chemicals such as polyamides, polyesters, polyvinyls, modacrylics, carbon fibers, polyolefins, polyurethane and polytetrafluoroethylene. Chemicals involved include monomers, solvents, flame retardants, pigments and other additives. Occupational exposure to chemicals in the production stages are discussed and also the potential health hazards involved are reviewed. Current exposure levels, engineering controls and work practices for some of the chemicals used in the Ontario artificial fiber industry are discussed. Recommendations are made for areas that need further study and/or investigation.

  5. Potency of carcinogens derived from covalent DNA binding and stimulation of DNA synthesis in rat liver

    International Nuclear Information System (INIS)

    Lutz, W.K.; Buesser, M.T.; Sagelsdorff, P.

    1984-01-01

    In order to investigate the role of the stimulation of cell division for the initiation (and possibly promotion) of liver tumors by chemical carcinogens, the incorporation of radiolabelled thymidine into liver DNA was determined in male rats. Single doses of various levels of aflatoxin B1, benzidine and carbon tetrachloride (all known to be genotoxic via DNA binding) did not affect cell division, whereas several hepatocarcinogens known not to bind to DNA (alpha-HCH, clofibrate, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) gave rise to a dose-dependent stimulation of liver DNA synthesis within 24 h. An equation combining the influences of mitotic stimulation, expressed as dose required to double the control level of DNA synthesis, and DNA binding potency, expressed as the Covalent Binding Index, correlated well with the carcinogenic potency for both classes of hepatocarcinogens

  6. Molecular biomarkers of oxidative stress associated with bromate carcinogenicity

    International Nuclear Information System (INIS)

    Delker, Don; Hatch, Gary; Allen, James; Crissman, Bobby; George, Michael; Geter, David; Kilburn, Steve; Moore, Tanya; Nelson, Gail; Roop, Barbara; Slade, Ralph; Swank, Adam; Ward, William; DeAngelo, Anthony

    2006-01-01

    Potassium bromate (KBrO 3 ) is a chemical oxidizing agent found in drinking water as a disinfection byproduct of surface water ozonation. Chronic exposures to KBrO 3 cause renal cell tumors in rats, hamsters and mice and thyroid and testicular mesothelial tumors in rats. Experimental evidence indicates that bromate mediates toxicological effects via the induction of oxidative stress. To investigate the contribution of oxidative stress in KBrO 3 -induced cancer, male F344 rats were administered KBrO 3 in their drinking water at multiple concentrations for 2-100 weeks. Gene expression analyses were performed on kidney, thyroid and mesothelial cell RNA. Families of mRNA transcripts differentially expressed with respect to bromate treatment included multiple cancer, cell death, ion transport and oxidative stress genes. Multiple glutathione metabolism genes were up-regulated in kidney following carcinogenic (400 mg/L) but not non-carcinogenic (20 mg/L) bromate exposures. 8-Oxodeoxyguanosine glycosylase (Ogg1) mRNA was up-regulated in response to bromate treatment in kidney but not thyroid. A dramatic decrease in global gene expression changes was observed following 1 mg/L compared to 20 mg/L bromate exposures. In a separate study oxygen-18 ( 18 O) labeled KBrO 3 was administered to male rats by oral gavage and tissues were analyzed for 18 O deposition. Tissue enrichment of 18 O was observed at 5 and 24 h post-KBr 18 O 3 exposure with the highest enrichment occurring in the liver followed by the kidney, thyroid and testes. The kidney dose response observed was biphasic showing similar statistical increases in 18 O deposition between 0.25 and 50 mg/L (equivalent dose) KBr 18 O 3 followed by a much greater increase above 50 mg/L. These results suggest that carcinogenic doses of potassium bromate require attainment of a threshold at which oxidation of tissues occurs and that gene expression profiles may be predictive of these physiological changes in renal homeostasis

  7. The in vivo rodent test systems for assessment of carcinogenic potential

    DEFF Research Database (Denmark)

    van der Laan, Jan-Willem; Spindler, Per

    2002-01-01

    A Drug Information Association (DIA) workshop was held in May 2001 to discuss the outcome of the International Life Sciences Institute-Health and Environmental Sciences Institute (ILSI-HESI) project on alternative models for carcinogenicity assessment such as the P53(+/-) and XPA(+/-) knockout...... mouse models, the RasH2 and Tg.AC transgenic mouse models, and the neonatal mouse model. The "ICH Guideline S1B on Testing for Carcinogenicity of Pharmaceuticals" advocates that carcinogenicity testing of pharmaceuticals, when needed, might be carried out choosing one 2-year rodent carcinogenicity study...... (rat) plus one other study that supplements the 2-year study and providing additional information that is not readily available from the 2-year study: either (1) a short- or medium-term in vivo rodent test system or (2) a 2-year carcinogenicity study in a second rodent species (mouse). Another topic...

  8. Pesticides and public health: an analysis of the regulatory approach to assessing the carcinogenicity of glyphosate in the European Union.

    Science.gov (United States)

    Clausing, Peter; Robinson, Claire; Burtscher-Schaden, Helmut

    2018-03-13

    The present paper scrutinises the European authorities' assessment of the carcinogenic hazard posed by glyphosate based on Regulation (EC) 1272/2008. We use the authorities' own criteria as a benchmark to analyse their weight of evidence (WoE) approach. Therefore, our analysis goes beyond the comparison of the assessments made by the European Food Safety Authority and the International Agency for Research on Cancer published by others. We show that not classifying glyphosate as a carcinogen by the European authorities, including the European Chemicals Agency, appears to be not consistent with, and in some instances, a direct violation of the applicable guidance and guideline documents. In particular, we criticise an arbitrary attenuation by the authorities of the power of statistical analyses; their disregard of existing dose-response relationships; their unjustified claim that the doses used in the mouse carcinogenicity studies were too high and their contention that the carcinogenic effects were not reproducible by focusing on quantitative and neglecting qualitative reproducibility. Further aspects incorrectly used were historical control data, multisite responses and progression of lesions to malignancy. Contrary to the authorities' evaluations, proper application of statistical methods and WoE criteria inevitably leads to the conclusion that glyphosate is 'probably carcinogenic' (corresponding to category 1B in the European Union). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Animal carcinogenicity studies on radiofrequency fields related to mobile phones and base stations.

    Science.gov (United States)

    Dasenbrock, Clemens

    2005-09-01

    Since a report in 1997 on an increased lymphoma incidence in mice chronically exposed to a mobile phone radiofrequency signal, none of the subsequent long-term studies in rodents have confirmed these results. On the other hand, several of the follow-up co- and carcinogenicity studies are still underway or are presently being initiated. Most of the published long-term studies used 1 exposure level only and suffer from a poor dosimetry which does not consider the animal's growth. Additional points of criticism are a limited, in some cases, questionable histopathology and inadequate group sizes. Overall, if dealing with new chemicals or drugs, these studies would not be acceptable for registration with the responsible authorities. The major critical points are taken into consideration within the European co- and carcinogenicity projects (CEMFEC and PERFORM-A), which are in their final stages and in the US long-term studies in mice and rats which are about to be initiated. Nevertheless, the WHO evaluation for health risk assessment of long-term telephone use and base station exposure will start in late 2005.

  10. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    Science.gov (United States)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.; Mondloch, Joseph E.

    2017-04-18

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  11. METABOLISM, GENOTOXICITY, AND CARCINOGENICITY OF COMFREY

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Fu, Peter P.; Fuscoe, James C.; Luan, Yang; Chen, Tao

    2018-01-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction. PMID:21170807

  12. Metabolism, genotoxicity, and carcinogenicity of comfrey.

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Fu, Peter P; Fuscoe, James C; Luan, Yang; Chen, Tao

    2010-10-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction.

  13. Inter-laboratory comparison of turkey in ovo carcinogenicity assessment (IOCA) of hepatocarcinogens.

    Science.gov (United States)

    Enzmann, H; Brunnemann, K; Iatropoulos, M; Shpyleva, S; Lukyanova, N; Todor, I; Moore, M; Spicher, K; Chekhun, V; Tsuda, H; Williams, G

    2013-09-01

    In three independent laboratories carcinogens (diethylnitrosamine, DEN, 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and non-carcinogens (N-nitrosoproline, nicotine) were evaluated in turkey eggs for in ovo carcinogenicity assessment (IOCA). Compounds were injected into aseptic fertilized eggs. After incubation for 24 days, foci of altered hepatocytes (FAH), some with a pseudoglandular structure and/or signs of compression of the surrounding tissue were observed in the fetal liver. All laboratories were able to distinguish unequivocally the hepatocarcinogen-exposed groups from those exposed to non-carcinogens or the vehicle controls, based on the pre-specified evaluation parameters: tumor-like lesions, pseudoglandular areas and FAH. In addition to focal changes, only the carcinogens induced hepatocellular karyomegaly. Lower doses of the carcinogens, which did not induce FAH, were sufficient to induce hepatocellular karyomegaly. After exposure to 4 mg DEN, gall bladder agenesis was observed in all fetuses. The IOCA may be a valuable tool for early investigative studies on carcinogenicity and since it does not use rodents may complement chronic rat or mouse bioassays. Test substances that are positive in both rodents and fertilized turkey eggs are most probably trans-species carcinogens with particular significance for humans. The good concordance observed among the three laboratories demonstrates that the IOCA is a reliable and robust method. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Removal of chlorinated organic compounds from gas phase using electron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Bulka, S.; Zimek, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)

    2011-07-01

    Selected chlorinated organic compounds (Cl-HC), which are emitted from coal fired power plants, waste incinerators, chemical industry etc., are very harmful to the environment and human’s health. Some of them are listed as carcinogenic compounds by USA EPA. Recent studies show that some chlorinated organic compounds are suspected to be precursors for dioxins formation. Chlorinated organic compounds decomposition in air in an electron beam (EB) generated plasma reactor technology was studied. We selected cis-dichloroethylene (cis-DCE), 1,4-dichlorobenznene(1,4-DCB), 1-chloronaphthalene as studied objects. It is found that chlorinated organic compounds can be decomposed in an electron beam generated plasma reactor. The order of decomposition efficiency of these compounds are: cis-DCE > 1,4-DCB> 1-chloronaphthalene. (author)

  15. A Novel Approach: Chemical Relational Databases, and the ...

    Science.gov (United States)

    Mutagenicity and carcinogenicity databases are crucial resources for toxicologists and regulators involved in chemicals risk assessment. Until recently, existing public toxicity databases have been constructed primarily as

  16. Workshop on problem areas associated with developing carcinogen guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    A workshop was conducted to discuss problem areas associated with developing carcinogen guidelines. Session topics included (1) definition of a carcinogen for regulatory purposes; (2) potency; (3) risk assessment; (4) uncertainties; (5) de minimis quantity; and (6) legal and regulatory issues. Separate abstracts have been prepared for individual papers. (ACR)

  17. Impact of beta-naphthoflavone on genotoxicity of food-derived carcinogens.

    Science.gov (United States)

    Hodek, Petr; Krizkova, Jitka; Frei, Eva; Singh, Rajinder; Arlt, Volker M; Stiborova, Marie

    2011-01-01

    Benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are carcinogens, which frequently occur in the human diet. Their metabolic activation to reactive species binding to DNA is mediated by cytochromes P450 (CYPs) 1A1 and 1A2. Thus, levels and activities of these CYPs are crucial for initiation of BaP- and PhPI-mediated carcinogenesis. Here, the effect of CYP1A1/2 induction due to their prototype flavonoid inducer, β-naphthoflavone (BNF), on BaP- and PhPI-derived DNA adduct formation in rats was examined. Male rats pretreated with BNF were treated with a single dose of either carcinogen by oral gavage. Nuclease P1 version of 32P-postlabeling assay and online column-switching liquid chromatography-electrospray ionization-tandem mass spectrometry were used to detect and quantify covalent DNA adducts formed by BaP and PhIP in-vivo, respectively. Expression of CYP1A1/2 enzymes was examined by Western blot. Enzymatic activities of CYP1A1/2 were assessed using their marker substrates (ethoxyresorufin and methoxyresorufin). Treatment of rats with a single dose of BNF produced an increase in levels CYP1A1/2 and CYP1A1 proteins in liver and small intestine, respectively. An increase in CYP1A1 protein expression found in both organs correlated well with specific activities of these CYPs. The CYP1A1 expression levels and its specific activity in small intestine decreased along the length of the organ, being highest in its proximal part and lowest in its distal part. The BNF induction of CYP1A1/2 resulted in a significant increase in the formation of BaP- and PhIP-DNA adducts in liver and in the distal part of the small intestine, respectively. Thus, pretreatment of rats with BNF did not prevent the PhIP and BaP activation, but vice versa, enhanced their genotoxicity. The results of this study demonstrate that the administration of only a single dose of CYP-inducing flavonoid prior to the intake of food carcinogens may increase the risk of a tumor

  18. Enhanced replication of damaged SV40 DNA in carcinogen-treated monkey cells

    International Nuclear Information System (INIS)

    Maga, J.A.; Dixon, K.

    1984-01-01

    Treatment of mammalian cells with certain chemical or physical carcinogens prior to infection with ultraviolet-irradiated virus results in enhanced survival or reactivation of the damaged virus. To investigate the molecular basis of this enhanced reactivation (ER), Simian virus 40 DNA replication in carcinogen-treated cells was examined. Treatment of monkey kidney cells with N-acetoxy-2-acetylamino-fluorene or UV radiation 24 h prior to infection with ultraviolet-irradiated Simian virus 40 leads to enhancement of viral DNA replication measured at 36 h after infection by [ 3 H]thymidine incorporation or hybridization. The enhancement of DNA replication is observed when cells are treated from 1 to 60 h before infection or 1 to 16 h after infection. The fact that enhancement is observed also when cells are treated after infection rules out the possiblity that enhancement occurs at the level of adsorption or penetration of the virus. Measurements of the time course of viral DNA replication indicate that pretreatment of cells does not alter the time of onset of viral DNA replication. It is concluded that ER of Simain virus 40 occurs at the level of viral DNA replication. (author)

  19. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu [R& D, Safety Science Research, Kao Corporation, Tochigi (Japan); Yoshinari, Kouichi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka (Japan); Honda, Hiroshi, E-mail: honda.hiroshi@kao.co.jp [R& D, Safety Science Research, Kao Corporation, Tochigi (Japan)

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic

  20. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    International Nuclear Information System (INIS)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-01-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic

  1. Detection and impact on cancer causation of persons exhibiting abnormal susceptibility to carcinogenic agents

    International Nuclear Information System (INIS)

    Gentner, N.E.; Morrison, D.P.

    1988-01-01

    The so-called 'late biological effects', like cancer and genetic consequences and cytotoxic effects (cell killing, at higher doses), were once thought to be an inevitable consequence of a given level of exposure, whether to background radiation, to chemicals in our biosphere, or form spontaneous damage, the 'wear and tear' of living. The measurement of exposure, which results in living organisms in the formation of a related amount of DNA damage, became a surrogate for the end-effects that constitute risk. This may not be entirely appropriate. The concept of 'equal exposure -- equal risk' assumes a homogeneous response of individuals. However, there are subgroups within the human population of persons whose cultured cells exhibit abnormal sensitivity to specific carcinogenic agents and who may be at increased risk of cancer induced by these of similar agents. Modern molecular biology has shown that the majority of the damage in DNA is repaired by enzymatic DNA repair processes that restitute or ameliorate the lesions and restore normal DNA structure and function. In this view, it is not the initial damage that is of consequence but rather the residual damage left after the repair processes have acted. Since the vast majority of the initial DNA damage undergoes repair normally, variation in the efficiency of these processes in different persons may affect the actual risk of exposure. The human side of the cancer causation formula, that is, considerable importance. To understand how human DNA repair processes function, our laboratories at Chalk River have studied 'mutant' human cell strains in tissue culture. Generally, these DNA repair-defective cell strains are derived from individual donors with heritable disorders that are associated with carcinogen-hypersensitivity and cancer-proneness. Such studies, together with related epidemiological research, have highlighted the importance of this new 'human' factor in carcinogenesis

  2. Biomonitoring of complex occupational exposures to carcinogens: The case of sewage workers in Paris

    International Nuclear Information System (INIS)

    Al Zabadi, Hamzeh; Ferrari, Luc; Laurent, Anne-Marie; Tiberguent, Aziz; Paris, Christophe; Zmirou-Navier, Denis

    2008-01-01

    Sewage workers provide an essential service in the protection of public and environmental health. However, they are exposed to varied mixtures of chemicals; some are known or suspected to be genotoxics or carcinogens. Thus, trying to relate adverse outcomes to single toxicant is inappropriate. We aim to investigate if sewage workers are at increased carcinogenic risk as evaluated by biomarkers of exposure and early biological effects. This cross sectional study will compare exposed sewage workers to non-exposed office workers. Both are voluntaries from Paris municipality, males, aged (20–60) years, non-smokers since at least six months, with no history of chronic or recent illness, and have similar socioeconomic status. After at least 3 days of consecutive work, blood sample and a 24-hour urine will be collected. A caffeine test will be performed, by administering coffee and collecting urines three hours after. Subjects will fill in self-administered questionnaires; one covering the professional and lifestyle habits while the a second one is alimentary. The blood sample will be used to assess DNA adducts in peripheral lymphocytes. The 24-hour urine to assess urinary 8-oxo-7, 8-dihydro-2'-deoxy-Guanosine (8-oxo-dG), and the in vitro genotoxicity tests (comet and micronucleus) using HeLa S3 or HepG2 cells. In parallel, occupational air sampling will be conducted for some Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds. A weekly sampling chronology at the offices of occupational medicine in Paris city during the regular medical visits will be followed. This protocol has been accepted by the French Est III Ethical Comitee with the number 2007-A00685-48. Biomarkers of exposure and of early biological effects may help overcome the limitations of environmental exposure assessment in very complex occupational or environmental settings

  3. Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard.

    Science.gov (United States)

    Rusyn, Ivan; Chiu, Weihsueh A; Lash, Lawrence H; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z

    2014-01-01

    The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. The strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE. © 2013.

  4. The use of plants containing genotoxic carcinogens as foods and medicine.

    Science.gov (United States)

    Prinsloo, Gerhard; Nogemane, Noluyolo; Street, Renee

    2018-04-05

    In many developing countries, populations rely on traditional medicine for primary health care, which have infiltrated commercial markets globally as natural remedies are generally regarded as safe. Traditional and natural remedies are adapted and expanded in commercial products and product ranges to provide alternatives for various diseases and illnesses. These products resemble very little of the traditional use and application and adverse effects are observed in several cases. Some of the herbs and botanical formulations therefore, are not as safe as are commonly contemplated. This paper discusses some plants that are used as food or medicine. These plants are known to contain chemical components that have been identified as genotoxic carcinogens. Often contradictory results are obtained with beneficial and adverse effects reported. The concentration, biotransformation and metabolism of these compounds, as well as the matrix effect, affect the outcome of these results, therefore not providing a clear picture of the risk associated with the use and consumption of these plants. This paper focuses on plants that are accepted as healthy, however contain compounds that are genotoxic and carcinogenic. We further highlight the risks in use of these plants where thorough studies have been conducted in various food and plant products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Smoking out carcinogens

    OpenAIRE

    Baines, David; Griffiths, Huw; Parker, Jane

    2016-01-01

    Smoked foods are becoming increasingly popular and are being produced by large and small food operations, artisan producers, chefs and consumers themselves. Epidemiological studies conducted over a number of decades have linked the consumption of smoked foods with various cancers and these findings have been supported by animal testing. Smoke contains a group of dangerous carcinogens that are responsible for lung cancer in cigarette smokers and implicated as causative agents for colorectal an...

  6. The epidermal cell kinetic response to ultraviolet B irradiation combines regenerative proliferation and carcinogen associated cell cycle delay

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, W.M.; Kirkhus, B. (Oslo Univ. (Norway))

    1989-09-01

    The cell cycle traverse of epidermal basal cells 24 h after in vivo exposure of ultraviolet B (UVB) irradiation was studied by immunochemical staining of incorporated bromodeoxyuridine (BrdU) and bivariate BrdU/DNA flow cytometric analysis. The results were compared with the cell kinetic patterns following topical application of the skin carcinogen methylnitrosourea (MNU) as well as the skin irritant cantharidin. The cell cycle traverse in hairless mouse epidermis 24 h after in vivo exposure to UVB seemed to be a combination of the cell kinetic effects following chemical skin carcinogens and skin irritants. UVB irradiation induced both a delay in transit time through S phase, probably due to DNA damage and subsequent repair, as well as a reduction in the total cell cycle time consistent with rapid regenerative proliferation. (author).

  7. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale.

    Science.gov (United States)

    Malaj, Egina; von der Ohe, Peter C; Grote, Matthias; Kühne, Ralph; Mondy, Cédric P; Usseglio-Polatera, Philippe; Brack, Werner; Schäfer, Ralf B

    2014-07-01

    Organic chemicals can contribute to local and regional losses of freshwater biodiversity and ecosystem services. However, their overall relevance regarding larger spatial scales remains unknown. Here, we present, to our knowledge, the first risk assessment of organic chemicals on the continental scale comprising 4,000 European monitoring sites. Organic chemicals were likely to exert acute lethal and chronic long-term effects on sensitive fish, invertebrate, or algae species in 14% and 42% of the sites, respectively. Of the 223 chemicals monitored, pesticides, tributyltin, polycyclic aromatic hydrocarbons, and brominated flame retardants were the major contributors to the chemical risk. Their presence was related to agricultural and urban areas in the upstream catchment. The risk of potential acute lethal and chronic long-term effects increased with the number of ecotoxicologically relevant chemicals analyzed at each site. As most monitoring programs considered in this study only included a subset of these chemicals, our assessment likely underestimates the actual risk. Increasing chemical risk was associated with deterioration in the quality status of fish and invertebrate communities. Our results clearly indicate that chemical pollution is a large-scale environmental problem and requires far-reaching, holistic mitigation measures to preserve and restore ecosystem health.

  8. Advancing the 3Rs in Regulatory Toxicology - Carcinogenicity Testing: Scope for Harmonisation and Advancing the 3Rs in Regulated Sectors of the European Union

    Science.gov (United States)

    Abstract Different government agencies operating in the European Union regulate different types of chemical products, but all require testing for carcinogenicity to support applications for product marketing and commercialisation. A conference was held in Brussels in 2013 where ...

  9. Carcinogenicity of petroleum lubricating oil distillates: effects of solvent refining, hydroprocessing, and blending.

    Science.gov (United States)

    Halder, C A; Warne, T M; Little, R Q; Garvin, P J

    1984-01-01

    Certain refining processes were investigated to determine their influence on the dermal carcinogenic activity of petroleum-derived lubricating oil distillates. Specifically, the effects of solvent refining, hydroprocessing, a combination of both processes, and the blending of oils processed using each technique were evaluated in standard mouse skin-painting bioassays. The refining process used as well as the level or severity of treatment greatly influenced the carcinogenic outcome of processed lubricating oils. Solvent refining at severities normally used appeared to eliminate carcinogenicity. In contrast, hydroprocessing alone at mild levels of treatment was successful only in reducing the carcinogenic potency; severe hydroprocessing conditions were necessary to eliminate carcinogenic activity without the use of additional refining processes. Carcinogenic activity could also be eliminated by following moderate solvent refining with mild hydroprocessing. Blending of hydroprocessed oils with solvent-refined oils resulted in a substantial reduction or even elimination of carcinogenic activity. However, the degree of protection obtained varied with the particular distillates used and appeared largely dependent on the inherent biological activity of the hydroprocessed oil.

  10. PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL

    Science.gov (United States)

    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  11. Assessment of the in vivo genotoxicity of cadmium chloride, chloroform, and D,L-menthol as coded test chemicals using the alkaline comet assay.

    Science.gov (United States)

    Wada, Kunio; Fukuyama, Tomoki; Nakashima, Nobuaki; Matsumoto, Kyomu

    2015-07-01

    As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM) international validation study of in vivo rat alkaline comet assays, we examined cadmium chloride, chloroform, and D,L-menthol under blind conditions as coded chemicals in the liver and stomach of Sprague-Dawley rats after 3 days of administration. Cadmium chloride showed equivocal responses in the liver and stomach, supporting previous reports of its poor mutagenic potential and non-carcinogenic effects in these organs. Treatment with chloroform, which is a non-genotoxic carcinogen, did not induce DNA damage in the liver or stomach. Some histopathological changes, such as necrosis and degeneration, were observed in the liver; however, they did not affect the comet assay results. D,L-Menthol, a non-genotoxic non-carcinogen, did not induce liver or stomach DNA damage. These results indicate that the comet assay can reflect genotoxic properties under blind conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India

    International Nuclear Information System (INIS)

    Saini, Komal; Singh, Parminder; Bajwa, Bikramjit Singh

    2016-01-01

    LED flourimeter has been used for microanalysis of uranium concentration in groundwater samples collected from six districts of South West (SW), West (W) and North East (NE) Punjab, India. Average value of uranium content in water samples of SW Punjab is observed to be higher than WHO, USEPA recommended safe limit of 30 µg l −1 as well as AERB proposed limit of 60 µg l −1 . Whereas, for W and NE region of Punjab, average level of uranium concentration was within AERB recommended limit of 60 µg l −1 . Average value observed in SW Punjab is around 3–4 times the value observed in W Punjab, whereas its value is more than 17 times the average value observed in NE region of Punjab. Statistical analysis of carcinogenic as well as non carcinogenic risks due to uranium have been evaluated for each studied district. - Highlights: • Uranium level in groundwater samples have been assessed in different regions of Punjab. • Comparative study of carcinogenic and non carcinogenic effects of uranium has been done. • Wide variation has been found for different geological regions. • It has been found that South west Punjab is worst affected by uranium contamination in its water. • For west and north east regions of Punjab, uranium levels in groundwater laid under recommended safe limits.

  13. Relative potency estimation for synthetic petroleum skin carcinogens.

    OpenAIRE

    Holland, J M; Wolf, D A; Clark, B R

    1981-01-01

    A procedure for quantitative analysis of skin carcinogenesis data, for the purpose of establishing carcinogenic potency, has been applied to observations obtained from C3H mice exposed continuously to synthetic and natural petroleums. The importance of total polynuclear aromatic (PNA) content to the skin carcinogenic activity of the crude materials was also examined. Of three synthetic petroleums evaluated, all were shown capable of inducing skin neoplasms within a two-year exposure period. U...

  14. Risk-based indicators of Canadians' exposures to environmental carcinogens.

    Science.gov (United States)

    Setton, Eleanor; Hystad, Perry; Poplawski, Karla; Cheasley, Roslyn; Cervantes-Larios, Alejandro; Keller, C Peter; Demers, Paul A

    2013-02-12

    Tools for estimating population exposures to environmental carcinogens are required to support evidence-based policies to reduce chronic exposures and associated cancers. Our objective was to develop indicators of population exposure to selected environmental carcinogens that can be easily updated over time, and allow comparisons and prioritization between different carcinogens and exposure pathways. We employed a risk assessment-based approach to produce screening-level estimates of lifetime excess cancer risk for selected substances listed as known carcinogens by the International Agency for Research on Cancer. Estimates of lifetime average daily intake were calculated using population characteristics combined with concentrations (circa 2006) in outdoor air, indoor air, dust, drinking water, and food and beverages from existing monitoring databases or comprehensive literature reviews. Intake estimates were then multiplied by cancer potency factors from Health Canada, the United States Environmental Protection Agency, and the California Office of Environmental Health Hazard Assessment to estimate lifetime excess cancer risks associated with each substance and exposure pathway. Lifetime excess cancer risks in excess of 1 per million people are identified as potential priorities for further attention. Based on data representing average conditions circa 2006, a total of 18 carcinogen-exposure pathways had potential lifetime excess cancer risks greater than 1 per million, based on varying data quality. Carcinogens with moderate to high data quality and lifetime excess cancer risk greater than 1 per million included benzene, 1,3-butadiene and radon in outdoor air; benzene and radon in indoor air; and arsenic and hexavalent chromium in drinking water. Important data gaps were identified for asbestos, hexavalent chromium and diesel exhaust in outdoor and indoor air, while little data were available to assess risk for substances in dust, food and beverages. The ability to

  15. Defence biochemical mechanisms of the organisms against chemical pollution and ionizing radiations

    International Nuclear Information System (INIS)

    Olinescu, Radu

    2001-01-01

    Acute exposure to high concentrations / doses of chemical pollutants and ionizing radiation usually kills giving no chance for survival, if not immediately, than later followed by specific diseases. Fortunately, this acute exposure is accidental, but chronic, low level exposure is also damaging. The involvement of pollution, especially of chemically produced, one in the etiology of several diseases is still under intensive research. Compared to other kinds of pollution (radioactive, microbiological), the chemical one seldom kills suddenly; it acts slowly, silently, by accumulation into the tissues, eventually inducing a failure of certain organ. The body is continuously adapting to low level concentrations of chemicals from environment until a certain threshold. All organisms, including humans, have a limited capacity of resisting the effects of various types of pollutants. Extensive laboratory research, demonstrated that most of damaging organic pollutants cause the formation of free radicals when they penetrate into the body and are metabolized. Free radicals are very reactive and are known to damage tissues with potentially fatal results. Substantial experimental evidence in recent years has demonstrated that all organisms are endowed with versatile, efficient antioxidant systems, that provide protection against the formation or effects of free radicals. However, the antioxidant systems are limited and when their capacity of protection is exceeded, injury resulting in illness or death occurs. In most cases, the harmful effects of chemicals on organisms depend on the biotransformation step, where free radicals are produced as byproducts of the metabolic reactions. The damaging effects of chemical pollutants are mostly restricted to an important organ depending on the way of penetration, nature of the compound and concentration. The organisms possess specific and nonspecific defense systems, which act from the exposure step, with attempt to block the entry of

  16. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Iizuka, Daisuke; Daino, Kazuhiro; Takabatake, Takashi; Okamoto, Mieko; Kakinuma, Shizuko; Shimada, Yoshiya

    2009-01-01

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  17. Carcinogen risk assessment

    International Nuclear Information System (INIS)

    Hazelwoold, R.N.

    1987-01-01

    This article describes the methods by which risk factors for carcinogenic hazards are determined and the limitations inherent in the process. From statistical and epidemiological studies, the major identifiable factors related to cancer in the United States were determined to be cigarette smoking, diet, reproductive and sexual behavior, infections, ultraviolet and ionizing radiation, and alcohol consumption. The incidence of lung cancer due to air pollutants was estimated to be less than 2%. Research needs were discussed

  18. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies.

    Science.gov (United States)

    Greim, Helmut; Saltmiras, David; Mostert, Volker; Strupp, Christian

    2015-03-01

    Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are that glyphosate is of low toxicological concern, and no concerns exist with respect to glyphosate use and cancer in humans. This manuscript discusses the basis for these conclusions. Most toxicological studies informing regulatory evaluations are of commercial interest and are proprietary in nature. Given the widespread attention to this molecule, the authors gained access to carcinogenicity data submitted to regulatory agencies and present overviews of each study, followed by a weight of evidence evaluation of tumor incidence data. Fourteen carcinogenicity studies (nine rat and five mouse) are evaluated for their individual reliability, and select neoplasms are identified for further evaluation across the data base. The original tumor incidence data from study reports are presented in the online data supplement. There was no evidence of a carcinogenic effect related to glyphosate treatment. The lack of a plausible mechanism, along with published epidemiology studies, which fail to demonstrate clear, statistically significant, unbiased and non-confounded associations between glyphosate and cancer of any single etiology, and a compelling weight of evidence, support the conclusion that glyphosate does not present concern with respect to carcinogenic potential in humans.

  19. Effects of chemical carcinogens of hemopoiesis, immunopoiesis and viral oncogenesis. Technical progress report, December 1, 1977--September 30, 1978. [Mechanisms of potentiation of viral leukemogenesis by MMS, benzopyrene, and DMBA

    Energy Technology Data Exchange (ETDEWEB)

    OKunewick, J.P.; Raikow, R.B.; Meredith, R.F.

    1978-10-01

    During the past year we have concentrated on defining the circumstances under which methyl methanesulfonate (MMS), benzo(a) pyrene (BP), and 7,12-dimethylbenz(a)anthracene (DMBA) interact with Friend virus (FLV) to produce leukemia. The optimum scheduling for each and also the effective dose levels of the chemicals have been partially determined. There are at least three critical factors which govern whether or not a leukemogenic interaction can be shown between the chemical agents and the virus. These are chemical dose, virus dose, and their relative time of administration. The most critical of these is virus dose. The optimum virus dose is that which results in between 25 and 40% incidence of leukemia within 40 days after virus infection when virus is given alone. The chemical carcinogens have a lower dose threshold, below which no significant potentiating effect can be observed. The only upper limit would appear to be acute drug toxicity. The third element, timing, is equally critical and varies according to the chemical. This variation may reflect different mechanisms of action by the chemical agents and/or different pharmacology. Data on the effects of MMS, BP, and DMBA on the immune system have indicated that the viral enhancement is probably not dependent on this function. Further enhancement of the potentiation of viral leukemogenesis was observed using benzo(a)pyrene and caffeine, indicating that the inhibition by caffeine of DNA repair may be an important factor in virus potentiation. (ERB)

  20. Transplacental exposure to environmental carcinogens: Association with childhood cancer risks and the role of modulating factors.

    Science.gov (United States)

    Fucic, A; Guszak, V; Mantovani, A

    2017-09-01

    Biological responses to carcinogens from environmental exposure during adulthood are modulated over years or decades. Conversely, during transplacental exposure, the effects on the human foetus change within weeks, intertwining with developmental mechanisms: even short periods of transplacental exposure may be imprinted in the organism for a lifetime. The pathways leading to childhood and juvenile cancers, such as leukaemias, neuroblastoma/brain tumours, hepatoblastoma, and Willm's tumour involve prenatally-induced genomic, epigenomic and/or non-genomic effects caused by xenobiotics. Pregnant women most often live in complex environmental settings that cause transplacental exposure of the foetus to xenobiotic mixtures. Mother-child biomonitoring should integrate the analysis of chemicals/radiation present in the living and workplace environment with relevant risk modulators related to life style. The interdisciplinary approach for transplacental cancer risk assessment in high-pressure areas should be based on an integrated model for mother-child exposure estimation via profiling the exposure level by water quality analysis, usage of emission grids, and land use maps. Copyright © 2017. Published by Elsevier Inc.

  1. Toxicity of selected organic chemicals to the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.; Milligan, D.L.; Durkin, P.R.

    A number of methods recently have been developed to biologically evaluate the impact of man's activities on soil ecosystems. Two test methods, the 2-d contact test and the 14-d artificial soil test, were used to evaluate the impact of six major classes of organic chemicals on the earthworm Eisenia fetida (Savigny). Of the organic chemicals tested, phenols and amines were the most toxic to the worms, followed in descending order of toxicity by the substituted aromatics, halogenated aliphatics, polycyclic aromatic hydrocarbons, and phthalates. No relationship was found between earthworm toxicity as determined by the contact test and rat, Rattus norvegicus Berkenhout and mouse, Mus musculus L. LD/sub 50/ values. The physicochemical parameters of water solubility, vapor pressure, and octanol/water partition coefficient for the chemicals tested in the contact test did not show a significant relationship to the E. fetida LC/sub 50/ values. These studies indicate that: (i) earthworms can be a suitable biomonitoring tool to assist in measuring the impact of organic chemicals in wastes added to soils and (ii) contact and artificial soil tests can be useful in measuring biological impacts.

  2. Retraction: Evaluation of carcinogenic effects of electromagnetic fields (EMF).

    Science.gov (United States)

    Mehic, Bakir

    2010-11-01

    The Editor-in-chief of the Bosnian Journal of Basic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: "Evaluation of carcinogenic effects of electromagnetic fields (EMF)" published in Bosn J Basic Med Sci. 2010 Aug;10(3):245-50. After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.

  3. Cell transformation assays for prediction of carcinogenic potential: state of the science and future research needs

    Science.gov (United States)

    Creton, Stuart; Aardema, Marilyn J.; Carmichael, Paul L.; Harvey, James S.; Martin, Francis L.; Newbold, Robert F.; O’Donovan, Michael R.; Pant, Kamala; Poth, Albrecht; Sakai, Ayako; Sasaki, Kiyoshi; Scott, Andrew D.; Schechtman, Leonard M.; Shen, Rhine R.; Tanaka, Noriho; Yasaei, Hemad

    2012-01-01

    Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting. PMID:21852270

  4. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water

    Science.gov (United States)

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  5. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water**

    Science.gov (United States)

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  6. Ptaquiloside, the major carcinogen of bracken fern, in the pooled raw milk of healthy sheep and goats: an underestimated, global concern of food safety.

    Science.gov (United States)

    Virgilio, Antonella; Sinisi, Annamaria; Russo, Valeria; Gerardo, Salvatore; Santoro, Adriano; Galeone, Aldo; Taglialatela-Scafati, Orazio; Roperto, Franco

    2015-05-20

    Bracken fern (Pteridium aquilinum) is a worldwide plant containing toxic substances, which represent an important chemical hazard for animals, including humans. Ptaquiloside, 1, a norsesquiterpenoid glucoside, is the major carcinogen of bracken detected in the food chain, particularly in the milk from farm animals. To date, ptaquiloside has been shown in the milk of cows feeding on a diet containing bracken fern. This is the first study that shows the systematic detection of ptaquiloside, 1, and reports its direct quantitation in pooled raw milk of healthy sheep and goats grazing on bracken. Ptaquiloside, 1, was detected by a sensitive method based on the chemical conversion of ptaquiloside, 1, into bromopterosine, 4, following gas chromatography-mass spectrometry (GC-MS) analysis. The presence of ptaquiloside, 1, possibly carcinogenic to humans, in the milk of healthy animals is an unknown potential health risk, thus representing a harmful and potential global concern of food safety.

  7. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  8. Enhanced replication of UV-damaged Simian virus 40 DNA in carcinogen-treated mammalian cells

    International Nuclear Information System (INIS)

    Maga, J.A.

    1983-01-01

    The replication of UV-damaged Simian virus 40 (SV40) in carcinogen-treated monkey cells has been studied to elucidate the mechanism of carcinogen-enhanced reactivation. Carcinogen enhanced reactivation is the observed increase in UV-irradiated virus survival in host cells treated with low doses of carcinogen compared to UV-irradiated virus survival in untreated hosts. Carcinogen treatment of monkey kidney cells with either N-acetoxy-2-acetylaminofluorene (AAAF) or UV radiation leads to an enhanced capacity to replicate UV-damaged virus during the first round of infection. To further define the mechanism leading to enhanced replication, a detailed biochemical analysis of replication intermediates in carcinogen-treated cells was performed. Several conclusions can be drawn. First enhanced replication can be observed in the first four rounds of replication after UV irradiation of viral templates. The second major finding is that the relaxed circular intermediate model proposed for the replication of UV-damaged templates in untreated cells appears valid for replication of UV-damaged templates in carcinogen-treated cells. Possible mechanisms and the supporting evidence are discussed and future experiments outlined

  9. Food derived carcinogenic amnoimidazoazaarenes

    DEFF Research Database (Denmark)

    Frandsen, Henrik

    Carcinogenic aminoimidazoazaarenes are formed during cooking of meat and fish. Important factors for the formation of these compounds are meat type, cooking temperature and time. The compounds are genotoxic in bacterial and mammalian cells. In animal feeding studies the compounds tested so far were...... of the exocyclic amino group. Estimations of human cancer risk have indicated that ingestion of food containing aminoimidazoazaarenes are of importance....

  10. Impact of environmental exposures on the mutagenicity/carcinogenicity of heterocyclic amines

    Energy Technology Data Exchange (ETDEWEB)

    Felton, James S; Knize, Mark G; Bennett, L Michelle; Malfatti, Michael A; Colvin, Michael E; Kulp, Kristen S

    2004-05-20

    Carcinogenic heterocyclic amines are produced from overcooked foods and are highly mutagenic in most short-term test systems. One of the most abundant of these amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), induces breast, colon and prostate tumors in rats. Human dietary epidemiology studies suggest a strong correlation between either meat consumption or well-done muscle meat consumption and cancers of the colon, breast, stomach, lung and esophagus. For over 20 years our laboratory has helped define the human exposure to these dietary carcinogens. In this report we describe how various environmental exposures may modulate the risk from exposure to heterocyclic amines, especially PhIP. To assess the impact of foods on PhIP metabolism in humans, we developed an LC/MS/MS method to analyze the four major PhIP urinary metabolites following the consumption of a single portion of grilled chicken. Adding broccoli to the volunteers' diet altered the kinetics of PhIP metabolism. At the cellular level we have found that PhIP itself stimulates a significant estrogenic response in MCF-7 cells, but even more interestingly, co-incubation of the cells with herbal teas appear to enhance the response. Numerous environmental chemicals found in food or the atmosphere can impact the exposure, metabolism, and cell proliferation response of heterocyclic amines.

  11. Impact of environmental exposures on the mutagenicity/carcinogenicity of heterocyclic amines

    International Nuclear Information System (INIS)

    Felton, James S.; Knize, Mark G.; Bennett, L. Michelle; Malfatti, Michael A.; Colvin, Michael E.; Kulp, Kristen S.

    2004-01-01

    Carcinogenic heterocyclic amines are produced from overcooked foods and are highly mutagenic in most short-term test systems. One of the most abundant of these amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), induces breast, colon and prostate tumors in rats. Human dietary epidemiology studies suggest a strong correlation between either meat consumption or well-done muscle meat consumption and cancers of the colon, breast, stomach, lung and esophagus. For over 20 years our laboratory has helped define the human exposure to these dietary carcinogens. In this report we describe how various environmental exposures may modulate the risk from exposure to heterocyclic amines, especially PhIP. To assess the impact of foods on PhIP metabolism in humans, we developed an LC/MS/MS method to analyze the four major PhIP urinary metabolites following the consumption of a single portion of grilled chicken. Adding broccoli to the volunteers' diet altered the kinetics of PhIP metabolism. At the cellular level we have found that PhIP itself stimulates a significant estrogenic response in MCF-7 cells, but even more interestingly, co-incubation of the cells with herbal teas appear to enhance the response. Numerous environmental chemicals found in food or the atmosphere can impact the exposure, metabolism, and cell proliferation response of heterocyclic amines

  12. Quantitative comparison of genotoxic (mutagenic and carcinogenic) risks and the choice of energy sources

    International Nuclear Information System (INIS)

    Latarjet, R.

    1983-01-01

    For 25 years, pollution for radiation has been governed by restrictive rules enacted and periodically revised by an international commission, and adopted by all countries. Nothing similar exists for mutagenic and carcinogenic chemicals. Since these substances affect the genetic material in the cells with reactions often similar to those caused by radiation, quantitative comparisons are possible, in particular for some of those compounds produced by the combustion of coal, oil and gaz. This paper describes the main results obtained at the Institut Curie, since 1975, with ethylene, ethylene oxide and vinyl chloride monomer. The consequences are discussed for: a) the establishement of control rules for the main genotoxic chemical pollutions; b) the assessment of long term risks in the cases of nuclear energy and of the energies obtained by combustion [fr

  13. Evaluation of tests using DNA repair-deficient bacteria for predicting genotoxicity and carcinogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, Z.; Kada, T.; Mandel, M.; Zeiger, E.; Stafford, R.; Rosenkranz, H.S.

    1981-01-01

    The detection of DNA-damaging agents by repair-deficient bacterial assays is based on the differential inhibition of growth of repair-proficient and repair-deficient bacterial pairs. The various methodologies used are described and recommendations are made for their improved use. In a survey of the literature through April 1979, 91 of 276 papers evaluated contained usable data, resulting in an analysis of 611 compounds that had been assayed in 1 or more of 55 pairs of repair-proficient and repair-deficient strains. The results indicate that a liquid suspension assay is more sensitive than a spot (diffusion) test. There was a 78% correspondence between results obtained with E. coli polA and Bacillus subtilis (H17/M45, 17A/45T) rec assay and between E. coli polA and Proteus mirabilis. In a comparison of test results with carcinogenicity data, 44 of 71 (62%) carcinogenic compounds assayed by the polA system were positive, 10 (14%) were negative, and 17 (24%) gave No Test or doubtful results. The results were analyzed with respect to chemical classes. E. coli polA detected the highest percentage of hydroxylamines and alkyl epoxides. The B. subtilis rec assay detected the highest percentage of nitrosamines and sulfur and nitrogen oxides. It is concluded that some of these test systems are effective tools for the detection of DNA-damaging and potentially carcinogenic compounds, especially if the assay is done in liquid suspension and if more than 1 pair of tester strains is used. Advantages and disadvantages of the assay are discussed and suggestions are made for improvements in the system.

  14. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  15. Carcinogenic and neurotoxic risks of acrylamide consumed through caffeinated beverages among the lebanese population.

    Science.gov (United States)

    El-Zakhem Naous, Ghada; Merhi, Areej; Abboud, Martine I; Mroueh, Mohamad; Taleb, Robin I

    2018-06-06

    The present study aims to quantify acrylamide in caffeinated beverages including American coffee, Lebanese coffee, espresso, instant coffee and hot chocolate, and to determine their carcinogenic and neurotoxic risks. A survey was carried for this purpose whereby 78% of the Lebanese population was found to consume at least one type of caffeinated beverages. Gas Chromatography Mass Spectrometry analysis revealed that the average acrylamide level in caffeinated beverages is 29,176 μg/kg sample. The daily consumption of acrylamide from Lebanese coffee (10.9 μg/kg-bw/day), hot chocolate (1.2 μg/kg-bw/day) and Espresso (7.4 μg/kg-bw/day) was found to be higher than the risk intake for carcinogenicity and neurotoxicity as set by World Health Organization (WHO; 0.3-2 μg/kg-bw/day) at both the mean (average consumers) and high (high consumers) dietary exposures. On the other hand, American coffee (0.37 μg/kg-bw/day) was shown to pose no carcinogenic or neurotoxic risks among the Lebanese community for consumers with a mean dietary exposure. The study shows alarming results that call for regulating the caffeinated product industry by setting legislations and standard protocols for product preparation in order to limit the acrylamide content and protect consumers. In order to avoid carcinogenic and neurotoxic risks, we propose that WHO/FAO set acrylamide levels in caffeinated beverages to 7000 μg acrylamide/kg sample, a value which is 4-folds lower than the average acrylamide levels of 29,176 μg/kg sample found in caffeinated beverages sold in the Lebanese market. Alternatively, consumers of caffeinated products, especially Lebanese coffee and espresso, would have to lower their daily consumption to 0.3-0.4 cups/day. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The carcinogenic effects of aspartame: The urgent need for regulatory re-evaluation.

    Science.gov (United States)

    Soffritti, Morando; Padovani, Michela; Tibaldi, Eva; Falcioni, Laura; Manservisi, Fabiana; Belpoggi, Fiorella

    2014-04-01

    Aspartame (APM) is an artificial sweetener used since the 1980s, now present in >6,000 products, including over 500 pharmaceuticals. Since its discovery in 1965, and its first approval by the US Food and Drugs Administration (FDA) in 1981, the safety of APM, and in particular its carcinogenicity potential, has been controversial. The present commentary reviews the adequacy of the design and conduct of carcinogenicity bioassays on rodents submitted by G.D. Searle, in the 1970s, to the FDA for market approval. We also review how experimental and epidemiological data on the carcinogenic risks of APM, that became available in 2005 motivated the European Commission (EC) to call the European Food and Safety Authority (EFSA) for urgent re-examination of the available scientific documentation (including the Searle studies). The EC has further requested that, if the results of the evaluation should suggest carcinogenicity, major changes must be made to the current APM specific regulations. Taken together, the studies performed by G.D. Searle in the 1970s and other chronic bioassays do not provide adequate scientific support for APM safety. In contrast, recent results of life-span carcinogenicity bioassays on rats and mice published in peer-reviewed journals, and a prospective epidemiological study, provide consistent evidence of APM's carcinogenic potential. On the basis of the evidence of the potential carcinogenic effects of APM herein reported, a re-evaluation of the current position of international regulatory agencies must be considered an urgent matter of public health. © 2014 Wiley Periodicals, Inc.

  17. Development and application of non-invasive biomarkers for carcinogen-DNA adduct analysis in occupationally exposed populations.

    Science.gov (United States)

    Talaska, G; Cudnik, J; Jaeger, M; Rothman, N; Hayes, R; Bhatnagar, V J; Kayshup, S J

    1996-07-17

    Biological monitoring of exposures to carcinogenic compounds in the workplace can be a valuable adjunct to environmental sampling and occupational medicine. Carcinogen-DNA adduct analysis has promise as a biomarker of effective dose if target organ samples can be obtained non-invasively. We have developed non-invasive techniques using exfoliated urothelial and bronchial cells collected in urine and sputum, respectively. First morning urine samples were collected from 33 workers exposed to benzidine or benzidine-based dyes and controls matched for age, education, and smoking status. Sufficient DNA for 32P-postlabelling analysis was obtained from every sample. Mean levels of a specific DNA adduct (which co-chromatographed with standard characterized by MS) were elevated significantly in the benzidine-exposed workers relative to controls. In addition, workers exposed to benzidine had higher adduct levels than those exposed to benzidine-based dyes. This study demonstrates the usefulness of these non-invasive techniques for exposure/effect assessment. To be useful in occupational studies, biomarkers must also be sensitive to exposure interventions. We have conducted topical application studies of used gasoline engine oils in mice and found that the levels of carcinogen-DNA adducts in skin and lung can be significantly lowered if skin cleaning is conducted in a timely manner. The combination of useful, non-invasive techniques to monitor exposure and effect and industrial hygiene interventions can be used to detect and prevent exposures to a wide range of carcinogens including those found in used gasoline engine oils and jet exhausts.

  18. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    International Nuclear Information System (INIS)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-01-01

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA

  19. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  20. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  1. Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal.

    Science.gov (United States)

    O'Brien, J; Renwick, A G; Constable, A; Dybing, E; Müller, D J G; Schlatter, J; Slob, W; Tueting, W; van Benthem, J; Williams, G M; Wolfreys, A

    2006-10-01

    The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both carcinogenic and genotoxic, it does not take carcinogenic potency into account and, therefore, does not permit prioritisation based on potential risk or concern. In the absence of carcinogenicity dose-response data, an assessment based on comparison with an appropriate threshold of toxicological concern may be possible. When carcinogenicity data from animal bioassays are available, a useful analysis is achieved by the calculation of margins of exposure (MOEs), which can be used to compare animal potency data with human exposure scenarios. Two reference points on the dose-response relationship that can be used for MOE calculation were examined; the T25 value, which is derived from linear extrapolation, and the BMDL10, which is derived from mathematical modelling of the dose-response data. The above approaches were applied to selected food-borne genotoxic carcinogens. The proposed approach is applicable to all substances in food that are DNA-reactive genotoxic carcinogens and enables the formulation of appropriate semi-quantitative advice to risk managers.

  2. Undergraduate Organic Chemistry Laboratory Safety

    Science.gov (United States)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  3. From bioavailability science to regulation of organic chemicals

    NARCIS (Netherlands)

    Ortega-Calvo, J.J.; Harmsen, J.; Parsons, J.R.; Semple, K.T.; Aitkin, M.D.; Ajao, C.; Eadsforth, C.; Galay-Burgos, M.; Naidu, R.; Oliver, R.; Peijnenburg, W.J.G.M.; Römbke, J.; Streck, G.; Versonnen, B.

    2015-01-01

    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently

  4. Report on carcinogens monograph on 1-bromopropane.

    Science.gov (United States)

    2013-09-01

    The National Toxicology Program conducted a cancer evaluation on 1 bromopropane for possible listing in the Report on Carcinogens (RoC). The cancer evaluation is captured in the RoC monograph, which was peer reviewed in a public forum. The monograph consists of two components: (Part 1) the cancer evaluation, which reviews the relevant scientific information, assesses its quality, applies the RoC listing criteria to the scientific information, and provides the NTP recommendation for listing status for 1 bromopropane in the RoC, and (Part 2) the substance profile proposed for the RoC, containing the NTP's listing status recommendation, a summary of the scientific evidence considered key to reaching that decision, and data on properties, use, production, exposure, and Federal regulations and guidelines to reduce exposure to 1-bromopropane. This monograph provides an assessment of the available scientific information on 1 bromopropane, including human exposure and properties, disposition and toxicokinetics, cancer studies in experimental animals, and studies of mechanisms and other related effects, including relevant toxicological effects, genetic toxicology, and mechanisms of carcinogenicity. From this assessment, the NTP recommended that 1 bromopropane be listed as reasonably anticipated to be a human carcinogen in the RoC based on sufficient evidence from studies in experimental animals, which found inhalation exposure to 1-bromopropane caused skin tumors in male rats, large intestine tumors in female and male rats, and lung tumors in female mice. Also noted was that 1 bromopropane, either directly or via reactive metabolites, caused molecular alterations that typically are associated with carcinogenesis, including genotoxicity, oxidative stress, and glutathione depletion. These alterations, observed in mainly in vitro and toxicity studies in rodents, are relevant to possible mechanisms of human carcinogenicity and support the relevance of the cancer studies in

  5. Where do organic chemicals found in soil systems come from

    International Nuclear Information System (INIS)

    Dragun, J.; Mason, S.A.; Barkach, J.H.

    1991-01-01

    Today's regulatory climate encourages the private sector to assess the environmental condition of their facilities. An environmental assessment often includes the collection of soil samples. Despite the trend to obtain reams of numbers to show the presence of chemicals, many misconceptions exist among environmental scientists and engineers regarding the interpretation of those numbers. The presence of organic chemicals in soil may or may not be problematic. This depends primarily upon the source. If an industrial point source is responsible for the spill or bulk release, then remedial activity usually ensues. However, if the source is not an industrial release, then remedial activity may not be required. This paper will briefly discuss the sources, other than industrial point sources, responsible for the presence of organic chemicals in soil systems

  6. The effect of new probiotic strain Lactobacillus plantarum on counts of coliforms, lactobacilli and bacterial enzyme activities in rats exposed to N,N-dimethylhydrazine (chemical carcinogen

    Directory of Open Access Journals (Sweden)

    Denisa Čokášová

    2012-01-01

    Full Text Available The aim of the present study was to evaluate the effect of the new probiotic strain Lactobacillus plantarum on chemically induced carcinogenesis in rats. Sprague dowley rats (n = 33 were divided into control and experimental groups and were fed a conventional laboratory diet. In the experimental group, rats were treated with the probiotic at the dose of 1 × 109 CFU (colony-forming units/ml. Two weeks after the beginning of the trial, N,N-dimethylhydrazine (chemical carcinogen injections were applied s.c. at the dose of 21 mg/kg b.w., 5 × weekly. At the end of the 8-month experimental period, faeces samples were taken from the rats and used for laboratory analysis. The counts of lactobacilli and coliforms and bacterial enzyme activity were determined. The probiotic strain L. plantarum as single species or in combination with oil (Lini oleum virginale decreased the count of total coliforms and increased lactobacilli in faeces of rats. Application of probiotic microorganisms significantly (P < 0.05 decreased the activities of bacterial enzymes (β-galactosidase and β-glucuronidase compared to the control group rats. The results of this study indicate that probiotic microorganisms could exert a preventive effect on colon carcinogenesis induced by N,N-dimethylhydrazine.

  7. TMVOC, simulator for multiple volatile organic chemicals

    International Nuclear Information System (INIS)

    Pruess, Karsten; Battistelli, Alfredo

    2003-01-01

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem

  8. Carcinogenic effects of radiation-introduction

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1976-01-01

    The weight of experimental evidence reviewed indicates that UV damage to DNA, probably pyrimidine dimers, is the best molecular candidate for the initiating damage that leads to skin cancer. It is postulated that the carcinogenic action spectrum should be similar to the DNA action spectrum filtered through the upper layer of skin

  9. Organic chemicals in the environment

    International Nuclear Information System (INIS)

    Anderson, T.A.; Beauchamp, J.J.; Walton, B.T.

    1991-01-01

    Disappearance of 15 volatile and semivolatile organic compounds was determined in a mixture added to two different soil types using experimental procedures to distinguish abiotic losses from biological degradation over a 7-d period. Losses due to volatilization were quantified and mass balances were calculated for each compound. The compounds (methyl ethyl ketone; tetrahydrofuran; chlorobenzene; benzene; chloroform; carbon tetrachloride; p-xylene; 1,2-dichlorobenzene; cis-1,4-dich-loro-2-butene; 1,2,3-trichloropropane; 2-chloronaphthalene; ethylene dibromide; hexachlorobenzene; nitrobenzene; and toluene) were applied to the soil in a mixture such that the concentration of each chemical was 100 mg/kg soil (dry wt.). Apparent half-lives for the 15 organic compounds ranged from 14 C-toluene, were unsuccessful. Nonreversible sorption and preanalysis storage conditions were considered as contributors to this inability to achieve a mass balance. On the basis of these results, the authors strongly advise positive accounting for all test compounds and degradation products at the conclusion of studies involving volatile and semivolatile compounds

  10. Immunity against mouse thymus-leukemia antigen (TL) protects against development of lymphomas induced by a chemical carcinogen, N-butyl-N-nitrosourea.

    Science.gov (United States)

    Tsujimura, Kunio; Obata, Yuichi; Matsudaira, Yasue; Ozeki, Satoshi; Taguchi, Osamu; Nishida, Keiko; Okanami, Yuko; Akatsuka, Yoshiki; Kuzushima, Kiyotaka; Takahashi, Toshitada

    2004-11-01

    Mouse thymus-leukemia antigens (TL) are aberrantly expressed on T lymphomas in C57BL/6 (B6) and C3H/He (C3H) mice, while they are not expressed on normal T lymphocytes in these strains. When N-butyl-N-nitrosourea (NBU), a chemical carcinogen, was administered orally to B6 and C3H strains, lymphoma development was slower than in T3(b)-TL gene-transduced counterpart strains expressing TL ubiquitously as self-antigens, suggesting that anti-TL immunity may play a protective role. In addition, the development of lymphomas was slightly slower in C3H than in B6, which seems to be in accordance with the results of skin graft experiments indicating that both cellular and humoral immunities against TL were stronger in C3H than B6 mice. The interesting finding that B lymphomas derived from a T3(b)-TL transgenic strain (C3H background) expressing a very high level of TL were rejected in C3H, but not in H-2K(b) transgenic mice (C3H background), raises the possibility that TL-specific effector T cell populations are eliminated and/or energized to a certain extent by interacting with H-2K(b) molecules.

  11. The effect of substituents in the aromatic ring on carcinogenicity of N-nitrosomethylaniline in F344 rats.

    Science.gov (United States)

    Kroeger-Koepke, M B; Reuber, M D; Iype, P T; Lijinsky, W; Michejda, C J

    1983-01-01

    N-Nitroso-N-methylaniline (NMA) and N-nitroso-N-methyl-4-fluoroaniline (p-F-NMA), both non-mutagenic in Salmonella typhimurium and N-nitroso-N-methyl-4-nitroaniline (p-NO2-NMA), a potent mutagen, were tested for carcinogenicity in F344 rats. NMA was shown to induce a high level of tumors in the upper gastrointestinal tract, particularly in the esophagus. Male rats treated with NMA died with tumors at a slightly higher rate than females, although the final tumor yield was the same. Most of the rats treated with p-F-NMA also developed tumors of the esophagus, but they died less rapidly than the NMA treated rats, indicating that p-F-NMA is a slightly weaker carcinogen than NMA. The powerful, directly acting mutagen, p-NO2-NMA did not appear to induce tumors at all since its tumor spectrum was essentially identical to that of the untreated control rats. Thus, the carcinogenic activities of NMA and its substituted analogs do not appear to correlate with bacterial mutagenesis assays. Additionally, NMA, p-F-NMA and N-nitroso-N-methyl-4-bromoaniline, the last a strong mutagen in S. typhimurium, were shown not to induce sister chromatid exchanges in CHO cells and in a clone of a CHO:liver cell hybrid which had previously been shown to be sensitive to chemical agents which require metabolic activation.

  12. Environmental exposure to human carcinogens in teenagers and the association with DNA damage

    International Nuclear Information System (INIS)

    Franken, Carmen; Koppen, Gudrun; Lambrechts, Nathalie; Govarts, Eva; Bruckers, Liesbeth; Den Hond, Elly; Loots, Ilse; Nelen, Vera; Sioen, Isabelle; Nawrot, Tim S.; Baeyens, Willy; Van Larebeke, Nicolas; Boonen, Francis; Ooms, Daniëlla; Wevers, Mai; Jacobs, Griet; Covaci, Adrian; Schettgen, Thomas; Schoeters, Greet

    2017-01-01

    Background: We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. Material and methods: Six hundred 14–15-year-old youngsters were recruited all over Flanders (Belgium) and in two areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP) metabolites. In blood, arsenic, polychlorinated biphenyl (PCB) congeners 118 and 156, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and perfluorooctanoic acid (PFOA) were analyzed. Levels of methylmercury (MeHg) were measured in hair. Multiple linear regression models were used to establish exposure-response relationships. Results: Biomarkers of exposure to PAHs and urinary chromium were associated with higher levels of both 8-OHdG in urine and DNA damage detected by the alkaline comet assay. Concentrations of 8-OHdG in urine increased in relation with increasing concentrations of urinary t,t-muconic acid, cadmium, nickel, 2,5-DCP, and DEHP metabolites. Increased concentrations of PFOA in blood were associated with higher levels of DNA damage measured by the alkaline comet assay, whereas DDT was associated in the same direction with the Fpg-modified comet assay. Inverse associations were observed between blood arsenic, hair MeHg, PCB 156 and HCB, and urinary 8-OHdG. The latter exposure biomarkers were also associated with higher fish intake. Urinary nickel

  13. Environmental exposure to human carcinogens in teenagers and the association with DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Franken, Carmen, E-mail: carmen.franken@vito.be [Flemish Institute for Technological Research (VITO), Mol (Belgium); Department of Biomedical Sciences, University of Antwerp, Antwerp (Belgium); Koppen, Gudrun; Lambrechts, Nathalie; Govarts, Eva [Flemish Institute for Technological Research (VITO), Mol (Belgium); Bruckers, Liesbeth [Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt (Belgium); Den Hond, Elly [Flemish Institute for Technological Research (VITO), Mol (Belgium); Loots, Ilse [Political and Social Sciences, University of Antwerp, Antwerp (Belgium); Nelen, Vera [Provincial Institute for Hygiene, Antwerp (Belgium); Sioen, Isabelle [Department of Public Health, Ghent University, Ghent (Belgium); Department of Food Safety and Food Quality, Ghent University, Ghent (Belgium); Nawrot, Tim S. [Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium); Department of Public Health & Primary Care, Leuven University, Leuven (Belgium); Baeyens, Willy [Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels (Belgium); Van Larebeke, Nicolas [Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels (Belgium); Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent (Belgium); Boonen, Francis; Ooms, Daniëlla; Wevers, Mai; Jacobs, Griet [Flemish Institute for Technological Research (VITO), Mol (Belgium); Covaci, Adrian [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp (Belgium); Schettgen, Thomas [Department of Occupational and Social Medicine, RWTH Aachen University, Aachen (Germany); Schoeters, Greet [Flemish Institute for Technological Research (VITO), Mol (Belgium); Department of Biomedical Sciences, University of Antwerp, Antwerp (Belgium); University of Southern Denmark, Institute of Public Health, Department of Environmental Medicine, Odense (Denmark)

    2017-01-15

    Background: We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. Material and methods: Six hundred 14–15-year-old youngsters were recruited all over Flanders (Belgium) and in two areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP) metabolites. In blood, arsenic, polychlorinated biphenyl (PCB) congeners 118 and 156, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and perfluorooctanoic acid (PFOA) were analyzed. Levels of methylmercury (MeHg) were measured in hair. Multiple linear regression models were used to establish exposure-response relationships. Results: Biomarkers of exposure to PAHs and urinary chromium were associated with higher levels of both 8-OHdG in urine and DNA damage detected by the alkaline comet assay. Concentrations of 8-OHdG in urine increased in relation with increasing concentrations of urinary t,t-muconic acid, cadmium, nickel, 2,5-DCP, and DEHP metabolites. Increased concentrations of PFOA in blood were associated with higher levels of DNA damage measured by the alkaline comet assay, whereas DDT was associated in the same direction with the Fpg-modified comet assay. Inverse associations were observed between blood arsenic, hair MeHg, PCB 156 and HCB, and urinary 8-OHdG. The latter exposure biomarkers were also associated with higher fish intake. Urinary nickel

  14. Moesin Is a Biomarker for the Assessment of Genotoxic Carcinogens in Mouse Lymphoma

    Science.gov (United States)

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-01-01

    1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells. PMID:22358511

  15. In vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

    Science.gov (United States)

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...

  16. Combined use of computational chemistry and chemoinformatics methods for chemical discovery

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Manabu, E-mail: sugimoto@kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ideo, Toshihiro; Iwane, Ryo [Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan)

    2015-12-31

    Data analysis on numerical data by the computational chemistry calculations is carried out to obtain knowledge information of molecules. A molecular database is developed to systematically store chemical, electronic-structure, and knowledge-based information. The database is used to find molecules related to a keyword of “cancer”. Then the electronic-structure calculations are performed to quantitatively evaluate quantum chemical similarity of the molecules. Among the 377 compounds registered in the database, 24 molecules are found to be “cancer”-related. This set of molecules includes both carcinogens and anticancer drugs. The quantum chemical similarity analysis, which is carried out by using numerical results of the density-functional theory calculations, shows that, when some energy spectra are referred to, carcinogens are reasonably distinguished from the anticancer drugs. Therefore these spectral properties are considered of as important measures for classification.

  17. Occurrence of the carcinogenic Bracken constituent ptaquiloside in fronds, topsoils and organic soil layers in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, L.H.; Kroghsbo, S.; Frisvad, Jens Christian

    2003-01-01

    Bracken (Pteridium aquilinum (L.) Kuhn) is a common fern found on all continents except Antarctica. It is under suspicion of causing cancer among people who utilizes it as food. The main carcinogenic compound is thought to be the water-soluble compound ptaquiloside. Ptaquiloside-uptake may occur...... not only through food, but also via drinking water as ptaquiloside might leach from plant material. The purpose of the study was to identify environmental parameters that correlate with the ptaquiloside-content in fronds, and to quantify the amount of ptaquiloside in the soil environment. The ptaquiloside...

  18. Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals

    International Nuclear Information System (INIS)

    Poet, Torka S.; Timchalk, Chuck

    2006-01-01

    A large number of volatile chemicals have been identified in the headspaces of tanks used to store mixed chemical and radioactive waste at the U.S. Department of Energy (DOE) Hanford Site, and there is concern that vapor releases from the tanks may be hazardous to workers. Contractually established occupational exposure limits (OELs) established by the Occupational Safety and Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH) do not exist for all chemicals of interest. To address the need for worker exposure guidelines for those chemicals that lack OSHA or ACGIH OELs, a procedure for assigning Acceptable Occupational Exposure Limits (AOELs) for Hanford Site tank farm workers has been developed and applied to a selected group of 57 headspace chemicals

  19. Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Poet, Torka S.; Timchalk, Chuck

    2006-03-24

    A large number of volatile chemicals have been identified in the headspaces of tanks used to store mixed chemical and radioactive waste at the U.S. Department of Energy (DOE) Hanford Site, and there is concern that vapor releases from the tanks may be hazardous to workers. Contractually established occupational exposure limits (OELs) established by the Occupational Safety and Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH) do not exist for all chemicals of interest. To address the need for worker exposure guidelines for those chemicals that lack OSHA or ACGIH OELs, a procedure for assigning Acceptable Occupational Exposure Limits (AOELs) for Hanford Site tank farm workers has been developed and applied to a selected group of 57 headspace chemicals.

  20. [To-day exposure to occupational carcinogens and their effects. The experience of the rubber industry, iron metallurgy, asphalt work and aviculture].

    Science.gov (United States)

    Barbieri, Pietro Gino

    2009-01-01

    While the progressive improvement of hygiene situations in the workplaces has taken to a reduction of chemical carcinogens exposure, in recent years in Italy the number of compensated occupational cancer resulting from carcinogens exposures of distant decades, has been increasing. Nevertheless, several experiences suggest that the proportion of occupational cancers unrecognised and not notified, as required by law, still remains important. This contribution concerns some experiences, performed between 2004-2008 by the Local Occupational Health Service (SPSAL) located in a highly industrialised province, on the working sector of rubber, iron and steel industry, the asphalt working and the poultry stock-breeders. This work concerns the following issues: - the evaluation of carcinogens exposure; - technical preventive measures and personal protection; - the level of workers' information and formation and the registration of exposed workers; - the characterization of work-related cancer. The results of the 5 years of activity allow us to underline that, in the most of 49 plants involved in the study, the carcinogens exposure evaluation and the prevention and protection measures were lacking. Information of workers was largely deficient and the registration of exposed workers was absent. A major attention to detect and to evaluate the work-related cancer has allowed us to recognize 50 new cases in the iron-steel industries and 21 new cases in a rubber industry. Although this experience concerns only few occupational fields, it provides the basis to call for a greater commitment of SPSAL addressed to companies and general practitioners to both, the promotion and surveillance of the correct procedures of carcinogens exposure evaluation and his prevention, and the active detection of occupational cancer, still missing.

  1. Chemical, green and organic manure effects on chemical properties on a savannah oxisol and on corn under conventional tillage and no-tillage

    Science.gov (United States)

    Mannigel, Anny R.; Alves, Marlene C.; Valério Filho, Walter V.

    2015-04-01

    Modern agriculture, in general, has always been based on the concept that natural resources are endless; however, this concept is changing. Concern for the environment is increasingly becoming part of farming practices, either by the awareness of society, or because the high cost of fertilizers or even the exhaustion of soils. The objective of this research was to evaluate the effects of the green manure and mineral fertilizer and/or organic manure and, on the chemical properties of an Oxisol, on "Savannah" (cerrado) area in Mato Grosso do Sul-Brazil, cultivated with corn (Zea mays L.) on the following management conditions: no-tillage and conventional tillage, on area previously under pasture (Brachiaria decumbens). The experimental design was a randomized blocks and the tested treatments were: control (without organic manure or chemical fertilizer); chemical fertilizer, as recommended for the culture and based on the chemical soil analysis; organic manure (cow manure); organic manure + half of the mineral fertilizer recommended rate; and the green manure Crotalaria juncea and Pennisetum americanum. The chemical analyses were the soil chemical analysis to the intent of soil fertility. Corn yield was evaluated. The collect of soil samples were realized in depths of 0.00-0.05 m and 0.05-0.10 m and 0.10-0.20 m. The organic manure and the organic manure + half of the mineral recommended rate increased P, Ca, Mg, K and Organic Matter in the first depth (0.00 - 0.05 m). These treatments also increased K and Mg at the second depth analyzed (0.05 - 0.10 m) and K in the depth from 0.10 - 0.20 m. Under conventional tillage management presents better crop results with an average grain yield of 3649 kg ha-1 versus 2374 kg ha-1 obtained under no-tillage. The use of chemical fertilizer, organic manure + half of the mineral recommended rate, Crotalaria juncea, organic manure and Pennisetum americanum increased corn yield by 84, 79, 58, 44 and 41 %, respectively.

  2. Application of the key characteristics of carcinogens in cancer hazard identification

    Science.gov (United States)

    Guyton, Kathryn Z; Rusyn, Ivan; Chiu, Weihsueh A; Corpet, Denis E; van den Berg, Martin; Ross, Matthew K; Christiani, David C; Beland, Frederick A; Smith, Martyn T

    2018-01-01

    Abstract Smith et al. (Env. Health Perspect. 124: 713, 2016) identified 10 key characteristics (KCs), one or more of which are commonly exhibited by established human carcinogens. The KCs reflect the properties of a cancer-causing agent, such as ‘is genotoxic,’ ‘is immunosuppressive’ or ‘modulates receptor-mediated effects,’ and are distinct from the hallmarks of cancer, which are the properties of tumors. To assess feasibility and limitations of applying the KCs to diverse agents, methods and results of mechanistic data evaluations were compiled from eight recent IARC Monograph meetings. A systematic search, screening and evaluation procedure identified a broad literature encompassing multiple KCs for most (12/16) IARC Group 1 or 2A carcinogens identified in these meetings. Five carcinogens are genotoxic and induce oxidative stress, of which pentachlorophenol, hydrazine and malathion also showed additional KCs. Four others, including welding fumes, are immunosuppressive. The overall evaluation was upgraded to Group 2A based on mechanistic data for only two agents, tetrabromobisphenol A and tetrachloroazobenzene. Both carcinogens modulate receptor-mediated effects in combination with other KCs. Fewer studies were identified for Group 2B or 3 agents, with the vast majority (17/18) showing only one or no KCs. Thus, an objective approach to identify and evaluate mechanistic studies pertinent to cancer revealed strong evidence for multiple KCs for most Group 1 or 2A carcinogens but also identified opportunities for improvement. Further development and mapping of toxicological and biomarker endpoints and pathways relevant to the KCs can advance the systematic search and evaluation of mechanistic data in carcinogen hazard identification. PMID:29562322

  3. Effect of Various Organic Fertilizers Substitute Chemical Fertilizer on Cucumber Productions

    International Nuclear Information System (INIS)

    Piadang, Nattayana; Ratanapanit, Sittisuk; Chaowanklang, Pratuang; Ratanapanit; Nadtinee; Jaipakdee, Putinee; Ongsakitboriboon

    2006-09-01

    The effect of using the various organic fertilizer to substitute on the chemical fertilizer on cucumber, was carried out at Tambol Pattananikom, Amphur Pattananikom, Lopburi, Thailand, from December 1, 2005 to February 1, 2006 By using Randomized Comp let Block Design (RCBD), Contain with 4 treatments, chemical fertilizer: 16-16-16: 40 Kg/rai (Control), Pillet organic fertilizer: 50 Kg/rai, Bio extract from cow milk: 300 cc./ water 20 Ltr,.+ compost mixed in soil and bio fertilizer from the office of Atomic Energy Peace : 300 cc./water 20 Ltr. + campost mixed in soil (15 m. 2 /plot) were compared. Experiment result indicate that there were no significant differences on the yield. The highest yield of 25.91 kg/plot (27663.73 kg/rai) was obtained from chemical fertilizer, Fertilizer, followed by pillet organic fertilizer 22.88 kg/plot (2440.53 kg/rai), bio fertilizer 22.34 kg/pot (2382.93 kg/rai) and bio extract 19.03 kg/plot) (2029.87 kg/rai.

  4. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  5. Search for Internal Cancers in Mice Tattooed with Inks of High Contents of Potential Carcinogens: A One-Year Autopsy Study of Red and Black Tattoo Inks Banned in the Market.

    Science.gov (United States)

    Sepehri, Mitra; Lerche, Catharina M; Hutton Carlsen, Katrina; Serup, Jørgen

    2017-01-01

    Tattoo ink stock products often contain potential carcinogens, which on large-scale population exposure may be clinically relevant. The aim of this autopsy study in mice was to screen major organs for clinical and subclinical cancers. Mice were tattooed on their backs. In total, 48 mice were included and divided into 4 groups; 11 mice tattooed black, 10 tattooed red, and 5 mice serving as untreated controls. A group of 22 mice with black tattoos and exposed to ultraviolet radiation (UVR) were also studied. The black and red inks were both stock products banned on the Danish market due to the measured contents of potential carcinogens; benzo(a)pyrene and 2-anisidine, respectively. The mice were housed for 1 year after tattooing, and autopsy study on internal organs was performed. Tissue samples were systematically taken from major organs for screening of subclinical changes, not detected by visual examination. Any observed deviation from normal structure was subject to biopsy and light microscopy. All mice survived the 1-year observation period. Autopsy revealed no macroscopic signs of cancer. Microscopic search of internal organs showed no subclinical or clinical cancer. Despite extensive tattoos with 2 banned inks, the long-term observation in mice showed no internal cancers nor was the combination of carcinogen and UVR associated with cancer. Lack of observed malignancy might be explained by the fact that tattooing is only a single dose exposure. Registered data on carcinogens relies on repeated or chronic exposures. The study does not support the hypothesis that tattooing causes cancer. © 2017 S. Karger AG, Basel.

  6. Disruption of spindle checkpoint function in rats following 28 days of repeated administration of renal carcinogens.

    Science.gov (United States)

    Kimura, Masayuki; Mizukami, Sayaka; Watanabe, Yousuke; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Yoshida, Toshinori; Shibutani, Makoto

    2016-02-01

    We previously reported that 28-day exposure to hepatocarcinogens that facilitate cell proliferation specifically alters the expression of G1/S checkpoint-related genes and proteins, induces aberrant early expression of ubiquitin D (UBD) at the G2 phase, and increases apoptosis in the rat liver, indicating G1/S and spindle checkpoint dysfunction. The present study aimed to determine the time of onset of carcinogen-specific cell-cycle disruption after repeated administration of renal carcinogens for up to 28 days. Rats were orally administered the renal carcinogens nitrofurantoin (NFT), 1-amino-2,4-dibromoantraquinone (ADAQ), and 1,2,3-trichloropropane (TCP) or the non-carcinogenic renal toxicants 1-chloro-2-propanol, triamterene, and carboxin for 3, 7 or 28 days. Both immunohistochemical single-molecule analysis and real-time RT-PCR analysis revealed that carcinogen-specific expression changes were not observed after 28 days of administration. However, the renal carcinogens ADAQ and TCP specifically reduced the number of cells expressing phosphorylated-histone H3 at Ser10 in both UBD(+) cells and proliferating cells, suggestive of insufficient UBD expression at the M phase and early transition of proliferating cells from the M phase, without increasing apoptosis, after 28 days of administration. In contrast, NFT, which has marginal carcinogenic potential, did not induce such cellular responses. These results suggest that it may take 28 days to induce spindle checkpoint dysfunction by renal carcinogens; however, induction of apoptosis may not be essential. Thus, induction of spindle checkpoint dysfunction may be dependent on carcinogenic potential of carcinogen examined, and marginal carcinogens may not exert sufficient responses even after 28 days of administration.

  7. Public Health Risk Conditioned by Chemical Composition of Ground Water

    Science.gov (United States)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  8. A proposed framework for consistent regulation of public exposures to radionuclides and other carcinogens

    International Nuclear Information System (INIS)

    Kocher, D.C.; Hoffman, F.O.

    1991-01-01

    This paper discusses a proposed framework for consistent regulation of carcinogenic risks to the public based on establishing de manifestis (i.e., unacceptable) and de minimis (i.e., trivial) lifetime risks from exposure to any carcinogens at levels of about 10 -1 --10 -3 and 10 -4 --10 -6 , respectively, and reduction of risks above de minimis levels as low as reasonably achievable (ALARA). We then discuss certain differences in the way risks from exposure to radionuclides and other carcinogens currently are regulated or assessed which would need to be considered in implementing the proposed regulatory framework for all carcinogens

  9. Carcinogenicity of chromium and chemoprevention: a brief update

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-08-01

    Full Text Available Yafei Wang,1,* Hong Su,1,* Yuanliang Gu,1 Xin Song,1 Jinshun Zhao1,2 1Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People’s Republic of China; 2Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA *These authors contributed equally to this work Abstract: Chromium has two main valence states: hexavalent chromium (Cr[VI] and trivalent chromium (Cr[III]. Cr(VI, a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V], tetravalent chromium (Cr[IV] or Cr(III via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI and/or Cr(III compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI and Cr(III and chemoprevention with different antioxidants. Keywords: hexavalent chromium, Cr(VI, trivalent chromium, Cr(III, genotoxicity, carcinogenicity, chemoprevention, antioxidant 

  10. Comparative toxicity of ten organic chemicals to four earthworm species

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Durkin, P.R.; Malecki, M.R.; Anatra, M.

    1986-01-01

    Ten organic chemicals were tested for toxicity to four earthworm species: Allolobophora tuberculata, Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus, using the European Economic Community's (EEC) earthworm artificial soil and contact testing procedure. The phenols were the most toxic chemicals tested, followed by the amine, substituted benzenes, halogenated aliphatic hydrocarbon, polycyclic aromatic hydrocarbon and phthalate as the least toxic chemical tested. Correlations among species within each type of test for a given chemical were extremely high, suggesting that the selection of earthworm test species does not markedly affect the assessment of a chemical's toxicity. The correlation between the two tests was low for all test species. The contact test LC50 for a given chemical cannot be directly correlated to an artificial soil test LC50 for the same earthworm species.

  11. Impact of occupational carcinogens on lung cancer risk in a general population

    NARCIS (Netherlands)

    De Matteis, S.; Consonni, D.; Lubin, J.H.; Tucker, M.; Peters, S.; Vermeulen, R.; Kromhout, H.; Bertazzi, P.A.; Caporaso, N.E.; Pesatori, A.C.; Wacholder, S.; Landi, M.T.

    2012-01-01

    BACKGROUND: Exposure to occupational carcinogens is an important preventable cause of lung cancer. Most of the previous studies were in highly exposed industrial cohorts. Our aim was to quantify lung cancer burden attributable to occupational carcinogens in a general population. METHODS: We applied

  12. Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide.

    Science.gov (United States)

    Xu, Changmou; Yagiz, Yavuz; Marshall, Sara; Li, Zheng; Simonne, Amarat; Lu, Jiang; Marshall, Maurice R

    2015-09-01

    Acrylamide is a byproduct of the Maillard reaction and is formed in a variety of heat-treated commercial starchy foods. It is known to be toxic and potentially carcinogenic to humans. Muscadine grape polyphenols and standard phenolic compounds were examined on the reduction of acrylamide in an equimolar asparagine/glucose chemical model, a potato chip model, and a simulated physiological system. Polyphenols were found to significantly reduce acrylamide in the chemical model, with reduced rates higher than 90% at 100 μg/ml. In the potato chip model, grape polyphenols reduced the acrylamide level by 60.3% as concentration was increased to 0.1%. However, polyphenols exhibited no acrylamide reduction in the simulated physiological system. Results also indicated no significant correlation between the antioxidant activities of polyphenols and their acrylamide inhibition. This study demonstrated muscadine grape extract can mitigate acrylamide formation in the Maillard reaction, which provides a new value-added application for winery pomace waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Prioritizing Chemicals for Risk Assessment Using Chemoinformatics: Examples from the IARC Monographs on Pesticides.

    Science.gov (United States)

    Guha, Neela; Guyton, Kathryn Z; Loomis, Dana; Barupal, Dinesh Kumar

    2016-12-01

    Identifying cancer hazards is the first step towards cancer prevention. The International Agency for Research on Cancer (IARC) Monographs Programme, which has evaluated nearly 1,000 agents for their carcinogenic potential since 1971, typically selects agents for hazard identification on the basis of public nominations, expert advice, published data on carcinogenicity, and public health importance. Here, we present a novel and complementary strategy for identifying agents for hazard evaluation using chemoinformatics, database integration, and automated text mining. To inform selection among a broad range of pesticides nominated for evaluation, we identified and screened nearly 6,000 relevant chemical structures, after which we systematically compiled information on 980 pesticides, creating network maps that allowed cluster visualization by chemical similarity, pesticide class, and publicly available information concerning cancer epidemiology, cancer bioassays, and carcinogenic mechanisms. For the IARC Monograph meetings that took place in March and June 2015, this approach supported high-priority evaluation of glyphosate, malathion, parathion, tetrachlorvinphos, diazinon, p,p'-dichlorodiphenyltrichloroethane (DDT), lindane, and 2,4-dichlorophenoxyacetic acid (2,4-D). This systematic approach, accounting for chemical similarity and overlaying multiple data sources, can be used by risk assessors as well as by researchers to systematize, inform, and increase efficiency in selecting and prioritizing agents for hazard identification, risk assessment, regulation, or further investigation. This approach could be extended to an array of outcomes and agents, including occupational carcinogens, drugs, and foods. Citation: Guha N, Guyton KZ, Loomis D, Barupal DK. 2016. Prioritizing chemicals for risk assessment using chemoinformatics: examples from the IARC Monographs on Pesticides. Environ Health Perspect 124:1823-1829; http://dx.doi.org/10.1289/EHP186.

  14. Prioritizing Chemicals for Risk Assessment Using Chemoinformatics: Examples from the IARC Monographs on Pesticides

    Science.gov (United States)

    Guha, Neela; Guyton, Kathryn Z.; Loomis, Dana; Barupal, Dinesh Kumar

    2016-01-01

    Background: Identifying cancer hazards is the first step towards cancer prevention. The International Agency for Research on Cancer (IARC) Monographs Programme, which has evaluated nearly 1,000 agents for their carcinogenic potential since 1971, typically selects agents for hazard identification on the basis of public nominations, expert advice, published data on carcinogenicity, and public health importance. Objectives: Here, we present a novel and complementary strategy for identifying agents for hazard evaluation using chemoinformatics, database integration, and automated text mining. Discussion: To inform selection among a broad range of pesticides nominated for evaluation, we identified and screened nearly 6,000 relevant chemical structures, after which we systematically compiled information on 980 pesticides, creating network maps that allowed cluster visualization by chemical similarity, pesticide class, and publicly available information concerning cancer epidemiology, cancer bioassays, and carcinogenic mechanisms. For the IARC Monograph meetings that took place in March and June 2015, this approach supported high-priority evaluation of glyphosate, malathion, parathion, tetrachlorvinphos, diazinon, p,p′-dichlorodiphenyltrichloroethane (DDT), lindane, and 2,4-dichlorophenoxyacetic acid (2,4-D). Conclusions: This systematic approach, accounting for chemical similarity and overlaying multiple data sources, can be used by risk assessors as well as by researchers to systematize, inform, and increase efficiency in selecting and prioritizing agents for hazard identification, risk assessment, regulation, or further investigation. This approach could be extended to an array of outcomes and agents, including occupational carcinogens, drugs, and foods. Citation: Guha N, Guyton KZ, Loomis D, Barupal DK. 2016. Prioritizing chemicals for risk assessment using chemoinformatics: examples from the IARC Monographs on Pesticides. Environ Health Perspect 124:1823–1829;

  15. Dehydropyrrolizidine Alkaloid Toxicity, Cytotoxicity, and Carcinogenicity

    Directory of Open Access Journals (Sweden)

    Bryan L. Stegelmeier

    2016-11-01

    Full Text Available Dehydropyrrolizidine alkaloid (DHPA-producing plants have a worldwide distribution amongst flowering plants and commonly cause poisoning of livestock, wildlife, and humans. Previous work has produced considerable understanding of DHPA metabolism, toxicity, species susceptibility, conditions, and routes of exposure, and pathogenesis of acute poisoning. Intoxication is generally caused by contaminated grains, feed, flour, and breads that result in acute, high-dose, short-duration poisoning. Acute poisoning produces hepatic necrosis that is usually confirmed histologically, epidemiologically, and chemically. Less is known about chronic poisoning that may result when plant populations are sporadic, used as tisanes or herbal preparations, or when DHPAs contaminate milk, honey, pollen, or other animal-derived products. Such subclinical exposures may contribute to the development of chronic disease in humans or may be cumulative and probably slowly progress until liver failure. Recent work using rodent models suggest increased neoplastic incidence even with very low DHPA doses of short durations. These concerns have moved some governments to prohibit or limit human exposure to DHPAs. The purpose of this review is to summarize some recent DHPA research, including in vitro and in vivo DHPA toxicity and carcinogenicity reports, and the implications of these findings with respect to diagnosis and prognosis for human and animal health.

  16. Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States.

    Science.gov (United States)

    Zhou, Ying; Li, Chaoyang; Huijbregts, Mark A J; Mumtaz, M Moiz

    2015-01-01

    Public health protection from air pollution can be achieved more effectively by shifting from a single-pollutant approach to a multi-pollutant approach. To develop such multi-pollutant approaches, identifying which air pollutants are present most frequently is essential. This study aims to determine the frequently found carcinogenic air toxics or hazardous air pollutants (HAPs) combinations across the United States as well as to analyze the health impacts of developing cancer due to exposure to these HAPs. To identify the most commonly found carcinogenic air toxics combinations, we first identified HAPs with cancer risk greater than one in a million in more than 5% of the census tracts across the United States, based on the National-Scale Air Toxics Assessment (NATA) by the U.S. EPA for year 2005. We then calculated the frequencies of their two-component (binary), and three-component (ternary) combinations. To quantify the cancer-related health impacts, we focused on the 10 most frequently found HAPs with national average cancer risk greater than one in a million. Their cancer-related health impacts were calculated by converting lifetime cancer risk reported in NATA 2005 to years of healthy life lost or Disability-Adjusted Life Years (DALYs). We found that the most frequently found air toxics with cancer risk greater than one in a million are formaldehyde, carbon tetrachloride, acetaldehyde, and benzene. The most frequently occurring binary pairs and ternary mixtures are the various combinations of these four air toxics. Analysis of urban and rural HAPs did not reveal significant differences in the top combinations of these chemicals. The cumulative annual cancer-related health impacts of inhaling the top 10 carcinogenic air toxics included was about 1,600 DALYs in the United States or 0.6 DALYs per 100,000 people. Formaldehyde and benzene together contribute nearly 60 percent of the total cancer-related health impacts. Our study shows that although there are many

  17. Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States.

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    Full Text Available Public health protection from air pollution can be achieved more effectively by shifting from a single-pollutant approach to a multi-pollutant approach. To develop such multi-pollutant approaches, identifying which air pollutants are present most frequently is essential. This study aims to determine the frequently found carcinogenic air toxics or hazardous air pollutants (HAPs combinations across the United States as well as to analyze the health impacts of developing cancer due to exposure to these HAPs. To identify the most commonly found carcinogenic air toxics combinations, we first identified HAPs with cancer risk greater than one in a million in more than 5% of the census tracts across the United States, based on the National-Scale Air Toxics Assessment (NATA by the U.S. EPA for year 2005. We then calculated the frequencies of their two-component (binary, and three-component (ternary combinations. To quantify the cancer-related health impacts, we focused on the 10 most frequently found HAPs with national average cancer risk greater than one in a million. Their cancer-related health impacts were calculated by converting lifetime cancer risk reported in NATA 2005 to years of healthy life lost or Disability-Adjusted Life Years (DALYs. We found that the most frequently found air toxics with cancer risk greater than one in a million are formaldehyde, carbon tetrachloride, acetaldehyde, and benzene. The most frequently occurring binary pairs and ternary mixtures are the various combinations of these four air toxics. Analysis of urban and rural HAPs did not reveal significant differences in the top combinations of these chemicals. The cumulative annual cancer-related health impacts of inhaling the top 10 carcinogenic air toxics included was about 1,600 DALYs in the United States or 0.6 DALYs per 100,000 people. Formaldehyde and benzene together contribute nearly 60 percent of the total cancer-related health impacts. Our study shows that although

  18. Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes

    International Nuclear Information System (INIS)

    Bassuk, J.A.; Tsichlis, P.N.; Sorof, S.

    1987-01-01

    Hepatocytes in normal rat liver were found previously to contain a cytoplasmic 14,000-dalton polypeptide (p14) that is associated with mitosis and is the principal early covalent target of activated metabolites of the carcinogen N-2-fluorenylacetamide (2-acetylaminofluorene). The level of immunohistochemically detected p14 was low when growth activity of hepatocytes was low, was markedly elevated during mitosis in normal and regenerating livers, but was very high throughout interphase during proliferation of hyperplastic and malignant hepatocytes induced in rat liver by a carcinogen (N-2-fluorenylacetamide or 3'-methyl-4-dimethylaminoazobenzene). The authors report here that p14 is the liver fatty acid binding protein. The nucleotide sequence of p14 cDNA clones, isolated by screening a rat liver cDNA library in bacteriophage λgt11 using p14 antiserum, was completely identical to part of the sequence reported for liver fatty acid binding protein. Furthermore, the two proteins shared the following properties: size of mRNA, amino acid composition, molecular size according to NaDodSO 4 gel electrophoresis, and electrophoretic mobilities in a Triton X-100/acetic acid/urea gel. The two polypeptides bound oleic acid similarly. Finally, identical elevations of cytoplasmic immunostain were detected specifically in mitotic hepatocytes with either antiserum. The collected findings are suggestive that liver fatty acid binding protein may carry ligands that promote hepatocyte division and may transport certain activated chemical carcinogens

  19. Population variability in biological adaptive responses to DNA damage and the shapes of carcinogen dose-response curves

    International Nuclear Information System (INIS)

    Conolly, Rory B.; Gaylor, David W.; Lutz, Werner K.

    2005-01-01

    Carcinogen dose-response curves for both ionizing radiation and chemicals are typically assumed to be linear at environmentally relevant doses. This assumption is used to ensure protection of the public health in the absence of relevant dose-response data. A theoretical justification for the assumption has been provided by the argument that low dose linearity is expected when an exogenous agent adds to an ongoing endogenous process. Here, we use computational modeling to evaluate (1) how two biological adaptive processes, induction of DNA repair and cell cycle checkpoint control, may affect the shapes of dose-response curves for DNA-damaging carcinogens and (2) how the resulting dose-response behaviors may vary within a population. Each model incorporating an adaptive process was capable of generating not only monotonic dose-responses but also nonmonotonic (J-shaped) and threshold responses. Monte Carlo analysis suggested that all these dose-response behaviors could coexist within a population, as the spectrum of qualitative differences arose from quantitative changes in parameter values. While this analysis is largely theoretical, it suggests that (a) accurate prediction of the qualitative form of the dose-response requires a quantitative understanding of the mechanism (b) significant uncertainty is associated with human health risk prediction in the absence of such quantitative understanding and (c) a stronger experimental and regulatory focus on biological mechanisms and interindividual variability would allow flexibility in regulatory treatment of environmental carcinogens without compromising human health

  20. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens

  1. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  2. Limits of the comparison between radiological and chemical hazards

    International Nuclear Information System (INIS)

    Maximilien, R.; Bounolleau, B.

    2003-01-01

    The primary reason for comparing radiological and chemical hazards is, in the absence of knowledge of similarities between underlying mechanisms, the comparability of the methods used to evaluate their long-term consequences, especially at low doses: carcinogenicity, mutagenicity and effects on reproduction. For radiations, the evaluation is performed above all in terms of risk quantification while for chemicals hazard identification is the main concern. (authors)

  3. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    Science.gov (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-01-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment. PMID:26239357

  4. Effectiveness of a Mass Media Campaign on Oral Carcinogens and Their Effects on the Oral Cavity

    Science.gov (United States)

    Shrestha, Ashish; Rimal, Jyotsna

    2018-03-27

    Objective: To develop a mass media campaign on oral carcinogens and their effects on the oral cavity in order to increase awareness among the general population. Methods: Documentary and public service announcements highlighting the effects of tobacco and its products were designed and developed based on principles of behavior change. A questionnaire, designed to determine the knowledge, attitude and practice of people regarding oral carcinogens, was used to conduct a baseline survey at various sites in eastern Nepal. Local television channels and radio stations broadcasted the documentary and public service announcements. An evaluation survey was then performed to assess the effectiveness of the campaign. Results: Baseline and evaluation surveys covered 1,972 and 2,140 individuals, respectively. A third of the baseline population consumed quid, 22% chewing tobacco, 16% gutka (commercial preparation of arecanut, tobacco, lime and chemicals) and 25% cigarettes. Tobacco consumption differed significantly between 3 ecologic regions with greater use in the Terai region. The knowledge prevalence regarding the oral carcinogens quid (70%), chewing tobacco (82%), gutka (58%) and cigarettes (93%) significantly increased in the evaluation population. Females were more aware about the various tobacco products and their effects on health. More people knew about the harmful effects of tobacco on their health and oral cavity, and had their mouth examined and the frequency of consumption of these products reduced significantly after the campaign. Attitudes towards production, sale and advertisements of tobacco also improved significantly. Conclusions: The mass media campaign was an effective tool for increasing awareness among the population. Creative Commons Attribution License

  5. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  6. Using carcinogenic agents in the research laboratories. Rules and procedure; Norme e procedure per l'utilizzo di agenti cancerogeni nei laboratori di ricerca

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, C.C.; Mancini, C. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1999-07-01

    The carcinogenic risk represents a main problem of Health and Safety at Work Act. Chemical carcinogens regulation has been recently improved by the Italian Decree No. 626/94. The aim of the present work is to outline the criteria for the protection of working people in a complex workplace such as research laboratories, focusing on its peculiar occupational health factors, such as the hazardous exposure to a vast array of chemicals also due to the frequent turnover in the personnel activities. [Italian] Il tema dell'esposizione ad agenti cancerogeni costituisce un vasto e complesso problema di igiene del lavoro e medicina preventiva. Limitatamente ai cancerogeni chimici, un impulso importante in materia di prevenzione e' venuto dalla promulgazione del D.lgs. 626/94 e successive modificazioni. Il presente lavoro ha lo scopo di fornire indicazioni concrete per la messa in atto delle misure di prevenzione e protezione dei lavoratori, ponendo particolare attenzione ai laboratori di ricerca che costituiscono ambienti lavorativi, particolari caratterizzati dal gran numero di agenti manipolati e dal continuo mutamento delle attivita' e del personale.

  7. Tooth Matrix Analysis for Biomonitoring of Organic Chemical Exposure: Current Status, Challenges, and Opportunities

    Science.gov (United States)

    Andra, Syam S.; Austin, Christine; Arora, Manish

    2015-01-01

    Epidemiological evidence supports associations between prenatal exposure to environmental organic chemicals and childhood health impairments. Unlike the common choice of biological matrices such as urine and blood that can be limited by short half-lives for some chemicals, teeth provide a stable repository for chemicals with half-life in the order of decades. Given the potential of the tooth bio-matrix to study long-term exposures to environmental organic chemicals in human biomonitoring programs, it is important to be aware of possible pitfalls and potential opportunities to improve on the current analytical method for tooth organics analysis. We critically review previous results of studies of this topic. The major drawbacks and challenges in currently practiced concepts and analytical methods in utilizing tooth bio-matrix are (i) no consideration of external (from outer surface) or internal contamination (from micro odontoblast processes), (ii) the misleading assumption that whole ground teeth represent prenatal exposures (latest formed dentine is lipid rich and therefore would absorb and accumulate more organic chemicals), (iii) reverse causality in exposure assessment due to whole ground teeth, and (iv) teeth are a precious bio-matrix and grinding them raises ethical concerns about appropriate use of a very limited resource in exposure biology and epidemiology studies. These can be overcome by addressing the important limitations and possible improvements with the analytical approach associated at each of the following steps (i) tooth sample preparation to retain exposure timing, (ii) organics extraction and pre-concentration to detect ultra-trace levels of analytes, (iii) chromatography separation, (iv) mass spectrometric detection to detect multi-class organics simultaneously, and (v) method validation, especially to exclude chance findings. To highlight the proposed improvements we present findings from a pilot study that utilizes tooth matrix biomarkers to

  8. OVERVIEW OF DRINKING WATER MUTAGENICITY AND CARCINOGENICITY AND RISK FOR BLADDER CANCER

    Science.gov (United States)

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroacetic acid and chlorite) are not carcinogenic-in either of 2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxici...

  9. Effect of organic carbon, active carbon, calcium ions and aging on the sorption of per- and polyfluoroalkylated substances (PFASs) to soil

    OpenAIRE

    Schedin, Erika

    2013-01-01

    Per- and polyfluoroalkylated substances (PFASs) are a large group of organic chemicals that have gained an increased attention during recent years. Many of the compounds have shown to be persistent, toxic and bioaccumulating and they are found in water, soils, sediments, biota, animals and humans across the globe. The effects of PFASs to humans and animals are still being debated. It is suspected that the compounds can be carcinogenic, disrupt different hormone systems and have other severe e...

  10. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  11. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  12. Carcinogen derived biomarkers: applications in studies of human exposure to secondhand tobacco smoke

    OpenAIRE

    Hecht, S

    2004-01-01

    Objective: To review the literature on carcinogen derived biomarkers of exposure to secondhand tobacco smoke (SHS). These biomarkers are specifically related to known carcinogens in tobacco smoke and include urinary metabolites, DNA adducts, and blood protein adducts.

  13. A review of biosensing techniques for detection of trace carcinogen contamination in food products.

    Science.gov (United States)

    Li, Zhanming; Yu, Yue; Li, Zhiliang; Wu, Tao

    2015-04-01

    Carcinogen contaminations in the food chain, for example heavy metal ions, pesticides, acrylamide, and mycotoxins, have caused serious health problems. A major objective of food-safety research is the identification and prevention of exposure to these carcinogens, because of their impossible-to-reverse tumorigenic effects. However, carcinogen detection is difficult because of their trace-level presence in food. Thus, reliable and accurate separation and determination methods are essential to protect food safety and human health. This paper summarizes the state of the art in separation and determination methods for analyzing carcinogen contamination, especially the advances in biosensing methods. Furthermore, the application of promising technology including nanomaterials, imprinted polymers, and microdevices is detailed. Challenges and perspectives are also discussed.

  14. Potential carcinogenicity predicted by computational toxicity evaluation of thiophosphate pesticides using QSTR/QSCarciAR model.

    Science.gov (United States)

    Petrescu, Alina-Maria; Ilia, Gheorghe

    2017-07-01

    This study presents in silico prediction of toxic activities and carcinogenicity, represented by the potential carcinogenicity DSSTox/DBS, based on vector regression with a new Kernel activity, and correlating the predicted toxicity values through a QSAR model, namely: QSTR/QSCarciAR (quantitative structure toxicity relationship/quantitative structure carcinogenicity-activity relationship) described by 2D, 3D descriptors and biological descriptors. The results showed a connection between carcinogenicity (compared to the structure of a compound) and toxicity, as a basis for future studies on this subject, but each prediction is based on structurally similar compounds and the reactivation of the substructures of these compounds.

  15. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  16. It is time to regulate carcinogenic tobacco-specific nitrosamines in cigarette tobacco

    Science.gov (United States)

    Hecht, Stephen S.

    2014-01-01

    The Family Smoking Prevention and Tobacco Control Act gives the Food and Drug Administration power to regulate tobacco products. This commentary calls for immediate regulation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N’-nitrosonornicotine (NNN) in cigarette tobacco as a logical path to cancer prevention. NNK and NNN, powerful carcinogens in laboratory animals, have been evaluated as “carcinogenic to humans” by the International Agency for Research on Cancer. NNK and NNN are present in the tobacco of virtually all marketed cigarettes; levels in cigarette smoke are directly proportional to the amounts in tobacco. The NNK metabolite NNAL, itself a strong carcinogen, is present in the urine of smokers and non-smokers exposed to secondhand smoke. Some of the highest levels of NNK and NNN are found in U.S. products. It is well established that factors such as choice of tobacco blend, agricultural conditions, and processing methods influence levels of NNK and NNN in cigarette tobacco and cigarette smoke. Therefore, it is time to control these factors and produce cigarettes with 100 ppb or less each of NNK and NNN in tobacco, which would result in an approximate 15-20 fold reduction of these carcinogens in the mainstream smoke of popular cigarettes sold in the United States. PMID:24806664

  17. Removal of indicator organisms by chemical treatment of wastewater.

    Science.gov (United States)

    De Zutter, L; van Hoof, J

    1981-01-01

    Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.

  18. Removal of toxic dichlorophenol from water by sorption with chemically activated carbon of almond shells - a green approach

    International Nuclear Information System (INIS)

    Jamil, N.; Ahsan, N.; Munwar, M.A.; Anwar, J.; Shafiq, U.

    2011-01-01

    Chloro phenols (CP) represents a group of organic compounds having substituted chlorines attached to phenol ring. These trace organic pollutants represent a major environmental concern, because of toxicity, non-biodegradability, carcinogenic and stubborn properties. The adsorption of 2, 4-dichlorophenol (DCP) by chemically activated carbon of almond shells (CAC-AS) has been studied in the batch setup. Operational parameters like adsorbent dose, pH, and shaking speed were investigated. Langmuir and Freundlich isotherms were employed to calculate adsorption capacity and other sorption features of CAC-AS. The maximum amount of DCP adsorbed was 24.3 mg per gram of activated carbon derived from almond shells. Optimum conditions for DCP uptake were 2.5 g adsorbent dose, pH 5 and agitation speed of 200 rpm whereas the concentration of DCP solution was 25 mg/L (50 mL). Results corroborated that almond shells pretreated chemically, can be an excellent low cost adsorbents for removal of DCP from contaminated water. (author)

  19. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals

    DEFF Research Database (Denmark)

    Thomas, Paul; Dawick, James; Lampi, Mark

    2015-01-01

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the p...

  20. Prevalence of occupational exposure to carcinogens among workers of Arabic, Chinese and Vietnamese ancestry in Australia.

    Science.gov (United States)

    Boyle, Terry; Carey, Renee N; Glass, Deborah C; Peters, Susan; Fritschi, Lin; Reid, Alison

    2015-09-01

    Although job-related diseases result in more deaths per year than job-related injuries, most research concerning ethnic minority workers has concerned accidents and injuries rather than disease-causing exposures such as carcinogens. We conducted a telephone-based cross-sectional survey to estimate the prevalence of occupational exposure to carcinogens among a sample of ethnic minority workers in Australia, and compared their exposure prevalence to that of a sample of the general Australian-born working population ('Australian workers'). One-third of the ethnic minority workers were exposed to at least one carcinogen at work. The likelihood of exposure to carcinogens was not significantly different from that of Australian workers, although the likelihood of exposure to individual carcinogens varied by ethnicity. Knowing the prevalence of exposure to carcinogens in the workplace in different ethnic groups will allow better targeted and informed occupational health and safety measures to be implemented where necessary. © 2015 Wiley Periodicals, Inc.

  1. Report on carcinogens monograph on cumene.

    Science.gov (United States)

    2013-09-01

    The National Toxicology Program conducted a cancer evaluation on cumene for possible listing in the Report on Carcinogens (RoC). The cancer evaluation is captured in the RoC monograph, which was peer reviewed in a public forum. The monograph consists of two components: (Part 1) the cancer evaluation, which reviews the relevant scientific information, assesses its quality, applies the RoC listing criteria to the scientific information, and provides the NTP recommendation for listing status for cumene in the RoC, and (Part 2) the substance profile proposed for the RoC, containing the NTP's listing status recommendation, a summary of the scientific evidence considered key to reaching that decision, and data on properties, use, production, exposure, and Federal regulations and guidelines to reduce exposure to cumene. This monograph provides an assessment of the available scientific information on cumene, including human exposure and properties, disposition and toxicokinetics, cancer studies in experimental animals, and studies of mechanisms and other related effects, including relevant toxicological effects, genetic toxicology, and mechanisms of carcinogenicity. From this assessment, the NTP recommended that cumene be listed as reasonably anticipated to be a human carcinogen in the RoC based on sufficient evidence from studies in experimental animals, which found that cumene exposure caused lung tumors in male and female mice and liver tumors in female mice. Several proposed mechanisms of carcinogenesis support the relevance to humans of the lung and liver tumors observed in experimental animals. Specifically, there is evidence that humans and experimental animals metabolize cumene through similar metabolic pathways. In addition, mutations of the K-ras oncogene and p53 tumor-suppressor gene observed in cumene-induced lung tumors in mice, along with altered expression of many other genes, resemble molecular alterations found in human lung and other cancers.

  2. Towards health impact assessment of drinking-water privatization--the example of waterborne carcinogens in North Rhine-Westphalia (Germany).

    Science.gov (United States)

    Fehr, Rainer; Mekel, Odile; Lacombe, Martin; Wolf, Ulrike

    2003-01-01

    Worldwide there is a tendency towards deregulation in many policy sectors - this, for example, includes liberalization and privatization of drinking-water management. However, concerns about the negative impacts this might have on human health call for prospective health impact assessment (HIA) on the management of drinking-water. On the basis of an established generic 10-step HIA procedure and on risk assessment methodology, this paper aims to produce quantitative estimates concerning health effects from increased exposure to carcinogens in drinking-water. Using data from North Rhine-Westphalia in Germany, probabilistic estimates of excess lifetime cancer risk, as well as estimates of additional cases of cancer from increased carcinogen exposure levels are presented. The results show how exposure to contaminants that are strictly within current limits could increase cancer risks and case-loads substantially. On the basis of the current analysis, we suggest that with uniform increases in pollutant levels, a single chemical (arsenic) is responsible for a large fraction of expected additional risk. The study also illustrates the uncertainty involved in predicting the health impacts of changes in water quality. Future analysis should include additional carcinogens, non-cancer risks including those due to microbial contamination, and the impacts of system failures and of illegal action, which may be increasingly likely to occur under changed management arrangements. If, in spite of concerns, water is privatized, it is particularly important to provide adequate surveillance of water quality. PMID:12894324

  3. Towards health impact assessment of drinking-water privatization--the example of waterborne carcinogens in North Rhine-Westphalia (Germany).

    Science.gov (United States)

    Fehr, Rainer; Mekel, Odile; Lacombe, Martin; Wolf, Ulrike

    2003-01-01

    Worldwide there is a tendency towards deregulation in many policy sectors - this, for example, includes liberalization and privatization of drinking-water management. However, concerns about the negative impacts this might have on human health call for prospective health impact assessment (HIA) on the management of drinking-water. On the basis of an established generic 10-step HIA procedure and on risk assessment methodology, this paper aims to produce quantitative estimates concerning health effects from increased exposure to carcinogens in drinking-water. Using data from North Rhine-Westphalia in Germany, probabilistic estimates of excess lifetime cancer risk, as well as estimates of additional cases of cancer from increased carcinogen exposure levels are presented. The results show how exposure to contaminants that are strictly within current limits could increase cancer risks and case-loads substantially. On the basis of the current analysis, we suggest that with uniform increases in pollutant levels, a single chemical (arsenic) is responsible for a large fraction of expected additional risk. The study also illustrates the uncertainty involved in predicting the health impacts of changes in water quality. Future analysis should include additional carcinogens, non-cancer risks including those due to microbial contamination, and the impacts of system failures and of illegal action, which may be increasingly likely to occur under changed management arrangements. If, in spite of concerns, water is privatized, it is particularly important to provide adequate surveillance of water quality.

  4. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  5. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    International Nuclear Information System (INIS)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-01-01

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells

  6. Developments in assessing carcinogenic risks from radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1984-01-01

    The papers in this volume have ranged widely over theoretical, experimental, and epidemiologic topics relating to radiation carcinogenesis. The multistage character of carcinogenesis, emphasis on the ease with which the initial event occurs in contrast to the infrequency of carcinogenic expression, the role of cell repair, and factors that may influence expression were major themes of the theoretical and experimental papers. The elegance of the cell transformation tool was illustrated in reviews of experimental work dealing with the exposure and environmental variables that influence radiation-induced transformation, among them the intracellular environment. Arguments were advanced for the view that more than one cell must be affected by radiation if a critical event is to occur. The relative congruence of carcinogens and clastogens was noted, and the suggestion made that the rules governing the induction of chromosomal aberrations by ionizing may apply to radiation carcinogenesis as well

  7. Short-term carcinogenicity testing of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f] quinoline (IQ) in E mu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Mortensen, Alicja; Kristiansen, E.

    1996-01-01

    The usefulness of transgenic E mu-pim-1 mice over-expressing the pim-1 oncogene in lymphoid tissues, as sensitive test organisms was studied in a short-term carcinogenicity study. The mice were fed standard diet Altromin 1314 supplemented either with 0.03% 2-amino-1-methyl-6-phenylimidazo[4,5-b......]pyridine (PhIP) for 7 months or with 0.03% 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) for 6 months, PhIP and IQ are heterocyclic amines formed during cooking of meat and fish and are mutagenic to bacteria and cultured mammalian cells, PhIP is a potent mouse lymphomagen, while IQ is a liver carcinogen...... to non-transgenic mice. Our results suggest that the transgenic E mu-pim-1 mouse may be a useful model for short-term carcinogenicity screening of potential genotoxic carcinogens having the lymphoid system as target tissue, The carcinogen IQ which does not have the lymphoid system as a target...

  8. Effects of different organic materials and chemical fertilizers on ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... 2The Chamber of Agricultural Engineers, Gaziantep, Turkey. Accepted 5 July, 2010. This study was conducted under greenhouse conditions to investigate the effects of applied nutrients such as ... Key words: Organic material, chemical fertilizer, Pistacia vera L., soil ... systematic approach of soil and plant.

  9. On the Chemical Characterization of Organic Matter in Rain at Mexico City.

    Science.gov (United States)

    Montero-Martinez, G.; Andraca-Ayala, G. L.; Hernández-Nagay, D. P.; Mendoza-Trejo, A.; Rivera-Arellano, J.; Rosado-Abon, A.; Roy, P. D.

    2016-12-01

    The chemical composition of the aerosol plays a central role in atmospheric processes and has influence on the hydrological cycle. Clouds form through the nucleation of water vapor on certain atmospheric aerosol particles, called cloud condensation nuclei (CCN). Also, precipitating particles scavenge some other aerosol particles on their way to the surface. Atmospheric particles are a mixture of organic and inorganic materials, both soluble and insoluble in water. Aerosol chemical characterization indicates a larger variety of compounds in urban areas respect to other regions. Thus, chemical composition of rainwater may represent an important aspect for estimating atmospheric air pollution. It has been recognized that organic species present in aerosol particles are important in the formation of cloud droplets. Therefore, the information about the organic compounds in precipitation samples may be helpful to understand their effects on the formation of clouds and rain, as well as their sources. Organic acids are ubiquitous components of aerosols and have been identified in precipitation water. In this work, preliminary results of the content of soluble organic (neutral and acidic) matter in rainwater samples collected in Mexico City during 2015 will be presented. The organic compounds content was performed by using an ionic chromatographic methodology with gradient elution; so the total amount was evaluated as the sum of four fractions: neutral/basic, mono-, bi-, and poly-acid compounds. The outcomes suggest that most of the amount of organic substances soluble in water is contained by the neutral/basic and mono-acid fractions. Regarding the total amount of water soluble organic compounds, the rain samples collected in Mexico City are in agreement with some others reported for large urban areas.

  10. Chemical reactions in organic monomolecular layers. Condensation of hydrazine on carbonyl functions

    International Nuclear Information System (INIS)

    Rosilio, Charles; Ruaudel-Teixier, Annie.

    1976-01-01

    Evidence is given for chemical reactions of hydrazine (NH 2 -NH 2 ) with different carbonyl functional groups of organic molecules in the solid state, in monomolecular layer structures. The condensation of hydrazine with these molecules leads to conjugated systems by bridging the N-N links, to cyclizations, and also to polycondensations. The reactions investigated were followed up by infrared spectrophotometry, by transmission and metallic reflection. These chemical reactions revealed in the solid phase constitute a polycondensation procedure which is valuable in obtaining organized polymers in monomolecular layers [fr

  11. Modification of carcinogenic and antitumor radiation effects (biomedical aspects)

    International Nuclear Information System (INIS)

    Vilenchik, M.M.

    1985-01-01

    In the book the data on modification of carcinogenic radiation effects by physiologicaly active compounds (caffeine, hormones, promoters and others) as well as on potentiation of antitumor radiation effects by means of hyperthermia are systematized. It is shown that as a basis of synergetic (superadditive) carcinogenic or antitumor radiation effects combined with other factor can be the inhibiting effects of the latter on the reparation process of radiation-induced DNA injuries. The results of experimental investigations and the data on quantitative analysis can be used as a theoretical basis for improvement of the ways and means of the prophylaxis of tumor diseases as well as for increasing the efficiency of radiotherapy

  12. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.

    Science.gov (United States)

    Hoke, Robert; Huggett, Duane; Brasfield, Sandra; Brown, Becky; Embry, Michelle; Fairbrother, Anne; Kivi, Michelle; Paumen, Miriam Leon; Prosser, Ryan; Salvito, Dan; Scroggins, Rick

    2016-01-01

    In the last decade, interest has been renewed in approaches for the assessment of the bioaccumulation potential of chemicals, principally driven by the need to evaluate large numbers of chemicals as part of new chemical legislation, while reducing vertebrate test organism use called for in animal welfare legislation. This renewed interest has inspired research activities and advances in bioaccumulation science for neutral organic chemicals in aquatic environments. In January 2013, ILSI Health and Environmental Sciences Institute convened experts to identify the state of the science and existing shortcomings in terrestrial bioaccumulation assessment of neutral organic chemicals. Potential modifications to existing laboratory methods were identified, including areas in which new laboratory approaches or test methods could be developed to address terrestrial bioaccumulation. The utility of "non-ecotoxicity" data (e.g., mammalian laboratory data) was also discussed. The highlights of the workshop discussions are presented along with potential modifications in laboratory approaches and new test guidelines that could be used for assessing the bioaccumulation of chemicals in terrestrial organisms. © 2015 SETAC.

  14. Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides.

    Directory of Open Access Journals (Sweden)

    Lygia T Budnik

    Full Text Available There is a need for a panel of suitable biomarkers for detection of environmental chemical exposure leading to the initiation or progression of degenerative diseases or potentially, to cancer. As the peripheral blood may contain increased levels of circulating cell-free DNA in diseased individuals, we aimed to evaluate this DNA as effect biomarker recognizing vulnerability after exposure to environmental chemicals. We recruited 164 individuals presumably exposed to halo-alkane-based pesticides. Exposure evaluation was based on human biomonitoring analysis; as biomarker of exposure parent halo-methanes, -ethanes and their metabolites, as well as the hemoglobin-adducts methyl valine and hydroxyl ethyl valine in blood were used, complemented by expert evaluation of exposure and clinical intoxication symptoms as well as a questionnaire. Assessment showed exposures to halo alkanes in the concentration range being higher than non-cancer reference doses (RfD but (mostly lower than the occupational exposure limits. We quantified circulating DNA in serum from 86 individuals with confirmed exposure to off-gassing halo-alkane pesticides (in storage facilities or in home environment and 30 non-exposed controls, and found that exposure was significantly associated with elevated serum levels of circulating mitochondrial DNA (in size of 79 bp, mtDNA-79, p = 0.0001. The decreased integrity of mtDNA (mtDNA-230/mtDNA-79 in exposed individuals implicates apoptotic processes (p = 0.015. The relative amounts of mtDNA-79 in serum were positively associated with the lag-time after intoxication to these chemicals (r = 0.99, p<0.0001. Several months of post-exposure the specificity of this biomarker increased from 30% to 97% in patients with intoxication symptoms. Our findings indicate that mitochondrial DNA has a potential to serve as a biomarker recognizing vulnerable risk groups after exposure to toxic/carcinogenic chemicals.

  15. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers

    Science.gov (United States)

    Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.

    2008-01-01

    Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  16. 15 CFR Supplement No. 1 to Part 715 - Definition of an Unscheduled Discrete Organic Chemical

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Definition of an Unscheduled Discrete... WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING UNSCHEDULED DISCRETE ORGANIC CHEMICALS (UDOCs) Pt. 715, Supp. 1 Supplement No. 1 to Part 715—Definition of an Unscheduled Discrete Organic Chemical Unscheduled...

  17. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  18. Temperature influence on chemical toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Cairns, J. Jr.; Heath, A.G.; Parker, B.C.

    1975-01-01

    The literature on the effects of temperature on chemical toxicity to aquatic animals and microorganisms is reviewed. Microbial photosynthesis and respiration is briefly discussed. It is concluded that there is a paucity of information on the inter-relations of temperature and toxicants to algae, bacteria, and protozoa and that standards based on the in situ response of indigenous organisms to specific discharge areas should be developed

  19. Effects of radiation and chemicals on SV40 oncogenesis. Final progress report

    International Nuclear Information System (INIS)

    Coggin, J.H. Jr.

    1982-05-01

    This project is directed toward developing rapid, quantitative methods and immunologic markers which will permit the early detection of newly forming tumors induced or enhanced by x-irradiation, chemical carcinogens, viruses or combinations of the three. The projects under study in our ongoing collaborative program seek to develop the detailed understanding and precise methodology required for the early detection of embryonic antigens in transformed cells induced by the co-carcinogenic effects of viruses and low-level radiation. A new technique for assaying the earliest transformed cells appearing in a carcinogen treated population affords a unique tool for this study. Present plans involve efforts to purify embryonic determinants from fetal and transformed cells of hamsters and mice in order to define their role in the transformation process and in tumor development

  20. Organic chemical composition of mud from the LUSI mud volcano, Sidoarjo, East Java, Indonesia

    Science.gov (United States)

    Rosenbauer, R. J.; Campbell, P.; Lam, A.

    2009-12-01

    Sidoarjo, East Java, Indonesia is the site of LUSI, a terrestrial mud volcano that has been erupting since May 29, 2006. In response to a U.S. Department of State request, the U.S. Geological Survey has been assisting the Indonesian Government to describe the geological and geochemical aspects and potential health risk of the mud eruption. We report here on the organic chemical composition of the mud. Organic chemical analyses were carried out by gas chromatography/mass spectroscopy following organic extraction by microwave-assisted solvent extraction and compound fractionation by adsorption chromatography. There is a petroliferous component in the mud that is fresh, immature, and nonbiodegraded. There is a complete suite of n-alkanes with a bell-shaped pattern typical of fresh petroleum with a Cmax around C20. The alkane content ranges from 0.12 to 1.01 mg/kg dry mud. The presence of certain hopanes (i.e. 17 α,21β(H)-30-norhopane and 17α,21β(H)-hopane) is also indicative of the presence of oil. The proportions of other biomarker compounds (pristane/phytane = 2.4) and the dominance of the C27 sterane (5α(H),14α(H),17α(H)-chlolestane) suggest that oil formed under oxic conditions and has a likely coastal marine or terrigenous source. The presence of oleanane indicates a Cretaceous or younger age for the petrogenic material. These geochemical parameters are consistent with Indonesian oil derived from Tertiary marlstone source rocks that contained kerogen deposited under oxic conditions, probably the upper Miocene Klasafet Formation. Polycyclic aromatic hydrocarbons (PAHs) are present and range in content from 0.1 to 2.2 mg/kg dry mud. The low molecular weight (LMW) PAHs, in particular, naphthalene and methyl-naphthalene are dominant except for perylene which is ubiquitous in the environment. The presence of both parent and higher homologue PAHs indicate a petrogenic rather than combustion source. PAHs are known carcinogens but toxicity data in sediments are

  1. Carcinogenicity assessments of biotechnology-derived pharmaceuticals: a review of approved molecules and best practice recommendations.

    Science.gov (United States)

    Vahle, John L; Finch, Gregory L; Heidel, Shawn M; Hovland, David N; Ivens, Inge; Parker, Suezanne; Ponce, Rafael A; Sachs, Clifford; Steigerwalt, Ronald; Short, Brian; Todd, Marque D

    2010-06-01

    An important safety consideration for developing new therapeutics is assessing the potential that the therapy will increase the risk of cancer. For biotherapeutics, traditional two-year rodent bioassays are often not scientifically applicable or feasible. This paper is a collaborative effort of industry toxicologists to review past and current practice regarding carcinogenicity assessments of biotherapeutics and to provide recommendations. Publicly available information on eighty marketed protein biotherapeutics was reviewed. In this review, no assessments related to carcinogenicity or tumor growth promotion were identified for fifty-one of the eighty molecules. For the twenty-nine biotherapeutics in which assessments related to carcinogenicity were identified, various experimental approaches were employed. This review also discusses several key principles to aid in the assessment of carcinogenic potential, including (1) careful consideration of mechanism of action to identify theoretical risks, (2) careful investigation of existing data for indications of proliferative or immunosuppressive potential, and (3) characterization of any proliferative or immunosuppressive signals detected. Traditional two-year carcinogenicity assays should not be considered as the default method for assessing the carcinogenicity potential of biotherapeutics. If experimentation is considered warranted, it should be hypothesis driven and may include a variety of experimental models. Ultimately, it is important that preclinical data provide useful guidance in product labeling.

  2. Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons ...

    African Journals Online (AJOL)

    Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Heavy Metal in Crude Oil from Gokana Area, Rivers State, Nigeria. ... Considerable caution should be applied in exploration, exposure and distribution of the crude oil through protected and well maintained pipelines to avoid the possible ...

  3. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.

    Science.gov (United States)

    Escala, D M; Budroni, M A; Carballido-Landeira, J; De Wit, A; Muñuzuri, A P

    2014-02-06

    Pulsatile chemo-hydrodynamic patterns due to a coupling between an oscillating chemical reaction and buoyancy-driven hydrodynamic flows can develop when two solutions of separate reactants of the Belousov-Zhabotinsky reaction are put in contact in the gravity field and conditions for chemical oscillations are met in the contact zone. In regular oscillatory conditions, localized periodic changes in the concentration of intermediate species induce pulsatile density gradients, which, in turn, generate traveling convective fingers breaking the transverse symmetry. These patterns are the self-organized result of a genuine coupling between chemical and hydrodynamic modes.

  4. Critical effective methods to detect genotoxic carcinogens and neoplasm-promoting agents.

    OpenAIRE

    Weisburger, J H; Williams, G M

    1991-01-01

    Neoplasia in fish can result from contamination of waters with carcinogens and promoters. Cancer in fish, therefore, is a possible indicator of cancer risk to man and serves as a guide to the need for preventive approaches involving improved means of waste disposal and environmental hygiene. Moreover, cancer in fish indicates that this important food source may be contaminated. Detection of genotoxic carcinogens to which fish are exposed can be achieved quickly and efficiently by carefully se...

  5. Systematic network assessment of the carcinogenic activities of cadmium

    International Nuclear Information System (INIS)

    Chen, Peizhan; Duan, Xiaohua; Li, Mian; Huang, Chao; Li, Jingquan; Chu, Ruiai; Ying, Hao; Song, Haiyun; Jia, Xudong; Ba, Qian; Wang, Hui

    2016-01-01

    Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscape software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.

  6. Systematic network assessment of the carcinogenic activities of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peizhan; Duan, Xiaohua; Li, Mian; Huang, Chao [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Li, Jingquan; Chu, Ruiai; Ying, Hao; Song, Haiyun [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Jia, Xudong [Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Ba, Qian, E-mail: qba@sibs.ac.cn [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Wang, Hui, E-mail: huiwang@sibs.ac.cn [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); School of Life Science and Technology, ShanghaiTech University, Shanghai (China)

    2016-11-01

    Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscape software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.

  7. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  8. CHEMICAL CLEANING OF NANOFILTRATION MEMBRANES FOULED BY ORGANIC MATTERS

    Directory of Open Access Journals (Sweden)

    CHARLENE C. H. KOO

    2016-07-01

    Full Text Available Membrane fouling is a term to describe non-integral substance on membrane surface which results in rapid decline of permeation flux and deteriorate the performance of membrane. Chemical cleaning agents especially like alkaline cleaners are most widely employed to restore the membrane performance. This research mainly investigated the potential use of sodium hydroxide (NaOH and sodium hypochlorite (NaOCl as the chemical cleaning agents to restore the permeate flux of organically fouled nanofiltration (NF membranes under varying applied pressure and flow condition. The performances of the cleaning protocols were quantified using flux recovery and resistance removal. The results demonstrated that NaOCl is more effective than NaOH. This observation is also in line with FTIR analysis in which the transmittance intensity showed by FTIR spectra of NaOCl is higher than that of NaOH. The results also reported that higher flux recovery and resistance removal were achieved when the fouled NF membranes were cleaned with higher concentration of chemical agents and applied pressure. However, the improvements of flux recovery and resistance removal by increasing the applied pressure were found insignificant at higher applied pressure range (16 to 18 bar than the lower applied pressure range (i.e. 12 to 14 bar. This research plays an important role by identifying the key parameters that could restore the flux of organically fouled NF membranes significantly.

  9. Mutagenicity of food-derived carcinogens and the effect of antioxidant vitamins.

    Science.gov (United States)

    Montgomery, Beverly A; Murphy, Jessica; Chen, James J; Desai, Varsha G; McGarrity, Lynda; Morris, Suzanne M; Casciano, Daniel A; Aidoo, Anane

    2002-01-01

    The food-derived heterocyclic amines (HCAs) 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are mutagenic in the Ames test and produce tumors in laboratory animals, including monkeys. These HCAs have also been shown to induce gene mutations in vivo. To assess the antimutagenic effects of dietary antioxidant vitamins, beta-carotene, ascorbic acid (vitamin C), and alpha-tocopherol (vitamin E), on food-borne mutagenes/carcinogens, we evaluated the mutagenic activity of the compounds alone or combined with antioxidant vitamins. We utilized the rat lymphocyte mutation assay at the hypoxanthine guanine phosphoribosyl transferase (Hprt) locus. Female Fischer 344 rats treated with different doses (0, 2.5, 5.0, 25.0, and 50.0 mg/kg) of the carcinogens were sacrificed 5 wk after mutagen treatment. Although IQ and MeIQ slightly increased mutation frequency (MF) at some doses, a significant (P carcinogen metabolism would be affected by ingestion of vitamins. The activities of endogenous detoxification enzymes, glutathione S-transferase and glutathione peroxidase (GPx), were thus examined. Intake of beta-carotene and vitamin C without the carcinogen resulted in an increase (P food or taken as supplements could, in part, counteract such mutagenic activities.

  10. Use of the modified Ames test as an indicator of the carcinogenicity of residual aromatic extracts

    Energy Technology Data Exchange (ETDEWEB)

    Boogaard, P.; Hedelin, A.; Riley, A.; Rushton, E.; Vaissiere, M.; Minsavage, G.; Rohde, A.; Dalbey, W.

    2013-01-15

    Existing data demonstrate that residual aromatic extracts (RAEs) can be either carcinogenic or non-carcinogenic. CONCAWE had previously concluded that 'Although limited data available indicate that some RAEs are weakly carcinogenic, it is not possible to provide a general recommendation. Classify on a case-by-case basis' (CONCAWE 2005). Therefore CONCAWE's Health/Toxicology Subgroup (H/TSG) has developed a proposal for the use of the modified Ames test as a short-term predictive screening tool for decisions on the classification of RAEs for carcinogenicity. The relationship between RAE chemistry and carcinogenic potential is not as well understood as it is for some other categories of substances, e.g. Other Lubricant Base Oils (OLBO). However, a correlation has been found between the results of the skin carcinogenicity bioassay and the mutagenicity index (MI) obtained from the modified Ames test. Data supporting this correlation are summarised in this report. The H/TSG confirmed that the modified Ames test can be used as a predictive screening tool and that a cut-off value can be established to make a distinction between carcinogenic and non-carcinogenic products. RAEs with a MI > 0.4 demonstrated carcinogenic potential upon dermal application to mouse skin with chronic exposure. RAEs with a MI > 0.4 did not demonstrate a carcinogenic potential. To justify the use of the modified Ames test with RAEs, additional analysis of the repeatability of the test with RAEs was required. With this objective, CONCAWE sponsored a round robin study with different samples of RAEs from member companies, at three different laboratories. The repeatability demonstrated in the round robin study with RAEs support the proposed use of the modified Ames test. As part of the tools available for use by member companies, the H/TSG proposed a standard operating procedure (SOP) (included as an Appendix to this report) on the conduct of the modified Ames test with RAEs. The H

  11. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  12. Predicting the carcinogenicity of chemicals with alternative approaches: recent advances.

    Science.gov (United States)

    Benigni, Romualdo

    2014-09-01

    Alternative approaches to the rodent bioassay are necessary for early identification of problematic drugs and biocides during the development process, and are the only practicable tool for assessing environmental chemicals with no or adequate safety documentation. This review informs on: i) the traditional prescreening through genotoxicity testing; ii) an integrative approach that assesses DNA-reactivity and ability to disorganize tissues; iii) new applications of omics technologies (ToxCast/Tox21 project); iv) a pragmatic approach aimed at filling data gaps by intrapolating/extrapolating from similar chemicals (read-across, category formation). The review also approaches the issue of the concerns about false-positive and false-negative results that prevents a wider acceptance and use of alternatives. The review addresses strengths and limitations of various proposals, and concludes on the need of differential approaches to the issue of false negatives and false positives. False negatives can be eliminated or reduced below the variability of the animal assay with conservative quantitative structure-activity relationships or in vitro tests; false positives can be cleared with ad hoc mechanistically based follow-ups. This framework can permit a reduction of animal testing and a better protection of human health.

  13. 78 FR 16681 - International Conference on Harmonisation; Proposed Change to Rodent Carcinogenicity Testing of...

    Science.gov (United States)

    2013-03-18

    ...-evidence (WOE) factors proposed for inclusion in CADs. II. Past Experience With Carcinogenicity Assessment... Medicines Agency; and the Japanese Ministry of Health, Labour and Welfare. We would request that CADs be... WOE factors proposed for inclusion in carcinogenicity assessment documents. Submit either electronic...

  14. Determination of carcinogenic polycyclic aromatic hydrocarbons in ...

    African Journals Online (AJOL)

    Determination of carcinogenic polycyclic aromatic hydrocarbons in air samples in Irbid, north Jordan. A Al-Gawadreh Sat, M.B. Gasim, A.R. Hassan, A Azid. Abstract. Air samples were collected at an urban site and a rural (BERQESH) site during February (2017) until March (2017) to determine concentrations of polycyclic ...

  15. Carcinogenicity study of 3-monochloropropane-1, 2-diol (3-MCPD) administered by drinking water to B6C3F1 mice showed no carcinogenic potential.

    Science.gov (United States)

    Jeong, Jayoung; Han, Beom Seok; Cho, Wan-Seob; Choi, Mina; Ha, Chang-Su; Lee, Byoung-Seok; Kim, Yong-Bum; Son, Woo-Chan; Kim, Choong-Yong

    2010-09-01

    3-Monochloropropane-1, 2-diol (or 3-chloro-1,2-propanediol, 3-MCPD) is a well-known food processing contaminant found in a wide range of foods and ingredients. It has been classified as non-genotoxic carcinogen but its carcinogenic potential in the rodents has been controversial. The carcinogenicity to B6C3F1 mice by drinking water administration was assessed over a period of 104 weeks. Three groups, each comprising 50 male and 50 female mice received 3-MCPD at dosages of 30, 100 or 300 ppm up to Day 100 and 200 ppm onward (4.2, 14.3 and 33.0 mg/kg for males; 3.7, 12.2, and 31.0 mg/kg for females), were allocated. Survival was good, with at least 80% of males and 72% of females in each group surviving 104 weeks. Body weights and body weight gain were decreased in males and females receiving 200 ppm. Water and food consumptions of both sexes at 300/200 ppm were lowered. Emaciated or crouching position was observed for animals of both sexes exposed to 200 ppm. There were some differences in hematology and serum biochemistry compared with controls, although there was no histopathological evidence to support those changes. Histopathological examination did not reveal any neoplastic or non-neoplastic findings attributable to treatment with 3-MCPD. It is concluded that drinking water administration of 3-MCPD for 104 weeks revealed no evidence of carcinogenic potential.

  16. Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India.

    Science.gov (United States)

    Saini, Komal; Singh, Parminder; Bajwa, Bikramjit Singh

    2016-12-01

    LED flourimeter has been used for microanalysis of uranium concentration in groundwater samples collected from six districts of South West (SW), West (W) and North East (NE) Punjab, India. Average value of uranium content in water samples of SW Punjab is observed to be higher than WHO, USEPA recommended safe limit of 30µgl -1 as well as AERB proposed limit of 60µgl -1 . Whereas, for W and NE region of Punjab, average level of uranium concentration was within AERB recommended limit of 60µgl -1 . Average value observed in SW Punjab is around 3-4 times the value observed in W Punjab, whereas its value is more than 17 times the average value observed in NE region of Punjab. Statistical analysis of carcinogenic as well as non carcinogenic risks due to uranium have been evaluated for each studied district. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents

    Energy Technology Data Exchange (ETDEWEB)

    Brink, Willem van den; Emerenciana, Annette [Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden (Netherlands); Medicines Evaluation Board, Utrecht (Netherlands); Bellanti, Francesco [Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden (Netherlands); Della Pasqua, Oscar [Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden (Netherlands); Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Uxbridge (United Kingdom); Clinical Pharmacology & Therapeutics, UCL, School of Life and Medical Sciences, London (United Kingdom); Laan, Jan Willem van der, E-mail: jw.vd.laan@cbg-meb.nl [Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden (Netherlands); Medicines Evaluation Board, Utrecht (Netherlands)

    2017-04-01

    Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic response. The model showed a significant association between predicted GLP-1r stimulation and C-cell hyperplasia after 2 years of treatment. The predictive performance of the model was evaluated using lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r stimulation for all four products, which is not possible with traditional data analysis methods. It can be concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes. - Highlights: • An integrative PKPD model is applied to

  18. Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents

    International Nuclear Information System (INIS)

    Brink, Willem van den; Emerenciana, Annette; Bellanti, Francesco; Della Pasqua, Oscar; Laan, Jan Willem van der

    2017-01-01

    Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic response. The model showed a significant association between predicted GLP-1r stimulation and C-cell hyperplasia after 2 years of treatment. The predictive performance of the model was evaluated using lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r stimulation for all four products, which is not possible with traditional data analysis methods. It can be concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes. - Highlights: • An integrative PKPD model is applied to

  19. A comparison of the radiological and chemical detriments in man

    International Nuclear Information System (INIS)

    Maximilien, R.

    1988-04-01

    Following a review of the knowledge on the assessment of chemical carcinogens, a comparison between chemical and radiological detriments is attempted from a methodological standpoint. The main problem in chemical carcinogenesis is to get proofs, the discussion bearing on the identity of the interspecific biological mechanisms on account of the nearly constant lack of epidemiological data. The quantification of the neoplastic effects of chemical agents has not been fully developed and can be considered case by case only by carrying out a critical examination of the indicators available in order to extrapolate to man or to low doses [fr

  20. Changing the field of carcinogenicity testing of human pharmaceuticals by emphasizing mode of action

    NARCIS (Netherlands)

    Laan, J.W. van der; Duijndam, B.; Hoorn, T. van den; Woutersen, R.; Water, B. van de

    2017-01-01

    Lifetime testing for carcinogenicity of pharmaceuticals in rodents has been a controversial issue since the start of the International Conference on Harmonisation in 1990. Since 2010 the debate reached a new level following the proposal that a negative outcome of carcinogenicity studies can be

  1. Piper gaudichaudianum Kunth: Seasonal Characterization of the Essential Oil Chemical Composition of Leaves and Reproductive Organs

    Directory of Open Access Journals (Sweden)

    Bianca Schindler

    2017-08-01

    Full Text Available ABSTRACT This study describes a comparative analysis of the essential oil (EO chemical composition of leaves and reproductive organs (inflorescences and fruits of Piper gaudichaudianum during the seasons of a year in order to determine the best collection time and the most suitable plant organ to obtain this extractive. The chemical composition of EO obtained from fresh leaves was compared to the dried ones, to verify if the drying process interferes in the extractive quality. The leaves were collected from a native population of Santa Maria, RS, Brazil, twice in each season, in triplicate, while inflorescences and fruits were sampled when they were present. The EO was obtained by hydrodistillation of the different plant organs for 3 h. The 20 EO samples were analyzed by gas chromatography (GC coupled to mass spectrometry and GC with flame ionization detector, in triplicate. Hierarchical cluster analysis (HCA and principal components analysis (PCA were performed to verify a possible formation of chemical groups (CG and the cohesion among them. The phenylpropanoid dillapiole was the major constituent of the EO in all seasons and in all plant organs, and myristicin was observed only in reproductive organs. The EO samples of this population were divided into two CG by HCA and PCA, showing the variability in chemical composition between different plant organs, however there was no chemical variability due to seasonality and phenophases. Since the drying of the leaves did not alter the EO chemical composition, this post-harvest procedure can be used without compromising the extrative quality.

  2. 39-week carcinogenicity study with cyclosporin A in XPA-/- mice, wild type mice and XPA-/-.P53+/- double transgenic mice. Part of the ILSI/HESI Program on Alternative Methods for Carcinogenicity Testing

    NARCIS (Netherlands)

    Beems RB; Kreijl CF van; Steeg H van; LPI; LEO

    2002-01-01

    The objective of this study was to evaluate the carcinogenic response of cyclosporin A in XPA-/- mice having a C57BL/6 background. XPA-/- mice are deficient in nucleotide excision repair and have shown increased susceptibility to genotoxic carcinogens and uv-light. The study was part of a world-wide

  3. Atmospheric emissions and long-range transport of persistent organic chemicals

    Directory of Open Access Journals (Sweden)

    Scheringer M.

    2010-12-01

    Full Text Available Persistent organic chemicals include several groups of halogenated compounds, such as polychlorinated biphenyls (PCBs, polybrominated diphenylethers (PBDEs, and polyfluorinated carboxylic acids (PFCAs. These chemicals remain for long times (years to decades in the environment and cycle between different media (air, water, sediment, soil, vegetation, etc.. The environmental distribution of this type of chemicals can conveniently be analyzed by multimedia models. Multimedia models consist of a set of coupled mass balance equations for the environmental media considered; they can be set up at various scales from local to global. Two applications of multimedia models to airborne chemicals are discussed in detail: the day-night cycle of PCBs measured in air near the surface, and the atmospheric long-range transport of volatile precursors of PFCAs, formation of PFCAs by oxidation of these precursors, and subsequent deposition of PFCAs to the surface in remote regions such as the Arctic.

  4. Comprehensive assessment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Saradhi, I.V.; Raghunath, R.; Pandit, G.G.; Puranik, V.D.

    2006-04-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually found their way into various environmental compartments. These pollutants get distributed among soil, water bodies, air and if left unattended can cause serious health risk to all exposed ecosystem components including human beings. These compounds may produce immediate toxicity to ecosystems or exhibit long term effects such as mutagenicity, carcinogenicity or biomagnify (concentrations of pollutant increase per unit body weight) in higher trophic organism of the food chain. Thus regular monitoring of these toxic chemicals in all the environmental matrices is unquestionably essential for reclaiming our natural resources. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report attempt has been made to compare the data on various toxic chemical pollutants that are being monitored regularly at Trombay site and their levels are compared with existing regulations. For monitoring, methodologies have been standardized for characterization of toxic chemical pollutants using different analytical techniques. Regular sample collection from different environmental matrices has been done. Sample analysis has been carried out using different analytical instruments such as high performance liquid chromatograph, ion chromatograph, gas chromatograph, atomic absorption spectrophotometer, and differential pulse anodic stripping voltammetry. Major portion of the study covers Air quality monitoring of toxic chemical pollutants, as the other

  5. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Agurell, E.; Alsberg, T.; Assefaz-Redda, Y.

    1990-11-01

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  6. Calibration and use of the polar organic chemical integrative sampler--a critical review.

    Science.gov (United States)

    Harman, Christopher; Allan, Ian John; Vermeirssen, Etiënne L M

    2012-12-01

    The implementation of strict environmental quality standards for polar organic priority pollutants poses a challenge for monitoring programs. The polar organic chemical integrative sampler (POCIS) may help to address the challenge of measuring low and fluctuating trace concentrations of such organic contaminants, offering significant advantages over traditional sampling. In the present review, the authors evaluate POCIS calibration methods and factors affecting sampling rates together with reported environmental applications. Over 300 compounds have been shown to accumulate in POCIS, including pesticides, pharmaceuticals, hormones, and industrial chemicals. Polar organic chemical integrative sampler extracts have been used for both chemical and biological analyses. Several different calibration methods have been described, which makes it difficult to directly compare sampling rates. In addition, despite the fact that some attempts to correlate sampling rates with the properties of target compounds such as log K(OW) have been met with varying success, an overall model that can predict uptake is lacking. Furthermore, temperature, water flow rates, salinity, pH, and fouling have all been shown to affect uptake; however, there is currently no robust method available for adjusting for these differences. Overall, POCIS has been applied to a wide range of sampling environments and scenarios and has been proven to be a useful screening tool. However, based on the existing literature, a more mechanistic approach is required to increase understanding and thus improve the quantitative nature of the measurements. Copyright © 2012 SETAC.

  7. Metal–organic covalent network chemical vapor deposition for gas separation

    NARCIS (Netherlands)

    Boscher, N.D.; Wang, M.; Perrotta, A.; Heinze, K.; Creatore, A.; Gleason, K.K.

    2016-01-01

    The chemical vapor deposition (CVD) polymerization of metalloporphyrin building units is demonstrated to provide an easily up-scalable one-step method toward the deposition of a new class of dense and defect-free metal–organic covalent network (MOCN) layers. The resulting hyper-thin and flexible

  8. Contribution of chemical radiation research to the general theory of oxidation of organic substances

    International Nuclear Information System (INIS)

    Ladygin, B.Ya.; Saraev, V.V.; Revin, A.A.; Zimina, G.M.

    1996-01-01

    Paper studies mechanisms and main elementary stages of liquid-phase oxidation of organic compounds at thermal and radiation initiation of this reaction. The results of investigations into radiation and chemical conversion of organic compounds at presence of oxygen and without it are discussed on the ground of data obtained by means of pulse radiolysis and EPR-spectroscopy. The bach-Engler theory of slow oxidation of organic compounds with participation of peroxides used as intermediate compounds is shown to be proved essentially and to enjoy further development due to the conducted radiation and chemical investigations. 68 refs., 2 figs., 4 tabs

  9. The toxic effects of flame retardants: a gene expression study in elucidating their carcinogenicity

    Science.gov (United States)

    Vagula, Mary; Al-Dhumani, Ali; Al-Dhumani, Sajaad; Mastro, Alexandra

    2013-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are flame retardants widely used in many commercial products, including building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams, and textiles. Although the specific toxic action of these chemicals is not clear, it is reported that they can cause serious damage to the nervous, reproductive, and endocrine systems. These chemicals are branded as "probable carcinogens" by Environmental Protection Agency (EPA). Therefore, this study is taken up to investigate the expression of genes namely, TP-53, RAD1, CRADD, and ATM, which are involved in apoptosis, DNA repair and cell cycle regulation. For this study human umbilical vein endothelial cells (HUVEC) are exposed to 5 μM of BDE-85 (a penta-BDE) and BDE-209 (deca-BDE). The results of this report reveal significant alteration in all the genes under investigation in BDE-85 and BDE-209 exposed cells. The BDE-85 induced responses are significantly more than BDE-209. These results emphasize the congener specific action of PBDEs on the expression of genes relevant to DNA repair and cell division of HUVEC cells.

  10. Glyphosate rodent carcinogenicity bioassay expert panel review.

    Science.gov (United States)

    Williams, Gary M; Berry, Colin; Burns, Michele; de Camargo, Joao Lauro Viana; Greim, Helmut

    2016-09-01

    Glyphosate has been rigorously and extensively tested for carcinogenicity by administration to mice (five studies) and to rats (nine studies). Most authorities have concluded that the evidence does not indicate a cancer risk to humans. The International Agency for Research on Cancer (IARC), however, evaluated some of the available data and concluded that glyphosate probably is carcinogenic to humans. The expert panel convened by Intertek assessed the findings used by IARC, as well as the full body of evidence and found the following: (1) the renal neoplastic effects in males of one mouse study are not associated with glyphosate exposure, because they lack statistical significance, strength, consistency, specificity, lack a dose-response pattern, plausibility, and coherence; (2) the strength of association of liver hemangiosarcomas in a different mouse study is absent, lacking consistency, and a dose-response effect and having in high dose males only a significant incidence increase which is within the historical control range; (3) pancreatic islet-cell adenomas (non-significant incidence increase), in two studies of male SD rats did not progress to carcinomas and lacked a dose-response pattern (the highest incidence is in the low dose followed by the high dose); (4) in one of two studies, a non-significant positive trend in the incidence of hepatocellular adenomas in male rats did not lead to progression to carcinomas; (5) in one of two studies, the non-significant positive trend in the incidence of thyroid C-cell adenomas in female rats was not present and there was no progression of adenomas to carcinomas at the end of the study. Application of criteria for causality considerations to the above mentioned tumor types and given the overall weight-of-evidence (WoE), the expert panel concluded that glyphosate is not a carcinogen in laboratory animals.

  11. Identification of EBP50 as a Specific Biomarker for Carcinogens Via the Analysis of Mouse Lymphoma Cellular Proteome

    Science.gov (United States)

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-01-01

    To identify specific biomarkers generated upon exposure of L5178Y mouse lymphoma cells to carcinogens, 2-DE and MALDI-TOF MS analysis were conducted using the cellular proteome of L5178Y cells that had been treated with the known carcinogens, 1,2-dibromoethane and O-nitrotoluene and the noncarcinogens, emodin and D-mannitol. Eight protein spots that showed a greater than 1.5-fold increase or decrease in intensity following carcinogen treatment compared with treatment with noncarcinogens were selected. Of the identified proteins, we focused on the candidate biomarker ERM-binding phosphoprotein 50 (EBP50), the expression of which was specifically increased in response to treatment with the carcinogens. The expression level of EBP50 was determined by western analysis using polyclonal rabbit anti-EBP50 antibody. Further, the expression level of EBP50 was increased in cells treated with seven additional carcinogens, verifying that EBP50 could serve as a specific biomarker for carcinogens. PMID:22434383

  12. Carcinogenicity and mutagenicity of chromium.

    Science.gov (United States)

    Léonard, A; Lauwerys, R R

    1980-11-01

    Occupational exposure represents the main source of human contamination by chromium. For non-occupationally exposed people the major environmental exposure to chromium occurs as a consequence of its presence in food. Chromium must be considered as an essential element. Its deficiency impairs glucose metabolism. Trivalent chromium salts are poorly absorbed through the gastro-intestinal and respiratory tracts because they do not cross membranes easily. Hexavalent chromium can be absorbed by the oral and pulmonary routes and probably also through the skin. After its absorption, hexavalent chromium is rapidly reduced to the trivalent form which is probably the only form to be found in biological material. Epidemiological studies have shown that some chromium salts (mainly the slightly soluble hexavalent salts) are carcinogens. Lung cancers have, indeed, often been reported among workers in chromate-producing industry and, to a lesser extent, in workers from the chrome-pigment industry. The first attempts to produce cancers in experimental animals by inhalation or parenteral introduction gave negative or equivocal results but, from 1960, positive results have been obtained with various chromium compounds. As for the carcinogenic activity, the mutagenicity of chromium has mainly been found with hexavalent salts. In the majority of assay systems used, trivalent chromium appears inactive. It can be considered as evident, however, that the ultimate mutagen which binds to the genetic material is the trivalent form produced intracellularly from hexavalent chromium, the apparent lack of activity of the trivalent form being due to its poor cellular uptake.

  13. 78 FR 44117 - Notice of a Public Comment Period on the Draft IRIS Carcinogenicity Assessment for Ethylene Oxide

    Science.gov (United States)

    2013-07-23

    ... Public Comment Period on the Draft IRIS Carcinogenicity Assessment for Ethylene Oxide AGENCY... Carcinogenicity of Ethylene Oxide'' (EPA/635/R-13/128a) and on the draft peer review charge questions. The draft... on the draft Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide and on the draft peer...

  14. DNA repair in mammalian cells exposed to combinations of carcinogenic agents

    International Nuclear Information System (INIS)

    Setlow, R.B.; Ahmed, F.E.

    1979-01-01

    Cells defective in one or more aspects of repair are killed and often mutagenized more readily than normal cells by DNA damaging agents, and humans whose cells are deficient in repair are at an increased carcinogenic risk compared to normal individuals. The excision repair of uv induced pyrimidine dimers is a well studied system, but the details of the steps in this repair system are far from being understood in human cells. We know that there are a number of chemicals that mimic uv in that normal human cells repair DNA damage from both these agents and from uv by a long patch excision repair system, and that xeroderma pigmentosum cells defective in repair of uv are also defective in the repair of damage from these chemicals. The chemicals we have investigated are AAAF, 4-NQO, DMBA-epoxide, and ICR-170. We describe experiments, using several techniques, in which DNA excision repair is measured after treatment of various human cell strains with combinations of uv and these agents. If two agents have a common rate limiting step then, at doses high enough to saturate the repair system, one would expect the observed repair after a treatment with a combination of agents to be equal to that from one agent alone. Such is not the case for normal human or excision-deficient XP cells. In the former repair is additive and in the latter repair is usually appreciably less than that observed with either agent alone. Models that attempt to explain these surprising results involve complexes of enzymes and cofactors

  15. Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.

    Science.gov (United States)

    Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe

    2011-10-01

    The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case-control study.

    Science.gov (United States)

    Brophy, James T; Keith, Margaret M; Watterson, Andrew; Park, Robert; Gilbertson, Michael; Maticka-Tyndale, Eleanor; Beck, Matthias; Abu-Zahra, Hakam; Schneider, Kenneth; Reinhartz, Abraham; Dematteo, Robert; Luginaah, Isaac

    2012-11-19

    Endocrine disrupting chemicals and carcinogens, some of which may not yet have been classified as such, are present in many occupational environments and could increase breast cancer risk. Prior research has identified associations with breast cancer and work in agricultural and industrial settings. The purpose of this study was to further characterize possible links between breast cancer risk and occupation, particularly in farming and manufacturing, as well as to examine the impacts of early agricultural exposures, and exposure effects that are specific to the endocrine receptor status of tumours. 1005 breast cancer cases referred by a regional cancer center and 1146 randomly-selected community controls provided detailed data including occupational and reproductive histories. All reported jobs were industry- and occupation-coded for the construction of cumulative exposure metrics representing likely exposure to carcinogens and endocrine disruptors. In a frequency-matched case-control design, exposure effects were estimated using conditional logistic regression. Across all sectors, women in jobs with potentially high exposures to carcinogens and endocrine disruptors had elevated breast cancer risk (OR = 1.42; 95% CI, 1.18-1.73, for 10 years exposure duration). Specific sectors with elevated risk included: agriculture (OR = 1.36; 95% CI, 1.01-1.82); bars-gambling (OR = 2.28; 95% CI, 0.94-5.53); automotive plastics manufacturing (OR = 2.68; 95% CI, 1.47-4.88), food canning (OR = 2.35; 95% CI, 1.00-5.53), and metalworking (OR = 1.73; 95% CI, 1.02-2.92). Estrogen receptor status of tumors with elevated risk differed by occupational grouping. Premenopausal breast cancer risk was highest for automotive plastics (OR = 4.76; 95% CI, 1.58-14.4) and food canning (OR = 5.70; 95% CI, 1.03-31.5). These observations support hypotheses linking breast cancer risk and exposures likely to include carcinogens and endocrine disruptors, and demonstrate the value of detailed work

  17. Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case–control study

    Science.gov (United States)

    2012-01-01

    Background Endocrine disrupting chemicals and carcinogens, some of which may not yet have been classified as such, are present in many occupational environments and could increase breast cancer risk. Prior research has identified associations with breast cancer and work in agricultural and industrial settings. The purpose of this study was to further characterize possible links between breast cancer risk and occupation, particularly in farming and manufacturing, as well as to examine the impacts of early agricultural exposures, and exposure effects that are specific to the endocrine receptor status of tumours. Methods 1005 breast cancer cases referred by a regional cancer center and 1146 randomly-selected community controls provided detailed data including occupational and reproductive histories. All reported jobs were industry- and occupation-coded for the construction of cumulative exposure metrics representing likely exposure to carcinogens and endocrine disruptors. In a frequency-matched case–control design, exposure effects were estimated using conditional logistic regression. Results Across all sectors, women in jobs with potentially high exposures to carcinogens and endocrine disruptors had elevated breast cancer risk (OR = 1.42; 95% CI, 1.18-1.73, for 10 years exposure duration). Specific sectors with elevated risk included: agriculture (OR = 1.36; 95% CI, 1.01-1.82); bars-gambling (OR = 2.28; 95% CI, 0.94-5.53); automotive plastics manufacturing (OR = 2.68; 95% CI, 1.47-4.88), food canning (OR = 2.35; 95% CI, 1.00-5.53), and metalworking (OR = 1.73; 95% CI, 1.02-2.92). Estrogen receptor status of tumors with elevated risk differed by occupational grouping. Premenopausal breast cancer risk was highest for automotive plastics (OR = 4.76; 95% CI, 1.58-14.4) and food canning (OR = 5.70; 95% CI, 1.03-31.5). Conclusions These observations support hypotheses linking breast cancer risk and exposures likely to include carcinogens and endocrine disruptors, and

  18. Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case–control study

    Directory of Open Access Journals (Sweden)

    Brophy James T

    2012-11-01

    Full Text Available Abstract Background Endocrine disrupting chemicals and carcinogens, some of which may not yet have been classified as such, are present in many occupational environments and could increase breast cancer risk. Prior research has identified associations with breast cancer and work in agricultural and industrial settings. The purpose of this study was to further characterize possible links between breast cancer risk and occupation, particularly in farming and manufacturing, as well as to examine the impacts of early agricultural exposures, and exposure effects that are specific to the endocrine receptor status of tumours. Methods 1005 breast cancer cases referred by a regional cancer center and 1146 randomly-selected community controls provided detailed data including occupational and reproductive histories. All reported jobs were industry- and occupation-coded for the construction of cumulative exposure metrics representing likely exposure to carcinogens and endocrine disruptors. In a frequency-matched case–control design, exposure effects were estimated using conditional logistic regression. Results Across all sectors, women in jobs with potentially high exposures to carcinogens and endocrine disruptors had elevated breast cancer risk (OR = 1.42; 95% CI, 1.18-1.73, for 10 years exposure duration. Specific sectors with elevated risk included: agriculture (OR = 1.36; 95% CI, 1.01-1.82; bars-gambling (OR = 2.28; 95% CI, 0.94-5.53; automotive plastics manufacturing (OR = 2.68; 95% CI, 1.47-4.88, food canning (OR = 2.35; 95% CI, 1.00-5.53, and metalworking (OR = 1.73; 95% CI, 1.02-2.92. Estrogen receptor status of tumors with elevated risk differed by occupational grouping. Premenopausal breast cancer risk was highest for automotive plastics (OR = 4.76; 95% CI, 1.58-14.4 and food canning (OR = 5.70; 95% CI, 1.03-31.5. Conclusions These observations support hypotheses linking breast cancer risk and exposures likely to include carcinogens and

  19. Transplacental carcinogenicity of inorganic arsenic in the drinking water: induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Ward, Jerrold M.; Liu Jie; Diwan, Bhalchandra A.

    2003-01-01

    Arsenic is a known human carcinogen, but development of rodent models of inorganic arsenic carcinogenesis has been problematic. Since gestation is often a period of high sensitivity to chemical carcinogenesis, we performed a transplacental carcinogenicity study in mice using inorganic arsenic. Groups (n=10) of pregnant C3H mice were given drinking water containing sodium arsenite (NaAsO 2 ) at 0 (control), 42.5, and 85 ppm arsenite ad libitum from day 8 to 18 of gestation. These doses were well tolerated and body weights of the dams during gestation and of the offspring subsequent to birth were not reduced. Dams were allowed to give birth, and offspring were weaned at 4 weeks and then put into separate gender-based groups (n=25) according to maternal exposure level. The offspring received no additional arsenic treatment. The study lasted 74 weeks in males and 90 weeks in females. A complete necropsy was performed on all mice and tissues were examined by light microscopy in a blind fashion. In male offspring, there was a marked increase in hepatocellular carcinoma incidence in a dose- related fashion (control, 12%; 42.5 ppm, 38%; 85 ppm, 61%) and in liver tumor multiplicity (tumors per liver; 5.6-fold over control at 85 ppm). In males, there was also a dose-related increase in adrenal tumor incidence and multiplicity. In female offspring, dose-related increases occurred in ovarian tumor incidence (control, 8%; 42.5 ppm, 26%; 85 ppm, 38%) and lung carcinoma incidence (control, 0%; 42.5 ppm, 4%; 85 ppm, 21%). Arsenic exposure also increased the incidence of proliferative lesions of the uterus and oviduct. These results demonstrate that oral inorganic arsenic exposure, as a single agent, can induce tumor formation in rodents and establishes inorganic arsenic as a complete transplacental carcinogen in mice. The development of this rodent model of inorganic arsenic carcinogenesis has important implications in defining the mechanism of action for this common environmental

  20. Algal growth inhibition test results of 425 organic chemical substances

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Christensen, Anne Munch; Nyholm, Niels

    2018-01-01

    The toxicity towards the algal species Pseudokirchneriella subcapitata of 425 organic chemical substances was tested in a growth inhibition test. Precautions were taken to prevent loss of the compounds from the water phase and the test system (closed test system, low biomass, shorter test duration......, silanized glass) and to keep pH constant by applying a higher alkalinity. Chemical phase distribution was modelled taking ionization, volatilisation, and adsorption to glass and biomass into consideration. If the modelled water concentration was below 90% of the nominal concentration the calculated EC...... values were corrected accordingly. The model helped to identify substances, where the calculated water concentration was too uncertain. Substances covering a wide range of physical-chemical properties and different modes of action were tested. Median effect concentrations (EC50) lower than 1000 mg/L were...

  1. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Barozai, Muhammad Younas Khan; Bashir, Farrukh; Muzaffar, Shafia; Afzal, Saba; Behlil, Farida; Khan, Muzaffar

    2014-10-15

    To study the life processes of all eukaryotes, yeast (Saccharomyces cerevisiae) is a significant model organism. It is also one of the best models to study the responses of genes at transcriptional level. In a living organism, gene expression is changed by chemical stresses. The genes that give response to chemical stresses will provide good source for the strategies in engineering and formulating mechanisms which are chemical stress resistant in the eukaryotic organisms. The data available through microarray under the chemical stresses like lithium chloride, lactic acid, weak organic acids and tomatidine were studied by using computational tools. Out of 9335 yeast genes, 388 chemical stress responding genes were identified and characterized under different chemical stresses. Some of these are: Enolases 1 and 2, heat shock protein-82, Yeast Elongation Factor 3, Beta Glucanase Protein, Histone H2A1 and Histone H2A2 Proteins, Benign Prostatic Hyperplasia, ras GTPase activating protein, Establishes Silent Chromatin protein, Mei5 Protein, Nondisjunction Protein and Specific Mitogen Activated Protein Kinase. Characterization of these genes was also made on the basis of their molecular functions, biological processes and cellular components. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Genotoxicity and potential carcinogenicity of cyanobacterial toxins - a review.

    Science.gov (United States)

    Zegura, Bojana; Straser, Alja; Filipič, Metka

    2011-01-01

    The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro

  3. Chemical characterization of agricultural supplies applied to organic tomato cultivation

    International Nuclear Information System (INIS)

    Martins, T.C.G.; Nadai Fernandes de, E.A.; Ferrari, A.A.; Tagliaferro, F.S.; Bacchi, M.A.

    2008-01-01

    The agricultural supplies used in the organic system to control pests and diseases as well as to fertilize soil are claimed to be beneficial to plants and innocuous to human health and to the environment. The chemical composition of six agricultural supplies commonly used in the organic tomato culture, was evaluated by instrumental neutron activation analysis (INAA). Results were compared to the maximum limits established by the Environment Control Agency of the S?o Paulo State (CETESB) and the Guidelines for Organic Quality Standard of Instituto Biodinamico (IBD). Concentrations above reference values were found for Co, Cr and Zn in compost, Cr and Zn in cattle manure and Zn in rice bran. (author)

  4. Sorption, degradation and mobility of ptaquiloside, a carcinogenic Bracken (Pteridium sp.) constituent, in the soil environment

    DEFF Research Database (Denmark)

    Rasmussen, Lars Holm; Lauren, Denis; Hansen, Hans Christian Bruun

    2005-01-01

    Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glucoside produced by Bracken in amounts up to at least 13 500 mg m2. The toxin is transferred from Bracken to the underlying soil from where it may leach to surface and groundwaters impairing the quality of drinking water. The objectives of t...... where PTA and a non-sorbing tracer showed almost coincident break-through. Leaching of PTA to the aqueous environment will be most extensive on sandy soils, having pH >4 and poor in organic matter which are exposed to high precipitation rates during cold seasons.......Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glucoside produced by Bracken in amounts up to at least 13 500 mg m2. The toxin is transferred from Bracken to the underlying soil from where it may leach to surface and groundwaters impairing the quality of drinking water. The objectives...... of the present study were to characterize the solubility, degradation and retention of PTA in soils in order to evaluate the risk for groundwater contamination. PTA was isolated from Bracken. The logarithmic octanol–water and ethyl acetate–water partitioning coefficients for PTA were 0.63 and 0.88, respectively...

  5. In vitro early changes in intercellular junctions by treatment with a chemical carcinogen.

    Science.gov (United States)

    Tachikawa, T; Kohno, Y; Matsui, Y; Yoshiki, S

    1986-06-01

    To examine early intercellular junction changes caused by treatment with 9,10-dimethyl-1,2-benzanthracene (DMBA), rat lingual epithelium was cultivated in isolation and observed by electrophysiological, freeze-fracture and whole-mount electron microscopy. Electrophysiological measurements showed a transient decrease in membrane potential of -10.2 mV 6 h after the treatment. It returned to almost the same level as that of the control group 1 day later. Six hours after treatment, input resistance decreased rapidly to 5.3 M omega but increased to 18.0 M omega 12 h after treatment. Transient reduction of input resistance and membrane potential occurred prior to the decrease in the coupling ratio 6 h after treatment with DMBA. In freeze-fracture replicas, the number of gap junctions decreased by approximately 45% of the control value 6 h after treatment with DMBA. At 12 h and thereafter, the number and area of gap junctions subsequently decreased by 60-80% of the control value. Alterations in the number and area of desmosomes were similar to those of the gap junctions. The formation of epithelial cytoskeletons, partially devoid of the 2-4 and 5-8 nm filaments was also observed. A decrease in the density of filament networks beneath the plasma membranes was especially apparent. Treatment with a carcinogen brought about morphological cellular changes as early as 6 h after treatment, and such early changes might trigger metabolic cellular abnormalities. Affected cells appear to move away from normal cells in a process of repeated destruction and revision of intercellular junctions, and cytoskeletons.

  6. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    Science.gov (United States)

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  7. The effect of radiation in combination with carcinogens on the growth of normal urothelium in explant culture

    International Nuclear Information System (INIS)

    Mothersill, C.; O'Brien, A.

    1990-01-01

    Radiation is known to be carcinogenic to humans but attempts to demonstrate the process using human tissue culture models have met with little success. In the present study explants were established from urothelium and exposed to radiation and a range of chemical carcinogens, suspected promotor or metabolic agents. The resulting outgrowth was monitored for growth rate, proliferating epithelial fraction and development and differentiation of endothelial cells in culture. The results indicate that enhanced growth of epithelial cells can be seen when cultures are irradiated in the presence of various nitrosamines, benzo(a)pyrene or aniline. Radiation alone reduced the overall growth area measured but several proliferative foci developed on the resulting outgrowth. Their ultrastructural appearance reveals that they carry severe mitochondrial damage and exposure of treated cultures to metabolic inhibitors confirms that their respiration is defective. Endothelial cells proliferated over the surface of the epithelial monolayer and both the number and the degree of differentiation of the endothelial cells increased with increasing dose up to 10 Gy. While the cultures are not immortalised by the treatment, it appears that the epithelial cells have an extended lifespan (division capacity) and that a subpopulation has undergone a number of premalignant changes. Changes in endothelial cell proliferation also occur. (orig.)

  8. Radioactivity in chemical and organic fertilizer used in Egypt

    International Nuclear Information System (INIS)

    Abbady, A.G.E.; Yousef, A.M.M.; Abbady, A.; El-Taher, A.

    2005-01-01

    The Egypt Chemical factories (ECF); such as Talkha, Sues, Abo Qeyer, Kafer Elzayat, and Assuit factories, produces and markets a range of phosphate based fertilizers, including Simple Super Phosphate (SSP) fertilizer, Triple Super Phosphate (TSP) fertilizer and Urea. Phosphate fertilizers produced by ECF are derived from phosphate ore. In addition to phosphate minerals, these ores can contain significant amounts of a wide range of impurities, including heavy metals and naturally occurring radionuclides. This study was carried out to determine the content of radionuclides in fertilizer products produced by ECF and some organic fertilizer (animal manure) includes cow, sheep and chicken fertilizer. In both samples (Chemical and organic fertilizers), the activity concentrations of Ra 2 26 are higher than those Th 2 32. The radioactivity of 226 R a in chemical fertilizers ranged from 21.6 ± 3.6 to 111.2 ± 8.9 Bq kg-1, phosphate fertilizers TSP contained high contents of 226 R a. The average radioactivity of 226 R a in TSP was 79.3 ± 7.4 Bq kg-1, in SSP 51.2 ± 5 Bq kg-1, and in Urea 35.1± 3.5 Bq kg-1. The activity of 232 T h in the different fertilizers ranged from 1.3 ± 1.1 to 9.9 ± 3.2 Bq kg-1,the highest activity observed in SSP fertilizer. The activity of 40 K was found to be great in the TSP fertilizer, which contained a mean activity 478.1± 21.3 Bq kg-1. With respect to organic fertilizers the average radioactivity of 226 R a, 232 T h and 40 K are 40 ± 1.6 Bq kg-1, 3.1± 1.2 and 427.1± 20 Bq kg-1. The data are discussed and compared with those given in the literatures. This study could be useful as baseline data for radiation exposure to fertilizers, and their impact on human health

  9. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Science.gov (United States)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  10. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2011-07-01

    Full Text Available Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  11. Mutagens and carcinogens in foods. Epidemiologic review.

    OpenAIRE

    Hislop, T. G.

    1993-01-01

    Evidence that diet contributes to the development of cancer is strengthening. This paper examines mutagens and carcinogens, such as naturally occurring substances, products of cooking and food processing, intentional and unintentional additives, and contaminants, found in foods. Such substances are present in minute quantities in the diets of average Canadians. Indication of health risk is largely limited to experimental laboratory evidence.

  12. Mutagens and carcinogens in foods. Epidemiologic review.

    Science.gov (United States)

    Hislop, T. G.

    1993-01-01

    Evidence that diet contributes to the development of cancer is strengthening. This paper examines mutagens and carcinogens, such as naturally occurring substances, products of cooking and food processing, intentional and unintentional additives, and contaminants, found in foods. Such substances are present in minute quantities in the diets of average Canadians. Indication of health risk is largely limited to experimental laboratory evidence. PMID:8499796

  13. The mechanism of formation of (deoxy)guanosine adducts derived from peroxidase-catalyzed oxidation of the carcinogenic non-aminoazo dye 1-phenylazo-2-hydroxynaphthalene (SudanI)

    Czech Academy of Sciences Publication Activity Database

    Martínek, V.; Dračínský, Martin; Cvačka, Josef; Semanská, M.; Frei, E.; Stiborová, M.

    2009-01-01

    Roč. 276, Suppl. 1 (2009), s. 20-20 ISSN 1742-464X. [FEBS Congress /34/. 04.07.2009-09.07.2009, Praha] R&D Projects: GA AV ČR KJB400550903 Institutional research plan: CEZ:AV0Z40550506 Keywords : carcinogen * Sudan I metabolites * adducts Subject RIV: CC - Organic Chemistry

  14. Decrease of 5-Hydroxymethylcytosine in Rat Liver with Subchronic Exposure to Genotoxic Carcinogens Riddelliine and Aristolochic Acid

    Science.gov (United States)

    Lian, Christine Guo; Xu, Shuyun; Guo, Weimin; Yan, Jian; Frank, Maximilian Y M; Liu, Robert; Liu, Cynthia; Chen, Ying; Murphy, George F.; Chen, Tao

    2018-01-01

    The level of 5-hydroxymethylcytosine (5-hmC) converted by ten-eleven translocation (TET) family is decreased in cancers. However, whether 5-hmC level is perturbed in early stages of carcinogenesis caused by genotoxic carcinogens is not defined. 5-hmC levels and TET2 expression were measured in liver of rats treated with genotoxic carcinogens, riddelliine, or aristolochic acid. Levels of 5-hmC and TET2 expression decreased in the liver of the carcinogens-treated rats. Loss of 5-hmC correlates well with documented induction of genetic mutations by the carcinogens, suggesting that TET2-mediated 5-hydroxymethylation plays an epigenetic role in early state of carcinogenesis. PMID:25154389

  15. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  16. Determination of genetic toxicity and potential carcinogenicity in vitro--challenges post the Seventh Amendment to the European Cosmetics Directive.

    Science.gov (United States)

    Tweats, D J; Scott, A D; Westmoreland, C; Carmichael, P L

    2007-01-01

    Genetic toxicology and its role in the detection of carcinogens is currently undergoing a period of reappraisal. There is an increasing interest in developing alternatives to animal testing and the three R's of reduction, refinement and replacement are the basis for EU and national animal protection laws the Seventh Amendment to the EU Cosmetics Directive will ban the marketing of cosmetic/personal care products that contain ingredients that have been tested in animal models. Thus in vivo tests such as the bone marrow micronucleus test, which has a key role in current testing strategies for genotoxicity, will not be available for this class of products. The attrition rate for new, valuable and safe chemicals tested in an in vitro-only testing battery, using the in vitro tests currently established for genotoxicity screening, will greatly increase once this legislation is in place. In addition there has been an explosion of knowledge concerning the cellular and molecular events leading to carcinogenesis. This knowledge has not yet been fully factored into screening chemicals for properties that are not directly linked to mutation induction. Thus there is a pressing need for new, more accurate approaches to determine genotoxicity and carcinogenicity. However, a considerable challenge is presented for these new approaches to be universally accepted and new tests sufficiently validated by March 2009 when the animal testing and marketing bans associated with the Seventh Amendment are due to come into force. This commentary brings together ideas and approaches from several international workshops and meetings to consider these issues.

  17. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    2015-01-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwa......Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation...... with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human...... and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model...

  18. Exhaustive physical exercise increases the number of colonic preneoplastic lesions in untrained rats treated with a chemical carcinogen.

    Science.gov (United States)

    Demarzo, Marcelo Marcos Piva; Garcia, Sérgio Britto

    2004-12-08

    Aberrant crypt foci (ACF) have been used for early detection of factors that influence colorectal carcinogenesis in rats. It has been observed that exhaustive exercise increases free radical DNA oxidative damage and depresses immune function, events also related to the increased risk for cancer development. Fifteen days after a single exhaustive swimming bout in untrained rats treated with a colon carcinogen, we observed a statistically significant increased number of ACF when compared to the non-exercised group. Thus, we concluded that exhaustive exercise increased the susceptibility for colon cancer in rats. From our finding and literature data, we hypothesize that, similarly to the suggested relationship between exercise and infections, exercise could be protective against cancer or it could increase the risk for this disease depending on its type, dose and duration.

  19. Polyamines modulate carcinogen-induced mutagenesis in vivo.

    Science.gov (United States)

    Wallon, U Margaretha; O'Brien, Thomas G

    2005-01-01

    Elevated polyamine levels as a consequence of targeted overexpression of ornithine decarboxylase (ODC) to murine skin enhance susceptibility to tumorigenesis in this tissue. A possible mechanism for the enhanced susceptibility phenotype is an increased sensitivity of tissues with elevated polyamine levels to the mutagenic action of carcinogens. To test this hypothesis, a transgenic mouse model containing the Big Blue transgene and also expressing a K6/ODC transgene was developed. Incorporation of the K6/ODC transgene into the Big Blue model did not affect the spontaneous lacI mutant frequency in either skin or epidermis of the double-transgenic mice. After skin treatment with single doses of either 7,12-dimethylbenz[a]anthracene or N-methyl-N'-nitro-N-nitrosoguanidine, however, the mutant frequency was significantly increased in the skin of double-transgenic Big Blue;K6/ODC mice compared to Big Blue controls. The increases in mutant frequency were clearly due to ODC transgene activity, since treatment of mice with the ODC inhibitor, alpha-difluoromethylornithine, completely abolished the difference in mutant frequencies between double-transgenic and Big Blue mice. These results demonstrate that intracellular polyamine levels modulate mutation induction following carcinogen exposure. 2004 Wiley-Liss, Inc.

  20. Organic-Chemical Clues to the Theory of Impacts as a Cause of Mass Extinctions

    Science.gov (United States)

    Sack, N. J.

    1988-11-01

    The reasons for the mass extinctions, which occur from time to time in Earth's history-as, e.g., the dinosaur extinction at the Cretaceous/Tertiary boundary 65 myr ago - are still not satisfactorily cleared up. A possible reason might be the impact of one or several comets of several kilometers in diameter. In this paper the astrophysical background of this hypothesis and organic-chemical processes during an impact will be discussed. Quantitative estimations are given, which show that the amount of organic substances brought to the Earth may be of the same order of magnitude as the normal biological production of organic material. Investigations are proposed to examine the organic-chemical composition of profiles of the Cretaceous/Tertiary boundary and other boundaries, at which mass extinction had occurred, in order to find anomalies as consequences of impacts.

  1. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  2. A mode-of-action approach for the identification of genotoxic carcinogens.

    Directory of Open Access Journals (Sweden)

    Lya G Hernández

    Full Text Available Distinguishing between clastogens and aneugens is vital in cancer risk assessment because the default assumption is that clastogens and aneugens have linear and non-linear dose-response curves, respectively. Any observed non-linearity must be supported by mode of action (MOA analyses where biological mechanisms are linked with dose-response evaluations. For aneugens, the MOA has been well characterised as disruptors of mitotic machinery where chromosome loss via micronuclei (MN formation is an accepted endpoint used in risk assessment. In this study we performed the cytokinesis-block micronucleus assay and immunofluorescence mitotic machinery visualisation in human lymphoblastoid (AHH-1 and Chinese Hamster fibroblast (V79 cell lines after treatment with the aneugen 17-β-oestradiol (E₂. Results were compared to previously published data on bisphenol-A (BPA and Rotenone data. Two concentration-response approaches (the threshold-[Td] and benchmark-dose [BMD] approaches were applied to derive a point of departure (POD for in vitro MN induction. BMDs were also derived from the most sensitive carcinogenic endpoint. Ranking comparisons of the PODs from the in vitro MN and the carcinogenicity studies demonstrated a link between these two endpoints for BPA, E₂ and Rotenone. This analysis was extended to include 5 additional aneugens, 5 clastogens and 3 mutagens and further concentration and dose-response correlations were observed between PODs from the in vitro MN and carcinogenicity. This approach is promising and may be further extended to other genotoxic carcinogens, where MOA and quantitative information from the in vitro MN studies could be used in a quantitative manner to further inform cancer risk assessment.

  3. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons

    International Nuclear Information System (INIS)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A.

    1999-01-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  4. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  5. Relationship between increasing concentrations of two carcinogens and statistical image descriptors of foci morphology in the cell transformation assay.

    Science.gov (United States)

    Callegaro, Giulia; Corvi, Raffaella; Salovaara, Susan; Urani, Chiara; Stefanini, Federico M

    2017-06-01

    Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl 2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. CHANGES IN SOIL CHEMICAL PROPERTIES OF ORGANIC PADDY FIELD WITH AZOLLA APPLICATION

    Directory of Open Access Journals (Sweden)

    Jauhari Syamsiyah

    2016-12-01

    Full Text Available The use of organic fertilizer is a way to improve soil fertility. Azolla can be used as organic fertilizer. This study aims to determine the effect of Azolla (Azolla mycrophylla. L on some soil chemical properties on organic paddy field. The field experiments used factorial complete randomized block design of three factors, namely Azolla (0 and 2 tons/ha, Manure (0 and 10 tons/ha and Rice Varieties (Mira1, Mentik Wangi and Merah Putih, with three times replication. Using Azolla on an organic paddy field does not significantly increase the levels of soil N, organic C, Cation Exchange Capacity and soil pH. However Azolla’s influence on soil available P is significant.

  7. The chemical structure of the insoluble organic matter from carbonaceous meteorites

    Science.gov (United States)

    Derenne, S.; Robert, F.

    2008-09-01

    Carbonaceous chondrites are the most primitive objects of the solar system. They contain substantial amounts of carbon (up to 3%), mostly occurring in macromolecular insoluble organic matter (IOM). This IOM is generally considered as a record of interstellar synthesis and may contain precursors of prebiotic molecules possibly deposited on earth by meteoritic bombardments. For these reasons, chondritic IOM has been raising interest for long and it is therefore of special interest to decipher its chemical structure. It is now well established that the chemical structure of this macromolecular material is based on aromatic moieties linked by short aliphatic chains and comprising substantial amounts of heteroatoms. However, its precise chemical structure could only be recently specified. The aim of this presentation is to propose a molecular model for the chemical structure of IOM isolated from non-metamorphosed carbonaceous chondrites. This model is derived from a large set of data obtained through a combination of techniques including various spectrocopies, high resolution transmission electron microscopy (HRTEM) and chemical and thermal degradations. Cosmochemical implications of such a structure will also be discussed.

  8. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    International Nuclear Information System (INIS)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing; He, Xiaoyun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2014-01-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation

  9. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); He, Xiaoyun; Huang, Kunlun; Luo, Yunbo [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentao@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.

  10. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  11. Homologous Recombination Repair Signaling in Chemical Carcinogenesis: Prolonged Particulate Hexavalent Chromium Exposure Suppresses the Rad51 Response in Human Lung Cells

    Science.gov (United States)

    Qin, Qin; Xie, Hong; Wise, Sandra S.; Browning, Cynthia L.; Thompson, Kelsey N.; Holmes, Amie L.; Wise, John Pierce

    2014-01-01

    The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI). PMID:25173789

  12. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Organic substances and pharmaceuticals engineering. Petrochemistry and chemical processing of alternative feedstock

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning organic substances and pharmaceuticals engineering, petrochemistry and chemical processing of alternative feedstock. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  13. Chemical attributes, total organic carbon stock and humified fractions of organic matter soil submitted to different systems of sugarcane management

    Directory of Open Access Journals (Sweden)

    Jean Sérgio Rosset

    2014-10-01

    Full Text Available Mechanized harvesting maintenance of trash from cane sugar and soil application of waste as vinasse and filter cake can improve the system of crop yield. Thus, this study aimed to evaluate the changes in the chemical, the stock of total organic carbon and humified organic matter fractions in an Oxisol cultivated with cane sugar with the following management systems: with sugarcane vinasse application (CCV, without application of burnt cane waste (CQS, with burnt cane vinasse application (CQV, with application of burnt cane filter cake (CQTF and burnt cane with joint application of vinasse and filter cake (CQVTF. For reference we used an area of natural vegetation (NV, Cerrado sensu stricto. Treatment CQVTF showed improvement in soil chemical properties, increased inventory levels of total organic carbon – TOC (values ranging from 21.28 to 40.02 Mg ha-1 and humified fractions of soil organic matter in relation to other treatments. The CQS area at a depth of 0-0.05 m, showed the greatest losses of soil TOC stocks (56.3% compared to NV. The adoption of management presented CCV and chemical attributes of the soil TOC stocks equivalent to those observed in areas with CQV CQTF and despite the short period of adoption (3 years. The TOC correlated with the sum of bases (r = 0.76 **, cation exchange capacity (r = 0.59 ** and base saturation (r = 0.63 **, while the humic acids (r = 0.40 ** fulvic acids (r = 0.49 ** and humin (r = 0.59 ** correlated with the cation exchange capacity of the soil. These results indicate that the preservation of trash in the management of cane sugar added to the application of vinasse and filter cake increases the TOC stocks promoting improvement in soil chemical properties.

  14. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  15. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    Science.gov (United States)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  16. Effect of water pollution on marine organisms; Sekiyu osen no kaiyo seibutsu eno eikyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, M. [Okayama Univ., Okayama (Japan); Fujisawa, K. [Okayama Prefectural Fisheries Experiment Station, Okayama (Japan)

    1997-10-10

    Toxicity of petroleum component to aquatic organisms appears as a result of its deposition onto living organisms followed by its migration into bodies of the organisms, and emergence of toxicity from the migrated component. Effect evaluation processes standing on this viewpoint may include the exposure monitoring or migration monitoring, in which the petroleum component migrated into marine organisms is analyzed and the state of the component concentrated in these organisms is measured, or effect monitoring, in which actions of the petroleum component in the organisms are investigated. The effects of petroleum on aquatic organisms would include the following occurrence: direct fatal toxicity acting on cells and membranes, quasi-fatal toxicity causing death indirectly through feeding actions and abnormal actions, direct coating of oil on surface of organisms, which prevents movability and feeding actions of the organisms and reduces hydrophilicity of plumes and hairs, pollution of living organisms due to migration of carcinogenic aromatic compounds into bodies of the living organisms, and change in species compositions and geographic distribution of living organisms due to change in physico-chemical environment. This paper explains cases of detection and identification of organic sulfur compounds, aromatic compounds, polycyclic aromatic compounds, paraffins, olefins and heavy metals in parametric compounds of petroleum. 20 refs., 4 figs., 3 tabs.

  17. Carcinogenic and antitumor effects of aminotriazole on acatalasemic and normal catalase mice

    International Nuclear Information System (INIS)

    Feinstein, R.N.; Fry, R.J.M.; Staffeidt, E.F.

    1978-01-01

    Dietary 3-amino-1H-1,2,4-triazole (AT), although carcinogenic when administered alone, was an antitumor agent when combined with certain other carcinogenic stimuli. The carcinogenic effect was prominent in the livers of C3H mice; thyroid tumors were less common because they required a longer period of development, and the life-span of the animal was shortened by the AT diet. The antitumor effects of AT included: delay in appearance of mammary tumors, striking reduction in γ-radiation-induced lymphomas, and sharp reduction in neutron radiation-induced harderian gland and ovarian tumors. On an AT diet, the inbred C3H acatalasemic mouse substrain developed more liver tumors, starting earlier, than did the C3H normal catalase substrain. We suggest that our findings pointed to a possible relevance of catalase and H 2 O 2 in carcinogenesis. The most probable mechanism for the increased incidence of liver tumors in AT-treated acatalasemic mice was the diminished rate of degradation of endogenous H 2 O 2

  18. Assessment of respiratory carcinogenicity associated with exposure to metallic nickel: a review.

    Science.gov (United States)

    Sivulka, Donna J

    2005-11-01

    Human studies prior to 1990 have shown an association between respiratory cancer and exposure to some nickel compounds, but not to metallic nickel. Numerous reviews have examined the nature of the association between nickel compounds and respiratory cancer, but little has been published on metallic nickel. This paper reviews the animal and human cancer-related data on metallic nickel to determine whether the conclusions regarding metallic nickel reached a decade ago still apply. Based upon past and current human studies, metallic nickel appears to show little evidence of carcinogenicity when present at the same or higher concentrations than those seen in current workplace environments. By comparison, animal studies currently available have shown mixed results. A number of studies have shown evidence of carcinogenicity in animals exposed to nickel powders via injection, but other studies have shown no or inconsistent results in animals exposed via inhalation or intratracheal instillation. Further studies in animals via inhalation and humans would be helpful in elucidating the respiratory carcinogenic potential of metallic nickel.

  19. [Cardiovascular risk, occupation and exposure to occupational carcinogens in a group of workers in Salamanca].

    Science.gov (United States)

    González-Sánchez, Jesús

    2015-01-01

    Identify the cardiovascular risk factors in a group of workers in the province of Salamanca, protected by external prevention services, as regards exposure to occupational carcinogens, by sector of activity and gender. An observational descriptive epidemiological study was conducted. The sample selection was by stratified random sampling in each entity. The variables collected by questionnaire were, sociodemographic characteristics, exposure to occupational carcinogens, and cardiovascular risk factors (smoking, hypertension, dyslipidemia, and diabetes), using the clinical-work histories as a source of information. Statistically significant differences were observed in cardiovascular risk according to the exposure to occupational carcinogens (p cardiovascular risk in the work place. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  20. Temporal aspects of tumorigenic response to individual and mixed carcinogens. Progress report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Albert, R.E.; Burns, F.J.; Altshuler, B.

    1979-06-01

    The research proposed here is designed to obtain a better understanding of the temporal kinetics of tumor induction when one or more carcinogens are present simultaneously or sequentially for prolonged periods of time. Studies done to date under this contract have shown that carcinogenesis in mouse skin by polycyclic aromatic hydrocarbon carcinogens is consistent with the induction of dependent and autonomous cell transformations by the carcinogen followed by the conversion of autonomous tumor cells into malignancies at a rate which is determined by the level of carcinogen exposure. Dependent cell transformations remain latent in the skin unless expressed by a promoting agent. Dependent neoplasia appears to follow one-hit kinetics while malignancy is a multihit endpoint. Dose-related and time-related aspects of tumor induction are separable in the initiation-promotion system of mouse skin which along with rat skin and hamster lung is being used as a model for testing hypotheses. Results to date provide the basis for a new interpretation of the linear non-threshold extrapolation model. The broad aim of the study is to provide a basis or rationale for estimating risks associated with prolonged exposures to carcinogens found in the environment and to predict how different tissues and species respond to the carcinogens, promoters, and cocarcinogens

  1. Determination of carcinogenic threshold limit values using the tumorigenic dose rate 50% (TD50)

    International Nuclear Information System (INIS)

    Bonvalot, Y.; Oudiz, A.; Hubert, P.; Abenhaim, L.

    1989-01-01

    The objective of the present study is to propose a simple procedure for the determination of Occupational Limit Values (OLVs) based on the TD 50 concept (Tumorigenic Dose Rate 50%). The TD 50 concept was introduced by Peto R. and al. to help classify chemical substances according to their carcinogenic potency. The TD 50 is that dose rate (in mg/KXg body weight/day) which, if administered chronically for the standard lifespan of the species will halve the probability of remaining tumorless throughout that period. Using TD 50 values available for 776 substances, the procedure presented here allows one to determine OLVs corresponding to a fixed excess risk. It is based on a mathematical high-to-low doses extrapolation of the TD 50 . OLVs obtained with this procedure are compared with currently available TLVs and other occupational guidelines. (author)

  2. Screening organic chemicals in commerce for emissions in the context of environmental and human exposure.

    Science.gov (United States)

    Breivik, Knut; Arnot, Jon A; Brown, Trevor N; McLachlan, Michael S; Wania, Frank

    2012-08-01

    Quantitative knowledge of organic chemical release into the environment is essential to understand and predict human exposure as well as to develop rational control strategies for any substances of concern. While significant efforts have been invested to characterize and screen organic chemicals for hazardous properties, relatively less effort has been directed toward estimating emissions and hence also risks. Here, a rapid throughput method to estimate emissions of discrete organic chemicals in commerce has been developed, applied and evaluated to support screening studies aimed at ranking and identifying chemicals of potential concern. The method builds upon information in the European Union Technical Guidance Document and utilizes information on quantities in commerce (production and/or import rates), chemical function (use patterns) and physical-chemical properties to estimate emissions to air, soil and water within the OECD for five stages of the chemical life-cycle. The method is applied to 16,029 discrete substances (identified by CAS numbers) from five national and international high production volume lists. As access to consistent input data remains fragmented or even impossible, particular attention is given to estimating, evaluating and discussing uncertainties in the resulting emission scenarios. The uncertainty for individual substances typically spans 3 to 4 orders of magnitude for this initial tier screening method. Information on uncertainties in emissions is useful as any screening or categorization methods which solely rely on threshold values are at risk of leading to a significant number of either false positives or false negatives. A limited evaluation of the screening method's estimates for a sub-set of about 100 substances, compared against independent and more detailed emission scenarios presented in various European Risk Assessment Reports, highlights that up-to-date and accurate information on quantities in commerce as well as a detailed

  3. On the International Agency for Research on Cancer classification of glyphosate as a probable human carcinogen.

    Science.gov (United States)

    Tarone, Robert E

    2018-01-01

    The recent classification by International Agency for Research on Cancer (IARC) of the herbicide glyphosate as a probable human carcinogen has generated considerable discussion. The classification is at variance with evaluations of the carcinogenic potential of glyphosate by several national and international regulatory bodies. The basis for the IARC classification is examined under the assumptions that the IARC criteria are reasonable and that the body of scientific studies determined by IARC staff to be relevant to the evaluation of glyphosate by the Monograph Working Group is sufficiently complete. It is shown that the classification of glyphosate as a probable human carcinogen was the result of a flawed and incomplete summary of the experimental evidence evaluated by the Working Group. Rational and effective cancer prevention activities depend on scientifically sound and unbiased assessments of the carcinogenic potential of suspected agents. Implications of the erroneous classification of glyphosate with respect to the IARC Monograph Working Group deliberative process are discussed.

  4. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions

    Science.gov (United States)

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant...

  5. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Li, Min; Zhang, Jing; Wang, Guangqian; Yang, Haijun; Whelan, Michael J.; White, Sue M.

    2013-01-01

    Highlights: ► Chemical sequential extraction and 31 P NMR spectroscopy were used for organic P analysis. ► Organic P includes orthophosphate, monoester and diester phosphate and pyrophosphate. ► Highly resistant organic P and monoester phosphate were the dominant organic P. ► HCl pretreatment can remove most inorganic P and increase organic P recovery rate. ► A comprehensive organic P chemical sequential fractionation approach was proposed. - Abstract: Organic P (OP) plays an important role in soil P cycling and is a potential P source for wetland plants. In this study, a modified chemical sequential fractionation method and 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR) of NaOH–EDTA extracts were used to examine the distribution of organic P fractions and compounds in soil profiles of the Beijing Yeyahu Wetland, China. The influence of acid treatment prior to NaOH–EDTA extraction on 31 P NMR spectra was also investigated. Results show that highly resistant OP was the major class of organic P. The rank order of organic P fractions was highly resistant OP (on average accounting for 68.5% of total OP) > moderately resistant OP (15.8%m of total OP) > moderately labile OP (11.4% of total OP) > labile OP (4.3% of total OP). Most of the organic P fractions decreased with soil depth due to the accumulation of plant residues in surface soils and the deposition and diagenesis of soils. Moderately (r = 0.586, p < 0.01) and highly (r = 0.741, p < 0.01) resistant OP fractions were positively correlated with soil organic matter. Phosphorus compounds including orthophosphate (23–74.6% of total P in spectra), monoester phosphate (18.6–76%), diester phosphate (nil-7.8%) and pyrophosphate (nil-6.7%) were characterized using 31 P NMR. Monoester-P was the dominant soil organic P compound identified. The proportion of monoester-P increased significantly in NaOH–EDTA extracts with HCl pretreatment and it was confirmed by chemical analysis. Therefore, it

  6. Oral carcinogenicity study with nickel sulfate hexahydrate in Fischer 344 rats

    International Nuclear Information System (INIS)

    Heim, Katherine E.; Bates, Hudson K.; Rush, Rusty E.; Oller, Adriana R.

    2007-01-01

    Until now, existing data on the oral carcinogenicity of nickel substances have been inconclusive. Yet, the assessment of oral carcinogenicity of nickel has serious scientific and regulatory implications. In the present study, nickel sulfate hexahydrate was administered daily to Fischer 344 rats by oral gavage for 2 years (104 weeks) at exposure levels of 10, 30 and 50 mg NiSO 4 ·6H 2 O/kg. This treatment produced a statistically significant reduction in body weight of male and female rats, compared to controls, in an exposure-related fashion at 30 and 50 mg/kg/day. An exposure-dependent increase in mortality was observed in female rats. However, the overall study survival rate (males and females) was at least 25 animals per group (compliant with OECD guidelines) in the treated animals. Daily oral administration of nickel sulfate hexahydrate did not produce an exposure-related increase in any common tumor type or an increase in any rare tumors. One tumor type was statistically increased in a nickel sulfate-treated group compared to the study controls (keratoacanthoma in the 10 mg NiSO 4 ·6H 2 O/kg/day males), but there was no exposure-response relationship for this common tumor type. This study achieved sufficient toxicity to reach the Maximum Tolerated Dose (MTD) while maintaining a sufficiently high survival rate to allow evaluation for carcinogenicity. The present study indicated that nickel sulfate hexahydrate does not have the potential to cause carcinogenicity by the oral route of exposure in the Fischer 344 rat. Data from this and other studies demonstrate that inhalation is the only route of exposure that might cause concern for cancer in association with nickel exposures

  7. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  8. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  9. The organization for the prohibition of chemical weapons and the IAEA: A comparative overview

    International Nuclear Information System (INIS)

    Dorn, A.W.; Rolya, A.

    1993-01-01

    The long-awaited Chemical Weapons Convention (CWC) - which was endorsed in New York by the United Nations General Assembly on 30 November 1992 - was opened for signature on 13 January 1993. To oversee its implementation, a new international organization, the Organization for the Prohibition of Chemical Weapons (OPCW), will be established when the treaty enters into force, which could be as early as January 1995. The IAEA - as the only existing organization with a mandate for implementing an international verification system - is an important model for the structure and functioning of the OPCW. Many provisions in the CWC benefit from the lessons learned through the implementation of the IAEA's safeguards system in such matters as rights of access for inspectors, the designation of inspectors, and procedural arrangements. Overall, the structure of the IAEA and that foreseen for the OPCE are quite similar. There are, nonetheless, several structural differences. Most notably, the IAEA is charged with a dual mission, that of promoting the contribution of nuclear energy to social and economic development and of seeking to ensure that nuclear materials and facilities which have been placed under safeguards are not diverted from peaceful uses. The OPCW is responsible for achieving a complete ban on chemical weapons and is not responsible, at least as currently envisaged, for the promotion of peaceful uses of chemistry and chemical sciences

  10. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking.

    Science.gov (United States)

    Bicudo, Rafaela Costa Souza; Santana, Maria Helena Andrade

    2012-03-01

    Hyaluronic acid is a hydrophilic mucopolysaccharide composed of alternating units of D-glucuronic acid and N-acetylglucosamine. It is used in many medical, pharmaceutical, and cosmetic applications, as sponges, films, or particle formulations. Hyaluronic acid nanoparticles can be synthesized free of oil and surfactants by nanoprecipitation in organic solvents, followed by chemical crosslinking. The organic solvent plays an important role in particles size and structure. Therefore, this study aimed to investigate the influence of acetone, ethanol, and isopropyl alcohol on the synthesis and physico-chemical properties of hyaluronic acid nanoparticles. Particles were crosslinked with adipic hydrazide and chloride carbodiimide under controlled conditions. The nanoparticles obtained with all three studied solvents were moderately electrostatically stable. Experiments with acetone produced the smallest particle size (120.44 nm) and polydispersity (0.27). The size and polydispersity of hyaluronic acid nanoparticles correlated with the surface tension between water and the organic solvents, not with the thermodynamic affinity of water for the organic solvents.

  11. Correlations between the 1H NMR chemical shieldings and the pKa values of organic acids and amines.

    Science.gov (United States)

    Lu, Juanfeng; Lu, Tingting; Zhao, Xinyun; Chen, Xi; Zhan, Chang-Guo

    2018-06-01

    The acid dissociation constants and 1 H NMR chemical shieldings of organic compounds are important properties that have attracted much research interest. However, few studies have explored the relationship between these two properties. In this work, we theoretically studied the NMR chemical shifts of a series of carboxylic acids and amines in the gas phase and in aqueous solution. It was found that the negative logarithms of the experimental acid dissociation constants (i.e., the pK a values) of the organic acids and amines in aqueous solution correlate almost linearly with the corresponding calculated NMR chemical shieldings. Key factors that affect the theoretically predicted pK a values are discussed in this paper. The present work provides a new way to predict the pK a values of organic/biochemical compounds. Graphical abstract The chemical shielding values of organic acids and amines correlate near linearly with their corresponding pK a values.

  12. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Review of the Carcinogenic Potential of Bisphenol A

    Science.gov (United States)

    Seachrist, Darcie D; Bonk, Kristen W.; Ho, Shuk-Mei; Prins, Gail S.; Soto, Ana M.; Keri, Ruth A.

    2015-01-01

    The estrogenic properties of bisphenol A (BPA), a ubiquitous synthetic monomer that can leach into the food and water supply, have prompted considerable research into exposure-associated health risks in humans. Endocrine-disrupting properties of BPA suggest it may impact developmental plasticity during early life, predisposing individuals to disease at doses below the oral reference dose (RfD) established by the Environmental Protection Agency in 1982. Herein, we review the current in vivo literature evaluating the carcinogenic properties of BPA. We conclude that there is substantial evidence from rodent studies indicating that early-life BPA exposures below the RfD lead to increased susceptibility to mammary and prostate cancer. Based on the definitions of “carcinogen” put forth by the International Agency for Research on Cancer and the National Toxicology Program, we propose that BPA may be reasonably anticipated to be a human carcinogen in the breast and prostate due to its tumor promoting properties. PMID:26493093

  14. Carcinogenic action of polycyclic hydrocarbons in animals and man

    Energy Technology Data Exchange (ETDEWEB)

    Shabad, L M

    1976-01-01

    Polycyclic hydrocarbons are universally present in the atmosphere, soil, lakes and streams, vegetation, and human and animal tissues, the concentrations varying with distance from the sources (heating systems, industrial plants, automobile highways and airports, petroleum refineries, etc.). The most potent of the carcinogens is benz(a)pyrene whose presence in an object, as shown by studies done in the author's laboratory, is an indication that other polycyclic hydrocarbons are also present. These studies also demonstrated that while benz(a)pyrene may accumulate in soil with seasonal fluctuations, it can also be destroyed by certain microorganisms. Other experiments showed that benz(a)pyrene and other such compounds can be destroyed in tissue culture as well as in vivo (e.g., benz(a)pyrene given to cows with fodder was found in their milk but not in meat after they were slaughtered). It is suggested that maximum permissible concentrations be set for benz(a)pyrene in air and water to minimize its potential carcinogenic effects.

  15. Carcinogenicity of multi-walled carbon nanotubes: challenging issue on hazard assessment.

    Science.gov (United States)

    Fukushima, Shoji; Kasai, Tatsuya; Umeda, Yumi; Ohnishi, Makoto; Sasaki, Toshiaki; Matsumoto, Michiharu

    2018-01-25

    This report reviews the carcinogenicity of multi-walled carbon nanotubes (MWCNTs) in experimental animals, concentrating on MWNT-7, a straight fibrous MWCNT. MWCNTs were administered to mice and rats by intraperitoneal injection, intrascrotal injection, subcutaneous injection, intratracheal instillation and inhalation. Intraperitoneal injection of MWNT-7 induced peritoneal mesothelioma in mice and rats. Intrascrotal injection induced peritoneal mesothelioma in rats. Intratracheal instillation of MWCNT-N (another straight fibrous MWCNT) induced both lung carcinoma and pleural mesothelioma in rats. In the whole body inhalation studies, in mice MWNT-7 promoted methylcholanthrene-initiated lung carcinogenesis. In rats, inhalation of MWNT-7 induced lung carcinoma and lung burdens of MWNT-7 increased with increasing concentration of airborne MWNT-7 and increasing duration of exposure. Straight, fibrous MWCNTs exerted carcinogenicity in experimental animals. Phagocytosis of MWCNT fibers by macrophages was very likely to be a principle factor in MWCNT lung carcinogenesis. Using no-observed-adverse-effect level-based approach, we calculated that the occupational exposure limit (OEL) of MWNT-7 for cancer protection is 0.15 μg/m 3 for a human worker. Further studies on the effects of the shape and size of MWCNT fibers and mode of action on the carcinogenicity are required.

  16. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers

    NARCIS (Netherlands)

    Peng, Feng Jiao; Pan, Chang Gui; Zhang, Min; Zhang, Nai Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Brink, Van den Paul J.; Ying, Guang Guo

    2017-01-01

    Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting

  17. The carcinogenic risks of low-LET and high-LET ionizing radiations

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1989-08-01

    New information is available concerning the carcinogenic effects of radiation and the implications for risk assessment and risk management. This information comes from further follow-up of the epidemiological studies of the Japanese atomic bomb survivors, patients irradiated medically for cancer and allied conditions, and workers exposed in various occupations. In the Japanese atomic bomb survivors the carcinogenic risks are estimated to be somewhat higher than previously, due to the reassessment of the atomic-bomb dosimetry, further follow-up with increase in the number of excess cancer deaths, particularly in survivors irradiated early in life, and changes in the methods of analysis to compute the age-specific risks of cancer. Because of the characteristics of the atomic bomb survivor series as regards sample size, age and sex distribution, duration for follow-up, person-years at risk, and type of dosimetry, the mortality experience of the atomic bomb survivors was selected by the UNSCEAR Committee and the BEIR V Committee as the more appropriate basis for projecting risk estimates for the general population. In the atomic bomb survivors, the dose-effect relationship for overall cancer mortality other than leukemia is consistent with linearity below 3 Gy, while the dose-effect relationship for leukemia, excluding chronic lymphatic leukemia, conforms best to a linear-quadratic function. The shape of the dose-incidence curve at low doses still remains uncertain, and the data do not rule out the possible existence of a threshold for an neoplasm. The excess relative risk of mortality from all cancers combined is estimated to be 1.39 per Gy (shielded kerma), which corresponds to an absolute risk of 10.0 excess cancer deaths per 10,000 PYGy; the relative risks is 1.41 at 1 Gy (organ-absorbed dose), and an absolute risk of 13.07 excess cancer deaths per 10,000 PYGy. 19 refs

  18. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong

    2012-07-10

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz), forming a film composed of the metal-ligand complex. Fast and quantitative formation of the complex leads to marked changes in the morphology and optical properties of the film. X-ray diffraction studies show that the chemical annealing process converts amorphous ZnTPP films to crystalline ZnTPP•ligand films, whose porphryin planes lie nearly parallel to the substrate (average deviation is 8° for the ZnTPP•pz film). Organic solar cells were prepared with ZnTPP donor and C 60 acceptor layers. Devices were prepared with and without chemical annealing of the ZnTPP layer with a pyrazine ligand. The devices with chemically annealed ZnTPP donor layer show an increase in short-circuit current (J SC) and fill factor (FF) relative to analogous unannealed devices, presumably because of enhanced exciton diffusion length and improved charge conductivity. The open circuit voltages (V OC) of the chemically annealed devices are lower than their unannealed counterpart because of enhanced polaron pair recombination at the donor/acceptor heterojunction. A net improvement of 5-20% in efficiency has been achieved, after chemical annealing of ZnTPP films with pyrazine. © 2012 American Chemical Society.

  19. Chemical structure of the Chromophoric Dissolved Organic Matter (CDOM) fluorescent matter.

    Science.gov (United States)

    Blough, N. V.; Del Vecchio, R.; Cartisano, C. M.; Bianca, M.

    2017-12-01

    The structure(s), distribution and dynamics of CDOM have been investigated over the last several decades largely through optical spectroscopy (including both absorption and fluorescence) due to the fairly inexpensive instrumentation and the easy-to-gather data (over thousands published papers from 1990-2016). Yet, the chemical structure(s) of the light absorbing and emitting species or constituents within CDOM has only recently being proposed and tested through chemical manipulation of selected functional groups (such as carbonyl and carboxylic/phenolic containing molecules) naturally occurring within the organic matter pool. Similarly, fitting models (among which the PArallel FACtor analysis, PARAFAC) have been developed to better understand the nature of a subset of DOM, the CDOM fluorescent matter (FDOM). Fluorescence spectroscopy coupled with chemical tests and PARAFAC analyses could potentially provide valuable insights on CDOM sources and chemical nature of the FDOM pool. However, despite that applications (and publications) of PARAFAC model to FDOM have grown exponentially since its first application/publication (2003), a large fraction of such publications has misinterpreted the chemical meaning of the delivered PARAFAC `components' leading to more confusion than clarification on the nature, distribution and dynamics of the FDOM pool. In this context, we employed chemical manipulation of selected functional groups to gain further insights on the chemical structure of the FDOM and we tested to what extent the PARAFAC `components' represent true fluorophores through a controlled chemical approach with the ultimate goal to provide insights on the chemical nature of such `components' (as well as on the chemical nature of the FDOM) along with the advantages and limitations of the PARAFAC application.

  20. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Huijbregts, Mark; Henderson, Andrew D.

    2011-01-01

    areas, except for very persistent and mobile chemicals that are taken in by the global population independently from their place of emission. The analysis of carcinogenic potency (TD50) when volatile chemicals are administrated to rats and mice by both inhalation and an oral route suggests that results...

  1. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  2. Mechanism-Based Classification of PAH Mixtures to Predict Carcinogenic Potential.

    Science.gov (United States)

    Tilton, Susan C; Siddens, Lisbeth K; Krueger, Sharon K; Larkin, Andrew J; Löhr, Christiane V; Williams, David E; Baird, William M; Waters, Katrina M

    2015-07-01

    We have previously shown that relative potency factors and DNA adduct measurements are inadequate for predicting carcinogenicity of certain polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures, particularly those that function through alternate pathways or exhibit greater promotional activity compared to benzo[a]pyrene (BaP). Therefore, we developed a pathway-based approach for classification of tumor outcome after dermal exposure to PAH/mixtures. FVB/N mice were exposed to dibenzo[def,p]chrysene (DBC), BaP, or environmental PAH mixtures (Mix 1-3) following a 2-stage initiation/promotion skin tumor protocol. Resulting tumor incidence could be categorized by carcinogenic potency as DBC > BaP = Mix2 = Mix3 > Mix1 = Control, based on statistical significance. Gene expression profiles measured in skin of mice collected 12 h post-initiation were compared with tumor outcome for identification of short-term bioactivity profiles. A Bayesian integration model was utilized to identify biological pathways predictive of PAH carcinogenic potential during initiation. Integration of probability matrices from four enriched pathways (P PAH mixtures. These data further provide a 'source-to-outcome' model that could be used to predict PAH interactions during tumorigenesis and provide an example of how mode-of-action-based risk assessment could be employed for environmental PAH mixtures. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Asian Americans and disproportionate exposure to carcinogenic hazardous air pollutants: A national study.

    Science.gov (United States)

    Grineski, Sara E; Collins, Timothy W; Morales, Danielle X

    2017-07-01

    Studies have demonstrated disparate exposures to carcinogenic hazardous air pollutants (HAPs) in neighborhoods with high densities of Black and Hispanic residents in the US. Asians are the fastest growing racial/ethnic group in the US, yet they have been underemphasized in previous studies of environmental health and injustice. This cross-sectional study investigated possible disparities in residential exposure to carcinogenic HAPs among Asian Americans, including Asian American subgroups in the US (including all 50 states and the District of Columbia, n = 71,208 US census tracts) using National Air Toxics Assessment and US Census data. In an unadjusted analysis, Chinese and Korean Americans experience the highest mean cancer risks from HAPs, followed by Blacks. The aggregated Asian category ranks just below Blacks and above Hispanics, in terms of carcinogenic HAP risk. Multivariate models adjusting for socioeconomic status, population density, urban location, and geographic clustering show that an increase in proportion of Asian residents in census tracts is associated with significantly greater cancer risk from HAPs. Neighborhoods with higher proportions (as opposed to lower proportions) of Chinese, Korean, and South Asian residents have significantly greater cancer risk burdens relative to Whites. Tracts with higher concentrations of Asians speaking a non-English language and Asians that are US-born have significantly greater cancer risk burdens. Asian Americans experience substantial residential exposure to carcinogenic HAPs in US census tracts and in the US more generally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Identification of hepatic metabolites of two highly carcinogenic polycyclic aza-aromatic compounds, 7,9-dimethylbenz[c]acridine and 7,10-dimethylbenz[c]acridine.

    Science.gov (United States)

    Ye, Y; Duke, C C; Holder, G M

    1995-03-01

    The hepatic microsomal metabolites of the highly carcinogenic dimethylbenzacridines, 7,9-dimethylbenz[c]acridine (7,9-DMBAC), and 7,10-dimethylbenz[c]acridine (7,10-DMBAC) were obtained with preparations from 3-methylcholanthrene-pretreated rats. Metabolites were separated by reversed-phase HPLC and characterized using UV spectral data and chemical ionization-mass spectrometry after trimethylsilylation and GC. Comparisons with products formed in the presence of the epoxide hydrolase inhibitor, 1,1,1-trichloropropane 2,3-oxide and with those formed from the three synthetic alcohol derivatives of each parent compound, aided the assignment of firm or tentative structures to 16 products from 7,9-DMBAC found in 22 reversed-phase chromatographic peaks, and for 17 products of 7,10-DMBAC found in 19 chromatographic peaks. The more abundant metabolites were derived from oxidation of the methyl groups. Other metabolites were dihydrodiols, epoxides, phenols and secondary metabolites. The 9-methyl group prevented dihydrodiol formation at the 8,9-position from 7,9-DMBAC, and for each carcinogen, the 3,4-dihydrodiol was formed. As well, 3,4-dihydrodiols of methyl oxidized compounds were found.

  5. 1,2,3-Trichloropropane: a multisite carcinogen in rats and mice.

    Science.gov (United States)

    Irwin, R D; Haseman, J K; Eustis, S L

    1995-05-01

    1,2,3-Trichloropropane was evaluated in 2-year toxicology and carcinogenesis studies by the National Toxicology Program. The selection of this chemical for study was based on the potential for human exposure, its positive in vitro genotoxicity, and the carcinogenicity of structurally related chemicals. During the 2-year study 1,2,3-trichloropropane was administered in corn oil by gavage 5 days per week; groups of 60 F344/N rats received 0, 3, 10, or 30 mg/kg, while groups of 60 B6C3F1 mice received 0,6,20, or 60 mg/kg. Because of reduced survival associated with the development of chemical-related neoplasms, rats that received 30 mg/kg were terminated at 65 weeks (females) or 76 weeks (males). Similarly, mice that received 60 mg/kg were terminated at 73 weeks (females) or 79 weeks (males), while groups of mice that received 20 mg/kg were terminated at 88 weeks. 1,2,3-Trichloropropane induced benign and/or malignant neoplasms at multiple sites in both rats and mice; this included increased incidences of benign and malignant neoplasms of the squamous epithelium of the oral mucosa and forestomach of male and female rats, benign neoplasms of the kidney and pancreas and benign or malignant neoplasms of the preputial gland in male rats, malignant neoplasms of the mammary gland, and benign or malignant neoplasms of the clitoral gland in female rats. In mice, 1,2,3-trichloropropane induced a low incidence of malignant neoplasms of the oral mucosa in females, high incidences of benign and malignant neoplasms of the forestomach in males and females, benign neoplasms of the liver and harderian gland of males and females, and uterine neoplasms in females.

  6. Chemical, Sensorial and Rheological Properties of a New Organic Rice Bran Beverage

    OpenAIRE

    Gerson Luis FACCIN; Letícia Adélia MIOTTO; Leila do Nascimento VIEIRA; Pedro Luiz Manique BARRETO; Edna Regina AMANTE

    2009-01-01

    Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict its application in human nutrition. Therefore, organic agriculture is an alternative to use the properties of rice bran. Rice bran beverage is a new cereal product from organic rice. This work presents the preliminary results of the chemical and rheological studies of a bath pas...

  7. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    Science.gov (United States)

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Residues of carcinogenic animal drugs in food: difficulties in evaluation of human safety.

    Science.gov (United States)

    Somogyi, A

    1979-01-01

    The indisputable need to intensify animal production in order to provide an adequate food supply for the world population involves the use of substances that are highly potent pharmacologically and toxicologically. The history of regulatory action with regard to such additives is similar to that for other substances: first, no regulation; next, an over-reaction; and now decisions based on judicious evaluation of scientific facts. One factor that differentiates the chemicals used in animal production from other food additives is that both the parent compounds and their metabolites appear in edible products, posing problems both for the analytical detection and safety evaluation of such residues. It would be unrealistic to propose 'zero' tolerances for these additives, even if they are carcinogenic. The benefits gained from drugs that cure and prevent infections and parasitic diseases in food-producing animals, and the fact that analytical methods can now detect very small quantities make the presence of low levels of these substances in food unobjectionable.

  9. Metal–organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    M. Hassan eBeyzavi

    2015-01-01

    Full Text Available As a C1 feedstock, CO2 has the potential to be uniquely highly economical in both a chemical and a financial sense. In particular, the highly atom-economical acid-catalyzed cycloaddition of CO2 to epoxides to yield cyclic organic carbonates (OCs, a functionality having many important industrial applications, is an attractive reaction for the utilization of CO2 as a chemical feedstock. Metal–organic frameworks (MOFs are promising candidates in catalysis as they are a class of crystalline, porous and functional materials with remarkable properties including great surface area, high stability, open channels and permanent porosity. MOFs structure tunability and their affinity for CO2, makes them great catalysts for the formation of OCs using CO2 and epoxides. In this review, we examine MOF-based catalytic materials for the cycloaddition of carbon dioxide to epoxides. Catalysts are grouped based on the location of catalytic sites, i.e., at the struts, nodes, defect sites, or some combination thereof. Additionally, important features of each catalyst system are critically discussed.

  10. Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals.

    NARCIS (Netherlands)

    Jonker, M.T.O.; Muijs, B.

    2010-01-01

    With increasing ionic strength, the aqueous solubility and activity of organic chemicals are altered. This so-called salting-out effect causes the hydrophobicity of the chemicals to be increased and sorption in the marine environment to be more pronounced than in freshwater systems. The process can

  11. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    International Nuclear Information System (INIS)

    Cousins, Anna Palm

    2012-01-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical–chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK OA and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: ► A novel indoor-inclusive multimedia urban fate model is developed and applied. ► Emissions indoors may increase the urban chemical residence time. ► Indoor removal from surfaces constitutes an additional loss process

  12. Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

    Directory of Open Access Journals (Sweden)

    Hyunhee Park

    2011-03-01

    Conclusion: Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during spills and/or maintenance tasks and by-product chemicals were not included. Supplementary studies might be required.

  13. Carcinogenicity of a medicinal ozokerite and its constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ruchkovskii, B; Borisiuk, I P; Tiktin, L A

    1970-01-01

    Fluorimetric analysis and skin painting tests on mice demonstrated that ceresin (a medicinal ozokerite) contains carcinogens. In the USSR, ceresin is applied to the skin or rectal and vaginal mucosa for the treatment of a variety of diseases. Ceresin and its components were tested on 460 male non-inbred mice (aged 2 to 2.5 mo) by applying either the melted substance or a 60% benzene solution of it to the skin in 30-mg doses (2 admin./week x 10 mo). Skin papillomas were produced after latent periods of 4.5 to 9 mo by paraffin, petrolatum, heavy mineral oil and 1/2 ceresin samples. Squamous cell carcinomas of the skin were seen in 2 mice painted with mineral oil. Fluorimetric analysis of ceresin demonstrated several polycyclic hydrocarbons, identified as 3,4-benzpyrene (BP) benzo(ghi) perylene, and perylene. An aqueous extract of crude ozokerite contained traces of BP, while a benzene extract contained 70 to 77 microg/kg. It is recommended that petroleum products which are commonly used to improve the consistency of ceresin be analyzed for the presence of carcinogens before use.

  14. Quantification of the carcinogenic effect of polycyclic aromatic hydrocarbons in used engine oil by topical application onto the skin of mice.

    Science.gov (United States)

    Grimmer, G; Dettbarn, G; Brune, H; Deutsch-Wenzel, R; Misfeld, J

    1982-01-01

    The purpose of this investigation was to identify the substances mainly responsible for the carcinogenic effect of used engine oil from gasoline engines using topical application as a carcinogen-specific bioassay. This was performed by comparison of the tumorigenic effect of single fractions with that of an unseparated sample of the lubricating oil. The probit analysis of the results shows: 1) The used engine oil, from gasoline-driven automobiles, investigated provoked local tumors after long-term application to the dorsal skin of mice. The incidence of carcinoma depended on the dose of the oil. 2) The fraction of the polycyclic aromatic hydrocarbons (PAH) containing more than three rings accounts for about 70% of the total carcinogenicity in the case of crankcase oil. This fraction constitutes only up to 1.14% by weight of the total oil sample. 3) The content of benzo(a)pyrene (216.8 mg/kg) accounts for 18% of the total carcinogenicity of the used oil. 4) Regarding the reduced carcinogenicity of the oil sample, which was reconstituted from all fractions, it seems possible that some of the carcinogenic substances were lost due to volatility, with evaporation of the solvents from the oil-fractionation processes. 5) Regarding the small effect of the PAH-free fraction, as well as the equal carcinogenic effects of the PAH-fraction (containing more than three rings) and the reconstituted oil sample, no hints for a co-carcinogenic activity were obtained.

  15. Environmental laws regulating chemicals: Uses of information in decision making under environmental statutes

    Energy Technology Data Exchange (ETDEWEB)

    Gaba, J.M. [Southern Methodist Univ., Dallas, TX (United States)

    1990-12-31

    Three areas are addressed in this paper: generic issues that arise simply in the process of decision-making under environmental statutes; different decision-making standards under various environmental statutes; and efforts to legislate a {open_quotes}safe{close_quotes} or {open_quotes}acceptable{close_quotes} risk from exposure to carcinogenic chemicals.

  16. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  17. Risk of human health by particulate matter as a source of air pollution--comparison with tobacco smoking.

    Science.gov (United States)

    Enomoto, Makoto; Tierney, William J; Nozaki, Kohsuke

    2008-08-01

    Increased air pollution, containing carcinogenic particulate matter smaller than 2.5 microm (PM(2.5)), has gained particular attention in recent years as a causative factor in the increased incidence of respiratory diseases, including lung cancer. Extensive carcinogenicity studies conducted recently under Good Laboratory Practice conditions by National Toxicology Program in the USA, Ramazzini Foundation in Italy or Contract Research Organizations on numerous chemical compounds have demonstrated the importance of considering dose levels, times and duration of exposure in the safety evaluation of carcinogenic as well as classical toxic agents. Data on exposure levels to chemical carcinogens that produce tumor development have contributed to the evaluation of human carcinogens from extrapolation of animal data. A popular held misconception is that the risk from smoking is the result of inhaling assorted particulate matter and by products from burning tobacco rather than the very low ng levels of carcinogens present in smoke. Consider the fact that a piece of toasted bread contains ng levels of the carcinogen urethane (ethyl carbamate). Yet, no one has considered toast to be a human carcinogen. Future human carcinogenic risk assessment should emphasize consideration of inhalation exposure to higher levels of benzo (a) pyrene and other possible carcinogens and particulate matter present in polluted air derived from automobile exhaust, pitch and coal tar on paved roads and asbestos, in addition to other environmental contaminant exposure via the food and drinking water.

  18. Molecular basis of carcinogenicity of tungsten alloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Robert M.; Williams, Tim D.; Waring, Rosemary H.; Hodges, Nikolas J., E-mail: n.hodges@bham.ac.uk

    2015-03-15

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  19. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions.

    Science.gov (United States)

    Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal

    2010-03-23

    The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.

  20. Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard

    NARCIS (Netherlands)

    Rusyn, Ivan; Chiu, Weihsueh A.; Lash, Lawrence H.; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z.

    2014-01-01

    The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic